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Preface

“...yoyum varo gudham anupravisto,
naanyam thasman Nachiketa vrinithe.”

(“...Nachiketa does not choose any other boon but
[learning about] that of which Knowledge is hidden.”)

Katho Upanishad, Verse 29.

During the past decade or so, theoretical astrophysics has emerged as one of the
most active research areas in physics. This advance has also been reflected in the
greater interdisciplinary nature of research that is being carried out in this area in
the recent years. As a result, those who are learning theoretical astrophysics with
the aim of making a research career in this subject need to assimilate considerable
amount of concepts and techniques, in different areas of astrophysics, in a short
period of time. Every area of theoretical astrophysics, of course, has excellent
textbooks that allow the reader to master that particular area in a well-defined
way. Most of these textbooks, however, are written in a traditional style, focussing
on one area of astrophysics (say stellar evolution, galactic dynamics, radiative
processes, cosmology etc.) Because different authors have different perspectives
regarding their subject matter it is not very easy for a student to understand
the key unifying principles behind several different astrophysical phenomena
by studying a plethora of separate textbooks, as they do not link up together as
a series of core books in theoretical astrophysics covering everything which a
student would need. A few books, which do cover the whole of astrophysics,
deal with the subject at a rather elementary (“first course”) level.

What we require is clearly something analogous to the famous Landau–
Lifshitz course in theoretical physics, but focussed to the subject of theoretical
astrophysics at a fairly advanced level. In such a course, all the key physical
concepts (e.g., radiative processes, fluid mechanics, plasma physics, etc.) can be
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xvi Preface

presented from a unified perspective and then applied to different astrophysical
situations.

This book is the first of a set of three volumes that are intended to do exactly
that. They form one single coherent unit of study through the use of which a
student can acquire mastery over all the traditional astrophysical topics. What is
more, these volumes emphasise the unity of concepts and techniques in different
branches of astrophysics. The interrelationship among different areas and com-
mon features in the analysis of different theoretical problems will be stressed
throughout. Because many of the basic techniques need to be developed only
once, it is possible to achieve a significant economy of presentation and crispness
of style in these volumes.

Needless to say, there are some basic “boundary conditions” one has to respect
in such an attempt to cover the whole of Theoretical Astrophysics in approxi-
mately 3 × 580 pages. Not much space is available to describe the nuances in
greater length or to fill in the details of algebra. For example, I have made con-
scious choices as to which parts of the algebra can be left to the reader and
which need to be worked out explicitly in the text, and I have omitted a detailed
discussion of elementary concepts and derivations. However, I do not expect the
reader to know anything about astrophysics. All astrophysical concepts are de-
veloped ab initio in these volumes. The approach used in these three volumes is
similar to that used by Gengis Khan, namely, (1) cover as much area as possible,
(2) capture the important points, and (3) be utterly ruthless!

To cut out as much repetition as possible, the bulk of the physical principles
are presented at one go in Vol. I and are applied in the other two volumes to
different situations. This implies that there will be a lot of physics but very
little of “concrete” astrophysics in Vol. I; that comes in Vol. II (Stars and Stellar
Systems) and Vol. III (Extragalactic Astronomy and Cosmology). The criteria
for the selection of material for Vol. I have been the following: (1) Any physical
principle that finds application in more than one chapter of Vol. II or Vol. III
(for example, bremsstrahlung, Voigt profile, etc.) is discussed in Vol. I. Certain
topics that are used in only a specific chapter in Vol. II or Vol. III are discussed
in situ rather than in Vol. I. (2) By and large, everything discussed in Vol. I will
be utilized directly somewhere in Vols. II and III. On rare occasion, I do cover
a topic in Vol. I even if it is not fully utilized in Vol. II or Vol. III because a
reader who is going to work in theoretical astrophysics will eventually need an
understanding of that particular topic. (3) These three volumes concentrate on
theoretical aspects. Observation and phenomenology are, of course, discussed
in Vols. II and III to the extent necessary to make the motivation clear. However,
I do not have the space to discuss how these observations are made, the errors,
reliability, etc., of the observations or the astronomical techniques. (Maybe there
should be a fourth volume describing observational astrophysics!)

The target audience for this three-volume work will be fairly large and is made
up of (1) students in the first year of their Ph.D. Program in theoretical physics,
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astronomy, astrophysics, and cosmology; (2) research workers in various fields of
theoretical astrophysics, cosmology, etc.; and (3) teachers of graduate courses in
theoretical astrophysics, cosmology and related subjects. In fact, anyone working
in or interested in some area of astronomy or astrophysics will find something
useful in these volumes. They are also designed in such a way that parts of the
material can be used in modular form to suit the requirements of different people
and different courses.

Let me briefly highlight the features which are specific to Vol. I. The reader of
Vol. I is assumed to have done basic courses in classical mechanics, nonrelativis-
tic quantum mechanics, and classical electromagnetic theory. Of the 12 chapters
in Vol. I, the first one is a broad-brush overview of physical principles in an order-
of-magnitude manner and is intended to set the stage. I expect the reader to survey
this chapter rapidly but to come back to it periodically at later stages. This chapter
is probably the easiest or the most difficult, depending on one’s background and
aptitude. It is easy in the sense that very little sophisticated mathematics is used;
difficult because it takes a high level of maturity to appreciate some of the phys-
ical arguments that are presented. Chapters 2 (Dynamics), 3 (Special Relativity,
Electrodynamics, and Optics), and 5 (Statistical Mechanics) cover the ground
the reader may already be familiar with – but from an advanced perspective. The
aim is to introduce powerful techniques in familiar contexts so that the reader can
learn and appreciate them. For example, no apologies are made for introducing
four-vector notation up front or dealing with distribution functions right from
the beginning, so as to get the main results as quickly as possible. The emphasis
throughout is on topics relevant in astrophysics, such as the reduced three-body
problem, action-angle variables, diffraction and interference, optical systems,
propagation in random media, ionisation equilibria, etc. Chapter 4 deals with the
basics of radiation theory – both classical and quantum – that is developed from
scratch and the reader is not assumed to be familiar with quantum field theory.

Chapters 6–12 develop the toolkit for astrophysics in a self-contained manner,
virtually ab initio. Chapters 6 (Radiative Processes) and 8 (Fluid Mechanics) are
fairly exhaustive and detailed. The short chapter on Spectra (Chap. 7) covers
general material that is of astronomical relevance; more specific aspects will be
dealt with in Vols. II and III within the appropriate contexts. In Chap. 9 (Plasma
Physics) I had to make choices as to which topics are of sufficiently general
nature to appear in Vol. I; some specific topics (e.g., instability of axisymmetric
systems with magnetic fields, alpha effect, and dynamos) will appear in the rel-
evant chapters of Vols. II and III. Chapter 10 (Gravitational Dynamics) covers
the background needed for galactic dynamics, globular cluster evolution, etc.
Chapter 11 is a compact introduction to general relativity and no previous fa-
miliarity with tensor analysis is assumed. Finally, Chap. 12 deals with aspects of
nuclear physics that are needed in the study of stellar evolution.

Any one of these topics is fairly vast and often requires a full textbook to do
justice to it, whereas I have devoted approximately 60 pages to each of them!
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I would like to emphasise that such a crisp, condensed discussion is not only
possible but also constitutes a basic matter of policy in these volumes. After
all, the idea is to provide the student with the essence of several textbooks
in one place. It should be clear to lecturers that these material can be easily
regrouped to serve different graduate courses at different levels, especially when
complemented by other textbooks.

Because of the highly pedagogical nature of the material covered in Vol. I, I
have not given detailed references to original literature except on rare occasions
when a particular derivation is not available in standard textbooks. The annotated
list of references given at the end of the book cites several other textbooks
that I found very useful. Some of these books, of course, contain extensive
bibliographies and references to original literature. The selection of core books
cited here clearly reflects the personal bias of the author and I apologise to anyone
who feels that their work or contribution has been overlooked.

Several people have contributed to the making of these volumes and especially
to Vol. I. The idea for these volumes originated over a dinner with J.P. Ostriker in
late 1994, while I was visiting Princeton. I was lamenting to Jerry about the lack
of a comprehensive set of books covering all of theoretical astrophysics and Jerry
said, “Why don’t you write them?” He was very enthusiastic and supportive of
the idea and gave extensive comments and suggestions on the original outline I
produced in the next one week. I am grateful to him for the comments and for
the moral support that I needed to launch into such a project. I sincerely hope
the volumes do not disappoint him.

Adam Black of Cambridge University Press took up the proposal with his char-
acteristic enthusiasm and initiative; this is the third project on which we worked
together and I thoroughly enjoyed it. I should also thank him for choosing six
excellent (anonymous) referees for this proposal whose support and comments
helped to mould the proper framework.

Many of my friends and colleagues carried out the job of reading the earlier
drafts and providing comments. Of these, M. Vivekanand has gone through most
of the book with meticulous care and has given extensive comments. Many other
colleagues, especially Roger Blandford, George Djorgovsky, Peter Goldreich,
John Huchra, Donald Lynden-Bell, J.V. Narlikar, R. Nityananda, Sterl Phinney,
and Douglas Richstone looked at the whole draft and provided comments and
suggestions at different levels of detail. J.S. Bagla, Sai Iyer, Nissim Kanekar,
Ben Oppenheimer, K. Subramanian, S. Sankaranarayanan, and K. Srinivasan
gave detailed comments on selected chapters; the last two took pains to check
most of the derivations and algebraic expressions. I thank all of them for their
help.

I have been visiting the Astronomy Department of Caltech during the past
several years and the work on this book has benefitted tremendously through my
discussions and interactions with the students and staff of the Caltech Astronomy
Department. I especially thank Roger Blandford, Peter Goldreich, Shri Kulkarni,
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Sterl Phinney, and Tony Readhead for several useful discussions and for sharing
with me their insights and experience in physics teaching.

This project would not have been possible but for the dedicated support from
Vasanthi Padmanabhan, who not only did the entire TEXing and formatting but
also produced most of the figures – often writing the necessary programs for the
same. I thank her for the help and look forward to receiving the same for the
next two volumes! I also thank Sunu Engineer who was resourceful in solving
several computer-related problems that cropped up periodically. It is a pleasure
to acknowledge the library and other research facilities available at the Inter-
University Centre for Astronomy and Astrophysics, which were useful in this
task.

T. Padmanabhan





1
Order-of-Magnitude Astrophysics

1.1 Introduction

The subject of astrophysics involves the application of the laws of physics to
large macroscopic systems in order to understand their behaviour and predict
new phenomena. This approach is similar in spirit to the application of the laws
of physics in the study of, say, condensed-matter phenomena, except for the
following three significant differences:

(1) We have far less control over the external conditions and parameters in as-
trophysics than in, say, condensed-matter physics. It is not possible to study
systems under controlled conditions so that certain physical processes dom-
inate the behaviour. Identifying the causes of various observed phenomena
in astrophysics will require far greater reliance on statistical arguments than
in laboratory physics.

(2) The astrophysical systems of interest span a wide range of parameter space
and require inputs from several different branches of physics. Typically, the
densities can vary from 10−25 gm cm−3 (interstellar medium) to 1015 gm
cm−3 (neutron stars); temperatures from 2.7 K (microwave background ra-
diation) to 109 K (accreting x-ray sources) or even to 1015 K (early universe);
radiation from wavelengths of meters (radio waves) to fractions of angstroms
(hard gamma rays); typical speeds of particles can go up to 0.99c (relativis-
tic jets). Clearly we require inputs from quantum-mechanical and relativistic
regimes as well as from more familiar classical physics.

(3) The primary source of information about distant astrophysical sources is
the electromagnetic radiation detected from them. Therefore, to obtain a
complete picture about any source, it is necessary to examine it in all the
wave bands. Because of technological limitations, it is often quite diffi-
cult to have uniform coverage across the entire electromagnetic spectrum.
Hence the information we have about the sources is often distorted or
incomplete.

1



2 1 Order-of-Magnitude Astrophysics

These considerations suggest that two aspects will be most important in the
study of different astrophysical systems. The first is the appreciation of the
different states in which bulk matter can exist under different conditions and
the dynamics of the matter governed by different equations of state. The sec-
ond is an understanding of different radiative processes that lead to the emis-
sion of photons, which act as prime carriers of information about astronomical
objects.

We shall be concerned with these and related topics in several chapters of this
book. The purpose of this introductory chapter is twofold: It will first provide –
in Sections (1.2) – (1.4) – a rapid overview of several physical processes at an
order-of-magnitude level and introduce the necessary concepts. Then we will
make an attempt to understand the existence of different astrophysical structures
from first principles to the extent possible. Implementing such a plan, of course,
has not been possible even in laboratory physics, and it is unlikely to succeed in
the case of astrophysics. At present, astrophysics does require a fair amount of
observational and phenomenological input, just like any other branch of applied
physics. Nevertheless, we will make such an attempt as it is useful in providing
the most basic and direct connection between physics and astrophysics.

1.2 Energy Scales of Physical Phenomena

Let us consider a system of N particles (N � 1), each of mass m, occupying
a spherical region of radius R. In dealing with the dynamics of such a large
collection of particles, it is useful to introduce the concept of pressure exerted
by the system of particles as the momentum transferred per second normal to a
(fictitious) surface of unit area. The contribution to the rate of momentum transfer
(per unit area) from particles of energy ε is n(ε)p(ε) · v(ε), where n(ε) denotes
the number of particles per unit volume with momentum p(ε) and velocity v(ε).
We obtain the net pressure by averaging this expression over the angles defined
by p (or v) and summing over all values of the energy. Because the momentum
and the velocity are parallel to each other, the vector dot product p · v averages
to (1/3)pv (in three dimensions), giving

P = 1

3

∫ ∞

0
n(ε)p(ε)v(ε) dε, (1.1)

where the integration is over all energies. The system is called ideal if the kinetic
energy dominates over the interaction energy of the particles. In that case ε is
essentially the kinetic energy of the particle. With the relations

p = γ mv, ε = (γ − 1)mc2, γ ≡
(

1 − v2

c2

)−1/2

, (1.2)

where ε is the kinetic energy of the particle, the pressure can be expressed in the
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form

P = 1

3

∫ ∞

0
nε

(
1 + 2mc2

ε

)(
1 + mc2

ε

)−1

dε. (1.3)

In the nonrelativistic (NR) limit (with mc2 � ε), this gives PNR ≈ (2/3) 〈nε〉 =
(2/3)UNR, where UNR is the energy density (i.e., energy per unit volume) of the
particles. In the relativistic case (with ε � mc2 or when the particles are mass-
less), the corresponding expression is PER ≈ (1/3) 〈nε〉 = (1/3)UNR. Hence, in
general, P ≈ U up to a factor of order unity.

This result can be converted into a more useful form of equation of state
whenever the mean free path of the particles in the system is small compared
with the length scales over which the physical parameters of the system change
significantly. Then the pressure can be expressed in terms of density and tempe-
rature if the energy density can be expressed in terms of these variables. This is
possible in several contexts leading to different equations of state. To understand
each of these cases it is useful to start by identifying the characteristic energy
scales of bulk matter. We now turn to this task.

1.2.1 Rest-Mass Energy

We can associate the rest-mass energy mc2 with each individual particle of
mass m. In normal matter, made up of nucleons and electrons, the lowest value
for rest-mass is provided by electrons with mec2 ≈ 0.5 MeV. For nucleons, the
rest-mass energy is m pc2 ≈ 1 GeV. Because the total mass of the system is mostly
due to the nucleons, the total rest-mass energy will be Emass

∼= N Am pc2 ∼= Mc2,
where Am p � m is the mass of each nucleus and Nm = M is the total mass of the
system. Rest-mass energy is extensive – that is, Emass ∝ N – in the low-energy
phenomena in which masses of individual nuclei do not change.

1.2.2 Atomic Binding Energies

If the particles of the system have internal structure (molecular, atomic, nuclear,
etc.) then we get further energy scales that are characteristic of the interactions.
The simplest is the atomic binding energy of atoms and molecules, which arises
from the electromagnetic coupling between the particles.

The Hamiltonian describing an electron, moving in the Coulomb field of a
nucleus of charge Zq, is given by H0 = (p2/2me) − (Zq2/r ). If this electron
is described by a wave function ψ(x, L), where L denotes the characteristic
scale over which ψ varies significantly, then the expectation value for the en-
ergy of the electron in this state is E(L) = 〈ψ |H0|ψ〉 ≈ (–h2/2me L2) − (Zq2/L).
The first term arises from the fact that 〈ψ |p2|ψ〉 = −–h2 〈ψ |∇2|ψ〉 ≈ (–h2/L2),
which is equivalent to the uncertainty principle stated in the form p ∼= –h/L . This
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expression for E(L) reaches a minimum value of Emin = −Z2εa when L is var-
ied, with the minimum occurring at Lmin = (a0/Z ), where

a0 ≡
–h2

meq2
≡

–λe

α
≈ 0.52 × 10−8 cm, εa ≡ meq4

2–h2 = 1

2
α2mec2 ≈ 13.6 eV,

(1.4)

with the definitions –λe ≡ (–h/mec) and α ≡ (q2/–hc). a0 and εa correspond to the
size and the ground-state energy of a hydrogen atom with Z = 1. The wave-
length λ corresponding to εa is λ = (hc/εa) = 2α−2–λe � 103Å and lies in the UV
band. The fine-structure constant α ≈ 7.3 × 10−3 plays an important role in the
structure of matter and arises as the ratio between several interesting variables:

α = (v/Zc) = (2µB/qa0) = (r0/–λe) = ( –λe/a0),

where v is the speed of an electron in the atom, µB ≡ (q–h/2mec) is the Bohr
magneton representing the magnetic moment of the electron, and r0 ≡ (q2/mec2)
is called the classical electron radius.

When atoms of size a0 are closely packed, the number density of atoms is
nsolid ≈ (2a0)−3 ≈ 1024 cm−3. The binding energy of such a solid arises essen-
tially because of the residual electromagnetic force between the atoms, and the
typical binding energy per particle is f εa with f ≈ (0.1−1).

1.2.3 Molecular Binding Energy

The simplest molecular structure consists of two atoms bound to each other in
the form of a diatomic molecule. The effective potential energy of interaction
U (r ) between the atoms in such a molecule arises from a residual electrostatic
coupling and has a minimum at a separation r � a0, approximately the size of
the atom. The depth of the potential well at the minimum is comparable with
the electronic-energy level εa of the atom. In addition to the internal, electronic,
binding energies of the atoms comprising the molecule, there are two other
contributions to the energy of a diatomic molecule:

(1) The atoms of such a molecule can vibrate at some characteristic frequency
ωvib about the mean position along the line connecting them; this will lead
to vibrational-energy levels separated by Evib ≈ –hωvib. If the displacement
is ∼a0 from the minimum, the vibrational energy Evib will be ∼εa . Writing
εa ≈ (1/2)µω2

viba2
0
∼= (–h2/mea2

0), where µ is the reduced mass of the two
atoms, we get

Evib = –hωvib ≈
–h2

(µme)1/2a2
0

≈
(

me

µ

)1/2

εa � 0.25 eV (1.5)

if µ � m p.
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(2) The molecule can also rotate about an axis perpendicular to the line joining
them. If the rotational angular momentum is J , this will contribute an energy
of approximately

Erot ≈
(

J 2

µa2
0

)
≈

(
–h2

µa2
0

)
≈

(
me

µ

)
εa ≈ 10−3εa � 10−2 eV (1.6)

if J� –h and µ � m p. It follows from these relations that Erot:Evib:E0 ≈
(me/µ):(me/µ)1/2:1 and Evib ≈ √

εa Erot. Because (me/µ) ≈ 10−3, the wave-
lengths of radiation from vibrational transitions are ∼40 times larger than
those of electronic transitions; similarly, the rotational transitions lead to rad-
iation with wavelengths ∼1000 times larger than those of electronic transi-
tions. These wavelengths are usually in the IR band.

Atomic and molecular energies are also extensive, with the binding energy of
a system of N particles scaling as N .

1.2.4 Nuclear-Energy Scales

Atomic nuclei are bound by the strong-interaction force that provides a binding
energy per particle of ∼8 MeV, which is the characteristic scale for nuclear-
energy levels. In the astrophysical context, a more relevant energy scale is the
one at which nuclear reactions can be triggered in bulk matter, which can be
estimated as follows. For two protons to fuse together while undergoing nu-
clear reaction, it is necessary that they be brought within the range of attractive
nuclear force, which is approximately l ≈ (h/m pc) = (2π–h/m pc). Because this
requires overcoming the Coloumb repulsion, such direct interaction can take
place only if the kinetic energy of colliding particles is of the order of the elec-
trostatic potential energy at the separation l. This requires energies of the order
of ε ≈ (q2/ l) = (α/2π )m pc2 ≈ 1 MeV. It is, however, possible for nuclear re-
actions to occur through quantum-mechanical tunneling when the de Broglie
wavelength λdeB ≡ (h/m pv) = l(c/v) of the two protons overlap. This occurs
when the energy of the protons is approximately εnucl ≈ (α2/2π2)m pc2 ≈ 1 keV.
It is conventional to write this expression as εnucl ≈ ηα2m pc2, with η � 0.1.
This quantity εnucl sets the scale for triggering nuclear reactions in astrophysical
contexts.

1.2.5 Gravitational Binding Energy

In the nonrelativistic, Newtonian theory for gravity, the gravitational energy of
a system of size R and mass M will be Egrav ≈ GM2/R ≈ (Gm2

p/R)N 2. This
is not extensive with respect to N (for a given R), and the potential energy per
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particle varies as

εg ≡ Egrav

N
=

(
Gm2

p

R

)
N =

(
4π

3

)1/3

Gm2
p N 2/3n1/3, (1.7)

where n = (3N/4π R3) is the number density of particles. The pressure due to
gravitational force near the center of the object will be approximately

Pg ≈ (G M2/R2)

(4π R2)
≈ 1

3

(
4π

3

)1/3

Gm2
p N 2/3n4/3 ∼= 1

3

(
Egrav

V

)
.

If the gravitational potential energy is comparable with the rest-mass energy
of the system, it is necessary to take general relativistic effects into account. The
ratio Rgm ≡ (Egrav/Emass) is Rgm � 0.7(M/1033 gm) (R/1 km)−1, which shows
that if massive objects (with M � 1033 gm) are confined to small regions (with
R � 1 km), the system will exhibit general relativistic effects. When this ratio is
small compared with unity, the system can be treated by Newtonian gravity.

1.2.6 Thermal and Degeneracy Energies of Particles

So far we have not introduced the notion of Temperature or the kinetic energy
of the particle. These attributes bring in the next set of energy scales into the
problem. For a particle of momentum p and mass m, the kinetic energy is given by

ε =
√

p2c2 + m2c4 − mc2 =
{

p2/2m (p � mc)

pc (p � mc)
, (1.8)

where the two forms are applicable in the non-relativistic (NR) and extreme
relativistic (ER) limits. The behaviour of the system depends on the origin of the
momentum distribution of the particles.

The familiar situation is the one in which short-range interactions (usually
called ‘collisions’) between the particles effectively exchange the energy so as
to randomize the momentum distribution. This will happen if the effective mean
free path of the system l is small compared with the length scale L at which
physical parameters change. (The explicit form taken by the condition l � L can
be very different in different cases; this condition is discussed in detail towards
the end of this section.) When such a system is in steady state, we can assume that
the local thermodynamic equilibrium, characterized by a local temperature T ,
exists in the system. Then the probability for occupying a state with energy E
will scale as P(E) ∝ exp[−(E/kB T )]. The typical momentum of the particle
when the temperature is T is given by Eq. (1.8) with ε � kB T , that is,

p ∼= mc

[
2kB T

mc2
+

(
kB T

mc2

)2
]1/2

∼=
{

(2mkB T )1/2 (kB T � mc2; NR)

(kB T/c) (kB T � mc2; ER)
.

(1.9)
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In this case, the momentum and the kinetic energy of the particles vanish when
T → 0.

The situation is actually more complicated for material particles like electrons.
The mean energy of a system of electrons will not vanish even at zero temperature
because electrons obey the Pauli exclusion principle, which requires that the
maximum number of electrons that can occupy any quantum state be two, one
with spin up and another with spin down. Because the uncertainty principle
requires that 	x	px >∼ h, we can associate (d3xd3 p)/(2π–h)3 microstates with
a phase-space volume d3x d3 p. Therefore the number of quantum states with
momentum less than p is [V (4πp3/3)/(2π–h)3], where V is the spatial volume
available for the system. The lowest energy state will be the one in which the
N electrons fill all levels up to some momentum pF , called Fermi momentum.
This requires that

n =
(

N

V

)
= 2

(
4πp3

F/3
)

(2π–h)3
= 1

3π2

(
pF
–h

)3

, (1.10)

giving pF = –h(3π2n)1/3. It is obvious that if pF >∼ mc the system must be treated
as relativistic, even in the zero-temperature limit. The energy corresponding to
pF will be

εF =
√

p2
F c2 + m2c4 − mc2 =

⎧⎪⎨
⎪⎩

p2
F

2m
=

(
–h2

2m

)
(3π2n)2/3 (NR)

pF c = (–hc)(3π2n)1/3 (ER)

. (1.11)

The quantity εF (called the Fermi energy) sets the quantum-mechanical scale of
the energy; quantum-mechanical effects will be dominant if εF >∼ kB T (degen-
erate), and the classical theory will be valid for εF � kB T (nondegenerate). The
relevant ratio Rft ≡ (εF/kB T ) that determines that the degree of degeneracy is(

εF

kB T

)
= mc2

kB T

{[(
–hn1/3

mc

)2

(3π2)2/3 + 1

]1/2

− 1

}

∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2
(3π2)2/3

(
–h2

m

n2/3

kB T

)

(3π2)1/3

(
–hc

kB T
n1/3

) , (1.12)

where the two limiting forms are valid for n � (–h/mc)−3 (NR) and n � (–h/mc)−3

(ER), respectively. In the first case [n � (–h/mec)−3 � 1031 cm−3], the system is
nonrelativistic; it will also be degenerate if Rft = (εF/kB T ) � 1 and classical
if Rft � 1. The transition occurs at Rft ≈ 1, which corresponds to nT −3/2 =
[(mkB)3/2/–h3] = 3.6×1016 in cgs units. In the second case [n � (–h/mec)−3 �
1031 cm−3; ρ ≡ m pn � 107 gm cm−3], electrons have pF � mec and are
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relativistic irrespective of temperature. The quantum effects will dominate ther-
mal effects if kB T � (–hc)n1/3, and we will have a relativistic, degenerate gas.

In general, the kinetic energy of the particle will have contributions from
the temperature as well as from Fermi energy. If we are interested in only
the asymptotic limits, we can take the total kinetic energy per particle to be
ε ≈ εF (n) + kB T . Note that such a system has a minimum energy NεF (n) even
at T = 0.

By using our general result P � nε [see Eq. (1.3)], we can obtain the equation
of state for the different cases discussed above. First, for a quantum-mechanical
gas of fermionic particles with kB T � εF and ε ≈ εF , it follows from Eq. (1.11)
that P � nεF varies as the (5/3)rd power of density in the nonrelativistic case
and as the (4/3)rd power of density in the relativistic case. Whether the system
is relativistic or not is decided by the ratio (pF/mc) or – equivalently – the ratio
(εF/mc2). The transition occurs at n = nRQ ≈ (–h/mc)−3. Second, if the system is
classical with kB T � εF so that ε ∼= kB T , then P � nkB T in both nonrelativistic
and extreme relativistic limits.

The energy scale of the individual particles also characterizes the energy
involved in the collisions between the particles. If this quantity is larger than the
binding energy of the atomic system, the atoms will be ionised and the electrons
will be separated from the atoms. The familiar situation in which this happens is at
high temperatures with kB T >∼ εa when the system will be made of free electrons
and positively charged ions, whereas, if kB T � εa , the system will be neutral.
The transition temperature at which nearly half the number of atoms are ionised
occurs around kB T ≈ (εa/10), which is ∼104 K for hydrogen. For T � 104 K,
the kinetic energy of the free electrons in the hydrogen plasma will be ∼kB T .

The electrons can be stripped off the atoms in another different context. This
occurs if the matter density is so high that the atoms are packed close to each
other, with the electrons forming a common pool with εF >∼ εa . In this case, the
electrons will be quantum mechanical and the relevant energy scale for them
will be εF . The temperature does not enter into the picture if kB T � εF , and we
may call this a zero-temperature plasma. Conventionally, such systems are called
degenerate. For normal metals in the laboratory the Fermi energy is comparable
with the binding energy within an order of magnitude. If the temperature is below
104 K, the properties of the system are essentially governed by Fermi energy.

In the derivation of P in Eq. (1.3) it is assumed that the the gas is ideal, i.e.,
the mutual interaction energy of the particles is small compared with the kinetic
energy. To treat a plasma as ideal, it is necessary that the Coulomb interaction
energy of ions and electrons be negligible. The typical Coulomb potential energy
between the ions and the electrons in the plasma is given by εCoul ≈ Zq2n1/3. If
the classical high-temperature plasma is to be treated as an ideal gas, this energy
should be small compared with the energy scale of the particle ε ≈ kB T , which
requires the condition nT −3 � (kB/Zq2)3 � 2.2 × 108 Z−3 in cgs units. On the
other hand, to treat the high-density quantum gas as ideal, we should require that
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the Coulomb energy εCoul ≈ Zq2n1/3 be small compared with the Fermi energy
εF ≈ (–h2/2m)n2/3. The condition now becomes n � 8Z3a−3

0 ≈ Z3 × 1026 cm−3.
Note that such a system becomes more ideal at higher densities; this is because
the Fermi energy rises faster than the Coulomb energy.

Let us now go back to the tacit assumption we made in the above analysis,
viz., that physical interactions between the particles of the system are capable
of maintaining the thermal equilibrium. Determining the precise condition that
will ensure this is not a simple task; but – naively – we would require that (1) the
mean free path for particles, l = (nσ )−1 based on a relevant scattering process
governed by a cross section σ , be small compared with the scale L over which
various parameters change significantly, and (2) that the mean time between col-
lisions τ = (nvσ )−1 be small compared with the time scale over which physical
parameters change.

To apply this condition we need to know the relevant mean free path for the
system. For a neutral gas of molecules, this is essentially determined by molecu-
lar collisions with σ0 ≈ πa2

0 ≈ 8.5 × 10−17 cm2 and l = (nσ0)−1. The time scale
for the establishment of a Maxwellian distribution of velocities will be approxi-
matelly τneu � l/v ∝ n−1T −1/2. For an ionized classical gas, the cross section for
scattering is decided by Coulomb interaction between charged particles. Because
an ionized plasma is made of electrons and ions with vastly different inertia, the
interparticle collisions can take different time scales to produce thermal equili-
brium between electrons, between ions, and between electrons and ions. Each of
these needs to be discussed separately.

The typical impact parameter between two electrons is b ≈ (2Zq2/mev
2),

where v is the typical velocity of an electron. The corresponding e–e scattering
cross section is

σcoul ≈ πb2 ≈ π

(
Zq2

me

)2 1

v4
≈ 10−20 cm2 Z2

(
T

105 K

)−2

, (1.13)

and the mean free path varies as l = (nσcoul)−1 ∝ (T 2/n). The mean free time
between the electron–electron scattering will be τee ≈ (nσv)−1, where n is the
number density of electrons and σ ≈ πb2. This gives τee ≈ (m2

ev
3/2π Z2q4n),

which is the leading dependence. (A more precise analysis changes the numerical
coefficient and introduces an extra logarithmic factor; see Chap. 9.)

Note that τ ∝ m2v3 ∝ T 3/2m1/2 at a given temperature T ∝ (1/2)mv2. There-
fore the ion–ion collision time scale τpp will be larger by the factor (m p/me)1/2�
43, giving τpp = (m p/me)1/2τee � 43τee.

The time scale for significant transfer of energy between electrons and ions
is still larger because of the following fact. When two particles (of unequal
mass) scatter off each other, there is no energy exchange in the centre-of-mass
frame. In the case of ions and electrons, the centre-of-mass frame differs from
the lab frame only by a velocity vCM � (me/m p)1/2vp � vp. Because there is
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no energy exchange in the centre-of-mass frame, the maximum energy transfer
in the lab frame (which occurs for a head-on collision) is approximately 	E =
(1/2)m p(2vcm)2 = 2m pv

2
cm � 2mev

2
p, giving [	E/(1/2)m pv

2
p] � (me/m p) � 1.

Therefore it takes (m p/me) times more collisions to produce equilibrium be-
tween electrons and ions, that is, the time scale for electron–ion collision is
τpe = (m p/me)τee � 1836τee. The plasma will relax to a Maxwellian distribu-
tion in this time scale.

Finally, it must be noted that in a high-temperature tenuous plasma, this mean
free path can become larger than the size of the system. If that happens, it
is necessary to check whether there are any other physical processes that can
provide an effective mean free path that is lower. Most astrophysical plasmas
host magnetic fields that make the charged particles spiral around the magnetic-
field lines. We can estimate the typical radius of a spiraling charged particle in a
magnetic field by equating the centrifugal force (mv2/r ) to the magnetic force
(qvB/c). This leads to a radius called the Larmor radius, given by

rL = (mcv/qB) = 13 cm (T/105 K)1/2(B/1 G)−1

in a thermal plasma. When the Larmor radius is small, it can act as the effec-
tive mean free path for the scattering of charged particles. The ratio between
the mean free path from Coulomb collisions [l ∝ (T 2/n)] and the Larmor ra-
dius [rL ∝ (T 1/2/B)] varies as (BT 3/2/n) and can be large in tenuous high-
temperature plasmas with strong magnetic fields. This ratio is unity for a critical
magnetic field:

Bc = 10−19 G

(
T

105 K

)−3/2( n

1 cm−3

)
. (1.14)

The magnetic field in most astrophysical plasmas will be larger than Bc, and
hence this effect will be important.

1.3 Classical Radiative Processes

We next turn to the question of gathering information about the cosmic structures
from the radiation received from them. To relate the information received through
the electromagnetic waves to the properties of the emitting system, it is necessary
to understand the process of electromagnetic radiation from different systems
and the nature of the spectrum emitted by each of them.

In classical electromagnetic theory, radiation is emitted by any charged particle
that is in accelerated motion. A detailed argument given in Chap. 3 shows that
the total amount of energy radiated per second in all directions by a particle with
charge q moving with acceleration a is given by

dE
dt

= 2

3

q2

c3
a2, (1.15)
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provided the acceleration is measured in the frame in which the particle is instan-
teneously at rest. The rate of energy emission, of course, is independent of the
frame used to define it. This result is called Larmor’s formula and can be used
to understand a host of classical electromagnetic phenomena. Because d = (qx)
is the dipole moment related to an isolated charge located at position x, this
formula shows that the total power radiated is proportional to the square of d̈. In
bounded motion, if d varies at frequency ω (so that d̈ = −ω2d), then the energy
radiated is given by

dE
dt

= 2

3

d2

c3
ω4. (1.16)

Different physical phenomena are essentially characterised by different sources
of acceleration in Eq. (1.15) for the charged particle. Let us consider two specific
examples.

1.3.1 Thermal Bremsstrahlung

As a first example consider a scattering between an electron of mass me and a
proton, with an impact parameter b and relative velocity v in a hydrogen plasma.
The acceleration of the electron is a ≈ (q2/meb2) and lasts for a time (b/v).
Such an encounter will result in the radiation of energy E ≈ (q2a2/c3)(b/v) ≈
(q6/c3m2

eb3v) ≈ (q6ni/c3m2
ev), as b ≈ n−1/3

i on the average. The total energy
radiated per unit volume will be neE . Because each collision lasts for a time
(b/v), there will be very little radiation at frequencies greater than (v/b). For
ω < (v/b), we may take the energy emitted per unit frequency interval to be nearly
constant. Further, in the case of plasma in thermal equilibrium, v ∼= (kB T/me)1/2.
Putting all these together, we get

jω ≡
(

dE
dω dt dV

)
�

(
q6

m2
ec3

)(
me

kB T

)1/2

neni ∝ n2T −1/2; (for –hω <∼ kB T ).

(1.17)

This process is called thermal bremsstrahlung. The bremsstrahlung spectrum is
flat for 0 < ω <∼ (kB T/–h) and will fall rapidly for ω >∼ (kB T/–h), where the upper
limit comes from the fact that an electron with a typical energy of (kB T ) cannot
emit photons with energy higher than kB T/–h. The total energy radiated, over all
frequencies, from such a plasma can be found by integration of this expression
over ω in the range (0, kB T/–h). This gives

(
dE

dt dV

)
=

∫ (kB T/–h )

0
dω

(
dE

dω dt dV

)
�

(
q6

m2
ec3

)(
mekB T

–h2

)1/2

neni .

(1.18)
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1.3.2 Synchrotron Radiation

Another major source of acceleration for charged particles is the magnetic fields
hosted by plasmas. This process, called synchrotron radiation, can be estimated
as follows: Consider an electron moving with velocity v in a magnetic field B.
To use Eq. (1.15) we need to estimate the acceleration in the instantaneous rest
frame of the particle. In that frame, the magnetic force (q/c)[v × B] is zero, but
the magnetic field in the lab frame will lead to an electric field of magnitude
E ′ � γ B (see Chap. 3) in the instantaneous rest frame of the charge, inducing an
acceleration a′ = (qE ′/me). Accelerated by this field, the charged particle will
radiate energy at the rate (which is the same in the rest frame and in the lab frame)

dE
dt

=
(

dE ′

dt ′

)
= 2

3

q2

c3
(a′)2 = 2

3

q2

c3

(
q2

m2
e
γ 2 B2

)
. (1.19)

The power radiated by an electron of energy ε = γ mec2 is (dE/dt) ∝ ε2 B2. Fur-
ther, the energy density in the magnetic field is UB = (B2/8π ); hence we can write(

dE
dt

)
= 16π

3

(
q2

mec2

)2

γ 2cUB � (σT cUB)γ 2, (1.20)

where σT ≡ (8π/3)(q2/mec2)2 is called the Thomson scattering cross section.
For a nonrelativistic particle spiralling in a magnetic field, the characteristic

angular frequency is ω = (rL/v) = (qB/mec). For relativistic motion with con-
stant v2, the effective mass is me(1 − v2/c2)−1/2 = meγ , so that the angular
frequency becomes ω = (qB/mcγ ) = (qcB/ε) for a particle of energy ε in a
magnetic field of strength B; the synchrotron radiation from an extreme rela-
tivistic particle will peak at the frequency

ωc ≈ ωγ 3 ∝ Bγ 2 ∝ Bε2, (1.21)

where the extra factor γ 3 arises from special relativistic effects (see Chap. 3).
One factor of γ arises from time dilation; the other factor of γ 2 arises from a
Doppler factor [1 − (v/c)]−1 ≈ 2γ 2 in the v → c limit.

The total radiation emitted from a bunch of particles will be jω ∝ (B2ε2)[n(ε)]
(dε/dω), where the first factor, B2ε2, is the energy emitted by a single particle,
the second factor is the number of particles with energy ε, and the last factor is
the Jacobian (dε/dω) ∝ ε−1 ∝ ω−1/2 from ε to ω. If the spectrum of particles is
a power law n(ε) = Cε−p, then the radiation spectrum will be

jν ≈ e3

mec2

(
3e

4πm3
ec5

)(p−1)/2

C B(p+1)/2ν−(p−1)/2, (1.22)

where we have reintroduced all the constants. (A more precise calculation mul-
tiplies the expression by a p-dependent factor, which is ∼0.1.) This leads to a
power-law spectrum, jν ∝ ν−α with α = (p − 1)/2.
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1.4 Radiative Processes in Quantum Theory

The radiation field in quantum theory is described in terms of photons, and
the emission or absorption of radiation arises when a physical system makes the
transition from one energy level to another. We have already determined the main
energy levels of atoms and molecules in Subsection 1.2.2. The transition between
these energy levels in an atom will correspond to photon energies upwards of
few electron volts, and the corresponding wavelength will be in optical and UV
bands in most of the cases.

This estimate of atomic-energy levels was, however, based on the simple form
of the Hamiltonian for the electron in an atom. The actual Hamiltonian is a lot
more complicated than H0 used in Subsection 1.2.2. The corrections to H0 lead
to splitting of the original energy levels and allow emission of photons of widely
different frequencies by the atomic system. We now consider these corrections.

1.4.1 Fine Structure and Hyperfine Structure

The Hamiltonian for an electron in a hydrogen atom can be expressed as a sum,
H ∼= H0 + Hrel + Hsp−or + Hsp−sp, where H0 = (p2/2me) − (Zq2/r ) is the orig-
inal (zeroth-order) Hamiltonian and the rest are lowest-order corrections. The
first correction Hrel = −(p4/8m3

ec2) is the relativistic correction to the kinetic
energy p2/2me that arises as the second term in the Taylor series expansion of
ε(p) in Eq. (1.8); the correction Hsp−or arises from the coupling between the
spin magnetic moment of the electron µe � (q–h/2mec) and the magnetic field
B ∼= (v/c)E ∼= (v/c)(Zq/r2) in the instantaneous rest frame of the electron, ob-
tained by transformation of the Coulomb field. This should have the magnitude

H̄ sp−or = µB = Zq2

2r2

–hv

mec2
= Zq2

m2
ec2r3

(l · s), (1.23)

where l and s are the orbital and the spin angular momenta of the electron.
The actual result is half of this value where the extra factor arises due to a
phenomenon called Thomas precession, to be discussed in Chap. 3, exercise 3.4.
The next correction,

Hsp−sp = µe ·
(
µN

r3
− 3r · µN

r5
r

)
, (1.24)

is the coupling between the nuclear magnetic moment and the magnetic moment
of the electron. These magnetic moments are given by

µe = −
[

2 + α

π
+O(α2)

]
q–h

2mec
s ≡ −geµBs;

µp � 5.6

(
q–h

2m pc

)
S ≡ gN µN S,

(1.25)
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where µB = (q–h/2mec) is called the Bohr magneton, µN is the corresponding
quantity for the proton, and s and S are the spin vectors of electron and proton,
respectively.

It is now easy to evaluate the order of magnitude of these corrections. The
zeroth-order term H0 is of the order of (q2/a0) ≈ 10 eV, corresponding to λ �
1200 Å. The first correction gives

p4

m3
ec2

≈ p2

me

(
p

mec

)2

≈
(

v

c

)2 q2

a0
≈ α2 E0 ≈ 10−3 eV, (1.26)

with the corresponding photon wavelength of λ � 1 mm. The second correction,
with l � s � –h, is

q2–h2

m2
ec2a3

0

≈ q2

a0

(
–h

meca0

)2

≈ α2 E0, (1.27)

which is of the same order as that of the first correction. These two together are
called fine-structure corrections. The third correction is of the order of

µBµN

a3
0

≈ me

m p

µ2
B

a3
0

≈ me

m p

(
–h

meca0

)2 q2

a0
≈ 10−3α2 E0 ≈ 10−6 eV, (1.28)

(corresponding to λ � 102 cm), which is smaller and is called the hyperfine
correction. A more precise calculation gives the wavelength of radiation emitted
in the hyperfine transition of hydrogen to be ∼21 cm. This radiation, which is
in the radio band, is used extensively in astronomy as a diagnostic of atomic
(neutral) hydrogen.

1.4.2 Transition Rates and Cross Sections

To complete the quantum-mechanical analysis, we also need to estimate the
rate of transition between the various levels. Consider an initial state with an
atom in ground state |G〉 and n photons present. Absorbing a photon, the atom
makes the transition to the excited state |E〉, leaving behind an (n − 1) photon
state. Let the probability for this process be P[|G〉|n〉 → |E〉|n − 1〉] ∝ n ≡ Qn.
The fact that this absorption probability P is proportional to n seems intui-
tively acceptable. Consider now the probability P ′ for the time-reversed pro-
cess [|E〉|n − 1〉 → |G〉|n〉]. By principle of microscopic reversibility, we
expectP ′ =P , givingP ′ ∝ n ≡ Qn. Calling n −1 = m, we getP ′[|E〉|m〉 → |G〉
|m + 1〉] = Qn = Q(m + 1). Clearly P ′ is nonzero even for m = 0; P ′[|E〉|0〉 →
|G〉|1〉] = Q, which gives the probability for a process conventionally called
spontaneous emission. The term Qm gives the corresponding probability for
stimulated emission. Thus the fact that absorption probabilities are proportional
to n whereas emission probabilities are proportional to n + 1 originates from the
principle of microscopic reversibility.
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The basic rate, governed by Q, can be estimated by use of the correspondence
with classical theory. If the rate of transition between two energy levels is Q
and the energy of the photon emitted during the transition is –hω, then the rate
of energy emission is Q–hω. Classically, the same system will emit energy at the
rate (d2ω4/c3), where d is the electric dipole moment of the atom. (This assumes
that the radiation is predominantly due to direct coupling between the radiation
and the dipole moment of the atom; if not, we have to use the relevant moment –
like the electric quadrupole moment or magnetic dipole moment, instead of d –
in this equation.) Writing Q–hω ≈ (d2ω4/c3), we find that

Q ∼= ω3d2

–hc3
� α5

8

(
–λ

c

)−1

� α5

8

(
mec2

–h

)
≈ 109 s−1, (1.29)

where we have used d = qa0 � (q–λe/α) and –hω � (1/2)α2 mec2. The rate Q can
also be expressed in different forms as

Q ≈ q2

–hc

a2
0

c2
ω3 = q2

mec3
ω2 = ω2 r0

c
, (1.30)

where r0 = (q2/mec2) is the classical electron radius. A more precise quantum-
mechanical calculation corrects this by contributing an extra numerical factor f
(called oscillator strength).

The transition rate for other processes, such as the 21-cm radiation, can be esti-
mated in the same manner by using Eq. (1.16). In the relation Q–hω21 ≈ (ω4

21d2/c3),
we now have to use the magnetic dipole moment of electron d ≈ (q–h/mec). This
gives Q ≈ α( –λe/c)2ω3

21. Estimating –hω21 from expression (1.28) derived above
for the hyperfine-structure energy level, we can evaluate this transition rate as

Q21cm �
(

r0ω21

c

)(
–hω21

mec2

)
ω21 ≈ 10−15 s−1. (1.31)

The ratio between this rate and the transition rate between the primary energy
levels of the hydrogen atom computed in relation (1.29) is

Q21cm

Q
�

(
ω21

ω

)3( –λe

a0

)2

≈ 10−24. (1.32)

Clearly, hyperfine transitions are very slow processes.
This analysis also shows that every excited state has a probability of decaying

spontaneously to the ground state with a decay rate Q. Hence the lifetime 	t of
the excited state is approximately

	t ≈ Q−1 ≈
(

q2

–hc

)−1(a0
–λ

)−2

ω−1 ≈
(

108

ω

)
≈ 10−9 s (1.33)
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for optical radiation. (It is correspondingly larger and is approximately 	t =
Q−1

21 cm � 1015 s for 21-cm radiation.) From the uncertainty principle between
the energy and time, it follows that the energy level of the excited state will be
uncertain by an amount 	E of the order of (–h/	t) ≈ –hQ. In the absence of such
an uncertainty, the transition between the two energy levels could lead to infinitely
sharp spectral lines at a specific frequency ω. The width of the excited states leads
to a corresponding width to the spectral line called the natural width 	ω, where
(	ω/ω) = (Q/ω) ≈ 10−8 for the main hydrogen lines. In terms of wavelength,
the natural width 	λ = 2πc(	ω/ω2) is of the order of the classical electron
radius: 	λ ≈ 2πr0.

Because of the finite linewidth, it is convenient to introduce a (frequency-
dependent) bound–bound cross section σbb(ω) for the absorption of radiation by
the system, which is sharply peaked at ω = ω0 with a width of 	ω. If the phase-
space density of photons is dN = n[d3xd3 p/(2π–h)3], then the number density
of photons per unit volume participating in the absorption is N = nd3 p/(2π–h)3 =
(nω2

0/πc3)(	ω/2π ). The corresponding flux is N c, and the rate of absorp-
tion is

Nσbbc = nω2
0

πc2
σbb

	ω

2π
= Qn = ω2

0

(
r0

c

)
n, (1.34)

giving σbb(	ω/2π ) = πr0c. This result can be stated more formally as∫ ∞

0
σbb(ω)

dω

2π
= πr0c = πq2

mec
= (

πr2
0

)( c

r0

)
; r0 ≡

(
q2

mec2

)
(1.35)

which suggests expressing the cross section as

σbb(ω) ≡ πq2

mec
φω, (1.36)

where φω is called the line-profile function; the integral of φω over (dω/2π ) is
unity. When the linewidths are ignored, φω is proportional to the Dirac delta
function; when the finite width of the energy levels is taken into account, φω

will become a function that is peaked at ω0 with a narrow width 	ω, such
that φ(ω0) ∼= (	ω)−1(2π ). The absorption cross section at the centre of the line
ω = ω0 is given by σ � 2π2(rc/	ω) � (λ2

0/2), where λ0 is the wavelength of the
photon. A more rigorous quantum-mechanical theory will provide the explicit
form for φ(ω) (which turns out to be a Lorentzian in this case) and an overall
multiplicative factor f called the oscillator strength.

1.4.3 Thermal Radiation

The result regarding the emission and the absorption rates also allows us to
determine the the energy distribution of photons in equilibrium with matter at
temperature T . In such a situation, photons will be continuously absorbed and



1.4 Radiative Processes in Quantum Theory 17

emitted by matter. Consider the rate of absorption (or emission) of photons
between any two levels, say, a ground state |G〉 and an excited state |E〉. We
saw above that the absorption rate per atom is given by Qn and the emission
rate is Q(n + 1), where n is the number of photons present and Q is determined
from the quantum theory of radiation. In steady state, the number of upward
and downward transitions must match, which requires that product (number of
atoms in G) × (rate of upward transitions per atom) equal (number of atoms
in E) × (rate of downward transitions per atom), that is, NG Qn = NE Q(n + 1).
Because matter is in thermal equilibrium at temperature T , we must also have
(NE/NG) = exp(−	E/kB T ), where 	E is the energy difference between the
two levels. This relation should hold for all forms of matter with arbitrary energy
levels; hence we can take the ground-state energy to be zero (i.e, arbitrarily small)
and the excited-state energy to be E , leading to

n = 1

(NG/NE ) − 1
= 1

exp(E/kB T ) − 1
. (1.37)

This equation gives the number of photons with energy E [or – equivalently – with
momentum p = (E/c)] in thermal equilibrium with matter. To be more precise,
the number of photons with momentum in the interval [p, p + d3p] is given by
dN = 2n[Vd3 p/(2π–h3)], where the factor in the square brackets gives the num-
ber of quantum states in the phase volume Vd3 p and the factor 2 takes into ac-
count the two spin states for each photon. The corresponding energy dE flowing
through d3x = dA(cdt) will be dE = hν dN = 2n(ν)hν dA[cdt][d3 p/h3]. Writ-
ing d3 p = p2dp d� = (h/c)3ν2 dν d�, we can determine the intensity (which is
the energy per unit area per unit time per solid angle per frequency) of thermal
radiation as

dE

dA dt d� dν
≡ Bν = 2hν3

c2
n(ν) = 2hν3

c2

1

ehν/kB T − 1
. (1.38)

The quantity νBν reaches a maximum value around hν ≈ 4kB T , which translates
to the fact that a blackbody at 6000 K will have the maximum for νBν at 6000 Å.
The maximum intensity is (νBν)max ≈ (T/100 K)4 W m−2 sr−1. Such thermal
radiation can arise in many different contexts in which a primary source of energy
is thermalised because of some physical process, the most important example
being stellar radiation.

At low frequencies, the intensity of thermal radiation given by Eq. (1.38)
will be Bν ≈ (2kB T/λ2). Because of this relation, it is conventional to define
a brightness temperature for any source with intensity Iν as TB ≡ (λ2 Iν/2kB),
which is (in general) a function of frequency.

It is clear from Eq. (1.37) that there are very few photons with momentum
greater than p̄ ≈ (kB T/c), so that (N/V ) ≈ (4π/3)( p̄/2π–h)3 ≈ (kB T/–hc)3 and
the mean energy is UER ≈ kB T (N/V ) ≈ (kB T )4/(–hc)3.
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1.4.4 Photon Opacities in Matter

Let us next determine the conditions under which our original assumption – that
the radiation is in thermal equilibrium with matter – holds. If the cross section
for the relevant process that scatters or absorbs radiation is given by σ and the
number density of scatterers is n, then the mean free path of a photon is given
by l = (nσ )−1. In the case of radiation, it is conventional to define a quantity κ

(called opacity) such that

α ≡ nσ ≡ ρκ, (1.39)

where ρ is the mass density of the scatterers. The optical depth of a system of
size R is defined to be τ ≡ αR = (R/ l). From the standard theory of random
walk, we know that a photon will traverse a distance R with Nc collisions,
where R = N 1/2

c l; that is, the number of collisions is given by Nc = (R/ l)2 = τ 2,
provided that τ � 1.

The opacity for the photons is provided mainly by three different processes:
(1) scattering by free electrons, (2) the free–free absorption of photons, and
(3) the bound–free transitions induced in matter by the photons that are passing
through it.

(1) The simplest case is the one in which the charged particle is accelerated
by an electromagnetic wave that is incident upon it. Consider a charge q
placed on an electromagnetic wave of amplitude E . The wave will induce an
acceleration a � (qE/m), causing the charge to radiate. The power radiated
will be P = (2q2a2/3c3) = (2q4/3m2c3)E2. Because the incident power in
the electromagnetic wave is S = (cE2/4π ), the scattering cross section (for
electrons with m = me) is

σT ≡ P

S
= 8π

3

(
q2

mec2

)2

≈ 6.7 × 10−25 cm2, (1.40)

which is the Thomson scattering cross section. This cross section governs
the basic scattering phenomena between charged particles and radiation.
The corresponding mean free path for photons through a plasma is lT =
(ne σT )−1, and the Thomson scattering opacity, defined to be κT ≡ (neσT /ρ),
is

κT =
(

ne

n p

)(
σT

m p

)
= 0.4 cm2 gm−1 (1.41)

for ionised hydrogen with ne = n p.
The opacity for the process in (2) and (3) can be determined by the principle

of detailed balance which allows us to relate the rate for certain processes to
the rate for the corresponding ‘inverse’ process.

(2) The time-reversed process corresponding to bremsstrahlung is the one in
which a photon is absorbed by an electron while in the proximity of an ion.
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In equilibrium, the rate for this free–free absorption should match that of
thermal bremsstrahlung. We write the free–free absorption rate as nσ f f B(ν),
where σ f f is the free–free absorption cross section and B(ν) ∝ ν3(e

–hν/kB T −
1)−1 ∝ ν2T (when –hν � kB T ) is the intensity of the thermal radiation. Equat-
ing this to the bremsstrahlung emissivity found in Eq. (1.17), jν ∝ n2T −1/2,
we get σ f f ∝ (n/ν2T 3/2). Taking the typical frequency of the photon to be
proportional to T , we find that σ f f ∝ nT −3.5. The corresponding opacity can
be written in the form

κ f f ∝ ρT −3.5. (1.42)

(3) To obtain the bound–free opacity, which arises when a photon ionizes an
atom, we begin by relating the photoionization rate to the recombination
rate in which an ion and an electron get bound together, releasing the excess
energy as radiation. The recombination rate per unit volume of a plasma will
be proportional to (1) the number density of electrons ne, (2) the number
density of ions ni , (3) the relative velocity of encounter v, and (4) the cross
section for the process, which will be ∼πλ2, where λ gives the effective
range of interaction between electron and proton. For Coulomb interaction,
this range is λ1

∼= (2Zq2/mev
2); on the other hand, an electron of speed v

has a de Broglie wavelength of λ2
∼= (–h/mev). We should choose λ to be the

larger of λ1 or λ2, depending on the context. Let us first consider the case
with λ � λ2, which corresponds to (v/c) >∼ (q2/–hc). Each recombination will
release an energy of approximately (1/2)mev

2. Hence,(
dErec

dV dt

)
∝

(
mev

2

2

)
(neni )

(
h

mev

)2

v ∝ neni T
1/2 ∝ ρ2T 1/2, (1.43)

where we have assumed that mev
2 ≈ kB T, ne ∝ ρ, and ni ∝ ρ. In equilib-

rium, the photoionisation rate (which removes energy from the radiation
field) should match the recombination rate. The amount of energy removed
by photoionisation is proportional to dEion ∝ natomσb f Erad, where σb f is the
photoionisation cross section. Equating dEion to dErec and using Erad ∝ T 4,
we get

natomσb f T 4 ∝ neni T
1/2. (1.44)

Introducing the bound–free opacity κb f by the definition κb f = (natomσb f /ρ)
and taking ne ∝ ρ and ni ∝ ρ, we find that

κb f ∝ ρT −3.5 (1.45)

which scales just like relation (1.42).

In a radiation bath with temperature T , the typical energy of photons is
hν � kB T . The result of relation (1.45) suggests that the frequency dependence
of σb f (ν) ∝ κb f ∝ T −3.5 will be of the form σ (ν) = σb f (ν/νI )−s for ν > νI (and
zero otherwise). Here s ≈ 3–3.5 and νI = (εa/h) is the frequency corresponding
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to the ionisation energy εa of the atom. Because the cross section for photoioni-
sation σ (ν) satisfies constraint (1.35),∫ ∞

0
σ (ν) dν = πr0c f =

(
πe2

mec

)
f, (1.46)

where the term within the parentheses comes from classical theory and the
oscillator strength f is supplied by the quantum theory, we get

σb f = π (s − 1) f r0λI � 2π f r0λI , (1.47)

where λI = (c/νI ) and s � 3. This shows that the photoionisation cross section
is essentially the product of the classical electron radius and the wavelength at
ionisation threshold. Using λI = 912 Å, we get σb f ≈ 10−17 cm2 for hydrogen.
For heavier elements σb f will scale as

σ (ν) = σb f

(
νI

ν

)3

∝ f r0

(
c

νI

)(
νI

ν

)3

∝
(

ν2
I

ν3

)
∝ Z4ν−3 (1.48)

if we take s = 3.
The cross section for recombination, σrec, is related to σb f by 4σrecd3 pe =

8σb f d3 pγ where 4 = 2 × 2 is due to electron and proton spins, 8 = 2 × 2 × 2
is due to electron, proton, and photon spins, and pe and pγ refer to the mo-
menta of the electron and the photon, respectively. Because dpe � dpγ , this
gives σrec = 2σb f (pγ /pe)2; if the plasma is at some temperature T , then

σrec = 2(–hω)2

c2(mev)2
σb f

∼= 2

(
εa

mec2

)(
εa

kB T

)
σb f � 10−22

(
kB T

10 eV

)−1

cm2

(1.49)

at the threshold with –hω � εa � 10 eV. The rate of recombination per unit volume
per second is n2σrecv ≡ n2αR , where αR � 2 × 10−14(kB T/10 eV)−1/2 cm3 s−1.

In the analysis so far we have assumed that the recombination proceeds di-
rectly to the ground state. Such a process, however, will release a photon with
energy –hω >∼ εa that will immediately ionise another atom. The net recombina-
tion actually proceeds through electron and proton, forming an excited state that
decays to ground state later on. All the photons emitted in the process will have
–hω < εa and cannot ionise the neutral atoms in the ground state. In this case, we
can write a relation similar to relation (1.43) but with λ = λ1 = (2Zq2/mev

2).
Then the energy loss that is due to recombination is(

dErec

dV dt

)
∝

(
1

2
mev

2
)

(neni )

[
Zq2

(1/2)mev2

]2

v ∝ neniv
−1 ∝ n2T −1/2.

This can be one source of cooling for a plasma at T >∼ 104 K in addition to the
bremsstrahlung cooling (dEbre/dV dt) ∝ n2T 1/2 obtained in Eq. (1.18). The net
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rate of cooling for a plasma can be expressed in the form (dE/dV dt) = n2�(T ),
where �(T ) = aT 1/2 + bT −1/2; the first term which arises due to bremsstrahlung
dominates for T >∼ 106 K.

When both photoionisation and recombinations occur in a region, the equi-
librium is described by the relation neniαR � σb f nH F , where F is the flux of
ionising photons with ν > νI . Taking ne = ni = xn0, nH = (1 − x)n0, we can
write this equation in the form

x2

(1 − x)
∼=

(
σb f c

αR

)(
F

n0c

)
� 5 × 104

(
T

104 K

)1/2( F

n0c

)
, (1.50)

which determines the ionisation fraction x in many astrophysical contexts. If a
source of photons emitting Ṅ γ ionising photons per second (with ν > νI ) ionises
a region of volume V around it, then the same argument gives n2

eαR V � Ṅ γ .
Taking ne = xn0 � n0, we get V = (Ṅ γ /αRn2

0).
It is also possible to imagine a situation in which the mean free path for

collisions between atoms is small (so that the matter is in thermal equilibrium)
but the mean free path for collisions between photons and matter is large (so that
radiation is not in equilibrium with matter). In that case, the photons emitted by
the system will escape from it with negligible scattering and there could arise
radiation from atomic or molecular transitions, characteristic of composition.
Then the amount of energy emitted per second by unit volume of gas, per unit
frequency range, and solid angle can be written as

jν =
(

dE

d� dν dt dV

)
=

[
g j

Z
exp

(−hνi j

kTs

)](
hνi j

4π

)
Qi j nφ(ν). (1.51)

The first factor in the brackets gives the fraction of atoms in the excited state, with
Z (the partition function) providing the normalisation. Because all the factors
are known in this expression, it can be used to relate the source properties to the
observed intensity. An important example of this is the 21-cm radiation from
neutral hydrogen atoms. The intensity of this line and its width arising due to
various effects, make it a useful probe of several systems.

1.5 Varieties of Astrophysical Structures

We now turn to the question of trying to determine broad features of astronomical
systems from the description of the physical principles given above. It is clear,
right at the outset, that we are interested in systems that are massive enough so
that gravity plays a significant role in their dynamics. In the most extreme limit,
we can think of the entire universe as a physical system and try to determine
its structure. At sufficiently large scales, we can ignore the graininess in the
distribution of matter and think of the universe as reasonably homogeneous and
isotropic. Further, because no location in such a universe can be considered as
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special, any possible motion of matter on a large scale should also maintain the
same characteristics with respect to any observer. It immediately follows that
the most general motion consistent with these requirements must have the form
v(t) = f (t)r, where r and v denote the position and the velocity, respectively, of
any material body in the universe and f (t) is an arbitrary function of time. This is
the only kind of motion that is consistent with the requirement that from any point
in the universe an observer will see matter moving in an identical manner. Using
the fact that v = ṙ, this equation can be integrated to give r = a(t)x, where a(t)
is another arbitrary function related to f (t) by f (t) = (ȧ/a) and x is a constant
for any given material body in the universe. It is conventional to call x and r
the comoving and proper coordinates of the body and a(t) the expansion factor
(even though, if ȧ < 0, it acts as a contraction factor).

The dynamics of the universe is entirely determined by the function a(t). The
simplest choice will be a(t) = constant, in which case there will be no motion in
the universe and all matter will be distributed uniformly in a static configuration.
It is, however, clear that such a configuration will be violently unstable when
the mutual gravitational forces of the bodies are taken into account. Any such
instability will eventually lead to random motion of particles in localised regions,
thereby destroying the initial homogeneity. Observations, however, indicate that
this is not true and that the relation v = (ȧ/a)r does hold in the observed universe.
In that case, the dynamics of a(t) can be qualitatively understood along the
following lines. Consider a particle of unit mass at the location r, with respect
to some coordinate system. Equating the sum of its kinetic energy v2/2 and
gravitational potential energy that is due to the attraction of matter within a
sphere of radius r to a constant, we find that a(t) should satisfy the condition

1

2
ȧ2 − 4πGρ(t)

3
a2 = constant, (1.52)

where ρ is the mean density of the universe, that is,

ȧ2

a2
+ k

a2
= 8πG

3
ρ(t), (1.53)

where k is a constant. Although the argument given above to determine this equa-
tion is fallacious, Eq. (1.53) happens to be exact and arises from the proper appli-
cation of Einstein’s theory of relativity to a homogeneous and isotropic distribu-
tion of matter. Observations suggest that our universe today (at t = t0) is governed
by this equation with ρ(t0) ≈ 10−30 gm cm−3 and (ȧ/a)0 ≡ H0 = 0.3 × 10−17h
s−1, where h ≈ 0.5–1. This is equivalent to H0 = 100h km s−1 Mpc−1 where
1 Mpc ≈ 3 × 1024 cm is a convenient unit for cosmological distances. (We will
also use the units 1 kpc = 10−3 Mpc and 1 pc = 10−6 Mpc in our discussion.)
From H0 we can form the time scale tuniv ≡ H−1

0 ≈ 1010h−1 yr and the length scale
cH−1

0 ≈ 3000h−1 Mpc; tuniv characterises the evolutionary time scale of the uni-
verse and H−1

0 gives the largest length scales currently accessible in the universe.
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The light emitted at an earlier epoch by an object will reach us today with
the wavelengths stretched because of the expansion. If the light was emitted
at a = ae and received today (when a = a0), the wavelength will change by the
factor (1 + ze) = (a0/ae), where ze is called the redshift of the emitting object.
The observed luminosity L of a source will decrease as (1 + z)−4, as L is pro-
portional to (pγ c) d3 pγ ∝ ν3dν ∝ (1 + z)−4, where pγ = (ε/c) = (hν/c) is the
photon momentum.

If neither particles nor photons are created or destroyed during the expansion,
then the number density of particles or photons will decrease as a−3 as a in-
creases. In the case of photons, the wavelength will also get stretched during
expansion with λ ∝ a; because the energy density of material particles is nmc2

whereas that of photons of frequency ν will be nhν = (nhc/λ), it follows that
the energy densities of matter and radiation vary as ρrad ∝ a−4 and ρmatter ∝ a−3.
Combining this result ρrad ∝ a−4 with the result ρrad ∝ T 4 for thermal radiation,
it follows that any thermal spectrum of photons in the universe will have its
temperature varying as T ∝ a−1. In the past, when the universe was smaller, it
would also have been (1) denser (2) hotter, and – at sufficiently early epochs –
(3) dominated by radiation energy density. When the temperature of the universe
was higher than the temperatures corresponding to the ionisation energy, the
matter content in the universe was a high-temperature plasma.

Starting from such a hot initial plasma stage, the universe cools as it expands
and eventually a variety of physical structures form in it. In the hot early phase,
the radiation is in thermal equilibrium with matter; as the universe cools be-
low kB T � (εa/10) the electrons and ions combine to form neutral atoms and
radiation will decouple from matter. This occurs at Trec � 3 × 103 K, and the tem-
perature of this radiation will continue to fall as T ∝ a−1. Observations show that
the present universe is indeed bathed in such a thermal radiation field, with the
current temperature being about ∼2.7 K. The energy density of this radiation to-
day is ργ � (kB T )4/(–hc)3 � 5.7 × 10−13 erg cm−3, which corresponds to a mass
density of (ργ /c2) = 5.7 × 10−34 gm cm−3. Taking the matter density today
as ρ0 = 10−30 gm cm−3, we find that ργ � 5.7 × 10−4ρ0; radiation would have
dominated over matter when the redshift was more than zeq = 1.7 × 103. Also
note that photons decoupled from matter when the universe was (Trec/T0) � 103

times smaller, i.e., at zrec � 103.
These considerations were independent of the explicit form of a(t). We now

turn to the solutions of Eq. (1.53) that determine a(t). The simplest solution
to Eq. (1.53) will occur for k = 0 if we take the matter density in the uni-
verse as decreasing as a−3 with expansion. Then we get a(t) = (t/t0)2/3, where
t−2
0 = (6πGρ0) and a(t) is normalised to a = 1 at the present epoch t = t0. Such a

totally uniform universe, of course, will never lead to any of the inhomogeneous
structures seen today. However, if the universe had even the slightest inhomo-
geneity, then gravitational instability could amplify the density perturbations. To
see how this comes about in the simplest context, consider Eq. (1.53) written in
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the equivalent form as

ä = −4πGρ0

3a2
= −

(
2

9t2
0

)
1

a2
, (1.54)

where we have put ρ = (ρ0a3
0/a3). If we perturb a(t) slightly to a(t) + δa(t) such

that the corresponding fractional density perturbation is δ ≡ (δρ/ρ) = −3(δa/a),
we find that δa satisfies the equation

d2

dt2
δa =

(
4

9t2
0

)
δa

a3
= 4

9

δa

t2
. (1.55)

This equation has the growing solution δa ∝ t4/3 ∝ a2. Hence the density per-
turbation δ = −3(δa/a) grows as δ ∝ a. When the perturbations have grown
sufficiently, their self-gravity will start dominating and the matter can collapse
to form a gravitationally bound system. This can happen, for example, if the
plasma in some local region can cool sufficiently fast. We now estimate the
conditions for this.

1.5.1 tcool ≈ tgrav: Existence of Galaxies

The cooling of a plasma occurs mainly through two processes. The first is the ra-
diation emitted during recombination of electrons and ions which, if it escapes the
plasma, can be a source of recombination cooling. From the discussion in Subsec-
tion 1.4.4, we know that the recombination rate varies as n2T −1/2. The second is
the bremsstrahlung cooling with an energy-loss rate proportional to n2T 1/2 [see
Eq. (1.18) with ni = ne = n]. For systems with temperature kB T � (GMm p/R),
which is much higher than the ionisation potential, α2mec2, the dominant cooling
mechanism is thermal bremsstrahlung. The cooling time for this process is

tcool � nkB T

(dE/dt dV )
=

(
–h

mec2

)(
1

n –λ3
e

)(
kB T

mec2

)1/2 1

α3
, (1.56)

and the time scale for gravitational collapse is

tgrav �
(

GM

R3

)−1/2

. (1.57)

The condition for efficient cooling tcool < tgrav, coupled with kB T � GMm p/R,
leads to the constraint R < Rg, where

Rg � α3α−1
G

–λe

(
m p

me

)1/2

� 74 kpc, (1.58)

where αG ≡ (Gm2
p/

–hc) ≈ 6 × 10−39 is the gravitational (equivalent) of the fine-
structure constant. In the above analysis we assume that kB T > α2mec2; for
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R � Rg this constraint is equivalent to the condition M > Mg, where

Mg � α−2
G α5m p

(
m p

me

)1/2

� 3 × 1044 gm. (1.59)

This result suggests that systems having a mass of ∼3 × 1044 gm and a radius of
∼70 kpc could rapidly cool, fragment, and form gravitationally bound structures.
Most galaxies have masses around this region. This is one possible scenario for
forming galaxies. Note that the mass and the length scales in relations (1.59) and
(1.58) arise entirely from the fundamental physical constants. We now consider
some more properties of these structures.

The original (maximum) radius of the cooling plasma estimated above is
∼70 kpc. After the matter has cooled and contracted, the final radius is more like
10–20 kpc, which is the typical radii of large galaxies. For Mg � 3 × 1044 gm and
Rg � 20 kpc, the density is ρgal � 10−25 gm cm−3, which is ∼105 times larger
than the current mean density, ρ0 � 10−30 gm cm−3, of the universe. If we assume
that high-density regions with ρ̄ >∼ 100ρ̄univ collapsed to form the galaxies, then
the galaxy formation must have taken place when the density of the universe was
∼1000 times larger; the value of a(t) would have been 10 times smaller and the
redshift of the galaxy formation should have been zgal <∼ 9. If the protogalactic
plasma condensations were almost touching each other at the time of forma-
tion, these centres (which would have been at a separation of ∼150 kpc) would
have now moved apart to a distance of 150(1 + zgal) kpc ≈ 1500 kpc = 1.5 Mpc.
This is indeed the mean separation between the large galaxies today. The near-
est galaxy with a radius of ∼10 kpc, at a distance of 1 Mpc, would subtend
an angle of θgal ≈ 10−2 rad ≈30′. A galaxy at a distance of ∼4000 Mpc will
subtend 0.5′′.

Observations have indicated that many different kinds of structures exist at
redshifts of z <∼ 5. Because the process of gravitational instability, which leads
to the condensation of galaxy like objects, cannot be 100% efficient, it would
leave some amount of matter uniformly distributed in between the galaxies. The
light from distant galaxies will have to pass through this matter and will contain
signature of the state of such an intergalactic medium (IGM). The photons (with
ν > νI ) produced in the first-generation objects could cause a significant amount
of ionization of the IGM, especially the low-density regions. When a flux of
photons (with ν > νI ) impinge on a gas of neutral hydrogen with number density
nH , it will have an ionisation optical depth of τ = nHσb f R. Setting τ = 1 gives
a critical column density for ionisation to be Nc ≡ nH R = σ−1

b f � 1017 cm−2.
Regions with a hydrogen column density Nc � n R greater than 1017 cm−2 will
appear as patches of neutral regions in the ionized plasma of the IGM. Such
regions can be studied by absorption of light from more distant sources, (espe-
cially through Lyman alpha absorption corresponding to the transition between
n = 1 and n = 2 levels) and are called Lyman alpha clouds.
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Still larger structures than galaxies, called galaxy clusters, with masses of
∼1047 gm, a radius of ∼3 Mpc, and a mean density of 10−27 gm cm−3, exist in
the universe as gravitationally bound systems. Our argument given above shows
that the gas in these structures could not have yet cooled and will have a virial
temperature of T ≈ (GMm p/RkB) ≈ 4 × 107 K.

Let us next investigate the nature of smaller-scale structures that can form
inside a galaxy. Here, the existence of the different energy scales and equations of
state allow for the possible existence of several – widely different – astrophysical
systems, and most of these systems can be understood by systematic comparison
of the energy scales (ε, εa , εnucl · · ·) with εg.

1.5.2 εgrav ≈ εa: Existence of Giant Planets

The laboratory systems have negligible gravitational potential energy; in a plot
of (εF/kB T ) against (GMm p/RkB T ) they exist (almost) along the y axis [see
Fig. 1.1 (top)]. We now see how gravity affects the structures as they get big-
ger. The atomic binding energy (per particle) of a system is approximately
εa ≈ α2mec2 ≈ (q2/a0) ≈ q2n1/3 if the atoms are closely packed (with na3

0 � 1),
and the gravitational energy per particle is εg = (4π/3)1/3Gm2

p N 2/3n1/3. Their
ratio is given by

Rga ≡ εa

εg
≈

(
α

αG

)(
1

N 2/3

)
≡

(
NG

N

)2/3

≈
(

1054

N

)2/3

. (1.60)

Clearly, the number NG ≡ α3/2α
−3/2
G ≈ 1054, arising out of fundamental cons-

tants, sets the smallest scale in astrophysics, in which the gravitational binding
energy becomes as important as the electromagnetic binding energy of matter.
The corresponding mass and length scales are Mplanet � NGm p � 1030 gm and
Rplanet � N 1/3

G a0 � 1010 cm and correspond to those of a large planet; for larger
masses, gravitational interaction changes the structure significantly whereas for
smaller masses gravity is ignorable and matter is homogeneous with constant
density so that M ∝ R3.

Because we used Newtonian gravity to arrive at this conclusion, it is necessary
to verify that the parameter Rgm ≡ (Eg/Mc2) is small for this scale; this ratio
for M � Mplanet, R � Rplanet is Rgm = α2(me/m p) � 1. Note that the smallness
of Rgm follows purely from the values of fundamental constants.

Most of the astrophysically interesting systems have larger mass and require
the gravitational force to be balanced by forces other than normal solid-state
forces. In general, such systems can be classified into two categories. The first
set has the gravitational force balanced by the kinetic energy of classical mo-
tion, whereas the second one has the gravitational force balanced by degeneracy
pressure. For a system with na3

0 ≈ 1, the non-relativistic Fermi energy of elec-
trons is comparable with the atomic binding energy and we can compare εa or
εF with εg. This is meaningful as long as the temperature of the system is low
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Fig. 1.1. Aspects governing the dynamics of various cosmic structures are summarised.
See text for a detailed description.
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and kB T � εF � εa ≈ 10 eV. If the temperature is significantly higher, then it is
the thermal energy kB T that should be compared with εg; that is, the gravita-
tional pressure will be balanced by the Fermi pressure at low temperatures and
by thermal pressure at high temperatures. We now examine such structures.

1.5.3 εgrav � εnucl: Existence of Stars

When the mass of the system is increased further, the gravitational pressure in-
creases and – to balance it – both the Fermi pressure and the thermal pressure will
increase. The dynamics of the system will then depend on the relative significance
of these two quantities. To take into account both thermal and quantum degener-
acy contributions, we take the matter pressure to be P ≈ nkB T + nεF , which is
a simple interpolation between the two limits. This pressure can balance the
gravitational pressure if (kB T + εF ) � Gm2

p N 2/3n1/3. Using expression (1.11)
for εF for the non-relativistic electrons, we get

kB T � Gm2
p N 2/3n1/3 − (3π2)2/3

2

–h2

me
n2/3. (1.61)

For a classical system, the first term on the right-hand side dominates, and we see
that the gravitational potential energy and kinetic energy corresponding to the
temperature T are comparable; this is merely a restatement of the virial theorem.
As the radius R of the system is reduced, the second term on the right-hand side
(∝ n2/3) grows faster than the first (∝ n1/3) and the temperature of the system
will increase, reach a maximum, and decrease again; equilibrium is possible for
any of these values with gravity balanced by thermal and degeneracy pressure.
The maximum temperature Tmax is reached when n = nc, with

n1/3
c

∼= αG

(3π2)2/3

(
N 2/3

–λe

)
; kB Tmax � α2

G

2(3π2)2/3
(N 4/3mec2), (1.62)

where –λe ≡ (–h/mec) and αG ≡ Gm2
p/

–hc.
An interesting phenomenon arises if the maximum temperature Tmax is suffi-

ciently high to trigger nuclear fusion in the system; then we obtain a gravitation-
ally bound, self-sustained nuclear reactor. The condition for triggering nuclear
reaction has to come from detailed study of the atomic nucleus and occurs typ-
ically at energy scales higher than εnucl ≈ ηα2m pc2, with η � 0.1. The energy
corresponding to the maximum temperature kB Tmax will be larger than εnucl when

N > (2η)3/4(3π2)1/2
(

m p

me

)3/4(
α

αG

)3/2

≈ 4 × 1056 (1.63)

for η � 0.1. The corresponding condition on mass is M > M∗, where

M∗ ≈ (2η)3/4(3π2)1/2
(

m p

me

)3/4(
α

αG

)3/2

m p ≈ 4 × 1032 gm, (1.64)
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which is comparable with the mass of the smallest stars observed in our universe.
The mass of the Sun, for example, is M	 = 2 × 1033 gm.

Comparison of relations (1.59) and (1.64) shows that the number of stars
N∗ � (Mg/M∗) in a typical galaxy will be given by the combination of fundamen-
tal constants N∗ = α7/2α

−1/2
G (me/m p)1/4 � 1012. Typical galaxies indeed have

approximately 1011−1012 stars, although there is a fair amount of spread in this
number. The mean distance between stars in a galaxy will be dstar ≈ (Rgal/N 1/3

∗ ) ≈
1 pc. A star like the Sun, with a radius of 1011 cm, located at a distance of 10 pc,
will subtend an angle of about ∼1 milliarcsecond; it is clear that most stars will
look like point objects.

1.5.4 Existence of H–R Diagram for Stars

Once the nuclear reactions occur at the hot central region of the gas cloud, its
structure changes significantly. If the transport of this energy to the outer regions
is through photon diffusion, then the opacity of matter will play a vital role
in determining the stellar structure. In particular, the opacities determine the
relation between the luminosity and the mass of the star.

A photon with mean free path l = (nσ )−1, random walking through the plasma,
will have Ncoll � (R/ l)2 collisions in traversing the radius R. This will take the
time tesc � (l Ncoll/c) � (R/c)(R/ l) for the photon to escape. The luminosity of
a star L is the ratio between the radiant energy content of the star Eγ and tesc.
Because Eγ � (aT 4)R3, where a = (π2k4

B/15–h3c3) = (π2/15) � 1 (in units with
kB = –h = c = 1), we find that L = (a R3T 4l/R2) � RT 4l. For a wide class of
stars, we may assume that the central temperature T � (GMm p/R) is reasonably
constant because nuclear reactions – which depend strongly on T – act as a
thermostat. If Thomson scattering dominates, then σ = σT , and we get

L � RT 4

σT n
� T 4 R4

σT N
� G4

α2
m5

pm2
e M3 � 1034 erg s−1

(
M

M∗

)3

. (1.65)

If, on the other hand, the plasma is only partially ionised, we should use the
opacities in expression (1.45), with l ∝ T 7/2n−2 ∝ T 7/2 R6 M−2, and we have

L ∝ RT 4l ∝ R7T 15/2 M−2 ∝ M11/2 R−1/2.

Taking R ∝ M gives L ∝ M5. It is convenient to define the surface temperature
Ts of the star by the relation L ∝ R2T 4

s , so that Ts ∝ L1/4 R−1/2 ∝ L1/4 M−1/2.
Combining this result with the relation M ∝ L1/5, when the interior is only par-
tially ionised, we get Ts ∝ L1/4L−1/10 ∝ L3/20. On the other hand, if Thomson
scattering dominates with L ∝ M3, we get Ts ∝ L1/12. When the stars are plotted
in a log Ts– log L plane, (called the H–R diagram) we expect them to lie within
the lines with slopes (3/20) = 0.15 and (1/12) � 0.08. The observed slope
is ∼0.13.
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The temperature inside a star varies from approximately 108 K at the core
to approximately a few thousand degrees Kelvin at the surface. The physical
conditions, equation of state, and the opacity of matter vary significantly inside
a star even when it is in a steady state. Further, when the stars evolve because
of different nuclear processes, the response of matter to changing physical con-
ditions can be dramatically different. We shall encounter many of these features
in Volume II of this series.

The condensation of stars from galactic matter cannot also be a totally effi-
cient phenomena, and we do expect a fair amount of matter to be distributed
in the galaxy in different forms. This constitutes the interstellar medium (ISM)
in which structures of very different densities and temperatures exist in pres-
sure equilibrium. In our galaxy, the ISM contributes a mass of ∼109 M	 and
has a pressure of approximately P = nkB T � 10−12 dyn cm−2. There exist a
hot diffuse component (T � 106 K, n � 10−3 cm−3), a warm ionized compo-
nent (T � 8000 K, n � 10−1 cm−3), a warm neutral component (T � 5000 K,
n � 10−1 cm−3), a cold neutral component (T � 80 K, n � 10–100 cm−3), and
giant molecular clouds (T � 10 K, n � 102–105 cm−3) in pressure equilibrium
in the ISM. There are also processes that strongly couple the stars and the ISM.
Consider, for example, the region around a hot star with L = 3.5 × 1036 erg s−1,

and Ts � 3 × 104 K. The number of ionizing photons Ṅγ (with ν > νI ) emitted
by such a star can be estimated from the Planck spectrum and will be approxi-
mately 3 × 1048 s−1. In Subsection 1.4.4 we saw [see the discussion following
relation (1.50)] that the volume of the region ionised by such a flux is given by
V = (Ṅγ /αn2

0). Using n0 � 10 cm−3, we find that matter will be fully ionised for
a region of radius R = (3V/4π )1/3 � 10 pc. At a distance of 5 pc from the star,
relation (1.50) gives (1 − x) � 10−3, indicating nearly total ionisation. Such a
local island of plasma in the ISM is called a HII region. The radiation from the
plasma in HII region is one of the probes of the conditions of the ISM.

1.5.5 εgrav � εF : Existence of Stellar Remnants

We saw above that stars are gravitationally bound systems in which self-sustaining
nuclear reactions are taking place in the centre. For such systems, the kinetic
energy and the potential energy are comparable and NkB T ≈ (GM2/R). The
process of combining four protons into a helium nuclei releases ∼0.03m pc2 of
energy, which is ∼0.7% of the original energy, 4m pc2. Assuming that a frac-
tion ε ≈ 0.01 of the rest-mass energy can be made available for nuclear reac-
tions, we find that the lifetime of the nuclear burning phase of the star will be
tstar = εM/L ≈ 3 × 109 yr (ε/0.01)(M/M∗)−2 if the opacity is due to Thomson
scattering. This defines the characteristic time scale in stellar evolution.

When the nuclear fuel in the star is exhausted, the gravitational force will
start contracting the matter again and the density will increase. Eventually, the
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density will be sufficiently high so that the quantum degeneracy pressure will
dominate over thermal pressure. The equilibrium condition for such a system
will require the degeneracy pressure of matter to be large enough to balance
gravitational pressure. Equivalently, the Fermi energy εF (n) must be larger than
the gravitational potential energy εg

∼= Gm2
p N 2/3n1/3. When the particles are

nonrelativistic, εF (n) = (–h2/2me)(3π2)2/3n2/3 and the condition εF ≥ εg can be
satisfied (at equality) if

n1/3 = 2

(3π2)2/3

(
Gm2

pme

–h2

)
N 2/3. (1.66)

With n = (3N/4π R3) and N = (M/m p), this reduces to the following mass–
radius relation:

RM1/3 � α−1
G

–λem1/3
p � 8.7 × 10−3 R	M1/3

	 . (1.67)

Such structures are called white dwarfs. A white dwarf with M � M	 will have
R � 10−2 R	 and density ρ � 106ρ	.

As the density increases, electrons combine with protons through inverse
beta decay to form neutrons, which can provide the degeneracy pressure. Equa-
tion (1.66) is still applicable with me replaced with mn; correspondingly the
right-hand side of relation (1.67) is reduced by ( –λn/–λe) = (me/mn) � 10−3. Such
objects – called neutron stars – will have a radius of R � 10−5 R	 and a density of
ρ � 1015ρ	 if M � M	. For such values Rgm � 1 and general relativistic effects
are beginning to be important.

When the density is still higher, the Fermi energy has to be supplied by relativis-
tic particles, and εF now becomes εF � –hcn1/3, which scales as εF ∝ n1/3, just
like εg. Therefore the condition εF ≥ εg can be satisfied only if –hc ≥ Gm2

p N 2/3 or
N ≤ α

−3/2
G � NGα−3/2. The corresponding mass bound (called Chandrasekhar

limit) is M <∼ m pα
−3/2
G � 1M	. (A more precise calculation gives a slightly

higher value.)
If the mass of the stellar remnant is higher than α

−3/2
G m p, no physical process

can provide support against the gravitational collapse. In such a case, the star
will form a black hole and is likely to exert a very strong gravitational influence
on its surroundings. More complicated processes can lead to the formation of
black holes with masses significantly higher than stellar masses in the centres of
galaxies. Whenever such a localised centre of a high gravitational field is formed
in the form of neutron stars or black holes, a wide variety of new physical
phenomena can take place in that vicinity, essentially involving accretion of
matter. In an accretion process, the gravitational potential energy is converted
into the kinetic energy of matter and dissipated as thermal radiation. Some of
the very high-energy sources of radiation – both galactic and extra galactic – are
generally believed to be powered by such an accretion process. On the galactic
scale, accretion discs around stars can be a source of thermalised x-ray emission;
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in the extragalactic domain there are objects called active galactic nuclei and
quasars that have a luminosity of ∼1044 erg s−1, which are thought to be powered
by accretion discs around very massive black holes.

The dynamical aspects of different structures in the universe discussed so
far are summarised in Fig. 1.1. In the top part of the figure, various cosmic
structures are classified by two ratios: (εF/kB T ) and (GMm p/RkB T ). Objects
with negligible self-gravity lie along the y axis (with x � 0); a simple example
of this is small-scale matter in the laboratory, like a piece of a metallic solid
with the size of a few cubic meters, say. (Such a metal actually goes out of scale
in the figure and is shown on the top left with an arrow indicating the fact that
it is out of scale.) The line x = 1 corresponds to kB T = (GMm p/R), implying
that in these structures gravity is supported by thermal pressure. Among such
objects, those with negligible Fermi energy will lie in the lower part of the
figure. It can be seen that star clusters, clouds in the ISM, spiral and elliptical
galaxies, clusters of galaxies, etc., all lie around the line x = 1 in the lower
half of the diagram. For these systems, we have interpreted the mean kinetic
energy as providing an equivalent temperature, when necessary. The line y = 1
corresponds to εF = kB T so that the upper part of the diagram corresponds
to systems dominated by degeneracy effects (εF > kB T ) and the lower part is
dominated by thermal effects (εF < kB T ). We note that objects such as neutron
stars and white dwarfs are dominated by degeneracy effects whereas the rest
of astrophysical structures can be interpreted in classical terms. Finally, the line
x = y corresponds to εF = (GMm p/R) and represents structures in which gravity
is supported by degeneracy pressure. They lie along in the upper right half of the
figure.

The bottom part of the figure describes these structures from a different and
more detailed perspective. The y axis is the the dominant internal energy per
particle, and the x axis denotes the mass of different structures. For unfilled
circles (planets, main-sequence star, red giants, white dwarfs, neutron stars,
star clusters, spiral and elliptical galaxies, and clusters of galaxies) the inter-
nal energy is gravitational potential energy per particle. The filled circles de-
note the components in the ISM (molecular clouds, intercloud medium and
hot ionised gas, HII regions) and for these objects the internal energy is taken
to be the thermal energy. In the latter case the density n and the temperature
T are used to obtain an effective mass and radius by means of the relations
M = (4π/3)m pn R3, GMm p/R = kB T . The equivalent velocity corresponding
to the internal energy is shown on the y axis along the right-hand side; it is
computed by the relation ε = (1/2)m pv

2.
The nearly horizontal line around 1 eV separates ionised hydrogen gas from

neutral with the line corresponding to 50% ionization. The other three hori-
zontal lines around 1 keV, 1 MeV, and 1 GeV demarcate energy scales corres-
ponding to nuclear ignition, pair production of e+e−, and the black-hole limit.
Assuming that the internal energy ε is comparable with gravitational self-energy
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GMm p/R, we can determine the scalings for the radius R ∝ M/ε and density
ρ ∝ M/R3 ∝ ε3/M2; the lines of constant ρ are given by ε ∝ M2/3, which are
marked for different values of density by dashed lines.

The unbroken curve on the left is obtained when Fermi energy is equated
to gravitational energy and corresponds to the x = y line in the upper part of
the figure. We see that neutron stars, white dwarfs, and even large planets lie
along this line and also that neutron stars are close to the GM/c2 R = 1 line,
which decides whether general relativistic effects are important. For the planet,
the Fermi energy is comparable with the atomic binding energy and gravity is
just marginally important; this fact is indicated by a small vertical line near
the left top. The main-sequence stars lie away from the degeneracy line and
are essentially thermally supported; they are also, of course, above the line for
nuclear ignition.

To the right-hand side of the figure we have a bending, unbroken curve that we
obtain by equating the cooling time scale for plasma to the gravitational collapse
time scale. Material to the left of this curve cool efficiently and we find that spiral
and elliptical galaxies lie on this side; the galaxy clusters, on the other hand, lie
to the right and will contain hot plasma.

In between the two extremes, some of the components of the ISM and the IGM
have been marked. The molecular clouds, intercloud medium, and the coronal
gas are actually in pressure equilibrium and lie along a line corresponding to
p ∝ nT = constant. (Because, for these objects, M ∝ n R3 and ε ∝ T ∝ M/R, it
follows that p ∝ nT ∝ ε4/M2. Lines of constant p correspond to ε ∝ M1/2.)

Much of the discussion in the preceding sections is summarized in this Fig. 1.1
and Table 1.1, which also shows the large dynamic range spanned by the astro-
physical systems, with, for example, the density varying from 10−30 g cm−3 in
the IGM to 1015 g cm−3 in the neutron star.

1.6 Detecting the Photons

The universe has been studied in a wide variety of wave bands from very long
waves (�10 m) to ultrahigh-frequency γ -ray bands. We now summarize the main
sources in various wave bands.

1.6.1 Role of Earth’s Atmosphere

To begin with, it must be noted that the energy levels of atoms and molecules
have an important implication for observational astronomy. Ground-based ob-
servations can detect only radiation that can penetrate through the Earth’s at-
mosphere. The atoms of most elements have energy levels of the order of
E0 ≈ (1/2)α2mec2 ≈ 10 eV. Using the relation between photon energy and wave-
length, (E/1 eV) ≈ (λ/12345)−1 Å, we conclude that photons with λ <∼ 103 Å
will be absorbed by the atmosphere, leading to ionisation of the upper layers.
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Table 1.1. Structures in the universe

Mass Radius σ = (GM/R)1/2 ρ = 3M/4π R3

Object (gm) (cm) (km s−1) (gm cm−3)

Jupiter 2 × 1030 6 × 109 47 2.3

Sun 2 × 1033 7 × 1010 470 1.4
Red giant (2–6) × 1034 1014 37–63 (4.8–14.3) × 10−9

White dwarf 2 × 1033 108 3 × 104 5 × 108

Neutron star 3 × 1033 106 1.4 × 105 7 × 1014

Global cluster 1.2 × 1039 1.5 × 1020 8.4 8.5 × 10−23

Open cluster 5 × 1035 3 × 1019 0.3 4.4 × 10−24

Spiral 2 × (1044–1045) (6–15) × 1022 150–300 (14–22) × 10−26

Elliptical 2 × (1043–1045) (1.5–3) × 1023 30–210 (0.14–1.8) × 10−26

Group 4 × 1046 3 × 1024 300 3.5 × 10−28

Cluster 2 × 1048 1.2 × 1025 103 2.7 × 10−28

Universe 7.5 × 1055
h−1 1028h−1 2.2 × 105
1/2 1.8 × 10−29
h2

Further, the rotational- and the vibrational-energy levels of molecules such as
H2O and CO2 (which exist in the atmosphere) fall within the IR band; this causes
the IR radiation also to be absorbed by the atmosphere, although to somewhat
lesser degree than the higher energy radiation. Because of these effects, the
ground-based observations are essentially limited to visible (λ ≈ 3000–6000 Å,
ν ≈ 1015–5 × 1014 Hz) and radio (λ > 1 cm, ν < 3 × 1010 Hz) waves.

There is, however, another limitation arising from the fact that very long
wavelength radiation (λ >∼ 100 m) cannot propagate through the plasma in the
ionosphere and is reflected back. Consider an electromagnetic wave that moves
the electrons in a plasma (relative to ions) by a small distance δx along the
x axis. This deposits a charge Q � e(n Aδx) on a fictitious surface of area
A perpendicular to the x axis. This charge density, in turn, will lead to an
electric field Ex � 4π (Q/A) � 4πenδx that acts on the electrons in this small
volume, pulling them back. Such a restoring force, proportional to displace-
ment, gives electrons a characteristic frequency of oscillation (called plasma
frequency):

ωp =
(

4πe2n

m

)1/2

= 5.64 × 104 Hz

(
n

1 cm−3

)1/2

. (1.68)

Waves with frequencies lower than the plasma frequency cannot propagate
through a plasma as the electrons can redistribute themselves sufficiently quickly
to cancel the field of such an electromagnetic wave. We can estimate the num-
ber density n of electrons in the ionosphere by equating the ionisation rate that
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is due to solar radiation with the recombination rate, as done above for HII
regions. This gives an electron density of approximately 4 × 105 cm−3; the cor-
responding plasma frequency is approximately νp = (ωp/2π ) = 6 MHz. Thus we
cannot observe radio waves with frequencies lower than ∼6 MHz, correspond-
ing to wavelengths larger than about ∼50 m. To obtain information about all
other wavelength regimes, it is necessary to make observations at high altitudes:
from balloons, aircrafts, spacecrafts, satellites, etc. We now consider each band
separately.

1.6.2 Radio

(λ = 3 cm–10 m, ν � 3 × 107–1010 Hz, T � 10−3–0.5 K).

Several discrete sources (supernova remnants, radio galaxies, quasars, etc.)
emit radio waves essentially because of synchrotron process. As a specific
example, consider the diffuse radio background in our galaxy that is due to
synchrotron radiation from electrons in the ISM. Observations indicate that the
spectrum of the electrons is given by (dN/dE) � 3 × 10−11 E−3.3 particles cm−3,
if E is measured in giga–electron-volts. If the magnetic field is approximately
6 × 10−6 G, the relation (1.22) will predict a volume emissivity of

jν � 3 × 10−38
(

ν

10 MHz

)−1.1

erg s−1 cm−3 Hz−1. (1.69)

This is close to the observed background emission. Over a line of sight of 1 kpc,
this will give a flux of 10−20 W m−2 rad−2 Hz−1. Similar power-law radio spectra
are seen in the case of radio galaxies, quasars, etc., and are thought to be due to
synchrotron radiation.

Along the spiral arms of galaxies, there exist clouds of HII regions that emit
thermal bremsstrahlung radiation with a relatively flat spectrum. For example, the
HII regions in Orion have T � 104 K, ni � 2 × 103 cm−3, and an effective line-of-
sight thickness of 6 × 10−4 pc. From Eq. (1.17) we can estimate the flux to be ap-
proximately 3 × 10−21 erg m−2 s−1 Hz−1 rad−2 = 300 Jansky, where 1 Jansky ≡
1 Jy = 10−26 W m−2 sr−1 Hz−1. This is typical of emission from HII regions.
The total diffuse radio emission from the galaxy is in the range 1029–1033 W.

Radio galaxies are another main class of radiators in this band with a compli-
cated pattern of emission. The radiation usually arises from two blobs on either
side of the central galaxy with a separation ranging from 3 kpc to 1 Mpc. The
power from these radio sources is quite high: 1033–1039 W; special models are
needed to explain this emission. The flux that is due to such a source at a distance
of 3000 Mpc will be approximately 10−16 W m−2 sr−1.

Radio observations can also detect the presence of neutral hydrogen in the
universe through the 21-cm radiation discussed in Subsections 1.4.1 and 1.4.2.
Because hν � kB T in most cases involving 21-cm radiation, g/Z in Eq. (1.51)
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is essentially the ratio of spin states g1/(g1 + g0), which is 3/4 for the hydrogen
hyperfine transition. The total intensity from an optically thin column of length
L will be (for hν � kB T )

Iν ∼= jν L ∼= 3

16π

(
hc

λ

)
Q21cm(nL)φν. (1.70)

The corresponding brightness temperature TB(ν) ≡ (λ2 Iν/2kB) is given by

TB(ν) = 3

32π

(
hcλ

kB

)
Q21 Nφ(ν), (1.71)

where N is the column density of the hydrogen along the line of sight. The
observed form of TB(ν) will contain information about N as well as the features
of the source (such as its motion) that lead to the broadening of the line.

Neutral hydrogen at a redshift of z can be detected by observations at the
wavelength of 21(1 + z) cm, which is in the radio band for sources with the
redshift in the range of, say, z � 0–10.

The faintest detectable flux in this band is ∼1 mJy; there are ∼106 discrete
sources in the sky up to this level. The diffuse background in the radio band arises
from our galactic disk, halo, and unresolved extragalactic radio sources. The
background flux varies from approximately 3 × 104 Jy at 100 cm to 6 × 105 Jy
at 104 cm.

1.6.3 Microwave and Submillimeter

(λ = 0.02–3 cm, ν � 1010–3 × 1012 Hz, T = 0.5–300 K )

The discrete sources in this band are usually dust clouds, hydrogen gas, and
quasars. The background radiation in this band, however, is of tremendous the-
oretical importance and has been studied extensively. (In fact, this band has the
maximum intensity of background radiation.) It turns out that the major com-
ponent of the background radiation in the microwave band can be fitted very
accurately by a thermal spectrum at a temperature of about ∼2.7 K. It seems
reasonable to interpret this radiation as a relic arising from the early, hot phase of
the evolving universe. The νBν for this radiation peaks at a wavelength of 1 mm
and has a maximum intensity of 5.3 × 10−7 W m−2 rad−2 over the entire sky.
The intensity per square arcsecond of the sky is approximately 1.33 × 10−17 W
m−2 arc sec−2.

Microwave radiation is also a sensitive probe of the structure-formation sce-
nario along the following lines: The gravitational potential that is due to a density
perturbation δρ = ρ̄δ in a region of size R will be φ ∝ ρ̄δR2. In an expand-
ing universe ρ̄ ∝ a−3 and R ∝ a and the perturbation δ grows as δ ∝ a [see
discussion following Eq. (1.55)], making φ constant in time. Because photons
climbing out of a potential well of size φ will lose energy and undergo a redshift
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(�ν/ν) ≈ (φ/c2), we would expect to see a temperature anisotropy in the mi-
crowave radiation of the order of (�T/T ) ≈ (�ν/ν) ≈ (φ/c2). The largest po-
tential wells would have left their imprint on the cosmic background radiation
at the time of decoupling of radiation and matter. The galaxy clusters constitute
the deepest gravitational potential wells in the universe from which the escape
velocities are vclus ≈ (GM/R)1/2 ≈ 103 km s−1. This will lead to a temperature
anisotropy of �T/T ≈ (vclus/c)2 = 10−5. Such a temperature perturbation has
indeed been observed in microwave background radiation, vindicating the ideas
for structure formation.

1.6.4 Infrared

(λ � 8000 Å–0.01 cm, ν � 3 × 1012–1014 Hz, T = 300–4000 K)

Several interesting astrophysical processes contribute in this band, the most
prominent being dust, which, when irradiated by some luminous source and
heated to the temperature range of 400–4000 K emits IR. However, this is one of
the most difficult ranges of frequencies to study owing to the enormous opacity
of Earth’s atmosphere as well as contamination that is due to emission from
interstellar and interplanetary dust. In addition, hydrogen and dust clouds in
our galaxy and outside galaxies as well as star-forming regions in our galaxy
contribute to this band. The near-IR band of (1–10) × 10−4 cm will also re-
ceive contributions from the redshifted light associated with the initial epoch of
galaxy formation. There have been several attempts to subtract out the galactic
contamination and obtain the extragalactic IR flux. Although firm upper bounds
are available, there is still substantial uncertainty about the actual shape of the
background IR spectrum. The faintest detectable flux is ∼1.0 Jy and there are
about ∼104 discrete sources up to this limit.

1.6.5 Optical and Ultraviolet

(λ � 100–8000 Å, ν � 8 × 1014–3 × 1016 Hz, T = (4000–3 × 104 K)

This range of wavelengths includes visible, UV , far UV , and even what may
be called soft x-ray. Most of the astronomical observations are still carried out
in the optical band, in which we can reach up to 10−6 Jy. Stars, galaxies, and
quasars contribute dominantly in this band; there are ∼1010 discrete sources
in the sky. This spectral region also gets a large amount of line radiation from
atomic gaseous systems.

Given the luminosity L and the radius R of a star, its effective surface temper-
ature is determined by the equation L = (4π R2)(σ T 4

eff). For the Sun, this gives
Teff ≈ 5500 K; the Planckian radiation corresponding to this temperature will
peak around λ ≈ 5500 Å (in the visible band). The flux of radiation from such a
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star located at a distance of 10 pc will be approximately F = 3 × 10−10 W m−2.
It is conventional in astronomy to use a unit called the bolometric magni-
tude, m, to indicate the flux where F and m are related approximately by
log F ∼= −8–0.4(m − 1) when F is measured in Watts per square meter. When
the flux changes by 1 order of magnitude, the magnitude changes by 2.5. A
sunlike star at 10 pc will have a magnitude of ∼4.6.

Starlight also contributes to the sky background in the optical band. A solid
angle d
 will intercept a volume (1/3)R3d
 of our galaxy if R is the radius of the
galaxy. If the number density of bright stars with luminosity L	 is n(�0.1 pc−3),
then the flux per steradian is [(1/3)n R3L	/4π (R/2)2] � (1/3π )nL	 R �2.4 ×
10−5 W m−2 rad−2 if R = 10 kpc. Using 1 rad2 � 4 × 1010 arc sec2, we get a sky
brightness that is due to integrated starlight of approximately 6 × 10−16 W m2

arc sec−2. In other words, the sky background that is due to integrated starlight
provides ∼21 mag arc sec−2.

We have seen above that a galaxy consists of ∼1011 stars and could be located at
distances ranging from 1 to 4000 Mpc. At 10 Mpc, such a galaxy will subtend an
angle of approximately θ � (2R/d) � 200′′ and will have a flux of approximately
3 × 10−11 W m−2 if the size of the galaxy Rgal � 10 kpc. The surface brightness
of the galaxy will be ∼10−16 W m−2 arc sec−2 or, equivalently, ∼21 mag arc
sec−2. These galaxies also contribute to the background light in the optical band.
Repeating the above analysis we did for stars with L = 1011L	, R � 4000 Mpc,
and n � 1 Mpc−3, we get a background of 2 × 10−17 W m−2 arc sec−2, equivalent
to 24.5 mag arc sec−2.

We still do not have conclusive evidence that suggests the existence of a
smooth background in this band. As there is a large amount of contamination
from zodiacal light, backscattering of radiation from interstellar gas, and hot
stars in the field of view, these observations are quite difficult.

1.6.6 X Ray and γ Ray

(λ = 3 × 10−3–100 Å, ε � 0.12–400 keV, T = 3 × 104–109 K)

Because x rays and γ rays are strongly absorbed in the Earth’s atmosphere, ob-
servations in this wave band need to be carried out from outside the atmosphere
from x-ray satellites. Equivalent temperatures of ∼108 K are required for pro-
ducing hard x-rays. Besides in the central cores of stars, such high energies can
be usually found only in binary stars and in supernova remnants. The accretion
of matter from one star to a compact companion can lead to the production of
x-rays; so can the explosion of a supernova.

The process of accretion works along the following lines. When a mass
m falls from infinite distance to a radius R, in the gravitational field of a massive
object with mass M , it gains the kinetic energy E � (GMm/R). If this kinetic
energy is converted into radiation with efficiency ε, then the luminosity of the
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accreting system will be L = ε(dE/dt) = ε(GM/R)(dm/dt). The photons that
are emitted by this process will be continuously interacting with the in-falling
particles and will be exerting a force on the ionised gas. When this force is
comparable with the gravitational force attracting the gas towards the central
object, the accretion will effectively stop. The number density n(r ) of photons
crossing a sphere of radius r , centred at the accreting object of luminosity L ,
is (L/4πr2)(–hω)−1, where ω is some average frequency. The rate of collisions
between photons and the electrons in the ionised matter will be [n(r )σT ] and
each collision will transfer a momentum (–hω/c). Because electrons and ions are
strongly coupled in a plasma, this force will be transferred to the protons. Hence
the outward force on an in-falling proton at a distance r will be

frad � (nσT )

(
–hω

c

)
=

(
L

4πr2

)(
1

–hω

)
σT

(
–hω

c

)
=

(
LσT

4πcr2

)
. (1.72)

This force will exceed the gravitational force attracting the proton, fg = (GMm p/

r2), if L > L E , where

L E = 4πGm pc

σT
M � 1.3 × 1046

(
M

108 M	

)
erg s−1 (1.73)

is called the Eddington luminosity. The temperature of a system of size R radi-
ating at L E will be determined by (4π R2)σ T 4 = L E , that is,

T � 1.8 × 108 K

(
M

M	

)1/4( R

1 km

)−1/2

. (1.74)

For a solar-mass compact (R � 1 km) star this radiation will peak in the x-ray
band.

The main extragalactic sources of x-rays are quasars and hot ionised gas
in clusters of galaxies. Taking the cluster gas to be fully ionized hydrogen
with a mass of approximately Mgas = 1048 gm spread over a sphere of ra-
dius R � 3 Mpc, we can estimate the number density of ions and electrons as
ne ≈ (Mgas/m pV ) ≈ 10−4 cm−3, where V is the volume of the cluster. Such a
gas will be a source of thermal bremsstrahlung radiation at the rate of L = 1.42 ×
10−27 n2

e T 1/2 erg s−1 cm−3 [see Eq. (1.18)] where all quantities are in cgs units.
Using the estimated values of ne and T , we get the total luminosity from the whole
cluster to be L= LV ≈ 5 × 1044 erg s−1. This radiation will be in the wave band
corresponding to the temperature of 108 K, which is in x-rays. Several such
x-ray–emitting clusters have been observed.

In addition, there exists a well-defined diffuse x-ray background in the range of
1 keV to 100 MeV. Part of this background could be due to unresolved pointlike
sources and another part may be due to hot (T � 109 K) diffuse, intergalactic
plasma. In the range 3–50 keV it can be fitted by an optically thin thermal
bremsstrahlung at the temperature 40 ± 5 keV.
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No object in the universe is hot enough to produce high-energy γ rays by
thermal radiation. The γ rays are produced by accretion of matter on compact
objects and by the collision of high-energy particles in the cosmic rays with the
nuclei of atoms in our galaxy.

Figure 1.2 summarizes the electromagnetic spectra of the universe. In the top
part of the figure the y axis is the flux per logarithmic band, F ≡ νFν in units
of watts per square meter. The corresponding bolometric magnitude m, related
to flux by log F = −8–0.4(m − 1), is shown along the y axis on the right. The
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Fig. 1.2. This figure summarises the variety of radiative phenomena in astrophysics.
The top part of the figure gives the spectra of a class of objects and the effective
sensitivities reached in the surveys in different wave bands. The bottom part gives (1) the
atmospheric absorption, (2) the key processes contributing to line radiation, (3) major
thermal sources, and (4) main sources of nonthermal emission in different spectral bands.
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main x axis is marked in both frequency and wavelength at the bottom and in
equivalent temperature, obtained by kB T = hν, along the top. The bottom part of
the figure gives several general features discussed above. The first panel below
the x axis divides the frequency range into different wave bands and indicates
the major components of the atmosphere that absorb the radiation in each band.
The next panels indicates the processes which can lead to line emission in each
of the wave bands. Finally, the main sources of thermal and nonthermal radiation
in different wavebands are summarized in the last two panels.

In the main figure, the typical spectra from different sources as well as the
detection limit of different instruments in various bands are shown. A bright star,
close to m = 1 and peaked in optical, has the maximum flux. Other sources are (1)
a typical supernova remnant marked SNR (Crab), (2) a radio galaxy Cygnus-A,
(3) a quasar (3C273) with emission in several wave bands, (4) an 18th-magnitude
elliptical galaxy, and (5) a bright–x-ray source Sco X-1. In addition to these
sources, also marked are (1) the flux from the cosmic microwave background
radiation from one square arc second of the sky, (2) x-ray background per square
degree that is due to unresolved sources, and (3) the sky background per square
arc second in the optical band. The filled rectangular boxes are the detection
limits of different probes operating in various bands. Many of these, like IRAS,
HEAO, ROSAT-Einstein, GRO-EGRET, COS-B, and of course, the Hubble space
telescope, are satellite-based instruments. Some of the points marked in the
optical band like the Hubble deep field (HDF), come from integrated–pencil-
beam kind of surveys, whereas many other limits are applicable to wider-band
surveys. This figure summarizes our current technological capabilities as well
as the expected flux in different astrophysical contexts.

Exercise 1.1
Why the rest of the book? Arguments similar to the ones given in this chapter are appeal-
ing as they seem to capture the essence of the physics behind each of the phenomena.
Investigate carefully whether this is indeed true. In particular, ask (1) Are the scaling
relations obtained by such arguments trustworthy? (2) Are the numerical estimates trust-
worthy – especially because, for example, (2π )3 ≈ 102? (3) Do these arguments have
predictive power? [Answers: (1) The scaling relations are usually trustworthy. (2) No. In
several places, the numerical estimates can be wrong by more than an order of magni-
tude. (3) No. None of these effects were ever derived by such arguments. However, once
the correct result is known from painstaking, rigorous, mathematical analysis – which
we shall encounter in rest of the book – such arguments can be provided to “explain” the
“physical origin”. The true value of these arguments lies in acting as useful mnemonics.]


