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PREFACE

This book has grown out of the Linear Analysis course given in Cambridge
on numerous occasions for the third-year undergraduates reading
mathematics. It is intended to be a fairly concise, yet readable and down-
to-earth, introduction to functional analysis, with plenty of challenging
exercises. In common with many authors, I have tried to write the kind of
book that I would have liked to have learned from as an undergraduate. I
am convinced that functional analysis is a particularly beautiful and
elegant area of mathematics, and I have tried to convey my enthusiasm to
the reader.

In most universities, the courses covering the contents of this book are
given under the heading of Functional Analysis; the name Linear Analysis
has been chosen to emphasize that most of the material in on linear func-
tional analysis. Functional Analysis, in its wide sense, includes partial
differential equations, stochastic theory and non-commutative harmonic
analysis, but its core is the study of normed spaces, together with linear
functionals and operators on them. That core is the principal topic of this
volume.

Functional analysis was born around the turn of the century, and within
a few years, after an amazing burst of development, it was a well-
established major branch of mathematics. The early growth of functional
analysis was based on 19th century Italian function theory, and was given
a great impetus by the birth of Lebesgue's theory of integration. The
subject provided (and provides) a unifying framework for many areas:
Fourier Analysis, Differential Equations, Integral Equations, Approxima-
tion Theory, Complex Function Theory, Analytic Number Theory, Meas-
ure Theory, Stochastic Theory, and so on.

IX



x Preface

From the very beginning, functional analysis was an international sub-
ject, with the major contributions coming from Germany, Hungary,
Poland, England and Russia: Fisher, Hahn, Hilbert, Minkowski and
Radon from Germany, Fejer, Haar, von Neumann, Frigyes Riesz and
Marcel Riesz from Hungary, Banach, Mazur, Orlicz, Schauder, Sierpinski
and Steinhaus from Poland, Hardy and Littlewood from England, Gel-
fand, Krein and Milman from Russia. The abstract theory of normed
spaces was developed in the 1920s by Banach and others, and was
presented as a fully fledged theory in Banach's epoch-making monograph,
published in 1932.

The subject of Banach's classic is at the heart of our course; this
material is supplemented with a body of other fundamental results and
some pointers to more recent developments.

The theory presented in this book is best considered as the natural
continuation of a sound basic course in general topology. The reader
would benefit from familiarity with measure theory, but he will not be at a
great disadvantage if his knowledge of measure theory is somewhat shaky
or even non-existent. However, in order to fully appreciate the power of
the results, and, even more, the power of the point of view, it is advisable
to look at the connections with integration theory, differential equations,
harmonic analysis, approximation theory, and so on.

Our aim is to give a fast introduction to the core of linear analysis, with
emphasis on the many beautiful general results concerning abstract spaces.
An important feature of the book is the large collection of exercises, many
of which are testing, and some of which are quite difficult. An exercise
which is marked with a plus is thought to be particularly difficult. (Need-
less to say, the reader may not always agree with this value judgement.)
Anyone willing to attempt a fair number of the exercises should obtain a
thorough grounding in linear analysis.

To help the reader, definitions are occasionally repeated, various basic
facts are recalled, and there are reminders of the notation in several
places.

The third-year course in Cambridge contains well over half of the con-
tents of this book, but a lecturer wishing to go at a leisurely pace will find
enough material for two terms (or semesters). The exercises should cer-
tainly provide enough work for two busy terms.

There are many people who deserve my thanks in connection with this
book. Undergraduates over the years helped to shape the course;
numerous misprints were found by many undergraduates, including John
Longley, Gabor Megyesi, Anthony Quas, Alex Scott and Alan Stacey.



Preface xi

I am grateful to Dr Pete Casazza for his comments on the completed
manuscript. Finally, I am greatly indebted to Dr Imre Leader for having
suggested many improvements to the presentation.

Cambridge, May 1990 Bela Bollotas

For this second edition, I have taken the opportunity to correct a number of
errors and oversights. I am especially grateful to R. B. Burckel for providing
me with a list of errata.

B. B.





/ . BASIC INEQUALITIES

The arsenal of an analyst is stocked with inequalities. In this chapter we
present briefly some of the simplest and most useful of these. It is an
indication of the size of the subject that, although our aims are very
modest, this chapter is rather long.

Perhaps the most basic inequality in analysis concerns the arithmetic
and geometric means; it is sometimes called the AM-GM inequality.
The arithmetic mean of a sequence a = (at,..., an) of n reals is

Ma) - = , ! ,
if each at is non-negative then the geometric mean is

V=l

where the non-negative nth root is taken.

Theorem 1. The geometric mean of n non-negative reals does not
exceed their arithmetic mean: if a = (ai,...,an) then

G(a)^A(a). (1)

Equality holds iff at = • • • = an.

Proof. This inequality has many simple proofs; the witty proof we shall
present was given by Augustin-Louis Cauchy in his Cours d'Analyse
(1821). (See Exercise 1 for another proof.) Let us note first that the
theorem holds for n = 2. Indeed,

(Q\~a2) — #i — 1a\a2 + a2 ^ 0;
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so

(a1 + a2)2

with equality iff ax = a2.
Suppose now that the theorem holds for n = m. We shall show that

it holds for n = 2m. Let ai,...,am,bi,...,bm be non-negative reals.
Then

ra m

2m

If equality holds then, by the induction hypothesis, we have ax =
' ' ' ~ am~ ^\~ ''' = bm. This implies that the theorem holds when-
ever n is a power of 2.

Finally, suppose n is an arbitrary integer. Let

1 n

n <2k = N and a =

Set #„+! = • • • = aN = a. Then

so

1 = 1

with equality iff flj = • • • = aN, in other words iff ^ = • • • = # „ . D

In 1906 Jensen obtained some considerable extensions of the AM-GM
inequality. These extensions were based on the theory of convex func-
tions, founded by Jensen himself.

A subset D of a real vector space is convex if every convex linear
combination of a pair of points of D is in D, i.e. if x,y E D and
0 < f < l imply that tx + (l-t)y E D. Note that if D is convex,
xl9...,xneD, tl9...,tn>0 and 2 " = 1 h = 1 then J ^ ^ e D .
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Indeed, assuming that a convex linear combination of n-\ points of D
is in D, we find that

x2 =
i

and so
n

1 = 1

Given a convex subset D of a real vector space, a function / : D —> R
is said to be convex if

/ 0 * + (1 -t)y) ^ tf(x) + (1 -fl/OO (2)

whenever x,y E D and 0 < f < 1. We call / strictly convex if it is con-
vex and, moreover, f(tx + (l-t)y) = r/(jc) + (l-f)/()0 and 0 < t < 1
imply that x = y. Thus / is strictly convex if strict inequality holds in
(2) whenever x ^ y and 0 < t < 1. A function / is concave if - / is
convex and it is strictly concave if - / is strictly convex. Clearly, / is
convex iff the set {(x,y) E DxR: y ^ f(x)} is convex.

Furthermore, a function/: D —» IR is convex (concave, ...) iff its res-
triction to every interval [a,b] = {ta + (l-t)b : 0 ^ t ^ 1} in D is con-
vex (concave, . . . ) . Rolle's theorem implies that if/: (a,b) —> (R is dif-
ferentiable then / is convex iff / ' is increasing and / is concave iff / ' is
decreasing. In particular, if / is twice differentiable and /" ^ 0 then / is
convex, while if / " ^ 0 then / is concave. Also, if / " > 0 then / is
strictly convex and if/" < 0 then / is strictly concave.

The following simple result is often called Jensen's theorem; in spite
of its straightforward proof, the result has a great many applications.

Theorem 2. Le t / : D —» R be a concave function. Then

n I n \

y t f i x ) $ n T t x \ (3)

whenever x1,...,xnE D, tx,..., tn E (0,1) and 2"= 1 *i = 1- Further-
more, if / is strictly concave then equality holds in (3) iff xx = • • • = xn.

Proof. Let us apply induction o n n . As for n — 1 there is nothing to
prove and for n = 2 the assertions are immediate from the definitions,
let us assume that n ^ 3 and the assertions hold for smaller values of n.
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Suppose first that / is concave, and let

n

xl9...,xn ED, tu...,tn E (0,1) with 2 4 = I-

For i = 2,.. . ,/i , set 4' = 4 / ( l -* i ) , so that 2"= 2 '/ = 1- Then, by
applying the induction hypothesis twice, first for n — 1 and then for 2, we
find that

n n

i=l l l i=2

.1=2

L-'I) 2 to
i=2

If / is strictly concave, n ^ 3 and not all JC,- are equal then we may
assume that not all of x2,..., xn are equal. But then

d-^i) £ ^ / w < a - ^ (
i=2 \i=2 /

so the inequality in (3) is strict. •

It is very easy to recover the AM-GM inequality from Jensen's
theorem: logjc is a strictly concave function from (0,°°) to R, so for
ax,..., an > 0 we have

H n n
1 V* * V* ai
- 2, iog«,-«log 2, - .

i = l i = l

which is equivalent to (1). In fact, if tx,..., tn > 0 and 2 " 4 = 1 then

2 fjlogx,- ^ log 2 ^ i , (4)
1 = 1 1 = 1

with equality iff x\ = •# • = JCW , giving the following extension of
Theorem 1.

Theorem 3. Let al9...,an^0 and pl9...,pn > 0 with 2 " = 1 A = 1-
Then
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ft af'^ ipiOi, (5)
1=1 i = l

with equality iff ax = • • • = an.

Proof. The assertion is trivial if some at is 0; if each at is positive, the
assertion follows from (4). •

The two sides of (5) can be viewed as two different means of the
sequence ai,...,an: the left-hand side is a generalized geometric mean
and the right-hand side is a generalized arithmetic mean, with the vari-
ous terms and factors taken with different weights. In fact, it is rather
natural to define a further extension of these notions.

Let us fix px,...,pn > 0 with S"= 1 Pi = 1- the pt will play the role of
weights or probabilities. Given a continuous and strictly monotonic
function cp : (0,o°) —> R, the <p-mean of a sequence a = (a1,...,an)
(at > 0) is defined as

Note that M^ need not be rearrangement invariant: for a permutation it
the <p-mean of a sequence ai,...,an need not equal the <p-mean of the
sequence a^x) > • • • > a7r(«) • Of course, if px = • • • = pn = l/n then every
<p-mean is rearrangement invariant.

It is clear that

min at ^ M9(a) ^ max ^ .

In particular, the mean of a constant sequence (ao,...,ao) is precisely
a0.

For which pairs <p and ^ are the means M^ and Af̂ , comparable?
More precisely, for which pairs <p and </> is it true that M^ia) ^ M^a)
for every sequence a = («!,...,flw) (^ > 0)? It may seem a little
surprising that Jensen's theorem enables us to give an exact answer to
these questions (see Exercise 31).

Theorem 4. Let p1,...,pn > 0 be fixed weights with 2 n
= 1 Pi ~ 1 a n d let

<P,I/J: (0,o°) -» IR be continuous and strictly monotone functions, such
that (p4f~l is concave if cp is increasing and convex if cp is decreasing.
Then
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for every sequence a = (ai,...,an) (at > 0). If cpif/ l is strictly concave
(respectively, strictly convex) then equality holds iff a\ = • • • = an.

Proof. Suppose that cp is increasing and <p^~l is concave. Set bt = i/K /̂)
and note that, by Jensen's theorem,

/'1If (pi//'1 is strictly concave and not all a, are equal then the inequality
above is strict since not all bt are equal.

The case when cp is decreasing and (pip~l is convex is proved analo-
gously. •

When studying the various means of positive sequences, it is con-
venient to use the convention that a stands for a sequence (a1,...,an),
b for a sequence (b1,...,bn) and so on; furthermore,

a-1 = - = (flf 1,...,fl /T
1), a + x = (a1+x,...,an+x) (x E U+),aa

ab = (a1bu...,anbn), abc = {axbxcx,...,anbncn),

and so on.
If <p(t) = tr (-00 < r < oo, r =£ 0) then one usually writes M r for M^.

For r > 0 we define the mean Mr for all non-negative sequences: if
a =

Note that if px = • — = pn = 1/n then Mx is the usual arithmetic mean
A, M2 is the quadratic mean and M_x is the harmonic mean. As an
immediate consequence of Theorem 4, we shall see that Mr is a continu-
ous monotone increasing function of r.

In fact, Mr(a) has a natural extension from (-°°,0) U(0,oo) to the
whole of the extended real line [-00,00] such that Mr(a) is a continuous
monotone increasing function. To be precise, put
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n

MJ(a) = max ai9 M^a) = min ai9 M0(a) = J] a?1.

Thus M0(a) is the weighted geometric mean of the at. It is easily
checked that we have Mr(a) = {M-r{a~l)}~1 for all r (-<» ^ r ^ 00).

Theorem 5. Let a = (a1,...,an) be a sequence of positive numbers, not
all equal. Then Mr(a) is a continuous and strictly increasing function of
r on the extended real line -0° ^ r ^ 00.

Proof. It is clear that Mr(a) is continuous on (-o°,0)U(0,o°). To
show that it is strictly increasing on this set, let us fix r and s, with
-00 < r < s < 00, r ^ O and 5 ^ 0 . If 0 < r then Jr is an increasing
function of t > 0, and fr^ is a concave function, and if r < 0 then £r is
decreasing and f^s is convex. Hence, by Theorem 4, we have

Mr{a) <Ms(a).
Let us write A(a) and G(fl) for the weighted arithmetic and geometric

means of a = (a1,...,an), i.e. set

A(a) = Mx{a) = £ A-*,- and G(n) = Afo(fl) = ft */"••
1 = 1 1 = 1

To complete the proof of the theorem, all we have to do is to show
that

MM = lim Mr(a), M^a) = lim Mr(a), G(a) = limAfr(fl).
^ 0

The proofs of the first two assertions are straightforward. Indeed, let
1 ^ m ^ n be such that am — M^{a). Then for r > 0 we have

Mr(a) ^ \pm am) ' — pm am;

so lim infr^oo Mr(a) ^ am ~ Moo(ci). Since Mr(a) ^ MaXa) for every r,
we have l i m ^ ^ Mr(fl) = MJ^a), as required. Also,

Af_oo(fl) = {MQ0(a~ )}~ = {limMr(a~ )}~ = lim Mr(a)-
y—»oo f—> — oo

The final assertion, G(fl) = limr^0 Mr(a), requires a little care. In
keeping with our conventions, for — oo < r < oo (r ^ 0) let us write
ar = (« [ , . . . ,< ) . Then, clearly,

Also, it is immediate that
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and so

Since

for every t>0,

]noGi

lim -(af-1)

lim - {A
r->0 r

if r > 0 then

1
r

d
= 7rQ

(a^-l

logt^

r

rlogfl,
=

} =logG(a)

t-1

<
6 V

log a,

1
r

(6)

Letting r —> 0, we see from (6) that the right-hand side tends to log G(a)
and so

implying

Finally,

lim logAfr(tf) = lim - log Aia^} = logG(a),
r—»0+ r—>0+ T

lim Mr{a) = G(a).

lim Mr{a) = Hm {M^a"1)}"1 = GCa"1)"1 = G(a). •
r ->0- 0+

The most frequently used inequalities in functional analysis are
due to Holder, Minkowski, Cauchy and Schwarz. Recall that a
hermitian form on a complex vector space V is a function <p : Vx F -> C
such that (p(\x + /xy,z) = \(p(x,z)+fjL(p(y,z) and <p(y,x) = <p(x,y) for all
x,y,z EV and \,fji EC. (Thus <p(*,A>> + /iz) = A<P(JC,>')+/Z^(JC,Z).) A
hermitian form <p is said to be positive if cp(x, x) is a positive real number
foralljcE V(x + 0).

Let <p(-, -) be a positive hermitian form on a complex vector space V.
Then, given x,y E V, the value

is real and non-negative for all A E C. For x ^ 0, setting A =
"~<p(x9y)/(p(x9x)9 we find that

and the same inequality holds, trivially, for x = 0 as well. This is the
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Cauchy-Schwarz inequality

is a positive

and so

n

hermitian form

n

1/2

In particular,

<£>(*,)>) =

onC",

V=l

(i.w>;

•n
r-

as

i = l
1*1*

V=l

1/2

\l/2/ „ \l/2
2 S I v l 2

(7)

Our next aim is to prove an extension of (7), namely Holder's ine-
quality.

Theorem 6. Suppose

p,q > 1 and - + - = 1.

Then for complex numbers a1,...,an,b1,...,bn we have

2 |«*|') "(I \bk\<) q (8)
.*=i / U=i /

with equality iff all ak are 0 or \bk\q = t\ak\p and akbk = el6\akbk\ for
all k and some t and 6.

Proof. Given non-negative reals a and b, set xx = ap, x2 = bq,
Pi = V/7 andp2

 = 1/?• Then, by Theorem 3,

afc = J C M 2 ^ plXl +p2x2 =J + J> (9)

with equality iff ap = bq.
Holder's inequality is a short step away from here. Indeed, if

n

1
t = l

then by homogeneity we may assume that

But then, by (9),
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Kl" | \bt\i«1
Furthermore, if equality holds then

\ak\P=\bk\" and = 2
implying akbk = el6\akbk\. Conversely, it is immediate that under these
conditions we have equality in (8). D

Note that if Mr denotes the rth mean with weights pt — n~l

( i = l , . . . , w ) a n d f o r a = ( a l , . . . , a n ) a n d b = ( b l 9 . . . 9 b n ) w e p u t
ab = ( a 1 b l 9 . . . 9 a n b n ) 9 \a\ = (\ax | , . . . , \an | ) a n d | 6 | = ( 1 ^ 1 , . . . , \bn | ) ,
then Holder's inequality states that if p~1 + q~1 = 1 with p,q > 1, then

Mx{\ab\)^Mp(\a\)Mq{\b\).
A minor change in the second half of the proof implies that (8) can be

extended to an inequality concerning the means M1? Mp and Mq with
arbitrary weights (see Exercise 8).

The numbers p and q appearing in Holder's inequality are said to be
conjugate exponents (or conjugate indices). It is worth remembering that
the condition n~x + q~l = 1 is the same as

(p-l)q = p or (q — l)p = q.
Note that 2 is the only exponent which is its own conjugate. As we
remarked earlier, the special case p = q = 2 of Holder's inequality is
called the Cauchy-Schwarz inequality.

In fact, one calls 1 and oo conjugate exponents as well. Holder's ine-
quality is essentially trivial for the pair (I,00):

M1(\ab\)^M1(\a\)MO0(\b\)9

with equality iff there is a 6 such that \bk\ = Afoo(|6|) and akbk =
cl6\akbk\ whenever ak ^ 0.

The next result, MinkowskVs inequality, is also of fundamental
importance: in chapter 2 we shall use it to define the classical lp spaces.

Theorem 7. Suppose 1 ^ p < oo and al9...,an,bi,...,bn are complex
numbers. Then

i \ V P / n \l/P
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with equality iff one of the following holds:
(i) all ak are 0;

(ii) bk = tak for all k and some t ^ 0;
(iii) p = 1 and, for each k, either ak = 0 or bk = tkak for some tk ^ 0.

Proof. The assertion is obvious if p = 1 so let us suppose that
1 < p < oo? not all ak are 0 and not all bk are 0. Let q be the conju-
gate of p: p~l + q~l — 1. Note that

£ k+ft*l*« £ k+**lp"1kl + £ k+W1!**!-
fc=l k=l k=\

Applying (8), Holder's inequality, to the two sums on the right-hand
side with exponents q and p, we find that

l/q

l/«(/ n \UP I n \Vp]I t ) i ? , ' » ' ) )
Dividing both sides by

we obtain (8). The case of equality follows from that in Holder's ine-
quality. •

Minkowski's inequality is also essentially trivial for p = oo, i.e. for the
Moo mean:

with equality iff there is an index k such that \ak\ = Afoo(|a|),
\bk\ =MJ\b\)ui&\ak + bk\ = \ak\ + \bk\.

The last two theorems are easily carried over from sequences to
integrable functions, either by rewriting the proofs, almost word for
word, or by approximating the functions by suitable step functions.
Readers unfamiliar with Lebesgue measure will lose nothing if they take
/ and g to be piece wise continuous functions on [0,1].
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Theorem 8. (Holder's inequality for functions) Let p and q be conju-
gate indices and let / and g be measurable complex-valued functions on
a measure space (X, ^,/JL) such that \f\p and \g\q are integrable. Then
fg is integrable and

/ r \\/ni r \\la

u

Theorem 9. (Minkowski's inequality for functions) Let 1 ^ p < °° and
let / and g be measurable complex-valued functions on a measure space
(X,&,IJL) such that \f\p and \g\p are integrable. Then \f+g\p is integr-
able and

* , ) • •

Exercises

All analysts spend half their time hunting through the
literature for inequalities which they want to use but can-

not prove.

Harald Bohr

f ]
1. Let An = JC = (Xi)1: 2 JC,: = n and JC, ^ 0 for every i\ C R".

(i) Show that g(x) = I]"=1 *i is bounded on i4n and attains its
supremum at some point z = (z,)i E >!„.

(ii) Suppose that x E. A and JCX = minjcf < x2 = maxjc,-. Set y1 =
yi ~ 2(^1+^2) an<^ yi = xi f°r 3 ^ 1 ^ n. Show that y =
(yi)1 e >4n and g(y) > g(x). Deduce that zt = 1 for all 1.

(iii) Deduce the AM-GM inequality.
2. Show that if </f: (a,b) —> (c,d) and <p : (c, d) —> R are convex func-

tions and <p is increasing then ((p°i//)(x) = <p(i//(x)) is convex.
3. Suppose that / : (#,&) -» (0,oo) j s such that log/ is convex. Prove

that / is convex.
4. Le t / : (a,b) -> (c,6) and 9 : (c,6) -> R be such that <p and <p~lof

are convex. Show that / is convex.
5. Let {fy : y G F} be a family of convex functions on (a, 6) such that

f(x) = s u p r e r /7(JC) < 00 for every x E (a, 6). Show that f(x) is
also convex.

6. Suppose that / : (0,1) —» R is an infinitely differentiable strictly
convex function. Is it true that/"(;t) > 0 for every x E (0,1)?


