




This book is a comprehensive design text for permanent magnets and
their application. Permanent magnets are very important industrially, and
are widely used in a variety of applications, including industrial drives,
consumer products, computers and automobiles.

In the early 1970s a new class of magnet - the rare earths - was
discovered, the properties of which showed sustained improvement over
the following two decades. New materials such as these have spawned
many new markets for magnets, with significant performance gains in the
devices for which they are used. By the early 1990s the new magnet
technologies had matured. Until the advent of the present book, however,
there has been no text that unified all the relevant information on the
wide range of modern permanent magnet materials. This book, therefore,
has been written as a comprehensive review of the technology, intended
for scientists and engineers involved in all stages of the manufacture,
design and use of magnets. A brief theory of magnetism explains the
behavior of the different classes of permanent magnet, and the various
production processes that lead to quite diverse material characteristics.
The core of the book is a detailed treatment of the methods that are used
to design permanent magnets, including assessments of the changes they
experience under practical operating conditions. Modern analytical
techniques are described, including the finite element method, with
reference to the accurate simulation of permanent magnet materials. With
the evolution of new materials, the markets for permanent magnets have
changed. In this book, the author emphasizes the most important modern
applications, and discusses the viability of the various magnet types that
are now available.

This book, the first to cover comprehensively all aspects of modern
permanent magnet materials, their design and application, will be of value
to anyone involved in the design and use of magnets.
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Preface

The original inspiration to write this book came when, after an electrical
engineering training in the late 1960s, I embarked upon the design of a
variety of permanent magnet electrical machines. I needed to know more
about the behavior and performance of the different magnet materials
than the electromechanical design texts provided, and significantly more
applications data than the scientific books on magnetism contained. This
shortcoming was exacerbated in the early 1970s when an entirely new
class of magnet - the rare earths was discovered, offering a vast array
of new opportunities for permanent magnet devices, and new challenges
to designers such as myself. As these new materials were developed, their
properties exhibited dramatic improvements from year to year, reaching
maturity in the early 1990s as a full range of samarium-cobalt and
neodymium-iron-boron magnets. Until this had happened, I felt that any
attempt to produce a comprehensive text including a description of these
materials would have been premature. Now, with first-hand experience
in most cases, I am able to describe their selection and design for a wide
range of important applications.

The material for this book has evolved from courses given to students
and practicing engineers while I was at the University of Cambridge and
the University of Southern California, and from a variety of assignments
to develop and design permanent magnet materials. Though this is
intended mainly as a design text, I thought it important to open with an
explanation of the theory of permanent magnetism, so the rationale for
the various production processes can be understood, leading to the distinct
properties of the different classes of magnet. Nevertheless, the core of this
book is a detailed treatment of the methods that are used to design
permanent magnets, but an important practical consideration is the
changes that occur in material properties due to environmental conditions.



x Preface

The difference between design and analysis is emphasized, and an
appropriate simulation for a permanent magnet is described for each
technique, including the popular finite element method.

With the addition of the rare earth class of magnet to the existing ferrite
and alnico types, there are new devices, which represent significant new
markets for magnets, and there are existing devices whose performance
has been substantially improved by changing to a modern material. The
selection and optimization of a permanent magnet for the most important
applications is described in this book, but the list of products is noticably
different from any that would have appeared prior to commercialization
of the rare earths. My hope is that the information contained in this book
will make manufacturers, designers and users aware of the very broad
range of properties available from today's permanent magnets, and arm
them with the skills necessary to develop more, successful, new products.

Los Angeles, California Peter Campbell



1

Fundamentals of magnetism

1.1 Introduction

Earlier texts on permanent magnets have opened with historical reviews
of these materials (Hadfield, 1962; McCaig, 1977; Parker, 1990; Parker
and Studders, 1962). In this book the design of modern permanent magnets
is emphasized, and so initially the development of the relationships that
are required to model today's materials for a variety of common
applications is considered. To the extent that a historical review is provided
in this chapter, it is of those fundamental equations of electromagnetism
that are needed to understand the performance of magnets in circuits and
devices.

There are many properties of a permanent magnet that are considered
in its design for a magnetic device, but most often it is the demagnetization
curve that initially determines its suitability for the task. Its shape contains
information on how the magnet will behave under static and dynamic
operating conditions, and in this sense the material characteristic will
constrain what can be achieved in the device design.

The B versus H loop of any permanent magnet has some portions which
are almost linear, and others that are highly non-linear. The shapes of
these B versus H loops, or at least the demagnetization portions of them,
tell the designer a lot about the suitability of the material for a given
application. A brief derivation of the B versus H loop is presented, to
illustrate the microscopic mechanisms that determine the macroscopic
performance of a magnet.

The fundamental theory describing permanent magnets is similar to
that for soft magnetic materials. A magnet is permanent (sometimes called
hard) if it will alone support a useful flux in the air gap of a device, whereas
it is soft if it can only do so with the aid of an external electrical or
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2 Fundamentals of magnetism

magnetic input. The most basic parameter of either type of material is
the magnetic dipole moment.

1.2 Magnetic dipole moment

The magnetic dipole moment may be modeled in a similar manner to a
loop of wire carrying a current ;. Consider that this loop lies in the x-y
plane shown in Figure 1.1, and that the loop is divided into strips such
as abed, which will each carry i (this is legitimate since the currents in
sides ab and cd will cancel for neighboring strips). There is a magnetic
field B {flux density) in the magnet, which we shall take to lie in an x-z
plane. B may then be resolved into components B cos 8 in the z direction
and B sin 9 in the x direction, perpendicular and parallel to the plane of
the loop respectively. The force due to a magnetic field on a conductor
carrying electrical current is known to be proportional to the current (i),
flux density (JB) and conductor length (/), and the constant of proportionality
is the sine of the angle between /' and B. Thanks to our choice of orientation
for the loop and the field, the forces in all four sides ab, be, cd and da
due to B cos 6 are in equilibrium, and the forces in the long sides ab and
cd due to B sin 6 are zero. However, those in sides be and da due to B sin 6
form a couple (or torque) of magnitude

6T=abi by B sin 6

Because the area of the strip is 8A=ab by, this becomes

bT=ibAB sind

(1.1)

(1.2)

y

Figure 1.1. A loop carrying current i in field B.
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Even when modeled as a current loop, the magnetic dipole moment is
still a microscopic property of the material. All the strips that comprise
the loop in Figure 1.1 carry the same current i, and the entire loop will
experience a unique field B. The torque on the loop is therefore a
summation of Equation (1.2) for all the 8 A areas that constitute the
complete loop A, so

T^iAB sin 0 (1.3)

The boundary of area A is coincident with the path of /, so it is natural
to define their product as a unique parameter, which is the magnetic dipole
moment:

Hm = iA (1.4)

The torque on the current loop now becomes

T=nmB sine (1.5)

Torque T, moment ftm and the field B (as B sin 0) are all vector quantities
with specific directions as well as magnitudes. No particular shape was
defined for the loop in Figure 1.1, so the area A may describe any shape
of loop provided that it is planar. The vector A is normal to that plane,
so too will be fim.

The rectangular current loop of Figure 1.2 has pm normal to its plane,
and in the presence of a magnetic field B there is a torque T about its
axis. If the loop can rotate about this axis, then the torque tries to align
fim with the direction of B; if this is achieved, then 0 and sin 6 are zero,
as will be T.

An electron in a microscopic orbit has a magnetic dipole moment, which
we have modeled as a current circulating in a loop. A simple model of a
bulk magnetic material is a large array of electrons, and this material will
appear to be unmagnetized if its magnetic dipole moments are randomly

Figure 1.2. Torque applied to a magnetic dipole current loop.
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oriented. When a field B is applied to the material, each moment
experiences a torque that tends to rotate it towards the direction
of B. There are atomic forces on the electron orbits, which resist rotation
by T, but if the applied field is strong enough, then the torques will be
great enough to align all the moments with B. The material has then
reached its saturation field. This mechanism is not sufficient, however, to
create a permanent magnet material, which by our earlier definition must
be able to sustain its own magnetic flux in the absence of any external
sources of field. In other words, a permanent magnet must sustain flux
by virtue of its own internal field, which will require spontaneous alignment
of the magnetic dipole moments, or spontaneous magnetization.

The work done in rotating the moment in a field is found by integrating
Equation (1.5) through the angle of rotation,

E = I TdO

= fimB sin0 d 0 = - / i m B cos 0 (1.6)

The lowest value of energy E in the material occurs when /im and B are
aligned, so there is indeed a natural tendency for this internal alignment
to happen and hence minimize the energy. This process of aligning the
axes of magnetic dipoles due to their own internal field is called exchange
interaction. In an elemental volume of the bulk material, the adjacent
values (and directions) of fim will be identical, so a summation of /tm may
be performed over this volume AV, which yields a new property of the
material called its magnetization M:

M = lim ±^m- (1.7)
AK-O AV

This strict definition of M shows that it is actually the magnetic dipole
moment per unit volume, but unlike fim, it is a macroscopic property of
the material, like B. In an elemental volume alone, although the dipoles
are aligned by the internal field, that field B will itself be generated by
M. The existence of an internal field even when no external field is applied
is the phenomenon of spontaneous magnetization. This direct relationship
is expressed as B=n0M (where juo is a constant of proportionality), which
allows Equation (1.6) to be rewritten as

(1.8)
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The foregoing is clearly a simplified theory of magnetization, which
neglects many of the practical conditions that occur. For example, as we
shall see later, thermal agitation will disrupt the alignment of the moments
and reduce their magnetization M.

1.3 Magnetizing force

While spontaneous magnetization yields a specific value of M in an
elemental volume of a magnet, it is not likely that an entire magnet will
operate in the same condition with a unique M throughout. A magnet
actually comprises a large number of elements AV, each of which has a
volume 5x • 6y • dz in Figure 1.3. Two adjacent elements may have different
magnitudes for M, and we shall consider only the z components of these
shown in Figure 1.3, Mz and M':. For the element with M2, Equation
(1.7) gives

YlliBa = MzSx8y5z (1.9)

Since (xm: is constant over an elemental volume, Equation (1.4) may be
used to give

2 > m 2 = /5x8}> (1.10)

Considering that M was defined directly from pm, it is hardly surprising
to find that M in an element is related to a circulating current i, as shown
in Figure 1.3. Combining Equations (1.9) and (1.10), that relationship is

Similarly, in the neighboring element with M'z there is

(1.11)

(1.12)

6x bx

dy

/
z Mz M'.

Figure 1.3. Magnetization in neighboring magnet elements.
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The change from M. to Ml occurs over a distance 8.x, so the corresponding
change in current may be expressed as

/' = /+ U 5.x (1.13)
Px

With the aid of Equation (1.11), this current flowing up the wall that
divides the two elements may be written as

i-i'=-PM-8xbz (1.14)
Px

This "wall" may be thought of as having an area 5x-5z across which the
current / - / ' flows in the y direction. This is a current density, given by

dM.
Jr=- ,--' (1-15)

ex
Now let us consider that M has a component in the x direction as well
as that in the z direction. A change in Mx will also contribute to Jy

(although a y component of M would not produce an equivalent current
in its own direction). A similar derivation gives

•/,= + - * ' (1-16)

The total y component of current density will be

J,J±J± ,,.,7,
cz ex

According to this expression, it is a change in the magnetization that
is equivalent to the flow of current. Jy is just one of the three possible
components of Jm (J x and J. are the others), the current density which
may be used to model M. A full derivation of Jm yields a vector equation,
which separates these three components using unit vectors /, j and k in
the x, y and z directions respectively:

p ) (MS)
cy cz / \ cz ex J \ ex Cy J

They component in the y direction is the one that was derived in Equation
(1.17). Fortunately, there is a shorthand notation for the operation that
is performed upon a vector such as M in Equation (1.18), to yield another
vector such as Jm. It is the curl operation, sometimes referred to as rotation,
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which is written mathematically as "V x " (Shercliff, 1977). Equation (1.18)
is therefore written as

/ = V x M (1.19)

As an example of this operation, imagine that there is a rotation of the
M vector in the magnet, which causes the Mz component to change
between adjacent elements, as was shown in Figure 1.3. The result is an
equivalent current density, which we found by Equation (1.15) to be Jy,
but which we now know to be just one component from the more general
expressions (1.18) and (1.19).

If the magnet is uniformly magnetized, there will only be a change in
M at the boundaries as shown in Figure 1.4, and there is only an effective
rotation of M at the sides, which is where the equivalent current density
Jm will flow. A uniformly magnetized magnet is therefore exactly equivalent
to a solenoid coil, as one might indeed expect.

Another well-known situation in electromagnetics to which the curl
operation applies is the magnetic field B circulating (rotating) around a
conductor carrying current - Ampere's law (Shercliff, 1977). B is related
to the current density / through the constant (i0 by

Lt0J=VxB (1.20)

If J is only in the y direction with just ay component as shown in Figure
1.5, then Jy will have the same form as Equation (1.17):

dBx

cz ox
(1.21)

As a real current density J causes a field B to circulate around it, then
so too does an equivalent current density /m representing magnetization.
When both conducting and magnetic media are present, the total flux

M t t t t t
t t t t 1 t t
t t t t t t t
t t t t t t t

(a)
Figure 1.4. Uniformly magnetized magnet (a), which may be modeled by a current
density over its boundary (£>).
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B

(a)

Figure 1.5. Circulation of flux density B around a conductor carrying current
density J.

density due to both sources will be

= WxB (1.22)

However, Jm itself is caused by the material magnetization M according
to Equation (1.19), so

H0(J+VxM) = VxB (1.23)

This expression may be rearranged to group the two magnetic parameters
together as

j.i0J =V x (B — n0M) (1-24)

In the previous Section we showed that spontaneous magnetization could
alone cause a field within the material given by B = n0M, which is the
condition in Equation (1.24) for real currents to be absent (J=0). In
reality, we will be interested in the external effects that a permanent magnet
can produce for us, which will of necessity require B to be dissimilar to
H0M. To this end, a new parameter called magnetizing force His defined as

fi0H=B—ft0M (1-25)

The more common way to write this most fundamental relationship
between the three macroscopic parameters of a magnet is

B=/xo(H+M) (1.26)

This allows Equation (1.24) to be rewritten as a more general version of
Ampere's Law, one that allows for real currents and material magnetization:

J=VxH (1.27)
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In a magnetic material, an applied current (density J) actually causes
H, rather than B, though for a non-magnetic medium we find that
Equation (1.27) reverts to Equation (1.20) by setting M=0 and using
B=fi0H. If a winding is placed around a permanent magnet and electrical
current is applied, then the magnet becomes magnetized by virtue of J
establishing H within the material. H in turn establishes M and hence B,
which explains it being called magnetizing force.

1.4 Magnetocrystalline anisotropy

Many permanent magnet materials are manufactured in a way that
enhances their magnetic properties along a preferred axis, because in most
applications we are only interested in field being produced in one particular
direction through the magnet. The most fundamental way to attain this
is if the crystal lattice structure of the material itself has preferred directions
for the magnetic moments, which may then form the foundation for
achieving net alignment in the magnet. Such an alignment of the magnetic
dipole moments in the lattice is called magnetocrystalline anisotropy.

It is already seen in Equation (1.8) that the work done in rotating pm

in a material with magnetization M would have a minimum when fim and
Mare aligned, and we can use this relationship as the basis for determining
the preferred axes in a crystal lattice. It is helpful to rewrite Equation
(1.8) using a trigonometric identity for cos 6 as

1 - 2 sin2 - I (1.28)

We can now define a magnetocrystalline anisotropy energy Ek as the change
in energy that is required to rotate pm from a preferred axis (6 = 0):

(1.29)

In this expression, Ek is a maximum when 6 = n (180°) and fim is
anti-parallel to M - an unstable condition.

The crystal lattices of real magnetic materials are much more complicated
than this situation depicts, although Equation (1.29) can be easily modified
to account for greater complexity. For example, iron, which is the principal
element in many popular permanent magnets, has the body-centered cubic-
crystal lattice structure shown in Figure 1.6. There are now six equally
preferred directions of magnetization: [0, 0, 1], [0, 1, 0], [1, 0, 0],
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[0,0,1]

[1,1.1]

[1,0,0] [1,1.0]

Figure 1.6. Body-centered cubic lattice structure of iron, and magnetization curves
on various crystallographic axes.

T/2 e
[0,1,0]

Figure 1.7. Magnetocrystalline anisotropy energy Ek in a cubic crystal lattice
structure.

[0,0, - 1], [0, - 1, 0] and [ - 1,0, 0]. The unstable condition for pm is to
lie in a plane between two of these at an angle of n/4 (45°) to each axis.
It is only necessary to increase the periodicity in Equation (1.29) for it to
apply to iron, as

sin2 26 (1.30)

The plot of Equation (1.30) shown in Figure 1.7 demonstrates the
stability of fim along two of the axes in one plane. In reality, rotation of
pm may be considered in many other planes of the body-centered cube,


