

Basic Computation and Programming with C

Undergraduate students of engineering and computer science will come across detailed
coverage of the fundamentals of computation and programming in C language, in this
textbook. Essential concepts including operators and expressions, input and output
statements, loop statements, arrays, pointers, functions, strings and pre-processor
are described in a lucid manner. For better comprehension of the concepts, the book is
divided into three parts: Fundamentals of Computer, Programming with ‘C’ and Technical
Questions.

A unique feature of the book is ‘Learn by Quiz – Questions/Answers’, which has questions
designed through confi dence-based-learning methodology. This helps readers to identify
right answers with adequate explanation and reasoning as to why the other options are
wrong. Plenty of computer programs and review questions are interspersed throughout
the text.

The book can also be used as a self-learning book by beginners in Computer
Programming.

Subrata Saha is Head of the Department of Computer Applications, Techno India Hooghly,
West Bengal. His areas of interest include object oriented languages, image processing and
cryptography.

Subhodip Mukherjee is Head of the Department of Computer Applications, Techno India
College of Technology, Kolkata. His areas of interest include object oriented languages,
software engineering, computer architecture and database management systems.

Basic Computation and
Programming with C

Subrata Saha

Subhodip Mukherjee

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781316601853

© Cambridge University Press 2016

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2016

Printed in India

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data
Names: Saha, Subrata, 1973- author. | Mukherjee, Subhodip, author.

Title: Basic computation and programming with C / Subrata Saha, Subhodip Mukherjee.

Description: New York : Cambridge University Press, 2016. | Includes bibliographical references and index.

Identifi ers: LCCN 2016018907 | ISBN 9781316601853 (pbk.)

Subjects: LCSH: C (Computer program language) | Mathematics--Data processing.

Classifi cation: LCC QA76.73.C15 S237 2016 | DDC 004.01/51--dc23 LC record available at
https://lccn.loc.gov/2016018907

ISBN 978-1-316-60185-3 Paperback

Additional resources for this publication at www.cambridge.org/9781316601853

Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

http://www.cambridge.org
http://www.cambridge.org/9781316601853

To my father Late Kamal Krishna Saha and to my mother Geetasree Saha for what I am today.

 — Subrata Saha

To my mother who sacrifi ced all sorts of entertainment for my education during my school life and
to my father Professor S. G. Mukherjee whose addiction to books and simple living inspired me to
be a teacher.

 — Subhodip Mukherjee

Contents

List of Figures xiii
List of Tables xv
Preface xvii
Acknowledgments xix

PART A:PART A: Fundamentals of Computer Fundamentals of Computer

1. Computer-History, Classifi cation and Basic Anatomy 1

1.1 Generations of Computer 1
1.2 Classifi cation of Computers 4
1.3 Basic Anatomy of a Computer 8
1.4 Von Neumann Architecture 9
1.5 Memory Classifi cation and Hierarchy 10
1.6 Input and Output Devices 10

2. Introduction to Number System and Logic Gates 14

2.1 Introduction 14
2.2 Base of a Number System 14
2.3 Reason behind Using Binary Number System 15
2.4 Conversion among Different Bases 16
2.5 Similarities between Number Systems of Different Bases 19
2.6 Addition of Two Numbers 19
2.7 Signed Binary Numbers 21
2.8 ASCII (American Standard Code for Information Interchange) 24
2.9 Logic Gates and Boolean Algebra 25
2.10 Gates (Logic Gates) 25
2.11 Basic Gates 26
2.12 Universal Gates 28

3. Introduction to System Software and Operating Systems 31

3.1 Introduction to Assembler 31
3.2 Introduction to Compiler 32
3.3 Introduction to Operating System 34

Contentsviii

4. Algorithms and Flow Chart 40

 4.1 Flow Chart 40

PART B: PART B: Programming in ‘C’Programming in ‘C’

5. Introduction to C 49

 5.1 Generations of Programming Languages 50
 5.2 History of C Language 51
 5.3 Why is C so Popular? 52
 5.4 Position of C in the Generations of Languages 53

6. Constants, Variables and Data Types 58

 6.1 C Character Set 58
 6.2 Constants 58
 6.3 Keywords and Identifi ers 61
 6.4 Variables and Data Types 61
 6.5 Storage Type Qualifi er 64

7. Operators and Expressions 74

 7.1 Operators in C 74
 7.2 Expressions 82
 7.3 Precedence and Associativity 85

8. Input and Output Statement 98

 8.1 Formatted I/O Functions 98
 8.2 Unformatted I/O Functions 108
 8.3 General Structure of a C Program 109
 8.4 First C Program 110
 8.5 Executing a C Program 111
 8.6 Executing from UNIX Environment 113
 8.7 Developing a Program 113
 8.8 Programming Examples 115

9. Branching Statement 132

 9.1 If Statement 132
 9.2 Conditional Operator 143
 9.3 Switch Statement 144
 9.4 Goto Statement 148
 9.5 Programing Examples 148

10. Loop Statements 171

 10.1 While Statement 172
 10.2 Nested Loop 177
 10.3 Test Your Progress 178
 10.4 For Statement 179
 10.5 Test Your Progress 185
 10.6 Do-while Statement 186
 10.7 Break Statement 187
 10.8 Use of Goto 189

Contents ix

 10.9 Continue Statement 190
 10.10 Test Your Progress 191
 10.11 Programming Examples 191

11. Array 224

 11.1 What is an Array? 224
 11.2 Declaration of an Array 224
 11.3 Initializing Arrays 225
 11.4 Accessing Elements of an Array 228
 11.5 Sorting 232
 11.6 Searching 240
 11.7 Two Dimensional Array 242
 11.8 Multidimensional Array 245
 11.9 Programming Examples 247

12. String Handling 268

 12.1 String 268
 12.2 Overcoming the Limitation with the Help of Scanset 273
 12.3 sscanf() and sprintf() Function 278
 12.4 Character Handling Functions 280
 12.5 String Handling Functions 289
 12.6 Two-Dimensional Array of Characters 294
 12.7 Programming Examples 296

13. Function 320

 13.1 Why Function 320
 13.2 Calling a Function 323
 13.3 Types of Function Arguments 324
 13.4 Array as Function Argument 326
 13.5 Function Prototype 328
 13.6 Passing Multidimensional Array as Function Argument 331
 13.7 Storage Class 332
 13.8 Multi-fi le Programs 337
 13.9 Recursion 339
 13.10 Advantage and Disadvantage of Recursion 343
 13.11 Implementation of Some Standard Library Functions 343
 13.12 Programming Examples 345

14. Pointer 367

 14.1 Pointer 367
 14.2 Array and Pointer 371
 14.3 Pointer Arithmetic 372
 14.4 Array vs Pointer 375
 14.5 Pointer and Function 376
 14.6 Pointer and String 380
 14.7 Function Returning Pointer 381
 14.8 Pointers and Multidimensional Arrays 383
 14.9 Array of Pointers 384
 14.10 Dynamic Memory Allocation 390

Contentsx

 14.11 Function Pointer 393
 14.12 Returning a Two Dimensional Array from Function 394
 14.13 Dangling Pointer 396
 14.14 Implementation of Some Standard Library Functions 397
 14.15 Advantages of Pointer 399
 14.16 Interpreting Complicated Pointer Declarations 400
 14.17 Programming Examples 401

15. Structure 416

 15.1 Structure 416
 15.2 Structure Initialization 418
 15.3 Arrays of Structures 422
 15.4 Nested Structures 425
 15.5 Structures and Functions 427
 15.6 Function Returning Structure 428
 15.7 Structures and Pointers 431
 15.8 Bit Fields 434
 15.9 Programming Examples 442

16. File 461

 16.1 What is a File? 461
 16.2 Processing a File 462
 16.3 Input-Output Operations on Files 464
 16.4 More File Functions 473
 16.5 Command Line Arguments 477
 16.6 Programming Examples 479

17. Bitwise Operators 507

 17.1 Bitwise & Operator 508
 17.2 Bitwise | Operator 511
 17.3 Bitwise ^ Operator 512
 17.4 ~ Operator 514
 17.5 Left Shift Operator 515
 17.6 Right Shift Operator 517
 17.7 Programming Examples 518

18. Preprocessors 528

 18.1 #defi ne Directive 528
 18.2 Macros with Arguments 529
 18.3 Nesting of Macro 531
 18.4 Multiline Macro 531
 18.5 Macro vs. Function 532
 18.6 #undef Directive 532
 18.7 #include Directive 532
 18.8 Conditional Compilation Directive 533
 18.9 Additional Directives 536
 18.10 Predefi ned Macros 537
 18.11 Programming Examples 538

Contents xi

19. Linked List 546

 19.1 Linked List 547
 19.2 Advantages of Linked List 547
 19.3 Types of Linked List 547
 19.4 Implementation of Singly Linked List 548
 19.5 Operations on Singly Linked List 550
 19.6 Inserting a New Element in a Linked List 553
 19.7 Applications of Singly Linked List 568
 19.8 Disadvantages of Linked List 572
 19.9 Programming Examples 572

PART C:PART C: Technical Questions for Interview Technical Questions for Interview

 Model Question Set-1 581

 Answer to Model Question Set-1 584

 Model Question Set-2 586

 Answer to Model Question Set-2 589

 Model Question Set-3 591

 Answer to Model Question Set-3 594

 Model Question Set-4 596

 Answer to Model Question Set-4 599

 Model Question Set-5 602

 Answer to Model Question Set-5 605

Appendix:

 I. Common Questions and Answers 607

 II. ASCII Characters 630

 III. Some Useful Library Functions 635

Figures

Fig. 1.1 ENIAC 2
Fig. 1.2 Transistor 3
Fig. 1.3 Components of a computer 8
Fig. 1.4 Common bus architecture 9
Fig. 1.5 Keyboard. 11
Fig. 1.6 USB and PS/2 ports 11
Fig. 1.7 Scanner 12
Fig. 1.8 Microphone 12
Fig. 1.9 Printers 13
Fig. 2.1 Addition process 20
Fig. 2.2 Sequential circuit 25
Fig. 2.3 NAND as universal gate 28
Fig. 3.1 Process for producing executable fi le 32
Fig. 3.2 Parse tree of a sentence 33
Fig. 3.3 A sample window 36
Fig. 4.1 Flowchart of fi nding maximum of three numbers 41
Fig. 8.1 Steps of compilation and execution 112
Fig. 9.1 Flowchart of if statement 133
Fig. 9.2 Flowchart of if–else statement 134
Fig. 9.3 Flow chart to fi nd the largest number among three inputted numbers 137
Fig. 10.1 Entry controlled loop 171
Fig. 10.2 Exit controlled loop 172
Fig. 10.3 Flow chart to illustrate while statement 173
Fig. 11.1 Allocation of memory for character array 226
Fig. 11.2 Allocation of memory for integer array 227
Fig. 11.3 Conceptual view of a two dimensional array 242
Fig. 11.4 Accessing elements in a two dimensional array 243
Fig. 14.1 Memory map of variable allocation 368
Fig. 14.2 Address calculation for the elements of 2D array 383
Fig. 14.3 Memory map of above example 385
Fig. 14.4 Memory map of array of pointer to string 386
Fig. 15.1 Memory map of structure variable 417

Figuresxiv

Fig. 15.2 Array of structure 423
Fig. 15.3 Initialized array of structure s 423
Fig. 15.4 Sharing of memory location by the members of a union 437
Fig. 17.1 << operation 516
Fig. 17.2 >> operation 517
Fig. 19.1 Different type of linked list 548
Fig. 19.2 Representation of a singly linked list in memory 550
Fig. 19.3 Inserting a node at the beginning of a list 554
Fig. 19.4 Inserting a node at the end of a list 556
Fig. 19.5 Inserting a node after 2nd node 557
Fig. 19.6 Inserting a node before 3rd node 557
Fig. 19.7 Deletion of fi rst node from a list 559
Fig. 19.8 Deletion of last node from a list 560
Fig. 19.9 Deletion of an intermediate node from a list 562
Fig. 19.10 Representation of a polynomial using linked list 568

Tables

Table 2.1 Powers of 2 17
Table 2.2 Binary values of decimal numbers 17
Table 2.3 Similarity of different base 19
Table 2.4 ASCII values 24
Table 3.1 Some DOS commands 35
Table 3.2 Some UNIX commands 37
Table 4.1 Flowchart symbols 42
Table 6.1 C character set 58
Table 6.2 Keywords in C 61
Table 6.3 Basic data types in C 62
Table 6.4 Size and range of data types on 16 bit machine 62
Table 7.1 Arithmetic operators and their role 75
Table 7.2 Shorthand assignment operators and their equivalent statement 77
Table 7.3 Relational operators 79
Table 7.4 Logical operators 80
Table 7.5 Bitwise operators 81
Table 7.6 Conversion rules 83
Table 7.7 The precedence of operators and their associativity 86
Table 8.1 Escape sequences 99
Table 8.2 Conversion specifi ers 100
Table 8.3 Minimum width specifi ers 102
Table 8.4 Flag specifi ers 104
Table 8.5 Conversion specifi er that are used with fl ag specifi ers 104
Table 8.6 Size modifi ers with their conversion specifi er 105
Table 8.7 Examples of size modifi ers 106
Table 16.1 File opening mode 462
Table 16.2 Reference positions 474
Table 17.1 Bitwise operators 507
Table 17.2 Bitwise & operation on individual bits 508
Table 17.3 Illustration of bitwise & operation showing bit pattern 508
Table 17.4 Bitwise | operation on individual bits 511
Table 17.5 Illustration of bitwise | operation showing bit pattern 511

Tablesxvi

Table 17.6 Bitwise ^ operation on individual bits 512
Table 17.7 Illustration of bitwise ^ operation showing bit pattern 513
Table 17.8 Bitwise ~ operation on individual bits 515
Table 17.9 Illustration of left shift operation showing bit pattern 516
Table 17.10 Illustration of right shift operation showing bit pattern 517
Table 18.1 Predefi ned macros 537

Preface

The C programming language is one of the most, academically as well as industrially,
important programming languages in the world. It was unveiled in 1972 and since then,
with gradual enhancements and enrichments, it has successfully established itself as a
powerful language for programming microcontrollers, operating systems and various
commercially signifi cant software packages. Having unique features like block structure,
stand alone functions and a rich set of keywords with very few restrictions, it is aptly
regarded as the ‘Mother Language’ among programming languages. Hence it is necessary
for every programmer to learn and, often, use C.

About the Book

Today, in any corner of the world, there is a necessity to learn computer programming
for people to survive in any industry. All students do not possess technical background
and therefore fi nd learning C programming diffi cult. Keeping a strong focus on industrial
requirements and the limitations of students from non-technical backgrounds, we have
written this new book on C programming to enable students of non-technical as well as
technical backgrounds learn this marvelous programming language in a completely new
way.

This book is completely different from other popular C programming books available
in the market. It teaches programming to someone who wants to learn how to program in
C for the fi rst time in his/her life with no programming knowledge at all. In other words,
this book on C programming is for absolute beginners of programming but at the same
time it outclasses several other C programming books in the market with its coverage.
Although targeted at complete beginners, this book covers many advanced concepts in C
programming and enables a non-programmer to develop into a competitive C programmer
ready to face job interviews on C.

Structure of the Book

 This book is written presuming that the reader is not strong in English. All the
explanations in each chapter are offered in simplest English to enable any reader
to correctly understand a concept.

Prefacexviii

 Each chapter contains appropriate examples. It ends with a ‘Learn by Quiz –
Questions/Answers’, having multiple choice questions with their respective answers
(with clarifi cations) to ensure understandability.

 In order to make the presentation visually interactive for students, neat labeled
diagrams are provided wherever necessary. For each topic, the explanations are
clear and concise, avoiding verbosity as much as possible.

 Each programming topic is presented with an exercise set consisting of a large
number of solved C programs. Each such solved program is presented with WHYs
and HOWs for each new or next statement of a program.

 This book also includes a rich collection of commonly asked as well as most
probable, new C programming interview solved questions and programs with step-
by-step explanations to enable a student to be successful in an interview.

Students, we have prepared this book for you using a unique teaching approach based
on our academic learnings so that it looks least intimidating and most interesting. We
are sure that after studying this new book on C programming, those of you for whom C
programming has been a source of sorrow will now fi nd in it joy and fun. Though every
attempt has been made to avoid errors, we will be grateful to our readers if they bring
to our notice any oversight they fi nd. If the content design and organization of this book
meets all the expectations and requirements of our students, then only can this book be
considered a worthwhile accomplishment.

Acknowledgments xix

Acknowledgments

I thank my, beloved, students for their constant motivation which made me write this
book despite the availability of many best-selling C programming books in the market. My
students are extremely fond of and fascinated by my ‘teaching from the ground up’ style
and their demand inspired me to author this amazingly simple C book which is aimed at
non-programmers or absolute beginners. My heartiest thanks to them.

I would like to thank T. K. Ghosh, Chief Executive Director of Techno India Group for
providing me the platform to teach so many young minds.

I want to thank M. K. Chakraborty for his constant support and inspiration.

I would also like to thank Subir Hazra, my friend and ex-colleague, who helped us in
preparing the ‘Learn by Quiz - Questions/Answers’ section.

Most important, heartiest thanks to my family specially my wife Sriparna Saha and my
beloved daughter Shreya for their support, encouragement, quite patient and unconditional
love which helped, conclude the book.

Finally, I would like to thank all the reviewers of this book for their critical comments
and suggestions. I convey my gratitude to Rachna Sehgal and the entire editing team at
Cambridge University Press, India for their great work.

Subrata Saha

Thanks to T. K. Ghosh (Chief Executive Director) who found in me suitability to be the
head of three departments of a Techno India Group college. He gave me the opportunity to
prove myself, to be a good teacher to thousand of students.

Thanks to my teacher Professor Ranjan Dasgupta (Head, Computer Science, NITTTR-
Kolkata) who gave me the confi dence to write a book.

Thanks to my ex-colleague Professor Sumana Chakraborty who participated actively in
discussions to freeze the table of contents of this book.

Subhodip Mukherjee

PART APART A

Fundamentals of ComputerFundamentals of Computer

1
Computer-History, Classifi cation

and Basic Anatomy

1.1 GENERATIONS OF COMPUTER

The fi rst electronic digital computer, called the Atanasoff–Berry Computer (ABC), was
built by Dr John V. Atanasoff and Clifford Berry in 1937. An electronic computer called the
Colossus was built in 1943 for the US army. Around the same time, many others were also
trying to develop computers. The fi rst general-purpose digital computer, the Electronic
Numerical Integrator and Computer (ENIAC), was built in 1946.

Computers since 1946 are categorized in fi ve generations:
 ∑ First Generation: Vacuum Tubes
 ∑ Second Generation: Transistors
 ∑ Third Generation: Integrated Circuits
 ∑ Fourth Generation: Microprocessors
 ∑ Fifth Generation: Artifi cial Intelligence

Follows a brief description of each generation:

1.1.1 First Generation (1946–1956) Vacuum Tubes

Vacuum tubes were used to make circuits of fi rst generation computers. For building
memory, magnetic drums were used that were huge in size and weight. First generation
computers were so large in size that they often took an entire room. They were also very
prone to error. They were too expensive to operate and in addition consumed huge
electricity. It is worth mentioning the amount of heat they generated. Despite using liquid
based cooling system, they often got damaged due to heat.

Programs for fi rst generation computers were written in machine language, the lowest-
level programming language understood by computers, to perform operations. They were
designed to solve only one problem at a time. Punched cards and paper tapes were used to
feed input, and output was displayed on printouts.

The ENIAC (Electronic Numerical Integrator and Computer) and UNIVAC (Electronic
Discrete Variable Automatic Computer) computers are examples of fi rst-generation
computing devices.

Basic Computation and Programming with C2

Fig. 1.1 ENIAC

ENIAC was the fi rst electronic general-purpose computer. It was capable of being
reprogrammed to solve various numerical problems. ENIAC was primarily designed to
calculate artillery fi ring tables. It was mainly used in the United States Army’s Ballistic
Research Laboratory. ENIAC was introduced to the public at the University of Pennsylvania
in 1946 as “Giant Brain.” ENIAC’ was funded by the United States Army.

ENIAC had a modular design. It had individual panels to perform separate functions.
Twenty modules among them were accumulators that could add, subtract and hold a ten-
digit decimal number in memory. Numbers were passed between these modules through
several general-purpose buses. The modules were able to send and receive numbers,
compute, save the answer and trigger the next operation without any moving component.
That is why it could achieve high speed. Key to its versatility was the ability for branching.
It could switch to different operations, depending on the sign of a computed result.

ENIAC contained 17,468 vacuum tubes, 1500 relays, 70,000 resistors, 7200 crystal diodes,
10,000 capacitors. It had a whopping 5,000,000 hand-soldered joints. It weighed more than
27 tons, was roughly 8 × 3 × 100 feet in size, occupied 1800 ft2 and consumed 150 kW of
electricity.

After ENIAC, a much improved computer named EDVAC (Electronic Discrete Variable
Automatic Computer) was designed. EDVAC was a stored program computer. EDVAC
was the fi rst computer to work in binary number system. This is a major difference with
ENIAC that used decimal number system.

1.1.2 Second Generation (1956–1963) Transistors

Transistors replaced vacuum tubes in the second generation of computers. The transistor was
far superior to the vacuum tube in terms of size, generated heat and energy consumption.
So computers made using transistors became smaller, faster, cheaper, more energy-effi cient
and more reliable.

Computer-History, Classifi cation and Basic Anatomy 3

Fig. 1.2 Transistor

The transistors also generated a lot of heat that subjected the computer to damage. But
it was much better than the vacuum tubes in terms of size and heat.

Second-generation computers used symbolic or assembly languages instead of binary
machine language that allowed programmers to specify instructions in words instead of
machine code or binary.

Second-generation computers were still using punched cards for input and print-outs
for output. At this time, high-level programming languages, like early versions of COBOL
and FORTRAN were being developed. The fi rst computers that were developed around
this time were used in the atomic energy industry.

1.1.3 Third Generation (1964–1971) Integrated Circuits

Third generation computers were based on integrated circuits (IC circuits). Transistors were
much smaller. They were placed on silicon chips, called semiconductors. This invention
dramatically increased the speed and effi ciency of computers.

In these computers, users interacted through keyboards and monitors and interfaced
with an operating system. Many different applications were possible to run at one time. A
central program usually resided in memory to monitor others. Computers for the fi rst time
became accessible to a mass audience because they became cheaper and smaller.

1.1.4 Fourth Generation (1971–Present) Microprocessors

Brain of the fourth generation of computers is microprocessors. Thousands of integrated
circuits were built on a single silicon chip. Computers of the size of an entire room in fi rst
generation could now fi t in palm. The Intel 4004 chip, developed in 1971, contained all the
components of the computer like the central processing unit, memory and input/output
controls on a single chip.

In 1981 IBM introduced its fi rst computer for the home user, and in 1984 Apple introduced
the Macintosh. Microprocessors also moved out of the realm of desktop computers and into
many areas of life as more and more everyday products began to use microprocessors.

As these small computers became more powerful, they could now be linked together to
form networks, which eventually led to the development of the Internet. Fourth generation

Basic Computation and Programming with C4

computers were also equipped with the mouse and other handheld devices. Graphical
user interface (GUI) was also designed for these computers.

1.1.5 Fifth generation (Present and Beyond) Artifi cial Intelligence

Fifth generation computing devices are based on artifi cial intelligence and are still being
developed, while some applications, like voice and handwriting recognisers, are in use
today. Fifth-generation computing aims to develop devices that will be responsive to
natural language input and will also be able to learn and self-organize.

1.1.6 Evolution of Intel Processors

As Intel processors or compatible processors are most popular for desktop systems, it is
worth mentioning the various microprocessors introduced by Intel. The fi rst processor
available to public was 8085 having 40 pin, 2 MHz clock frequency, 6500 transistors,
8 bit data bus and 16 bit address bus. But fi rst personal computer made by IBM with Intel
microprocessor was based on 8086 having 1 MB addressable memory and 30000 transistors.
Then came 80286 followed by 386SX, 386DX, 486 SX and 486 DX.

The 486 processors contained up to 1.4 million transistors, reached 100 MHz frequency
and can address up to 4 Gigabyte of memory (32 bit address bus so 232 = 4 GB). After 486,
came the decade of Pentium, Pentium with MMX (multimedia extended) and Pentium
II processors. Then the Pentium III processor touched the 1 GHz clock frequency mark.
From mid of year 2000 the market leader was various versions of Pentium IV for steady
six years, achieved clock frequency up to 3.8 GHz and packed up to whopping 180 million
transistors in it. Presently core-i3, core-i5 and core-i7 are ruling the market though Intel
dual core processors are also available. (In this span, Intel marketed few other processors
but they did not get good response.)

1.2 CLASSIFICATION OF COMPUTERS

Computers can be classifi ed in many ways depending on various features and criteria.
Many of them will be mentioned in this section. Though readers of this are being introduced
to computer and do not have an in-depth knowledge of computer architecture, some
classifi cations based on various architectural difference are also being listed. This will build
interest of the readers in the subjects such as ‘MICROPROCESSOR’, ‘ARCHITECTURE’,
‘COMPUTER ORGANIZATION’, ‘PARALLEL PROCESSING’, ‘ASSEMBLY LANGUAGE
PROGRAMMING’, and ‘PIPELINING’.

Note A computer's architecture is its abstract model and is the programmer's
view in terms of instructions, addressing modes and registers. A computer's
organization expresses the realization of the architecture. Architecture
describes what the computer does and organization describes how it does it.

Here in this topic, following types of classifi cations will be discussed:
 i. Based on computation power.
 ii. Based on number of operands.
 iii. Scalar VS Vector processor.

Computer-History, Classifi cation and Basic Anatomy 5

 iv. Flynn’s taxonomy
 v. von Neumann vs. Harvard Architecture
 vi. Big-endian vs. Little-endian

(i) Based on Size, Computing Power and Price

Based on their size, computing power and price the computers are broadly classifi ed into
four categories:
 1. Microcomputers
 2. Minicomputers
 3. Mainframe computers
 4. Supercomputer.

As the list descends, things will become large, expensive, complex and fast. Now follows
a small introduction to all of them:

(1) Microcomputers are the most common kind of computers used by people today,
whether in a workplace, at school or on the desk at home. These are microprocessor based
systems. Microcomputers are small, low-cost and single-user digital computer. They
consist of CPU, input unit, output unit, storage unit and the software. Microcomputers are
stand-alone machines but they can be connected together to create a network of computers
that can serve more than one user. Microcomputers include desktop computers, notebook
computers or laptop, tablet computer, handheld computer, smart phones, etc. The most
popular microprocessors in world are made by Intel and Apple for their Pentium based
PCs and Apple Macintosh.

Here the evolution of Intel microprocessors will be worth mentioning. Intel fi rst
introduced the 8085 microprocessor having 8 bit data bus and 16 bit address bus but
no personal computer was made based on it. The journey started with 8086 when IBM
made IBM-AT based on it. Gradually came 80286, 386, 486 SX and 486 DX. Next processor
was named Pentium with clock frequency 60 MHz to 300 MHz and introduced in the
period 1993–1997. It had a 32 bit data bus and 32 bit address bus. The speed and internal
cache memory size increased with time. Pentium II, Pentium III and Pentium IV were
the successors. Then came Pentium DUAL CORE, Core2-DUO, and Quad-core processors
having frequency in GHz level. Now the latest processors from Intel’s stable are core-I3,
core-I5 and core-I7.

(2) Minicomputer is a class of multi-user computers that lies in the middle range of
the computing spectrum, in between the top end single-user systems (microcomputers
or personal computers) and low end mainframe computers. They have high processing
speed and high storage capacity than the microcomputers. Minicomputers can support
up to 200 users simultaneously. The users can access the minicomputer through their PCs
or terminal. They are used for various processor hungry applications in industries and
research centers.

(3) Mainframe computers are multi-user, multi-programming and high performance
computers. They operate at a very high speed, have huge storage capacity and can handle
the workload of many users. The user accesses the mainframe computer via a terminal that
may be a dumb terminal, an intelligent terminal or a PC. The terminals and PCs utilize
the processing power and the storage facility of the mainframe computer. Mainframe

Basic Computation and Programming with C6

computers are used primarily by corporate and governmental organizations for critical
applications, bulk data processing such as census, industry and consumer statistics,
enterprise resource planning and transaction processing.

(4) Supercomputers are the fastest and the most expensive machines. They have
high processing speed compared to other computers. The speed of a supercomputer is
generally measured in FLOPS (Floating point Operations Per Second). Some of the faster
supercomputers can perform trillions of calculations per second. Supercomputers are built
by interconnecting thousands of processors that can work in parallel. Supercomputers are
used for highly calculation-intensive tasks, such as, weather forecasting, climate research,
molecular research, biological research, nuclear research and aircraft design. Some examples
of supercomputers are IBM Roadrunner, IBM Blue gene. The supercomputer assembled in
India by C-DAC (Center for Development of Advanced Computing) is PARAM. PARAM
Padma is the latest machine in this series. The peak computing power of PARAM Padma
is One Tera FLOP.

(ii) Based on Number of Operands

The instruction-set of a computer is designed fi rst, and then accordingly the architecture
is designed. Just like a KEY is designed fi rst then corresponding LOCK is assembled. A
computer instruction should contain one operation code and zero or more operands on
which the operation will be performed or where the result will be stored. Depending on
maximum number of operands allowed in an instruction, computers can be classifi ed:
 1. Zero address machines (stack machine)
 2. One address machine (accumulator machine)
 3. Two address machine (Intel processors are of this type)
 4. Three address machine

(iii) Scalar Processor vs Vector Processor

Each instruction executed by a scalar processor generally manipulates one or two data
items at a time. On the contrary, instructions of a vector processor operate simultaneously
on many data items.

(iv) By Flynn’s Taxonomy

Flynn’s taxonomy is a classifi cation of computer architectures, proposed by Michael
J. Flynn in 1966. There are four categories defi ned by Flynn. His classifi cation is based
upon the number of concurrent instruction (or control) and data streams available in the
architecture:

1. Single Instruction, Single Data stream (SISD) A sequential computer which
exploits no parallelism in either the instruction or data streams. Single control unit (CU)
fetches single Instruction Stream (IS) from memory. The CU then generates appropriate
control signals to direct single processing element to operate on single Data Stream.

2. Single Instruction, Multiple Data streams (SIMD) A computer which exploits
multiple data streams against a single instruction stream to perform operations which may
be naturally parallelized. For example, an array processor or GPU.

3. Multiple Instruction, Single Data stream (MISD) Multiple instructions operate on
a single data stream. Uncommon architecture which is generally used for fault tolerance.

Computer-History, Classifi cation and Basic Anatomy 7

4. Multiple Instruction, Multiple Data streams (MIMD) Multiple autonomous
processors simultaneously executing different instructions on different data. Distributed
systems are generally recognized to be MIMD architectures; either exploiting a single
shared memory space or a distributed memory space.

(v) von Neumann vs. Harvard Architecture

While talking about computers, there should be a topic on John von Neumann. This
Hungary-born American mathematician gave the concept of stored-program architecture
fi rst but unfortunately in his life span no fully functional computer was made. His ideas
will be discussed later on this chapter.

von Neumann architecture Harvard architecture

1. Same memory for data & program 1. Separate data and code memory

2. Instructions are executed one by one. Execution
requires at least two clock cycles. One for fetch
and others for execution and pipelining is not
possible.

2. Pipelining is possible.

(vi) Big-endian vs Little-endian

This is based on “How a large binary number is stored in 8 bit (byte) wide memory”
(remember – each memory address can store 1 byte of data). Suppose the following 32 bit
number have to be stored:

11111111 00000000 10101010 11110000

In case of big-endian, the most signifi cant byte is stored in the smallest address. Here’s
how it would look:

Address Data value

400 11111111

401 00000000

402 10101010

403 11110000

In case of little-endian, the least signifi cant byte is stored in the smallest address. Here’s
how it would look:

Address Data value

400 11110000

401 10101010

402 00000000

403 11111111

It can be easily understood by a little thought that “performing arithmetic operations
are easier in little-endian computers where as comparing strings chronologically is easier
in big-endian computers”.

Basic Computation and Programming with C8

1.3 BASIC ANATOMY OF A COMPUTER

A digital computer is an electronic device that receives data, performs arithmetic and
logical operations and produces results according to a predetermined program. It receives
data from input devices and gives results to output devices. The central processing unit,
also known as processor processes the data. Memory (primary and secondary) is used to
store data and instructions. Follows, block diagram of a digital computer identifying the
key components and their interconnection.

Fig. 1.3 Components of a computer

The Central Processing Unit (CPU) is like the brain of the computer. It is responsible for
executing instructions. It controls the sequence of execution of instructions. It comprises
a Control Unit (CU), an Arithmetic & Logic Unit (ALU) and huge number of registers.
The CU controls the execution of instructions. First it decodes the instruction and then
generates micro-operations in a particular order with the help of control memory. The
ALU is responsible for performing arithmetic and logic operations.

The interconnections are referred as BUS. Buses are nothing but bunch of wires used to
carry digital signals. There are three kinds of bus:
 1. Address bus
 2. Data bus
 3. Control bus

Address bus carries address of memory from where to read/to where to write data.
Size of address bus of a processor defi nes the amount of memory addressable by it.
For example a processor with 16 bit address bus can access 216 = 64 KB memory (26 = 64
and 210 = 1024 = 1 K) and a processor with 32 bit address bus can access 232=4 GB memory
(22 = 4 and 230 = 1024 × 1024 × 1024 = 1024 × 1024 × 1 K = 1024 × 1 Mega = 1 Giga.). Address
bus is unidirectional, i.e., it carries signal from CPU to other components (only CPU is
intelligent enough to generate address).

Data bus is bidirectional. It carries data read from/to be written to a device. Its size and
width of registers signify the size of data that can be crunched by the processor in one go.

Control bus carries control signals that activate/deactivate various circuits.

Computer-History, Classifi cation and Basic Anatomy 9

Block diagram of the common bus architecture follows:

Fig. 1.4 Common bus architecture

1.4 VON NEUMANN ARCHITECTURE

While studying computer architecture, the name of Von Neumann comes fi rst. Though
he could not see any working model based on his proposal during his life span, design of
all modern computers is based on the stored program model proposed by him. In 1945,
the mathematician and physicist John von Neumann, along with others, had described
computer architecture in the First Draft Report on the EDVAC. The Von Neumann
architecture, which is also known as the Von Neumann model and Princeton architecture,
is based on that. In this report a digital computer has been proposed that will contain the
following parts:
 ∑ A processing unit containing an arithmetic logic unit and processor registers.
 ∑ A control unit containing an instruction register and program counter.
 ∑ Memory to store both data and instructions.
 ∑ External mass storage.
 ∑ Input and output mechanisms.

Stored-program computers were much advanced as compared to the program-controlled
computers of the 1940s, like the Colossus and the ENIAC. These were programmed by
switches and patches, which led to route data and could control the signals between the
various functional units.

Some key points to remember about this architecture:
 ∑ A program should totally reside in the main memory prior to execution.*

 ∑ Data and code will reside in the same memory and will be indistinguishable.†

*As the programs became larger and larger, it was not possible to put the total program in the
relatively smaller main memory. So virtual memory was introduced in operating systems. It is a
technique that shows the free part of secondary storage as main memory. It keeps the total program
in the secondary storage in blocks and fetches the required blocks to primary when necessary.
†Here Von Neumann design differs from HAVARD ARCHITECTURE that uses separate code and
data memory on separate bus.

Basic Computation and Programming with C10

 ∑ Instructions will be fetched from memory and executed one at a time in a linear
fashion.‡ $$

1.5 MEMORY CLASSIFICATION AND HIERARCHY

Broadly classifi ed, a computer system has two types of memory – Primary and
Secondary.

RAM (Random Access Memory), ROM (Read Only Memory) and Cache memory (one
kind of very fast random access memory) falls in the primary category where as Magnetic
tape, CD-ROM, DVD, Hard disk, pen drive (fl ash memory) falls in the secondary mass
storage category.

Computer system uses memory hierarchy to optimize hardware cost. For example, in
a system where 4 megabyte of cache memory is being used, the size of RAM can be 2 GB
or 4 GB. If a system is build with total 2 GB cache instead, the system cost will go beyond
imagination but ‘speed boost’ will be only 10% of the system mentioned earlier.

If memory is classifi ed in terms of access strategy then there are three categories:
 1. Sequential access.
 2. Random access.
 3. Direct access.

In sequential access memory, access time is directly proportionate to address. Magnetic
tapes falls in this category.

In random access memory, access time is constant, i.e., to access content at 1st location
or at millionth location, same time will be required.

All sorts of circular and rotating memories like hard disk, CD, DVD fall in direct access
category where access time can be expressed as a function T = Ax + By where A, B are
constants and x, y are variables. These sorts of memory are divided in tracks and sectors.
Time required by the read/write head to reach a track is known as seek time. Time required
by a sector to reach under read/write head is known as latency time.

1.6 INPUT AND OUTPUT DEVICES

In this section various input and output devices commonly used in computer systems will
be discussed.

1.6.1 Input Devices

1.6.1.1 Keyboard

Text information is entered in the computer by typing on the computer keyboard. Most
keyboards, for example – the 101-key US traditional keyboard or the 104-key Windows
keyboard, have alphabetic and numeric characters, punctuation marks and function keys.
Keyboards are generally connected to the computer by a PS/2 connector or USB port.

‡ To speed up execution, multiple instructions are fetched in a queue in a pipelined computer.

Computer-History, Classifi cation and Basic Anatomy 11

Fig. 1.5 Keyboard

Fig. 1.6 USB and PS/2 ports

1.6.1.2 Mouse

Mouse is a pointing device. The cursor on the screen is moved by moving the mouse.
A mouse have mainly two buttons – left and right. Newer mouses may contain other
buttons and a roller for scrolling. In older models, a ball at the bottom of the mouse rolls
on the surface as the mouse moves, and internal rollers sense the movement of the ball and
transmit the information to the computer via the mouse cable. The newer optical mouse
does not use a rolling ball, instead it uses a light and a small optical sensor to detect the
motion of the mouse by tracking a tiny image of the desk surface. Even cordless mouse are
very much affordable now a days, but they need regular battery change that reduces their
popularity. Mouse sends two information to the computer – one is the X and Y coordinate
of the pointer merged in a single number, another is the code of key pressed. Any activity
on the mouse generates an interrupt that ultimately communicates an event such as mouse
move, left click, double click, right click, and drag to the operating system. What incidents
will happen with the mouse events, are completely programmable.

Basic Computation and Programming with C12

1.6.1.3 Scanners

A scanner is a device that converts a printed page or graphic to an image fi le that can be
stored in a computer by digitizing it. It produces an image made of tiny pixels of different
brightness and color values which are represented numerically and sent to the computer.

Fig. 1.7 Scanner

Pages containg text are also scanned and saved as images. To convert such images
containing text to editable text fi les OCR (Optical Character Recognition) software is used.

Scanners are available in various sizes with various scan resolution capabilities. A4 size
scanners (largest page size it can scan is A4-8.27≤ × 11.69≤) are most popular and affordable.
Scanners with automatic document feeder are also available.

1.6.1.4 Microphone

A microphone can be attached to a computer through a sound card input or circuitry built
into the motherboard to record sound. The sound is digitized and stored in the computer.

Fig. 1.8 Microphone

Our ear can hear analog sound of frequency range 20 to 20 MHz. But for storing sound in
computer, the analog signal is converted to digital signal. Again when the sound is played

Computer-History, Classifi cation and Basic Anatomy 13

back through speakers, the stored digital signal is converted to analog. (The process of
digitization is beyond the scope of this book.)

1.6.2 Output Devices

1.6.2.1 Monitor

Monitor is the maximum used output device of a personal computers. At the begining, CRT-
(Cathode Ray Tube) display in monochrome with low resolution was available. Gradually
high resolution colour monitors were introduced. Presently bulky CRT monitors have been
mostly replaced by LCD or LED monitors as LCD or LED displays consume less electricity,
occupy less space and are capable of displaying more clear and fl icker free images.

1.6.2.2 Printer

When some output on paper is needed, a printer is a must. The three most common types
of printers are Dot matrix, Inkjet and Laser. Dot matrix printers provide poorest quality
output at lowest cost. It is mainly used for text based outputs on pre-printed stationary
such as cash-memo and ticket.

 Laser Dot matrix Inkjet

Fig. 1.9 Printers

Laser printers produce best quality printouts using powder formed inks fi lled in toner
cartiges. Cost of laser printers are high but printing cost is less than that of a deskjet printer
that uses liquid inks with magnetic particles fi lled in ink cartiges.

EXERCISES

 1. Write short notes on Von Neumann architecture.

 2. Differentiate between Von Neumann and Havard architecture.

 3. With a neat block diagram, describe various components on a computer.

 4. Classify memories in terms of access strategy.

 5. “All ROMs are RAM but all RAMs are not ROMs” – Justify.

 6. For a medicine or grocery store what kind of printer you will suggest and why?

 7. Write down various ports availble in a computer system.

 8. What is a BUS? How many types of BUS is available?

 9. Write full form of ENIAC.

 10. What do you mean by Virtual Memory. What is the largest possible size of it? Why it is called
virtual?

2
Introduction to Number System

and Logic Gates

PLAYING WITH NUMBERS

2.1 INTRODUCTION

‘Computer’ as the name suggests is meant for computation. So knowledge of computer is
not possible without the knowledge of various number systems, number formats and their
advantages and drawbacks. That is why mathematicians always played a major role in the
advancement of computer science.

From pre-historic age when human beings were formed by evolution, numbers are
being used to count, label and measure. Initially tally marks were used for counting.
Bones, cave pictures from pre-historic age have been discovered with marks cut into them
that are similar to tally marks. It is assumed that these tally marks were used for counting
elapsed time, such as numbers of days or to keep count of animals. Tally mark was not a
positional number system. From tally mark evolved the Roman number system. All these
systems have limitations of representing large numbers. Historically it is said that number
system with place value was fi rst used in Mesopotamia, from 3400 BC onwards. In India,
Aryans used the word SHUNYA in Sanskrit to represent void. This is used as ZERO in
mathematics. Greeks were confused about using zero. But eventually this place holder
developed today’s mostly used positional number system where the value of the number
depends on the position of the digits. For example 349= 3*102 + 4*101 + 9*100 as 9 is at
position 0, 4 is at position 1 and 3 is at position 2. And obviously the number 1000000 is
larger than the number 999999. In fact the value of a number in a positional number system
depends on two things, one position and the other is base of that number system.

2.2 BASE OF A NUMBER SYSTEM

Number of digits present in a number system is called base of that number system.

In general we use decimal number system, whose base is 10.

Introduction to Number System and Logic Gates 15

EXAMPLE

In Decimal base is 10 and the digits are: 0,1,2,3,4,5,6,7,8,9.

In Binary base is 2 and the digits are: 0,1.

In Octal base is 8 and the digits are: 0,1,2,3,4,5,6,7.

In Hexadecimal base is 16 and the digits are: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

So in a number system where base is 3, the digits will be 0, 1 and 2.Similarly
in a number system where base is 13, the digits will be 0,1,2,3,4,5,6,7,8,9,A,B,C. Remember
that the number 187 is not an octal number as the digit 8 cannot be presented in an octal
number.

2.3 REASON BEHIND USING BINARY NUMBER SYSTEM

In computer we use binary number system and its variations (whatever may be the
interpretation of a value of number, the digits present in a number used in computer
are only 0 and 1). This is because today’s computers are digital computers made with
semiconductor switches that build the logic of the computer. The switches can be in either
ON or OFF state (i.e., 0 or 1 state). In other simple word we have to deal with two voltages
HIGH and LOW* to work in binary but if we have to design a computer that works in
decimal internally we have to deal with 10 different, distinct voltages in the circuit and that
is really complicated.

Now question may arise that ‘if binary is used in computer then why learn Hex or octal?’
the answer is simple: huge binary numbers can be represented in short Hex numbers that
are easy to remember and understand by human being. For example the Hex number
‘3C4F’ is equivalent to binary ‘0011110001001111’.

Again ‘why Hex, why not decimal?’ – “Converting a number from Binary to Hex or
Binary to Octal and vice versa is easier and requires less computation than converting
binary to Decimal”.

Tip Always remember that all positional number systems sing the same tune. You
have to catch the perfect tune to play with them. If the pattern is perfectly recognized
then one can handle huge numbers without using pen and paper. For example:
There are 100 numbers from 00 to 99. If we divide them in two equal groups the
numbers at the center are 49 and 50.

Now if asked the same question for the set of numbers starting from 00000000 to
99999999 everybody will answer 49999999 and 50000000 without any calculation
and just by pattern matching.

*though other voltages than HIGH and LOW exists in digital circuits, better not to bother about them
until you start studying VLSI design.

A-10
B-11
C-12
D-13
E-14
F-15

Basic Computation and Programming with C16

2.4 CONVERSION AMONG DIFFERENT BASES

Rule

 (i) Divide the number to be converted by target base
 (ii) Store the remainder and divide the quotient by target base.
 (iii) Continue step II until quotient is 0.
 (iv) Write all stored remainders in reverse order to get equivalent result.

As example let us convert the decimal number 37 to different bases:

System Octal Hex Binary

8 37

8 4 ----5

0 ----4

16 37

16 2 ----5

0 ----2

2 37

2 18 ----1

2 9 ----0

2 4 ----1

2 2 ----0

2 1 ----0

0 ----1

Result 45 25 100101

Rule Sum up digit multiplied by base to the power position. i.e., Âdigit * baseposition

As example let us return back to 37:

System Octal Hex Binary

4*81+5*80 2*161+5*160 1*25+1*22+1*20

Result 37 37 37

Tip You do not have to follow the rule in order to convert from binary to decimal.
Many easy shortcut methods are available. Before stating them, please mug up
following tables thoroughly so that you can recite the values if asked randomly.

Introduction to Number System and Logic Gates 17

 Table 2.1 Powers of 2 Table 2.2 Binary values of decimal numbers

0 0000

1 0001

21 2 2 0010

22 4 3 0011

23 8 4 0100

24 16 5 0101

25 32 6 0110

26 64 7 0111

27 128 8 1000

28 256 9 1001

29 512 10 1010

210 1024 11 1011

12 1100

13 1101

14 1110

15 1111

Remember that “if we multiply a number by base a ‘0’ is added at the end” 35*10=350,
35*102=3500, 35*105=3500000 and so on.

Similarly in binary, notice that

 Binary of 3= 11

 Binary of 6= 110

 Binary of 12= 1100

 Binary of 24= 11000

Similarly in Octal

 Octal of 2 = 2

 Octal of 16 = 20

 Octal of 128 = 200

Now you can use any of the following tricks for conversion
 ∑ Notice that if you remember binary of 13 then you can say binary of 26, 52, 104 and so

on.
 ∑ Let us take a larger example – Decimal equivalent of the binary number 11001110 is 206.

As the number 11001110 = 11000000 + 1110 = 3*26 + 14= 192 + 14 = 206.
 ∑ Adding up power of 2 at the positions where there is 1 in the binary number gives equivalent

decimal easily.
 ∑ 128 = 27 so its binary will be 10000000 (7 zeros) hence binary of 127 will be 1111111 (7

ones) and binary of 129 will be 10000001

Basic Computation and Programming with C18

Just write equivalent binary of the digits of the Hex number side by side using 4 bits for
each Hex digit.

EXAMPLE

3C4FH = 0011110001001111

Just write equivalent binary of the digits of the octal number side by side using 3 bits
for each octal digit.

EXAMPLE

37468 = 011111100110

Group the digits of the binary number in four, taking from right. If required take extra
0 at left. Now write hex equivalent for each group.

EXAMPLE

11110001001111=3C4FH

Introduction to Number System and Logic Gates 19

Group the digits of the binary number in three, taking from right. If required take extra
0 at left. Now write hex equivalent for each group.

EXAMPLE

11111100110=37468

2.5 SIMILARITIES BETWEEN NUMBER SYSTEMS OF

 DIFFERENT BASES

I would like to repeat again the sentence – “all positional number systems sing the same tune”.
From the following table the similarities will be clear.

Table 2.3 Similarity of different bases

Decimal Octal Hex Binary

Highest number
using 3 digits

103−1=999 83−1=777 163−1=FFF 23−1=111

Value of
1000−1=?

999 777 FFF 111

Value of base 10=10 8=10 16=10 2=10

Subtracting 1 30−1=29 30−1=27 30−1=2F 11110−1=11101

Multiply by
power of base

37*103=37000 37*83=37000 37*163=37000 100101*23=100101000

2.6 ADDITION OF TWO NUMBERS

Before stating the addition process, let us know two terms MSB and LSB. The leftmost
digit of a number is called MSB (Most Signifi cant Bit) and the rightmost digit of a number
is called LSB (Least Signifi cant Bit).

Now let us recap the addition process of two number, we are doing since our nursery
classes:
 ∑ We start addition from adding LSB of two numbers.
 ∑ We divide the result by base to obtain quotient and remainder.
 ∑ We write remainder as sum and quotient goes to carry to next digit addition.

Basic Computation and Programming with C20

Pictorially it can be shown as:

Fig. 2.1 Addition process

EXAMPLE

DECIMAL STEP RESULT (in decimal) Quotient Remainder

35
67

1(5+7) 12 1 2

2(3+6+1) 10 1 0

102

In the above example the LSB of 35 is 5 and LSB of 67 is 7. So we fi rst add them and get
12. We then divide 12 by base, i.e., 10 here to get 2 as remainder and 1 as quotient. So 2 is
sum and 1 is carry. In the next step, we add 3, 6 and carry 1 from the previous addition to
get 10. We repeat same process of division to get 0 as sum and 1 as carry. As there are no
more digits left, the carry 1 will be written at the MSB.

Similarly addition of two numbers in different bases follows.

OCTAL(8) STEP RESULT
(in decimal)

Quotient Remainder

35
67

1(5+7) 12 1 4

2(3+6+1) 10 1 2

124

HEX(16) STEP RESULT
(in decimal)

Quotient Remainder

3C
6D

1(12+13) 25 1 9

2(3+6+1) 10 0 A

A9

BINARY(2) STEP RESULT
(in decimal)

Quotient Remainder

11
11

1 2 1 0

2 3 1 1

110

Introduction to Number System and Logic Gates 21

Note that same procedure has been followed for all number systems. Only difference
is that the division was done by corresponding base, e.g., 8 for Octal, 16 for Hexadecimal
and so on.

We can add multiple binary numbers at a time in same process:

BINARY(2) STEP RESULT
(in decimal)

Quotient Remainder

110
101
111
011
101
100

1 4 2 0

2 5 2 1

3 7 3 (11 in binary) 1

11110

2.7 SIGNED BINARY NUMBERS

So far we were talking about unsigned numbers having only magnitude. In this section, we
will see how to represent negative numbers in binary. The main hurdle is that we cannot
store the symbol (−) minus in computers. We have only 0(zero) and 1(one) to use. There
are many possible ways:
 (A) Signed magnitude form: We can use the MSB as sign. For positive numbers we

can use MSB = 0 and use MSB = 1 for negative numbers. Remaining bits used to
store the magnitude. For example, in an 8 bit representation +5 = 00000101 and −5
= 10000101.

 (B) 1’s complement method: To get the 1’s (one’s) complement of a binary number we
just have to invert all the bits in the binary representation of the number (replace 0
by 1 and 1 by 0). The 1’s complement of the number then behaves like the negative
of the original number. If 1’s complement of a number is calculated we get the
original number. This is like −(−5) = +5. Also if we add 1’s complement of 2 with
binary of 5 we get binary of 3 showing that 1’s complement of 2 is behaving like −2.

 (C) 2’s complement method: The two’s complement of an N-digit binary number is
defi ned as the complement with respect to 2N, i.e., the result obtained by subtracting
the number from 2N. Taking the 1’s complement of the number and then adding
1 with the complement will give same result. It can be easily verifi ed that 2’s
complement of a number is the original number as in the case of 1’s complement.
(Please note that any extra bit after MSB in 2’s complement system is simple discarded.)

Though both 1’s complement and 2’s complement system behaves almost same still 2’s
complement is mostly used for the two differences:
 (i) In 1’s complement value of 0 and −0 is different (0000 vs. 1111) but in 2’s complement

both zero and minus zero have same value, which is more realistic.
 (ii) If we add P with −P in 1’s complement we get −0 but in 2’s complement we get 0.

e.g. 5+(−5) Æ 0101 + 1010 = 1111 in 1’s complement but 5+(−5) Æ 0101 + 1011 =
0000 in 2’s complement.

Basic Computation and Programming with C22

While dealing with 2’s complement numbers do not forget the range of numbers that
can be represented using N bits. An N-bit 2’s-complement number system can represent
every integer in the range −(2N − 1) to +(2N − 1 − 1). Please refer to following table for the
ranges.

Number of bits Range in 2’s complement Range in unsigned
representation

3 −4 to 3 0 to 7

4 −8 to 7 0 to 15

5 −16 to 15 0 to 31

8 −128 to 127 0 to 255

10 −512 to 511 0 to 1023

N −(2N − 1) to (2N − 1 − 1) 0 to (2N− 1)

Range of numbers using N bits

Some examples of addition and subtraction using 2’s complement system are given for
ease of understanding.

i)

23−8=
23+(−8) Æ

23 =
+8 =

00010111
00001000 Æ

23 =
−8 =

00010111
+11111000

=00001111 Æ +15

ii)

8−23= 8+(-
23) Æ

8 =
+23 =

00001000
00010111 Æ

8 =
−23 =

00001000
+11101001

=11110001 Æ −15

iii)

−8+23=
Æ

8 =
+23 =

00001000
00010111

Æ −8 =
+23 =

11111000
+00010111

=00001111 Æ +15

iv)

8+23=
Æ

8 =
+23 =

00001000
00010111

Æ 8 =
+23 =

00001000
+00010111

=00011111 Æ +31

2.7.1 BCD (Binary Coded Decimal) Number

Binary-coded decimal (BCD) is a binary encoding of decimal numbers where each decimal
digit is represented by a fi xed number of binary bits (i.e., 0/1), usually four or eight.

Introduction to Number System and Logic Gates 23

For example BCD of the number 243 is 0010 0100 0011 where four bits are used for each
digit.

Although BCD was used in many early decimal computers, now-a-days it is rarely
used.

If 4 digits are used for every digit then it is called packed BCD.

If 8 digits are used for every digit then it is called unpacked BCD.

2.7.2 Advantage of BCD (Over Binary Number System)

 ∑ It gives more accurate representation and rounding of decimal quantities.
 ∑ Can be easily converted into human-readable representations.

2.7.3 Drawbacks of BCD

 ∑ Increase in the complexity of the circuits needed to implement basic arithmetic.
 ∑ More storage space required.

2.7.4 Addition of Two BCD Numbers

 (i) First add two 4-bit BCD digits using normal binary addition.
 (ii) If the 4-bit sum is less or equal to 9, the sum is in proper BCD and no correction is

required but If the sum is greater than 9 or if a carry is generated from the sum then
add 6 (0110) with the sum to get proper BCD result. If in this adjustment process a
carry is generated then it will be added as carry to the next decimal place.

2.7.5 Excess-3 or XS-3 Code

The Excess-3 code of a decimal number is calculated by adding 3 (three) to each decimal
digit of the given number and then replacing each digit of the newly generated decimal
number by its four bit binary equivalent.

It is a biased BCD code. It was used on few older computers as well as in cash registers
and old hand held portable electronic calculators of earlier days.

Number 0 1 2 3 4

BCD 0000 0001 0010 0011 0100

Excess-3 0011 0100 0101 0110 0111

Number 9 8 7 6 5

BCD 1001 1000 0111 0110 0101

Excess-3 1100 1011 1010 1001 1000

It is an example of unweighted code (as each position within the binary equivalent of
the number is not assigned a fi xed value).

Please note from the above table that excess-3 is self complimenting code or refl ective
code, as 1’s compliment of any number (0–9) is available within these 10 numbers. For
example 1’s complement of 9 (1100) is 0011 which is excess-3 code of 0. Same phenomenon
can be watched for 1–8, 2–7, 3–4 and 4–5.

Basic Computation and Programming with C24

The primary advantage of XS-3 coding over non-biased coding is that a decimal number
can be nines’ complemented (for subtraction) as easily as a binary number can be ones’
complemented; just invert all bits.

2.8 ASCII (AMERICAN STANDARD CODE FOR

 INFORMATION INTERCHANGE)

The American Standard Code for Information Interchange (ASCII) is a character-encoding
scheme originally based on the English alphabet that encodes 128 specifi ed characters into
the 7-bit binary integers. They can be classifi ed as:
 ∑ The numbers 0–9.
 ∑ The letters a–z.
 ∑ The letters A–Z.
 ∑ Some basic punctuation symbols.
 ∑ Some control codes that originated with teletype machines.
 ∑ A blank space.

ASCII includes defi nitions for 128 characters. Among them there are 33 non-printing
control characters that affect how text and space are processed and 95 printable characters,
including the space.

Part of the ASCII table is given below:

Table 2.4 ASCII values

Character
Value

Dec Hex Binary Oct
Null character 0 00 000 0000 000

Bell 7 07 000 0111 007

Backspace 8 08 000 1000 010

Horizontal tab 9 09 000 1001 011

Line feed 10 0A 000 1010 012

Carriage return 13 0D 000 1101 015

Escape 27 1B 001 1011 033

Space 32 20 0100000 040

* 42 2A 0101010 052

+ 43 2B 0101011 053

− 45 2D 0101101 055

/ 47 2F 0101111 057

0 48 30 0110000 060

9 57 39 0111001 071

A 65 41 1000001 101

Z 90 5A 1011010 132

a 97 61 1100001 141

z 122 7A 1111010 172

Introduction to Number System and Logic Gates 25

2.9 LOGIC GATES AND BOOLEAN ALGEBRA

All digital circuits can be classifi ed into two broad categories:
 1. Combinational Circuits
 2. Sequential Circuits.

2.9.1 Combinational Circuits (Combinatorial Logic Circuits)

The digital circuits where the output(s) is/are totally dependent on the present input(s) are
called combinational circuits.

When input(s) is/are changed, the information about the previous input(s) is lost. So
we say that combinational logic circuits have no memory. This is in contrast to sequential
logic, in which the output depends not only on the present input but also on the previous
output.

In this chapter, we will concentrate on combinational circuits.

2.9.2 Sequential Circuits

The digital circuits in which the output depends both on the present input and the history
of the input (previous output) are called sequential circuits. In other words, sequential
logic has memory while combinational logic does not.

Sequential circuit can be described by following block diagram:

Fig. 2.2 Sequential circuit

2.10 GATES (LOGIC GATES)

Logic gates are combinational circuits having one or more input but only one output.

A logic gate performs a logical operation on one or more logic inputs and produces a
single logic output. The logic performed is Boolean logic. Logic gates are implemented
electronically using diodes or transistors.

Basic Computation and Programming with C26

2.11 BASIC GATES

AND gate OR gate NOT gate – These three are basic gates and we can create any Boolean
logic circuit using combination of these three gates.

Truth Table: A truth table is a table that describes the behavior of a logic gate. It lists
the value of the output for every possible combination of the inputs.

Boolean algebra is different from ordinary algebra in one major place. Boolean
constants and variables can have only two possible values, 0 or 1.
Boolean 0 and 1 are not actual numbers, on the contrary they represent the state of
a voltage variable, or what is called its logic level.
Common representation of 0 and 1 is:
 ∑ Logic 0: False, Off, Low, No, Open Switch
 ∑ Logic 1: True, On, High, Yes, Close Switch

2.11.1 AND Gate

AND gate is a logic gates having two or more inputs whose output is 1 if all of its inputs
are 1 otherwise the output is 0.

AND gate is represented by the following block diagram:

If the inputs are a, b then the output is written as a.b or simply ab (so ‘.’ is the symbol
of AND in Boolean expression).

Truth table of a two-input and three-input AND gate follows

A B A.B

0 0 0

0 1 0

1 0 0

1 1 1

A B C A.B.C

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

Introduction to Number System and Logic Gates 27

2.11.2 OR Gate

OR gate is a logic gates having two or more inputs whose output is 0 if all of its inputs are
0 otherwise the output is 1.

OR gate is represented by the following block diagram:

If the inputs are a, b then the output is written as a+b (so ‘+’ is the symbol of OR in
Boolean expression).

Truth table of a two input and three input OR gate follows:

A B A+B

0 0 0

0 1 1

1 0 1

1 1 1

A B C A+B+C

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

2.11.3 NOT Gate

NOT gate can have only one input. The output is just reverse of the input. i.e., output is 1
if input is 0 & vice-versa.

NOT gate is represented by the following block diagram (also in composite circuit a
bubble implies NOT).

The output is denoted by a bar over the input. If the input is A then output will be A, if
the input is A then the output will be A (double bar cancels).

If the input is A+B+C then the output will be A+B+C not A + B + C, they are different.
NOT gate is also known as Astable Multivibrator.

NAND gate Can be considered as NOT of AND. For inputs A, B the output will be AB.
Block diagram follows:

Basic Computation and Programming with C28

REMEMBER THE FOLLOWING IDENTITIES:

A+A=A
A.A=A
A+1=1
A.1=A
A+0=A
A.0=0
A+A=1
A. A=0

NOR gate Can be considered as NOT of OR. For inputs A, B the output will be A+B.
Block diagram follows:

2.12 UNIVERSAL GATES

NAND and NOR are known as Universal Gates as by combining multiple NAND or NOR
gates we can construct any Boolean logic without using any other gate.

Construction of three basic gates using NAND gate follows that suffi ciently proves that
NAND is a Universal Gate. (NOR is a Universal Gate-proof left to reader).

Fig. 2.3 NAND as universal gate

Introduction to Number System and Logic Gates 29

De Morgan’s Laws:

 1. A+B = A ◊ B (Proof by truth table is left for the reader)

 2. A + B = A◊B

Distributive Law

 A+B.C = (A+B).(A+C)

Proof

 (A+B).(A+C) = A◊A + A◊B + A.C + B◊C

 = A + A◊B + A◊C + B◊C

 = A◊(1+B+C) + B◊C

 = A◊1 + B◊C

 = A + B◊C

XOR (Exclusive OR gate) It may have two or more inputs. The output is 1 if odd
number of input is 1 otherwise 0.

Denoted by A ≈ B and the block diagram follows:

Truth table of a two input and three input XOR gate follows:

A B A≈B

0 0 0

0 1 1

1 0 1

1 1 0

A B C A≈B≈C

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

The XOR gate with inputs A and B implements the logical expression AB + A B.

XOR gate constructed using only NAND gates

Basic Computation and Programming with C30

EXERCISES

 1. Convert the Hexadecimal number 3F1D.3AB to Octal.

 2. What is the advantage of 2’s complement number over 1’s complement.

 3. Add the following numbers using 2’s complement:

 (a) 5, 3

 (b) 5, 3

 (c) 5, 3

 (d) 16, 3

 4. Which gates are called UNIVERSAL gates and why?

 5. Draw circuit for AB(A + B)(A+B)

 6. Add the binary numbers: 100, 100, 110,011,111, 101.

 7. Convert decimal 379 to Octal and Hex.

 8. How to get output in POS form from Karnaugh map?

 9. Write De Morgan’s law.

 10. Write distributive law.

3
Introduction to System Software

and Operating Systems

3.1 INTRODUCTION TO ASSEMBLER

Initially when computer was invented, people used to communicate with them by on and
off switches denoting primitive instructions. Then machine language was introduced,
where programmer have to mention instructions as well as operands and addresses in
binary format, i.e., using 0 and 1. Both writing and understanding a machine language
program is diffi cult. The functionality of this program is diffi cult to understand, and a
person going through it may not be sure of what can be achieved through the program.
Assembly language program is one in which symbols such as letters, digits and special
characters, are used for operation part, address part and other parts of instruction code.
Both machine language and assembly language are referred as low level languages as the
coding a problem is at the individual instruction level, i.e., for each line of a program
written in these languages one and only one machine instruction is executed. Assembly
language is considered as a second generation language. Computers based on different
processors have got their own assembly languages which depend on the architecture of
the processor. An assembler translates a program written in assembly language to machine
language code.

Output of an assembler is an object fi le with extension ‘.obj’. It is the role of linker
(another system-software) to make executable .exe fi le from it. Another system-software
called loader, present in operating systems, loads the executable on memory when the
program is required to run. The process is illustrated in Fig. 3.1. Process for producing
executable fi le.

Typically, assemblers make two passes over the assembly fi le, i.e., reads the assembly
program twice. (One pass assemblers with more complicated design are also available.)

In the fi rst pass, it reads each line and records labels in a symbol table and in second
pass, use info in symbol table to produce actual machine code for each line.

Basic Computation and Programming with C32

Fig. 3.1 Process for producing executable file

3.2 INTRODUCTION TO COMPILER

Carefully read the above two sentences. The sentence S1 has grammatical mistake as
before ‘elephant’ we have to use ‘An’ not ‘A’. This type of error is called syntax error. The
second sentence S2 is grammatically correct but still sounds wrong as an elephant is not at
all a small animal. This sort of error is known as semantic error or logical error.

A compiler checks a fi le containing a program or part of a program (written in high
level language) only for syntax errors. However it is the programmers’ responsibility to
keep the program free from semantic errors. Semantic errors appearing in a program are
removed by the programmers by means of debugging and various testing methodologies
that are not our matter of interest here.

We have to remember that compiler always compiles fi le wise, i.e., if a program is
spanned over 10 separate fi les, we have to compile 10 fi les separately and we will get 10
object fi les. Error in one fi le will not affect successful compilation of another fi le. After
successful compilation of all the fi les, system software called linker creates a single
executable fi le of the program from 10 object fi les. So it is the role of a linker to create
executable fi le from object fi le.

Before questioning that ‘how a compiler detects grammatical errors?’ we in a nutshell
will learn ‘what is a grammar?’

Introduction to System Software and Operating Systems 33

3.2.1 Formal Defi nition of Grammar

A grammar G consists of the following components:
 ∑ A fi nite set N of non terminal symbols, none of which appear in strings formed

from G.
 ∑ A fi nite set (Sigma) of terminal symbols that is disjoint from N.
 ∑ A fi nite set P of production rules.
 ∑ A distinguished symbol S as start symbol (S∈N).

The defi nition can be explained by an example of English grammar where
 ∑ ∑(Sigma) is the set of all English words.
 ∑ N is the set of non terminals that correspond to the structural components in an

English sentence, such as <SENTENCE>, <SUBJECT>, <PREDICATE>, <NOUN>,
<VERB>, <ARTICLE>, and so on.

 ∑ The start symbol would be <SENTENCE>.
 ∑ And we have the following production rules:
 � <SENTENCE> Æ <SUBJECT><PREDICATE>
 � <SUBJECT> Æ <NOUN>
 � <PREDICATE> Æ <VERB><NOUN>
 � <NOUN> Æ Ram
 � <NOUN> Æ Sam
 � <NOUN> Æ Jadu
 � <NOUN> Æ fl ower
 � <VERB> Æ loves

Now consider following three strings to check whether they are sentence or not
 (i) Ram loves fl ower.
 (ii) Sam loves fl ower.
 (iii) Jadu fl ower loves.

Using the grammar defi ned above we can reach start symbol (goal symbol) <SENTENCE>
from the fi rst string in the following way:

Fig. 3.2 Parse tree of a sentence

Similarly sentence can be formed from the second string but from the third string start
symbol <SENTENCE> cannot be reached from the above defi ned grammar. (Readers
having Bengali, Hindi or other Sanskrit based languages as mother tongue notice that in the
grammar of their mother tongue a VERB usually comes after NOUN in the PREDICATE.)

Basic Computation and Programming with C34

Compiler does the same job as discussed above. It tries to reach the goal symbol of the
high level language it is meant for, from the program written in the fi le it compiles using
the grammar defi ned for the language. If it fails then it reports error. Though detail of a
compiler is out of scope of this book, in the following section we will learn the different
components of a compiler and their role.

3.2.2 Components of a Compiler

A compiler may have some or all of the following components:

(a) Lexical Analyzer or Lex It scans the source code as a stream of characters and breaks
it into bunch of meaningful pieces called tokens. For identifying keywords or variables, it
takes help of a symbol table.

(b) Parser Using the tokens supplied by the lex, parser tries to build a parse tree
(Fig. 3.1) whose root will be the goal symbol of the language. If it succeeds then the program
is free of syntax error and is passed to the next phase.

(c) Intermediate code generation The compiler generates an intermediate code of
the source code for the target machine. The source program is converted to a program
meant for an abstract machine. It is in between the high-level language and the machine
language. The intermediate code is generated in such a way that it makes it easier to be
translated into the target machine code.

(d) Code optimization In this phase, the intermediate code is optimized for faster
execution. Some unnecessary lines are removed and code is sometimes rearranged for
speedup and better memory management.

(e) Code generation The code generator takes the optimized representation of
the intermediate code and maps it to the target machine language. The code generator
translates the intermediate code into re-locatable machine code.

It should be noted that programs written in some high level languages are translated
and executed by another kind of software called INTERPRETERS.

The basic difference between Interpreters and Compilers follows:
 ∑ Compiler takes entire program as input whereas interpreter takes single instruction

as input, i.e., translates the source program line by line.
 ∑ Program needs to be compiled once but in case of interpreter, it converts higher

level program into lower level program for every execution.
 ∑ In case of compiler, errors are displayed after the total program is checked. On the

contrary, the interpreter displays error (if any) for every instruction interpreted.

3.3 INTRODUCTION TO OPERATING SYSTEM

Operating system is a system-software that acts as an interface between the user and the
computer. It is a supervisory program that manages all sorts of hardware resources such
as CPU, memory, disk and I/O devices. It also provides common services to computer
programs. From the time of starting the computer till shutting it down, operating system
resides in memory and can take commands from the user.

Introduction to System Software and Operating Systems 35

The digital computer was in its nascent stage in the 1940s and there were no operating
systems. Machines of the time were in preliminary stage and programs could generally
be entered one bit at a time on rows of machine switches. No programming languages,
including assembly languages, were known at the time. The General Motors Research
Laboratories implemented the fi rst operating systems in early 1950s for their IBM 701.
Various computer specifi c operating systems were developed till 1980 but never been
used by mass audience. After that two operating systems have dominated the personal
computer scene: MS-DOS, developed by Microsoft, for the IBM PC and other machines
using the Intel 8088/8086 CPU and its successors, and UNIX, which is dominant on the
large personal computers using the Motorola 6899 CPU family. Both of them were character
based. User has to give input through keyboard and output was on the monitor displaying
characters only. Then Graphical User Interface based OS such as Windows, GUI based
UNIX and MAC OS came to make the computer acceptable to common people.

In the following section, brief description of DOS, UNIX and Windows are given:

3.3.1 MS-DOS

Microsoft Corporation wrote the version of DOS entirely in 8086 assembly language that
IBM chose for its fi rst line of personal computers. DOS is an acronym for the computer’s
‘Disk Operating System’ program. It is named so as at that time it is the only small operating
system that fi ts in a single fl oppy disk. Some information worth remembering about DOS
follows:
 ∑ It requires three fi les – io.sys, msdos.sys and command.com to boot a system.
 ∑ It accepts commands from user at the command prompt (a command prompt looks

like c:\> with a blinking _ called cursor).
 ∑ It allows only one program to run at a time.
 ∑ It supports two types of commands internal and external. Internal commands are

inbuilt in ‘command.com’ and require no other fi le.
 ∑ It supports tree like hierarchical directory structure with ‘8.3’ fi le name format.

Some useful DOS internal commands and their usage follows:

Table 3.1 Some DOS commands

Command Purpose
MD Make directory

CD Change directory

RD Remove directory

CLS Clears screen

DATE Show/set system date

TIME Show/set system time

COPY Copy one file to another or to console

TYPE Displays content of file on screen

DEL Deletes a file

DIR Shows the content of a directory

PATH Show/set current path

VOL Shows volume label of a disk

Basic Computation and Programming with C36

3.3.2 Microsoft WindowsTM

Presently Microsoft Windows refers to the set of operating systems developed by Microsoft
Corporation. In 1985, Microsoft ships Windows 1.0 a GUI operating system shell that runs
under DOS. Then, rather than typing MS DOS commands, moving a mouse to point and
click way through screens, or ‘windows’ were possible. Drop-down menus, scroll bars,
icons, dialog boxes and many other visual items were introduced in WINDOWS that make
programs easier to learn and use. Switching among several programs without having to
quit and restart each one was possible. Microsoft shipped Windows 1.0 with many utility
programs like MS-DOS fi le manager, Paint – a drawing utility, Notepad to create and
edit text fi les, Calculator, and a calendar, card fi le, and clock to help manage day-to-day
activities. There was even a game – Reversi. Since its launch, Windows dominated the
personal computer market. Windows 2.0, 2.1 3.0 and 3.11 were released and used till 1994.
All of them were 16 bit and was a program that runs under MS-DOS as a shell. In 1995,
Windows 95 was introduced, that was 32 bit version and was independent OS not a DOS
shell. Seven million copies of Windows 95 were sold in the fi rst month.

After Windows 95 there were several versions such as 98, XP, NT, Server 2000 and 2003,
Windows CE, Vista, Windows 7 and 8 then presently Windows 10.

Beside support to old fi le allocation table of disk ‘FAT’ used in DOS, WINDOWS comes
with two other fi le allocation tables named FAT32 and NTFS to support larger disks.
NTFS also provides user access control to fi les and directory that increases security to disk
contents.

Now a days, internet has become an integral part of daily life. To browse the content of
a web page from internet, a software called browser is required. WINDOWS comes with a
browser Internet Explorer built-in.

A program runs in a rectangular area called window in the WINDOWS operating
system. Elements that may be present in a window are shown in the Fig 3.3 a sample
window.

Fig. 3.3 A sample window

Introduction to System Software and Operating Systems 37

3.3.3 UNIX

In the year 1970, Ken Thompson, Dennis Ritchie and others developed UNIX which is a
family of multitasking, multiuser operating system. It was designed to be used in the Bell
labs where it was developed. Later American Telephone and Telegraph Company (AT&T)
licensed it for outside parties. In a command-line operating system a text command is
entered and the computer responds according to that command. With a graphical user
interface (GUI) operating system, user interacts with the computer through a graphical
interface with pictures and buttons by using the mouse and keyboard. Presently with
UNIX both command-line (more control and fl exibility) and GUI (easier) are available.

Follows some useful UNIX commands: (Please note that UNIX commands are case
sensitive but DOS commands are not.)

Table 3.2 Some UNIX commands

Command Purpose

cat Display File Contents

cd Changes Directory

chgrp change file group

Chown Change owner

compress Compress files

Cp Copy source file into destination

File Determine file type

find Find files

ftp File transfer program

ftp File transfer program

info Displays command information pages online

kill Send a signal to a process

logout log off UNIX

ls Display information about file type.

man Displays manual pages online

mkdir Create a new directory

mv Move (Rename) an old name to new name

ps Display the status of current processes

pwd Print current working directory

rcp Remote file copy

rm Remove (Delete) filename

rmdir Delete an existing directory provided it is empty

sort Sort file data

uncompress Uncompress files

uniq Report repeated lines in a file

Basic Computation and Programming with C38

Command Purpose

uniq Report repeated lines in a file

vi Opens vi text editor

wc Count words, lines, and characters

who List logged in users

Introduction to UNIX will be incomplete without knowledge of UNIX shell. To access
the services of a kernel, users of an operating system have to use an interface. The software
that provides that interface is called a shell. The UNIX shell, similarly, is a shell or command
line interpreter that provides user interface for the UNIX or UNIX-like operating systems.
Operation of the computer is directed by the user by entering commands as text, which is
then executed by a command line interpreter. UNIX shells are of four types:
 ∑ Bourne shell (sh): Developed by Stephen Bourne at Bell Labs in 1974; Default

prompt is $.
 ∑ C shell (csh): Developed by Bill Joy at the University of California at Berkeley in

1978; Default prompt is %.
 ∑ Korn shell(ksh): Developed by David Korn at Bell Labs in 1983;
 ∑ Bourne – again shell (bash): Default shell on Linux operating system; Runs on

UNIX-like operating system and also available for Microsoft Windows systems.

In this section, a brief idea about the well known vi editor is given. Unix offers an editor
named vi, which is a screen oriented text editor written by Bill Joy in the year 1976. vi
editor is most suitable way to create a fi le because some operations like line change, caps
lock, underline can be performed through this which could not be performed by the cat
command. vi has three types of mode, Input mode (for entering text), Command mode
(every key pressed is interpreted as a command to run on text) and the Last line mode or
ex mode (commands can be entered in the last line of the screen to act on text).

Idea of the UNIX fi le system is provided in the following section. UNIX supports two
basic objects, namely fi le and processes. A fi le is basically a store house of information
that is represented as a sequence of bytes in the system. UNIX fi lenames can be up to 255
characters. A process is such a fi le that is being executed by the system, so it is a popular
concept that UNIX treats everything as a fi le. File s in UNIX can be categorized into three
sectors:
 ∑ Ordinary fi le or Regular fi le (Ex: text fi le)
 ∑ Directory fi le (Ex: any directory)
 ∑ Device fi le (Ex: Printer, Floppy drive, CD-ROMs)

Every fi le is associated with a table, which contain all information about the fi le except
its name and content, this table is known as inode (index node) and is accessed by the
inode number. A fi le has several attributes that are modifi able by some well-defi ned rules.
“ls – l” command is used to display the fi le attributes.

UNIX fi les are integrated in a single directory structure. The fi le system is arranged in
a structure like inverted tree (or hierarchical), i.e., Top of the tree is the root and is written
as ‘/’(forward slash). root(/) is actually a directory fi le and it has all the sub-directories of
the system under it.

Introduction to System Software and Operating Systems 39

Some features that are worth remembering about UNIX fi le system follows:
 1. root directory(/) has no parent, every other has parent.
 2. Directory contain the name of the fi le and the corresponding inode no.
 3. root directory has an inode no. 2. inode no. 0 and 1 are not used.
 4. The size of the directory is small because it contains only the name of the fi le and

the inode no. It does not contain the data of the fi le.
 5. Basically directory is the mount point consisting of fi les and fi le related

information.
 6. Mount means attached, so swap space has no mount point because it is a raw

partition that is used by any fi le system for swapping.
 7. User can make logical partition into a directory and mount it.
 8. If user unmounts any directory means the pointer, i.e., the mount point is hidden.

In UNIX, a fi le is treated as a normal fi le if it resides in dormant state on the disk but
when it is executed it is treated as a process. A process has several attributes among them
two are important:
 ∑ PID: process id
 ∑ PPID: parent process id

UNIX operating system required three system calls for creation of process:
 ∑ fork(): Creates a new process
 ∑ exec(): For running the process
 ∑ Wait(): Executes by parent process to wait for the child process to complete.

In the process hierarchy, init is the fi rst process whose PID is 1, sched is the parent of init
whose PID is 0. UNIX is a popular operating system which is capable of handling activities
from multiple users at the same time.

EXERCISES

 1. After executing the command ‘cd subhodip’ at DOS prompt ‘c:\book>’ how the command
prompt will look like?

 2. What do you mean by 8.3 naming convention of files?

 3. What you can do with the control box of a window?

 4. What is the difference between one pass and two pass assembler?

 5. What is full form of GUI?

 6. What is a shell in UNIX?

 7. Which commands are used to display contents of a directory in DOS and UNIX?

 8. List different file types available in UNIX.

 9. Where UNIX was developed?

4

4.1 FLOW CHART

A fl owchart is a type of diagram that represents an algorithm or process. The steps
involved in the process are shown as boxes of various kinds. Arrows that connects the
boxes depicts the correct order in which the steps should be performed. This diagrammatic
representation illustrates a solution to a given problem. As a diagram is equivalent to 1000
words, fl owcharts helps people working in a project to understand the problem very
easily.

Flowcharts are broadly classifi ed into two categories:
 1. Program Flowchart
 2. System Flowchart.

Program fl owcharts are symbolic or graphical representation of computer programs
in terms of fl owcharting symbols. They contain the steps of solving a problem unit for a
specifi c result; System fl owcharts, on the other hand, contain solution of many problem
units together that are closely related to each other and interact with each other to achieve
a goal.

In this book, concentration will be on program fl owcharts as this book is mainly on
a programming language. A program fl owchart is an extremely useful tool in program
development activity in the following respects:
 1. Any error, omission or commission can be easily detected from a program fl owchart

than it can be from a program.
 2. A program fl owchart can be followed easily and quickly.
 3. It can be referred if program modifi cations are needed in future.

Follows a program fl owchart to ‘fi nd maximum among three numbers’ to give idea
about the look of a program fl owchart.

Algorithms and Flow Chart

Algorithms and Flow Chart 41

Fig 4.1 Flowchart of finding maximum of three numbers

Before drawing fl owchart being familiar with the standard symbols of fl owchart is
required. Follows the list of symbols used in program fl owchart along with their brief
description:

The following rules should be followed while drawing program fl owcharts:
 ∑ Only the standard symbols should be used in program fl owcharts.
 ∑ Program logic should depict the fl ow from top to bottom and from left to right.
 ∑ Each symbol used in a program fl owchart should contain only one entry point and

one exit point, with the exception of the decision symbol.
 ∑ The operations shown within a symbol of a program fl owchart should be expressed

independent of any particular programming language.
 ∑ All decision branches should be well labeled.

Now follows some preliminary fl owchart:

(Please note that the corresponding ‘C’ code is given along with each fl owchart. First
go through the fl owcharts and ignore the codes. Revisit the ‘C’ codes when you complete
PART-B Chapter-4 of this book.)

Basic Computation and Programming with C42

Table 4.1 Flowchart symbols

Symbol Name Usage

Terminal
Used to show the beginning and end of a set
of computer-related process.

Input/output Used to show any input/output operation.

Computer
processing

Used to show any processing performed by a
computer system.

Comment
Used to write any explanatory statement
required to clarify something.

Flow line Used to connect the symbols.

Document
input/output

Used when input comes from a document
and output goes to a document.

Decision
Used to show any point in the process where
a decision must be made to determine
further action.

On-page
connector

Used to connect parts of a flowchart
continued on the same page.

Off-page
connector

Used to connect parts of a flowchart
continued to separate pages.

Algorithms and Flow Chart 43

PROGRAM 1 Flowchart to show how sum of two numbers can be
obtained.

PROGRAM 2 Flowchart to calculate area of triangle based on base and
altitude.

Area of triangle = ½ × Base × Altitude

Accordingly the flow chart follows:

