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Preface to the Series

Perspectives in Mathematical Logic
(Edited by the "Ω-group for Mathematical Logic" of the
Heidelberger Akademie der Wissenschaften)

On Perspectives. Mathematical logic arouse from a concern with the nature and
the limits of rational or mathematical thought, and from a desire to systematise
the modes of its expression. The pioneering investigations were diverse and
largely autonomous. As time passed, and more particularly in the last two
decades, interconnections between different lines of research and links with
other branches of mathematics proliferated. The subject is now both rich and
varied. It is the aim of the series to provide, as it were, maps of guides to this
complex terrain. We shall not aim at encyclopaedic coverage: nor do we wish
to prescribe, like Euclid, a definitive version of the elements of the subject. We
are not committed to any particular philosophical programme. Nevertheless we
have tried by critical discussion to ensure that each book represents a coherent
line of thought; and that, by developing certain themes, it will be of greater
interest than a mere assemblage of results and techniques.

The books in the series differ in level: some are introductory, some highly
specialised. They also differ in scope: some offer a wide view of an area, others
present a single line of thought. Each book is, at its own level, reasonably
self-contained. Although no book depends on another as prerequisite, we have
encouraged authors to fit their books with other planned volumes, sometimes
deliberately seeking coverage of the same material from different points of view.
We have tried to attain a reasonable degree of uniformity of notation and
arrangement. However, the books in the series are written by individual authors,
not by the group. Plans for books are discussed and argued about at length.
Later, encouragement is given and revisions suggested. But it is the authors
who do the work; if, as we hope, the series proves of values, the credit will be
theirs.

History of the Ω-Group. During 1968 the idea of an integrated series of mono-
graphs on mathematical logic was first mooted. Various discussions led to a
meeting at Oberwolfach in the spring of 1969. Here the founding members of
the group (R.O. Gandy, A. Levy, G.H. Mύller, G. Sacks, D.S. Scott) discussed
the project in earnest and decided to go ahead with it. Professor F.K. Schmidt
and Professor Hans Hermes gave us encouragement and support. Later Hans



VIII Preface to the Series

Hermes joined the group. To begin with all was fluid. How ambitious should we
be? Should we write the books ourselves? How long would it take? Plans for au-
thorless books were promoted, savaged and scrapped. Gradually there emerged
a form and a method. At the end of an infinite discussion we found our name,
and that of the series. We established our centre in Heidelberg. We agreed to
meet twice a year together with authors, consultants and assistants, generally
in Oberwolfach. We soon found the value of collaboration: on the one hand the
permanence of the founding group gave coherence to the over all plans; on the
other hand the stimulus of new contributors kept the project alive and flexible.
Above all, we found how intensive discussion could modify the authors' ideas
and our own. Often the battle ended with a detailed plan for a better book which
the author was keen to write and which would indeed contribute a perspective.

Oberwolfach, September 1975

Acknowledgements. In starting our enterprise we essentially were relying on
the personal confidence and understanding of Professor Martin Earner of the
Mathematisches Forschungsinstitut Oberwolfach, Dr. Klaus Peters of Springer-
Verlag and Dipl.-Ing. Penschuck of the Stiftung Volkswagenwerk. Through the
Stiftung Volkswagenwerk we received a generous grant (1970-1973) as an initial
help which made our existence as a working group possible.

Since 1974 the Heidelberger Akademie der Wissenschaften (Mathematisch-
Naturwissenschaftliche Klasse) has incorporated our enterprise into its general
scientific program. The initiative for this step was taken by the late Professor
F.K. Schmidt, and the former President of the Academy, Professor W. Doerr.

Through all the years, the Academy has supported our research project,
especially our meetings and the continuous work on the Logic Bibliography,
in an outstandingly generous way. We could always rely on their readiness to
provide help wherever it was needed.

Assistance in many various respects was provided by Drs. U. Feigner and K.
Gloede (till 1975) and Drs. D. Schmidt and H. Zeitler (till 1979). Last but not
least, our indefatigable secretary Elfriede Ihrig was and is essential in running
our enterprise.

We thank all those concerned.

Heidelberg, September 1982 R.O. Gandy H. Hermes
A. Levy G.H. Miller
G. Sacks D.S. Scott



Authors' Preface

After having finished this book on the metamathematics of first order arith-
metic, we consider the following aspects of it important: first, we pay much
attention to subsystems (fragments) of the usual axiomatic system of first
order arithmetic (called Peano arithmetic), including weak subsystems, i.e.
so-called bounded arithmetic and related theories. Second, before discussing
proper metamathematical questions (such as incompleteness) we pay consid-
erable attention to positive results, i.e. we try to develop naturally important
parts of mathematics (notably, some parts of set theory, logic and combi-
natorics) in suitable fragments. Third, we investigate two notions of relative
strength of theories: interpret ability and partial conservativity. Fourth, we of-
fer a systematic presentation of relations of bounded arithmetic to problems
of computational complexity.

The need for a monograph on metamathematics of first order arithmetic
has been felt for a long time; at present, besides our book, at least two books
on this topic are to be published, one written by ΓL Kaye and one written by
C. Smoryήski. We have been in contacts with both authors and are happy
that the overlaps are reasonably small so that the books will complement
each other.

This book consists of a section of preliminaries and of three parts: A -
Positive results on fragments, B - Incompleteness, C - Bounded arithmetic.
Preliminaries and parts A, B were written by P. H., part C by P. P. We have
tried to keep all parts completely compatible.

The reader is assumed to be familiar with fundamentals of mathematical
logic, including the completeness theorem and Herbrand's theorem; we survey
the things assumed to be known in the Preliminaries, in order to fix notation
and terminology.

Acknowledgements. Our first thanks go to the members of the Ω-group for
the possibility of publishing the book in the series Perspectives in mathe-
matical logic and especially to Professor Gert H. Mύller, who invited P. H.
to write a monograph with the present title, agreed with his wish to write
the book jointly with P. P. and continuously offered every possible help. We
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are happy to recognize that we have been deeply influenced by Professor Jeff
Paris. Soon after the famous independence results of Paris, Kirby and Har-
rington, Jeff Paris repetedly visited Prague and gave talks about the research
of his Manchester group. Since then, he has come to Prague many times and
we always learn much from him. On various occasions we met other math-
ematicians working in this field (Adamowicz, Buss, Clote, Dimitracopoulos,
Feferman, Kaye, Kossak, Kotlarski, Lindstrδm, Montagna, Ressayre, Simp-
son, Smoryήski, Solovay, Takeuti, Wilkie, Woods and others) and many of
them visited Czechoslovakia. Discussions with them and preprints of their
papers have been an invaluable source of information for us. We have prof-
ited extremely much from our colleagues J. Krajίcek and V. Svejdar and
other members of our Prague seminar. The Mathematical Institute of the
Czechoslovak Academy of Sciences has been a good working place. Several
people have read parts of the manuscript and suggested important improve-
ments. Our thanks especially to Peter Clote, William Eldridge, Richard Kaye,
Juraj Hromkovic and Jifί Sgall for their help. Mrs. K. Trojanova and Mrs. D.
Berkova helped us considerably with typing; and D. Harmanec provided valu-
able technical help with the preparation of the bibliography on a computer.
Last but not least, our families have got used to sacrifice for our scientific
work. They deserve our most cordial thanks.

November 1990 Petr Hάjek
Pavel Pudlάk
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Introduction

People have been interested in natural numbers since forever. The ancient
mathematicians knew and used the principle of descenie infinie, which is a
form of mathematical induction. The principle is as follows: if you want to
show that no number has the property </?, it suffices to show that for each
number n having the property φ there is a smaller number m < n having
the property φ. (If there were a number having φ we could endlessly find
smaller and smaller numbers having <p, which is absurd.) The Greeks used
the principle for a proof of incommensurability of segments. The principle
was rediscovered in modern times by P. Feπnat (1601-1665). The principle
of mathematical induction itself (if 0 has the property φ and for each number
n having φ also n + 1 has φ then all numbers have φ) seems to have been first
used by B. Pascal (1623-1662) in a proof concerning his triangle. A general
formulation appears in a work of J. Bernoulli (1654-1705). (Our source is
[Meschkowski 78-81].)

In 1861 Grassman published his Lehrbuch der ArUhmetik; in our terms,
he defines integers as an ordered integrity domain in which each non-empty
set of positive elements has a least element. In 1884 Prege's book Grundlagen
der Arithmetik was published. We can say that Prege's natural numbers are
classes; each such class consists of all sets of a certain fixed finite cardinality.
(Frege speaks of concepts, not of classes.) The famous Dedekind's work Was
sind und was sollen die Zahlen appears in 1888. Dedekind's natural numbers
are defined as a set N together with an element 1 E N a one-one mapping /
of N into itself such that 1 is not in the range of / and N is the smallest set
containing 1 and closed under /. Dedekind and Frege agreed that arithmetic
is a part of logic, but differed in their opinions on what logic is. They both
used the same main device: a one-one mapping and closedness under that
mapping.

Dedekind was not interested in finding a formal deductive system for natu-
ral numbers; this was the main aim of Peano's investigation of natural num-
bers (Aήthmetices pήncipia nova methoda exposita, 1889). Peano's axiom
system (taken over from Dedekind, who had it from Grassman) is, in our ter-
minology, second order: it deals with numbers and sets of numbers. Nowadays
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it is usual to call the first-order axiomatic arithmetic Peano arithmetic; this
terminology was probably introduced by Tarski (personal communication by
G.H. Mύller). Whitehead and Russell published their Principia mathematica
in 1908; the book also includes a foπnalization of arithmetic.

Hubert formulated his programme as follows: unsere ύblichen Methoden
der Mathematik samt und sonders ah widerspruchsfrei zu erkennen (to show
that our usual methods of mathematics are free from contradictions in their
whole). [Hilbert-Bernays 34, Zur Einleitung]. This should have been shown
by unitary methods forming a proper part of arithmetic [ibid., p. 42], GόdePs
famous incompleteness results [Gδdel 31] showed Hubert's program in its
original formulation to be unrealistic (even if Hubert denies this in his Ein-
leitung); but it has remained an important source of inspiration for proof
theory, see [Kreisel 68]. Related work from the thirties by Tarski (undefin-
ability of truth in arithmetic), Church (undecidability of arithmetic) and
Rosser (elimination of the assumption of α -consistency) is well known. In
modern texts these results are proved using the well-known diagonalization
(or self-reference) lemma, which is already implicit in GδdeΓs proof. This
lemma first appeared explicitly in [Carnap 34], but, surprisingly, it was ne-
glected by many authors for a long time. Feferman's paper [Feferman 60]
is a fundamental paper for modern study of arithmetization of metamathe-
matics. But it is also necessary to mention Volume II of Hubert-Bernays's
monograph [Hilbert-Bernays 39], containing a detailed exposition of arithme-
tization including the arithmetized completeness theorem. Early results fol-
lowing Feferman's Arithmetization were obtained by Montague, Shepherdson
and others. In the sixties, Feferman and Montague worked on a monograph
devoted to the arithmetization of metamathematics, but unfortunately the
book has never been finished. [Smoryήski 81-fifty] is a very readable survey
of the development of self-reference.

Non-standard models of arithmetic were first constructed by Skolem
[Skolem 34]; in present terms, he used the method of definable ultrapower.
In 1952 Ryll-Nardzewski proved that Peano arithmetic PA (first order!) is
not finitely axiomatizable. Specker and McDowell showed in 1959 that each
(countable) model of PA has an elementary end-extension. Rabin [61] showed
that PA is not axiomatizable by any axiom system of bounded quantifier
complexity. Further important results were obtained by Friedman, Gaifman
and Paris in the early seventies. [Smoryήski 82] is a very readable treatise of
development of model theory of arithmetic (up to the early eighties).

A result of fundamental importance was obtained by Paris in 1977: he
found an arithmetical statement with a clear combinatorial meaning which is
true but unprovable in PA; moreover, he was able to show the unprovability
by model-theoretical means, without any use of self-reference. His proof used
a new method, called the method of indicators, developed by Paris and Kirby.
Harrington found an elegant reformulation of Paris's statement; his reformu-
lation is a strengthening of the finite Ramsey's theorem on homogeneous sets
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[Paris-Harrington 77]. This was followed by many papers by various authors,
among them McAloon, Kotlarski, Murawski.

Later Paris and his students (Kirby, Clote, Kaye, Dimitrocopulos and oth-
ers) turned to the study of fragments of PA. We shall rely substantially on
their work. The first four chapters of the book deal mainly with fragments
containing at least induction for Σ\-formulas. At present let us only say that
in such theories we may freely construct recursive functions using primitive
recursion. The fifth chapter deals with bounded arithmetic. Parikh seems to
have been the first to study bounded arithmetic [Parikh]. He suggested inves-
tigating induction for bounded formulas since they are easily decidable (e.g.
in linear space). This was developed significantly by Paris, Wilkie and Paris's
students. The relation to complexity theory has been known from the begin-
ning of the investigation of bounded arithmetic. Buss's dissertation, which
later appeared as a book [Buss 86, Bounded ar.], was a further important
impulse. Buss contributed both in finding new connections with complexity
theory and in applying proof-theoretical methods. There are various later
results; the reader will find such results here.

The aim of our study of the metamathematics of first-order arithmetic is
to give the reader a deeper understanding of the role of the axiom schema of
induction and of the phenomenon of incompleteness. In Part A, we develop
important parts of mathematics and logic in various fragments of first order
arithmetic. The main means are by coding of finite sets, arithmetization of
logical syntax and semantics and through a version of Kδnig's lemma called
the Low basis theorem.

Part B is devoted to incompleteness. Our main question reads: what more
can we say about systems of arithmetic than that they are all incomplete?
There are at least four directions in which the answer may be looked for:

(1) For each formula φ improvable and non-refutable in an arithmetic T
we may ask, how conservative it is over T, i.e. for which formulas φ the
provability of φ in (T + φ) implies the provability of φ in T.

(2) We may further ask if (T + φ) is interpretable in T, i.e. whether the
notions of T may be redefined in T in such a way that for the new notions
all axioms of (T + φ) are provable in T.

(3) Given T we may look for natural sentences true but improvable in T
(for example, various combinatorial principles).

(4) Moreover, we may investigate models of T and look at how they
visualize our syntactic notions and features.

Bounded arithmetic is studied in Part C. Various results of Part A are
strengthened by showing that constructions done in stronger fragments are
possible in some systems of bounded arithmetic and how. For bounded arith-
metic we ask, besides questions (l)-(4), also the following:
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(5) What is the relationship between provability in fragments and complex-
ity of computation? One of the most important goals (presently inaccessible)
is to show independence of some open problems of complexity theory from
some fragments.

Details on the structure of the book are apparent from the table of con-
tents.



Preliminaries

In this preliminary section, we first survey some basic facts from logic (and
recursion theory) that are assumed to be known to the reader. Furthermore,
we shall introduce the language of first order arithmetic and investigate first
order definable sets of natural numbers. Finally, we shall present the begin-
nings of arithmetization of metamathematics by showing (or announcing)
that various syntactic and some semantic logical notions can be understood
as first order definable sets of natural numbers. To show that metamathemat-
ically interesting sets (like the set of all formulas, proofs, etc.) axe (or can be
understood as) first order definable sets of natural numbers is only the first
step; the second step, more important and postponed until Chap. I, consists
in investigating which first-order properties of these sets are provable in var-
ious systems of first order arithmetic. The fact that arithmetic can express
its own syntax and partially its own semantics is of basic importance for the
investigation of its metamathematics.

(a) Some Logic

0.1. Throughout the book, N is the set of all natural numbers (including
zero). We shall denote natural numbers mainly by letters m, n, fc, /, possibly
indexed. The least number principle assures that each non-empty set of nat-
ural numbers has a least element. The induction principle says that if X is
a set such that 0 G X and X contains with each natural number n also its
successor n + 1 , then N C X.

0.2. Our survey of logic will have a double purpose: on the one hand, we
shall investigate axiomatic systems of arithmetic as first-order theories and
therefore first order logic will be our main device, and, on the other hand,
we shall develop our axiomatic systems as meaningful mathematical theories
and shall, among other things, formalize parts of first order logic in these
systems. The fact that reasonable parts of logic can be developed in first-
order arithmetic is of basic importance, as we shall see in the future.
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0.3. A first-order language consists of predicates and function symbols (each
predicate and function symbol has its non-zero natural arity), constants,
and variables. A particular predicate = of equality (binary, i.e. of arity 2)
is assumed to belong to each language. There are infinitely many variables.
Constants and variables are atomic terms; if F is a fc-ary function symbol
and tO7...9tfe are terms then jF(£0,...,tfj.) is a term. An atomic formula
is P(t o , ...,fy.) where P is a fc-ary predicate and t o ,...,£& are terms. If
φ,φ are formulas and a: is a variable, then ^φyψ —* ψ,(yx)φ are formulas.
The symbols -», —> are connectives (negation and implication); other usual
connectives (&, V, =, tic.) are understood as abbreviations. V is the universal
quantifier, the existential quantifier 3 is understood as an abbreviation. The
notion of a free and bound variable in a formula is assumed to be known;
e.g. x is free and y is bound in P(x) —» (Vy)Q(a:,y). Subst(φ,x,t) denotes
the result of substitution of the term t for all free occurences of the variable
x in the formula φ. We often write φ(x) instead of φ and φ(t) instead of
Subst(<p, x,t) if there is no danger of misunderstanding.

0.4. A model for a language L consists of a non-empty domain M together
with the following: for each fc-ary predicate P of L, a fc-ary relation PM Q
M , for each fc-ary function symbol JFΌf L, a fc-ary mapping Fjβ : M —> M,
for each constant c an element CM G M. We use the same symbol M to denote
both the model and its domain if there is no danger of misunderstanding. M
has absolute equality if the equality predicate is interpreted by the identity
relation {(α, a)\a G M}. An evaluation of a term in M is a finite mapping e
whose domain consists of some variables, among them all variables occuring
in t, and whose range is included in M. Similarly for an evaluation of a
formula (dom(e) contains all variables free in φ).

0.5. The value of a term t in a model M given by an evaluation e is defined
as follows:

e] is ίjif if t is a constant,

e(t) if t is a variable,

0.6. The following are Tarski's conditions for satisfaction (M f= φ[e] is to be
read "e satisfies y> in M").

(i) If v? is atomic, say P(tu..., tΛ), then M N p[e] if ( t 1 A f [ e ] 9 . . . , tkM[e\) G
PΛ/ (the tuple of values of t\,..., tk is in the relation that is the meaning
of P).

(ii) M t-«p[e] HE Af P φ[e];

(iii) M l = ( ^ ^ ψ)[e] iff M * y>[e] or M 1= ̂ [e];
(iv) Λf t= (yx)φ[e] iff M N φ[e'] for each e; coinciding with e on all arguments

except x and defined for x.
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0.7. Let Γ be a class of formulas of a language L, assume that Γ contains
with each formula all its subformulas, let M be a model for L. A ternary
relation Satis a satisfaction relation for Γ in M if the following conditions
hold:

(1) Sat consists of some pairs (y>, e), where φ GΓ and e is an evaluation of

(2) Let M 1= φ[e] mean (<£>, e) G Sat; then, for each φ G Γ and each evaluation
e of </?, Tarski's conditions (i)-(iv) hold.

(Clearly, for each Γ and M, the satisfaction relation Sat for Γ in M is
uniquely determined. But this is a rather strong fact; we shall investigate the
provability of existence of various satisfaction classes in various axiomatic
systems.)

0.8. φ is true in M (M f= φ) iff M t= φ[e] for each e. We shall use various
usual conventions in using the symbol t=; for example, if φ has the only free
variable x and a G M, we shall write M 1= </?[α] or M t= y>(α) instead of
M N y>[e] where e is the mapping defined only for x and giving x the value α.

0.9. A set x G Λί is Γ- definable in M (where M i s a model for L and Γ is
a class of L-formulas) if there is a φ G Γ having exactly one free variable,
such that X = {a G M\M f= <^(α)} (This is non-parametrical definability;
we shall deal with parametrical definability later on.) Occasionally, we shall
denote by ψM the set defined by φ, thus: a G ΨM iff M 1= φ(a).

0.10. We shall fix any usual set of (Hilbert-style) logical axioms and deduction
rules, for example the following ones:

Axioms:

hΦ -»-v) ->(<p-*Ψ)
(Vx)φ(x) -* φ{t) (t free for x in φ)

Rules: From φ and φ —+ ψ infer ^ (modus ponens).
Prom v —*• ¥>(#) infer ι/ —> (Va;)y?(a:) if x is not free in v.

0.11. An axiomatic theory in a language L is given by a set T of L-formulas
called special axioms of the theory. Axioms for equality (saying that equality
is reflexive, symmetric, transitive and is a congruence with respect to all
predicates and function symbols) are assumed to belong to special axioms of
each axiomatic theory; they will not be explicitly mentioned. T h φ means
that φ is provable in T, i.e. there is a T-proof of φ (a sequence φo,..., φn of
i-formulas such that φn is φ and for each i < n, either ψ{ is an axiom (logical
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or special) or ψi follows from some preceding members of the sequence using
a rule of inference).

T is consistent if it does not prove any contradiction, i.e. for each φ,T\/ φ
ovTψ-iφ (or both).

M is a model of T if M is a model for the language L and each special
axiom of T is true in M.

0.12 GδdePs Completeness Theorem. T h φ is true in each model of T iff φ
is true in each countable model of T. Thus: T is consistent iff T has a model.

Convention. All models investigated in this book are countable (or finite).

Next we shall deal with Skolemizations. The reader is assumed to know
how to convert each formula in a logically equivalent formula in the prenex
normal form, i.e. a formula consisting of a block of quantifiers followed by an
open (quantifier-free) formula.

0.13. Let T be a theory in a language L, let φ(xι,..., £fc, y) be an L-formula
and let F be a fc-ary function symbol not in L; put l! = Lϋ{F}. The formula

φ{x\,..., X*, y) -> φ(x\,..., xk, F(xu , zjfe))

is the Skolem axiom for φ and y.

0.14 Lemma. If T is a theory in a language L and T results from T by adding
a Skolem axiom, then Γ is a conservative extension of Γ, i.e. each L-formula
provable in T is provable in T.

(A model-theoretic proof is trivial: each (countable) model of T has an
expansion to a model of T. Indeed, let M 1= T, and assume that the domain
of M is N. For each a € JV, let /(α) be the least 6 6 JV such that M N y>(α, 6),
if such a 6 exists; otherwise put f(a) = 0. Clearly, (M, /) h T.)

0.15. Let Φ be the formula

where Qi is V or 3 (= 1, ...,fc). Let x mean zi,...,Zfc; let <— x, mean
£l,...,z, ' let Xi —• mean xt , . . . , xj Define a sequence of terms as follows:

ti = a;,- if Qi is V ,

*, = #(«-*,•_!) if Q< is 3 ,

F * being a new function symbol. Finally, put

= ¥>(*!,•.. ,**,y)
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(Example: sk(yx)(3y)(Vu)(3v)φ(x,y,u,v) is φ(x,F1(x),UyF2(x,F1(x),u)).)
If T is a theory, then sk(T) = {sk(Φ)\Φ e T}.

0.16 Corollary. sk(T) is an open conservative extension of T, i.e. all axioms
of sk(T) are quantifier-free and each ̂ -formula provable in sk(T) is provable
inT.

Proof. For i = 0,..., k let φM result from Φ by deleting the first i quantifiers,
thus φW is (Qt + i£j+i) . . . φ(x, y). First extend T by adding, for i = 0,..., fc,
the following Skolem axioms:

Do this for each axiom Φ of T. The new theory T1 is a conservative extension
ofT. D

Claim 1. T' h sk(T).
Take a Φ £ T and prove by induction φ(*)(<— ί,-,y) in T;. φ(f) is #;

and T'jΦ^*— tt ,y) h φ(l+1)(<— t(t +i),y) either by predicate calculus (if
) or by the above Skolem axiom (if Qi+\ is 3). And obviously

C/αim 2. θfc(T) h T.
Prove by induction sk(Φ) h φί1^^- t, , y) for i = Jfc,..., 0. #(*)(<- tt , y) is

θfc(Φ); and φ(t+1)(<— t/, +1\,y) h φ( )(4— tt ,y) either by generalization (if Q{
is V) or by the logical schema a(t) h (3x)α(a;) (if Qt is 3).

0.17 Lemma. Each theory T has an open conservative extension T in which
each formula is equivalent to an open formula.

Proof. Put To = T, Tn+i is the extension of Tn by Skolem axioms for all
open formulas of Tn, let T^ = IJnTn and T* = T^ - To. Clearly, Too is
a conservative extension of T. We shall show that each formula φ of Tr is
equivalent in T1 to an open formula. For this purpose it suffices to assume φ
to have the form (3y)<p(x,y),y> open. But then the Skolem axiom for φ and
y guarantees that, for an appropriate F, T1 h (3y)y>(x,y) = <p(x, F(x)). Now
it suffices to replace in Too each element of To by its open equivalent; the
resulting theory is T. D

0.18. For any Φ, let the Herbrand variant of Φ, He(Φ) be the existential
closure of -tsk(->Φ): e.g. if Φ is (Vx)(3y)(Vi/)(3v)y?(:r,y,u, v), then He(Φ) is
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0.19 Theorem. Φ is provable (in logic, i.e. in the theory with no special axiom)
iff He(Φ) is provable.

(Immediate from 0.16.)

0.20 Lemma. Let φ(x) be an open L-formula (x is a tuple of variables). The
formula (3x)φ(x) is provable (in logic) iff there are tuples 11,...,tn of i-terms
such that the disjunction

is a propositional tautology. (Each φ(t{) is called an instance of <p(x).
Note that this also has an easy model-theoretic proof using Kδnigs lemma;

Kδnig's lemma will be studied in Chap. I, Sect. 3.

0.21 Herbrand's Theorem. A formula Φ is provable in logic iff there is a
disjunction D of finitely many instances of the quantifier-free matrix of He(Φ)
such that D is a propositional tautology.

This follows from the preceding. An elementary proof (not using model
theory) can be found in Shoenfield's book. In 1.4.15 we shall claim that
Herbrand's theorem is (meaningful and) provable in a theory called IΣ\
(defined in Chap. I, Sect. 1), again with the help of Shoenfield's book, and
in III.3.30 we shall prove in IΣ\ a theorem that has the implication -<= of
Herbrand's theorem as its corollary. (In fact, we shall elaborate Shoenfield's
proof of that implication.) Finally, in Chap. V we prove Herbrand's theorem
in a rather weak system of arithmetic.

We now turn to some basic notions and facts of recursion theory. Recall
that N denotes the set of natural numbers.

0.22. Primitive recursive functions and general recursive functions are usually
defined as follows:

Basic PRF's: Zero(n) = 0, Succ(n) = n + 1 ,

iίniriQ,..., n m ) = n t (where 0 < i < m) .

A function F : Nn -* N results from G : Nm -> N and # i , . . . , ffm : Nn ->
N by composition if

F(h,...,kn) = G(H1(k1,...,kn),...Hm(k1,...,kn))

for each * i , . . . , kn G N. An F : Nn+1 -> N results from G : Nn -* N and
H : Nn+2 —> N by primitive recursion if, for each k = (k\,..., Jfcn), and each
m,

F(0,k) = G ( k ) ,
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The class of all primitive recursive functions (PRF's) is the smallest class
containing basic PRF's and closed under composition and primitive recursion.

An F : Nm+ι —* N results from G : JVm+2 —> TV by regular minimization
if for each m, k = (fci,..., kn),

F{m,k) = (mmq)(G(m,k,q) = 0)

and for each m, k there exists a q such that G(m, k, q) = 0 (so that F is total,
i.e. defined for each m,k).

The class of all general recursive functions is the smallest class contain-
ing the basic PRF's and closed under composition, primitive recursion and
minimization.

0.23 Examples of PRF's: addition Add, multiplication Mult, exponentiation
Exp, factorial Fact, difference Diff. We freely write n + m,n*m,nm,n\,n —
m instead of Add(n,m), Mult(n,m),Exp(n,rn), Fact(n), Diff(n,m), respec-
tively. (A word on difference: n — m for natural numbers means max(n — m, 0)
as meaningful for integers; thus 5 — 3 = 2 and 3 — 5 = 0.)

0.24. A set X C Nn is primitive recursive (PR) [general recursive (GR)] if its
characteristic function

xx(h,...,kn) = < .
^ 0 otherwise .

is PR [GR, respectively].

0.25 Examples. The equality relation as well as the less-than relation are
both primitive recursive; both PR and GR sets are closed under Boolean
operations. The set of all primes is a PR set; the increasing enumeration pn

of primes (po = 2,pi = 3,p2 = 5,p3 = 7,p4 = 11 etc.) is a PRF.

0.26. Let Γ be a class of functions such that each F e Γ, F : Nn -> N
for some n. (We say that Γ is a class of total number theoretic functions.
It is obvious what we mean by saying that Γ is closed under substitution,
primitive recursion, regular minimization, etc. A Γ set (relation) is a set
(relation) whose characteristic function is in Γ. If Γ contains basic PRF's and
is closed under composition and primitive recursion (or: under composition
and regular minimization) then it is closed under definitions of functions
by cases (with a condition in Γ) and under bounded minimization. In more
detail:

Let A be a Γ set, let Fλ,F2 : N -> N be in Γ. Define

F(n) = F1(n) if n G A,

F(n) = F^iji) otherwise .
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Then F e Γ. (Generalize for JF\,..., F^ of n arguments and A\,..., Aj. a
partition of Nn.)

Let R C JV11*1, let R be a Γ-relation and put

, q) = (min m <h) R(m, q) if there is such an m,

F(k,q) = 0 otherwise

Then F € Γ and 5 is a Γ-relation.

0.27. For each class Γ of number-theoretic total functions, let Prim(Γ) (the
class of all functions primitive recursive in Γ) be the minimal class containing
all basic primitive recursive functions, all elements of Γ and closed under
composition and primitive recursion. Similarly for the class Rec(Γ) of all
functions general recursive in Γ.

(b) The Language of Arithmetic, the Standard Model

0.28. Recall that N is the set of natural numbers. N also denotes the set of
natural numbers together with the usual arithmetical structure:

the unary operation Succ of successor (adding one),
the binary operation Add of addition,
the binary operation Mult of multiplication,
the binary relation Ord of linear order,
the minimal element 0.

N is certainly a very natural and very mathematical structure, the ground
stone of mathematics. We introduce a first order language LQ such that N is
a model of this language. LQ has

a unary function symbol 5,
binary function symbols +, *,
the equality predicate =,
a binary predicate <,
a constant 0.

i o is the language of first-order arithmetic and N is its standard model. Note
that each natural number n is named by a variable-free term n of Lo*. we
can just take n to be S(S(... 5(0)...)) (n occurrences of 5). Thus 1 is 5(0),
4 is 5(5(5(5(0)))), etc. For some investigations (in Chap. V) we need more
economical names; this will be made explicit if the situation demands. The
term n is the nth numeral.

Notational Conventions. We shall freely use obvious conventions in writing
terms of LQ: first, we shall use the infix notation (we write x + y rather
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than +(x, y), the same for *), second, the multiplication sign may be omitted
if there is no danger of misunderstanding (xy means x * y), third, we omit
unnecessary parentheses, declaring * to be superordinated to + (x * y +
2 and xy + 2 both stand for (x * y) + 2 etc.).

0.29. Any model isomorphic to N is also called standard. It is easy to show
that there is a model M which is elementarily equivalent to N (i.e. has the
same true Lo-formulas) but is not standard: let Th(N) be the set of all
sentences true in N, let c be a new constant and let T = Th(N) U {n{c \ n G
N}. By compactness, T is consistent and hence has a model M. Show by
induction that if / is an isomorphism of N to M then for each n, f(n) = nj^
and therefore CM has no preimage. Thus M is not isomorphic to N.

0.30 Bounded Quantifiers and Arithmetical Hierarchy. (3x < y)φ is an
abbreviation for (3x)(x <y&εφ) and (Vx < y) is an abbreviation for (Vx)(x <
y —* φ). By convention, x and y must be distinct variables. An io-formula is
bounded if all quantifiers occuring in it are bounded, i.e. occur in a context as
above. Furthermore, (Va: < y)φ is an abbreviation for (Vx < y){x Φ y —> φ)
and similarly for (Vx < y); x φ y is the same as ->(x = y).

We introduce a hierarchy of formulas called the arithmetical hierarchy.
ΣQ-formulas = JTo-formulas = bounded formulas; Σn+\-formulas have the
form (3x)φ where φ is IΓn, i7n+i-formulas have the form {^x)φ where φ is
Σn. Thus a Σn-formula has a block of n alternating quantifiers, the first one
being existential, and this block is followed by a bounded formula. Similarly
for Πn.

0.31. A set X C N is Σn (or Πn) if it is defined by a I7n-formula ((Uπ-
formula) with exactly one free variable. Similarly for a relation R C JV . X
is Δn if it is both Σn and Πn. A function F : Nk —> N is i7n, etc., if it is
i7n as a relation C NM (the graph of F).

In particular, «XΓ is ΔQ iff it is Σ$; Πn relations are complements of Σn

relations and vice versa.

0.32 Pairing. There is a ΣQ pairing function, i.e. a one-one mapping OP of
N2 onto iV, increasing in both arguments.

Indeed, the usual "diagonal" enumeration of ordered pairs of natural num-
bers

0 1 2 3
0 0 1 3 6
1 2 4 7 . . .
2 5 8 . . .
3 9 . . .
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satifies the following:

OP(m, n) = -(m + n + l)(m + n)+m .

Clearly, this function is defined by the formula

we denote the last formula by OP(x,y,z). Furthermore, we expand N by
adding OP to its structure; and expand Lo by a new binary function symbol
(x, y) interpreted as OP. We keep the notation JV, Lo for the (inessentially)
expanded structure and language. Thus we have

N)F(yx,y)OP(x,y,(x,y))

and for each m, n 6 JV we have

OP(ra, n) = (m, n)#

If there is no danger of misunderstanding we omit the subscript N in (m, n ) ^ ;
thus we write also (m,n) for OP(m,n).

0.33 Notation Conventions Continued. We give a detailed notational explana-
tion on the pairing function since this exemplifies a general notational method
common in the metamathematics of arithmetic and also used in the present
book:

(1) The structure N and language Lo is notationally not distinguished from
its inessential expansions if not necessary.

(2) If we have a relation R C Nk and exhibit a concrete definition of ϋ in
N formulated in Lo then the defining formula is denoted by R* (dot
notation). Similarly for functions.

(3) Conversely, if we have a function symbol F and its interpretation F/y
in N we often omit the subscript N and write F(k1...) instead of
F/v(A,...). Similarly for relations.

Now that we have introduced the language of arithmetic we see that m + n
is shorthand for m +jγ n and that the formula x + y = z could be denoted
by Add*; similarly for Succ and Mult.

This convention will be used tacitly through the book; it will be generalized
(and made more precise) in connection with axiomatic theories having N as
one of their models.

Caution. Even if we expand the language we keep the notion of Σn and Πn

formulas unchanged, i.e. assume that they are formulated in Lo in its original
meaning. (A formula in the enriched language may or may not be equivalent
to a Σn or Πn formula; this needs further investigation).
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0.34 Theorem. For each natural n,

(1) Σ"n, 2In, Δn relations are closed under intersection and union;
(2) Δn relations are closed under complementation;
(3) if n > 0 then Σn relations are closed under existential projection and

Πn relations are closed under universal projection.

Proof. We prove (1) & (2) & (3) by induction on n. For n = 0 the assertion
is evident. Assume it for n and consider n + 1. The claim (2) is trivial; let
us prove (3) for i7n+l (the proof for Z7n+l is similar). Let R be denned by
(3z)φ(x, y, z) where φ is i l n , and let Rf be defined by (3y)(3z)φ(x, y, z).
Then B! is defined by

as well as by

(3«)(Vy < u)(Vz < u)(u = (y,z) - V(*,,y,z)) .

If n = 0 then the latter formula is clearly Σ\ if n > 0 then, by the induction
assumption, the former formula is equivalent (in N) to a I7n+i formula. (Once
and for all, let us elaborate details: φ is ϋ n , both u = (t/, z) and its negation
are Σ"o, hence 7Tn, and by (3), the formula in question is also Πn.)

To prove (1) let (3y)φ(x, y) and (3z)ψ(x, z) be Σn+\ and assume y,z to
be distinct variables. Then (3y)φ(x, y) & (3z)φ(x1 z) is logically equivalent
to (3y)(3z)(φ(x,y) Sz φ(x, z)) and similarly for V; thus (1) for n and (3) for
(n + 1) give the result. D

0.35 Theorem. Each ΣQ set is primitive recursive.

Proof. Since successor, addition and multiplication are PRF's, each term
defines a PRF; since equality and ordering are PR relations, each atomic
formula defines a PR relation. Dummy variables may be introduced using
J^j. And PR relations are closed under Boolean operations and bounded
projection. D

We shall now investigate the question whether each PRF, and moreover,
each GRF, is definable in N. The result will be that general recursive func-
tions coincide with Δ\ functions; this appears to show that the choice of our
language is natural. First note the following

0.36 Lemma. If a function F : Nn —* N is Σ\ then it is A\.

Proof. Let F be defined by a Σ\ formula y>(x,y), i.e. F(mi,. . .) = k iff
N f= y>(mi,..., k). Then the complement of F in Nn+1 is defined by (3z)(z φ
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ykφ(x, z)) which is again a Σ\ formula. Note that the lemma does not
generalize to partial functions, i.e. mappings from Nn into JV. D

0.37 Lemma. Basic PRF's are defined by open formulas.

Proof. Take y = 0, y = 5(x), y = x t . •

0.38 Lemma. A\ functions are closed under composition.

Proof. For simplicity, let F(k) = G(H(k)) for each &, and let φ(xy y), ψ(x, y)
define GyH respectively, φ,ψ G Σ\. Then JF is defined by the Σ formula

(3z)(φ(x,z)&φ(z,y)). Π

0.39 Lemma. Σ\ relations are closed under bounded universal projections.

Proof. Let R C JV2 be defined by a formula (3z)φ(x, y, z) where φ is Σo
and let 5 C JV be defined by (Vx < y)(3z)φ(x, y, z). We show that 5 is also
defined by (3tϋ)(Va; < y)(3z < w)(φ(x, y, z), which is Σ\. (Thus the quantifier
(3z) can be bounded.) Clearly the latter formula implies the former. Thus
assume k G 5; we find a q such that JV 1= (Vx < Έ)(3z < q)φ(xjz, z). To this
end we show by induction that for each i = 0,1,. . . k there is a q{ such that

N \= (Wx <ι)(3z <qi)φ(x,kyz) .

Since k G S we know JV f= (Vx < k)(3z)φ(x, fc, 2); thus the case i = 0 is
evident. Assume <# has been found and let r be such that JV N y?(i + 1, fc, r).
Put ft+i = max (g, ,r). D

0.40 Lemma. A\ functions are closed under regular minimization.

Proof. Let F(k) = (minq)(G(k,q) = 0), F : JV -+ JV, G be ΣΊ defined by
<p((x, y, 2r). Then F is 27χ defined by

φ(x, y, 0) & (W < y))(3z φ 0)^(x, y', z) .

This shows that F is ΣΊ, hence, by 0.36, it is Z\χ. D

The problem is to show that Λ\ functions are closed under primitive re-
cursion. If F results from G from G and H by primitive recursions then an ex-
plicit definition of F(k) is easily made using the sequence F(0), F ( l ) , . . . , F(k)
since we can describe F(0) and describe F(i + 1) from F(i). Thus some Δ\
definable coding of finite sequences of natural numbers by natural numbers
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is desirable. In fact, such a coding is a device used very often in arithmetic.
We shall state the existence of such a coding using the following

0.41 Definition. A coding of finite sequences (of natural numbers by natural
numbers) consists of a PR set Seq C N and PRF's

Ih (unary; lh(s) is called the length of s),
memb (binary; memb(s,ϊ) is the ith member of s),
prolong (binary; prolong(s,k) is the result of juxtaposing k with s)

such that the following holds for each s, sf E Seq:

(1) lh(s) < s and, for each i < lh(x), memb(s,i) < s\
(2) there is an empty sequence 0 with Z/ι(0) = 0;
(3) for each k € N if s' = prolong(s.k) then lh(s') = lh(s) + 1, for i <

lh(s) we have memb(s,i) = memb(s\i) and for i = lh(s) we have
memδ(s/,i) = fc.

(4) (monotonicity): if lh(s) < lh(sf) and, for each % < /Λ(θ), memb(s, i) <
memb(sr, i) then s < s'\

(5) the set N — Seq is infinite.

(Note that (4) implies extensionality; if 3, s1 have the same length and the
same corresponding members then they are equal.)

0.42 Theorem. There is a Δ\ coding of finite sequences; i.e. a coding such
that the set Seq and the functions Ih, memb, prolong are A\ (besides being
PR).

The proof of this theorem is put off until Chap. I, Sect. 1; we shall then
show more, namely that the properties of the coding are provable in a suitable
fragment of arithmetic.

For most investigations of Chaps. I-ΓV it is immaterial which concrete
coding of sequences is taken; but for some more subtle results, especially on
weak fragments, special care will be necessary. In fact, we prove in Chap. V
that there is a ΣQ coding of finite sequences.

Notation. The chosen Δ\ definitions of Seq, lh, memb and prolong will be
denoted by Seq*, Z/ι#, memb9 and prolong*] Ih* and prolong9 will also be used
as function symbols, thus we shall write y = lh*{x) instead of lh*(x,y).

We expand Lo by a new function (symbol (—)~ for the y-th member of x
(thus in formulas we write z = (x)y for memb*(x, y, z).

And if there is no danger of misunderstanding, we shall use this bracket
notation also informally, thus (s), will be the same number as memb(s,i).

A similar convention for the function prolong will be made later.

0.43 Corollary. A\ functions are closed under primitive recursion.
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Proof. Assume F(0) = m and F(k + 1) = H(k,F(k)); let H be defined by
κ(x, y, z). Then F is defined by the following formula φ(x, y):

(3z)(Seq\z)) & lhm(z) = x + 1 & ( % = m &

(Vti < /Λ («))(Vv < u)(υ + 1 = ti -> *(*, (*)„, (*),.))

Similarly for the case of F having parameters. •

0.44 Remark. (1) In particular, exponentiation (n = mk) is Δ\ since it is
primitive recursive. We shall show in Chap. V that exponentiation is ΔQ
(which is a rather non-trivial result).

(2) An apparently more general form of primitive recursion defines F(k+l)
from the course of values F(0),..., F(fc) directly. Let, for each F, F(k, m) = s
iff s is the (code of the) sequence of length fc+1 such that for each i < fc, (s)i =
F(i, m). F results from G, H by primitive recursion on the course of values
if JF(0,m) = G(m) and F(k + l,m) = H(k, F(k), m). Clearly, Δι functions
are closed under this kind of primitive recursion.

(3) If the reader has a favourite primitive recursive coding of sequences
he may keep it since now he knows that his coding is Δ\ which is sufficient
for most applications. But he should keep in mind that it might be rather
difficult and cumbersome to show directly that his coding is Δ\ (or even ΣQ).

0.45 Theorem. A function F : Nn —• TV is general recursive iff it is Δ\.

Proof Clearly, each GRF is Δ\ since basic functions are and the class of Δ\
functions is sufficiently closed.

Conversely, if F : N -> N is Δι, thus F(k) = n iff JV t= (3z)φ(ίc,n,z) where
φ is ΣQ then by 0.35, the relation R C TV3 defined by φ is primitive recursive.
Define ίb(fc) to be the least sequence s of length 2 such that R(k, (5)0, («s)i);
then F(k) = (fb(&))()• ^0 results from F by a regular minimization and
taking the 0-th member of a sequence is a primitive recursive function; thus
F is a GRF. D

0.46 Fact. An infinite Δ\ set X C N has an infinite increasing enumeration
(i.e. a F : N —• N mapping N one-one arid increasing onto X).

(The reader can either use the fact that this is true for recursive sets of
natural members or prove that fact directly, which is easy using the available
means.)

0.47 Some Useful PRFs Concerning Sequences.
(1) For each n > 1, there is an n-ary PRF associating with each

fcoj j fcn-l £ N the n-tuple (&o, .., fcn-l)? i e. the sequence s of length n
such that, for each i < n, (θ)j = fct .
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(2) Concatenation: For s,t € Seq.s <~* t denotes the concatenation of s,t,
i.e. the sequence w such that

lh(w) = lh(s)
(w)i = (ι>), for each i < Zft(s),

(*)+i = (Oj for e a c h i < ih(i).

Put θ ^ ί = 0 i f θ ^ 5eςf or t £ Seq .

We show that this function is primitive recursive.

Define C(s,*,0) = s

C(s, t, i + 1) = prolong(C(s, t, i)), (ί)t ) if i < lh(t),

C(s,t,i + 1)) = C(s,*,0 if i>

(3) Concatentation of a sequence of sequences. If w G 5eg and for each
i < lh(w), (w)i 6 Seq then put

Concseq (w) = (tt>)0 ^ (w )i ^ ... ^ (̂ )//»(«;)-i

Concseq is primitive recursive:
Define

D(tί;, i + 1) = D(w, i) <— (w)i if i < lh(w),

D(w, i + 1) = ZJ(tι;, 0 if i > lh(w\

Conseq(w) = -D(υ;, lh(w)) .

The reader may easily verify the following facts for sequences β,ί (3 C <
means that s is an initial segment of ί, i.e. lh(s) < lh(t) and for each i < lh(s),

W . = (*)<);
(1) s ^ t C ^ ί ' implies t C *',
(2) 5 ̂  < C s' ^ t' implies s C sr oτ s* C s,
(3) ί C < implies the existence of a unique u such that t = s ^ tί,
(4) Concseq(s ̂  t) = Concseq(s) ̂  Concseq(t).

0.48 Matiyasevic(-Robinson-Davis-Putnam) Theorem. £Ί relations coincide
with relations defined by existential Lo-formulas, i.e. formulas consisting of
a block of existential quantifiers followed by an open formula.

We may additionally assume that the open formula in question does not
contain the predicate < (thus atomic formulas are only equalities of terms)
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since x < y may be replaced by (3z)(z = x = y) and -i(x <y)hyy<x&xφ
y. Thus each open formula containing < is equivalent to an existential formula
not containing <.

A readable proof may be found in [Davis 73, Hubert's tenth]. Note that
this theorem (often called the MRDP theorem) is very famous; it implies
recursive unsolvability of Hubert's tenth problem.

0.49 Remark. Concerning the choice of the language LQ, observe that what
we have said till now gives some justification to our choice of the language of
arithmetic. In this language, all GRF's are first order definable (which is very
natural for a first order arithmetic); and it can be shown that multiplication
is not first order definable in the reduct of N to (io without *) and similarly,
addition is not first order definable using (Lo without +).

This follows from the fact that the set of all sentences of (L without *)
true in N is Δ\ (i.e. recursive), the same for sentences of (L without +) and
from the undecidability results of Chap. III.

On the other hand, zero, successor and ordering are easily definable in
the reduct of N to (+, *); the reasons for taking them as primitives are only
technical and inessential variants axe possible.

(c) Beginning Arithmetization of Metamathematics

0.50 Introduction. To arithmttizt mttamathtmatics means to make meta-
mathematics a part of arithmetic (or at least to make important parts of
metamathematics parts of arithmetic). It is Gδdel's invention that this is
possible. The first task consists in showing that important logical notions are
definable in N by formulas of first order arithmetic; this is our task in the
present subsection. The second task is then to show that important proper-
ties of these notions are provable in various systems of axiomatic arithmetic.
(This task is postponed.)

To be able to define logical notions by arithmetical formulas we must
identify objects of logic (as symbols, formulas, proofs, etc.) with numbers.
There are two approaches to this task, not substantially different. First,
we may think of logical objects as non-numbers (whatever they may be)
and give some explicit rules on how to associate numbers to them. This
procedure is usually called Gδdel numbering and speaks of Gδdel numbers
of formulas, proofs, etc. Feferman observed that we have another apparently
simpler possibility: just to identify logical objects with some numbers.

Recall our (pseudo)definition of terms: we defined some atoms (atomic
terms) and specified operations (formation rules) under which the set of
terms is closed. There axe two tacit assumptions: first that the set of terms
is the least set containing all atoms and closed under formation rules; and,
second, that each non-atom t uniquely determines the formation rule and
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its components that give t according to the formation rule. Similarly for
formulas; so let us speak generally about expressions. We have a set At φ 0
of atoms, a set Op of operations, each operation e having its arity Ar(e), and
expressions are just elements of the free algebra generated by our atoms using
our operations. More precisely, the free algebra of the type (Op, Ar) generated
by At is a set Expr C At together with a function Appl (of application)
associating with each operation o, and each sequence s of expressions such
that lh(s) = Ar(o), an expression Appl(o, s) G At such that Appl is one-one
(for such pairs (o, s)) and Expr is the smallest set containing At and closed
under Appl. Generalizing slightly, we replace the assumption At C Expr by
the assumption that we have a one-one embedding of At into Expr] it will be
technically convenient to assume that for each atom a G At the one-element
sequence (a) is an atomic expression. Appl is then defined for pairs (o,s) as
above and its range is the set of non-atomic expressions.

Finally, two free algebras given by At, Op, Ar are isomorphic in the obvious
sense. Thus we may speak of the free algebra and its various presentations.
We are interested in Λ\ presentations.

0.51 Fact. Let 0 φ At C N, let (Op, Ar) be a type, At Π Op = 0. Then
there is a presentation (Expr, Appl) of the free algebra of the type (Op, Ar)
generated by At such that both the set Expr and the function Appl are
primitive recursive in (At, Op, Ar).

Proof. For each o G Op and each sequence s of length Ar(o) let Appl(o, s)
be (o) ^ Concseq(s), i.e. the sequence beginning by o and continuing by the
concatenation of all members of s] let Appl(o, s) = 0 otherwise. (Note that
this presentation is often called the Polish notation.) Clearly, Appl is PR in
(Op, Ar). Call w a derivation of z if w is a sequence, its last element is z and
for each i < lh(w) we have the following:

either (w){ is an atomic expression (x) or there are o,s < w such that
(w)i = (o) Concseq(s),o G Op, s is a sequence of length Ar(o) and for each
k < lh(s), there is a j < i such that (s)k = (w)j (i.e. (w)i results from some
preceding elements of w using an operation).

Let

Expr = {z\(3w)(w is a derivation of z)} .

We show that (Expr, Appl) is a presentation of the free algebra in question.
D

Lemma A. If e, ef are expressions and e C e ' then e = e.

Proof. Let e be the smallest expression such that there is an expression ef

which is a proper initial seqment of e. Then e = (o) Concseq(s) and e' =
(o) ^ Concseq(s'),s φ s1. Let i be the least number such that (&){ φ (s')t*;
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show (using 0.47 (l)-(4)) that (s){ C (s')i o r ( A C (s)i and (*).-, ( A are
expressions less than e. D

Lemma B. If e = (o) ^ Concseq((s) and e' = (o) ^ Concseq(s') are
expressions and e = e' then 6 = 3'.

Proo/. Assume not; then Concseq(s) = Concseq(st) and if i is the least such
that (θ), φ (s')i then (s) t C (θ'), or (s'), C (θ), , which contradicts Lemma
A. Thus (Expr, Appl) is a presentation.

It remains to show that Expr is a set PR in (At, Op, Ar). For this it is
sufficient to bound the quantifier (3w) in the definition above, i.e. to find a
function H PR in (At, Op, Ar) such that

Expr = {e|(3iϋ < H(e))(w is a derivation of e)} .

To this end show that if e has a derivation then it has a derivation w' without
repetitions and such that each (w)ι is a (non-initial) segment of e, i.e. for some
s, t, e = s ^ (w)i <~^ t. (Just omit all superfluous members of w and show
that the resulting sequence w1 is a derivation of e).

We know from the preceding that for each s there is at most one expression
e ; and at most one t such that e = s ^ e' ^ tf; thus sequence w1 satisfies
lh(wf) < lh(e). Thus we can choose H(e) = ( e , . . . , e) (e times); clearly, H is
PR. This completes the proof of 0.51. D

0.52 Corollary. If (At, Op, Ar) is PR then (Expr, Appl) is PR; if the former
is Δι then the latter is Δ\.

0.53 Definition. A first order language is A\ if the sets of all predicates,
function symbols, constants and variables are (mutually disjoint) Δ\ sets
and the function Ar defined for each predicate and function symbol (arity) is
a Δ\ function. We additionally assume that no predicate, function symbol,
constant and variable is a sequence and that there are two further non-
sequences denoted -1, —K

0.54 Corollary. If a language L is Δ\ then there are Δ\ sets Term (of all
terms) and Form (of all formulas) such that

(1) Term is the free algebra given by variables and constants as atoms and
function symbols with their arities as operations;

(2) The set of all atomic formulas is Δ\\ the functions associating with each
atomic formula its predicate and its sequence of arguments respectively
are Δ\\ and no atomic formula is a sequence.

(3) Form is the free algebra given by atomic formulas as atoms and by the
following operations: —> (binary), -1 (unary) and for each variable x an
operation (Vx) (unary).
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0.55 Discussion. Here we stop our preliminary development of arithmetiza-
tion. We survey ideas that could follow; we shall not elaborate on them here
since we shall prove stronger results in Chap. I that will imply the facts
sketched below as corollaries. Namely, instead of showing that some things
are Δ\ definable in the standard model, i.e. that some definition have some
properties in N we show that these properties are provable in some fragments
of arithmetic. We shall prove in particular the following:

- the substitution function Subst is Δ\ in N\
- the set of all logical axioms is Δ\ in N. A theory is axiomatized if its

language is Δ\ and its set of special axioms is also Δ\.

It is easy to see that for each axiomatized theory T the set of all proofs in T
(T-proofs) is Δ\ and the set of all T-provable formulas is Σ\. T is decidable if
the set of T-provable formulas is Δ\. (Undecidability of axiomatized systems
of arithmetic is closely related to their incompleteness and will be studied in
Part B of the book.)

Concerning semantics:

- the evaluation function Val of terms in N is Δ\ in JV;
- the satisfaction for ΣQ formulas in N is Δ\ in N.

In Chap. I we shall show that basic facts about arithmetization as sketched
till now are provable in the theory IΣ\ using induction for Σ\ formulas. This
will be basic for our investigations of systems of arithmetic containing 1Σ\,
which are a matter of interest in the main part of the book. But note that
Chap. V is devoted to theories weaker than IΣ\\ in these theories special
care is necessary and special codings of sequences, formulas etc. are used.
Chapters I-IV occasionally use some results from Chap. V; explicit reference
will always be made.





How precious also are thy thoughts unto me,
O God! how great is the sum of them! If I
should count them, they are more in number
than the sand; when I awake, I am still with
thee.

(Psalm 139, 17-18)

Part A

Positive Results on
Fragments of Arithmetic





Chapter I

Arithmetic as Number Theory,

Set Theory and Logic

Introduction

We are going to investigate axiomatic theories formulated in the language LQ
of arithmetic. Such a theory T is sound if the standard model TV is a model of
T, i.e. all axioms of T are true in N. If T is sound then, trivially, each formula
provable in T is true in N. We confine our attention to theories containing
a rather weak finitely axiomatized theory Q (which will be defined in a mo-
ment) and shall study an infinite hierarchy of sound theories whose union
is called Pta.no arithmetic; the theories from the hierarchy are called frag-
ments of Peano arithmetic. In this chapter and the next, we shall elaborate
positive results on these theories, i.e. we shall show that the expressive and
deductive power of these fragments is rather big: our aim will be to show how
some amount of arithmetization of metamathematics yields the possibility of
speaking inside a fragment of arithmetic not only of numbers but also of finite
sets and sequences and of definable infinite sets of numbers. This is the main
result of Sect. 1. In Sect. 2 we shall study the structure of the hierarchy of
fragments, i.e. show various equivalent axiomatizations and several inclusions
among fragments. Section 3 is devoted to the development of some recursion
theory in fragments, notably to a proof of the Low basis theorem, which can
be viewed as a strong form of Kδnig's lemma. (The Low basis theorem will
be crucial in proofs of combinatorial principles in fragments; this will be done
in Chap. II.) Finally Sect. 4 further develops metamathematics in fragments;
among other things, the Low arithmetized completeness theorem, i.e. a strong
form of the completeness theorem, will be proved.

Let us close this introduction with two remarks: first, the reader will find
here (in Part A) actual proofs of various theorems in fragments, not only
proofs of provability of these theorems. (Model-theoretic methods of proving
provability of a sentence in a fragment can be found in Chap. IV.) It is hoped
that the reader will feel comfortable in these fragments and will gain good
practice in proving theorems in them. If so, then he will agree that each
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fragment (as well as the whole of Peano arithmetic) captures a natural part

of the truth about N.
Secondly, the limitations of the axiomatic approach in capturing the truth

on natural numbers, i.e. the feature of incompleteness, will be studied in
Part B.

1. Basic Developments; Partial Truth Definitions

(a) Properties of Addition and Multiplication,
Divisibility and Primes

1.1 Definition. Q is the theory in the language Lo with the following axioms:

(QI) S(x) φ 0

(Q2) S(x) = S(y)_->x = y

(Q3) x φ 0 —> (3y)(x = S(y))

(Q4) x + 0 = x

(Q5) x + S(y) = S(x + y)

(Q6) x * 0 = 0

(Q7) x*S(y) = (x*y) + x

(Q8) x<y = (3z){z + x = y)

Q is often called Robinson arithmetic. Note that thanks to our notational
conventions, (Q7) may be written equally well as x * S(y) = xy + x (omitting
the parentheses and * on the right hand side); but since we are begining to
develop axiomatic systems of arithmetic, we shall be slightly pedantic for
some time. Later we shall again freely use our conventions. Peano arithmetic
results from Q by adding the induction schema

<p(5) & (yx)(φ(x) -> φ(S(x)). -> (Vx)φ(x) .

This is indeed a schema: for each formula φ we have an induction axiom.
Note that φ may contain free variables distinct from x as parameters. Peano
arithmetic is denoted PA.

1.2 Lemma. In PA, the axiom (Q3) is redundant.

Proof. Let φ(x) be x = 0V(3y)(x = S(y)) and proceed in PA: φ(0) is obvious
and φ(S(x)) too; thus we have (Va:)(y?(x) —> φ(S(x)), and thus (Vx)φ(x). Ώ
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1.3. Particularly important fragments of PA result by restricting the induc-
tion schema to formulas φ from a prescribed class. This will be investigated in
details in Sect. 2; here we make only a few particular choices. /Open, IΣQ, IΣ\
will denote the theory Q plus the induction schema for φ open, Σ"o, Σ\ re-
spectively. (We shall also investigate a theory with an extended language.)
Note that in Part A we shall develop mainly theories containing IΣ\ (and
contained in PA). This is because in IΣ\ we can formalize a proof of the fact
that total A\ functions are closed under primitive recursion (a careful formu-
lation is presented below). This is the most important feature of fragments
containing IΣ\ and makes them remarkably different from weaker systems.
Note also at this time that Chap. V deals with IΣQ and related theories and
elaborates their specific problems. /Open will play only a marginal role in this
book.

1.4. Note that by (Q3), each non-zero number x has a predecessor, i.e. a y
such that S(y) = x. Thus we may define, in Q, a total function P by the
following definition:

y = P(x) = . (s = U&y = 0) V (s ^ 0 & S(y) = x) .

We shall now prove several formulas in Q. Recall that for m £ iV, rn is the
m-th numeral (cf. 0.28).

1.5 Lemma. The following formulas are provable in Q:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

x*y = O

x + ϊ
0<x

S(x) < n + 1
S(x) + n

n<x

Proof. Proceed in Q. We prove (l)-(4). Take (1). I f y ^ O then y = S(z) for
some *, thus x + y = S(x + z) φ 0. If x Φ Qkyj= 0 then x + y = S(z) for
some z. This proves (1). Ad (2): assume x,y φ 0,a: = 5(u),y = S(v). Then
x * y = S(u) * S(v) = (5(w) * v) + S(u) = S(S(u) + v) φ 0. (3) is trivial.

(4) is obvious by (Q4). (5): Ίf z + S(x) = n + 1 then S(z + x) = S(n),
thus z + x = n. Note that (5) is a schema; for each n we have a proof. Also
(6) is a schema; we shall construct the desired proofs by induction. Observe
that we shall use no induction within the proofs (since we have no induction
in Q)\ we shall construct the (n + l)-th proof from the n-th one. This will
often be the case. For n = 0, Q proves S{x) + 0 = S(x) = x + T. Assuming
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(6) we get Q h S(x) + n + 1 = S(x) + S(n) = S(S(x) + n)) = S(x + n + l) =
x + S(nTΊ) = x + ΪΓT2.

(7) In Q, assume n < x &x φ n; then, for some 2 ^ 0 , ^ + n = a:. By
(6), we get x = P{z) + n + 1, thus n + 1 < x. •

1.6 Theorem. For each n,m E N, Q proves the following:

(1)
(2) m*n = m * ra,

(3) mφn for mφn,

(4) x < n = .a: = 0 V a : = T v . . . V a : = ή ,

(5) x < ή V n < x .

Proof. (1) We prove Q h m+n = m + n by induction on n. For n = 0 we have
to prove Q h m + U = m, which follows by (Q4). Assume we already have a
proof of (1) and proceed in Q: m-frΓ+T = fn+S(n) = S(m+n) = m + n + 1.
The proof of (2) is similar.

(3) Next we show that m φ n implies Q h m φ m. It suffices to assume
n < m. For m = 0 the assumption is vacuous. Assume the assertion for m
and let n < m -f 1. Then either n = 0 and (Ql) gives Q V n φ m + 1 or
n = no + 1 and we have Q h ή j ^ m by the inductive assumption; hence
Q\-nφ 7ΪΓ+Ί by (Q2).

(4) We construct proofs of the formulas in question by induction on n.
For n = 0 see 1.5(1). Assume the assertion for n and consider n + 1. The
implication «— is clearly provable using (1); thus proceed in Q and assume
x < n + 1. If x = 0 we are done; therefore assume x φ 0. By 1.5(5) we get
P(x) < n, thus P(x) = 0V...VP(x) = n, which implies x = ΪV.. .Vz = rΓ+T.

(5) Q h 0 < a; by 1.5(4). Assume Q h ή < a Vx < n a n d proceed in Q.
If x <n then a: < n + 1 using (4) and (1); if n < x then, by 1.5(7), either
n = x, thus x < n + 1, or n + 1 < x. Π

1.7 Remark. (1) Q h x + n = A; -> a: = fc -- n (for n < Jfc); this follows by
iterated use of (Q2).

(2) Q proves

(by 1.6(4) using (1)).

1.8 Theorem. (ΣΊ-completeness of Q.) Let φ(x) be a Γo-formula with the
only free variable x and let N t= (Ξa:)< (̂a:). Then Q h (3x)φ(x).

Proof. It_is_ sufficient to show for each φ{x\,... ,xn) G ΣQ that iV t=
( A . . , f c n ) implies Q h <^(fci,... ,fĉ "). First show, using 1.6(1),(2), that
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for each term tf(zi,..., xn) and each n-tuple k\,..., kn of elements of iV,

(thus, e.g. Q h (3 + 5) * 8 = 64). Prom this it follows, again using 1.6, that
our assertion holds for φ atomic and negated atomic. (Observe that if N \=
-«(fc < m) then m < k and, by 1.6, Q h fc < m -> (fc = 0 V . . . V k = m), thus
Q I—•(& < m).) The induction step for logical connectives is easy. Finally,
assume φ to be (3y < xι)φ(y, xχy..., arn) and iV t= φ(kι,..., kn)] thus for
some A?o < A?i, JV t= ^(^OJ^IJ >&n) and, by the induction hypothesis,
Q H φ(kθy...,kn). This gives Q I- p(&i,.. ., i n ) Similarly for -i^, i.e. for
(Vy <a:)-i^(y,^l? ^ n ) . •

1.9 Remark. Thus each theory containing Q is ΣΊ-complete. (We shall show in
Part B that no axiomatized consistent theory containing Q is Π\-complete.)

1.10 Theorem. The following formulas are provable in /Open:

(1) z + y =

(2) s + (y + *) = (* + y) + 2

(3) x*y = y *x

(4) x * (y + z) = x * y + x * 2

(5) x * (y * z) = (a; * y) * z

(6) z + y = z + 2—> x = y

(7) x < y V y < i

(8) x < y & y < r c - * a : = y

(9) {x<yby<z)->x<z

(10) 2 ; < y = a: + 2 :<y + 2

(11) z = ^ 0 & z * 2 = y * 2 - » £ = y

(12) z φQ -* (x < y = x * z < y * 2:)

Proof. We shall now use the induction schema inside JOpen At the beginning
we shall give detailed proofs; later we shall omit details. The important thing
is always to be sure that we use an instance of the induction schema given
by a formula belonging to the class for which it is assumed; in our case, an
open formula of the langauge Lo

(1) We first prove (VΛ)(0 + x = x) in Jopen We use the induction axiom
given by the open formula 0 + x = ar, denote it by φ(x). First, y>(0), i.e.
U = 0 follows by (Q3). To prove (Wx)(φ(x) -> φ(S(x)), assume 0 + x = x
and compute as follows: 0 -f S(x) = 5(0 + x) = S(x). Thus by the induction
axiom we get (Vx)φ(x).
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Second, we prove (Vy)(S(x) + y = S(x + y)). Let φ(y) be S(x) + y =
S(x + y). The proof of φ(0) is easy. Assume φ(y) and prove <p(S(y)) as
foUows: S(x) + S(y) = S(S(x) + y) = S(S(x + y)) = S(x + S(y)). Thus we get
(Vy)(S(x)+y = S(x+y)). Compare this proof with the proof of 1.5(6): There
we constructed, by metamathematical induction, infinitely many proofs (for
each n, we constructed a proof of 5(x) + n = x + n + l i n Q)\ here we
have a single proof in /Open of (Vy)(5(x) + y = S(x + y)). Clearly the latter
formula implies each instance of the former schema. Now let us prove, in
Jopen, (Vx)(x + y = y + x). Let̂  φ(x) be x + y = y + x; we shall apply
induction for </?. We have proved 0 + y = y + 0; assume x + y = y + x and
reason as follows:

Thus we have proved (Vx)(y>(x) —> y>(S(x)); by the induction axiom we get

(v*M*).
(2) We prove (x+y) + z = x + (y+z) by induction on z. First, (x+y)+0 =

x + (y + 0) = x + y is clear. Assume (x + y) + z = x + (y + z) and consider
(x + y) + S(z). We get (x + y) + S(z) = S((x + y) + z) = 5(x + (y + *)) =
x + 5(y + z) = x + (y + (S(*)). This completes the proof of (2). Note that
from now on we may write sums like x -f y + z + u without parentheses.

(3) First prove 0*x = 0 by induction on x; then prove S(x)*y = (x*y) + y
by induction on y; finally, prove x * y = y * x by induction on x. (Let us
elaborate on the induction step for the second proof; assume 5(x) * y =
(x * y) + y. Then

5 ( x ) * 5 ( y ) = S ( x ) * y + S(x) (axiom (Q7)

= (x * y) + y + S(x) (inductive assumption
plus associativity)

= (x * y) + S(y + x) (axiom (Q5))

= (x * y) + 5(x + y) (commutativity (1))

= x * y + x + S(y) (axiom (Q5))

= x * 5(y) + S(y) (axiom (Q7)
plus associativity).)

(4) Prove (x + y) * z = (x * z) + (y * z) by induction on 2.
(5) Prove (x * y) * z = x * (y * z) by induction on z. Thus products like

x *y* z *u (or xyzu) are meaningful.
(6) Prove x + z = y + z—»χ=yby induction on 2. The induction step:

assume x+z = y + * -> x = y and x+S(*) = y+S(z). Then 5(x+^) = S(y+z)
by (Q5) and x + z = y + zby (Q2); thus x = y.

(7) Prove x < y V y < x by induction on x. (See the proof of 1.6(5).)
(8) Assume x < yky < x; thus y = x + u a n d x = y+υ. Then x = x+u+v

and x = x + 0; by (6), u + v = 0 and by 1.5(1), u = v = 0. Thus x = y.


