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Preface to the Series

Perspectives in Mathematical Logic
(Edited by the Ω-group for "Mathematische Logik" of the
Heidelberger Akademie der Wissenschaften)

On Perspectives. Mathematical logic arose from a concern with the nature and the
limits of rational or mathematical thought, and from a desire to systematise the modes
of its expression. The pioneering investigations were diverse and largely autonomous.
As time passed, and more particularly in the last two decades, interconnections
between different lines of research and links with other branches of mathematics
proliferated. The subject is now both rich and varied. It is the aim of the series to
provide, as it were, maps or guides to this complex terrain. We shall not aim at
encyclopaedic coverage', nor do we wish to prescribe, like Euclid, a definitive version of
the elements of the subject. We are not committed to any particular philosophical
programme. Nevertheless we have tried by critical discussion to ensure that each book
represents a coherent line of thought', and that, by developing certain themes, it will be
of greater interest than a mere assemblage of results and techniques.

The books in the series differ in level: some are introductory, some highly
specialised. They also differ in scope: some offer a wide view of an area, others present
a single line of thought. Each book is, at its own level, reasonably self-contained.
Although no book depends on another as prerequisite, we have encouraged authors to
fit their book in with other planned volumes, sometimes deliberately seeking coverage
of the same material from different points of view. We have tried to attain a reasonable
degree of uniformity of notation and arrangement. However, the books in the series
are written by individual authors, not by the group. Plans for books are discussed and
argued about at length. Later, encouragement is given and revisions suggested. But it
is the authors who do the work', if, as we hope, the series proves of value, the credit will
be theirs.

History of the Ω-Group. During 1968 the idea of an integrated series of monographs
on mathematical logic was first mooted. Various discussions led to a meeting at
Oberwolfach in the spring of 1969. Here the founding members of the group (R. O.
Gandy, A. Levy, G. H. Mύller, G. E. Sacks, D. S. Scott) discussed the project in
earnest and decided to go ahead with it. Professor F. K. Schmidt and Professor Hans
Hermes gave us encouragement and support. Later Hans Hermes joined the group. To
begin with all was fluid. How ambitious should we beΊ Should we write the books
ourselves! How long would it take! Plans for authorless books were promoted,
savaged and scrapped. Gradually there emerged a form and a method. At the end of an
infinite discussion we found our name, and that of the series. We established our centre
in Heidelberg. We agreed to meet twice a year together with authors, consultants and
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assistants, generally in Oberwolfach. We soon found the value of collaboration: on the
one hand the permanence of the founding group gave coherence to the over-all plans',
on the other hand the stimulus of new contributors kept the project alive and flexible.
Above all, we found how intensive discussion could modify the authors' ideas and our
own. Often the battle ended with a detailed plan for a better book which the author was
keen to write and which would indeed contribute a perspective.

Oberwolfach, September 1975

Acknowledgements. In starting our enterprise we essentially were relying on the
personal confidence and understanding of Professor Martin Barner of the
Mathematisches Forschungsinstitut Oberwolfach, Dr. Klaus Peters of Springer-
Verlag and Dipl.-Ing. Penschuck of the Stiftung Volkswagenwerk. Through the
Stiftung Volkswagenwerk we received a generous grant (1970 — 1973) as an initial
help which made our existence as a working group possible.

Since 1974 the Heidelberger Λkademie der Wissenschaften (Mathematisch-
Naturwissenschaftliche Klasse) has incorporated our enterprise into its general
scientific program. The initiative for this step was taken by the late Professor F. K.
Schmidt, and the former President of the Academy, Professor W. Doerr.

Through all the years, the Academy has supported our research project, especially
our meetings and the continuous work on the Logic Bibliography, in an outstandingly
generous way. We could always rely on their readiness to provide help wherever it was
needed.

Assistance in many various respects was provided by Drs. U. Feigner and K.
Gloede (till 1975) and Drs. D. Schmidt and H. Zeitler (till 1979). Last but not least,
our indefatigable secretary Elfriede Ihrig was and is essential in running our
enterprise.

We thank all those concerned.

Heidelberg, September 1982 R. O. Gandy H. Hermes
A. Levy G. H. Mύller
G. E. Sacks D. S. Scott



Author's Preface

I first seriously contemplated writing a book on degree theory in 1976 while I was
visiting the University of Illinois at Chicago Circle. There was, at that time, some
interest in an Ω-series book about degree theory, and through the encouragement of
Bob Soare, I decided to make a proposal to write such a book. Degree theory had, at
that time, matured to the point where the local structure results which had been the
mainstay of the earlier papers in the area were finding a steadily increasing number
of applications to global degree theory. Michael Yates was the first to realize that
the time had come for a systematic study of the interaction between local and global
degree theory, and his papers had a considerable influence on the content of this
book.

During the time that the book was being written and rewritten, there was an
explosion in the number of global theorems about the degrees which were proved as
applications of local theorems. The global results, in turn, pointed the way to new
local theorems which were needed in order to make further progress. I have tried to
update the book continuously, in order to be able to present some of the more
recent results. It is my hope to introduce the reader to some of the fascinat-
ing combinatorial methods of Recursion Theory while simultaneously showing
how to use these methods to prove some beautiful global theorems about the
degrees.

This book has gone through several drafts. An earlier version was used for a one
semester course at the University of Connecticut during the Fall Semester of 1979,
at which time a special year in Logic was taking place. Many helpful comments were
received from visitors to UConn and UConn faculty at that time. Klaus Ambos,
David Miller and James Schmerl are to be thanked for their helpful comments.
Steven Brackin and Peter Fejer carefully read sizable portions of that version and
supplied me with many corrections and helpful suggestions on presentation.
Richard Shore, Stephen Simpson and Robert Soare gave helpful advice about
content and presentation of material. Other people whose comments, corrections
and suggestions were of great help are Richard Epstein, Harold Hodes, Carl
Jockusch, Jr. Azriel Levy and George Odifreddi. I am especially grateful to David
Odell who carefully read the manuscript which I expected to be the final one, and to
Richard Shore who used that same manuscript for a course at Cornell University
during the Fall Semester of 1981. They supplied me with many corrections and
helpful suggestions on presentation of material which have been incorporated into
the book and which, I hope, have greatly enhanced the readability of the book.
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Also, the meetings of the Ω-group provided me with many suggestions which
influenced the continuously evolving formulation of the book.

I owe a debt of gratitude to my teachers, Anil Nerode and Thomas McLaughlin,
who introduced me to Recursion Theory, and to Gerald Sacks who continued my
education and provided me with much needed encouragement and dubious advice.
Finally, I thank my colleagues who have shown an interest in my work and have
stimulated me with theirs.

Storrs, February 5, 1983 Manuel Lerman
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Introduction

Degree theory, as it is studied today, traces its development back to the
fundamental papers of Post [1944] and Kleene and Post [1954]. These papers
introduced algebraic structures which arise naturally from the classification of sets
of natural numbers in terms of the amount of additional oracular information
needed to compute these sets. Thus we say that A is computable from B if there is a
computer program which identifies the elements of A, using a computer which has
access to an oracle containing complete information about the elements of B.

The idea of comparing sets in terms of the amount of information needed to
compute them has been extended to notions of computability or constructibility
which are relevant to other areas of Mathematical Logic such as Set Theory,
Descriptive Set Theory, and Computational Complexity as well as Recursion
Theory. However, the most widely studied notion of degree is still that of degree of
unsolvability or Turing degree. The interest in this area lies as much in the
fascinating combinatorial proofs which seem to be needed to obtain the results as in
the attempt to unravel the mysteries of the structure. An attempt is made, in this
book, to present a study of the degrees which emphasizes the methods of proof as
well as the results. We also try to give the reader a feeling for the usefulness of local
structure theory in determining global properties of the degrees, properties which
deal with questions about homogeneity, automorphisms, decidability and
definability.

This book has been designed for use by two groups of people. The main
intended audience is the student who has already taken a graduate level course in
Recursion Theory. An attempt has been made, however, to make the book
accessible to the reader with some background in Mathematical Logic and a good
feeling for computability. Chapter 1 has been devoted to a summary of basic facts
about computability which are used in the book. The reader who is intuitively
comfortable with these results should be able to master the book. The second
intended use for the book is as a reference to enable the reader to easily locate facts
about the degrees. Thus the reader is directed to further results which are related to
those in a given section whenever the treatment of a topic within a section and its
exercises is not complete.

The material which this book covers deals only with part of Classical Recursion
Theory. A major omission is the study of the lattice of recursively enumerable sets,
and the study of the recursively enumerable degrees is only cursory. These areas are
normally covered in a first course in Recursion Theory, and the books of Soare
[1984], Shoenfield [1971] and Rogers [1967] are recommended as sources for this
material.
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The book contains more material than can be covered in a one semester course.
If time is short, it is advisable to sample material in some of the sections rather than
cover whole sections. Sample courses for one semester would contain a core
consisting of Chaps. I-V and Chap. IX, with the remaining time spent either on
Chaps. VI-VIII (perhaps skipping some of the structure results, and either
assuming them for the purposes of the applications of Chap. VIII, or using the
exercises at the end of Chap. VI to replace the structure results of Chap. VIII in
those applications), or on Chaps. X and XI. Chapter XII is best left to the reader to
puzzle through on his own. The material in the appendices may be covered
immediately before the section where it is used, but it is recommended that this
material be left to the reader.

The following chart describes the major dependencies of one section on another
within the book.

I

I
II

1
III. 1-4

1
ΠI.5-6

I
in.

VIII XII.5

Some proofs are left unfinished, to be worked out by the reader. This is done
either to avoid repeating a proof which is similar to one already presented, or when
straightforward details remain to be worked out. Hints are provided for the more
difficult exercises, along with references to the original papers where these results
appeared. Exercises which are used later in the text have been starred.

Although an attempt has been made to be accurate in the attribution of results,
it is inevitable that some omissions and perhaps errors occur. We apologize in
advance for those unintentional errors.

Theorems, definitions, etc. are numbered and later referred to by chapter,
section, and number within the section. Thus VI. 1.2 is the numbered paragraph in
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Sect. 1 of Chap. VI with number 1.2. If the reference to this paragraph is within
Chap. VI, we refer to the paragraph as 1.2, dropping the VI. There are two
appendices, A and B, and a reference to A. 1.2 is a reference to paragraph 1.2 of
Appendix A.

Definitions and Notation. The following definitions and notation will be used
without further comment within the book.

Sets will be determined by listing their elements as {aθ9aί9...} or by
specification as the set of all x satisfying property P, denoted by {x:P(x)}. If A and
B are sets, then we write x e A for x is an element of A and A c B for A is a subset of
B. We use A c B to denote A c B but A Φ B (placing / through a relation symbol
denotes that the relation fails to hold for the specified elements). A U B is the union
of A and B, i.e., the set of all elements which appear either in A or in B, and A Π B
denotes the intersection of A and B, i.e., the set of all elements which appear in both
A and B. The difference of A and B is denoted by A — B and consists of those
elements which lie in A but not in B. The symmetric difference of A and B is denoted
by A Δ B = {A — B)Ό(B — A). We will denote the maximum or greatest element of
the partially ordered set <̂ 4, < ) by max(v4), and the minimum or least element of
this set by min(^4) if such maximum and/or minimum elements exist.

Let A, B and C be sets. The cartesian product of A and B, A x B, is the set of all
ordered pairs <x, y} such that x e A and ye B. The cartesian product operation can
be iterated, so that A x B x C is used to denote (A x B) x C We use Ak to denote
the cartesian product of & copies of A (which is the same as the set of all ^-tuples of
elements of A) and A<ω to denote the set of all finite sequences of elements of A. If
x = < * ! , . . . , xk> is a &-tuple, we use xm to denote xk, the kth coordinate of x. Given
S ^ A x B and ieA, we use Sli] to denote {xeB: {i,x}eS}.

We use 0 to denote the empty set, and N to denote the set of natural numbers
{0,1,...}. Given A,BeN, we denote the direct sum of A and B by A © B =
{2x:xeA} Ό{2x + 1 :xeB}. For any set A, \A\ will denote the cardinality of A. The
infinite cardinal numbers are Xo> Ki , . . . in order, and 2K° is the cardinality of the
continuum.

A partial function ψ from A to B (written φ: A -• B) is a subset of the set of
ordered pairs {{x, y}: x e A &y e B} such that for each xeA there is at most one
y e B such that (x, y}eφ. We write φ(x)i (φ(x) converges) for <x, y} e φ, and φ(x) |
(φ(x) diverges) iϊ xeA and for all yeB (x,y}φφ. We will sometimes denote the
function φ with the notation x\->φ(x). The domain of φ is denoted by
dom(φ) = {xeA:φ(x)[} and B is called the range of φ, denoted by rng(φ). If
dom(<p) = A, we call φ a total function. The word total, however, will frequently be
dropped. Thus unless otherwise specified, a function will always be total. In general,
we use the lower case Roman letters/, gf, A,... to denote functions with domain N
and lower case Greek letters φ, φ, θ,... to denote partial functions with domain
<Ξ N. The corresponding upper case letters are reserved for functionals, i.e., maps
taking functions into functions. A set S is identified with its characteristic function
χs where χs(x) = 1 if xeA and χs(x) = 0 otherwise. If φ is a partial function and
B c dom(φ), then φ \ Bis the restriction of <p to 5, i.e., the function with domain B
which agrees with φ on 5. By the previous definition, the restriction notation
applies to sets as well as to functions.
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Given/: N -• N, we write lims f(s) = y if {s :f(s) φ y) is finite, and lims f{s) = oo
if, for every y e N, {s :f(s) = y} is finite. We write lim sups f(s) = y if {s :f(s) = y) is
infinite and {s\f{s)>y} is finite; and limsupsf(s) = oo if, for every yeN,
{s:f(s) ^ y} is infinite. We write lim'mfsf(s) = y if {s:f(s) = y} is infinite and
{s\f(s) < y) is finite; and X\m'mϊs f(s) = oo if, for every yeN, {s:f(s) < y} is finite.
If {αs: s e N} is a sequence of finite sequences of integers, then we write lims αs for the
partial function 0 such that for all x e N, θ(x)l if and only if lims <xs(x)l, in which case
θ(x) = limsαs(x). Given two sequences of integers α and β, we say that α
lexicographically precedes β if either α cz β or oc(x) < β(x) for the least x such that
a(x) Φ β(x). We write lim sups αs = 0 if 0 is a sequence of integers and for all xeN,
{s: αs ί x = θ \ x} is infinite and {.s: 0 lexicographically precedes αs} is finite. We
write lim infs ocs = θ for 0 as in the preceding sentence if {s: αs ί x = θ Γ x} is infinite
for each XGTV, and {s:αs φ θ and αs lexicographically precedes 0} is finite.

We use Church's lambda notation to define new functions from old
ones. If / ( * ! , . . . 5 x n ,}Ί,. Jic) is a function of π + fc variables, then
1*! xnf(xι,..., xn,yi,. .,y k) denotes the function g of n variables defined by
g(xu . . . ,xn) =f(xu >,xn,yu > J7*)-

If φ and ^ are partial functions, then we write φ <= φ (φ extends φ) if
dom(φ) c dom(ι^) and for all xedom(φ), φ(x)[ = φ{x). We say that φ and ^ are
incomparable and write φ | φ if neither φ ^ φ or φ ^ φ.

We write ^4β for the set of all functions from 2? into A. Since sets are identified
with their characteristic functions, 2s then denotes the power set of 5, i.e., the set of
all subsets of S.

Standard interval notation will be used for sets A partially ordered by ^ . Thus
[a,b~] will denote {xeA:a ^ x ^ b}, (a,b) will denote {x\a < x < b}, (a, oo) will
denote {x: x ^ a}, (— oo, b~] will denote {JC: X < &}, etc. Structures will be denoted
b y si = (A, Ro,.., Rn, fo,.'., fk, Co,--, O w h e r e A is t h e universe o f s/9

Ro,..., Rn are relations on cartesian products of ,4, f 0 , . . . , fk are functions from
cartesian products of A into Λ, and co,...,cm are designated elements of A. The
partially ordered set above is thus denoted by si = <̂ 4, <>.

We will use the logical symbols & to denote and, v to denote or, —\ to denote
not, -• to denote implies, and <-• to denote if and only if. 3 will denote the existential
quantifier and V will denote the universal quantifier. We will write /\"=o σ i f o r

σo&σ! & &σn and \/" = o σ f to denote α 0 v di v v σπ. When we are not
using a formal language, we will use => and <=> in place of -• and <-» respectively.

D will denote the end of a proof.
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Chapter I

Recursive Functions

This chapter is introductory in nature. We summarize material which is normally
covered in a first course in Recursion Theory and which will be assumed within this
book. Recursive and partial recursive functions are introduced and Church's Thesis
is discussed. Relative recursion is then defined, and the Enumeration and Recursion
Theorems are stated without proof. The reader familiar with this material should
quickly skim through the chapter in order to become familiar with our notation. We
refer the reader to the first five chapters of Cutland [1980] for a careful rigorous
treatment of the material introduced in this chapter.

1. The Recursive and Partial Recursive Functions

The search for algorithms has pervaded Mathematics throughout its history. It was
not until this century, however, that rigorous mathematical definitions of algorithm
were discovered, giving rise to the class of partial recursive functions.

This book deals with a classification of total functions of the form/: N -> TV in
terms of the information required to compute such a function. The rules for
carrying out such computations are algorithms (partial functions φ: Nk -> N for
some k e N) with access to information possessed by oracles. The easiest functions
to compute are those for which no oracular information is required, the recursive
functions. Thus we begin by defining the (total) recursive functions, and then
indicate how to modify this definition to obtain the class of partial recursive
functions. The section concludes with discussions of Church's Thesis and of general
spaces on which recursive functions can be defined.

1.1 Definition. Let R^Nk+1. μy\_(xu , x k j ) e Λ ] is the least y such that
( x 1 ? . . . , xk,y) E R if such a y exists, and is undefined otherwise. Henceforth, we will
refer to μ as the least number operator.

1.2 Definition. The class 0ί of recursive functions is the smallest class of functions
with domain Nk for some k e N and range TV which contains :

(i) The zero function: Z{x) = 0 for all xeN;
(ii) The successor function: S(x) = x + 1 for all xeN;
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( i i i ) T h e projection f u n c t i o n s : Pnj(x0, . . . , x n ) = Xj f o r a l l n , x o , . . . , x n e N a n d

and is closed under:

(iv) Substitution: For all m, keN, if all of g(x0,...,xm), ho(yo,... ,yk),...,
hm(yo, • ••>}>*) a r e elements of 0ί, then

/ O o , ,yh) = θ(ho(yo,... , ^ k ) , . . . , / / m ( j 0 , . . ,J>fc))

is an element of &
(v) Recursion: For al l« e JV, if 0(xo> > •*«) and Λ(x0? > *n + 2) are elements of

^ , t h e n / ( x 0 ? . . . ,xw + i) is an element of &, where

o> ...,*„> 0) =

and

..,xn,y, f(x0,..., xn,y));

(vi) The feβ^ί number operator: For all n e N, if ^(x0? > -̂ n? y) is a n element of
St and Vx0, , xn 3jfe(x0, , xn,y) = 1] then

f(x0,..., xπ) = μj[όf(x0, , xn, y) = 1]

is an element of 01.

An element of 0t is called a recursive function.

1.3 Definition. Fix «eΛf and let ^ be a countable class of partial functions of n
natural number variables. An enumeration of # is a partial function φ:Nn+1 ^ N
which lists the elements of #, i.e.,

(i) Vψe<g3keN(λxl9..., *„(?(&, ̂ 1, , xn) =

and

(ii) Vk e N(λxx,..., xHφ(k, xl9...9xn)eV).

1.4 Example. Let <€ = {f:ieN} where f(x) = i for all xeN. Then g:N2^N
defined by g(n, x) = n is an enumeration of # .

The Enumeration Theorem for partial recursive functions of one variable is an
important tool used in almost every proof in this book. What we would like to have
is a recursive enumeration of the class of recursive functions of one variable.
Unfortunately, such an enumeration does not exist (see Exercise 1.10). All that is
needed, however, is & partial recursive enumeration of the class of partial recursive
functions. With this in mind, we now introduce the class of partial recursive
functions.

1.5 Remark. The obstacle to obtaining a recursive enumeration of the class of
recursive functions of one variable lies in 1.2(vi), the application of the least number
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operator to obtain new recursive functions. There is no algorithm which will
identify whether or not Vxo> >xn 3y[g(xo, , *my) = 1] This difficulty can be
circumvented by producing an algorithm which assigns natural numbers (called
GodeI numbers) to computations carried out in 1.2(i)-(vi). One then searches for the
least numbered computation which yields g(x0,... ,xn,y) = 1 for some y, say
y = y0, and defines

(y0 if jo is ever found,
f(xθ9 ...,xn) = <

11 otherwise.

Such a procedure was carried out by Kleene, giving rise to the class of partial
recursive functions, £P. This class contains all the recursive functions, together with
some additional functions, none of which are total.

During the 1930's and 1940's, several attempts were made to give a rigorous
mathematical definition of algorithm. One of these definitions was the class of
partial recursive functions described in Remark 1.5. All of the definitions were
eventually shown to be equivalent, and the equivalence of some of the early
definitions prompted Church to propose his thesis, which asserts:

1.6 Church's Thesis. A function is partial recursive if and only if there is an
algorithm which computes the function on its domain, and diverges outside the
domain of the function.

Church's Thesis asserts that the intuitive notion of algorithm is equivalent to the
mathematically precise notion of partial recursive function. The thesis is almost
universally accepted, and its use has become general mathematical practice. We will
be using Church's Thesis freely and without any explicit warning throughout this
book, by describing the computation of a function and automatically assuming that
the resulting function is partial recursive. A rigorous proof could be given in every
case, but would be very tedious.

In this age of digital computers, the reader might feel most comfortable with the
following description of partial recursive functions. A function / is partial recursive
if there is a program for a digital computer (no restrictions on memory size are
placed on such a computer, so that we assume that the computer has available to it
an infinite supply of memory space, only finitely much of which is used at a given
time) such that whenever x is fed as input to the computer, the computer will spew
out/(x) after spending a finite amount of time performing computations as directed
by the program (no restrictions, however, are placed on the amount of time
available) if x e dom(/), and the computer will give no answer (perhaps computing
forever) if xφdom(f).

To this point, we have only considered functions from Nk into TV for some k > 0.
Shoenfield [1971] has noted that Nk and N can be replaced by any spaces, i.e.,
domains which can effectively be placed in one-one correspondence with N.
Henceforth, any space will be acceptable as either the domain or range of a recursive
function. Typical spaces which we will be using later are mentioned in the next
example.

1.7 Example. The following are spaces:
(i) Nk, the set of all λ -tuples of natural numbers, for all k ^ 1.
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(ii) N<ω, the set of all finite sequences of natural numbers. Henceforth we will
denote N<ω by <9ζ and call an element of £f a string.

(iii) Sff={σeSf: σ(ή) < f(ή) for all n e N such that σ(«)|}, where/: N -> N is a
recursive function and /(x) / 0 for all x e N. Sfs is called the space of f-valued
strings. If / is the constant function f(x) = c for all x, then 5£ will be used in place of
£ff. Thus £f2 is the space of all finite sequences of 0s and Is.

The following notation will be used:

1.8 Definition. Let σ, τeSf be given. We say that σ ^ τ if for all ieN, if σ(ί)i then
τ(i) | and σ(i) = τ(ί). Given/: N -• N, we say that σ c / i f for all /e TV, if σ(/)| then
σ(/) = / ( 0 <= will denote c and ^ lh(σ) = |{/: σ(/)|}| is the length of σ. σ * τ is the
string of length lh(σ) + lh(τ) defined by

(σ(x) if x < lh(σ),
σ * τ(x) = •<

v |τ(jc - lh(σ)) if lh(σ) ^ x < lh(σ) + lh(τ).

In the next section, we will discuss relative recursiveness. We will then be able to
classify arbitrary functions f:N -• TV on the basis of how much additional
information is required (from an oracle) in order to compute /

1.9-1.13 Exercises

1.9 The class of primitive recursive functions is the smallest class of functions
containing the functions mentioned in 1.2(i)-(iii) and closed under the operations of

(i) Show that there is a recursive enumeration of the class of primitive recursive
functions of one variable. (Hint: Recursively assign Gόdel numbers to com-
putations, and define the enumeration F(e, x), where λxF(e, x) is the function with
Gόdel number e.)

(ii) Show that there is a recursive function which is not primitive recursive.
(Hint: Diagonalize against an enumeration of the primitive recursive functions.)

1.10 Show that there is no recursive enumeration of the class of recursive
functions. (Hint: If there were such an enumeration, a diagonalization as in 1.9(ii)
would produce a contradiction.)

1.11 Explain why your proof of 1.10 will not generalize to show that there is no
partial recursive enumeration of the class of partial recursive functions.

1.12 Let S be a space.
(i) Show that Sn is a space,

(ii) Show that S<ω is a space.
(iii) Show that there is a T £ S such that T is not a space.
(Hint: Use a cardinality argument after showing that there are only countably

many algorithms.)

1.13 Let S and T be spaces. Show that:
(i) S x T is a space.

(ii) For all neN, [0,ή] x S and S x [0,«] are spaces.
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2. Relative Recursion

Recursion Theory classifies total functions on the basis of how much additional
information must be provided by an oracle to compute the given function. This
classification relies on the notion of relative recursion.

Relative recursion is defined by expanding the class of initial functions in
Definition 1.1. We will use this notion in Chap. 2 to form an algebraic structure
from {f:N-+N}.

2.1 Definition. Let/: Nm -• N be given. The class Stf of functions recursive in /is the
smallest class of functions containing/and the functions mentioned in 1.2(i)-(iii)
and closed under the operations of 1.2(iv)-(vi). An element g of Stf is said to be
recursive in / written g < Γ /

Recursiveness i n / or relative recursion, was introduced by Turing [1939]
whose name gave rise to the T in ^ Γ . ^ τ is frequently referred to as Turing
reducibility.

The partial recursive functions, as we indicated earlier, are those partial
functions which an idealized digital computer can compute. The domain of such a
function is the set of numbers which, when fed as input to the computer, will
eventually cause the computer to output a number.

Given / : Nk -• TV, the partial functions computable from f can similarly be
described through the use of a digital computer with access to the oracle f The
notion of computer program is generalized to allow instructions of the form if
f(xu ...,xk)=y proceed to a certain instruction', otherwise, proceed to another
specified instruction. As we proceed through the computation of a partial function g
computable from/to which z has been fed as input, whenever we reach a step in the
program of the type just described above, the computer does something non-
constructive; it asks the/oracle whether/(x l 5 ...9xk)=y, and once the answer is
received from the / oracle, continues the computation utilizing the information
provided by the oracle. Complete knowledge of / allows us to compute g(z)
whenever g(z)l, so g is computable f rom/ Futhermore, if g(z)[, then since any
computation is completed in finitely many steps, only a finite amount of
information about / i s used.

2.2 Remark. There is also a version of Church's Thesis for relative recursion which
will be used freely throughout this book. It asserts that the partial functions
computable from /are exactly those for which there exists an algorithm using a n /
oracle as above to perform the computation.

It will frequently be more convenient to use sets than functions when discussing
relative recursiveness. This is easily accomplished by identifying a set with its
characteristic function, which we define as follows:

2.3 Definition. Let A c N. The characteristic function of A, χA, is defined by

ίO if xφA
XA(Π) = <

[I if xeA.
More generally, a relation R^ Nk will be identified with its characteristic function
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χR, defined by

if R(xu ..., xk) is false,

2.4 Definition. A relation R is said to be recursive in the function/if χR is recursive

in/

2.5 Remarks. A summary of the history of relative recursion appears in Kleene and
Post [1954]. Three versions appear in the literature, all of which were later proved
to be equivalent. They were formulated by Turing [1939] generalizing the machines
introduced by Turing [1937] Kleene [1943] extending the definition of recursive
functions; and Post [1948] extending the concept of canonical sets which was
introduced in Post [1943].

2.6 Exercise. Let/, g:N -+ Nbe given such that {/:/(/) φ g(ί)} is finite. Show that

3. The Enumeration and Recursion Theorems

Two basic theorems of Recursion Theory are stated in this section. The first of
these, the Enumeration Theorem, will be used in virtually every proof in this book.
The Recursion Theorem will be used to enable us to simplify proofs of certain
theorems. Complete proofs or detailed sketches of the proofs of these theorems can
be found in Soare [1984], Rogers [1967], Cutland [1980] and Kleene [1952]. A
nice proof of the Recursion Theorem can also be found in Owings [1973].

The Enumeration Theorem asserts the existence of a function φ(σ, e, x, s) which
uniformly induces a whole class of enumerations. The definition of φ(σ, e, x, s)
reflects the following intuition. A computer is programmed, with e coding the
program. The input x is then fed to the computer, and the computer then performs s
steps as directed by the program. During these s steps, the computer may come
across program instructions of the form iff(x) = y proceed to a certain instruction,
and if f{x) Φ y proceed to another specified, but different instruction. When faced
with such a choice, the computer asks "is σ(x) = yT\ If x ^ lh(σ), then there will be
no output. If x < lh(σ), then σ answers the question for / and the computation
continues. If there is no output from the computer after s steps, the computation
ceases and φ(σ,e,x,s)]. If a number is outputted by the end of the sih step,
φ(σ, e, x, s)l and is set equal to this output.

3.1 Enumeration Theorem. There is a partial recursive function φ\9* x N3 -• N
with the following properties:

(i) {Use property)

Vσ,τeyVe,x,s,yεN(σ c τ&φ(σ,e,x,s)l = y-• φ(τ,e,x9s)[ = y),

i.e., if a number is given as output, then oracle information extending the original
information will not alter the output.
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(ii) (Permanence property)

^σe^^e,x,s,t,yeN(s ^ t&φ(σ,e,x,s)l = y ^ φ(σ,e,x,t)[ = y),

i.e., once a number is given as output, additional steps do not change this output.
(iii) (Uniform enumeration property) Given f: N -• N and Θ:N -+ N computable

from f then there is an eeN such that for all x, yeN

θ(x) = y «-* 3σ 3s(σ c /& φ(σ, e, x, s)l = y),

i.e., for every partial function θ computable from f there is a program coded into φ
which computes θ. (Note that ifθ is not given but rather defined by the above formula,
then θ is computable from f)

(iv) (Recursiveness property) The domain of φ is a recursive subset of Sf x N3

(since s bounds the length of a permissible computation).
(v) (Uniform coding property) Given a sequence {θi'.ieN} of functions comput-

able from f: N -• N such that the definition ofθt is given by a finite set of instructions
using parameter i, then there is a recursive function g such that for all x,yeN

θi(x) =y~lσ3s(φ(σ,g(ί),x,s)i = y&σ ς=/),

i.e., if the definitions of a class of functions are given uniformly recursively, then there
is a recursive function which gives codes for programs computing each of these
functions.

3.2 Remark. Let φ be the function given by the Enumeration Theorem. For all
Θ:N^N, define the functional Φθ by

(i) Φθ(e,x)=yo3σe<?(σ c θ&φ(σ,e,x,\h(σ))l = y).

Then Φθ is computable from θ, and Φf provides an enumeration of $f, uniformly in
/. In particular, if / is any recursive function, then Φf is a partial recursive
enumeration of the class of partial recursive functions. I f / = 0, then we write Φ in
place of Φf.

For the remainder of this book, φ will denote the function given by the
enumeration theorem, and Φθ will be defined as in 3.2(i). For each e e N, we will also
fix the function Φθ

e = λxΦθ(e, x).
Property 3.1(v) is known as the s-m-n Theorem. Another way of stating this

theorem is as follows: Let h(x,y) be a function computable from/. Then there is a
function g computable from/such that for all xeN, h(x,y) = Φ^(x). Thus, for
example, if h(x, y) = x, then there is a recursive function g such that for each x e N,
g(x) is an index for the constant function x as a recursive function.

The Recursion Theorem is a basic theorem about the enumerations mentioned
in Remark 3.2. It is frequently referred to as the Fixed Point Theorem.

3.3 Recursion Theorem. Let the recursive function h:N —• Nbe given. Then there is an
eeN such that Φ{ = Φ[(e) for all f: N-• N.
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3.4 Definition. If Φ{ = Φ[{e) then Φ{ is called a fixedpoint (of the enumeration Φf)
for A.

We will be using the Recursion Theorem in the following way. Given a function
f:N-+ N and eeN,we will start with the partial function Φ{ and, uniformly in e, we
will recursively construct a partial function Φ[{eγ An application of the Recursion
Theorem will allow us to choose an e such that our starting function Φ{ and our
constructed function Θ{(e) are identical. Thus in certain situations, the Recursion
Theorem allows us to construct a function while simultaneously using information
about the function in its construction. By the uses of the Recursion Theorem, the
information used about the function will have to be specified at an earlier stage,
although this fact is hidden in the actual applications.

3.5 Remark. The Enumeration and Recursion Theorems were discovered by Kleene
(seeKleene [1952]).

3.6-3.8 Exercises. The definitions in 3.6 and 3.7 describe recursive procedures
which define one partial recursive function in terms of another. For each definition,
apply the Recursion Theorem to obtain a fixed point. Is this fixed point a total
function? What is the fixed point?

if /i = 0,

3.6 Φm(n) = {Φe(n-\) if n > 0&Φe(n - l)j,

otherwise.

3.7 φh (n) = \ .
1 * otherwise.

3.8 Prove the Recursion Theorem. (Hint: Given meN, define

\ΦΦrn(m)(x) if Φ m ( m ) | ,\j/(m,x) =
(t otherwise.

By the uniform coding property, find a recursive function g such that
ψ(m, x) = Φg{m)(x) for all m and x. Given a recursive function /, let e be a Gόdel
number for fg. Show that n = g(e) is a fixed point for/.)



Chapter II

Embeddings and Extensions of Embeddings
in the Degrees

We define the degrees of unsolvability in this chapter, and show that these degrees
from an uppersemilattice. Much of the rest of this book will be devoted to studying
this upper semilattice. The study begins in this chapter, with sections on embedding
theorems and on extensions of embeddings into the degrees. We also prove the
decidability of a certain natural class of sentences about the degrees.

1. Upper semilattice Structure for the Degrees

We are now ready to define the degrees of unsolvability, and to show that Turing
reducibility induces a partial ordering on these degrees which gives rise to an
uppersemilattice. In Section 4 we will prove that the degrees do not form a lattice.

We begin with some algebraic definitions.

1.1. Definition. A partially ordered set (poset) <P, ̂ > is a set P together with a
binary relation ^ c P2 having the following properties:

(i) Reflexivity: VxeP(x ^ x).
(ii) Antisymmetry: Vx,yeP(x ^y&y^:X^x = y).
(iii) Transitivity: Vx, y, z e P(x ^y&y^z^x^z).

1.2 Definition. An uppersemilattice (usl) is a triple <P, ̂  , v> such that <P, <> is a
poset, and v: P2 —• P (write x v y = z for v(x,y) = z) satisfies:

(i) Vx, y e P(x ̂  x v y&y ^ x v y)

and

(ii) Vx,jμ, ueP(x < u&y ^ u -> x v y ^ ύ).

Thus a usl is a poset in which every pair of elements has a least upper bound.

Clause (ii) of Definition 1.1 prevents the use of ̂  τ to directly transform NN into
a poset. This obstruction is circumvented by using certain equivalence classes of
NN, the degrees, as the domain of the poset. The equivalence relation used is the
following.

1.3 Definition. For/,geNN, define f = τg \ϊf^τg and g ^ Γ / .
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We leave the proof of the fact that = τ is an equivalence relation to the reader
(Exercises 1.11 and 1.12). = τ partitions NN into equivalence classes which are now
defined.

1.4 Definition. Let feNN be given. The degree (of unsolvabilίty) off9f, is {geNN:
g=τf}

1.5 Notation. {f:fεNN} will henceforth be denoted by D.

1.6 Remark. Since \NN\ = 2*° and for each deD, |d| = Ko, a simple computation in
cardinal arithmetic shows that |D| = 2No.

The next two definitions indicate the natural way in which usl structure is
induced on D.

1.7 Definition. Let a,beD be given. We say that a < b if

We leave it to the reader (Exercise 1.13) to show that

a < bo3f9geNN(fe*&geb&f^τg).

1.8 Definition. Let a, b e D, fe a and g e b be given. Define a u b to be the degree of
the function/© geNN defined by

f/(x/2) if x is even,

W if x is odd.

Let 2 = <D, O and 3)% = <D, ̂ , u>. We leave it to the reader (Exercise
1.14) to verify that 3) is a poset and that 3)% is a usl. Note that D has a smallest
element, namely, the degree of the recursive functions (Exercise 1.16).

1.9 Notation. We will write a = b for a ̂  b and b ^ a . <, ̂ , >, # , etc. will have
the obvious meaning. 0 will denote the smallest degree. u{aj: 1 ̂  / ̂  n) will denote
ai u u an, and n{ai: 1 ̂  / ̂  n} will denote the greatest element d e D such that
d ^ aj for i = 1,2,..., n if such an element exists, and will be undefined otherwise.

The study of relative recursion, or equivalently, computation from oracles leads
naturally to the study of the degrees. Questions about information contained in
functions which can be computed from an /oracle are best formulated in terms of
the structure of the degrees below / Hence the study of 3f will shed light on relative
recursion.

Several algebraic and logical problems arise naturally in the study of Θ. We
would like to have a classification of the usls which can be embedded into 2, and to
develop structure theory for 3). We would like to have answers to certain questions
about the elementary theory of 3), e.g., "is the theory decidable?", and "how
complicated is this theory?". Some of these questions have been answered, while a
complete answer to the others still remains to be found. (Note that for the questions
mentioned above, 3) and 3)% are interchangeable.) These, and other questions will
be studied in this book, a study which begins in the next section.
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1.10 Remark. 9 was first defined and studied by Kleene and Post [1954]. This paper
has an interesting history. Kleene received a letter from Post with some of the
definitions and theorems, and suggested that Post publish those results. Post was
reluctant to do so, feeling that some of the most important initial questions about
the degrees had not yet been answered. Some of these questions were later answered
by Kleene, who added his results to Post's and had the paper published. This was
done while Post was terminally ill, and we do not know whether or not Post ever
read the paper.

1.11-1.17 Exercises

*1.11 Show that ^ Γ is transitive.

*1.12 Show that =τ is an equivalence relation.

*1.13 Show that a ^ bo3f,geNN(fea&geb&f^τg).

*1.14 Show that 2% is a usl.

*1.15 Show that every degree contains a set (i.e., a characteristic function).

*1.16 Show that for all degrees a,0 ^ a.

*1.17 Given {/•: N-+N: i = 0 ,1, . . . ,«- 1}, define ©?=(}/»: N'-+N bY
(®nilo fd(n* + b) = fb(x) where 0 ^ b < n. Show that θ Γo1/- and
((' ((/o θ / i ) ®fi) θ *') θ fn-1) have the same degree.

2. Incomparable Degrees

Embeddings into the degrees are considered in this section. Many constructions of
classes of degrees with various properties can be carried out through the use of the
method of forcing. We describe forcing in this section, and use it to construct
incomparable degrees.

Rather than begin immediately with the abstract notion of forcing, we first give
a classical proof of the existence of incomparable degrees. We next describe the
relationship between this proof and the forcing proof. Forcing is then introduced,
and is used to prove the same theorem.

2.1 Definition. Let a,beD be given. Then a and b are incomparable (write a|b) if
a έ̂ b and b έ̂ a.

2.2 Theorem. There exist a0, a! eD such that a0 | a t.

Proof. We construct sets A0,Aί^N such that Ao ^T^IMI^T^O a n d set
aj = Aj for / = 0,1. By the Enumeration Theorem, it suffices to satisfy the
requirements

(1) Pey.Φ*< φA^-i


