

DATA MINING WITH R
LEARNING WITH CASE STUDIES

SECOND EDITION

Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series

PUBLISHED TITLES

SERIES EDITOR
Vipin Kumar

University of Minnesota
Department of Computer Science and Engineering

Minneapolis, Minnesota, U.S.A.

AIMS AND SCOPE
This series aims to capture new developments and applications in data mining and knowledge
discovery, while summarizing the computational tools and techniques useful in data analysis. This
series encourages the integration of mathematical, statistical, and computational methods and
techniques through the publication of a broad range of textbooks, reference works, and hand-
books. The inclusion of concrete examples and applications is highly encouraged. The scope of the
series includes, but is not limited to, titles in the areas of data mining and knowledge discovery
methods and applications, modeling, algorithms, theory and foundations, data and knowledge
visualization, data mining systems and tools, and privacy and security issues.

ACCELERATING DISCOVERY : MINING UNSTRUCTURED INFORMATION FOR
HYPOTHESIS GENERATION
Scott Spangler

ADVANCES IN MACHINE LEARNING AND DATA MINING FOR ASTRONOMY
Michael J. Way, Jeffrey D. Scargle, Kamal M. Ali, and Ashok N. Srivastava

BIOLOGICAL DATA MINING
Jake Y. Chen and Stefano Lonardi

COMPUTATIONAL BUSINESS ANALYTICS
Subrata Das

COMPUTATIONAL INTELLIGENT DATA ANALYSIS FOR SUSTAINABLE
DEVELOPMENT
Ting Yu, Nitesh V. Chawla, and Simeon Simoff

COMPUTATIONAL METHODS OF FEATURE SELECTION
Huan Liu and Hiroshi Motoda

CONSTRAINED CLUSTERING: ADVANCES IN ALGORITHMS, THEORY,
AND APPLICATIONS
Sugato Basu, Ian Davidson, and Kiri L. Wagstaff

CONTRAST DATA MINING: CONCEPTS, ALGORITHMS, AND APPLICATIONS
Guozhu Dong and James Bailey

DATA CLASSIFICATION: ALGORITHMS AND APPLICATIONS
Charu C. Aggarawal

DATA CLUSTERING: ALGORITHMS AND APPLICATIONS
Charu C. Aggarawal and Chandan K. Reddy

DATA CLUSTERING IN C++: AN OBJECT-ORIENTED APPROACH
Guojun Gan

DATA MINING: A TUTORIAL-BASED PRIMER, SECOND EDITION
Richard J. Roiger

DATA MINING FOR DESIGN AND MARKETING
Yukio Ohsawa and Katsutoshi Yada

DATA MINING WITH R: LEARNING WITH CASE STUDIES, SECOND EDITION
Luís Torgo

EVENT MINING: ALGORITHMS AND APPLICATIONS
Tao Li

FOUNDATIONS OF PREDICTIVE ANALYTICS
James Wu and Stephen Coggeshall

GEOGRAPHIC DATA MINING AND KNOWLEDGE DISCOVERY,
SECOND EDITION
Harvey J. Miller and Jiawei Han

GRAPH-BASED SOCIAL MEDIA ANALYSIS
Ioannis Pitas

HANDBOOK OF EDUCATIONAL DATA MINING
Cristóbal Romero, Sebastian Ventura, Mykola Pechenizkiy, and Ryan S.J.d. Baker

HEALTHCARE DATA ANALYTICS
Chandan K. Reddy and Charu C. Aggarwal

INFORMATION DISCOVERY ON ELECTRONIC HEALTH RECORDS
Vagelis Hristidis

INTELLIGENT TECHNOLOGIES FOR WEB APPLICATIONS
Priti Srinivas Sajja and Rajendra Akerkar

INTRODUCTION TO PRIVACY-PRESERVING DATA PUBLISHING: CONCEPTS
AND TECHNIQUES
Benjamin C. M. Fung, Ke Wang, Ada Wai-Chee Fu, and Philip S. Yu

KNOWLEDGE DISCOVERY FOR COUNTERTERRORISM AND
LAW ENFORCEMENT
David Skillicorn

KNOWLEDGE DISCOVERY FROM DATA STREAMS
João Gama

MACHINE LEARNING AND KNOWLEDGE DISCOVERY FOR
ENGINEERING SYSTEMS HEALTH MANAGEMENT
Ashok N. Srivastava and Jiawei Han

MINING SOFTWARE SPECIFICATIONS: METHODOLOGIES AND APPLICATIONS
David Lo, Siau-Cheng Khoo, Jiawei Han, and Chao Liu

MULTIMEDIA DATA MINING: A SYSTEMATIC INTRODUCTION TO
CONCEPTS AND THEORY
Zhongfei Zhang and Ruofei Zhang

MUSIC DATA MINING
Tao Li, Mitsunori Ogihara, and George Tzanetakis

NEXT GENERATION OF DATA MINING
Hillol Kargupta, Jiawei Han, Philip S. Yu, Rajeev Motwani, and Vipin Kumar

RAPIDMINER: DATA MINING USE CASES AND BUSINESS ANALYTICS
APPLICATIONS
Markus Hofmann and Ralf Klinkenberg

RELATIONAL DATA CLUSTERING: MODELS, ALGORITHMS,
AND APPLICATIONS
Bo Long, Zhongfei Zhang, and Philip S. Yu

SERVICE-ORIENTED DISTRIBUTED KNOWLEDGE DISCOVERY
Domenico Talia and Paolo Trunfio

SPECTRAL FEATURE SELECTION FOR DATA MINING
Zheng Alan Zhao and Huan Liu

STATISTICAL DATA MINING USING SAS APPLICATIONS, SECOND EDITION
George Fernandez

SUPPORT VECTOR MACHINES: OPTIMIZATION BASED THEORY,
ALGORITHMS, AND EXTENSIONS
Naiyang Deng, Yingjie Tian, and Chunhua Zhang

TEMPORAL DATA MINING
Theophano Mitsa

TEXT MINING: CLASSIFICATION, CLUSTERING, AND APPLICATIONS
Ashok N. Srivastava and Mehran Sahami

TEXT MINING AND VISUALIZATION: CASE STUDIES USING OPEN-SOURCE
TOOLS
Markus Hofmann and Andrew Chisholm

THE TOP TEN ALGORITHMS IN DATA MINING
Xindong Wu and Vipin Kumar

UNDERSTANDING COMPLEX DATASETS: DATA MINING WITH MATRIX
DECOMPOSITIONS
David Skillicorn

DATA MINING WITH R
LEARNING WITH CASE STUDIES

SECOND EDITION

Luís Torgo
University of Porto, Portugal

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20161025

International Standard Book Number-13: 978-1-4822-3489-3 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.crcpress.com
http://www.taylorandfrancis.com
http://www.copyright.com/
http://www.copyright.com/
http://www.copyright.com

Contents

Preface xi

Acknowledgments xiii

List of Figures xv

List of Tables xix

1 Introduction 1

1.1 How to Read This Book . 2
1.2 Reproducibility . 3

I R and Data Mining 5

2 Introduction to R 7

2.1 Starting with R . 7
2.2 Basic Interaction with the R Console . 9
2.3 R Objects and Variables . 10
2.4 R Functions . 12
2.5 Vectors . 16
2.6 Vectorization . 18
2.7 Factors . 19
2.8 Generating Sequences . 22
2.9 Sub-Setting . 24
2.10 Matrices and Arrays . 26
2.11 Lists . 30
2.12 Data Frames . 32
2.13 Useful Extensions to Data Frames . 36
2.14 Objects, Classes, and Methods . 40
2.15 Managing Your Sessions . 41

3 Introduction to Data Mining 43

3.1 A Bird’s Eye View on Data Mining . 43
3.2 Data Collection and Business Understanding 45

3.2.1 Data and Datasets . 45
3.2.2 Importing Data into R . 46

3.2.2.1 Text Files . 47
3.2.2.2 Databases . 49
3.2.2.3 Spreadsheets . 52

vii

viii Contents

3.2.2.4 Other Formats . 52
3.3 Data Pre-Processing . 53

3.3.1 Data Cleaning . 53
3.3.1.1 Tidy Data . 53
3.3.1.2 Handling Dates . 56
3.3.1.3 String Processing . 58
3.3.1.4 Dealing with Unknown Values 60

3.3.2 Transforming Variables . 62
3.3.2.1 Handling Different Scales of Variables 62
3.3.2.2 Discretizing Variables . 63

3.3.3 Creating Variables . 65
3.3.3.1 Handling Case Dependencies 65
3.3.3.2 Handling Text Datasets . 74

3.3.4 Dimensionality Reduction . 78
3.3.4.1 Sampling Rows . 78
3.3.4.2 Variable Selection . 82

3.4 Modeling . 87
3.4.1 Exploratory Data Analysis . 87

3.4.1.1 Data Summarization . 87
3.4.1.2 Data Visualization . 96

3.4.2 Dependency Modeling using Association Rules 110
3.4.3 Clustering . 119

3.4.3.1 Measures of Dissimilarity 119
3.4.3.2 Clustering Methods . 120

3.4.4 Anomaly Detection . 131
3.4.4.1 Univariate Outlier Detection Methods 132
3.4.4.2 Multi-Variate Outlier Detection Methods 133

3.4.5 Predictive Analytics . 140
3.4.5.1 Evaluation Metrics . 141
3.4.5.2 Tree-Based Models . 145
3.4.5.3 Support Vector Machines 151
3.4.5.4 Artificial Neural Networks and Deep Learning 158
3.4.5.5 Model Ensembles . 165

3.5 Evaluation . 172
3.5.1 The Holdout and Random Subsampling 174
3.5.2 Cross Validation . 177
3.5.3 Bootstrap Estimates . 179
3.5.4 Recommended Procedures . 181

3.6 Reporting and Deployment . 182
3.6.1 Reporting Through Dynamic Documents 183
3.6.2 Deployment through Web Applications 186

II Case Studies 191

4 Predicting Algae Blooms 193

4.1 Problem Description and Objectives . 193
4.2 Data Description . 194
4.3 Loading the Data into R . 194
4.4 Data Visualization and Summarization . 196
4.5 Unknown Values . 205

Contents ix

4.5.1 Removing the Observations with Unknown Values 205
4.5.2 Filling in the Unknowns with the Most Frequent Values 207
4.5.3 Filling in the Unknown Values by Exploring Correlations 208
4.5.4 Filling in the Unknown Values by Exploring Similarities between

Cases . 212
4.6 Obtaining Prediction Models . 214

4.6.1 Multiple Linear Regression . 215
4.6.2 Regression Trees . 220

4.7 Model Evaluation and Selection . 225
4.8 Predictions for the Seven Algae . 237
4.9 Summary . 239

5 Predicting Stock Market Returns 241

5.1 Problem Description and Objectives . 241
5.2 The Available Data . 242

5.2.1 Reading the Data from the CSV File 243
5.2.2 Getting the Data from the Web . 243

5.3 Defining the Prediction Tasks . 244
5.3.1 What to Predict? . 244
5.3.2 Which Predictors? . 247
5.3.3 The Prediction Tasks . 251
5.3.4 Evaluation Criteria . 252

5.4 The Prediction Models . 254
5.4.1 How Will the Training Data Be Used? 254
5.4.2 The Modeling Tools . 256

5.4.2.1 Artificial Neural Networks 256
5.4.2.2 Support Vector Machines 259
5.4.2.3 Multivariate Adaptive Regression Splines 260

5.5 From Predictions into Actions . 263
5.5.1 How Will the Predictions Be Used? 263
5.5.2 Trading-Related Evaluation Criteria 264
5.5.3 Putting Everything Together: A Simulated Trader 265

5.6 Model Evaluation and Selection . 271
5.6.1 Monte Carlo Estimates . 271
5.6.2 Experimental Comparisons . 272
5.6.3 Results Analysis . 278

5.7 The Trading System . 286
5.7.1 Evaluation of the Final Test Data 286
5.7.2 An Online Trading System . 291

5.8 Summary . 292

6 Detecting Fraudulent Transactions 295

6.1 Problem Description and Objectives . 295
6.2 The Available Data . 296

6.2.1 Loading the Data into R . 296
6.2.2 Exploring the Dataset . 297
6.2.3 Data Problems . 304

6.2.3.1 Unknown Values . 304
6.2.3.2 Few Transactions of Some Products 309

x Contents

6.3 Defining the Data Mining Tasks . 313
6.3.1 Different Approaches to the Problem 313

6.3.1.1 Unsupervised Techniques 313
6.3.1.2 Supervised Techniques . 314
6.3.1.3 Semi-Supervised Techniques 315

6.3.2 Evaluation Criteria . 316
6.3.2.1 Precision and Recall . 316
6.3.2.2 Lift Charts and Precision/Recall Curves 317
6.3.2.3 Normalized Distance to Typical Price 320

6.3.3 Experimental Methodology . 321
6.4 Obtaining Outlier Rankings . 323

6.4.1 Unsupervised Approaches . 323
6.4.1.1 The Modified Box Plot Rule 323
6.4.1.2 Local Outlier Factors (LOF) 327
6.4.1.3 Clustering-Based Outlier Rankings (ORh) 330

6.4.2 Supervised Approaches . 332
6.4.2.1 The Class Imbalance Problem 333
6.4.2.2 Naive Bayes . 335
6.4.2.3 AdaBoost . 339

6.4.3 Semi-Supervised Approaches . 344
6.5 Summary . 350

7 Classifying Microarray Samples 353

7.1 Problem Description and Objectives . 353
7.1.1 Brief Background on Microarray Experiments 353
7.1.2 The ALL Dataset . 354

7.2 The Available Data . 354
7.2.1 Exploring the Dataset . 357

7.3 Gene (Feature) Selection . 359
7.3.1 Simple Filters Based on Distribution Properties 360
7.3.2 ANOVA Filters . 362
7.3.3 Filtering Using Random Forests . 364
7.3.4 Filtering Using Feature Clustering Ensembles 367

7.4 Predicting Cytogenetic Abnormalities . 368
7.4.1 Defining the Prediction Task . 368
7.4.2 The Evaluation Metric . 369
7.4.3 The Experimental Procedure . 369
7.4.4 The Modeling Techniques . 370
7.4.5 Comparing the Models . 373

7.5 Summary . 381

Bibliography 383

Subject Index 395

Index of Data Mining Topics 399

Index of R Functions 401

Preface

The main goal of this book is to introduce the reader to the use of R as a tool for data
mining. R is a freely downloadable1 language and environment for statistical computing and
graphics. Its capabilities and the large set of available add-on packages make this tool an
excellent alternative to many existing (and expensive!) data mining tools.

The main goal of this book is not to describe all facets of data mining processes. Many
books exist that cover this scientific area. Instead we propose to introduce the reader to
the power of R and data mining by means of several case studies. Obviously, these case
studies do not represent all possible data mining problems that one can face in the real
world. Moreover, the solutions we describe cannot be taken as complete solutions. Our goal
is more to introduce the reader to the world of data mining using R through practical
examples. As such, our analysis of the case studies has the goal of showing examples of
knowledge extraction using R, instead of presenting complete reports of data mining case
studies. They should be taken as examples of possible paths in any data mining project
and can be used as the basis for developing solutions for the reader’s own projects. Still,
we have tried to cover a diverse set of problems posing different challenges in terms of
size, type of data, goals of analysis, and the tools necessary to carry out this analysis. This
hands-on approach has its costs, however. In effect, to allow for every reader to carry out
our described steps on his/her computer as a form of learning with concrete case studies,
we had to make some compromises. Namely, we cannot address extremely large problems
as this would require computer resources that are not available to everybody. Still, we think
we have covered problems that can be considered large and we have shown how to handle
the problems posed by different types of data dimensionality.

This second edition strongly revises the R code of the case studies, making it more up-
to-date with recent packages that have emerged in R. Moreover, we have decided to split
the book into two parts: (i) a first part with introductory material, and (ii) the second part
with the case studies. The first part includes a completely new chapter that provides an
introduction to data mining, to complement the already existing introduction to R. The idea
is to provide the reader with a kind of bird’s eye view of the data mining field, describing
more in depth the main topics of this research area. This information should complement
the lighter descriptions that are given during the case studies analysis. Moreover, it should
allow the reader to better contextualize the solutions of the case studies within the bigger
picture of data mining tasks and methodologies. Finally, we hope this new chapter can serve
as a kind of backup reference for the reader if more details on the methods used in the case
studies are required.

We do not assume any prior knowledge about R. Readers who are new to R and data
mining should be able to follow the case studies. We have tried to make the different case
studies self-contained in such a way that the reader can start anywhere in the document.
Still, some basic R functionalities are introduced in the first, simpler case studies, and are
not repeated, which means that if you are new to R, then you should at least start with the
first case studies to get acquainted with R. Moreover, as we have mentioned, the first part

1Download it from http://www.R-project.org.

xi

xii Preface

of the book includes a chapter with a very short introduction to R, which should facilitate
the understanding of the solutions in the following chapters. We also do not assume any
familiarity with data mining or statistical techniques. Brief introductions to different data
mining techniques are provided as necessary in the case studies. Still, the new chapter in the
first part with the introduction to data mining includes further information on the methods
we apply in the case studies as well as other methodologies commonly used in data mining.
Moreover, at the end of some sections we provide “further readings” pointers that may help
find more information if required. In summary, our target readers are more users of data
analysis tools than researchers or developers. Still, we hope the latter also find reading this
book useful as a form of entering the “world” of R and data mining.

The book is accompanied by a set of freely available R source files that can be obtained
at the book’s Web site.2 These files include all the code used in the case studies. They
facilitate the “do-it-yourself” approach followed in this book. We strongly recommend that
readers install R and try the code as they read the book. All data used in the case studies
is available at the book’s Web site as well. Moreover, we have created an R package called
DMwR2 that contains several functions used in the book as well as the datasets already in R
format. You should install and load this package to follow the code in the book (details on
how to do this are given in the first chapter).

2http://ltorgo.github.io/DMwR2

Acknowledgments

I would like to thank my family for all the support they give me. Without them I would
have found it difficult to embrace this project. Their presence, love, and caring provided
the necessary comfort to overcome the ups and downs of writing a book. The same kind
of comfort was given by my dear friends who were always ready for an extra beer when
necessary. Thank you all, and now I hope I will have more time to share with you.

I am also grateful for all the support of my research colleagues and to LIAAD/INESC Tec
LA as a whole. Thanks also to the University of Porto for supporting my research, and also
to my colleagues at the Department of Computer Science of the Faculty of Sciences of the
same University for providing such an enjoyable working environment. Part of the writing
of this book was financially supported by a sabbatical grant (SFRH/BSAB/113896/2015)
of FCT.

Finally, thanks to all students and colleagues who helped improving the first edition
with their feedback, as well as in proofreading drafts of the current edition. In particular, I
would like to thank to my students of Data Mining at the Masters on Computer Science of
the Faculty of Sciences of the University of Porto, and also my students of the Data Mining
with R subject at the Masters of Science on Business Analytics of Stern Business School of
NYU — their involvement and feedback on my teaching material is strongly reflected on
this new edition of the book.

Luis Torgo
Porto, Portugal

xiii

http://taylorandfrancis.com

List of Figures

2.1 A simple scatter plot . 11

3.1 The Typical Data Mining Workflow. 44
3.2 The front end interface provided by package DBI. 49
3.3 An example of using relative variations . 68
3.4 Forest fires in Portugal during 2000 . 73
3.5 An example plot . 97
3.6 An example of ggplot mappings with the Iris dataset 98
3.7 A barplot using standard graphics (left) and ggplot2 (right) 99
3.8 A histogram using standard graphics (left) and ggplot2 (right) 100
3.9 A boxplot using standard graphics (left) and ggplot2 (right) 101
3.10 A conditioned boxplot using standard graphics (left) and ggplot2 (right) . 102
3.11 Conditioned histograms through facets . 103
3.12 A scatterplot using standard graphics (left) and ggplot2 (right) 104
3.13 Two scatterplots with points differentiated by a nominal variable 105
3.14 Faceting a scatterplot in ggplot . 106
3.15 Scatterplot matrices with function pairs() 107
3.16 Scatterplot matrices with function ggpairs() 108
3.17 Scatterplot matrices involving nominal variables 109
3.18 A parallel coordinates plot . 110
3.19 Some frequent itemsets for the Boston Housing dataset 114
3.20 Support, confidence and lift of the rules 117
3.21 A matrix representation of the rules show the lift 118
3.22 A graph representation of a subset of rules 118
3.23 A silhouette plot . 124
3.24 The dendrogram for Iris . 127
3.25 The dendrogram cut at three clusters . 128
3.26 A classification (left) and a regression (right) tree. 146
3.27 The partitioning provided by trees. 146
3.28 The two classification trees for Iris . 150
3.29 Two linearly separable classes. 151
3.30 Mapping into a higher dimensionality. 152
3.31 Maximum margin hyperplane. 152
3.32 The maximum margin hyperplane and the support vectors. 153
3.33 SVMs for regression. 156
3.34 An artificial neuron. 159
3.35 A feed-forward multi-layer ANN architecture. 160
3.36 Visualizing the Boston neural network results 163
3.37 Marginal plot of Petal.Length . 173
3.38 k-Fold cross validation. 177
3.39 The results of a 10-fold CV estimation experiment 180

xv

xvi List of Figures

3.40 An example of an R markdown document and the final result. 185
3.41 A simple example of a Shiny web application. 188

4.1 The histogram of variable mxPH . 198
4.2 An “enriched” version of the histogram of variable extitMxPH (left) together

with a normal Q-Q plot (right) . 199
4.3 An “enriched” box plot for orthophosphate 200
4.4 A conditioned box plot of Algal a1 . 202
4.5 A conditioned violin plot of Algal a1 . 203
4.6 A conditioned dot plot of Algal a3 using a continuous variable 204
4.7 A visualization of a correlation matrix . 210
4.8 A histogram of variable mxPH conditioned by season 212
4.9 The values of variable mxPH by river size and speed 213
4.10 A regression tree for predicting algal a1 222
4.11 Errors scatter plot . 227
4.12 Visualization of the cross-validation results 231
4.13 Visualization of the cross-validation results on all algae 232
4.14 The CD Diagram for comparing all workflows against randomforest.v3. . . 237

5.1 S&P500 on the last 3 months and our T indicator 246
5.2 Variable importance according to the random forest 250
5.3 Three forms of obtaining predictions for a test period. 256
5.4 An example of two hinge functions with the same threshold. 261
5.5 The results of trading using Policy 1 based on the signals of an SVM . . . 270
5.6 The Monte Carlo experimental process. 273
5.7 The results on the final evaluation period of the “nnetRegr 288
5.8 The cumulative returns on the final evaluation period of the “nnetRegr . . 289
5.9 Yearly percentage returns of the “nnetRegr 290

6.1 The number of transactions per salesperson 299
6.2 The number of transactions per product 299
6.3 The distribution of the unit prices of the cheapest and most expensive

products . 301
6.4 Some properties of the distribution of unit prices 310
6.5 Smoothed (right) and non-smoothed (left) precision/recall curves 318
6.6 Lift (left) and cumulative recall (right) charts 320
6.7 The PR (left) and cumulative recall (right) curves of the 326
6.8 The PR (left) and cumulative recall (right) curves of the 330
6.9 The PR (left) and cumulative recall (right) curves of the 333
6.10 Using SMOTE to create more rare class examples 335
6.11 The PR (left) and cumulative recall (right) curves of the Naive Bayes and

ORh methods . 337
6.12 The PR (left) and cumulative recall (right) curves for the two versions of

Naive Bayes and ORh methods . 340
6.13 The PR (left) and cumulative recall (right) curves of the Naive Bayes, ORh,

and AdaBoost.M1 methods. 344
6.14 The PR (left) and cumulative recall (right) curves of the self-trained Naive

Bayes, together with the standard Naive Bayes and ORh methods 348
6.15 The PR (left) and cumulative recall (right) curves of AdaBoost.M1 with

self-training together with ORh and standard AdaBoost.M1 methods. . . . 350

List of Figures xvii

7.1 The distribution of the gene expression levels 359
7.2 The median and IQR of the gene expression levels 361
7.3 The median and IQR of the final set of genes 364
7.4 The median and IQR of the gene expression levels across the mutations . 366
7.5 The accuracy results of the top 10 workflows 379

http://taylorandfrancis.com

List of Tables

3.1 The grades of some students. 53
3.2 The grades of some students in a tidy format. 54
3.3 An example of a confusion matrix. 142
3.4 An example of a cost/benefit matrix. 142
3.5 A confusion matrix for prediction of a rare positive class. 143

5.1 A Confusion Matrix for the Prediction of Trading Signals. 254

6.1 A Confusion Matrix for the Illustrative Example. 319

xix

http://taylorandfrancis.com

Chapter 1
Introduction

R1 is a programming language and an environment for statistical computing (R Core Team,
2015b). It is similar to the S language developed at AT&T Bell Laboratories by Rick Becker,
John Chambers and Allan Wilks. There are versions of R for the Unix, Windows and
MacOS families of operating systems. Moreover, R runs on different computer architectures
like Intel, PowerPC, Alpha systems and Sparc systems. R was initially developed by Ihaka
and Gentleman (1996), both from the University of Auckland, New Zealand. The current
development of R is carried out by a core team of a dozen people from different institutions
around the world and it is supported by the R Foundation. R development takes advantage of
a growing community that cooperates in its development due to its open source philosophy.
In effect, the source code of every R component is freely available for inspection and/or
adaptation. This fact allows you to check and test the reliability of anything you use in R
and this ability may be crucial in many critical application domains. There are many critics
of the open source model. Most of them mention the lack of support as one of the main
drawbacks of open source software. It is certainly not the case with R! There are many
excellent documents, books and sites that provide free information on R. Moreover, the
excellent R-help mailing list is a source of invaluable advice and information. There are also
searchable mailing list archives that you can (and should!) use before posting a question.
More information on these mailing lists can be obtained at the R Web site in the section
“Mailing Lists”.

Data mining has to do with the discovery of useful, valid, unexpected, and understand-
able knowledge from data. These general objectives are obviously shared by other disciplines
like statistics, machine learning, or pattern recognition. One of the most important distin-
guishing issues in data mining is size. With the widespread use of computer technology
and information systems, the amount of data available for exploration has increased ex-
ponentially. This poses difficult challenges for the standard data analysis disciplines: One
has to consider issues like computational efficiency, limited memory resources, interfaces
to databases, etc. Other key distinguishing features are the diversity of data sources that
one frequently encounters in data mining projects, as well as the diversity of data types
(text, sound, video, etc.). All these issues turn data mining into a highly interdisciplinary
subject involving not only typical data analysts but also people working with databases,
data visualization on high dimensions, etc.

R has limitations with handling enormous datasets because all computation is carried
out in the main memory of the computer. This does not mean that you will not be able to
handle these problems. Taking advantage of the highly flexible database interfaces available
in R, you will be able to perform data mining on large problems. Moreover, the awareness
of the R community of this constant increase in dataset sizes has lead to the development
of many new R packages designed to work with large data or to provide interfaces to other
infrastructures better suited to heavy computation tasks. More information on this relevant
work can be found on the High-Performance and Parallel Computing in R task view2.

1http://www.r-project.org
2http://cran.at.r-project.org/web/views/HighPerformanceComputing.html

1

2 Data Mining with R: Learning with Case Studies

In summary, we hope that at the end of reading this book you are convinced that you
can do data mining on large problems without having to spend any money at all! That is
only possible due to the generous and invaluable contribution of lots of people who build
such wonderful tools as R.

1.1 How to Read This Book
The main spirit behind the book is

Learn by doing it!

The first part of the book provides you with some basic information on both R and Data
Mining. The second part of the book is organized as a set of case studies. The “solutions”
to these case studies are obtained using R. All the necessary steps to reach the solutions
are described. Using the book Web site3 and the book-associated R package (DMwR2), you
can get all of the code included in the document, as well as all data of the case studies.
This should facilitate trying them out by yourself. Ideally, you should read this document
beside your computer and try every step as it is presented to you in the book. R code and
its respective output is shown in the book using the following font:

> citation()

To cite R in publications use:

R Core Team (2016). R: A language and environment for
statistical computing. R Foundation for Statistical Computing,
Vienna, Austria. URL https://www.R-project.org/.

A BibTeX entry for LaTeX users is

@Manual{,
title = {R: A Language and Environment for Statistical Computing},
author = {{R Core Team}},
organization = {R Foundation for Statistical Computing},
address = {Vienna, Austria},
year = {2016},
url = {https://www.R-project.org/},

}

We have invested a lot of time and effort in creating R, please
cite it when using it for data analysis. See also
'citation("pkgname")' for citing R packages.

R commands are entered at R command prompt, “>” in an interactive fashion. Whenever
you see this prompt you can interpret it as R waiting for you to enter a command. You type
in the commands at the prompt and then press the enter key to ask R to execute them.
This may or may not produce some form of output (the result of the command) and then
a new prompt appears. At the prompt you may use the arrow keys to browse and edit

3http://ltorgo.github.io/DMwR2

Introduction 3

previously entered commands. This is handy when you want to type commands similar to
what you have done before as you avoid typing them again.

Still, you can take advantage of the code provided at the book Web site to copy and
paste between your browser or editor and the R console, thus avoiding having to type all
the commands described in the book. This will surely facilitate your learning experience
and improve your understanding of its potential.

1.2 Reproducibility
One of the main goals of this book is to provide you with illustrative examples of how

to address several data mining tasks using the tools made available by R. For this to be
possible we have worked hard to make sure all cases we describe are reproducible by our
readers on their own computers. This means that if you follow all steps we describe in the
book you should get the same results we describe.

There are two essencial components of this reproducibility goal: (i) the used R code;
and (ii) the data of the case studies. Accompanying this book we provide two other means
of facilitating your access to the code and data: (i) the book Web page; and (ii) the book
R package. Together with the descriptions included in this book, the Web page and the
package should allow you to easily replicate what we describe and also re-use and/or adapt
it to your own application domains.

The book Web page4 provides access to all code used in the book in a copy/paste-friendly
manner, so that you can easily copy it from your browser into your R session. The code is
organized by chapters and sections to facilitate the task of finding it.

The Web page also contains other useful information like the list of packages we use,
or the data sets, as well as other files containing some of the objects created in the book,
particularly when these can take considerable time to compute on more average desktop
computers.

R is a very dynamic “ecosystem”. This means that when you read this book most proba-
bly some of the packages we use (or even R itself) already have new versions out. Although
this will most probably not create any problem, in the sense that the code we show will still
work with these new versions, we can not be sure of this. If something stops working due to
these new versions we will try to quickly post solutions in the “Errata” section of the book
Web page. The book and the R code in it was created and tested in the following R version:

> R.version

_
platform x86_64-apple-darwin13.4.0
arch x86_64
os darwin13.4.0
system x86_64, darwin13.4.0
status
major 3
minor 3.1
year 2016
month 06
day 21

4http://ltorgo.github.io/DMwR2

4 Data Mining with R: Learning with Case Studies

svn rev 70800
language R
version.string R version 3.3.1 (2016-06-21)
nickname Bug in Your Hair

At the book Web page you will also find the information on the versions of all used
packages in our R system when the code was executed.

The book R package is another key element for allowing reproducibility. This package
contains several of the functions we describe and/or use in the book, as well as the datasets
of the case studies (which as we have mentioned above are also available in the book Web
page). This package is available and installable from the usual sources, i.e. the R central
repository (CRAN). It is possible that the package evolves to new versions if any bug is found
in the code we provide. These corrections will tend to follow a slow pace as recommended
by CRAN policies. In this context, for more up-to-date versions of the package, which
may include not yet so well tested solutions (so use it at your own risk), you may wish to
download and install the development version of the package from its Web page:
https://github.com/ltorgo/DMwR2

Part I

A Short Introduction to R and
Data Mining

5

http://taylorandfrancis.com

Chapter 2
Introduction to R

This chapter provides a very short introduction to the main features of the R language.
We do not assume any familiarity with computer programming. Readers should be able to
easily follow the examples presented in this chapter. Still, if you feel some lack of motivation
to continue reading this introductory material, do not worry. You may proceed to the case
studies and then return to this introduction as you get more motivated by the concrete
applications.

The material in this chapter should serve as a quick tutorial for those that are not
familiar with the basics of the R language. Some other more specific aspects of R will also
appear in the next chapter when we introduce the reader to some concepts of Data Mining.
Finally, further learning will also take place when presenting the case studies in the second
part of the book. Still, some basic knowledge of R is necessary to start addressing these
case studies and this chapter should provide that in case you do not have it.

2.1 Starting with R
R is a functional language for statistical computation and graphics. It can be seen as a

dialect of the S language (developed at AT&T) for which John Chambers was awarded the
1998 Association for Computing Machinery (ACM) Software award that mentioned that
this language “forever altered how people analyze, visualize and manipulate data”.

R can be quite useful just by using it in an interactive fashion at its command line.
Still, more advanced uses of the system will lead the user to develop his own functions to
systematize repetitive tasks, or even to add or change some functionalities of the existing
add-on packages, taking advantage of being open source.

The easiest way to install R in your system is to obtain a binary distribution from the
R Web site1 where you can follow the link that takes you to the CRAN (Comprehensive
R Archive Network) site to obtain, among other things, the binary distribution for your
particular operating system/architecture. If you prefer to build R directly from the sources,
you can get instructions on how to do it from the CRAN but most of the times that is not
necessary at all.

After downloading the binary distribution for your operating system you just need to
follow the instructions that come with it. In the case of the Windows version, you simply
execute the downloaded file (R-3.3.1-win.exe)2 and select the options you want in the
following menus. In some operating systems you may need to contact your system admin-
istrator to fulfill the installation task due to lack of permissions to install software.

To run R in Windows you simply double-click the appropriate icon on your desktop,

1http://www.R-project.org.
2The actual name of the file changes with newer versions. This is the name for version 3.3.1

7

8 Data Mining with R: Learning with Case Studies

while in Unix versions you should type R at the operating system prompt. Both will bring
up the R console with its prompt “>”.

If you want to quit R you can issue the command q() at the prompt. You will be asked if
you want to save the current workspace. You should answer yes only if you want to resume
your current analysis at the point you are leaving it, later on.

A frequently used alternative way to interact with R is through RStudio3. This free
software can be downloaded and installed for the most common setups (e.g. Linux, Windows
or Mac OS X). It is an integrated development environment that includes on the same
graphical user interface several important elements of R, like its console where you can
interact with R, a script editor where you can write more complex programs/solutions to
your problems, an interface to browse the help pages of R, and many other useful facilities.
I strongly recommend its usage, particularly if you are starting with R.4

Although the set of tools that comes with R is by itself quite powerful, it is natural
that you will end up wanting to install some of the large (and growing) set of add-on
packages available for R at CRAN. In the Windows version this is easily done through the
“Packages” menu. After connecting your computer to the Internet you should select the
“Install package from CRAN...” option from this menu. This option will present a list
of the packages available at CRAN. You select the one(s) you want, and R will download the
package(s) and self-install it(them) on your system. In Unix versions, things may be slightly
different depending on the graphical capabilities of your R installation. Still, even without
selection from menus, the operation is simple.5 Suppose you want to download the package
that provides functions to connect to MySQL databases. This package name is RMySQL.6
You just need to type the following command at R prompt:

> install.packages("RMySQL")

The install.packages() function has many parameters, among which there is the
repos argument that allows you to indicate the nearest CRAN mirror.7 Still, the first time
you run the function in an R session, it will prompt you for the repository you wish to use.

One thing that you surely should do is to install the package associated with this book,
named DMwR2. This package will give you access to several functions used throughout
the book as well as the datasets. You install the package as any other package available
on CRAN, i.e by issuing the following command at your R prompt (or using the respective
menu if using RStudio),

> install.packages("DMwR2")

Once this procedure is finished you may use the book package when necessary by loading
it as any other package,

> library(DMwR2)

The function installed.packages() allows you to know the packages currently in-
stalled in your computer,

3https://www.rstudio.com/
4Other alternatives include for instance the excellent Emacs package called ESS (http://ess.r-project.

org/), in case you prefer Emacs as your editor.
5Please note that the following code also works in other versions, although you may find the use of the

menus more practical.
6You can get an idea of the functionalities of each of the R packages in the R FAQ (frequently asked

questions) at CRAN.
7The list of available mirrors can be found at http://cran.r-project.org/mirrors.html.

Introduction to R 9

> installed.packages()

This produces a long output with each line containing a package, its version information,
the packages it depends on, and so on. A more user-friendly, although less complete, list of
the installed packages can be obtained by issuing

> library()

The following command can be very useful as it allows you to check whether there are
newer versions of your installed packages at CRAN:

> old.packages()

Moreover, you can use the following command to update all your installed packages:

> update.packages()

R has an integrated help system that you can use to know more about the system and
its functionalities. Moreover, you can find extra documentation at the R site. R comes with
a set of HTML files that can be read using a Web browser8. On Windows and Mac OS
X versions of R, these pages are accessible through the help menu. Alternatively, you can
issue help.start() at the prompt to launch a browser showing the HTML help pages.
Another form of getting help is to use the help() function. For instance, if you want some
help on the plot() function, you can enter the command “help(plot)” (or alternatively,
?plot). A quite powerful alternative, provided you are connected to the Internet, is to
use the RSiteSearch() function that searches for key words or phrases in the mailing list
archives, R manuals, and help pages; for example,

> RSiteSearch('neural networks')

Finally, there are several places on the Web that provide help on several facets of R,
such as the sites http://www.rseek.org/ or http://www.rdocumentation.org/. For more
direct questions related to R, stack overflow is a “must”9.

2.2 Basic Interaction with the R Console
The R console is the place where you carry out most of the interaction with R. This

allows for easy interactive exploration of ideas that may solve your data analysis problems.
Frequently, after this exploration phase one tends to dump the sequence of R commands
that lead to the solution we have found into an R script file. These script files can then
be reused, for instance by asking R to execute all commands contained in the script file in
sequence.

The interaction with the R console consists of typing some instruction followed by the
Enter key, and receiving back the result of this command. The simplest example of this
usage would be to ask R to carry out some calculation:

8Obviously if you are using RStudio it is even easier to browse the help pages.
9http://stackoverflow.com/questions/tagged/r

10 Data Mining with R: Learning with Case Studies

> 4 + 3 / 5^2

[1] 4.12

The rather cryptic “[1]” in front of the output can be read as “this output line is
showing values starting from the first element of the object”. This is particularly useful for
results containing many values, as these may be spread over several lines of output. For now
we can simply ignore the “[1]” as we will return to this issue later.

More interesting usages of R typically involve some of its many functions, as shown in
the following simple examples:

> rnorm(4, mean = 10, sd = 2)

[1] 10.257398 10.552028 9.677471 4.615118

> mean(sample(1:10, 5))

[1] 6

The first of these instructions randomly generates 4 numbers from a normal distribution
with mean 10 and standard deviation 2, while the second calculates the mean of 5 random
numbers generated from the interval of integers from 1 to 10. This last instruction is also
an example of something we see frequently in R- function composition. This mathematical
concept involves applying a function to the result of another function, in this case calculating
the mean of the result of the call to the function sample().

Another frequent task we will carry out at the R prompt is to generate some statistical
graph of a dataset. For instance, in Figure 2.1 we see a scatter plot containing 5 points
whose coordinates were randomly generated in the interval 1 to 10. The code to obtain such
a graph is the following:10

> plot(x=sample(1:10,5),y=sample(1:10,5),
+ main="Five random points",xlab="X values",ylab="Y values")

These are just a few short examples of the typical interaction with R. In the next sections
we will learn about the main concepts behind the R language that will allow us to carry out
useful data analysis tasks with this tool.

2.3 R Objects and Variables
Everything in R is stored as an object. An object is most of the time associated with a

variable name that allows us to refer to its content. We can think of a variable as referring
to some storage location in the computer memory that holds some content (an object) that
can range from a simple number to a complex model.

R objects may store diverse types of information. The simplest content is some value of

10The “+” sign you see is the continuation prompt. It appears any time you type Enter before you finish
some statement as a way of R reminding you that there is something missing till it can execute your order.
You should remember that these prompt characters are not to be entered by you! They are automatically
printed by R (as with the normal prompt “>”).

Introduction to R 11

2 4 6 8 10

2
4

6
8

Five random points

X values

Y
 v

al
ue

s

FIGURE 2.1: A simple scatter plot.

one of R basic data types : numeric, character, or logical values11. Character values in R are
strings of characters12 enclosed by either single or double quotes (e.g. "hello" or 'today'),
while the logical values are either true or false.13 Please be aware that R is case-sensitive
so true and false must be in capital letters!

Other more complex data types may also be stored in objects. We will see examples of
this in the following sections.

Content (i.e. objects) may be stored in a variable using the assignment operator. This
operator is denoted by an angle bracket followed by a minus sign (<-):14

> vat <- 0.2

The effect of the previous instruction is thus to store the number 0.2 on a variable named
vat. By simply entering the name of a variable at the R prompt one can see its contents:15

> vat

[1] 0.2

Below you will find other examples of assignment statements. These examples should
make it clear that this is a destructive operation, as any variable can only have a single
content at any time t. This means that by assigning some new content to an existing variable,
you in effect lose its previous content:

11Things are in effect slightly more complex, as R is also able to distinguish between floating point and
integer numbers. Still, this is seldom required, unless you are heavily concerned with memory usage and
CPU speed. Moreover, R also has complex numbers as another base data type but again this is not frequently
used.

12This means the character type is in effect a set of characters, which are usually known as strings in
some programming languages, and not a single character as you might expect.

13You may actually also use T or F.
14You may also use the = sign but I would not recommend it as it may be confused with testing for

equality.
15Or an error message if we type the name incorrectly, a rather frequent error!

12 Data Mining with R: Learning with Case Studies

> y <- 39
> y

[1] 39

> y <- 43
> y

[1] 43

You can also assign numerical expressions to a variable. In this case the variable will
store the result of the evaluation of the expression, not the expression:

> z <- 5
> w <- z^2
> w

[1] 25

> i <- (z * 2 + 45)/2
> i

[1] 27.5

This means that we can think of the assignment operation as “evaluate whatever is given
on the right side of the operator, and assign (store) the result (an object of some type) of
this evaluation in the variable whose name is given on the left side”.

Every object you create will stay in the computer memory until you delete it (or you
exit R). You may list the objects currently in the memory by issuing the ls() or objects()
command at the prompt. If you do not need an object, you may free some memory space
by removing it using the function rm():

> ls()

[1] "i" "vat" "w" "y" "z"

> rm(vat,y,z,w,i)

Variable names may consist of any upper- and lower-case letters, the digits 0 to 9 (except
in the beginning of the name), and also the period, “.”, which behaves like a letter. Once
again we remind that names in R are case sensitive, meaning that Color and color are two
distinct variables with potentially very different content. This is in effect a frequent cause
of frustration for beginners who keep getting “object not found” errors. If you face this type
of error, start by checking the correctness of the name of the object causing the error.

2.4 R Functions
R functions are a special type of R object designed to carry out some operation. R

functions, like mathematical functions, are applied to some set of arguments and produce a
result. In R, both the arguments that we provide when we call the function and the result

Introduction to R 13

of the function execution are R objects whose type will depend on the function. R functions
range from simple objects implementing some standard calculation, e.g. calculating the
square root of a number, to more complex functions that can obtain some model of a
dataset, e.g. a neural network. R already comes with an overwhelming set of functions
available for us to use, but as we will see, the user can also create new functions.

In terms of notation, a function has a name and can have zero or more parameters.
When we call (execute) the function we use its name followed by the arguments between
parentheses separated by commas16,

> max(4, 5, 6, 12, -4)

[1] 12

In the above example we are calling a function named max() that as the name suggests
returns the maximum value of the arguments supplied by the user when calling the function.

In R we frequently tend to use function composition that, as mentioned before, consists
of applying functions to the result of other functions, as shown in this example where we
obtain the maximum of a random sample of 30 integers in the interval 1 to 10017:

> max(sample(1:100, 30))

[1] 99

R allows the user to create new functions. This is a useful feature, particularly when you
want to automate certain tasks that you have to repeat over and over. Instead of typing
the instructions that perform this task every time you want to execute it, you encapsulate
them in a new function and then simply use it whenever necessary.

R functions are objects that can be stored in a variable. The contents of these objects
are the statements that, when executed, carry out the task for which the function was
designed. These variables where we store the content of a function will act as the function
name. Thus to create a new function we use the assignment operator to store the contents
of the function in a variable (whose name will be the name of the function).

Let us start with a simple example. Suppose you often want to calculate the standard
error of a mean associated with a set of values. By definition, the standard error of a sample
mean is given by

standard error =
√
s2

n

where s2 is the sample variance and n the sample size.
Given a set of numbers, we want a function to calculate the respective standard error

of the mean of these numbers. Let us decide to call this function se. Before proceeding to
create the function we should check whether there is already a function with this name in
R. If that is the case, then it would be better to use another name, not to “hide” the other
R function from the user.18 We can check the existence of some object with a certain name
using the function exists(),

16Note that even if the function takes no arguments we need to call it with the parentheses, e.g. f().
17Due to the random nature of the sample() function you may get a different maximum if you run this

code.
18You do not have to worry about overriding the definition of the R function. It will continue to exist,

although your new function with the same name will be on top of the search path of R, thus “hiding” the
other standard function.

14 Data Mining with R: Learning with Case Studies

> exists("se")

[1] FALSE

The fact that R answered false means that there is no object with the name se and
thus we are safe to create a function with that name. The following is a possible way to
create our function:

> se <- function(x) {
+ v <- var(x)
+ n <- length(x)
+ return(sqrt(v/n))
+ }

Thus, to create a function object, you assign to its name something with the general
form

function(<set of parameters>) { <set of R instructions> }

A set of R instructions (a block) is delimited by curly braces and it is formed by each
instruction on its own line. This means that in our example we have decided that to calculate
the standard error of the sample mean of a set of numbers it would be sufficient to execute
the above 3 statements. The first of these calls the function var() with the content of the
variable x. This variable is a parameter of the function. Parameters are special variables
that will hold the values supplied in the arguments of the function when the user calls it.
This means that whenever some user calls our se function he will have to supply a set of
values in the first (and only) argument of this function. These values will be assigned by R
to the parameter (variable) x. The function var() is an R function that returns the variance
of a set of values, that we decided to store in the variable v. The second statement uses
function length() to obtain the number of values in x, that we store in another variable
named n. Having these two quantities we are ready to calculate the standard error, by
simply calculating the square root (function sqrt()) of the quotient of v by n. The result
of this calculation is then returned back to the user by using the function return().

After creating this function, we could use it as follows:

> mySample <- rnorm(100, mean=20, sd=4)
> se(mySample)

[1] 0.3550299

In the above code we have used the function rnorm() to obtain a random sample of 100
numbers from a normal distribution with mean 20 and standard deviation 4. We have then
called our function with this set of numbers. Please note that due to the random nature of
the function rnorm() you may get a different result.

Sometimes we want to create functions that may have some parameters that have default
values. For instance, we could create a function to convert a value in meters to other units
of length. This function could take as a first argument the value in meters and as a second
argument the target unit. However, we could allow the user to omit this second argument
by setting a default value when we create the function. The following is an illustration of
this:

Introduction to R 15

> convMeters <- function(val, to="inch") {
+ mult <- switch(to,inch=39.3701,foot=3.28084,yard=1.09361,mile=0.000621371,NA)
+ if (is.na(mult)) stop("Unknown target unit of length.")
+ else return(val*mult)
+ }
> convMeters(23,"foot")

[1] 75.45932

> convMeters(40,"inch")

[1] 1574.804

> convMeters(40)

[1] 1574.804

> convMeters(2.4,"km")

Error in convMeters(2.4, "km"): Unknown target unit of length.

The above function is able to convert meters to inches, feet, yards, and miles. As seen
in the example calls, the user may omit the second argument as this has a default value
(“inch”). This default value was established at the function creation by telling R not only
the name of the parameter (to), but also a value that the parameter should take in case
the user does not supply another value. Note that this value will always be overridden by
any value the user supplies when calling the function.

The code of the function also illustrates a few other functions available in R. Function
switch() for instance, allows us to compare the contents of a variable (to in the above
code), against a set of options. For each option we can supply the value that will be the
result of the function switch(). In the above example, if the variable to has the value “inch”
the value assigned to the variable mult will be 39.3701. The function also allows to supply
a return value in case the variable does not match any of the alternatives. In this case we
are returning the special value NA. The goal here is to foresee situations where the user
supplies a target unit that is unknown to this function. The following statement is another
conditional statement. The if statement allows us to have conditional execution of other
statements. In this case if the value assigned to variable mult was NA (which is checked
by a call to the function is.na()), then we want to stop the execution of the function
with some sort of error message (using function stop()) because the user has supplied an
unknown target unit. Otherwise we simply carry out the conversion calculation and return
it as the result of the function execution.

The way we call functions (either existing or the ones we create) can also have some
variations, namely in terms of the way we supply the values for the parameters of the
functions. The most frequent setup is when we simply supply a value for each parameter,
e.g.:

> convMeters(56.2,"yard")

[1] 61.46088

Calling the function this way we are supplying the values for the parameters “by posi-
tion”, i.e. the value in the first argument (56.2) is assigned by R to the first parameter of
the function (val), and the value in the second argument (“yard”) is assigned to the second

16 Data Mining with R: Learning with Case Studies

parameter (to). We may also supply the parameter values “by name”. We could get the
same exact result with the following call:

> convMeters(to="yard",val=56.2)

[1] 61.46088

In effect, we can even mix both forms of calling a function,

> convMeters(56.2,to="yard")

[1] 61.46088

Calling by name is particularly useful with functions with a lot of parameters, most of
which with default values. Say we have a function named f with 20 parameters, all but the
two first having default values. Suppose we want to call the function but we want to supply
a value different from the default for the tenth parameter named tol. With the possibility
of calling by name we could do something like:

> f(10,43.2,tol=0.25)

This avoids having to supply all the values till the tenth argument in order to be able
to use a value different from the default for this parameter.

2.5 Vectors
The most basic data object in R is a vector. Even when you assign a single number to a

variable (like in x <- 45.3), you are creating a vector containing a single element. A vector
is an object that can store a set of values of the same base data type. Thus you may have
for instance vectors of strings, logical values, or numbers. The length of a vector object is
the number of elements in it, and can be obtained with the function length().

Most of the time you will be using vectors with length larger than 1. You can create a
vector in R, using the c() function, which combines its arguments to form a vector:

> v <- c(4, 7, 23.5, 76.2, 80)
> v

[1] 4.0 7.0 23.5 76.2 80.0

> length(v)

[1] 5

> mode(v)

[1] "numeric"

The mode() function returns the base data type of the values stored in an object. All
elements of a vector must belong to the same base data type. If that is not true, R will force
it by type coercion. The following is an example of this:

Introduction to R 17

> v <- c(4, 7, 23.5, 76.2, 80, "rrt")
> v

[1] "4" "7" "23.5" "76.2" "80" "rrt"

> mode(v)

[1] "character"

All elements of the vector have been converted to the character type, i.e. strings.
All vectors may contain a special value called NA. This represents a missing value:

> u <- c(4, 6, NA, 2)
> u

[1] 4 6 NA 2

> k <- c(TRUE, FALSE, FALSE, NA, TRUE)
> k

[1] TRUE FALSE FALSE NA TRUE

You can access a particular element of a vector through an index between square brack-
ets:

> u[2]

[1] 6

The example above gives you the second element of the vector u. In Section 2.9 we will
explore more powerful indexing schemes.

You can also change the value of one particular vector element by using the same indexing
strategies:

> k[4] <- TRUE
> k

[1] TRUE FALSE FALSE TRUE TRUE

R allows you to create empty vectors like this:

> x <- vector()

The length of a vector can be changed by simply adding more elements to it using a
previously nonexistent index. For instance, after creating the empty vector x, you could
type

> x[3] <- 45
> x

[1] NA NA 45

Notice how the first two elements have a missing value, NA. This sort of flexibility comes
with a cost. Contrary to other programming languages, in R you will not get an error if you
use a position of a vector that does not exist:

18 Data Mining with R: Learning with Case Studies

> length(x)

[1] 3

> x[10]

[1] NA

> x[5] <- 4
> x

[1] NA NA 45 NA 4

To shrink the size of a vector, you can take advantage of the fact that the assignment
operation is destructive, as we have mentioned before. For instance,

> v <- c(45, 243, 78, 343, 445, 44, 56, 77)
> v

[1] 45 243 78 343 445 44 56 77

> v <- c(v[5], v[7])
> v

[1] 445 56

Through the use of more powerful indexing schemes to be explored in Section 2.9, you
will be able delete particular elements of a vector in an easier way.

2.6 Vectorization
One of the most powerful aspects of the R language is the vectorization of several of its

available functions. These functions can be applied directly to a vector of values producing
an equal-sized vector of results. For instance,

> v <- c(4, 7, 23.5, 76.2, 80)
> sqrt(v)

[1] 2.000000 2.645751 4.847680 8.729261 8.944272

The function sqrt() calculates the square root of its argument. In this case we have used
a vector of numbers as its argument. Vectorization makes the function produce a vector of
the same length, with each element resulting from applying the function to the respective
element of the original vector.

You can also use this feature of R to carry out vector arithmetic:

> v1 <- c(4, 6, 87)
> v2 <- c(34, 32.4, 12)
> v1 + v2

[1] 38.0 38.4 99.0

Introduction to R 19

What if the vectors do not have the same length? R will use a recycling rule by repeating
the shorter vector until it reaches the size of the larger vector. For example,

> v1 <- c(4, 6, 8, 24)
> v2 <- c(10, 2)
> v1 + v2

[1] 14 8 18 26

It is just as if the vector c(10,2) was c(10,2,10,2). If the lengths are not multiples,
then a warning is issued, but the recycling still takes place (it is a warning, not an error):

> v1 <- c(4, 6, 8, 24)
> v2 <- c(10, 2, 4)
> v1 + v2

Warning in v1 + v2: longer object length is not a multiple of shorter object length

[1] 14 8 12 34

As mentioned before, single numbers are represented in R as vectors of length 1. Together
with the recycling rule this is very handy for operations like the one shown below:

> v1 <- c(4, 6, 8, 24)
> 2 * v1

[1] 8 12 16 48

Notice how the number 2 (actually the vector c(2)!) was recycled, resulting in multi-
plying all elements of v1 by 2. As we will see, this recycling rule is also applied with other
objects, such as arrays and matrices.

2.7 Factors
Factors provide an easy and compact form of handling categorical (nominal) data. Fac-

tors have levels that are the possible values they can take. Factors are particularly useful in
datasets where you have nominal variables with a fixed number of possible values. Several
graphical and summarization functions that we will explore in the following chapters take
advantage of this type of information. Factors allow you to use and show the values of your
nominal variables as they are, which is clearly more interpretable for the user, while inter-
nally R stores these values as numeric codes that are considerably more memory efficient
(but this is transparent to the user).

Let us see how to create factors in R. Suppose you have a vector with the sex of ten
individuals:

> g <- c("f", "m", "m", "m", "f", "m", "f", "m", "f", "f")
> g

[1] "f" "m" "m" "m" "f" "m" "f" "m" "f" "f"

You can transform this vector into a factor by:

20 Data Mining with R: Learning with Case Studies

> g <- factor(g)
> g

[1] f m m m f m f m f f
Levels: f m

Notice that you do not have a character vector anymore. Actually, as mentioned above,
factors are represented internally as numeric vectors.19 In this example, we have two levels,
‘f’ and ‘m’, which are represented internally as 1 and 2, respectively. Still, you do not need
to bother about this as you can use the “original” character values, and R will also use them
when showing you the factors. So the coding translation, motivated by efficiency reasons,
is transparent to you, as you can confirm in the following example:

> g[3]

[1] m
Levels: f m

> g[3] == "m"

[1] TRUE

In the above example we asked R to compare the third element of vector g with the char-
acter value "m", and the answer TRUE, which means that R internally translated this char-
acter value into the respective code of the factor g. Note that if you tried to do g[3] == m
you would get an error... why?

Suppose you have five extra individuals whose sex information you want to store in
another factor object. Suppose that they are all males. If you still want the factor object to
have the same two levels as object g, you must use the following:

> other.g <- factor(c("m", "m", "m", "m", "m"), levels = c("f","m"))
> other.g

[1] m m m m m
Levels: f m

Without the levels argument the factor other.g would have a single level ("m").
One of the many things you can do with factors is to count the occurrence of each

possible value. Try this:

> table(g)

g
f m
5 5

> table(other.g)

other.g
f m
0 5

The table() function can also be used to obtain cross-tabulation of several factors.
19You can confirm it by typing mode(g).

Introduction to R 21

Suppose that we have in another vector the age category of the ten individuals stored in
vector g. You could cross-tabulate these two factors as follows:

> a <- factor(c('adult','adult','juvenile','juvenile','adult',
+ 'adult','adult','juvenile','adult','juvenile'))
> table(a, g)

g
a f m

adult 4 2
juvenile 1 3

Sometimes we wish to calculate the marginal and relative frequencies for this type of
contingency table. The following gives you the totals for both the sex and the age factors
of this dataset:

> t <- table(a, g)
> margin.table(t, 1)

a
adult juvenile

6 4

> margin.table(t, 2)

g
f m
5 5

The “1” and “2” in the function calls represent the first and second dimensions of the
table, that is, the rows and columns of t.

For relative frequencies with respect to each margin and overall, we do

> prop.table(t, 1)

g
a f m

adult 0.6666667 0.3333333
juvenile 0.2500000 0.7500000

> prop.table(t, 2)

g
a f m

adult 0.8 0.4
juvenile 0.2 0.6

> prop.table(t)

g
a f m

adult 0.4 0.2
juvenile 0.1 0.3

Notice that if we wanted percentages instead, we could simply multiply these function
calls by 100 making use of the concept of vectorization we have mentioned before.

22 Data Mining with R: Learning with Case Studies

2.8 Generating Sequences
R has several facilities to generate different types of sequences. For instance, if you want

to create a vector containing the integers between 1 and 100, you can simply type

> x <- 1:100

which creates a vector called x containing 100 elements—the integers from 1 to 100.
You should be careful with the precedence of the operator “:”. The following examples

illustrate this danger:

> 10:15 - 1

[1] 9 10 11 12 13 14

> 10:(15 - 1)

[1] 10 11 12 13 14

Please make sure you understand what happened in the first command (remember the
recycling rule!).

You may also generate decreasing sequences such as the following:

> 5:0

[1] 5 4 3 2 1 0

To generate sequences of real numbers, you can use the function seq(),

> seq(-4, 1, 0.5)

[1] -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

This instruction generates a sequence of real numbers between −4 and 1 in increments
of 0.5. Here are a few other examples of the use of the function seq():20

> seq(from = 1, to = 5, length = 4)

[1] 1.000000 2.333333 3.666667 5.000000

> seq(from = 1, to = 5, length = 2)

[1] 1 5

> seq(length = 10, from = -2, by = 0.2)

[1] -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2

Another very useful function to generate sequences with a certain pattern is the function
rep():

20You may want to have a look at the help page of the function (typing, for instance, ‘?seq’), to better
understand its arguments and variants.

