The R Series

Implementing
Reproducible
Research

Edited by

Victoria Stodden
Friedrich Leisch
Roger D. Peng

The R Series

Implementing
Reproducible
Research

Edited by
Victoria Stodden

Columbia University
New York, New York, USA

Friedrich Leisch

University of Natural Resources and Life Sciences
Institute of Applied Statistics and Computing
Vienna, Austria

Roger D. Peng

Johns Hopkins University
Baltimore, Maryland, USA

CRC Press
Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group an informa business

A CHAPMAN & HALL BOOK

Chapman & Hall/CRC
The R Series

Series Editors

John M. Chambers Torsten Hothorn
Department of Statistics Division of Biostatistics
Stanford University University of Zurich
Stanford, California, USA Switzerland
Duncan Temple Lang Hadley Wickham
Department of Statistics Department of Statistics
University of California, Davis Rice University
Davis, California, USA Houston, Texas, USA

Aims and Scope

This book series reflects the recent rapid growth in the development and application
of R, the programming language and software environment for statistical computing
and graphics. R is now widely used in academic research, education, and industry.
It is constantly growing, with new versions of the core software released regularly
and more than 4,000 packages available. It is difficult for the documentation to
keep pace with the expansion of the software, and this vital book series provides a
forum for the publication of books covering many aspects of the development and
application of R.

The scope of the series is wide, covering three main threads:
Applications of R to specific disciplines such as biology, epidemiology,
genetics, engineering, finance, and the social sciences.
Using R for the study of topics of statistical methodology, such as linear and
mixed modeling, time series, Bayesian methods, and missing data.
The development of R, including programming, building packages, and
graphics.
The books will appeal to programmers and developers of R software, as well as
applied statisticians and data analysts in many fields. The books will feature
detailed worked examples and R code fully integrated into the text, ensuring their
usefulness to researchers, practitioners and students.

Published Titles

Analyzing Baseball Data with R, Max Marchi and Jim Albert

Customer and Business Analytics: Applied Data Mining for Business Decision
Making Using R, Daniel S. Putler and Robert E. Krider

Dynamic Documents with R and knitr, Yihui Xie
Event History Analysis with R, Géran Brostrém

Implementing Reproducible Research, Victoria Stodden,
Friedrich Leisch, and Roger D. Peng

Programming Graphical User Interfaces with R, Michael F. Lawrence and
John Verzani

R Graphics, Second Edition, Paul Murrell
Reproducible Research with R and RStudio, Christopher Gandrud

Statistical Computing in C++ and R, Randall L. Eubank and Ana Kupresanin

MATLAB?® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® soft-
ware or related products does not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or particular use of the MATLAB® software.

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20131025

International Standard Book Number-13: 978-1-4665-6159-5 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Implementing reproducible research / [edited by] Victoria Stodden, Friedrich Leisch, and

Roger D. Peng.

pages cm. -- (Chapman & Hall/CRC the R series)

Includes bibliographical references and index.

ISBN 978-1-4665-6159-5

1. Reproducible research. 2. Research--Statistical methods. I. Stodden, Victoria,
editor of compilation. II. Leisch, Friedrich, editor of compilation. III. Peng, Roger D.,
editor of compilation.

Q180.55.57147 2013
507.2--dc23 2013036694

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

Pre a0, . e vii
Acknowledgment ... xiii
BAitOrs. .o XV
CoNtribULOTS ..o xvii

PartI Tools

1. knitr: A Comprehensive Tool for Reproducible Research in R........ 3
Yihui Xie
2. Reproducibility Using VisTrailscccoviiiiiiiiiii, 33

Juliana Freire, David Koop, Fernando Chirigati, and Cldudio T. Silva

3. Sumatra: A Toolkit for Reproducible Research 57
Andrew P. Davison, Michele Mattioni, Dmitry Samarkanov, and
Bartosz Teleniczuk

4. CDE: Automatically Package and Reproduce Computational
EXPerimentsooevviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 79
Philip |. Guo

5. Reproducible Physical Science and the Declaratron 113
Peter Murray-Rust and Dave Murray-Rust

Part II Practices and Guidelines

6. Developing Open-Source Scientific Practice.................oooiuinin. 149
K. Jarrod Millman and Fernando Pérez

7. Reproducible Bioinformatics Research for Biologists................ 185
Likit Preeyanon, Alexis Black Pyrkosz, and C. Titus Brown

8. Reproducible Research for Large-Scale Data Analysis............... 219
Holger Hoefling and Anthony Rossini

vi Contents

9. Practicing Open Scienceccovveiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnn.,
Luis Ibanez, William]. Schroeder, and Marcus D. Hanwell

10. Reproducibility, Virtual Appliances, and Cloud Computing.......
Bill Howe

11. The Reproducibility Project: A Model of Large-Scale
Collaboration for Empirical Research on Reproducibility
Open Science Collaboration

12. What Computational Scientists Need to Know about
Intellectual Property Law: A Primer.........cccoveviiiiiiiiiiinininnen,
Victoria Stodden

Part III Platforms

13. Open Science in Machine Learning...........cccooeviiiiiiiiiniinn,
Mikio L. Braun and Cheng Soon Ong

14. RunMyCode.org: A Research-Reproducibility Tool for
Computational Sciencescooevvviiiiiiiiniiniiniiiiiiiiiininne,
Christophe Hurlin, Christophe Pérignon, and Victoria Stodden

15. Open Science and the Role of Publishers in Reproducible
Research......ccooovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e
lain Hrynaszkiewicz, Peter Li, and Scott Edmunds

Preface

Science moves forward when discoveries are replicated and reproduced. In
general, the more frequently a given relationship is observed by indepen-
dent scientists, the more trust we have that such a relationship truly exists
in nature. Replication, the practice of independently implementing scientific
experiments to validate specific findings, is the cornerstone of discovering
scientific truth. Related to replication is reproducibility, which is the calcu-
lation of quantitative scientific results by independent scientists using the
original datasets and methods. Reproducibility can be thought of as a differ-
ent standard of validity from replication because it forgoes independent data
collection and uses the methods and data collected by the original investiga-
tor (Peng et al., 2006). Reproducibility has become an important issue for
more recent research due to advances in technology and the rapid spread of
computational methods across the research landscape.

Much has been written about the rise of computational science and the
complications computing brings to the traditional practice of science (Bailey
et al. 2013; Birney et al. 2009; Donoho et al. 2009; Peng 2011; Stodden 2012;
Stodden et al. 2013; Yale Roundtable 2010). Large datasets, fast computers,
and sophisticated statistical modeling make a powerful combination for sci-
entific discovery. However, they can also lead to a lack of reproducibility in
computational science findings when inappropriately applied to the discov-
ery process. Recent examples show that improper use of computational tools
and software can lead to spectacularly incorrect results (e.g., Coombes et al.
2007). Making computational research reproducible does not guarantee cor-
rectness of all results, but it allows for quickly building on sound results and
for rapidly rooting out unsound ones.

The sharing of analytic data and the computer codes used to map those
data into computational results is central to any comprehensive definition of
reproducibility. Except for the simplest of analyses, the computer code used
to analyze a dataset is the only record that permits others to fully understand
what a researcher has done. The traditional materials and methods sections
in most journal publications are simply too short to allow for the inclusion of
critical details that make up an analysis. Often, seemingly innocuous details
can have profound impacts on the results, particularly when the relation-
ships being examined are inherently weak. Some concerns have been raised
over the sharing of code and data. For example, the sharing of data may
allow other competing scientists to analyze the data and scoop the scien-
tists who originally published the data, or the sharing of code may lead
to the inability to monetize software through proprietary versions of the
code. While these concerns are real and have not been fully resolved by the
scientific community, we do not dwell on them in this book.

vii

viii Preface

This book is focused on a simple question. Assuming one agrees that
reproducibility of a scientific result is a good thing, how do we do it? In com-
putational science, reproducibility requires that one make code and data
available to others so that they may analyze the original data in a similar
manner as in the original publication. This task requires that the analysis be
done in such a way that preserves the code and data, and permits their dis-
tribution in a format that is generally readable, and a platform be available
to the author on which the data and code can be distributed widely. Both
data and code need to be licensed permissively enough so that others can
reproduce the work without a substantial legal burden.

In this book, we cover many of the ingredients necessary for conducting
and distributing reproducible research. The book is divided into three parts
that cover the three principal areas: tools, practices, and platforms. Each part
contains contributions from leaders in the area of reproducible research who
have materially contributed to the area with software or other products.

Tools

Literate statistical programming is a concept introduced by Rossini, which
builds on the idea of literate programming as described by Donald Knuth.
With literate statistical programming, one combines the description of a sta-
tistical analysis and the code for doing the statistical analysis into a single
document. Subsequently, one can take the combined document and pro-
duce either a human-readable document (i.e., PDF) or a machine-readable
code file. An early implementation of this concept was the Sweave system
of Leisch, which uses R as its programming language and LaTeX as its doc-
umentation language. Yihui Xie describes his knitr package, which builds
substantially on Sweave and incorporates many new ideas developed since
the initial development of Sweave. Along these lines, Tanu Malik and col-
leagues describe the Science Object Linking and Embedding framework for
creating interactive publications that allow authors to embed various aspects
of computational research in a document, creating a complete research
compendium.

There have been a number of systems developed recently that are
designed to track the provenance of data analysis outputs and to manage
a researcher’s workflow. Juliana Freire and colleagues describe the VisTrails
system for open source provenance management for scientific workflow cre-
ation. VisTrails interfaces with existing scientific software and captures the
inputs, outputs, and code that produced a particular result, even presenting
this workflow in flowchart form. Andrew Davison and colleagues describe
the Sumatra toolkit for reproducible research. Their goal is to introduce a tool
for reproducible research that minimizes the disruption to scientists’ existing

Preface ix

workflows, therefore maximizing the uptake by current scientists. Their tool
serves as a kind of “backend” to keep track of the code, data, and depen-
dencies as a researcher works. This allows for easily reproducing specific
analyses and for sharing with colleagues.

Philip Guo takes the “backend tracking” idea one step further and
describes his Code, Data, Environment (CDE) package, which is a minimal
“virtual machine” for reproducing the environment as well as the analysis.
This package keeps track of all files used by a given program (i.e., a statistical
analysis program) and bundles everything, including dependencies, into a
single package. This approach guarantees that all requirements are included
and that a given analysis can be reproduced on another computer.

Peter Murray-Rust and Dave Murray-Rust introduce The Declaraton, a
tool for the precise mapping of mathematical expressions to computational
implementations. They present an example from materials science, defining
what reproducibility means in this field, in particular for unstable dynamical
systems.

Practices and Guidelines

Conducting reproducible research requires more than the existence of good
tools. Ensuring reproducibility requires the integration of useful tools into a
larger workflow that is rigorous in keeping track of research activities. One
metaphor is that of the lab notebook, now extended to computational exper-
iments. Jarrod Millman and Fernando Pérez raise important points about
how computational scientists should be trained, noting that many are not
formally trained in computing, but rather pick up skills “on the go.” They
detail skills and tools that may be useful to computational scientists and
describe a web-based notebook system developed in IPython that can be
used to combine text, mathematics, computation, and results into a repro-
ducible analysis. Titus Brown discusses tools that can be useful in the area
of bioinformatics as well as good programming practices that can apply to a
broad range of areas.

Holger Hoeing and Anthony Rossini present a case study in how to
produce reproducible research in a commercial environment for large-scale
data analyses involving teams of investigators, analysts, and stakeholders/
clients. All scientific practice, whether in academia or industry, can be
informed by the authors” experiences and the discussion of tools they used
to organize their work.

Closely coupled with the idea of reproducibility is the notion of “open
science,” whereby results are made available to the widest audience possi-
ble through journal publications or other means. Luis Ibanez and colleagues
give some thoughts on open science and reproducibility and trends that are

X Preface

either encouraging or discouraging it. Bill Howe discusses the role of cloud
computing in reproducible research. He describes how virtual machines can
be used to replicate a researcher’s entire software environment and allow
researchers to easily transfer that environment to a large number of people.
Other researchers can then copy this environment and conduct their own
research without having to go through the difficult task of reconstructing
the environment from scratch.

Members of the Open Science Collaboration outline the need for repro-
ducibility in all science and detail why most scientific findings are rarely
reproduced. Reasons include a lack of incentives on the part of journals
and investigators to publish reproductions or null findings. He describes
the Reproducibility Project, whose goal is to estimate the reproducibil-
ity of scientific findings in psychology. This massive undertaking rep-
resents a collaboration of over 100 scientists to reproduce a sample of
findings in the psychology literature. By spreading the effort across many
people, the project overcomes some of the disincentives to reproducing
previous work.

Platforms

Related to the need for good research practices to promote reproducibility is
the need for software and methodological platforms on which reproducible
research can be conducted and distributed. Mikio Braun and Cheng Soon
Ong discuss the area of machine learning and place it in the context of open
source software and open science. Aspects of the culture of machine learning
have led to many open source software packages and hence reproducible
methods.

Christophe Hurlin and colleagues, in Chapter 14, describe the RunMy-
Code platform for sharing reproducible research. This chapter addresses a
critical need in the area of reproducible research, which is the lack of central
infrastructure for distributing results. A key innovation of this platform is the
use of cloud computing to allow research findings to be reproduced through
the RunMyCode web interface, or on the user’s local system via code and
data download.

Perhaps the oldest “platform” for distributing research is the journal. Iain
Hrynaszkiewicz and colleagues describe some of the infrastructure available
for publishing reproducible research. In particular, they review how journal
policies and practices in the growing field of open access journals encourage
reproducible research.

Victoria Stodden provides a primer on the current legal and policy frame-
work for publishing reproducible scientific work. While the publication of
traditional articles is rather clearly covered by copyright law, the publication

Preface xi

of data and code treads into murkier legal territory. Stodden describes the
options available to researchers interested in publishing data and code and
summarizes the recommendations of the Reproducible Research Standard.

Summary

We have divided this book into three parts: Tools, Practices and Guide-
lines, and Platforms. These mirror the composition of research happening
in reproducibility today. Even just over the last two years, tool develop-
ment for computational science has taken off. An early conference at Applied
Mathematics Perspectives called “Reproducible Research: Tools and Strate-
gies for Scientific Computing” in July of 2011 sought to encourage the
nascent community of research tool builders (Stodden 2012). Recently, in
December of 2012, a workshop entitled “Reproducibility in Computational
and Experimental Mathematics” was held as part of the ICERM workshop
series (ICERM Workshop 2012). A summary of the tools presented is avail-
able on the workshop wiki (Stodden 2012), and the growth of the field is
evident. Additional material, including code and data, is available from the
editor’s website: www.ImplementingRR.org.

Journals are continuing to raise standards to ensure reproducibility in
computational science (Nature Editorial 2013; Marcia 2014) and funding
agencies have recently been instructed by the White House to develop plans
for the open dissemination of data arising from federally funded research
(Stebbins 2013). We feel that a book documenting available tools, practices,
and dissemination platforms could not come at a better time.

References

Bailey, D.H., Borwein,]J.M., LeVeque, R]J. Rider, B., Stein, W., and
Stodden, V. (2012). Reproducibility in computational and experimental
mathematics, in ICERM Workshop, December 10-14, 2012. http:/ /icerm.
brown.edu/tw12-5-.rcem.

Bailey, D.H., Borwein,].M., Stodden, V., Set the default to ‘Open,” notices
of the American Mathematical Society, June/July 2013. http:/ /www.ams.
org/notices/201306/rnoti-p679.pdf.

Birney, E., Hudson, T. J., Green, E. D., Gunter, C., Eddy, S., Rogers, J., Harris,
J. R. et al. (2009), Prepublication data sharing, Nature, 461, 168-170.

Coombes, K., Wang,]., and Baggerly, K. (2007), Microarrays: Retracing steps,
Nat. Med., 13,1276-1277.

xii Preface

Donoho, D.L., Maleki, A., Rahman 1.U., Shahram, M., and Stodden V.,
Reproducible research in computational harmonic analysis, computing
in science and engineering, IEEE Comput. Sci. Eng., 11(1), 8-18, Jan/Feb
2009, doi:10.1109/MCSE.2009.15.

McNutt, M. (2014, January 17), Reproducibility, Science, 343(6168), 229.
http:/ /www.sciencemag.org/content/343/6168/229.summary.

Nature Editorial (2013, April 24), Announcement: Reducing our irrepro-
ducibility, Nature, 496. http:/ /www nature.com/news/announcement-
reducing-our-irreproducibility-1.12852.

Peng, R. D. (2011), Reproducible research in computational science, Science,
334, 1226-1227.

Peng, R. D., Dominici, F., and Zeger, S. L. (2006), Reproducible epidemio-
logic research, Am. |. Epidemiol., 163, 783-789.

Stebbins, M. (2013), Expanding public access to the results of federally
funded research, February 22, 2013. http:/ /www.whitehouse.gov /blog/
2013/02/22/expanding-public-access-results-federally-funded-research.

Stodden, V. (2012), Reproducible research: Tools and strategies for scien-
tific computing, Comput. Sci. Eng., 14(4), 11-12 July / August 2012. http://
www.computer.org/csdl/mags/cs/2012/04/mcs2012040011-abs.html.

Stodden, V., Borwein,]., and Bailey, D.H. (2013), Setting the default to
reproducible in computational science research, SIAM News, June 3, 2013.
http:/ /www.siam.org/news/news.php?id=2078.

Yale Roundtable (2010), Reproducible research: Addressing the need for data
and code sharing in computational science, IEEE Comput. Sci. Eng., 12,
8-13.

MATLAB® is a registered trademark of The MathWorks, Inc. For product
information, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098 USA
Tel: 508 647 7000

Fax: 508-647-7001

Email: info@mathworks.com
Web: www.mathworks.com

Acknowledgment

The editors acknowledge the generous support of Awards R01ES019560
and R21ES020152 from the National Institute of Environmental Health
Sciences (Peng), NSF Award 1153384 “EAGER: Policy Design for Repro-
ducibility and Data Sharing in Computational Science” (Stodden), and
the Sloan Foundation Award “Facilitating Transparency in Scientific
Publishing” (Stodden). The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National Insti-
tute of Environmental Health Sciences, the National Institutes of Health, the
National Science Foundation, or the Alfred P. Sloan Foundation.

xiii

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Editors

Victoria Stodden is an assistant professor of statistics at Columbia Univer-
sity and affiliated with the Columbia University Institute for Data Sciences
and Engineering, New York City, New York. Her research centers on
the multifaceted problem of enabling reproducibility in computational sci-
ence. This includes studying adequacy and robustness in replicated results,
designing and implementing validation systems, developing standards of
openness for data and code sharing, and resolving legal and policy bar-
riers to disseminating reproducible research. She is the developer of the
award-winning “Reproducible Research Standard,” a suite of open licensing
recommendations for the dissemination of computational results.

Friedrich Leisch is head of the Institute of Applied Statistics and Computing
at the University of Natural Resources and Life Sciences in Vienna. He is a
member of the R Core Team, the original creator of the Sweave system in R,
and has published extensively about tools for reproducible research. He is
also a leading researcher in the area of high-dimensional data analysis.

Roger D. Peng is an associate professor in the Department of Biostatistics at
the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
He is a prominent researcher in the areas of air pollution and health risk
assessment and statistical methods for environmental health data. Dr. Peng
is the associate editor for reproducibility for the journal Biostatistics and is
the author of numerous R packages.

X0

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Contributors

Mikio L. Braun

Department of Computer Science
Technical University of Berlin
Berlin, Germany

C. Titus Brown

Department of Computer Science
and Engineering

and

Department of Microbiology and
Molecular Genetics

Michigan State University

East Lansing, Michigan

Fernando Chirigati

Department of Computer Science
and Engineering

Polytechnic Institute of New York
University

Brooklyn, New York

Andrew P. Davison

Unité de Neurosciences, Information
& Complexité

Centre National de la Recherche
Scientifique

Gif sur Yvette, France

Scott Edmunds
Beijing Genomics Institute
Beijing, People’s Republic of China

Juliana Freire

Department of Computer Science
and Engineering

Polytechnic Institute of New York
University

Brooklyn, New York

Philip J. Guo
University of Rochester
Rochester, New York

Marcus D. Hanwell
Kitware, Inc.
Clifton Park, New York

Holger Hoefling
Novartis, Pharma
Basel, Switzerland

Bill Howe

Scalable Data Analytics
University of Calabria
Rende, Italy

and

eScience Institute

and

Department of Computer Science
and Engineering

University of Washington

Seattle, Washington

Iain Hrynaszkiewicz
Outreach Director
Faculty of 1000

London, United Kingdom

Christophe Hurlin
Department of Economics
University of Orléans
Orléans, France

Luis Ibanez
Kitware, Inc.
Clifton Park, New York

xvii

Xviii

David Koop

Department of Computer Science
and Engineering

Polytechnic Institute of New York
University

Brooklyn, New York

Peter Li

Giga Science

Beijing Genomics Institute

Beijing, People’s Republic of China

Michele Mattioni

European Molecular Biology
Laboratory

European Bioinformatics Institute

Hinxton, United Kingdom

K. Jarrod Millman

Division of Biostatistics

School of Public Health
University of California, Berkeley
Berkeley, California

Dave Murray-Rust
Department of Informatics
University of Edinburgh
Edinburgh, Scotland

Peter Murray-Rust
Department of Chemistry
University of Cambridge
Cambridge, United Kingdom

Cheng Soon Ong
Bioinformatics Group
National ICT Australia
University of Melbourne
Melbourne, Victoria, Australia

Open Science Collaboration
Charlottesville, Virginia

Contributors

Fernando Pérez

Henry H. Wheeler Jr. Brain Imaging
Center

Helen Wills Neuroscience Institute

University of California, Berkeley

Berkeley, California

Christophe Pérignon

Finance Department

Hautes études commerciales de
Paris

Paris, France

Likit Preeyanon

Department of Microbiology and
Molecular Genetics

Michigan State University

East Lansing, Michigan

Alexis Black Pyrkosz

Avian Disease and Oncology
Laboratory

East Lansing, Michigan

Anthony Rossini
Novartis, Pharma
Basel, Switzerland

Dmitry Samarkanov

Ecole Centrale de Lille

Lille University of Science and
Technology

Villeneuve-d’Ascq, France

William J. Schroeder
Kitware, Inc.
Clifton Park, New York

Claudio T. Silva

Polytechnic Institute of New York
University

Brooklyn, New York

Victoria Stodden
Department of Statistics
Columbia University

New York City, New York

Contributors

Bartosz Teleniczuk

Unité de Neurosciences, Information
& Complexité

Centre National de la Recherche
Scientifique

Gif sur Yvette, France

and

Institute for Theoretical Biology
Humboldt University
Berlin, Germany

Yihui Xie

Department of Statistics
Iowa State University
Ames, Iowa

Xix

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Part 1

Tools

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

1

knitr: A Comprehensive Tool for Reproducible
Research in R

Yihui Xie
CONTENTS
1.1 Web Application...........oiiiiiiiiiiiiii 5
1.2 DS ..o 6
1.2 1 ParSer ..t 6
122 Evaluator ... e 8
123 Renderer...........ooooiiii 10
1.3 Features ..ot e e 12
1.3.1 Code Decorationcc.vvviiiiiiiiiii i, 12
1.3.2 Graphicsccooviiiiiiiii 13
1.3.2.1 Graphical Devices...............ooooiiiiii 14
1.3.22 PlotRecording................... 15
1.3.2.3 Plot Rearrangementooiiiiii 16
1324 POt SIZE cuuvriiiiiiiii e 17
1.325 TiKZDeVICe ...ooiiiiiiiiii i 18
1.3.3 CaC et 19
1.34 Code Externalization i 20
1.3.5 ChunkReferenceooii i 21
1.3.6 Evaluation of Chunk Optionscoooo 22
1.3.7 Child Document........couviiiiiiiii i 23
1.3.8° RINOtEDOOK ...vviiiiiiiii e 23
1.4 Extensibility ..o 24
1471 HOOKS . oo 24
142 Language Engines..................oooiiiiiiiiiii, 27
J BT D Tt b =73 o) o 27
Acknowledgments ... 29
RELOIOICES ... e 30

Reproducibility is the ultimate standard by which scientific findings are
judged. From the computer science perspective, reproducible research is
often related to literate programming [13], a paradigm conceived by Donald
Knuth, and the basic idea is to combine computer code and software

4 Implementing Reproducible Research

documentation in the same document; the code and documentation can be
identified by different special markers. We can either compile the code and
mix the results with documentation or extract the source code from the doc-
ument. To some extent, this implies reproducibility because everything is
generated automatically from computer code, and the code can reflect all the
details about computing.

Early implementations like WEB [12] and Noweb [20] were not directly
suitable for data analysis and report generation, which was partly overcome
by later tools like Sweave [14]. There are still a number of challenges that
were not solved by existing tools; for example, Sweave is closely tied to IATEX
and hard to extend. The knitr package [28,29] was built upon the ideas of
previous tools with a framework redesigned, enabling easy and fine control
of many aspects of a report. Sweave can be regarded as a subset of knitr in
terms of the features.

In this chapter, we begin with a simple but striking example that shows
how reproducible research can become natural practice to authors given a
simple and appealing tool. We introduce the design of the package in Section
1.2 and how it works with a variety of document formats, including IATEX,
HTML, and Markdown. Section 1.3 lists the features that can be useful to
data analysis such as the cache system and graphics support. Section 1.4 cov-
ers advanced features that extend knitr to a comprehensive environment for
data analysis; for example, other languages such as Python, awk, and shell
scripts can also be integrated into the knitr framework. We will conclude
with a few significant examples, including student homework, data reports,
blog posts, and websites built with knitr.

The main design philosophy of knitr is to make reproducible research
easier and more enjoyable than the common practice of cut-and-paste results.
This package was written in the R language [11,19]. It is freely avail-
able on CRAN (Comprehensive R Archive Network) and documented in
its website http://yihui.name/knitr/; the development repository is on
Github: https://github.com/yihui/knitr, where users can file bug reports
and feature requests and participate in the development.

There are obvious advantages of writing a literate programming docu-
ment over copying and pasting results across software packages and doc-
uments. An overview of literate programming applied to statistical analysis
can be found in [22]; [8] introduced general concepts of literate programming
documents for statistical analysis, with a discussion of the software architec-
ture; [7] is a practical example based on [8], using an R package GolubRR to
distribute reproducible analysis; and [2] revealed several problems that may
arise with the standard practice of publishing data analysis results, which
can lead to false discoveries due to lack of enough details for reproducibility
(even with datasets supplied). Instead of separating results from computing,
we can actually put everything in one document (called a compendium in [8]),
including the computer code and narratives. When we compile this docu-
ment, the computer code will be executed, giving us the results directly.

knitr 5

This is the central idea of this chapter—we go from the source code to the
report in one step, and everything is automated by the source code.

1.1 Web Application

R Markdown (referred to as Rmd hereafter) is one of the document formats
that knitr supports, and it is also the simplest one. Markdown [10] is a both
easy-to-read and easy-to-write language that was designed primarily for
writing web content easily and can be translated to HTML (e.g., **textx*
translates to text). What follows is a trivial example
of how Rmd looks like:

First section

Description of the methods.
“*"{r brownian-motion, fig.height=4, fig.cap='Brownian Motion'}
X <- cumsum(rnorm(100))

plot (x)

The mean of x is "r mean(x) .

We can compile this document with knitr, and the output will be an
HTML web page containing all the results from R, including numeric and
graphical results. This is not only easier for authors to write a report but
also guarantees a report is reproducible since no cut-and-paste operations
are involved. To compile the report, we only need to load the knitr package
in R and call the knit () function:

library(knitr)
knit("myfile.Rmd") # suppose we saved the above file as
myfile.Rmd

Based on this simple idea, knitr users have contributed hundreds of
reports to the hosting website RPubs (http://rpubs.com) within a few
months since it was launched, ranging from student homework, data analy-
sis reports, HTMLS5 slides, and class quizzes. Traditionally, literate program-
ming tools often choose IXTEX as the authoring environment, which has a
steep learning curve for beginners. The success of R Markdown and RPubs

6 Implementing Reproducible Research

shows that one does not have to be a typesetting expert in order to make use
of literate programming and write reproducible reports.

1.2 Design

The package design consists of three components: parser, evaluator, and
renderer. The parser identifies and extracts computer code from the source
document; the evaluator executes the code; and the renderer generates the
final output by appropriately marking up the results according to the output
format.

1.2.1 Parser

To include computer code into a document, we have to use special patterns
to separate it from normal texts. For instance, the Rmd example in Section
1.1 has an R code chunk that starts with ~~~ {r} and ends with =~ ~.

Internally, knitr uses the object knit_patterns to set or get the pat-
tern rules, which are essentially regular expressions. Different document
formats use different sets of regular expressions by default, and all built-in
patterns are stored in the object all_patterns as a named list. For exam-
ple, all_patterns$rnw is a set of patterns for the Rnw format, which has
an R code embedded in a I£TEX document using the Noweb syntax. Sim-
ilarly, knitr has default syntax patterns for other formats like Markdown
(md), HTML (html), and reStructuredText (rst). We take the Rnw syntax
for example.

library(knitr)
names (all patterns) # all built-in document formats

[1] "row" “"brew" "tex" "html" "md" "t
all patternsS$rnw[c("chunk.begin", "chunk.end", "inline.code")]

S$chunk.begin

[1] ""\\s*<<(.x)>>="

##

$chunk.end

(1] ""\\s*@\\sx(2+.x])$"

##

$inline.code

[1]1 "\\\\Sexpr\\{(["}]1+)\\}"

knitr 7

In the pattern list for the Rnw format, there are three major elements
as shown earlier: chunk.begin, chunk.end, and inline.code, which
are regular expressions indicating the patterns for the beginning and end-
ing of a code chunk, and inline code, respectively. For example, the regular
expression ~\s*<<(.*)>>= means the pattern for the beginning of a code
chunk is: in the beginning (*) of this line, there are at most some white spaces
(\'s*), then the chunk header starts with <<; inside the chunk header, there
can be some texts denoting chunk options ((. *)), which can be regarded as
metadata for a chunk (e.g., fig.height=4 means the figure height will be
4 in. for this chunk); the chunk header is closed by >>=. The code chunk is
usually closed by @ (white spaces are allowed before it and TEX comments
are allowed after it), and we can also write inline code inside the pseudo TEX
command \Sexpr{}. What follows is an example of a fragment of an Rnw
document:

\section{First section}
Description of the methods.

<<brownian-motion, fig.height=4, fig.cap='Brownian Motion'>>=
X <- cumsum(rnorm(100))

plot(x)

@

The mean of x is \Sexpr{mean(x)}.

Based on the Rnw syntax, knitr will find out the code chunk, as well
as the inline code mean(x). Anything else in the document will remain
untouched and will be mixed with the results from the computer code even-
tually. To show the parser can be easily generalized, we take a look at the
Rmd syntax as well:

str(all patterns$md[c("chunk.begin", "chunk.end",
"inline.code")])

List of 3

$ chunk.begin: chr ""“\\s* {3,}\\s*\\{r(.*)\\}\\s%$"
¢ chunk.end : chr ""\\sx {3,}\\s*$"

$ inline.code: chr "“r +([" \n]+)\\sx™"

Roughly speaking, the three major patterns are changed to ~~~{r =}
(beginning), ~~ " (ending), and “r "~ (inline), respectively. If we want to
specify our own syntax, we can use the knit_patterns$set () function,
which will override the default syntax, for example:

8 Implementing Reproducible Research

nAa

knit patterns$set(chunk.begin = <<r(.x)", chunk.end =
"*r>>$", inline.code = "\\{\\{(["}1+H)\\I\\}")

Then, we will be able to parse a document like this with the custom
syntax:

<<r brownian-motion, fig.height=4, fig.cap='Brownian Motion'
X <- cumsum(rnorm(100))

plot(x)

r>>

The mean of x is {{mean(x)}}.

In practice, however, this kind of customization is often unnecessary. It
is better to follow the default syntax, otherwise additional instructions will
be required in order to compile a literate programming document. Table 1.1
shows all the document formats that are currently supported by knitr.

Among all chunk options, there is a special option called the chunk label.
It is the only chunk option that does not have to be of the form option =
value. The chunk label is supposed to be a unique identifier of a code chunk,
which will be used as the filename for figure files, cache files, and also ids
for chunk references. We will mention these later in Section 1.3.

1.2.2 Evaluator

Once we have the code chunks and inline code expressions extracted from
the document, we need to evaluate them. The evaluate package [26] is used
to execute code chunks, and the eval () function in base R is used to execute
the inline R code. The latter is easy to understand and is made possible by

TABLE 1.1

Code Syntax for Different Document Formats

Format Start End Inline Output
Rnw <<x>>= @ \Sexprx TeX

Rmd fr{r %} L ‘r x* Markdown
Rhtml <!-begin.rcode =* end.rcode-> <l-rinline x-> HTML
Rrst .. {r =} e e r:fx’ reST

Rtex % begin.rcode = % end.rcode \rinlinex TeX

brew <% x %> text

* Denotes local chunk options, for example, <<label, eval=FALSE>>=; x denotes inline R
code, for example, <% 1+2 %>.

knitr 9

the power of “computing on the language” [18] of R. Suppose we have a
code fragment 1+1 as a character string, we can parse and evaluate it as an
R code:

eval (parse(text = "1+1"))

[1] 2

For code chunks, it is more complicated. The evaluate package takes a
piece of R source code, evaluates it, and returns a list containing the results
of six possible classes: character (normal text output), source (source
code), warning, message, error, and recordedplot (plots).

library(evaluate)
res <- evaluate(c("'hello world!'", "1:2+1:3"))
str(res, nchar.max = 37)

List of 5

$:List of 1

..$ src: chr "'hello world!'\n"
..- attr(x, "class")= chr "source"
$: chr "[1] \"hello world!\"\n"
S :List of 1

..$ src: chr "1:2+1:3"

..— attr(*, "class")= chr "source"

$:List of 2

..$ message: chr "longer object length is not a
multip"| _ truncated

..$ call : language 1:2 + 1:3

..- attr(*, "class")= chr [1:3] "simpleWarning"

"warning" "condition"
$: chr "[1] 2 4 4\n"

An internal S3 generic function wrap() in knitr is used to deal with differ-
ent types of output using output hooks defined in the object knit_hooks,
which constitutes the renderer. Before the final output is rendered, we
may have to postprocess the output from evaluate according to the chunk
options. For example, if the chunk option is echo=FALSE, we need to
remove the source code. This is one advantage of using the evaluate pack-
age because we can easily filter out the result elements that we do not want
according to the classes of the elements. Continuing the aforementioned
example, we can remove the source code by

10 Implementing Reproducible Research

filter out elements which are not source
res <- Filter(Negate(is.source), res)
str(res, nchar.max = 37)

List of 3
$: chr "[1] \"hello world!\"\n"
$§ :List of 2

..$ message: chr "longer object length is not a
multip"| _ truncated

..$ call : language 1:2 + 1:3

..— attr(%, "class")= chr [1:3] "simpleWarning" "warning"
"condition"

$: chr "[1] 2 4 4\n"

Similarly, we can process other elements according to the chunk options;
for instance, warning=FALSE means to remove warning messages, and
results='hide’ means to remove elements of the class character;
knitr has a large number of chunk options to tweak the output, which are
documented at http:/ /yihui.name/knitr/options.

One notable feature of the evaluate package that may be surprising to
most R users is that it does not stop on errors by default. This is to mimic the
behavior of R when we copy and paste R code in the console (or terminal):
If an error occurs in a previous R expression, the rest of the code will still be
pasted and executed. To completely stop on errors, we need to set a chunk
option in knitr:

opts_chunk$set (error = FALSE)

1.2.3 Renderer

Unlike other implementations such as Sweave, knitr makes almost every-
thing accessible to the users, including every piece of results returned from
evaluate. The users are free to write these results in any formats they like via
output hook functions. Consider the following simple example:

[1] 2

There are two parts in the returned results: the source code 1 + 1 and the
output [1] 2. Users may define a hook function for the source code like this
to use the 1stlisting environment in IXTEX:

knitr 11

knit hooks$set(source = function(x, options) {
paste("\\begin{lstlisting}\n", x, "\\end{lstlisting}\n",
sep = "")

})

Or put it inside the <pre> tag with a CSS class source in HTML:

knit hooks$set(source = function(x, options) {
paste("<pre class='source'>", x, "</pre>", sep = "")

})

Here, the name of the hook function corresponds to the class of the ele-
ment returned from evaluate; see Table 1.2 for the mapping between the
two sets of names. The argument x of the hook denotes the correspond-
ing output (a character string), and options is a list of chunk options for
the current code chunk, for example, options$fig.width is a numeric
value that determines the width of figures in the current chunk. Note that
there are two additional output hooks called chunk and document. The
chunk hook takes the output of the whole chunk as input, which has been
processed by the previous six output hooks; the document hook takes the
output of the whole document as input and allows further postprocessing of
the output text.

Like the parser, knitr also has a series of default output hooks for differ-
ent document formats, so users do not have to rewrite the renderer in most
cases.

TABLE 1.2

Output Hook Functions and the Object Classes of
Results from the evaluate Package

Class Output Hook Arguments
source source X, options
character output X, options
recordedplot plot X, options
message message X, options
warning warning X, options
error error x, options
chunk X, options

document X

12 Implementing Reproducible Research

1.3 Features

The knitr package borrowed features such as TikZ graphics [25] and cache
from pgfSweave [3] and cacheSweave [16], respectively, but the imple-
mentations are completely different. New features like code reference from
an external R script, as well as output customization, are also introduced.
The feature of hook functions in Sweave was reimplemented and hooks
have extended power now. Special emphasis was put on graphics: there can
be any number of plots per chunk, there are more than 20 graphical devices
to choose from (PDF, PNG, and Cairo devices), and it is also easy to specify
the size and alignment of plots via chunk options.

There are several other small features that were motivated from the expe-
rience of using Sweave. For example, a progress bar is provided when
knitting a file so we more or less know how long we still need to wait; out-
put from inline R code (e.g., \Sexpr{x[1]}) is automatically formatted in
scientific notation (like 1.2346 x 108) if the result is numeric (this applies to
all document formats), and we will not get too many digits by default (the
default number in R is 7, which is too long).

As we emphasize the ease of use, the concept of an “R Notebook” was
also introduced in this package, which enables one to write a pure R script
to create a report, and knitr will take care of the details of formatting and
compilation.

1.3.1 Code Decoration

Syntax highlighting comes by default in knitr (chunk option highlight=
TRUE) since we believe it enhances the readability of the source code. The
formatR [27] is used to reformat R code (option tidy=TRUE), for example,
add spaces and indentation, break long lines into shorter ones, and automat-
ically replace the assignment operator = to <-; see the manual of formatR for
details.

For KTEX output, the framed package is used to decorate code chunks
with a light gray background (as we can see in this document). If this IATEX
package is not found in the system, a version will be copied directly from
knitr. The output for HTML documents is styled with CSS, which looks
similar to IATEX (with gray shadings and syntax highlighting).

The prompt characters are removed by default because they mangle the
R source code in the output and make it difficult to copy the R code. The R
output is masked in comments by default based on the same rationale. In
fact, this was largely motivated from my experience of grading homework;
with the default prompts, it is difficult to verify the results in the homework
because it is so inconvenient to copy the source code. Anyway, it is easy to
revert to the output with prompts (set option prompt=TRUE), and we will

knitr 13

quickly realize the inconvenience to the readers if they want to run the code
in the output document:

> x <- rnorm(5)

> x

[1] -0.56048 -0.23018 1.55871 0.07051 0.12929
> var(x)

[1] 0.6578

The example below shows the effect of tidy=TRUE/FALSE:

option tidy=FALSE
for(k in 1:10){j=cos(sin(k)*k"2)+3;print(j-5)}

option tidy=TRUE

for (k in 1:10) {
j <- cos(sin(k) * k*2) + 3
print(j - 5)

While this may seem to be irrelevant to reproducible research, we would
argue that it is of great importance to design styles that look appealing and
helpful at the first glance, which can encourage users to write reports in
this way.

1.3.2 Graphics

Graphics is an important part of reports, and several enhancements have
been made in knitr. For example, grid graphics [15] may not need to be
explicitly printed as long as the same code can produce plots in the R console
(in some cases, however, they have to be printed, e.g., in a loop, because we
have to do so in an R console); what follows is a chunk of code that will
produce a plot in both the R console and the knitr:

library(ggplot2)
p <- gplot(carat, price, data = diamonds) + geom_hex()
p # no need to print(p)

14 Implementing Reproducible Research

[}
15,000 = Count
5,000
g 10,000 = 4,000
S 3,000
2,000
5,000 =
1,000
O -
1 1 1 1 1 1
0 1 2 3 4 5

1.3.2.1 Graphical Devices

Over a long time, a frequently requested feature for Sweave was the
support for other graphics devices, which has been implemented since R
2.13.0. Instead of using several logical options like png or jpeg, knitr
uses a single option dev (like grdevice in Sweave), which has support
for more than 20 devices. For instance, dev='"png’ will use the png()
device in the grDevices package in base R, and dev='CairoJPEG’ uses
the CairoJPEG() device in the add-on package Cairo (it has to be installed
first, of course). Here are the possible values for dev:

[1] "bmp" "postscript" "pdf" "png"

[5] "svg" "jpeg" "pictex" "tiff"

[9] "win.metafile" "cairo pdf" "cairo ps" "quartz_pdf"
[13] "quartz_png" "quartz_jpeg" ‘"quartz_ tiff" ‘"quartz_ gif"
[17] "quartz_psd" "quartz_bmp" "CairoJPEG" "CairoPNG"
[21] "CairoPS" "CairoPDF" "CairosSvG" "CairoTIFF"
[25] "Cairo_pdf" "Cairo_png" "Cairo_ps" "Cairo_svg"

[29] "tikz"

If none of these devices is satisfactory, we can provide the name of a cus-
tomized device function, which must have been defined in this form before
it is used:

custom _dev <- function(file, width, height, ...) {
open the device here, e.g. pdf(file, width, height, ...)
}

Then, we can set the chunk option dev='"custom_dev’.

knitr 15

1.3.2.2 Plot Recording

All the plots in a code chunk are first recorded as R objects and then
“replayed” inside a graphical device to generate plot files. The evaluate
package will record plots per expression basis; in other words, the source
code is split into individual complete expressions and evaluate will examine
the possible plot changes in snapshots after each single expression has been
evaluated. For example, the following code consists of three expressions, out
of which two are related to drawing plots, therefore evaluate will produce
two plots by default:

par(mar = ¢(3, 3, 0.1, 0.1))
plot(1:10, ann = FALSE, las = 1)
text (5, 9, "mass $\\rightarrow$ energy\n$E=mc"2$")

10— o 10 — o
M E
o ass — Energy o
E=mc?
8 — o 8 — o
©) @)
6 — o 6 — o
©) @)
4 — o 4 — o
@) @)
2 — o 2 — o
@) @)
\ \ \ \ \ \ \ \ \ \
2 4 6 8 10 2 4 6 8 10

This brings a significant difference with traditional tools in R for
dynamic report generation since low-level plotting changes can also be
recorded. The option fig.keep controls which plots to keep in the out-
put; £ig.keep='all’ will keep low-level changes in separate plots; by
default (fig.keep='"high"’), knitr will merge low-level plot changes into
the previous high-level plot, like most graphics devices do. This feature may
be useful for teaching R graphics step by step. Note, however, that low-
level plotting commands in a single expression (a typical case is a loop) will
not be recorded cumulatively, but high-level plotting commands, regard-
less of where they are, will always be recorded. For example, this chunk
will only produce 2 plots instead of 21 plots because there are 2 complete
expressions:

16 Implementing Reproducible Research

plot (0, 0, type = "n", ann = FALSE)
for (i in seq(0, 2 % pi, length = 20)) points(cos(i), sin(i))

But this will produce 20 plots as expected:

for (i in seq(0, 2 % pi, length = 20)) {
plot(cos(i), sin(i), xlim = ¢(-1, 1), ylim = c(-1, 1))

}

We can discard all previous plots and keep the last one only by
fig.keep='1last’, or keep only the first plot by £ig.keep="£first’, or
discard all plots by £ig.keep='none’.

1.3.2.3 Plot Rearrangement

The chunk option fig.show can decide whether to hold all plots while
evaluating the code and “flush” all of them to the end of a chunk
(fig.show='hold’; see the previous plot example), or just insert them to
the places where they were created (by default fig.show='asis’). Hereis
an example of fig.show='asis’ for two plots in one chunk:

contour (volcano) # contour lines

1.0 —

0.8 —

0.6 —

0.4 —

0.2 —

0.0 —

0.0 0.2 0.4 0.6 0.8 1.0

knitr 17

filled.contour(volcano) # fill contour plot with colors

3 180
0.8 —
160
0.6 —
e 140
J
0.4 —
120
0.2 —
100
0.0 T T T T
0.0 0.2 0.4 06 0.8 1.0

Besides 'hold’ and ‘asis’, the option fig.show can take a third
value, 'animate’, which makes it possible to insert animations into the out-
put document. In I&TEX, the package animate is used to put together image
frames as an animation. For animations to work, there must be more than
one plot produced in a chunk. The option interval controls the time inter-
val between animation frames; by default it is 1 s. Note that we have to add
\usepackage{animate} in the I£TEX preamble because knitr will not add
it automatically. Animations in the PDF output can only be viewed in Adobe
Reader. There are animation examples in both the main manual and graphics
manual of knitr, which can be found on the package website.

We can specify the figure alignment via the chunk option fig.align
("left’, 'center’, and 'right’). The plot example in the previous
section used fig.align='center’ so the two plots were centered.

1.3.2.4 Plot Size

The fig.width and fig.height options specify the size of plots in the
graphics device (units in inches), and the real size in the output docu-
ment can be different (specified by out.width and out.height). When
there are multiple plots per code chunk, it is possible to arrange mul-
tiple plots side by side. For example, in IXTEX, we only need to set
out.width to be less than half of the current line width, for example,
out.width='.49\\1linewidth".

18 Implementing Reproducible Research

1.3.2.5 Tikz Device

Besides PDF, PNG, and other traditional R graphical devices, knitr has spe-
cial support to TikZ graphics via the tikzDevice package [24], which is
similar to the feature of pgfSweave. If we set the chunk option dev="tikz"’,
the tikz () device in tikzDevice will be used to generate plots. The options
sanitize (for escaping special TEX characters) and external are related
to the tikz device: see the documentation of tikz () for details. Note
that external=TRUE in knitr has a different meaning with pgfSweave—
it means standAlone=TRUE in tikz (), and the TikZ graphics output will
be compiled to PDF immediately after it is created, so the “externalization”
does not depend on the official but complicated externalization commands
in the tikz package in IXIEX. To maintain consistency in (font) styles, knitr
will read the preamble of the input document and pass it to the tikz device
so that the font style in the plots will be the same as the style of the whole
IXTEX document.

Besides consistency of font styles, the tikz device also enables us to write
arbitrary IATEX expressions into R plots. A typical use is to write math expres-
sions. The traditional approach in R is to use an expression() object to
write math symbols in the plot, and for the tikz device, we only need to
write normal IXIEX code. What follows is an example of a math expression
p(0]x) o« 7(0)f (x|0) using the two approaches, respectively:

plot (0, type = "n", ann = FALSE)
text (0, expression(p(theta ~ "|" ~ bold(x)) %prop% pi(theta)
*» £(bold(x) ~ "|" ~ theta)), cex = 2)

pO]%) o (O)fx | 6)

With the tikz device, it is both straightforward (if we are familiar with
IATEX) and more beautiful:

plot (0, type = "n", ann = FALSE)
text (0, "$p(\\theta|\\mathbf{x})\\propto\\pi(\\theta)
£ (\\mathbf{x}|\\theta)s$", cex = 2)

p(8]x)c 7(6) f(x[6)

One disadvantage of the tikz device is that IATEX may not be able to han-
dle too large tikz files (it can run out of memory). For example, an R plot with
tens of thousands of graphical elements may fail to compile in I&TEX if we use
the tikz device. In such cases, we can switch to the PDF or PNG device, or

knitr 19

reconsider our decision on the type of plots, for example, a scatter plot with
millions of points is usually difficult to read, and a contour plot or a hexagon
plot showing the 2D density can be a better alternative (they are smaller in
size).

We emphasized the uniqueness of chunk labels in Section 1.2.1, and here
is one reason why it has to be unique: the chunk label is used in the filenames
of plots; if there are two chunks that share the same label, the latter chunk
will override the plots generated in the previous chunk. The same is true for
cache files in the next section.

1.3.3 Cache

The basic idea of cache is that we directly load results from a previous run
instead of recompute everything from scratch if nothing has been changed
since the last run. This is not a new idea—both cacheSweave [16] and
weaver [6] have implemented it based on Sweave, with the former using
filehash [17] and the latter using .RData images; cacheSweave also supports
lazy-loading of objects based on filehash. The knitr package directly uses
internal base R functions to save (tools: : :makeLazyLoadDB()) and lazy-
load objects (lazyLoad()). The cacheSweave vignette has clearly explained
lazy-loading; roughly speaking, lazy-loading means an object will not be
really loaded into memory unless it is really used somewhere. This is very
useful for cache; sometimes, we read a large object and cache it, then take
a subset for analysis and this subset is also cached; in the future, the initial
large object will not be loaded into R if our computation is only based on the
subset object.

The paths of cache files are determined by the chunk option
cache.path; by default all cache files are created under a directory cache/
relative to the current working directory, and if the option value contains
a directory (e.g., cache.path='"cache/abc-"), cache files will be stored
under the directory cache/ (automatically created if it does not exist) with a
prefix abc-. The cache is invalidated and purged on any changes to the code
chunk, including both the R code and chunk options; this means previous
cache files of this chunk are removed (filenames are identified by the chunk
label) and a new set of cache files will be written. The change is detected
by verifying if the MD5 hash of the code and options has changed, which is
calculated from the digest package [5].

Two new features that make knitr different from other packages are as
follows: cache files will never accumulate since old cache files will always be
removed, and knitr will also try to preserve side effects such as printing and
loading add-on packages. However, there are still other types of side effects
like setting par () or options (), which are not cached. Users should be
aware of these special cases and make sure to clearly divide the code that is
not meant to be cached into other chunks that are not cached, for example,

20 Implementing Reproducible Research

set all global options in the first chunk of a document and do not cache that
chunk.

Sometimes, a cached chunk may need to use objects from other cached
chunks, which can bring a serious problem—if objects in previous chunks
have changed, this chunk will not be aware of the changes and will still
use old cached results, unless there is a way to detect such changes from
other chunks. There is an option called dependson in cacheSweave, which
does this job. In knitr, we can also explicitly specify which other chunks
this chunk depends on by setting an option like dependson=c (' chunkA’,
"chunkB’) (a character vector of chunk labels). Each time the cache of a
chunk is rebuilt, all other chunks that depend on this chunk will lose cache,
hence their cache will be rebuilt as well.

There are two alternative approaches to specify chunk dependencies:
dep_auto() and dep prev(). For the former, we need to turn on the
chunk option autodep (i.e., set autodep=TRUE), then put dep_auto()
in the first chunk in a document. This is an experimental feature borrowed
from weaver that frees us from setting chunk dependencies manually. The
basic idea is, if a latter chunk uses any objects created from a previous
chunk, the latter chunk is said to depend on the previous one. The func-
tion findGlobals () in the codetools package is used to find out all global
objects in a chunk, and according to its documentation, the result is an
approximation. Global objects roughly mean the ones that are not created
locally, for example, in the expression function() {y <- x}, x should
be a global object, whereas y is local. Meanwhile, we also need to save the
list of objects created in each cached chunk so that we can compare them to
the global objects in latter chunks. For example, if chunk A created an object
x and chunk B uses this object, chunk B must depend on A, that is, when-
ever A changes, B must also be updated. When autodep=TRUE, knitr will
write out the names of objects created in a cached chunk as well as those
global objects in two files named __objects and __globals, respectively; later
we can use the function dep_auto() to analyze the object names to figure
out the dependencies automatically. For dep_prev (), it is a very conserva-
tive approach that sets the dependencies so that a cached chunk will depend
on all of its previous chunks, that is, whenever a previous chunk is updated,
all later chunks will be updated accordingly; similarly, this function needs to
be called in the first code chunk in a document.

1.3.4 Code Externalization

It can be more convenient to write R code in a separate file rather than
mixing it into a literate programming document; for example, we can
run R code successively in a pure R script from one chunk to the other
without jumping through other text chunks. This may not sound impor-
tant for some editors that support interaction with R, such as RStudio
(http:/ /www.rstudio.com/ide) or Emacs with ESS [21], since we can send

knitr 21

R code chunks directly from the editor to R, but for other editors like LyX
(http:/ /www .lyx.org), we can only compile the whole report as a batch job,
which can be inconvenient when we only want to know the results of a single
chunk.

The second reason for the feature of code externalization is to be able
to reuse code across different documents. Currently the setting is like this:
the external R script also has chunk labels for the code in it (marked in the
form ## @knitr chunk-label by default); if the code chunk in the input
document is empty, knitr will match its label with the label in the R script to
input external R code. For example, suppose this is a code chunk labeled as
01 in an R script named mycode.R, which is under the same directory as the
source document:

@Qknitr Q1
#' find the greatest common divisor of m and n
gcd <- function(m, n) {

while ((r <- m%%n) != 0) {
m<-n
n <-r

}

n

In the source document, we can first read the script using the function
read_chunk (), which is available in knitr:

read_ chunk('"mycode.R")

This is usually done in an early chunk, and we can use the chunk Q1 later
in the source document (e.g., an Rnw document):

<<Ql, echo=TRUE, tidy=TRUE>>=
@

Different documents can read the same R script, so the R code can be
reusable across different input documents. In a large project, however, this
may not be an ideal approach to organizing code since there are too many
code fragments. We may consider an R package to organize functions, which
can be easier to call and test.

1.3.5 Chunk Reference

Code externalization is one way to reuse code chunks across documents, and
for a single document, all its code chunks are also reusable in this document.

22 Implementing Reproducible Research

We can either reuse a whole chunk or embed one chunk into the other one.
The former is done through the chunk option ref . label, for example.

<<chunkA>>=
X <- rnorm(100)
e

Now we reuse chunkA in another chunk:

<<chunkB, ref.label="chunkA">>=
@

Then, all the code in chunkA will be put into chunkB. Note only the code
is reused; in this example, chunkB will generate a new batch of random
numbers, regardless of the value of x in chunkA.

To embed a code chunk as a part of another chunk, we can use the syntax
<<label>>, for example

<<chunkA>>=

X <- rnorm(100)

@

Now we embed chunkA into chunkB:

<<chunkB>>=
<<chunkA>>
mean(x)

@

The location of the chunks does not matter. We can even define a code
chunk later, but reference it in an earlier chunk. We can also recursively
embed chunks, and there is no limit on the levels of recursion. For example,
we can embed A in B, and B in C, then C will reuse the code in A as well.

1.3.6 Evaluation of Chunk Options

By default knitr treats chunk options like function arguments instead of
a text string to be split by commas to obtain option values. This gives
the user much more power than the traditional syntax in Sweave; we
can pass arbitrary R objects to chunk options besides simple ones like
TRUE/FALSE, numbers, and character strings. The page http://yihuiname/
knitr/demo/sweave/ has given two examples to show the advantages of
the new syntax. Here, we show yet another useful application: conditional
evaluation.

The idea is, instead of setting chunk options eval to be TRUE or FALSE
(logical constants), their values can be controlled by a variable in the cur-
rent R session. This enables knitr to conditionally evaluate code chunks

knitr 23

according to variables. For example, here we assign TRUE to a variable
dothis:

dothis <- TRUE

In the next chunk, we set chunk options eval=dothis and
echo=!dothis, both are valid R expressions since the variable dothis
exists. As we can see, the source code is hidden, but it was indeed evaluated
since we can see the output:

[1] "you cannot see my source because !dothis is FALSE"
Then, we set eval=dothis and echo=dothis for another chunk:

if (dothis) print("you can see everything now because dothis
is TRUE")

[1] "you can see everything now because dothis is TRUE"

If we change the value of dothis to FALSE, neither of the aforemen-
tioned chunks will be evaluated any more. Therefore, we can control
many chunks with a single variable and present results selectively. When
chunk options are parsed and evaluated like function arguments, a literate
programming document becomes really programmable.

1.3.7 Child Document

We do not have to put everything in one single document; instead,
we can write smaller child documents and include them into a main
document. This can be done through the child option, for example,
child=c(’childl.Rnw’, ’‘child2.Rnw’).When knitr sees the child
option is not empty, it will parse, evaluate, and render the child documents
as usual and include the results back into the main document. Child doc-
uments can have a nested structure (one child can have a further child),
and there is no limit on the depth of nesting. This feature enables us to bet-
ter organize large projects, for example, one author can focus on one child
document.

1.3.8 R Notebook

We can obtain a report based on a pure R script without taking care of the
authoring tools such as IXIEX or HTML. This kind of R scripts is called R note-
books in knitr. There are two approaches to compile R notebooks: stitch()

24 Implementing Reproducible Research

and spin(). The idea of “stitch” is we fit an R script into a predefined tem-
plate in knitr (choices of templates include I£TEX, HTML, and Markdown)
and compile the mixed document to a report; all the code in the script will
be put into one single chunk. The idea of “spin” is to write a specially for-
matted script, with normal texts masked in roxygen comments (i.e., after #)
and chunk options after #+. Here is an example for spin():

#' This is a report.
#

#+ chunkA, eval=TRUE
generate data

X <- rnorm(100)

#

#' The report is done.

This script will be parsed and translated to one of the document for-
mats that knitr supports (Table 1.1), and then compiled to a report. This can
be done through a single click in RStudio or we can also call the functions
manually in R:

library(knitr)
stitch("mycode.R") # stitch it, or spin it
spin("mycode.R")

1.4 Extensibility

The knitr package is highly extensible. We have seen in Section 1.2 that both
the syntax patterns and output hooks can be customized. In this section, we
introduce two new concepts: chunk hooks and language engines.

1.4.1 Hooks

A chunk hook (not to be confused with the output hooks) is a function to
be called when a corresponding chunk option is not NULL, and the returned
value of the function is written into the output if it is character. All chunk
hooks are also stored in the object knit_hooks.

One common and tedious task when using R base graphics is we often
have to call par() to set graphical parameters. This can be abstracted into
a chunk hook, so that before a code chunk is evaluated, a set of graphi-
cal parameters can be automatically set. A chunk hook can be arbitrarily
named as long as it does not conflict with existing hooks in knit_hooks.
For example, we create a hook named pars:

