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PREFACE TO THE SECOND EDITION

The book is a self-contained introduction into elementary probability theory and
stochastic  processes with special emphasis on their applications in science, engineer-
ing, finance, computer science and operations research. It provides theoretical founda-
tions for modeling time-dependent random phenomena in these areas and illustrates
their application through the analysis of numerous, practically relevant examples. As
a non-measure theoretic text, the material is presented in a comprehensible, applica-
tion-oriented way. Its study only assumes a mathematical maturity which students of
applied sciences acquire during their undergraduate studies in mathematics. The study
of stochastic processes and its fundament, probability theory, as of any other mathe-
matically based science, requires less routine effort, but more creative work on  one's
own. Therefore, numerous exercises have been added to enable readers to assess to
which extent they have grasped the subject. Solutions to many of the exercises can
be downloaded from the website of the Publishers or the exercises are given together
with their solutions. A complete solutions manual is available to instructors from the
Publishers. To make the book attractive to theoretically interested readers as well,
some important proofs and challenging examples and exercises have been included.
'Starred' exercises belong to this category. The chapters are organized in such a way
that reading a chapter usually requires knowledge of some of the previous ones. The
book has been developed in part as a course text for undergraduates and for
self-study by non-statisticians. Some sections may also serve as a basis for pre-
paring senior undergraduate courses.
The text is a thoroughly revised and supplemented version of the first edition so that
it is to a large extent a new book: The part on probability theory has been completely
rewritten and more than doubled. Several new sections have been included in the part
about stochastic processes as well: Time series analysis, random walks, branching
processes, and spectral analysis of stationary stochastic processes. Theoretically more
challenging sections have been deleted and mainly replaced with a comprehensive
numerical discussion of examples. All in all, the volume of the book has increased by
about a third.
This book does not extensively deal with data analysis aspects in probability and sto-
chastic processes. But sometimes connections between probabilistic concepts and the
corresponding statistical approaches are established to facilitate the understanding.
The author has no doubt the book will help students to pass their exams and practi-
cians to apply stochastic modeling in their own fields of expertise.

The author is thankful for the constructive feedback from many readers of the first
edition. Helpful comments to the second edition are very welcome as well and should
be directed to: Frank.Beichelt@wits.ac.za.

Johannesburg, March 2016                                                                       Frank Beichelt

mailto:Frank.Beichelt@wits.ac.za


http://taylorandfrancis.com


SYMBOLS AND ABBREVIATIONS

    symbols after an example, a theorem, a definition
     for all t being element of the domain of definition of f f (t) ≡ c f (t) = c

  convolution of two functions  f  and gf ∗ g
  n th convolution power of  f f ∗(n)

  Laplace transform of a function  f f (s), L{f, s}
o(x)   Landau order symbol

  Kronecker symbolδi j

Probability Theory
X,  Y,  Z   random variables
E(X),  Var(X)   mean (expected) value of X, variance of X

  probability density function, (cumulative probability) distributionfX(x), FX(x)
  function of X
  conditional distribution function, density of Y given FY(y x), fY(y x) X = x

,   residual lifetime of a system of age t, distribution function of Xt Ft(x) Xt
  conditional mean value of Y given E(Y x) X = x

λ(x),  Λ(x)   failure rate, integrated failure rate (hazard function)
  normally distributed random variable (normal distribution) with N(μ, σ2)
  mean value µ and variance σ2

  probability density function, distribution function of a standard ϕ(x), Φ(x)
  normal random variable N(0, 1)
  joint probability density function of  fX(x1, x2, ... , xn) X = (X1, X2, ... , Xn)
 joint distribution function of  FX(x1, x2, ... , xn) X = (X1, X2, ... , Xn)

Cov(X, Y), ρ(X, Y) covariance, correlation coefficient between X and Y
M(z)   z-transform (moment generating function) of a discrete random

  variable or of its probability distribution, respectively

Stochastic Processes
 continuous-time, discrete-time stochastic process with{X(t), t ∈ T}, {Xt, t ∈ T}

  parameter space T
Z   state space of a stochastic process

  probability density, distribution function of X(t)ft(x), Ft(x)
ft1,t2,...,tn (x1, x2, ... , xn), Ft1,t2,...,tn (x1, x2, ... , xn)

  joint density, distribution function of  (X(t1), X(t2), ... , X(tn))
m(t)   trend function of a stochastic process
C(s,t)   covariance function of a stochastic process
C(τ)   covariance function of a stationary stochastic process



   compound random variable, compound stochastic processC(t), {C(t), t ≥ 0}
ρ(s,t)   correlation function of a stochastic process

  random point process{T1, T2, ...}
  sequence of interarrival times, renewal process{Y1, Y2, ...}

N   integer-valued random variable, discrete stopping time
  (random) counting process {N(t), t ≥ 0}
  increment of a counting process in (s, t]N(s, t)
  renewal function of an ordinary, delayed renewal processsH(t), H1(t)

 A(t)   forward recurrence time, point availability 
  backward recurrence timeB(t)
   risk reserve, risk reserve processR(t), {R(t), t ≥ 0}

 A,   stationary (long-run) availability, point availabilityA(t)
  one-step, n-step transition probabilities of a homogeneous, pij, pij

(n)

  discrete-time Markov chain
  transition probabilities; conditional, unconditional transition rates pi j(t); qi j , qi
  of a homogeneous, continuous-time Markov chain
  stationary state distribution of a homogeneous Markov chain{πi ; i ∈ Z}
  extinction probability, vacant probability (sections 8.5,  9.7)π0
  birth, death ratesλj , μj

λ, μ, ρ   arrival rate, service rate, traffic intensity λ/μ (in queueing models)
  mean sojourn time of a semi-Markov process in state iμi

µ   drift parameter of a Brownian motion process with drift
W   waiting time in a queueing system
L   lifetime, cycle length, queue length, continuous stopping time
L(x)   first-passage time with regard to level x
L(a,b)   first-passage time with regard to level min(a, b)

  Brownian motion (process){B(t), t ≥ 0}
   variance parameter, volatilityσ2, σ σ2 = Var(B(1))
  seasonal component of a time series (section 6.4), standardized {S(t), t ≥ 0}
  Brownian motion (chapter 11).
  Brownian bridge{B(t), 0 ≤ t ≤ 1}
  Brownian motion with drift{D(t), t ≥ 0}
  absolute maximum of the Brownian motion (with drift) in M(t) [0, t]
  absolute maximum of the Brownian motion (with drift) in M [0, ∞)
  Ornstein-Uhlenbeck process, integrated Brownian motion process{U(t), t ≥ 0}
  circular frequency, bandwidthω, w
  spectral density, spectral function (chapter 12)s(ω), S(ω)



Introduction

            Is the world a well-ordered entirety,
            or a random mixture,
            which nevertheless is called world-order?

Marc Aurel 

Random influences or phenomena occur everywhere in nature and social life. Their
consideration is an indispensable requirement for being successful in natural, econ-
omical, social, and engineering sciences. Random influences partially or fully contri-
bute to the variability of parameters like wind velocity, rainfall intensity, electromag-
netic noise levels, fluctuations of share prices, failure time points of technical units,
timely occurrences of births and deaths in biological populations, of earthquakes, or
of arrivals of customers at service centers. Random influences induce random events.
An event is called random if on given conditions it can occur or not. For instance,
the events that during a thunderstorm a certain house will be struck by lightning, a
child will reach adulthood, at least one shooting star appears in a specified time
interval, a production process comes to a standstill for lack of material, a cancer
patient survives chemotherapy by 5 years are random. Border cases of random events
are the deterministic events, namely the certain event and the impossible event. On
given conditions, a deterministic (impossible) event will always (never) occur. For
instance, it is absolutely sure that lead, when heated to a temperature of over 

 will become liquid, but that lead during the heating process will turn to327.5 0C
gold is an impossible event. Random is the shape, liquid lead assumes if poured on an
even steel plate, and random is also the occurrence of events which are predicted from
the form of these castings to the future. Even if the reader is not a lottery, card, or
dice player, she/he will be confronted in her/his daily routine with random influences
and must take into account their implications: When your old coffee machine fails
after an unpredictable number of days, you go to the supermarket and pick a new one
from the machines of your favorite brand.  At home, when trying to make your first
cup of coffee, you realize that you belong to the few unlucky ones who picked by
chance a faulty machine. A car driver, when estimating the length of the trip to his
destination, has to take into account that his vehicle may start only with delay, that a
traffic jam could slow down the progress, and that scarce parking opportunities may
cause further delay. Also, at the end of a year the overwhelming majority of the car
drivers realize that having taken out a policy has only enriched the insurance compa-
ny. Nevertheless, they will renew their policy because people tend to prefer moderate
regular cost, even if they arise long-term, to the risk of larger unscheduled cost.
Hence it is not surprising that insurance companies belonged to the first institutions
that had a direct practical interest in making use of methods for the quantitative
evaluation of random influences and gave in turn important impulses for the develop-



ment of such methods. It is the probability theory, which provides the necessary
mathematical tools for their work.

    Probability theory deals with the investigation of regularities random events are   
    subjected to.

The existence of such statistical or stochastic regularities may come as a surprise to
philosophically less educated readers, since at first glance it seems to be paradoxic-
al to combine regularity and randomness. But even without philosophy and without
probability theory, some simple regularities can already be illustrated at this stage:

1) When throwing a fair die once, then one of the integers from 1 to 6 will appear
and no regularity can be observed. But if a die is thrown repeatedly, then the fraction
of throws with outcome 1, say, will tend to 1/6, and with increasing number of throws
this fraction will converge to the value 1/6. (A die is called fair if each integer has
the same chance to appear.)
2) If a specific atom of a radioactive substance is observed, then the time from the
beginning of its observation to its disintegration cannot be predicted with certainty,
i.e., this time is random. On the other hand, one knows the half-life period of a radio-
active substance, i.e., one can predict with absolute certainty after which time from
say originally 10 gram (trillions of atoms) of the substance exactly 5 gram is left.
3) Random influences can also take effect by superimposing purely deterministic
processes. A simple example is the measurement of a physical parameter, e.g., the
temperature. There is nothing random about this parameter when it refers to a spe-
cific location at a specific time. However, when this parameter has to be measured
with sufficiently high accuracy, then, even under always the same measurement
conditions, different measurements will usually show different values. This is, e.g.,
due to the degree of inaccuracy, which is inherent to every measuring method, and to
subjective moments. A statistical regularity in this situation is that with increasing
number of measurements, which are carried out independently and are not biased by
systematic errors, the arithmetic mean of these measurements converges towards the
true temperature. 
4) Consider the movement of a tiny particle in a container filled with a liquid. It
moves along zig-zag paths in an apparently chaotic motion. This motion is generated
by the huge number of impacts the particle is exposed to with surrounding molecules
of the fluid. Under average conditions, there are about  collisions per second1021

between particle and molecules. Hence, a deterministic approach to modeling the
motion of particles in a fluid is impossible. This movement has to be dealt with as a
random phenomenon. But the pressure within the container generated by the vast
number of impacts of fluid molecules with the sidewalls of the container is constant.

Examples 1 to 4 show the nature of a large class of statistical regularities:

   The superposition of a large number of random influences leads under certain        
   conditions to deterministic phenomena.

2                                APPLIED PROBABILITY AND STOCHASTIC PROCESSES



Deterministic regularities (law of falling bodies, spreading of waves, Ohm's law,
chemical reactions, theorem of Pythagoras) can be verified in a single experiment if
the underlying assumptions are fulfilled. But, although statistical regularities can be
proved in a mathematically exact way just as the theorem of Pythagoras or the rules
of differentiation and integration of real functions, their experimental verification
requires a huge number of repetitions of one and the same experiment. Even leading
scientists spared no expense to do just this. The Comte de Buffon  and(1707 − 1788)
the mathematician Karl Pearson  had flipped a fair coin several(1857 − 1936)
thousand times and recorded how often 'head' had appeared. The following table
shows their results (n  number of total flippings, m  number of outcome 'head'):

    Scientist             n            m               m/n       
    Buffon       4040       2048     0.5080 
    Pearson     12000       6019          0.5016  
    Pearson     24000     12012     0.5005

Thus, the more frequently a coin is flipped, the more approaches the ratio m/n the
value 1/2 (compare with example 1 above). In view of the large number of flipp-
ings, this principal observation is  surely not a random result, but can be confirmed
by all those readers who take pleasure in repeating these experiments. However,
nowadays the experiment 'flipping a coin' many thousand times is done by a comput-
er with a 'virtual coin' in a few seconds. The ratio m/n is called the relative frequency
of the occurrence of the random event 'head appears.'
Already the expositions made so far may have convinced many readers that random
phenomena are not figments of human imagination, but that their existence is object-
ive reality. There have been attempts to deny the existence of random phenomena by
arguing that if all factors and circumstances, which influence the occurrence of an
event are known, then an absolutely sure prediction of its occurrence is possible. In
other words, the protagonists of this thesis consider the creation of the concept of
randomness only as a sign of 'human imperfection.' The young Pierre Simeon
Laplace  believed that the world is down to the last detail governed by(1729 − 1827)
deterministic laws. Two of his famous statements concerning this are: 'The curve
described by a simple molecule of air in any gas is regulated in a manner as certain
as the planetary orbits. The only difference between them lies in our ignorance.' And:
'Give me all the necessary data, and I will tell you the exact position of a ball on a
billiard table' (after having been pushed). However, this view has proved futile both
from the philosophical and the practical point of view. Consider, for instance, a
biologist who is interested in the movement of animals in the wilderness. How on
earth is he supposed to be in a position to collect all that information, which would
allow him to predict the movements of only one animal in a given time interval with
absolute accuracy? Or imagine the amount of information you need and the
corresponding software to determine the exact path of a particle, which travels in a
fluid, when there are  collisions with surrounding molecules per second. It is an1021
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unrealistic and impossible task to deal with problems like that in a deterministic way.
The physicist Marian von Smoluchowski  wrote in a paper published in(1872 − 1917)
1918 that 'all theories are inadequate, which consider randomness as an unknown
partial cause of an event. The chance of the occurrence of an event can only depend
on the conditions, which have influence on the event, but not on the degree of our
knowledge.'

Already at a very early stage of dealing with random phenomena the need arose to
quantify the chance, the degree of certainty, or the likelihood for the occurrence of
random events. This had been done by defining the probability of random events and
by developing methods for its calculation. For now the following explanation is
given: The probability of a random event is a number between 0 and 1. The imposs-
ible event has probability 0, and the certain event has probability 1. The probability
of a random event is the closer to 1, the more frequently it occurs. Thus, if in a long
series of experiments a random event A occurs more frequently than a random event
B,  then A has a larger probability than B. In this way, assigning probabilities to
random events allows comparisons with regard to the frequency of their occurrence
under identical conditions. There are other approaches to the definition of probabili-
ty than the classical (frequency) approach, to which this explanation refers. For
beginners the frequency approach is likely the most comprehensible one.

Gamblers, in particular dice gamblers, were likely the first people, who were in need
of methods for comparing the chances of the occurrence of random events, i.e., the
chances of winning or losing. Already in the medieval poem De Vetula of Richard de
Fournival  one can find a detailed discussion about the total number(ca 1200−1250)
of possibilities to achieve a certain number, when throwing 3 dice. Geronimo
Cardano  determined in his book Liber de Ludo Aleae the number of(1501 − 1576)
possibilities to achieve the total outomes 2, 3, ..,12, when two dice are thrown. For
instance, there are two possibilities to achieve the outcome 3, namely (1,2) and (2,1),
whereas 2 will be only then achieved, when (1,1) occurs. (The notation (i, j) means
that one die shows an i and the other one a  j.)  Galileo Galilei   proved(1564 − 1642)
by analogous reasoning that, when throwing 3 dice, the probability to get the (total)
outcome 10 is larger than the probability to get a 9. The gamblers knew this from
their experience, and they had asked Galilei to find a mathematical proof. The
Chevalier de   formulated three problems related to games of chance and askedMéré
the French mathematician Blaise Pascal  for solutions:(1623 − 1662)

1) What is more likely, to obtain at least one 6 when throwing a die four times, or in
a series of 24 throwings of two dice to obtain at least once the outcome (6,6)?
2) How many time does one have to throw two dice at least so that the probability to
achieve the outcome (6,6) is larger than 1/2?
3) In a game of chance, two equivalent gamblers need each a certain number of points
to become winners. How is the stake to fairly divide between the gamblers, when for
some reason or other the game has to be prematurely broken off ? (This problem of
the fair division had been already formulated before de , e.g., in the De Vetula.)Méré
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Pascal sent these problems to Pierre Fermat  and both found their(1601 − 1665)
solutions, although by applying different methods. It is generally accepted that this
work of Pascal and Fermat marked the beginning of the development of probability
theory as a mathematical discipline. Their work has been continued by famous
scientists as Christian de Huygens  Jakob Bernoulli (1629 − 1695), (1654 − 1705),
Abraham de Moivre   Carl Friedrich Gauss  and last(1667 − 1754), (1777 − 1855),
but not least by Simeon Denis de Poisson  However, probability theory(1781 − 1840).
was out of its infancy only in the thirties of the twentieth century, when the Russian
mathematician Andrej Nikolajewi  Kolmogorov  found the solution ofc (1903 − 1987)
one of the famous Hilbert problems, namely to put probability theory as any other
mathematical discipline on an axiomatic foundation.

Nowadays, probability theory together with its applications in science, medicine,
engineering, economy et al. are integrated in the field of stochastics. The linguistic
origin of this term can be found in the Greek word stochastikon. (Originally, this term
denoted the ability of seers to be correct with their forecasts.) Apart from probability
theory, mathematical statistics is the most important part of stochastics. A key subject
of it is to infer by probabilistic methods from a sample taken from a set of interesting
objects, called among else sample space or universe, to parameters or properties of
the sample space (inferential statistics). Let us assume we have a lot of 10 000
electronic units. To obtain information on what percentage of these units is faulty, we
take a sample of 100 units from this lot. In the sample, 4 units are faulty. Of course,
this figure does not imply that there are exactly 400 faulty units in the lot. But
inferential statistics will enable us to construct lower and upper bounds for the
percentage of faulty units in the lot, which limit the 'true percentage' with a given
high probability. Problems like this led to the development of an important part of
mathematical statistics, the statistical quality control. Phenomena, which depend both
on random and deterministic influences, gave rise to the theory of stochastic
processes. For instance, meteorological parameters like temperature and air pressure
are random, but obviously also depend on time and altitude. Fluctuations of share
prices are governed by chance, but are also driven by periods of economic up and
down turns.  Electromagnetic noise caused by the sun is random, but also depends on
the periodical variation of the intensity of sunspots.
Stochastic modeling in operations research comprises disciplines like queueing
theory, reliability theory, inventory theory, and decision theory. All of them play an
important role in applications, but also have given many impulses for the theoretical
enhancement of the field of stochastics. Queueing theory provides the theoretical
fundament for the quantitative evaluation and optimization of queueing systems, i.e.,
service systems like workshops, supermarkets, computer networks, filling stations,
car parks, and junctions, but also military defense systems for 'serving' the enemy.
Inventory theory helps with designing warehouses (storerooms) so that they can on
the one hand meet the demand for goods with sufficiently high probability, and on
the other hand keep the costs for storage as small as possible. The key problem with
dimensioning queueing systems and storage capacities is that flows of customers,
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service times, demands, and delivery times of goods after ordering are subject to
random influences. A main problem of reliability theory is the calculation of the
reliability (survival probability, availability) of a system from the reliabilities of its
subsystems or components. Another important subject of reliability theory is model-
ling the aging behavior of technical systems, which incidentally provides tools for
the survival analysis of human beings and other living beings. Chess automats got
their intelligence from the game theory, which arose from the abstraction of games of
chance. But opponents within this theory can also be competing economic blocs or
military enemies. Modern communication would be impossible without information
theory. This theory provides the mathematical foundations for a reliable transmission
of information although signals may be subject to noise at the transmitter, during
transmission, and at the receiver. In order to verify stochastic regularities, nowadays
no scientist needs to manually repeat thousands of experiments. Computers do this
job much more efficiently. They are in a position to virtually replicate the operation
of even highly complex systems, which are subjected to random influences, to any
degree of accuracy. This process is called (Monte Carlo) simulation. More and very
fruitful applications of stochastic (probabilistic) methods exist in fields like physics
(kinetic gas theory, thermodynamics, quantum theory), astronomy (stellar statistics),
biology (genetics, genomics, population dynamic), artificial intelligence (inference
under undertainty), medicine, genomics, agronomy and forestry (design of experi-
ments, yield prediction) as well as in economics (time series analysis) and social
sciences. There is no doubt that probabilistic methods will open more and more
possibilities for applications, which in turn will lead to a further enhancement of the
field of stochastics.

More than 300 hundreds years ago, the famous Swiss mathematician Jakob Bernoulli
proposed in his book Ars Conjectandi the recognition of stochastics as an independ-
ent new science, the subject of which he introduced as follows:

To conjecture about something is to measure its probability: The Art of conjecturing
or the Stochastic Art is therefore defined as the art of measuring as exactly as possi-
ble the probability of things so that in our judgement and actions we always can
choose or follow that which seems to be better, more satisfactory, safer and more
considered.

In line with Bernoulli's proposal, an independent science of stochastics would have
to be characterized by two features:
1) The subject of stochastics is uncertainty caused by randomness and/or ignorance.
2) Its methods, concepts, and language are based on mathematics.

But even now, in the twenty-first century, an independent science of stochastics is
still far away from being officially established. There is, however, a powerful sup-
port for such a move by internationally leading academics; see von Collani (2003).
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PART  I

Probability Theory
   There is no credibility in sciences in which 
   no mathematical theory can be applied, 
   and no credibility in fields which have no
   connections to mathematics.

      Leonardo da Vinci

CHAPTER 1

Random Events and Their Probabilities

1.1  RANDOM EXPERIMENTS

If water is heated up to  at an air pressure of 101 325 Pa, then it will inevitab-1000C
ly start boiling. A motionless pendulum, when being pushed, will start swinging. If
ferric sulfate is mixed with hydrochloric acid, then a chemical reaction starts, which
releases hydrogen sulfide. These are examples for experiments with deterministic
outcomes. Under specified conditions they yield an outcome, which had been known
in advance.
Somewhat more complicated is the situation with random experiments or experim-
ents with random outcome. They are characterized by two properties:
1. Repetitions of the experiment, even if carried out under identical conditions, gen-
erally have different outcomes.
2. The possible outcomes of the experiment are known.
Thus, the outcome of a random experiment cannot be predicted with certainty. This
implies that the study of random experiments makes sense only if they can be repeat-
ed sufficiently frequently under identical conditions. Only in this case stochastic or
statistical regularities can be found.

     



Let  be the set of possible outcomes of a random experiment. This set is calledΩ
sample space, space of elementary events, or universe. Examples of random experi-
ments and their respective sample spaces are:
1) Counting the number of traffic accidents a day in a specified area: Ω = {0, 1, ...}.
2) Counting the number of cars in a parking area with maximally 200 parking bays at
a fixed time point: Ω = {0, 1, ..., 200}.
3) Counting the number of shooting stars during a fixed time interval: Ω = {0, 1, ...}.
4) Recording the daily maximum wind velocity at a fixed location: Ω = [0,∞).
5) Recording the lifetimes technical systems or organisms: Ω = [0,∞).
6) Determining the number of faulty parts in a set of 1000: Ω = {0, 1, ..., 1000}.
7) Recording the daily maximum fluctuation of a share price: Ω = [0,∞).
8) The total profit sombody makes with her/his financial investments a year.              
This 'profit' can be negative, i.e. any real number can be the outcome: Ω = (−∞,+∞).
9) Predicting the outcome of a wood reserve inventory in a forest stand: Ω = [0,∞).
10) a) Number of eggs a sea turtle will bury at the beach: Ω = {0, 1, ...}.
b) Will a baby turtle, hatched from such an egg, reach the water?  withΩ = {0, 1}
meaning 0: no, 1: yes.

As the examples show, in the context of a random experiment, the term 'experiment'
has a more general meaning than in the customary sense.
A random experiment may also contain a deterministic component. For instance, the
measurement of a physical quantity should ideally yield the exact (deterministic)
parameter value. But in view of random measurement errors and other (subjective)
influences, this ideal case does not materialize. Depending on the degree of accuracy
required, different measurements, even if done under identical conditions, may yield
different values of one and the same parameter (length, temperature, pressure, amper-
age,...).

1.2  RANDOM EVENTS

A possible outcome  of a random experiment, i.e. any  is called an element-ω ω ∈ Ω,
ary event or a simple event.
1) The sample space of the random experiment 'throwing two dice consists of 36
simple elements:  The gambler wins if the sum  is atΩ = {(i, j), i, j = 1, 2, . .. , 6}. i + j
least 10. Hence, the 'winning simple events' are and (5, 5), (5, 6), (6, 5), (6, 6).

2) In a delivery of 100 parts some may be defective. A subset (sample) of  partsn = 12
is taken, and the number N of defective parts in the sample is counted. The elemen-  
tary events are 0,1,...,12 (possible numbers of defective parts in the sample). The
delivery is rejected if  N ≥ 4.
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3) In training, a hunter shoots at a cardboard dummy. Given that he never fails the
dummy, the latter is the sample space  and any possible impact mark at the dum-Ω,
my is an elementary event. Crucial subsets to be hit are e.g. 'head' or 'heart.'
Already these three examples illustrate that often not single elementary events are
interesting, but sets of elementary events. Hence it is not surprising that concepts and
results from set theory play a key role in formally establishing probability theory. For
this reason, next the reader will be reminded of some basic concepts of set theory.

Basic Concepts and Notation from Set Theory  A set is given by its elements. We
can consider the set of all real numbers, the set of all rational numbers, the set of all
people attending a performance, the set of buffalos in a national park, and so on. A
set is called discrete if it is a finite or a countably infinite set. By definition, a count-
ably infinite set can be written as a sequence. In other words, its elements can be
numbered. If a set is infinite, but not countably infinite, then it is called nondenumer-
able. Nondenumerable sets are for instance the whole real axis, the positive half-axis,
a finite subinterval of the real axis, or a geometric object (area of a circle, target).
Let A and B be two sets. In what follows we assume that all sets A, B, ... considered
are subsets of a 'universal set'  Hence, for any set A, Ω . A ⊆ Ω .
A is called a subset of B if each element of A is also an element of B.
Symbol: A ⊆ B.
The complement of B with regard to A contains all those elements of B which are not
element of A.
Symbol: B\A
In particular,  contains all those elements which are not element of A.A = Ω\A
The intersection of A and B contains all those elements which belong both to A and B.
Symbol: A∩ B

The union of A and B contains all those elements which belong to A or B (or to both).
Symbol: A∪ B

These relations between two sets are illustrated in Figure 1.1 (Venn diagram). The
whole shaded area is A B.
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            Figure 1.1  Venn diagram
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For any sequence of sets , intersection and union are defined as A1, A2, . .. , An

i=1

n
Ai = A1 ∩ A2 ∩ . .. ∩ An ,

i=1

n
Ai = A1 A2 . .. An .

De Morgan Rules for  Sets2
                                                                           (1.1)A B = A∩ B , A∩ B = A B .
De Morgan Rules for  Setsn

                                                                              (1.2)
i=1

n
Ai =

i=1

n
Ai,

i=1

n
Ai =

i=1

n
Ai .

Random Events A random event (briefly: event) A is a subset of the set  of allΩ
possible outcomes of a random experiment, i.e. A ⊆ Ω.

   A random event A is said to have occurred as a result of a random experiment        
   if the observed outcome  of this experiment is an element of A: ω ω ∈ A.

The empty set  is the impossible event since, for not containing any elementary∅
event, it can never occur. Likewise,  is the certain event, since it comprises all pos-Ω
sible outcomes of the random experiment. Thus, there is nothing random about the
events  and  They are actually deterministic events. Even before having complet-∅ Ω.
ed a random experiment, we are absolutely sure that  will occur and   will not.Ω ∅

Let A and B be two events. Then the set-theoretic operations introduced above can be
interpreted in terms of the occurrence of random events as follows: 

 is the event that both A and B occur,A∩ B
 is the event that A or B (or both) occur,A B

If  (A is a subset of B), then the occurrence of A implies the occurrence of B.A ⊆ B
 is the set of all those elementary events which are elements of A, but not of B.A\ B

Thus,  is the event that A occurs, but not B. Note that (see Figure 1.1)A\ B
                                                                                                   (1.3)A\ B = A\ (A∩ B).
The event  is called the complement of A. It consists of all those elementaryA = Ω\ A
events, which are not in A.
Two events A and B are called disjoint or (mutually) exclusive if their joint occur-
rence is impossible, i.e. if  In this case the occurrence of A implies that BA∩ B = ∅.
cannot occur and vice versa. In particular,  and  are disjoint for any event A A A ⊆ Ω .

Short  Terminology
   A and BA∩ B
   A or BA B
   A implies B,  B follows from AA ⊆ B
   A but not BA\B
   A notA
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Example 1.1 Let us consider the random experiment 'throwing a die' with sample
space  and the random events  and  Then,Ω = {1, 2, . .. , 6} A = {2, 3} B = {3, 4, 6}.

 and  Thus, if a 3 had been thrown, then both theA∩ B = {3} A B = {2, 3, 4, 6}.
events A and B have occurred. Hence, A and B are not disjoint. Moreover, A\B = {2},

 and                                                                                B\A = {4, 6}, A = {1, 4, 5, 6}.

Example 1.2 Two dice  and  are thrown. The sample space isD1 D2

Ω = {(i1, i2), i1, i2 = 1, 2, . .. , 6}.
Thus, an elementary event  consists of two integers indicating the results  and ω i1 i2
of  and  respectively. Let  and  Then,D1 D2, A = {i1 + i2 ≤ 3} B = {i1/i2 = 2}.

A = {(1, 1), (1, 2), (2, 1)}, B = {(2, 1), (4, 2), (6, 3)}.

Hence,
                 A∩ B = {(2, 1}}, A B = {(1, 1), (1, 2), (2, 1), (4, 2), (6, 3)}

and                                                                                          A\B = {(1, 1), (1, 2)}.

Example 1.3 A company is provided with power by three generators  andG1, G2,
The company has sufficient power to maintain its production if only two out ofG3.

the three generators are operating. Let  be the event that generator  isAi Gi, i = 1, 2, 3,
operating, and  be the event that at least two generators are operating. Then,B

                        B = A1A2A3 A1A2A3 A1A2A3 A1A2A3.

1.3  PROBABILITY

The aim of this section consists in constructing rules for determining the probabilities
of random events. Such a rule is principally given by a function P on the set E of all
random events A: E.P = P(A), A ∈

Note that in this context A is an element of the set E so that the notation E would not beA ⊆
correct. Moreover, not all subsets of  need to be random events, i.e., the set E need notΩ
necessarily be the set of all possible subsets of Ω .

The function P assigns to every event A a number  which is its probability. OfP(A),
course, the construction of such a function cannot be done arbitrarily. It has to be
done in such a way that some obvious properties are fulfilled. For instance, if A im-
plies the occurrence of the event B, i.e.  the B occurs more frequently than AA ⊆ B,
so that the relation  should be valid. If in addition the function P hasP(A) ≤ P(B)
properties  and , then the probabilities of random events yieldP(∅) = 0 P(Ω) = 1
indeed the desired information about their degree of uncertainty: The closer  isP(A)
to 0, the more unlikely is the occurrence of A, and the closer  is to 1, the moreP(A)
likely becomes the occurrence of A.
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To formalize this intuitive approach, let for now  be a function on E withP = P(A)
properties
I)      II)   If  then P(∅) = 0, P(Ω) = 1, A ⊆ B, P(A) ≤ P(B).

As a corollary from these two properties we get the following property of P :
III) For any event A,  0 ≤ P(A) ≤ 1.

1.3.1 Classical Definition of Probability

The classical concept of probability is based on the following two assumptions:
1) The space  of the elementary events is finite. Ω
2) As a result of the underlying random experiment, each elementary event has the
same probability to occur.
A random experiment with properties 1 and 2 is called a Laplace random experiment.
Let n be the total number of elementary events (i.e. the cardinality of ). Then anyΩ
random event   consisting of m elementary events has probabilityA ⊆ Ω

                                                    (1.4)P(A) = m/n.
Let  Then every elementary event has probabilityΩ = {a1, a2, . .. , an}.

P(ai) = 1/n, i = 1, 2, ..., n.
Obviously, this definition of probability satisfies the properties I, II, and III listed
above. The integer m is said to be the number of favorable cases (for the occurrence
of A), and n is the number of possible cases.
The classical definition of probability arose in the Middle Ages to be able to determine
the chances to win in various games of chance. Then formula (1.4) is applicable given
that the players are honest and do not use marked cards or manipulated dice. For
instance, what is the probability of the event A that  throwing a die yields an even
number? In this case,  so that  and A = {2, 4, 6} m = 3 P(A) = 3/6 = 0.5.

Example 1.4 When throwing 3 dice, what is more likely, to achieve the total sum 9
(event ) or the total sum 10 (event )? The corresponding sample space isA9 A10

 with Ω = {(i, j, k), 1 ≤ i, j, k ≤ 6} n = 63 = 216
possible outcomes. The integers 9 and 10 can be represented a as sum of 3 positive
integers in the following ways:

9 = 3 + 3 + 3 = 4 + 3 + 2 = 4 + 4 + 1 = 5 + 2 + 2 = 5 + 3 + 1 = 6 + 2 + 1,
    10 = 4 + 3 + 3 = 4 + 4 + 2 = 5 + 3 + 2 = 5 + 4 + 1 = 6 + 2 + 2 = 6 + 3 + 1.

The sum 3+3+3 corresponds to the event  'every die shows a 3' A333 = = {(3, 3, 3)}.
The sum 4+3+2 corresponds to the event  that one die shows a 4, another die aA432
3, and the remaining one a 2:
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A432 = {(2, 3, 4), (2, 4, 3), (3, 2, 4), (3, 4, 2), (4, 2, 3), (4, 3, 2)}.
Analogously,

 A441 = {(1, 4, 4), (4, 1, 4), (4, 4, 1)}, A522 = {(2, 2, 5), (2, 5, 2), (5, 5, 2),

A531 = {(1, 3, 5), (1, 5, 3), (3, 1, 5), (3, 5, 1), (5, 1, 3), (5, 3, 1)},
A621 = {(1, 2, 6), (1, 6, 2), (2, 1, 6), (2, 6, 1), (6, 1, 2), (6, 2, 1)}.

Corresponding to the given sum representations for 9 and 10, the numbers of favor-
able elementary events belonging to the events  and , respectively, areA9 A10

mA = 1 + 6 + 3 + 3 + 6 + 6 = 25, mB = 2 + 3 + 6 + 6 + 3 + 6 = 27.

Hence, the desired probabilities are:
P(A9) = 25/216 = 0.116, P(A10) = 27/216 = 0.125.

The dice gamblers of the Middle Ages could not mathematically prove this result,
but from their experience they knew that                                          P(A9) < P(A10).

Example 1.5  d  dice are thrown at the same time.
What is the smallest number with property that the probability of the eventd = d∗

'no die shows a 6' does not exceed 0.1?A =
The problem makes sense, since with increasing d the probability  tends to 0,P(A)
and if , then  For the corresponding space of elementaryd = 1 P(A) = 5/6. d ≥ 1,
events  has  elements, namely the vectors , where the  areΩ n = 6d (i1, i2, . .. , id) ik
integers between 1 and 6. Amongst the  elementary events those are favorable for6d

the occurrence of  where the  only assume integers between 1 and 5. Hence, forA, ik
the occurrence of  exactly  elementary events are favorable:A 5d

P(A) = 5d/6d.
The inequality  is equivalent to5d/6d ≤ 0.1

d (ln 5/6) ≤ ln(0.1) or d (−0.1823) ≤ −2.3026 or d ≥ 2.3026
0.1823 = 12.63.

Hence,                                                                                                            d∗ = 13.

Binomial Coefficient and Faculty  For solving the next examples, we need a result
from elementary combinatorics: The number of possibilities to select subsets of k
different elements from a set of n different elements,  is given by the1 ≤ k ≤ n ,
binomial coefficient , which is defined as(n

k )

                          (1.5)⎛
⎝

n
k
⎞
⎠ =

n (n − 1). .. (n − k + 1)
k!

, 1 ≤ k ≤ n,

where  is the faculty of k:  By agreementk! k! = 1 ⋅ 2 . .. k .

  and  (n
0 ) = 1 0! = 1.
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The faculty of a positive integer has its own significance in combinatorics:

    There are  different possibilities to order a set of k different objects.k!

Example 1.6 An optimist buys one ticket in a '6 out of 49' lottery and hopes for hit-
ting the jackpot. What are his chances? There are

⎛
⎝

49
6
⎞
⎠ =

49 ⋅ 48 ⋅ 47 ⋅ 46 ⋅ 45 ⋅ 44
6! = 13 983 816

different possibilities to select 6 numbers out of 49. Thus, one has to fill in almost 14
million tickets to make absolutely sure that the winning one is amongst them.  It is

 and  Hence, the probability  of having picked the six 'cor-m = 1 n = 13 983 816. p6
rect' numbers is

                                    p6 =
1

13 983 816 = 0.0000000715.

The classical definition of probability satisfies the properties  and P(∅) = 0 P(Ω) = 1,
 since the impossible event  does not contain any elementary events  and∅ (m = 0)
the certain event  comprises all elementary events Ω (m = n).
Now, let A and B be two events containing  and  elementary events, respectiv-mA mB
ely. If  then  so that  If the events A and B are disjoint,A ⊆ B, mA ≤ mB P(A) ≤ P(B).
then they have no elementary events in common so that  contains A B mA + mB
elementary events. Hence

P(A B) = mA + mB
n =

mA
n +

mB
n = P(A) + P(B)

or                                                          (1.6)P(A B) = P(A) + P(B) if A∩ B = ∅.

More generally, if  are pairwise disjoint events, thenA1, A2, . .. , Ar

 (1.7)P(A1 A2 . .. Ar) = P(A1) + P(A2) + . .. + P(Ar), Ai ∩ Ak = ∅, i ≠ k.

Example 1.7 When participating in the lottery '6 out of 49' with one ticket, what is
the probability of the event A to have at least 4 correct numbers?
Let  be the event of having got  numbers correct. Then,Ai i

A = A4 A5 A6.
 are pairwise disjoint events. (It is impossible that there are on oneA4, A5, and A6

and the same ticket, say, exactly 4 and exactly 5 correct numbers.) Hence,
P(A) = P(A4) + P(A5) + P(A6) .

There are  possibilities to choose 4 numbers from the 6 'correct' ones. To(6
4) = 15

each of these  choices there are15

⎛
⎝

49 − 6
6 − 4

⎞
⎠ =

⎛
⎝

43
2
⎞
⎠ = 903
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possibilities to pick 2 numbers from the 43 'wrong' numbers. Therefore, favorable for
the occurrence of  are  elementary events. Hence,A4 m4 = 15 ⋅ 903 = 13 545

p4 = P(A4) = 13 545/13 983 616 = 0.0009686336.

Analogously,

p5 = P(A5) =
⎛
⎝

6
5
⎞
⎠
⎛
⎝

49−6
6−5

⎞
⎠

⎛
⎝

49
6
⎞
⎠

= 6 ⋅ 43
⎛
⎝

49
6
⎞
⎠

= 0.0000184499.

Together with the result of example 1.6, i.e.,P(A) = p4 + p5 + p6 = 0.0009871552,
almost 10 000 tickets have to be bought to achieve the desired result.                       

1.3.2 Geometric Definition of Probability

The geometric definition of probability is subject to random experiments, in which
every outcome has the same chance to occur (as with Laplace experiments), but the
sample space  is a bounded subset of the one, two or three dimensional EuklidianΩ
space (real line, plain, space). Hence, in each case  is a nondenumerable set. InΩ
most applications,  is a finite interval, a rectangular, a circle, a cube or a sphere.Ω

Let  be a random event. Then we denote by  the measure of A. ForA ⊆ Ω μ(A)
instance, if  is a finite interval, then  is the length of this interval. If A is theΩ μ(Ω)
union of disjoint subintervals of , then  is the total length of these subinter-Ω μ(A)
vals. (We do not consider subsets like the set of all irrational numbers in a finite
interval.)  If  is a rectangular and A is a circle embedded in this rectangular, thenΩ

 is the area of this circle and so on. If  is defined in this way, thenμ(A) μ

  implies  A ⊆ B ⊆ Ω μ(A) ≤ μ(B) ≤ μ(Ω).

Under the assumptions stated, a probability is assigned to every event  byA ⊆ Ω

                                                  (1.8)P(A) =
μ(A)
μ(Ω) .

For disjoint events  and , so that formulas (1.6) and (1.7)A B μ(A B) = μ(A) + μ(B)
are true again. Analogously to the classical probability,  can be interpreted asμ(A)
the measure of all elementary events, which are favorable to the occurrence of A.
With the given interpretation of the measure , every elementary event, i.e. everyμ(⋅)
point in , has measure and probability 0 (different to the Laplace random experi-Ω
ment). (A point, whether at a line, in a plane or space has always extension 0 in all
directions.) But the assumption "every elementary event has the same chance to
occur" is not equivalent to the fact that every elementary event has probability 0.
Rather, this assumption has to be understood in  the following sense:

   All those random events, which have the same measure, have the same probability.
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Thus, never mind where the events (subsets of ) with the same measure are locatedΩ
in  and however small their measure is, the outcome of the random experiment willΩ
be in any of these events with the same probability, i.e., no area in  is preferred withΩ
regard to the occurrence of elementary events.

Example 1.8  For the sake of a tensile test, a wire is clamped at its ends so that the
free wire has a length of 400 cm. The wire is supposed to be homogeneous with
regard to its physical parameters. Under these assumptions, the probability p that the
wire will tear up between 0 and 40 cm or 360 and 400 cm is

p = 40 + 40
400 = 0.2.

Repeated tensile tests will confirm or reject the assumption that the wire is indeed
homogeneous.                                                                                                             

Example 1.9 Two numbers x and y are randomly picked from the interval [0, 1].
What is the probability that x and y satisfy both the conditions

x + y ≥ 1 and x2 + y2 ≤ 1?

Note: In this context, 'randomly' means that every number between 0 and 1 has the same
chance of being picked.

In this case the sample space is the unit square   since anΩ = [0 ≤ x ≤ 1, 0 ≤ y ≤ 1],
equivalent formulation of the problem is to pick at random a point out of the unit
square, which is favorable for the occurrence of the event

A = {(x, y); x + y ≥ 1, x2 + y2 ≤ 1 }.

Figure 1.2 shows the area (hatched) given by A, whereas the 'possible area'  is leftΩ
white, but also includes the hatched area. Since  and  (areaμ(Ω) = 1 μ(A) = π/4 − 0.5
of a quarter of a circle with radius 1 minus the area of the half of a unit square),

                                                P(A) = μ(A) ≈ 0.2854.

Example 1.10 (Buffon's needle problem) At an even surface, parallel straight lines
are drawn at a distance of a cm. At this surface a needle of length L is thrown,  L < a.
What is the probability of the event A that the needle and a parallel intersect?
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The position of the needle at the surface is fully determined by its distance of its 'low-
er' endpoint to the 'upper' parallel and by its angle of inclination  to the parallelsα
(Figure 1.3a), since a shift of the needle parallel to the lines obviously has no influ-
ence on the desired probability. Thus, the sample space is given by the rectangle

Ω = {(y,α), 0 ≤ y ≤ a, 0 ≤ α ≤ π}

with area  (Figure 1.3b). Hence, Buffon's needle problem formally consistsμ(Ω) = aπ
in randomly picking elementary events given by  from the rectangle . Since(y,α) Ω
the needle and the upper parallel intersect if and only if  the favorabley < L sinα,
area for the occurrence of A is given by the hatched part in Figure 1.3b. The area of
this part is

μ(A) = ∫0
π L sinα dα = L [−cosα]0

π = L[1 + 1] = 2 L.

Hence, the desired probability is                                                          P(A) = 2 L/aπ.

1.3.3 Axiomatic Definition of Probability

The classical and the geometric concepts of probability are only applicable to very
restricted classes of random experiments. But these concepts have illustrated which
general properties a universally applicable probability definition should have:

Definition 1.1 A function  on the set of all random events E with  E andP = P(A) ∅ ∈
E is called probability if it has the following properties:Ω ∈

I)   P(Ω) = 1.
II)  For any  E,  A ∈ 0 ≤ P(A) ≤ 1.
III) For any sequence of disjoint events  i.e.,  for A1, A2, ..., Ai ∩ Aj = ∅ i ≠ j,

                                                                                            (1.9)P⎛
⎝⎜i=1

∞
Ai
⎞
⎠⎟
= Σ

i=1

∞
P(Ai).

                                        

Property III makes sense only if with  E the union  is also an element ofAi ∈ i=1
∞ Ai

E. Hence we assume that the set of all random events E is a σ−algebra:
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Definition 1.2 Any set of random events E is called a  if σ − algebra
1)  E. Ω ∈
2) If  E, then  E. In particular, E.A ∈ A ∈ Ω = ∅ ∈
3) For any sequence  with  E, the union  is also a randomA1, A2, ... Ai ∈ i=1

∞ Ai

event, i.e.,
 E. i=1

∞ Ai ∈

E] is called a measurable space, and E, P] is called a probability space.        [Ω, [Ω,

Note: In case of a finite or a countably infinite set , the set E is usually the power set of ,Ω Ω
i.e. the set of all subsets of  A power set is, of course, always a algebra. In this book,Ω. σ−
taking into account its applied orientation, specifying explicitly the underlying  algebra isσ−
usually not necessary. E] is called a measurable space, since to any random event E a[Ω, A ∈
measure, namely its probability, can be assigned. In view of the de Morgan rules (1.1): If A and
B are elements of E, then  as well.A∩ B

Given that E is a algebra, properties  of definition 1.1 imply all the propertiesσ− I−III
of the probability functions, which we found useful in sections 1.3.1 and 1.3.2:
a) Let  for  Then, from III),Ai = ∅ i = n + 1, n + 2, . .. .

        (1.10)P( i=1
n Ai) = Σi=1

n P(Ai), Ai ∩ Aj = ∅, i ≠ j, i, j = 1, 2, . .. , n.

In particular, letting  and  this formula impliesn = 2 A = A1, B = A2,

                         (1.11)P(A B) = P(A) + P(B) if A∩ B = ∅.

With taking into account  and formula (1.11) yieldsB = A, Ω = A A P(Ω) = 1,

                           (1.12)P(A) + P(A) = 1 or P(A) = 1 − P(A).

Applying (1.12) with  yields so that A = Ω P(Ω) + P(∅) = 1,
                                              (1.13)P(∅) = 0, P(Ω) = 1.

Note that  is part of definition 1.1.P(Ω) = 1

b) If A and B are two events with  then B can be represented as  A ⊆ B, B = A (B\A).
Since  and  are disjoint, by (1.11),   or, equivalently,A B\A P(B) = P(A) + P(B\A)

                              (1.14)P(B\A) = P(B) − P(A) if A ⊆ B.

Therefore,                                                                        (1.15)P(A) ≤ P(B) if A ⊆ B.

c) For any events A and B, the event  can be represented as follows (Figure 1.1)A B

A B = {A\A∩ B)} {B\(A∩ B)} (A∩ B).

In this representation, the three events combined by ' ' are disjoint. Hence, by (1.10)
with :n = 3

PA B) = P({A\A∩ B)}) + P({B\(A∩ B)}) + P(A∩ B).
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On the other hand, since  and  from (1.14),(A∩ B) ⊆ A (A∩ B) ⊆ B,
                              (1.16)P(A B) = P(A) + P(B) − P(A∩ B).

Given any 3 events A, B, and C, the probability of the event  can be deter-A B C
mined by replacing in (1.16)  A with  and B with C. This yieldsA B

P(A B C) = P(A) + P(B) + P(C) − P(A∩ B) − P(A∩C) − P(B∩C)
                                                                                                      (1.17)+P(A∩ B∩C)

d) For any n events  one obtains by repeated application of (1.16)A1, A2, ..., An
(more exactly, by induction) the Inclusion-Exclusion Formula or the Formula of
Poincar  for the probability of the event é A1 A2 . .. An :

                           (1.18)P(A1 A2 . .. An) = Σ
k=1

n
(−1)k+1Rk

with                             Rk = Σ
(i1<i2<. .. <ik)

n
P(Ai1 ∩ Ai2 ∩ . .. ∩ Aik ),

where the summation runs over all k-dimensional vectors out of the set(i1, i2, ..., ik)
 with  and  The sum representing {1, 2, ..., n} 1 ≤ i1 < i2 < . .. < ik ≤ n k = 1, 2, ..., n. Rk

has exactly  terms, so that the total number of terms in (1.18) is(n
k )

Σ
k=1

n ⎛
⎝

n
k
⎞
⎠ = 2n − 1.

For instance, if  then the  in (1.18) aren = 3, Rk

R1 = P(A1) + P(A2) + P(A3),

R2 = P(A1 ∩ A2) + P(A1 ∩ A3) + P(A2 ∩ A3),

R3 = P(A1 ∩ A2 ∩ A3).

Example 1.11 Figure 1.4 shows a simple local computer network. Computers are
located at nodes 1, 2, 3, and 4. The transmission of data between the computers is
possible via cables  which link the four computers. Cable  is avail-e1, e2, . .. , e5, ei
able, i.e. in a position to transfer information, with probability  and unavailablepi
(e.g. under maintenance, waiting for maintenance, waiting for replacement for hav-
ing been stolen) with probability qi = 1 − pi, i = 1, 2, ..., 5.
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What is the probability of the event A that the computer at node 1 can transfer data to
the computer at node 4 via one or more paths (chains) of available edges which con-
nect node 1 to node 4? There are four potential candidates for such paths:

w1 = {e1, e4}, w2 = {e2, e5}, w3 = {e1, e3, e5}, w4 = {e2, e3, e4}.

Let  be the event that all edges in path  are available,  Then event AAi wi i = 1, 2, 3, 4.
occurs when at least one of these four events occurs. Hence, A can be represented as

A = A1 A2 A3 A4.

The  are not disjoint. Hence we apply the inclusion-exclusion formula (1.11) forAi
representing A:

P(A) = P(A1 A2 A3 A4) = R1 − R2 + R3 − R4

with
                               R1 = P(A1) + P(A2) + P(A3) + P(A4),

R2 = P(A1 ∩ A2) + P(A1 ∩ A3) + P(A1 ∩ A4) + P(A2 ∩ A3) + P(A2 ∩ A4)

                                                                                          +P(A2 ∩ A4) + P(A3 ∩ A4),
R3 = P(A1 ∩ A2 ∩ A3) + P(A1 ∩ A2 ∩ A4) + P(A1 ∩ A3 ∩ A4) + P(A2 ∩ A3 ∩ A4),

 R4 = P(A1 ∩ A2 ∩ A3 ∩ A4).

The event  means that both the cables in  and in  are operating. Thus,A1 ∩ A2 A1 A2
to the event  there belongs the set of cables  Hence, theA1 ∩ A2 {e1, e2, e4, e5}.
notation  will be used. To the event  there belongsP(A1 ∩ A2) = p1245 A1 ∩ A2 ∩ A3
the set of cables :  If this way of nota-{e1, e2, e3, e4, e5} P(A1 ∩ A2 ∩ A3) = p12345.
tion is applied to all other probabilities occurring in the , thenRi

R1 = p14 + p25 + p135 + p234,

R2 = p1245 + p1345 + p1234 + p1235 + p2345 + p12345,

  R3 = p12345 + p12345 + p12345 + p12345, R4 = p12345.

The desired probability is
P(A) = p14 + p25 + p135 + p234 − p1245 − p1345 − p1234 − p1235 − p2345 + 3p12345.

In section 1.4.2, an additional assumption on the operation modus of the cables will
be imposed which enables the calculation of  only on the basis of the         P(A) pi.

1.3.4 Relative Frequency

The probabilities of random events are usually unknown. However, they can be
estimated by their relative frequencies. If in a series of n repetitions of one and the
same random experiment the event A has been observed exactly  times,m = m(A)
then the relative frequency of A is given by
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                                                (1.19)pn(A) =
m(A)

n .

Generally, the relative frequency of A tends to  as n increases:P(A)
                                             (1.20)lim

n→∞
pn(A) = P(A).

Thus, the probability of A can be estimated with any required level of accuracy from
its relative frequency by sufficiently frequently repeating the random experiment (for
the theoretical background see section 5.2.2). Empirical verifications of the limit rela-
tion (1.20) were aleady given in the introduction by the coin experiments of Buffon
and Pearson. Without the validity of (1.20) the gamblers in the Middle Ages would
not have been in a position to empirically verify that, when throwing three dice, the
chance to obtain sum 9 is lower than the chance to obtain sum 10 (example 1.4).
It is interesting that the relationship (1.20) in connection with Buffon's needle prob-
lem (example 1.10) allows to estimate the number  with any desired degree ofπ
accuracy. To do this, in the formula  the probability  is replacedP(A) = 2L/πa P(A)
with the relative frequency  for the occurrence of A in a series of n needlepn(A)
throwings. This gives for  the estimateπ

πn = 2L
a pn(A)

.

Lazzarini (1901) threw the needle  times and got for  the estimaten = 3408 π
π3408 = 3.141529,

i.e., the first six figures are the exact ones. The approximate calculation of  was oneπ
of the first examples how to solve deterministic problems by probabilistic methods.
Nowadays, nobody needs to throw a needle manually several tousand times. Com-
puters 'simulate' random experiments of this simple structure many thousand times in
a twinkling of an eye.
The reader may object that the approximate calculation of probabilities of all random
events by their relative frequency is practically not possible, in particular, if the sam-
ple space is not finite. However, depending on the respective random experiment, the
probabilities of all its elementary events are frequently given by a unifying mathemat-
ical pattern (model). For instance, the probability that the random number of traffic
accidents occurring in a specific area during a year is equal to k can frequently be
determined by the formula

pk =
λk

k! e−λ; k = 0, 1, ... ,

where  is the average number of traffic accidents which occur a year in that area.λ
Hence, for determining all infinitely many probabilities , only the paramet-p0, p1, ...
er  has to be estimated. This is done by counting the number  of traffic accidentsλ xi
occurring in year i over a period of  years and determining the arithmetic meann

λ = 1
n Σi=1

n xi.
Defining and discussing mathematical models for the calculation of the probabilities
of random events is the subject of chapter 2.
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1.4  CONDITIONAL PROBABILITY AND INDEPENDENCE
 OF RANDOM EVENTS

1.4.1 Conditional Probability

Two random events A and B can depend on each other in the following sense: The
occurrence of B will change the probability of the occurrence of A and vice versa.
Hence, the additional piece of information 'B has occurred' should be used in order to
predict the probability of the occurrence of A more precisely. If one has to determine
the probability that a device does not fail during its guarantee period (event A), then
this probability may depend on the manufacturer of the device (event B) if there are
several of them who produce the same type. The probability of having a sunny day
on 21 August (event A) will increase if there is a sunny day on 20 August (event B)
in view of the inertia of weather patterns. The probability of attracting a certain dis-
ease (event A) will usually be larger than average if there was/is a family member,
who had suffered from this disease (event B). If A is the random event to spot a
leopard in a certain area of a National Park during a safari, then the probability of A
increases if it is known that there are baboons in this area (event B).
Let us now consider some numerical examples to illustrate how to define the probab-
ility of the occurrence of an event A given that another event B has occurred.

Example 1.12 A gambler throws the dice 1 and 2 simultaneously. What is the prob-
ability that die 1 shows a 6 (event A) on condition that both dice showed an even
number (event B). This probability will be denoted as  The sample space isP(A B).

Ω = {(i, j); i, j = 1, 2, ..., 6}.

In terms of the elementary events the events A and B are given by(i, j),
A = {(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)},

B = {(2, 2), (2, 4), (2, 6), (4, 2), (4, 4), (4, 6), (6, 2), (6, 4), (6, 6)}.

Hence,
P(A) = 6/36 and P(B) = 9/36.

On condition 'B has occurred' the sample space  reduces to the 9 elementary eventsΩ
given by B.  From these 9, only the 3 elementary events in the conjunction

A∩ B = {(6, 2), (6, 4), (6, 6)}
are favorable for the occurrence of :  Therefore,A

P(A B) = 3/9.
The following representation shows the general structure of P(A B) :

                                       P(A B) = 1/3 = 3/36
9/36

=
P(A∩ B)

P(B) .
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Example 1.13 In a bowl there are two white and two red marbles. The numbers 1
and 2 are assigned to the white marbles and the numbers 3 and 4 are assigned to the
red marbles. Two marbles are one after the other randomly picked from the bowl.
Find the probability of the event A that one of the drawn marbles is white and the
other red given the event B that the first drawn marble is white.
The sample space consists of  elementary events:4 ⋅ 3 = 12

 Ω = {(i, j); i ≠ j, i, j = 1, 2, 3, 4}.
The events A and B are given by the following sets of elementary events:

A = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1), (4, 2) },

B = {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4) }.
Hence,

 P(A) = 8/12 = 2/3 and P(B) = 6/12 = 1/2.
Since it is known that event B has happened, the space of possible elementary events
is given by B. Hence, the elementary events which are favorable for the occurrence
of event A are given by the conjunction

A∩ B = {(1, 3), (1, 4), (2, 3), (2, 4)}.
This yields

P(A B) = 4
6 = 2

3 = 4/12
6/12

=
P(A∩ B)

P(B) .

For the sake of arriving at the general structure of  solution of the problemP(A B),
had been unnecessarily complicated. The problem is namely quickly solved as
follows: If the first drawn marble is white (event B), then there are one white and two
red marbles left in the bowl. Event A occurs if one of the red marbles will be drawn,
i.e.,                                                                                                        P(A B) = 2/3.

Example 1.14 The lifetimes of  electronic units had been tested. 205 unitsn = 1000
failed in the interval  180 units failed in the interval and the[0, 500 h), [500, 600 h),
remaining 615 units failed after  Let A be the event that a unit fails in the inter-600 h.
val  and B be the event that a unit fails after a lifetime of at least  [500, 600 h), 500 h.
By formula (1.19) with  the relative frequencies for the occurrence ofn = 1000,
events  and B areA

pn(A) =
m(A)

n = 180
1000, pn(B) =

m(B)
n = 1000 − 205

1000 = 0.795.

What is the relative frequency  of the event A on condition that event  haspn(A B) B
occurred?
Under this condition, only the 795 units, which have survived the first  need to500 h,
be taken into account. From these 795 units, 180 fail in  Therefore,[500, 600 h).

pn(A B) = 180
795 = 0.2264.

1 RANDOM EVENTS AND THEIR PROBABILITIES                                            23

     



Since  i.e. the occurrence of A implies the occurrence of B, event A satisfiesA ⊆ B,
 Hence, the 'conditional relative frequency'  can be written asA = A∩ B. pn(A B)

                               (1.21)pn(A B) = m(A∩ B)
m(B) =

m(A∩B)
n

m(B)
n

.

By (1.20), the relative frequencies   and    tend to  and  asm(A∩B)
n

m(B)
n P(A∩ B) P(B)

 respectively. Thus, the conditional probability of A given B has again then →∞,
structure we know from the previous examples:

                              lim
n→∞

pn(A B) = P(A B) = P(A∩ B)
P(B) .

Now it is no longer surprising that the probability of 'A on condition B'  or, equival-
ently, the probability of  'A given B' is defined as follows.

Definition 1.3 Let A and B be two events with  Then the probability of A onP(B) > 0.
condition B is given by

                                         (1.22)P(A B) = P(A∩ B)
P(B) .

Note:  is also denoted as the probability of A given B, the conditional probability of AP(A B)
on condition B, or the conditional probability of A given . Of course, in (1.22) the roles of AB
and  can be changed.B

If A and B are arbitrary random events, formula (1.22) implies a product formula for
the probability  of the joint occurrence of arbitrary events A and B:P(A∩ B)

              (1.23)P(A∩ B) = P(A B) P(B) or P(A∩ B) = P(B A) P(A).

Example 1.15  In a bowl there are three white and two red marbles. Two marbles are
randomly taken out one after the other. What is the probability that both of these mar-
bles are red?
Let be A and B be the events that the first and the second, respectively, of the chosen
marbles are red. Hence, the probability  has to be determined. The probabil-P(A∩ B)
ity of A is equal to  On condition A, there are 3 white and 1 red marble inP(A) = 2/5.
the bowl. Hence,  so thatP(B A) = 1/4

                                   P(A∩ B) = P(B A)P(A) = 1
4 ⋅

2
5 = 0.1.

Example 1.16 In a study, data from a sample of 12 000 persons had been collected.
4800 persons in this sample were obese and 3600 suffered from diabetes 2. From the
diabetes sufferers, 2700 were obese. A person is randomly selected from the sample
of 12 000 persons. It happens to be Max. Let A be the event that Max is obese, and B
be the event that Max has diabetes 2. Then
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P(A) = 0.4, P(B) = 0.3, and P(A B) = 2700/3600 = 0.75.
Hence, the probability that Max is both obese and a diabetes 2 sufferer is, by (1.22),

P(A∩ B) = P(A B)P(B) = 0.75 ⋅ 0.3 = 0.225.

2) To see whether being obese increases the probability of contracting diabetes 2, the
probability  has to be determined: From the right equation of (1.23),P(B A)

P(A∩ B) = 0.225 = P(B A)P(A) = P(B A) ⋅ 0.4.
Hence,  Thus, based on this study, being obese increases theP(B A) = 0.5625.
probability of contracting diabetes 2.                                                                          

1.4.2 Total Probability Rule and Bayes' Theorem

Frequently several mutually exclusive conditions have influence on the occurrence
of a random event A. The whole of these conditions are known, but it is not known,
which of these conditions is taking effect. However, the probabilities are known
which of these conditions affects the occurrence of A at the time point of interest.
Under these assumptions, a formula for the occurrence of A will be derived. But next
the procedure is illustrated by an example.

Example 1.17 A machine is subject to two stress levels 1 (event  and 2 (eventB1)
 with respective probabilities 0.8 and 0.2. Stress levels can be determined e.g. byB2)

different production conditions as speed, pressu,re or humidity. It is supposed that
the stress level does not change during a fixed working period (hour, day). Given
stress level 1 or 2, the machine will fail during a working period with probability 0.3
or 0.6, respectively. Hence, 

P(A B1) = 0.3, P(A B2) = 0.6.

Since the events  and  are disjoint (mutually exclusive) and  is theB1 B2 Ω = B1 B2
certain event, A can be represented as

A = A∩Ω = A∩ (B1 B2) = (A∩ B1) (A∩ B2).

The events  and  are disjoint so that by formula (1.11)A∩ B1 A∩ B2

P(A) = P(A∩ B1) + P(A∩ B2).

By applying (1.23) to each of the two terms on the right-hand side  this formula,of

 P(A) = P(A B1)P(B1) + P(A B2)P(B2)

= 0.3 ⋅ 0.8 + 0.6 ⋅ 0.2 = 0.36.
Thus, without information on the respective stress level, the failure probability of the
machine in the working period is 0.36.                                                                       

Now the principle, illustrated by this example, is formulated more generally:
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Definition 1.4 The set of random events  is an exhaustive set{B1, B2, ..., Bn, n ≤ ∞}
of random events for  ifΩ

Ω = i=1
n Bi ,

and it is a mutually disjoint set of events if
Bi ∩ Bj = ∅, i ≠ j, i, j = 1, 2, ..., n.

A mutually disjoint and exhaustive (for ) set of events is called a partition of   Ω Ω .

Let  be an exhaustive and mutually disjoint set of events with pro-{B1, B2, ..., Bn}
perty  for all and let A be an event with  Then A canP(Bi) > 0 i = 1, 2, ..., n, P(A) > 0.
be represented as follows (see Figure 1.5):

P(A) =
i=1

n
(A∩ Bi).

Since the  are disjoint, the conjunctions  are disjoint as well. FormulaBi A∩ Bi
(1.10) is applicable and yields  Now formula (1.23) appliedP(A) = Σi=1

n P(A∩ Bi).
to all n probabilities  yieldsP(A∩ Bi)

                                      (1.24)P(A) = Σi=1
n P(A Bi)P(Bi).

This result is called the Formula of total probability or the Total probability rule.
Moreover formulas (1.22) and (1.23) yield,

P(Bi A) =
P(Bi ∩ A)

P(A) =
P(A∩ Bi)

P(A) =
P(A Bi)P(Bi)

P(A) .

If  is replaced with its representation (1.24), thenP(A)

                     (1.25)P(Bi A) =
P(A Bi)P(Bi)

Σi=1
n P(A Bi)P(Bi)

, i = 1, 2, ..., n.

Formula (1.25) is called Bayes' theorem or Formula of Bayes. For obvious reasons,
the probabilities  are called a priori probabilities and the conditional probabili-P(Bi)
ties  a posteriori probabilities.P(Bi A)
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            Figure 1.5 Partition of a sample space

B1 B2 B3 . .. Bn−1 Bn
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Example 1.18 The manufacturers  delivered to a supermarket a totalM1, M2, and M3
of 1000 fluorescent tubes of the same type with shares 200, 300, and 500, respective-
ly. In these shares, there are in this order  12, 9, and 5 defective tubes.
1) What is the probability that a randomly chosen tube is not defective?
2) What is the probability that a defective tube had been produced by , Mi i = 1, 2, 3?
Let events A and  be introduced as follows:Bi
A = 'A tube, randomly chosen from the whole delivery, is not defective.'

'A tube, randomly chosen from the whole delivery, is from  , 'Bi = Mi i = 1, 2, 3.
According to the figures given:

P(B1) = 0.2, P(B2) = 0.3, P(B3) = 0.5,

P(A B1) = 12/200 = 0.06, P(A B2) = 9/300 = 0.03, P(A B3) = 5/500 = 0.01.

 is a set of exhaustive and mutually disjoint events, since there are no{B1, B2, B3}
other manufacturers delivering tubes of this brand to that supermarket and no two
manufacturers can have produced one and the same tube.
1) Formula (1.23) yields

P(A) = 0.06 ⋅ 0.2 + 0.03 ⋅ 0.3 + 0.01 ⋅ 0.5 = 0.026.

2) Bayes' theorem (1.25) gives the desired probabilities:

P(B1 A) = P(A B1)P(B1)
P(A) = 0.06 ⋅ 0.2

0.026 = 0.4615,

P(B2 A) = P(A B2)P(B2)
P(A) = 0.03 ⋅ 0.3

0.026 = 0.3462,

P(B3 A) =
P(A B3)P(B3)

P(A) = 0.01 ⋅ 0.5
0.026 = 0.1923.

Thus, despite having by far the largest proportion of tubes in the delivery, the high
quality of tubes from manufacturer guarantees that a defective tube is most likelyM3
not produced by this manufacturer.                                                                             

Example 1.19 1% of the population in a country are HIV-positive. A test procedure
for diagnosing whether a person is HIV-positive indicates with probability 0.98 that
the person is HIV-positive if indeed he/she is HIV-positive, and with probability
0.96 that this person is not HIV-positve if he/she is not HIV-positive.
1) What is the probability that a test person is HIV-positive if the test indicates that?
To solve the problem, random events   and  are introduced:A B
A = 'The test indicates that a person is HIV-positive.'

 = 'A test person is HIV-positive.'B
Then, from the figures given,
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P(B) = 0.01, P(B) = 0.99

     P(A B) = 0.98, P(A B) = 0.02, P(A B) = 0.96, P(A B) = 0.04.
Since  is an exhaustive and disjoint set of events, the total probability rule{B, B}
(1.23) is applicable to determining :P(A)

P(A) = P(A B)P(B) + P(A B) P(B) = 0.98 ⋅ 0.01 + 0.04 ⋅ 0.99 = 0.0494.
Bayes' theorem (1.24) yields the desired probability :P(B A)

P(B A) = P(A B)P(B)
P(A) = 0.98 ⋅ 0.01

0.0494 = 0.1984.

Although the initial parameters of the test look acceptable, this result is quite unsatis-
factory: In view of ,  about 80% HIV-negative test persons will beP(B A) = 0.8016
shocked to learn that the test procedure indicates they are HIV-positive. In such a sit-
uation the test has to be repeated several times. The reason for this unsatisfactory
numerical result is that only a small percentage of the population is HIV-positive.
2) The probability that a person is HIV-negative if the test procedure indicates this is

P(B A) = P(A B)P(B)
P(A)

= 0.96 ⋅ 0.99
1 − 0.0494 = 0.99979 .

This result is, of course, an excellent feature of the test.                                            

1.4.3 Independent Random Events

If a die is thrown twice, then the result of the first throw does not influence the result
of the second throw and vice versa. If you have not won in the weekly lottery during
the past 20 years, then this bad luck will not increase or decrease your chance to win
in the lottery the following week. An aircraft crash over the Pacific for technical
reasons has no connection to the crash of an aircraft over the Atlantic for technical
reasons the same day. Thus, there are random events which do not at all influence
each other. Events like that are called independent (of each other). Of course, for a
quantitative probabilistic analysis a more accurate definition is required.
If the occurrence of a random event  has no influence on the occurrence of a ran-B
dom event A, then the probability of the occurrence of A will not be changed by the
additional information that  has occurred, i.e.B

                                     (1.26)P(A) = P(A B) = P(A∩ B)
P(B) .

This motivates the definition of independent random events:

Definition 1.5: Two random events A and  are called independent ifB
                                       (1.27)P(A∩ B) = P(A)P(B) .
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This is the product formula for independent events A and B. Obviously, (1.27) is also
valid for  and/or  Hence, defining independence of two randomP(B) = 0 P(A) = 0.
events by (1.27) is preferred to defining independence by formula (1.26).
If A and B are independent random events, then the pairs A and  and B, as wellB, A
as  and  are independent, too. That means relation (1.27) implies, e.g.,A B

P(A∩ B) = P(A)P(B).

This can be proved as follows:
P(A∩ B) = P(A∩ (Ω\B)) = P((A∩Ω)\(A∩ B)) = P(A\(A∩ B))

                                = P(A) − P(A∩ B) = P(A) − P(A)P(B)
                      = P(A)[1 − P(B)] = P(A)P(B).

The generalization of the independence property to more than two random events is
not obvious. The pairwise independence between  events is defined as follows:n ≥ 2
The events  are called pairwise independent if for each pair   A1, A2, ..., An (Ai, Aj)

P(Ai ∩ Aj) = P(Ai)P(Aj), i ≠ j, i, j = 1, 2, ..., n.

A more general definition of the independence of n events is the following one:

Definition 1.6 The random events  are called completely independentA1, A2, ..., An
or simply independent if  for all k = 2, 3, ..., n,

                   (1.28)P(Ai1 ∩ Ai2 ∩ . .. ∩ Aik ) = P(Ai1 )P(Ai2 ) . .. P(Aik)

for any subset  of  with  {Ai1 , Ai2 , ..., Aik} {A1, A2, ..., An} 1 ≤ i1 < i2 < . .. < ik ≤ n.

Thus, to verify the complete independence of n random events, one has to check

Σ
k=2

n ⎛
⎝

n
k
⎞
⎠ = 2n − n − 1

conditions. Luckily, in most applications it is sufficient to verify the case :k = n
                   (1.29)P(A1 ∩ A2 ∩ . .. ∩ An) = P(A1)P(A2) . .. P(An).

The complete independence is a stronger property than the pairwise independence.
For this reason it is interesting to consider an example, in which the  areA1, A2, ..., An
pairwise independent, but not complete independent.

Example 1.20 The dice  and  are thrown. The corresponding sample spaceD1 D2
consists of 36 elementary events:  LetΩ = {(i, j); i, j = 1, 2, ..., 6}.

 '  shows a 1' A1 = D1 = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)},

 '  shows a 1' A2 = D2 = {(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)},

 ' '  ' 'A3 = both D1 and D2 show the same number = {(i, i), i = 1, 2, ..., 6)}.
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Since the  each contain 6 elementary events, Ai
 P(A1) = P(A2) = P(A3) = 1/6 .

The  have only one elementary event in common, namely  Hence,Ai (1, 1).

P(A1 ∩ A2) = P(A1 ∩ A3) = P(A2 ∩ A3) =
1
6 ⋅

1
6 = 1

36 .

Therefore, the  are pairwise independent. However, there isAi

A1 ∩ A2 ∩ A3 = {(1, 1)}.

Hence,

          P(A1 ∩ A2 ∩ A3) =
1
36 ≠ P(A1)P(A2)P(A3) =

1
6 ⋅

1
6 ⋅

1
6 = 1

216 .

Example 1.21 (Chevalier de )  What is more likely: 1) to get at least one 6,Méré
when throwing four dice simultaneously (event A), or 2) to get the outcome (6,6) at
least once, when throwing two dice 24 times simultaneously (event B)?
The complementary events to A and B are:

 'none of the dice shows a 6, when four dice are thrown simultaneously,'A =
 'the outcome (6,6) does not occur, when two dice are thrown 24 times.'B =

1) Both the four results obtained by throwing four or two dice and the results by
repeatedly throwing two dice are independent of each other. Hence, since the proba-
bility to get no 6, when throwing one die, is 5/6, formula (1.29) with  yieldsn = 4

P(A) = (5/6)4.

The probability, not to get the result (6,6) when throwing two dice, is 35/36. Hence,
formula (1.29) yields with  the probabilityn = 24

P(B) = (35/36)24.
Thus, the desired probabilities are

                 P(A) = 1 − (5/6)4 ≈ 0.518, P(B) = 1 − (35/36)24 ≈ 0.491.

Example 1.22  In a set of traffic lights, the color 'red' (as well as green and yellow) is
indicated by two bulbs which operate independently of each other. Color 'red' is
clearly visible if at least one bulb is operating.
What is the probability that in the time interval [0, 200 hours] color 'red' is visible if
it is known that a bulb survives this interval with probability 0.95 ?
To answer this question, let

 'bulb 1 does not fail in [0, 200],'   B = 'bulb 2 does not fail in [0, 200].'A =
The event of interest is

 'red light is clearly visible in [0, 200].'C = A B =
By formula (1.16), 

P(C) = P(A B) = P(A) + P(B) − P(A∩ B).
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Since A and B are independent,
P(C) = P(A) + P(B) − P(A)P(B)= 0.95 + 0.95 − (0.95)2.

Thus, the desired probability is
P(C) = 0.9975.

Another possibility of solving this problem is to apply the Rules of de Morgan (1.1):

P(C) = P(A B) = P(A∩ B) = P(A)P(B) = (1 − 0.95)(1 − 0.95)

                                             = 0.0025
so that                                                                                P(C) = 1 − P(C) = 0.9975.

Example 1.23 ('2 out of 3 system') A system S consists of 3 independently operat-
ing subsystems  The system operates if and only if at least 2 of itsS1, S2, and S3.
subsystems operate. Figure 1.6 illustrates the situation: S operates if there is at least
one path with two operating subsystems (symbolized by rectangles) from the entrance
node en to the exit node ex. As an application may serve the following one: The pres-
sure in a high-pressure tank is indicated by 3 gauges. If at least 2 gauges show the
same pressure, then this value can be accepted as the true one. (But for safety reasons
the failed gauge has to be replaced immediately.)
At a given time point , subsystem  is operating with probability t0 Si pi, i = 1, 2, 3.
What is the probability that the system S is operating at time point ps t0?
Let  be the event that S is working at time point  and  be the event that  isAS t0, Ai Si
operating at time point  Then,t0.

AS = (A1 ∩ A2) (A1 ∩ A3) (A2 ∩ A3).

With  formula (1.17) can be directlyA = A1 ∩ A2, B = A1 ∩ A3, and C = A2 ∩ A3,
applied and yields the following representation of :AS

P(AS) = P(A1 ∩ A2) + P(A1 ∩ A3) + (A2 ∩ A3) − 2P(A1 ∩ A2 ∩ A3).

In view of the independence of the this probability can be written asA1, A2, and A3,

P(AS) = P(A1)P(A2) + P(A1)P(A3) + P(A2)P(A3) − 2P(A1)P(A2)P(A3).
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or
P(AS) = p1p2 + p1p3 + p2p3 − 2p1p2p3.

In particular, if thenp = pi, i = 1, 2, 3,

                                               P(AS) = (3 − 2p)p2.

Disjoint and independent random events are causally not connected. Nevertheless,
sometimes there is confusion about their meaning and use. This may be due to the
formal analogy between their properties:

   If the random events  are disjoint, then, by formula (1.10),A1, A2, ..., An

P(A1 A2 . .. An) = P(A1) + P(A2) + . .. + P(An).

    If the random events  are independent, then, by formula (1.29),A1, A2, ..., An

P(A1 ∩ A2 ∩ . .. ∩ An) = P(A1) ⋅ P(A2) . .. P(An).

1.5 EXERCISES

Sections 1.1 1.3−
1.1) A random experiment consists of simultaneously flipping three coins.
(1) What is the corresponding sample space?
(2) Give the following events in terms of elementary events:                                        
A = 'head appears at least two times,' B = 'head appears not more than once,' and       
C = 'no head appears.'
(3) Characterize verbally the complementary events of A, B, and C.

1.2) A random experiment consists of flipping a die to the first appearance of a '6'.
What is the corresponding sample space?

1.3) Castings are produced weighing either 1, 5, 10, or 20 kg. Let A, B, and C be the
events that a casting weighs 1 or 5kg, exactly 10kg, and at least 10kg, respectively. 
Characterize verbally the events A∩ B, A B, A∩C, and (A B) ∩C .

1.4) Three randomly chosen persons are to be tested for the presence of gene g.
Three random events are introduced:
A = 'none of them has gene g,'                                                                                       
B = 'at least one of them has gene g,'                                                                             
C = 'not more than one of them has gene g'.
Determine the corresponding sample space  and characterize the eventsΩ

 by elementary events.A∩ B, B C, and B∩C
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1.5) Under which conditions are the following relations between events A and B true:
(1)  (2)  (3) A∩ B = Ω , A∪ B = Ω , A∪ B = A∩ B ?

1.6) Visualize by a Venn diagram whether the following relations between random
events A, B, and C are true:
(1) A∩ (B∪C) = (A∩ B) ∪ (A∩C) ,
(2) (A∩ B) ∪ (A∩ B) = A ,
(3) A∪ B = B∪ (A∩ B) .

1.7) (1) Verify by a Venn diagram that for three random events A, B, and C the
following relation is true: (A\B) ∩C = (A∩C)\(B∩C) .
(2) Is the relation  true as well?(A∩ B)\C = (A\C) ∩ (B\C)

1.8) The random events A and B belong to a  E.σ−algebra
What other events, generated by A and B, must belong to E  (see definition 1.2)?

1.9) Two dice  and  are simultaneously thrown. The respective outcomes of D1 D2 D1
and  are  and . Thus, the sample space is D2 ω1 ω2 Ω = {(ω1,ω2); ω1,ω2 = 1, 2, ..., 6}.

Let the events A, B, and C be defined as follows: 
A = 'The outcome of  is even and the outcome of  is odd',D1 D2

B = "The outcomes of  and  are both even".D1 D2

What is the smallest  E generated by A and B ('smallest' with regard to theσ−algebra
number of elements in E)?

1.10) Let A and B be two disjoint random events, A ⊂ Ω , B ⊂ Ω .
Check whether the set of events {A, B,  and } is (1) an exhaustive andA∩ B, A∩ B
(2) a disjoint set of events (Venn diagram).

1.11) A coin is flipped 5 times in a row. What is the probability of the event A that
'head' appears at least 3 times one after the other?

1.12) A die is thrown. Let  and  be two random events.A = {1, 2, 3} B = {3, 4, 6}
Determine the probabilities P(A∪ B), P(A∩ B), and P(B\A).

1.13) A die is thrown 3 times. Determine the probability of the event A that the
resulting sequence of three integers is strictly increasing.

1.14) Two dice are thrown simultaneously. Let  be an outcome of this ran-(ω1,ω2)
dom experiment, ' ' and  ' .' A = ω1 + ω2 ≤ 10 B = ω1 ⋅ ω2 ≥ 19
Determine the probability P(A∩ B).
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1.15) What is the probability  to get 3 numbers right with 1 ticket in the '6 out ofp3
49' number lottery?

1.16) A sample of 300 students showed the following results with regard to physical
fitness and body weight:
                                                                                  weight [kg]

     60 <   [60-80]      80 >

              good        48               64             11

             fitness  satisfactory      22        42        29

 bad      19        17        48

One student is randomly chosen. It happens to be Paul.
(1) What is the probability that the fitness of Paul is satisfactory? 
(2) What is the probability that the weight of Paul is greater than 80 kg?
(3) What is the probability that the fitness of Paul is bad and that his weight is less
than 60 kg?

1.17) Paul writes four letters and addresses the four accompanying envelopes. After
having had a bottle of whisky, he puts the letters randomly into the envelopes. Deter-
mine the probabilities  that k letters are in the 'correct' envelopes, pk k = 0, 1, 2, 3.

1.18) A straight stick is broken at two randomly chosen positions. What is the pro-
bability that the resulting three parts of the stick allow the construction of a triangle?

1.19) Two hikers climb to the top of a mountain from different directions. Their arriv-
al time points are between 9:00 and 10:00 a.m., and they stay on the top for 10 and
20 minutes, respectively. For each hiker, every time point between 9 and 10:00 has
the same chance to be the arrival time. What is the probability that the hikers meet on
the top?

1.20) A fence consists of horizontal and vertical wooden rods with a distance of 10 cm
between them (measured from the center of the rods). The rods have a circular sec-
tional view with a diameter of 2cm. Thus, the arising squares have an edge length of
8cm. Children throw balls with a diameter of 5cm horizontally at the fence. What is
the probability that a ball passes the fence without touching the rods?

1.21) Determine the probability that the quadratic equation
 x2 + 2 a x = b − 1

does not have a real solution if the pair (a,b) is randomly chosen from the quarter
circle {(a, b); a, b > 0, a2 + b2 < 1}.
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1.22) Let A and B be disjoint events with  and  Determine  theP(A) = 0.3 P(B) = 0.45.
probabilities P(A∪ B), P(A∪ B), P(A∪ B), and P(A∩ B).

1.23) Let  Determine .P(A∩ B) = 0.3 and P(B) = 0.6. P(A∪ B)

1.24) Is it possible that for two events A and B with  and  theP(A) = 0.4 P(B) = 0.2
relation  is true?P(A∩ B) = 0.3

1.25) Check whether for 3 arbitrary random events A, B, and C the following con-
stellations of probabilities can be true:
(1) P(A) = 0.6, P(A∩ B) = 0.2, and P(A∩ B) = 0.5,
(2) P(A) = 0.6, P(B) = 0.4, P(A∩ B) = 0, and P(A∩ B∩C) = 0.1,
(3) .P(A∪ B∪C) = 0.68 and P(A∩ B) = P(A∩C) = 1

1.26) Show that for two arbitrary random events A and B the following inequalities
are true: P(A∩ B) ≤ P(A) ≤ P(A∪ B) ≤ P(A) + P(B).

1.27) Let A, B, and C be 3 arbitrary random events.
(1) Express the event 'A occurs, but B and C do not occur' in terms of suitable rela-
tions between these events and their complements.
(2) Prove: the probability of the event 'exactly one of the events A, B, or C occurs' is

P(A) + P(B) + P(C) − 2P(A∩ B) − 2P(A∩C) − 2P(B∩C) + 3P(A∩ B∩C).

Section 1.4
1.28) Two dice are simultaneously thrown. The result is  What is the proba-(ω1,ω2).
bility p of the event ' ' on condition that ' ?' ω2 = 6 ω1 + ω2 = 8

1.29) Two dice are simultaneously thrown. By means of formula (1.24) determine
the probability p that the dice show the same number.

1.30) A publishing house offers a new book as standard or luxury edition and with or
without a CD. The publisher analyzes the first 1000 orders:
                                                                       luxury edition

  yes    no

with CD    yes   324     82

   no     48   546

Let A (B) the random event that a book, randomly choosen from these 1000, is a
luxury one (comes with a CD). (1) Determine the probabilities

 P(A), P(B), P(A∪ B), P(A∩ B), P(A B), P(B A), P(A∪ B B), and P(A B).
(2) Are the events A and B independent?
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1.31) A manufacturer equips its newly developed car of type Treekill optionally with
or without a tracking device and with or without speed limitation technology and
analyzes the first 1200 orders:
                                                                           speed limitation

   yes    no

  tracking device    yes     74    642 

   no     48    436

Let A (B) the random event that a car, randomly chosen from these 1200, has speed
limitation (comes with a tracking device).
(1) Calculate the probabilities  from the figures in the table.P(A), P(B), and P(A∩ B)
(2) Based on the probabilities determined under a), only by using the rules developed
in section 1.3.3, determine the probabilities

P(A∪ B), P(A B), P(B A), P(A∪ B B), and P(A B).

1.32) A bowl contains m white marbles and n red marbles. A marble is taken ran-
domly from the bowl and returned to the bowl together with r marbles of the same
color. This procedure continues to infinity.
(1) What is the probability that the second marble taken is red?
(2) What is the probability that the first marble taken is red on condition that the
second marble taken is red? (This is a variant of 's urn problem.)Pólya

1.33) A test procedure for diagnosing faults in circuits indicates no fault with probab-
ility 0.99 if the circuit is faultless. It indicates a fault with probability 0.90 if the cir-
cuit is faulty. Let the probability of a circuit to be faulty be 0.02.
(1) What is the probability that a circuit is faulty if the test procedure indicates a fault?
(2) What is the probability that a circuit is faultless if the test procedure indicates that
it is faultless?

1.34) Suppose 2% of cotton fabric rolls and 3% of nylon fabric rolls contain flaws.
Of the rolls used by a manufacturer, 70% are cotton and 30% are nylon.
a) What is the probability that a randomly selected roll used by the manufacturer
contains flaws?                                                                                                               
b) Given that a randomly selected roll used by the manufacturer does not contain
flaws, what is the probability that it is a nylon fabric roll?

1.35) A group of 8 students arrives at an examination. Of these students 1 is very
well prepared, 2 are well prepared, 3 are satisfactorily prepared, and 2 are insuffi-
ciently prepared. There is a total of 16 questions. A very well prepared student can
answer all of them, a well prepared 12, a satisfactorily prepared 8, and an insuffi-
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ciently prepared 4. Each student has to draw randomly 4 questions. Student Frank
could answer all the 4 questions. What is the probability that Frank
(1) was very well prepared,                                                                                            
(2) was satisfactorily prepared,                                                                                      
(3) was insufficiently prepared?

1.36) Symbols 0 and 1 are transmitted independently from each other in proportion
. Random noise may cause transmission failures: If a 0 was sent, then a 1 will1 : 4

arrive at the sink with probability 0.1. If a 1 was sent, then a 0 will arrive at the sink
with probability 0.05 (figure).
(1) What is the probability that a received symbol is '1'?
(2) '1' has been received. What is the probability that  '1' had been sent?
(3) '0' has been received. What is the probability that '1' had been sent?

1.37) The companies 1, 2, and 3 have 60, 80, and 100 employees with 45, 40, and 25
women, respectively. In every company, employees have the same chance to be
retrenched. It is known that a woman had been retrenched (event B).
What is the probability that she had worked in company 1, 2, and 3, respectively?

1.38) John needs to take an examination, which is organized as follows: To each
question 5 answers are given. But John knows the correct answer only with probabil-
ity 0.6. Thus, with probability 0.4 he has to guess the right answer. In this case, John
guesses the correct answer with probability 1/5 (that means, he chooses an answer by
chance). What is the probability that John knew the answer to a question given that
he did answer the question correctly?

1.39) A delivery of 25 parts is subject to a quality control according to the following
scheme: A sample of size 5 is drawn (without replacement of drawn parts). If at least
one part is faulty, then the delivery is rejected. If all 5 parts are o.k., then they are
returned to the lot, and a sample of size 10 is randomly taken from the original 25
parts. The delivery is rejected if at least 1 part out of the 10 is faulty.
Determine the probabilities that a delivery is accepted on condition that
(1) the delivery contains 2 defective parts,
(2) the delivery contains 4 defective parts.
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1.40) The random events  are assumed to be independent. Show thatA1, A2, ..., An

P(A1 ∪ A2 ∪ . .. ∪ An) = 1 − (1 − P(A1))(1 − P(A2)) . .. (1 − P(An)).

1.41) n hunters shoot at a target independently of each other, and each of them hits it
with probability 0.8. Determine the smallest  with property that the target is hit withn
probability 0.99 by at least one hunter.

1.42) Starting a car of type Treekill is successful with probability 0.6. What is the
probability that the driver needs no more than 4 start trials to be able to leave?

1.43) Let A and B be two subintervals of [0, 1]. A point x is randomly chosen from
 Now A and B can be interpreted as random events, which occur if  or[0, 1]. x ∈ A

 respectively. Under which condition are A and B independent?x ∈ B,

1.44) A tank is shot at by 3 independently acting anti-tank helicopters with one anti-
tank missile each. Each missile hits the tank with probability 0.6. If the tank is hit by
1 missile, it is put out of action with probability 0.8. If the tank is hit by at least 2 mis-
siles, it is put out of action with probability 1.
What is the probability that the tank is put out of action by this attack?

1.45) An aircraft is targeted by two independently acting ground-to-air missiles. Each
missile hits the aircraft with probability 0.6 if these missiles are not being destroyed
before. The aircraft will crash with probability 1 if being hit by at least one missile.
On the other hand, the aircraft defends itself by firing one air-to-air missile each at
the approaching ground-to-air missiles. The air-to-air missiles destroy their respec-   
tive targets with probablity 0.5.
(1) What is the probability that p the aircraft will crash as a result of this attack? 
(2) What is the probability that the aircraft will crash if two independent air-to-air
missiles are fired at each of the approaching ground-to-air-missiles?

1.46) The liquid flow in a pipe can be interrupted by two independent valves  andV1
, which are connected in series (figure). For interrupting the liquid flow it is suf-V2

ficient if one valve closes properly. The probability that an interruption is achieved
when necessary is 0.98 for both valves. On the other hand, liquid flow is only possi-
ble if both valves are open. Switching from 'closed' to 'open' is successful with
probability 0.99 for each of the valves.
(1) Determine the probability to be able to interrupt the liquid flow if necessary.
(2) What is the probability to be able to resume liquid flow if both valves are closed?
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CHAPTER 2

One-Dimensional Random Variables

2.1  MOTIVATION AND TERMINOLOGY

Starting point of chapter 1 is a random experiment with sample space , which is theΩ
set of all possible outcomes of the random experiment under consideration, and the
set (  E of all random events, where a random event  E is a subset ofσ−algebra) A ∈
the sample space:  In this way, together with a probability function P definedA ⊆ Ω.
on E, the probability space [ E, P] is given. In many cases, the outcomes (element-Ω,
ary events) of random experiments are real numbers (throwing a die, counting the
number of customers arriving per unit time at a service station, counting of wildlife
in a specific area, total number of goals in a soccer match, or measurement of life-
times of organisms and technical products). In these cases, the outcomes of a series
of identical random experiments allow an immediate quantitative analysis. However,
when the outcomes are not real numbers, i.e.  is not a subset of the real axis or theΩ
whole real axis, then such an immediate numerical analysis is not possible. To over-
come this problem, a real number z is assigned to the outcome  by a given real-val-ω
ued function g defined on : Ω z = g(ω), ω ∈ Ω.
Examples for situations like that are:
1) When flipping a coin, the two possible outcomes are  'head' and 'tail'. Aω1 = ω2 =
'1' is assigned to head and a '0' to tail (for instance).
2) An examination has the outcomes  'with distinction', 'very good',             ω1 = ω2 =

'good',   'satisfactory', and  'not passed'.  The figures '5', '4',  '1' (forω3 = ω4 = ω5 = . .. ,
instance) are assigned to these verbal evaluations.
3) Even if the outcomes are real numbers, you may be more interested in figures de-
rived from these numbers. For instance, the outcome is the number n of items you
have produced during a workday. For first  item you get a financial reward of $10,
for the second of $11, for the third $12, and so on. Then you are first of all interested
in your total income per working day.
4) If the outcomes of random experiments are vectors of  real numbers, it may be
opportune to assign a real number to these vectors. For instance, if you throw four
dice simultaneously, you get a vector with four components. If you win, when the
total sum exceeds a certain amount, then you are not in the first place interested in
the four individual results, but in their sum. In this way, you reduce the complexity of
the ran- dom experiment.
5) The random experiment consists in testing the quality of 100 spare parts taken ran-
domly from a delivery. A '1' is assigned to a spare part which meets the requirements,



and a '0' otherwise. The outcome of this experiment is a vector ω = (ω1,ω2, . .. ,ω100),
the components  of which are 0 or 1. Such a vector is not tractable, so you want toωi
assign a summarizing quality parameter to it to get a random experiment, which has a
one-dimensional result. This can be, e.g., the relative frequency of those items in the
sample, which meet the requirements:

                                           (2.1)z = g(ω) = 1
100 Σ

k=1

100
ωk .

Basically, application of a real function to the outcomes of a random experiment does
not change the 'nature' of the random experiment, but simply replaces the 'old' sample
space with a 'new' one, which is more suitable for the solution of directly interesting
numerical problems. In the cases 1 and  listed above:3 − 5
1) The sample space {tail, head} is replaced with {0, 1}.
3) The sample space {0, 1, 2, 3, 4, ...} is  replaced  with {0, 10, 21, 33, 46,...}.
4) The sample space  which consists of {(ω1,ω2,ω3,ω4); ωi = 1, 2, ..., 6}, 64 = 1296
elementary events of the structure  is replaced with the sampleω = (ω1,ω2,ω3,ω4),
space {6, 7, ..., 24}.
5) The sample space consisting of the  elementary events  2100 ω = (ω1,ω2, ...,ω100)
with  is 0 or 1 is reduced by the relative frequency function g given by (2.1) to aωk
sample space with 101 elementary events:

{0, 1
100 , 2

100 , . .. , 99
100 , 1}.

Since the outcome  of a random experiment is not predictable, it is also randomω
which value the function  will assume after the random experiment. Hence,g(ω)
functions on the sample space of a random experiment are called random variables.
In the end, the concept of a random variable is only a somewhat more abstract formu-
lation of the concept of a random experiment. But the terminology has changed: One
says on the one hand that as a result of a random experiment an elementary event has
occurred, and on the other hand, a random variable has assumed a value. In this
book (apart from Chapter 12) only real-valued random variables are considered. As it
is common in literature, random variables will be denoted by capital Latin letters,
e.g. X, Y, Z or by Greek letters as ζ, ξ, η.
Let X  be a random variable:   The range  of X is the set of allX = X(ω), ω ∈ Ω. RX
possible values X can assume. Symbolically:  The elements of  areRX = X(Ω). RX
called the realizations of X or their values. If there is no doubt about the underlying
random variable, the range is simply denoted as R.

    A random variable X is a real function on the sample space  of a random exper-Ω
    iment. This function  generates a new random experiment, whose sample space is  
    given by the range  of X. The probabilistic structure of the new random experi-RX
    ment is determined by the probabilistic structure of the original one.
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When discussing random variables, the original, application-oriented random exper-
iment will play no explicit role anymore. Thus, a random variable can be considered
to be an abstract formulation of a random experiment. With this in mind, the proba-
bility that X assumes a value out of a set A,  is an equivalent formulatio  forA ⊆ R, n
the probability that the random event A occurs, i.e.

P(A) = P(X ∈ A) = P(ω, X(ω) ∈ A).

For one-dimensional random variables X, it is sufficient to know the interval probab-
ilities  for all intervals: P(I) = P(X ∈ I) I = [a, b), a < b, i.e.

                          (2.2)P(X ∈ I) = P(a < X ≤ b) = P(ω, a < X(ω) ≤ b).

If  is a finite or countably infinite set, then  is simply the set of all thoseR I = [a, b)
realizations of X, which belong to I.

Definition 2.1 The probability distribution or simply distribution of a one-dimen-
sional random variable X is given by a rule P, which assigns to every interval of the
real axis  the probabilities (2.2).                                                  I = [a, b], a < X ≤ b,

Remark In view of definition 1.2, the probability distribution of any random variable X should
provide probabilities  for any random event A from the sigma algebra E of the under-P(X ∈ A)
lying measurable space E], i.e. not only for intervals. This is indeed the case, since from[Ω,
measure theory it is known that a probability function, defined on all intervals, also provides
probabilities for all those events, which can be generated by finite or countably infinite unions
and conjunctions of intervals. For this reason, a random variable is called a measurable function
with regard to [ E]. This application-oriented text does not explicitely refer to this measure-Ω,
theoretic background and is presented without measure-theoretic terminology.

    A random variable X is fully characterized by its range  and by its probability  RX
    distribution. If a random variable is multidimensional, i.e. its values are n-dimen-
    sional vectors, then the definition of its probability distribution is done by assign-  
    ing probabilities to rectangles for  and to rectangular parallelepipeds for      n = 2
     and so on.n = 3

In chapter 2, only one-dimensional random variables will be considered, i.e., their
values are scalars.
The set of all possible values , which a random variable X can assume, only playsRX
a minor role compared to its probability distribution. In most cases, this set is deter-
mined by the respective applications; in other cases there prevails a certain arbitrar-
iness. For instance, the faces of a die can be numbered from 7 to 12; a 3 (2) can be
assigned to an operating (nonoperating) system instead of 1 or 0. Thus, the most
important thing is to find the probability distribution of a random variable.
Fortunately, the probability distribution of a random variable X is fully characterized
by one function, called its (cumulative) distribution function or its probability distri-
bution function:
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Definition 2.2 The probability distribution function (cumulative distribution function
or simply distribution function)  of a random variable X is defined asF(x)

                                        F(x) = P(X ≤ x), −∞ ≤ x ≤ +∞.

Any distribution function  has the following obvious properties:F(x)

1)                                                                                        (2.3)F(−∞) = 0, F(+∞) = 1,

2)                                                                                   (2.4)F(x1) ≤ F(x2) if x1 ≤ x2.

On the other hand, every function  satisfying the conditions (2.3) and (2.4) andF(x)
being continuous on the left can be considered the distribution function of a random
variable.
Given the distribution function of X, it must be possible to determine the interval pro-
babilities (2.2). This can be done as follows:
For the event " " is given by the union of two disjoint events:a < b, X ≤ b

" "  " "  " ".X ≤ b = X ≤ a a < X ≤ b

Hence, by formula (1.11)  , or, equivalently,, P(X ≤ b) = P(X ≤ a) + P(a < X ≤ b)

                                      (2.5)P(a < X ≤ b) = F(b) − F(a).
Thus, the cumulative distribution function contains all the information, specified in
definition 2.1, about the probability distribution of a random variable. Note that defi-
nition 2.2 refers both to discrete and continuous random variables:

    A random variable X is called discrete if it can assume only  finite or countably      
    infinite many values, i.e., its range R is a finite or a countably infinite set. A ran-   
    dom variable X is called continuous if it can assume all values from the whole real
    axis, a real half-axis, or at least from a finite interval of the real axis or unions of  
     finite intervals.

Examples for discrete random variables are:
Number of flipping a coin to the first appearance of 'head', number of customers arriv-
ing at a service station per hour, number of served customers at service station per
hour, number of traffic accidents in a specified area per day, number of staff being
on sick leave a day, number of rhinos poached in the Krüger National park a year,
number of exam questions correctly answered by a student, number of sperling errors
in this chapter.

Examples for continuous random variables are:
Length of a chess match, service time of a customer at a service station, lifetimes of
biological and technical systems, repair time of a failed machine, amount of rainfall
per day at a measurement point, measurement errors, sulfur dioxide content of the air
(with regard to time and location), daily stock market fluctuations.
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2.2  DISCRETE RANDOM VARIABLES

2.2.1 Probability Distribution and Distribution Parameters

Let X be a discrete random variable with range  The probability dis-R = {x0, x1, . .. }.
tribution of X is given by a probability mass function  This function assigns tof (x).
each realization of X its probability  Without loss of genera-pi = f (xi) ; i = 0, 1, ....
lity it can be assumed that each  is positive. Otherwise, an  with  couldpi xi f (xi) = 0
be deleted from  Let  " " be the random event that X assumes value R. Ai = X = xi xi.
The  are mutually disjoint events, since X cannot assume two different realizationsAi
at the same time. The union of all Ai,

,i=0
∞ Ai

is the certain event , since X must take on any of its realizations. (A random experi-Ω
ment must have an outcome.) Taking into account (1.9), a probability mass function

 has two characteristic properties:f (x)
1)    2)                                    (2.6)f (xi) > 0, Σi=0

∞ f (xi) = 1.
Every function  having these two properties can be considered to be the probabi-f(x)
lity mass function of a discrete random variable. By means of  the probabilityf (x),
distribution function of X, defined by ( ), can be written as follows:2.3

F(x) =
⎧

⎩
⎨
⎪
⎪

0 if x < x0,
Σ

{xi, xi≤x}
f (xi) if x0 ≤ x.

With  an equivalent representation of  ispi = f (xi), F(x)

              F(x) = P(X ≤ x) =
⎧

⎩
⎨
⎪
⎪

0 for x < x0 ,
Σi=0

k pi for xk ≤ x < xk+1, k = 0, 1, 2, . .. .

Figure 2.1 shows the typical graph of the distribution function of a discrete random
variable X in terms of the cumulative probabilities :si
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Figure 2.1  Graph of the distribution function of an arbitrary discrete random variable
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