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Introduction

During the past few years, mobile devices such as smartphones and tablets have
penetrated the market at a very high rate. From an end-user perspective, the
unprecedented advantages these devices offer revolve not only around their high
mobility, but also extend to their ease of use and the plethora of their applications.
As the permeation of mobile devices increases, the development of mobile apps
follows this frantic rate, by being built in great numbers on a daily basis. On the
downside, this mushrooming of mobile networks and portable devices has attracted
the interest of several kinds of aggressors who possess a plethora of invasion tech-
niques in their artillery. Such ill-motivated entities systematically aim to steal or
manipulate users’ or network data, and even disrupt the operations provided to
legitimate users.

Their goal is assisted by the fact that while a continuously increasing number
of users has embraced mobile platforms and associated services, most of them are
not security-savvy and usually follow naive privacy preservation practices on their
routine interaction with their devices. Until now, a great mass of research work and
practical experiences have alerted the community about the nature and severity of
these threats that equally affect end-users, providers, and even organizations.

One can identify several more reasons behind the proliferation of malware and
the spanning of novel invasion tactics in mobile ecosystems. First, mobile devices
are used extensively for sensitive tasks, including bank transactions and e-payments,
private interaction such as engagement in social media applications, or even mission
critical processes in healthcare. Second, smart, ultraportable, and wearable devices
such as smartwatches and smartglasses are highly personal, and thus can be corre-
lated with a single user; they embed several sensors and functionalities capable of
collecting many details about the context of users, while they are constantly con-
nected to the Internet. Third, numerous researches and case studies have shown
that despite the ongoing progress, native security mechanisms of modern mobile
operating systems or platforms can be outflanked. Even worse, most of the applied
wireless communication technologies are eventually proven to be prone to numer-
ous attacks. Admittedly, under this mindset, the attack surface for evildoers grows,
further augmenting the expansion of volume and sophistication of malware apps.

xiii



xiv � Introduction

To cope with this situation, defenders need to deploy smarter and more advanced
security measures along with legacy ones.

The book at hand comprises a number of state-of-the-art contributions from
both scientists and practitioners working in intrusion detection and prevention for
mobile networks, services, and devices. It aspires to provide a relevant reference for
students, researchers, engineers, and professionals working in this particular area or
those interested in grasping its diverse facets and exploring the latest advances in
intrusion detection in mobile ecosystems. More specifically, the book consists of 16
contributions classified into 4 pivotal sections:

� Mobile platforms security, privacy, and intrusion detection: Introducing the topic
of mobile platforms security, privacy, and intrusion detection, and offering
related research efforts on attacking smartphone security and privacy, a way to
create reliable smartphone end-user apps in an ad hoc manner, a privacy risk
assessment for Android apps, and an inference system for mobile forensics.

� Malware detection in mobile platforms: Investigating advanced techniques for
malware and rootkit detection in the Android platform, and exploring the
different kinds of intrusive apps and data leakage due to malware in the same
platform.

� Mobile network security and intrusion detection: Experimentally exploring
mobile botnets, demonstrating ways for attacking LTE by applying low-cost
software radio, and an intrusion detection framework based on SMS.

� Intrusion detection in dynamic and self-organizing networks: Focusing on
intrusion techniques in self-organizing networks, wireless sensor networks,
6LoWPAN-based wireless sensor networks, and co-operative intelligent trans-
portation systems.
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A Review of Intrusion
Detection and Prevention
on Mobile Devices:
The Last Decade

Weizhi Meng, Jianying Zhou, and Lam-For Kwok

Contents
1.1 Introduction ...............................................................................4
1.2 Background ................................................................................5

1.2.1 Intrusion Detection .............................................................6
1.2.2 Intrusion Prevention ............................................................7

1.3 Review on IDSs/IPSs on Mobile Devices ............................................7
1.3.1 From 2004 to 2006 .............................................................8
1.3.2 From 2007 to 2010 .............................................................9
1.3.3 From 2011 to 2013 ........................................................... 11
1.3.4 From 2014 to 2016 ........................................................... 12
1.3.5 Discussion....................................................................... 13

1.4 Issues and Challenges .................................................................. 14
1.5 Solutions and Future Trend ........................................................... 15

1.5.1 Potential Solutions ............................................................ 15
1.5.1.1 Packet Filter Development ....................................... 16
1.5.1.2 Alarm Filter Development........................................ 16
1.5.1.3 Matching Capability Improvement............................. 17
1.5.1.4 Overall Improvement.............................................. 17

3



4 � Intrusion Detection and Prevention for Mobile Ecosystems

1.5.2 Future Trend.................................................................... 17
1.6 Conclusions .............................................................................. 18
References ....................................................................................... 18

1.1 Introduction
Nowadays, mobile devices such as various phones are developing at a rapid pace and
have become common in our daily lives. The worldwide smartphone market grew
0.7% year over year in 2016, with 344.7 million shipments, where Android dom-
inated the market with an 87.6% share, according to data from the International
Data Corporation (IDC) [1]. As a result, more users start utilizing mobile devices
as a frequent storage medium for sensitive information (e.g., passwords, credit card
numbers, private photos) [2], as well as use them for security-sensitive tasks due
to their fast and convenient data connection [3]. Owing to this, smartphones have
become an attractive target for hackers and malware writers [4,5].

As we know, mobile devices are easily lost, and the stored personal and sen-
sitive information in those lost devices might be exploited for malicious use [6].
Therefore, it is unsurprising that designing secure solutions for mobile devices
remains a topic of current interest and relevance. In addition to user authentica-
tion schemes [7], intrusion detection and prevention systems (IDSs/IPSs) are the
most commonly used technology to protect the mobile environment.

Generally, based on specific detection approaches, intrusion detection systems
(IDSs) can be generally classified into two types: signature-based IDS and anomaly-
based IDS. For the former [8,9], it mainly detects a potential attack by examining
packets and comparing them to known signatures. A signature (also called rule)
is a kind of description for a known attack, which is usually generated based on
expert knowledge. For the latter [10,11], it identifies an anomaly by comparing
current events with preestablished normal profile. A normal profile often represents
a normal behavior or network events. An alarm will be generated if any anomaly
is detected. In addition, according to deployment, IDSs can be categorized into
host-based systems and network-based systems.

As compared to IDSs, intrusion prevention systems (IPSs) are able to react and
stop current adversary actions. Most IPSs can offer multiple prevention capabil-
ities to adapt to various needs. IPSs usually allow security officers to choose the
prevention capability configuration for each type of alert, such as enabling or dis-
abling prevention, as well as specifying which type of prevention capability should
be used. To control and reduce false actions, IPSs may have a learning or simulation
mode that suppresses all prevention actions and instead indicates when a preven-
tion action would have been performed. This allows security officers to monitor and
fine-tune the configuration of the prevention capabilities before enabling prevention
actions [8].

Motivation and focus. As mobile devices are often short of power and storage, tra-
ditional intrusion and prevention techniques are hard to deploy directly. However,
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Figure 1.1 Generic workflow of IDSs and IPSs.

in the last decade, with the rapid development of mobile devices, there is an increas-
ing need to apply IDSs/IPSs to protect these devices. It is very critical to establish
an appropriate defense mechanism on such resource-limited devices. Motivated by
this, in this chapter, we aim to present a review, introducing recent advancement
within the last decade regarding the development of mobile intrusion detection and
prevention efforts in the literature, and providing insights about current issues, chal-
lenges, and future directions in this area. Our contributions of this chapter can be
summarized as below:

� First, we introduce the background of IDSs/IPSs in more detail and then
investigate the development of IDS/IPS on mobile devices within the last
decade, by examining notable work in the literature.

� Then, we identify the issues and challenges of designing such defense mecha-
nisms on mobile devices, describe several potential solutions, and analyze the
future directions in this field.

The remaining parts of this chapter are organized as follows. Section 1.2 intro-
duces the background of IDSs and IPSs. Section 1.3 surveys the recent work
regarding IDSs/IPSs on mobile devices within the last decade. Section 1.4 iden-
tifies issues and challenges of designing an appropriate defense on mobile devices.
Section 1.5 describes several potential solutions and points out future directions in
this area, and Section 1.6 concludes this chapter.

1.2 Background
In this section, we introduce the background of IDSs and IPSs, respectively. The
generic workflow of IDSs/IPSs is depicted in Figure 1.1.
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1.2.1 Intrusion Detection
Intrusion detection is the process of monitoring the events occurring in a local sys-
tem or network and analyzing them for any sign of violations. An IDS is a software
that automates the intrusion detection process. An IDS can typically provide several
functions [8]:

� Monitoring and recording information. Targeted information can be usually
recorded either locally or distributed according to concrete settings. For
example, IDSs can store the information in an enterprise management server.

� Notifying security officers. This notification, also known as an alert, can be sent
to security officers if any malicious event is identified. This alert has many
forms such as emails, pages, and messages.

� Generating reports. Such reports often summarize the monitored events and
provide details on particular interested events. Security officers can also track
the historical status based on the reports.

Based on the deployment, there are two major types of IDSs: host-based IDS
(HIDS) and network-based IDS (NIDS). An HIDS mainly monitors the events
that occur in a local computer system, and then reports its findings. On the other
hand, an NIDS aims to monitor current network traffic and detect network attacks
through analyzing incoming network packets.

Moreover, according to the detection methods, an IDS can be primarily labeled
as a signature-based, anomaly-based IDS. Figure 1.1 shows the generic workflow of
intrusion detection.

� A signature is a pattern that corresponds to a known attack or exploit;
thus, signature-based detection is the process of comparing signatures against
observed events to identify possible incidents, for example, a telnet attempt
with a username of “root,” which is a violation of an organization’s security
policy [8].

� Anomaly-based detection is the process of comparing normal profiles against
observed events to identify significant deviations. The profiles are developed
by monitoring the characteristics of typical activity over a period of time. The
system can use statistical methods to compare the characteristics of current
activity to thresholds related to the profile.

Discussion. Signature-based detection is the simplest detection method, since it
only compares the current unit of activity, such as a packet or a log entry, to a
list of signatures using string comparison operations. Therefore, it is very effective
at detecting known threats but largely ineffective at detecting previously unknown
threats. By contrast, anomaly-based detection methods is good at detecting pre-
viously unknown threats, but may produce many false alarms. For example, if a
particular maintenance activity that performs large file transfers occurs only once a
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month, it might not be observed during the training period; when the maintenance
occurs, it is likely to be considered a significant deviation from the profile and trigger
an alert [8].

In addition to the above two detection methods, another detection is called
stateful protocol analysis, which is the process of comparing predetermined profiles
to identify deviations for each protocol status. It relies on vendor-developed univer-
sal profiles that specify how particular protocols should and should not be used. In
the current literature, hybrid IDSs are developing at a rapid pace.

1.2.2 Intrusion Prevention
An IPS is a software that has all the capabilities of an IDS and can also attempt to
stop possible incidents. As compared with an IDS, IPS technologies can respond to
a detected threat by attempting to prevent it from succeeding. They can provide the
following functions:

� Stopping the attack. IPSs can react to existing attacks, such as terminating the
network connection or user session that is being used for the attack, and
blocking access to the target from the offending user account, IP addresses,
etc.

� Changing the security environment. An IPS can change the configuration of
other security controls to disable an attack (i.e., reconfiguration of a device),
or even launch patches to be applied to a host if the host has detected
vulnerabilities.

� Changing the attack’s content. Some IPSs can remove or replace malicious por-
tions of an attack/program to make it benign. For instance, an IPS can remove
an infected file attachment from an email and then permit the cleaned email
to reach its recipient.

Discussion. As depicted in Figure 1.1, IPSs rely on the detection of potential
threats. Thus, intrusion prevention will perform behind IDSs. A typical IPS usually
contains the basic functions of an IDS, or specified as IDPS (intrusion detection and
prevention system). It is worth noting that IDSs/IPSs can be classified differently
according to specific targets and focuses. Table 1.1 describes several classification
categories accordingly.

1.3 Review on IDSs/IPSs on Mobile Devices
As the mobile environment is different from computers, appropriate security sys-
tems should consider both detection accuracy and resource consumption. In this
section, our focus is the application of IDSs/IPSs on mobile devices.
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Table 1.1 Classification Categories According to Different Focuses

Description

By Detection Topology

Network-based methods IDS/IPS is mainly deployed in a network.

Host-based methods IDS/IPS is mainly deployed in a local system.

Hybrid methods IDS/IPS searches anomalies in both network
and local systems.

By Source

Application level IDS/IPS examines events from application level.

Kernel level IDS/IPS examines events from kernel level.

Hardware level IDS/IPS examines events from hardware level.

Hybrid source IDS/IPS provides an overall protection
throughout various levels.

By Detection Approach

Anomaly-based methods IDS/IPS identifies anomalies from normal
profiles.

Signature-based methods IDS/IPS identifies threats through signature
matching.

Behavior-based methods IDS/IPS identifies anomalies based on
predefined valid behavior.

Hybrid methods IDS/IPS combines the above detection
approaches.

By Focus

Malicious apps IDS/IPS focuses on the detection of malware.

Information leakage system IDS/IPS focuses on the detection of
information leakage.

Hybrid IDS/IPS considers all current threats.

1.3.1 From 2004 to 2006
Jacoby and Davis [12] designed a warning system via a host-based intrusion detec-
tion, which could alert security administrators to protect smaller mobile devices.
They operated through the implementation of battery-based intrusion detection
(called B-bid ) on mobile devices by correlating attacks with their impact on device
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power consumption using a rules-based host intrusion detection engine (HIDE).
B-bid mainly measured the energy use over time to decide if an attack is present
or not. As a result, probabilistic bounds for energy and time can have confi-
dence intervals to measure abnormal behavior of power dissipation. In 2005,
Nash et al. [13] also focused on battery exhaustion attacks, and designed an IDS,
which takes into account the performance, energy, and memory constraints of
mobile computing devices. Their system uses several parameters, such as CPU
load and disk accesses, to estimate the power consumption using a linear regression
model.

For general solutions, Jansen et al. [14] focused on mobile devices such as PDAs
and proposed a framework for incorporating core security mechanisms in a unified
manner, through adding improved user authentication, content encryption, organi-
zational policy controls, virus protection, firewall and intrusion detection filtering,
and virtual private network communication. This is a conceptual study; thus, it
needs more tests in reality. Kannadiga et al. [15] discussed the characteristics of
intrusion detection for pervasive computing environments (e.g., mobile, embed-
ded, handheld devices) and described a mobile agent-based IDS to be deployed in a
pervasive computing environment.

Miettinen et al. [16] advocated that mobile systems should be equipped with
proper second-line defense mechanisms that can be used to detect and analyze secu-
rity incidents. They proposed a framework for intrusion detection functionalities in
mobile devices, which combines both host-based and network-based data collection.
The data collection module is responsible for collecting and receiving the host-based
monitoring data. Then, the data collection module forwards the monitoring data
to the IDS module, which is responsible for the actual intrusion detection process.
Then, Buennemeyer et al. [17] proposed a Battery-Sensing Intrusion Protection
System (called B-SIPS) for mobile devices, which could alert on power changes
detected on small wireless devices.

1.3.2 From 2007 to 2010
From 2007, more research has been done in protecting mobile devices against
threats. Mazhelis and Puuronen [18] focused on personal mobile devices and
designed a conceptual framework for mobile-user substitution detection. The
framework was mainly based on the observation that user behavior and environ-
ment could reflect the user’s personality in a recognizable way. More specifically,
the framework could be decomposed into a descriptive and a prescriptive part. The
former is concerned with the description of an object system (i.e., the user, his/her
personality, behavior, and environment). The latter considers technical components
(e.g., databases, knowledge bases, and processing units) that are needed to imple-
ment the UIV system based on the above object system. The proposed approach
aimed at verifying the user’s identity and detecting user substitution, which can be
used in intrusion detection and fraud detection.
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Venkataram et al. [19] proposed a generic model called Activity Event-
Symptoms (AES) model for detecting fraud and attacks during the payment process
in the mobile e-commerce environment. The model was designed to identify the
symptoms and intrusions by observing various events/transactions that occur during
mobile commerce activity. Niu et al. [20] studied the relationship between power
consumption and parameters of system state on mobile computing devices by using
genetic algorithm and artificial neural network. They found that an IDS may pro-
duce many false alarms, if it only relies on the CPU load to detect and identify a
battery exhaust attack. It is suggested that an IDS should at least take hard-disk read
and write operations and network transmission into account.

Later, Chung et al. [21] described an approach of Just-on-Time Data Leak-
age Protection Technique (JTLP), which aims to protect the user’s private data of
mobile devices from malicious activity and leakage. In a mobile device, all users’
access can be monitored by JTLP monitor process (JTLPM) by using the access
control method. When an unauthorized user or malicious code attempts to transmit
some host of the outer network, JTLPM monitors all outbound suspicious packets
to the external host. If a packet contains user’s important data, this packet should
be thrown out of the mobile device by the JTLPM. Brown and Ryan [22] argued
that the current security model for a third-party application running on a mobile
device requires its user to trust that application’s vendor, but they cannot guarantee
complete protection against the threats. Thus, they introduced a security architec-
ture that prevents a third-party application deviating from its intended behavior,
defending devices against previously unseen malware.

For anomaly detection, Schmidt et al. [23] demonstrated how to monitor a
smartphone running Symbian OS to extract features for anomaly detection. They
found that most of the top 10 applications preferred by mobile phone users could
affect the monitored features in different ways. However, their features needed to be
sent to a remote server, due to capability and hardware limitations.

Started from 2009, with the popularity of smartphones, most research has
moved to malware detection. Shabtai et al. [24] evaluated a knowledge-based
approach for detecting instances of known classes of mobile devices malware based
on their temporal behavior. The framework relied on lightweight agent to con-
tinuously monitor time-stamped security data within the mobile device and to
process the data using a light version of the Knowledge-Based Temporal Abstraction
(KBTA) methodology. Then, Liu et al. [25] adopted power consumption analysis
and proposed VirusMeter, a general malware detection method, to detect anoma-
lous behaviors on mobile devices. The rationale underlying VirusMeter is the fact
that mobile devices are usually battery powered and any malicious activity would
inevitably consume some battery power. By monitoring power consumption on a
mobile device, VirusMeter could catch misbehaviors that lead to abnormal power
consumption.

Later, Xie et al. [26] proposed a behavior-based malware detection system named
pBMDS, which adopts a probabilistic approach through correlating user inputs
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with system calls to detect anomalous activities in cellphones. In particular, pBMDS
observes unique behaviors of the mobile phone applications and the operating users
on input and output constrained devices, and leverages a hidden Markov model
(HMM) to learn application and user behaviors from two major aspects: process
state transitions and user operational patterns. Based on these, pBDMS identifies
behavioral differences between malware and human users. Shabtai et al. [27] then
proposed a behavioral-based detection framework for Android mobile devices. The
proposed framework adopted an HIDS that could continuously monitor various
features and events obtained from the mobile device, and apply machine learning
methods to classify the collected data as normal (benign) or abnormal (malicious).

1.3.3 From 2011 to 2013
Smartphone vendors will ship more than 450 million devices in 2011. At the
same period, mobile malware was propagated in a quick manner; therefore, many
IDSs/IPSs were built aiming to perform the detection of malware. Chaugule
et al. [28] found that mobile malware always attempts to access sensitive system
services on the mobile phone in an unobtrusive and stealthy fashion. For example,
the malware may send messages automatically or stealthily interface with the audio
peripherals on the device without the user’s awareness and authorization. They then
presented SBIDF, a Specification Based Intrusion Detection Framework, which uti-
lizes the keypad or touchscreen interrupts to differentiate between malware and
human activity. In the system, they utilized an application-independent specifica-
tion, written in Temporal Logic of Causal Knowledge (TLCK), to describe the
normal behavior pattern, and enforced this specification to all third-party appli-
cations on the mobile phone during runtime by monitoring the intercomponent
communication pattern among critical components.

Then, Burguera et al. [29] focused on detecting malware in the Android plat-
form. They put the detector to embed into a framework for collecting traces from
an unlimited number of real users based on crowdsourcing. The framework could
analyze the data collected in the central server using two types of data sets: those
from artificial malware created for test purposes and those from real malware found
in the wild. They considered that monitoring system calls should be one of the
most accurate techniques to determine the behavior of Android applications, since
they provide detailed low-level information. Bukac et al. [30] then summarized the
development of HIDS before 2012 regarding the detection of intrusions from a host
network traffic analysis, process behavior monitoring, and file integrity checking.
Damopoulos et al. [31] focused on anomaly detection on mobile devices and con-
ducted an evaluation among different classifiers (i.e., Bayesian networks, radial basis
function, K-nearest neighbors, and random Forest) in terms of telephone calls, SMS,
and web browsing history.

La Polla et al. [32] later presented a survey on the security of mobile devices,
and pointed out that mobile services had significantly increased due to the different
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form of connectivity provided by mobile devices, such as GSM, GPRS, Bluetooth,
andWi-Fi. They particularly described the state of the art on threats, vulnerabilities,
and security solutions over the period from 2004 to 2011, by focusing on high-level
attacks, like those to user applications. Roshandel et al. [33] argued that there is a
fundamental difference in the attitude of a typical user when it comes to using their
mobile device as compared to their personal computers. In addition, there is little
by the way of security and privacy protection available on these mobile computing
platforms. As a result, they developed a Layered Intrusion Detection and Reme-
diation framework (LIDAR), which could automatically detect, analyze, protect,
and remediate security threats on Android devices. More specifically, they devel-
oped several algorithms that may help detect abnormal behavior in the operation of
Android smartphone and tablets that could potentially detect the presence of mal-
ware. Li and Clark [34] discussed that mobile devices were being rapidly integrated
into enterprises, government agencies, and even the military, as these devices may
hold valuable and sensitive content. They then provided an overview of the current
threats based on data collected from observing the interaction of 75 million users
with the Internet.

Curti et al. [35] investigated the correlations between the energy consumption of
Android devices and some threats such as battery-drain attacks. They then described
a model for the energy consumption of single hardware components of a mobile
device during normal usage and under attack. Their model can be implemented
in a kernel module and used to build up an energetic signature of both legal and
malicious behaviors of Wi-Fi hardware component in different Android devices.
The proposed Energy-Aware Intrusion Detection solutions were able to reliably
detect attacks on mobile devices based on energetic footprints. To reach this, they
adopted a step-wise approach: (1) they developed some built-in solutions allowing
to measure and analyze energy consumption directly on each device, neglecting the
usage of external hardware; (2) they performed measurements on some devices and
benign/malicious applications and resulted in a database of consumption patterns
for both benign smartphone activities and known attacks.

1.3.4 From 2014 to 2016
From 2014, most research studies aimed at developing a security mechanism to
protect mobile devices against malware, while less work investigated how to build
an IDS/IPS. Several surveys about the malware protection can be referred to in
References 7 and 36.

For building IDSs/IPSs, Yazji et al. [37] focused on the problem of efficient
intrusion detection for mobile devices via correlating the user’s location and time
data. They developed two statistical profiling approaches for modeling the nor-
mal spatiotemporal behavior of the users: one is based on an empirical cumulative
probability measure and the other is based on the Markov properties of trajecto-
ries. An anomaly could be detected when the probability of a particular evolution
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(e.g., location, time) matching the normal behavior of a given user becomes lower
than a certain threshold. Papamartzivanos et al. [38] identified that modern app
markets had been flooded with applications that not only threaten the security of
the OS, but also in their majority, trample on user’s privacy through the exposure of
sensitive information. They discussed and developed a cloud-based crowdsourcing
mechanism that could detect and alert for changes in the app’s behavior.

Later, Sun et al. [39] developed various host-based intrusion prevention systems
(HIPS) on Android devices, in order to protect smartphones and prevent privacy
leakage. In particular, they analyzed the implementations, strengths, and weaknesses
of three popular HIPS architectures, and demonstrated a severe loophole and weak-
ness of an existing popular HIPS product in which hackers can readily exploit. Based
on this, they designed a more secure and extensible HIPS platform called Patronus.
Patronus can dynamically detect existing malware based on runtime information,
without the need to modify the hardware. Damopoulos et al. [40] then investi-
gated two issues: the first one was how to define an architecture, which could be
used for implementing and deploying a system in a dual-mode (host/cloud) man-
ner and irrespectively of the underlying platform, and the second one was how to
evaluate such a system. Their approach allows users to argue in favor of a hybrid
host/cloud IDS arrangement and to provide quantitative evaluation facts on if and
in which cases machine learning-driven detection is affordable when executed on
devices such as smartphones. Damopoulos et al. [41] later described a tool that
was able to dynamically analyze any iOS software in terms of method invocation
(i.e., which API methods the application invokes and under what order), and pro-
duce exploitable results that can be used to manually or automatically trace software
behavior to decide if it contains malicious code.

1.3.5 Discussion
Mobile devices have already become a part of people’s lives. Once a mobile device is
compromised, a wide range of threats may occur. For example, attackers might sell
the uncovered personal data; they might leverage stored credentials to gain access to
a device; or they might use the device as a gateway into enterprise data and resources
by leveraging a trust relationship between the device and the IT infrastructure [34].
Even worse, the device could be put into a botnet or used to send unauthorized
premium-rate SMS messages. Thus, how to manage these risks at scale and the
problem is becoming more complex.

Intrusion detection and prevention techniques are one of the promising solu-
tions to secure mobile devices. However, as compared to a desktop computer, mobile
devices are often short of power and resources. Traditional IDS/IPS tools may not be
applicable on mobile platforms. Therefore, there is a need for developing advanced
and energy-ware intrusion detection and prevention solutions.

In addition to local mobile device protection, existing mobile networks usually
consist of many mobile devices (e.g., medical smartphone network [42]), so it is also
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an important topic to secure the mobile environment, such as adding monitors [43],
verifying locations [44], and performing deep packet inspection [45].

To compare the performance between IDSs/IPSs, three major factors should be
considered: detection accuracy, time consumption, and CPU usage.

� Detection accuracy. This factor is extremely important for an IDS/IPS, where
an ideal detection system should provide high accuracy and low false rates.

� Time consumption. Intrusion detection is a time-sensitive task, where a quick
identification can reduce the damage (e.g., financial loss, data leakage). Gen-
erally, an ideal detection system should be able to identify threats in a faster
manner.

� CPU usage. As mobile devices have limited resources, CPU usage becomes
a critical factor to determine whether an IDS/IPS is feasible in real-world
applications. An ideal detection system is expected to consume less CPU and
ensure the availability of devices.

1.4 Issues and Challenges
As mentioned, mobile devices face the same (or a higher) level of malicious attacks
that have plagued the desktop computing environments [34]. However, typical
mobile devices are different from common computers:

� Mobility.Mobile devices are much more flexible due to their size and weight so
that users can bring their devices everywhere. In comparison, a typical desktop
computer is often deployed in a particular site. The mobility requires to design
more dynamic security mechanisms on mobile devices.

� Limited resources. A typical mobile device (e.g., phones, iPads) has only lim-
ited power and computation capabilities, making it not powerful enough to
implement traditional intrusion detection and prevention techniques. When
designing a mobile security mechanism, there is a balance that should be
considered between performance and energy.

Owing to these features, mobile IDS/IPS may suffer from many issues and chal-
lenges, which are the same as in traditional computing environments. The major
issues and challenges are summarized in Figure 1.2.

� Event overload. Mobile devices can generate a massive amount of local and net-
work events, with the rapid development of system computation. Such events
may exceed the capability of a mobile IDS/IPS. For instance, a signature-based
NIDS may drop lots of network packets if the incoming packets exceed their
maximum processing capability.
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Mobile devices 
- Network module 
- Local applications 

Issue #3 
- False alarms 
- Noncritical alarms 

Issue #2  
- Matching capability 

Issue #1 
- Network events 
- Local events 

Figure 1.2 Issues and challenges of mobile IDSs/IPSs.

� Expensive signature matching. For signature-based IDSs/IPSs, the signature
matching module is often too expensive for resources that the computing bur-
den is at least linear to the size of an incoming string [46]. Subsequently, the
performance of IDS/IPS may be greatly degraded due to the heavy operational
burden.

� Massive false alarms. Both signature- and anomaly-based IDSs/IPSs may gen-
erate a large number of false alarms, which can significantly increase the
difficulty in analyzing alarms and adversely affect the analysis results.

These issues and challenges can greatly degrade the performance of a mobile
IDS/IPS, such as missing network and local events and dispersing analysis direc-
tions. In addition, these issues can increase the workload and burden of deploying
IDSs/IPSs, causing mobile devices to be out of availability in a quick manner. There-
fore, it is a critical topic for developing an appropriate security mechanism on the
mobile environment.

1.5 Solutions and Future Trend
In this section, we describe several potential solutions for the above issues and
challenges, and point out the future trend in this field.

1.5.1 Potential Solutions
In order to design a proper security mechanism on mobile devices, it is necessary to
consider the above issues and make particular improvement with particular goals.
According to the issues in Figure 1.2, it is promising to implement various modules
or additional mechanisms (e.g., packet filter, alarm filter) to strengthen the IDS/IPS
performance.
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1.5.1.1 Packet Filter Development

The reduction of packet filter is a straightforward solution to improve the perfor-
mance of intrusion detection and prevention on mobile devices. The idea of the
packet filter is to reduce the number of target packets through filtering out certain
packets early based on their IP confidence. To build an appropriate packet filtration
mechanism, several factors should be considered:

� The filter should have a minimum impact on system and network perfor-
mance.

� The filter should be efficient and provide a good filtration rate.
� The filter should not degrade the security level of IDSs/IPSs.

Based on these factors, there are several kinds of event/packet filters in the
literature, such as blacklist-based, list-based, and trust-based filter.

� Blacklist-based event/packet filter. Blacklist is a common technique that is used
in filtering events and packets. This type of filter can alleviate the burden of
either a signature- or anomaly-based IDS/IPS in processing a massive number
of target events. This filter can realize a weighted ratio-based method (statistic-
based method) in the monitor engine to calculate the IP confidences and to
generate the blacklist [47,48].

� List-based event/packet filter. In addition to blacklist, the whitelist can also be
useful in real applications. Thus, it is a solution to combine the whitelist and
the blacklist techniques in constructing a list-based event/packet filter [49].

� Trust-based event/packet filter. To leverage the blacklist generation, trust com-
putation can be applied to such filters. For example, Bayesian inference
model [50] can be used to enhance the computation of IP confidence and fur-
ther improve the performance of filters in a large-scale network environment.
One basic assumption is that all events/packets are independent of each other.

1.5.1.2 Alarm Filter Development

The large number of false alarms can greatly reduce the efficiency of an IDS and
significantly increase the burden of analyzing these alarms. For example, thousands
of alarms may be generated in one day, which are a big burden for a security officer.
Even worse, false alarms may have a negative impact on the analysis of IDS outputs.
Hence, false alarm reduction is an important issue for IDSs/IPSs. There are many
techniques that can be considered:

� Adaptive false alarm filter. In real scenarios, machine learning is often applied
to false alarm reduction. However, the filtration accuracy of an algorithm may
be fluctuant. As a result, an adaptive false alarm filter is promising to select
the best algorithm from a pool of algorithms [51]. Such filter enables the



Intrusion Detection and Prevention on Mobile Devices � 17

algorithm selection to be performed in an adaptive way with the purpose of
maintaining a high and stable filtration accuracy.

� Knowledge-based alarm filter. Expert knowledge is very crucial in deciding
whether an alarm is critical or not. Therefore, knowledge-based alert verifi-
cation can be combined to construct an alarm filter [52], that is, employing a
rating mechanism to classify incoming alarms.

� Contextual alarm filter. Many false alarms are produced, since the IDSs/IPSs
are not aware of the contextual information of their deployed environment.
Hence, considering contextual information is a promising method to improve
the quality of output alarms [53].

1.5.1.3 Matching Capability Improvement

The expensive process of signature matching is a key limiting factor for deploying
IDSs/IPSs on mobile devices. Therefore, there is a need for improving the match-
ing capability. Besides traditional string matching algorithms, exclusive signature
matching scheme is a promising solution.

The major difference between regular signature matching and exclusive signature
matching is that the latter aims to identify a mismatch rather than to confirm an
accurate match during the signature matching [46]. This scheme can be adaptive
in selecting the most appropriate single character for exclusive signature matching
in terms of different network environments. In particular, our scheme respectively
calculates the character frequency of both stored NIDS signatures and matched
signatures with the purpose of adaptively and sequentially determining the most
appropriate character in the comparison with packet payload [54].

1.5.1.4 Overall Improvement

Moreover, the above solutions can be integrated into one comprehensive mecha-
nism [55]. Taking EFM [56] as an example, this mechanism is composed of three
major components: a context-aware blacklist-based packet filter, an exclusive signature
matching component, and a KNN-based false alarm filter. In particular, the context-
aware blacklist-based packet filter is responsible for reducing the workload of IDSs
by filtering out network packets by means of IP reputation. The exclusive signature
matching component is implemented in the context-aware blacklist-based packet fil-
ter aiming to speed up the process of signature matching. The KNN-based false
alarm filter is responsible for filtering out false alarms (positives) that are produced
by the packet filter and the IDS.

1.5.2 Future Trend
Intrusion detection and prevention is a basic solution to protect mobile devices
against malicious use. With the development of mobile platforms, malware and
theft use are the major threats. Additionally, several vulnerabilities in the operation
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systemmay threaten the phone security [57]. As a result, IDSs/IPS should be further
enhanced through combining new features.

� Behavioral-based detection. The current smartphones often feature a touch-
screen as the input method. As compared with the traditional button-based
input, touchscreen enables more actions such as multitouch and touch move-
ment. For instance, multitouch is a new feature, where users can touch the
screen with multiple fingers at the same time [58,59]. The new feature may
result in novel threats such as smudge attacks [60], but also enable behavioral-
based detection (e.g., multitouch-included authentication [61–67]). With
more biometrics implemented on mobile devices, biometric authentication
should be given more attention in the future.

� Graphical passwords. There is an increasing number of applications installed
on mobile devices such as graphical passwords; thus, it is necessary to apply
IDS/IPS techniques to those passwords. Such combination can provide more
comprehensive protection to the mobile environment [4,68]. Several research
studies on graphical passwords can be referred to in References 69–79.

� Cloud-based mechanism. Computation resources are often a key limiting fac-
tor for deploying complex IDS/IPS techniques on mobile devices. With the
advent of cloud, it is promising to offload expensive operations to the cloud
side (e.g., offloading the signature matching process [80]).

1.6 Conclusions
Research in mobile device and smartphone security has been conducted for several
years. Security solutions for mobile devices and smartphones must defend against
viruses, malware, botnets, and attacks through the deployment of a wide spectrum
of mobile applications. Intrusion detection and prevention techniques are one basic
solution to protect mobile devices and users’ privacy. However, it is not an easy task
for building an appropriate defense mechanism on resource-limited mobile devices.

In this chapter, we present a review, introducing recent advancement within the
last decade regarding the development of mobile intrusion detection and prevention
efforts in the literature. Then, we give insights about current issues and challenges
for mobile IDSs/IPSs such as overhead event/packets, massive false alarms, and
matching bottleneck. By focusing on these issues, we introduce potential solutions
in constructing event/packet alarm filter and improving signature matching. At last,
we point out that future mobile IDSs/IPSs may cooperate with more applications
such as behavioral-based detection and graphical passwords and utilize the resources
from new environments such as cloud.
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2.1 Introduction
The smartphone landscape continues to grow at an explosive pace as devices become
more powerful, feature-rich, and more affordable to the average consumer. Gart-
ner reports smartphone sales as exceeding 1.4 billion units in 2015, up 14.4%
over the previous year [1]. Smartphones offer greatly increased functionality over
traditional feature phones due to the availability of full-blown operating systems
providing advanced APIs to third-party app developers. Smartphones are predomi-
nantly powered by Android or iOS, with Android maintaining a commanding lead
of the market with 84.7% market share as of 2015 Q3 with iOS in a far second at
13.1% [2]. Other operating systems represented in the landscape include Windows
Phone and BlackBerry among others. On top of the operating system, smartphones
offer a variety of network interfaces for connectivity, multitasking facilities, and
open application programming interfaces (APIs) for supporting third-party app
development. Android and iOS have rich app marketplaces, each offering access to
approximately 1.5 million apps [3,4] that add additional functionality to the smart-
phone. The always-connected, extremely extensible nature of smartphones exposes
a large footprint on the device where weaknesses in the underlying hardware or
software may be exploited by an attacker.

The smartphone landscape is very large, and has a number of layers of software,
protocols, and services that work together to deliver an experience to the consumer.
The interaction between consumer, apps, smartphone, service provider, and the
wider Internet is supported by various wireless protocols that provide connectiv-
ity. Thus, a smartphone may be vulnerable to attacks coming from installed apps,
wireless interfaces, running services, and the underlying configuration of the device.
We are motivated to systematize this knowledge of attacks and attack vectors, as this
will provide a compendium to security researchers intending to develop intrusion
detection and prevention systems* (IDS) for the smartphone ecosystem. We do this
by comprehensively enumerating the ways in which the security and privacy of a
smartphone can be attacked. By understanding the ways in which smartphones can
be attacked, we obtain a mechanism to compare them to traditional workstations,
giving useful insight into the additional or varied risks that need to be addressed
when building technology to secure smartphones.

* For brevity, we refer to intrusion detection and prevention systems as simply IDS for the
remainder of this chapter.
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2.2 Background
To understand the ways smartphones are attacked, we first need to understand the
operating systems that run on these devices and the security models and features
they employ. There are four major smartphone operating systems: Android, iOS,
Windows Phone, and BlackBerry [5]. In addition to typical low-level tasks such
as memory management and process scheduling, smartphone operating systems
provide features critical in today’s smartphone landscape, such as allowing access
to a touchscreen, camera, Bluetooth, Wi-Fi, NFC, GPS, microphone, and other
such hardware. Aside from providing access to the typical smartphone hardware,
the operating system also mediates access to the underlying cellular radio, enabling
communication with a mobile network carrier.

2.2.1 iOS
iOS is a mobile operating system developed by Apple Inc. It has a healthy app
ecosystem that surrounds it with over 1.4 million iOS applications available for
download. The operating system itself is proprietary, closed source, and written in
C, C++, Objective-C, and Swift. It is a Unix-like operating system and features a
hybrid kernel that runs on 64/32-bit ARM processors. Before iOS apps are made
available to the public in the Apple App Store, they must undergo a thorough vet-
ting process by Apple. Apps must pass reliability testing and other analysis to ensure
that they are not malicious or otherwise unsavory. Apple’s vetting process includes
manual testing and static analysis to determine whether an app tries to perform
actions outside of what it claims to do [6]. This vetting process is not always perfect
and indeed security researchers have uncovered ways of circumventing the protec-
tions put in place by Apple [7]. In the case of Jekyll [8], the malicious app passed
the vetting process by rearranging its code to add new, malicious functionality, after
passing the approval process. The iOS kernel uses code signing to ensure that all
apps running on a device come from an approved source and have not been tam-
pered with [9]. Additionally, all third-party apps are sandboxed by iOS to prevent
them from accessing data stored by other apps and modifying the system. However,
Han et al. described how to “break out” of the iOS sandbox by leveraging dynami-
cally loaded, private APIs in malicious apps [10]. Finally, iOS enforces a secure boot
chain and file encryption using a per-file key.

2.2.2 Android
Android is a mobile operating system developed by Google and the Open Hand-
set Alliance. Android devices are powered by a healthy app ecosystem providing
access to over 1.6 million apps. The core of the operating system is written in C,
with additional components written in C++, and the user interface portions writ-
ten in Java. Like iOS, it is also a Unix-like operating system; however, it features
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a monolithic kernel, designed to run on a number of processor platforms such as
ARM, x86, and MIPS. In stark contrast to the Apple App Store, the Google Play
Store does not require an exhaustive app vetting process before an app is admitted
to the store. In general, apps are dynamically tested with a Google security service
known as Bouncer [12]. Google automatically scans apps using dynamic analysis
and combines the results of this analysis with signals from its reputation engine after
it has analyzed the account of the app developer themselves. Security researchers
John Oberheide and Charlie Miller demonstrated techniques that could be used
to fingerprint Bouncer [13]. They identified unique characteristics of the Bouncer
emulation framework such as the hostname, phone number, and Android ID. By
checking for these fingerprints, malware can pretend to be benign when being
tested by Bouncer and then become malicious when installed on victim devices.
In an early study [14], Enck et al. analyzed the source code of 1100 Android apps
and found no evidence of malware or exploitable vulnerabilities. Unfortunately, the
landscape has deteriorated since then. Indeed, Zhou and Jiang [15] provide a char-
acterization of the evolution of Android malware. On the Android platform, every
app runs in its own sandbox by default. As a result of this, each app is isolated
from other apps and the system itself, except by using well-defined APIs and sys-
tem services such as interprocess communication (IPC). However, researchers have
found ways for apps to break out of their sandbox and read arbitrary files using
symbolic links [16]. Android uses a Linux-like user approach, where each app is
executed as a different user and thus inherits the security provided by the oper-
ating system in protecting its resources and files. In addition to sandboxing and
permissions, Android is also designed to prevent platform modification by mal-
ware and also has the capability of remotely removing malware from a device if
required [17].

Comparison of Smartphone Operating Systems: Table 2.1 shows a comparison of
the similarities and differences between the four most popular smartphone oper-
ating systems, and summarizes our effort in distilling this information from the
literature [18–23]. For brevity, we do not compare an exhaustive set of features for
these operating systems. Instead, we target the main characteristics of the operating
systems that contribute the most to vulnerabilities, and thus are most interesting
to IDS developers. We look at the OS family, CPU architectures supported, source
code model, programming languages used, and reverse engineering tools that are
available. Android is based on the Linux family of operating system, while iOS’
Darwin and BlackBerry’s QNX are Unix-like operating systems. The outlier here is
the Windows Phone operating system, which is built around the Windows family
of operating systems. All four of these smartphone operating systems are built to
run on ARM processors, with Android offering the capability to run on x86 and
MIPS processors as well. Android dominates the market, being delivered on 82.8%
of smartphones, iOS on 13.9%, and Windows Phone and BlackBerry trailing dis-
tantly with 2.6% and 0.3% deployment, respectively, as of 2015 Q3 [2]. Android
is the only open-source operating system on the list and all are written in C/C++



Attacking Smartphone Security and Privacy � 29

Table 2.1 Summary of the Main Characteristics of Android, iOS, Windows
Phone, and BlackBerry That Contribute to Their Attack Surface

Operating Windows
System Android iOS Phone BlackBerry

OS family Linux Darwin Windows
CE-7,
Windows
NT-8

QNX

Vendor Google Inc.,
Open
Handset
Alliance
(and
OEMs)

Apple Inc. Microsoft (and
OEMs)

BlackBerry
Ltd.

CPU
architecture

ARM,
ARM64,
x86, MIPS

ARM, ARM64 ARM (ARM64
upcom-
ing [11])

ARM

Market share
(2015
Q3) [2]

84.7% 13.1% 1.7% 0.3%

Source code Open Closed Closed Closed

Programming
language

C, C++ ,
Java

C, C++ ,
Objective-C,
Swift

C, C++ C++

Application
store

Google Play
Store

App Store Windows
Phone Store

BlackBerry
World

Reverse
engineering
tools

apktool,
dex2jar, JD-
Compiler,
XDA auto
tool

iRET toolkit,
Windows
Explorer,
oTool,
iExplorer,
Class-dump-z

Decompresser,
Visual Studio,
.NET
Decompiler

JD-GUI,
VSMTool,
COD
extractor

or other variants of C. Each of the operating systems is supported by a single offi-
cial application marketplace, which provides third-party apps to users. Importantly,
Android and Windows Phones have OEMs that (sometimes) modify the standard
operating systems and unwittingly introduce vulnerabilities [24]. Finally, all four
operating systems have a suite of reverse engineering tools available to assist with
vulnerability analysis.
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Definitions: We now define key terms that are used throughout the chapter.

� Attack vector: The means by which an attack is carried out against a system.
� Exploit: The method used to take advantage of a vulnerability.
� Vulnerability: Any weakness in a system that exposes it to risk.

Threat model : In evaluating the landscape as it concerns intrusion detection
and prevention, we systematize adversaries based on their capabilities, goals, and
relationship to the smartphone under attack:

� Local adversary (active/passive): This attacker is present on or controls the local
network. A local attacker may also be logically adjacent to the device (e.g.,
spoofing a cell tower) or have close physical access to a device (e.g., in close
physical contact with the victim).

� Remote adversary (active/passive): This attacker is present outside of the local
network and may control segments of the network between the victim and
the destination of their traffic.

Passive adversaries may eavesdrop on and observe traffic from the communica-
tion channels in the network. They may also observe data from side channels, such as
device sensors [25], power consumption [26,27], and wireless transmissions [28,29].
Conversely, active adversaries are able to read, modify, or inject data into a com-
munication channel. Note that malicious app developers (or adversaries who
modify/repackage apps) fall into the category of active remote adversary. Our types
of adversary are not necessarily mutually exclusive. Indeed, adversaries may change
position in the network and more than one adversaries may collude to achieve a
more complex objective. The specific target of the adversary may be one or more of

� The victim themselves: The adversary is intending to cause harm to the victim
and does this by attacking their smartphone to cause loss of data or perform
denial-of-service (DoS).

� The device itself : The adversary may be intent on exfiltrating personal data
from the device such as contacts, credit card information, social security num-
bers, pictures, or videos. In the case of corporate espionage, the adversary
may be targeting the employee of a company to obtain intellectual property,
unpublished reports, or other sensitive business data.

� Device resources: Data on a device may be immaterial to an adversary who is
targeting smartphones to exploit their resources such as storage, processing
power, and bandwidth. This is especially common for adversaries interested
in “recruiting” devices for a botnet.

For the remainder of this chapter, we frame the attacks and attack vectors in rela-
tion to the position and intent of the adversary. This is summarized by the flowchart
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of the decision-making process of an attacker shown in Figure 2.1. In general, an
adversary has one of three objectives when attacking a smartphone:

� Perform DoS: The adversary is concerned with preventing the device from
performing its prescribed functionality. This attack is fairly noticeable, since
the user will perceive degradation in performance or a missing device (in the
case of theft).

� Utilize device resources: The adversary is concerned with leveraging the
resources (CPU, memory, network access) of a device to further their own
goals, for example, recruiting devices for a botnet or as a proxy for launching
further attacks.

� Steal data: The adversary is concerned with obtaining sensitive data from a
device such as user account information, credit cards, multimedia, and sensor
data. Note that the sensitive data the adversary is interested in may not yet
exist, so the adversary may plant a backdoor, for example, when spying on a
spouse.

2.3 Smartphone Attack Vectors
Developing IDSs for smartphones is complicated by the fact that smartphones are
devices that communicate over a variety of wireless interfaces/networks and provide
a highly customizable and extensible platform. Thus, smartphones will necessarily
have a number of areas that must be exposed in order for them to provide their
stated functionality. Moreover, what really distinguishes smartphones from other
computing platforms is the multitude of sensors they contain and their ultra-high
mobility, which makes them susceptible to loss/theft/physical access. The following
list distils [30–32] 13 vulnerable areas (or “weak points)” on typical smartphones
that will continue to be targets for delivering exploits:

� Browser: May contain vulnerabilities in parsing web pages, processing
Javascript, or providing WebView functionality to apps.

� Baseband processor: Smartphones can be tricked into connecting to rogue base
stations, which can then attack the mobile radio interface.

� Messaging services: Short message service (SMS)/multimedia messaging service
(MMS) messages may be used to deliver malicious payloads.

� Wireless interfaces: Attackers can attempt to attack a smartphone from any one
of the myriad of (noncellular) wireless interfaces.

� SIM card : Attackers may be able to manipulate SIM cards to attack a device
or steal data.

� Memory card : Many smartphones provide slots for external memory cards.
These are frequently unencrypted and data can be retrieved if the smartphone
or memory card itself is misplaced.
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� Hardware interfaces/ports: Smartphones may be vulnerable to attacks coming
over their exposed ports, such as USB ports. By opening a device, an attacker
can also try to pilfer data through low-level circuitry such as JTAG ports.

� Operating system: Adversaries can attack typical weaknesses found in operating
systems. In some cases, smartphone operating systems may not be as mature
(or robust) as desktop operating systems.

� Third-party apps: Third-party apps can access any resource that they have been
given permission to access. Additionally, apps can attempt to break out of the
OS-provided sandbox. Attackers can also use vulnerable third-party apps as
a proxy for conducting further attacks on a smartphone through privilege
escalation.

� Users: Users can advance attacks if they make bad device configuration choices
or are victims of social engineering.

� Memory: Physical memory on the device can be modified to remove protective
mechanisms from the system.

� Firmware: An attacker may target submodule (such as Wi-Fi interface cards)
firmware to obtain long-term elevated privileges on the device.

� Device itself : An attacker may target any one of the side channels coming
from the device itself, for the purposes of device fingerprinting or recovering
sensitive data such as encryption keys or screen-lock codes.

We systematize attack vectors as belonging to either of four categories: drive-
by attacks, app ecosystems, physical attacks, and social engineering [31,33,34]. In
detailing attack vectors, we use italicized text to denote the vulnerable areas affected.
Also, we only briefly identify some attacks to put the attack vectors into perspec-
tive. We leave a detailed treatment of all the major attacks against smartphones for
Section 2.4.

2.3.1 Drive-by Attacks
Vulnerable areas affected : Browser, baseband processor, messaging services, wireless
interfaces, operating system, third-party apps, users.

In the case of drive-by attacks (or watering hole attacks), an attacker attempts
to exploit existing bugs in the software running on the smartphone that processes
external data. A common method of delivering drive-by attacks involves exploit-
ing vulnerabilities in the browser on the smartphone to make it execute a malicious
payload. These attacks can be carried out en masse since popular web pages can
be compromised and laced with malicious payloads. Alternately, links to malicious
pages can be sent to users through traditional channels such as email, messaging ser-
vices, and social media. An attacker can also manipulate unencrypted HTTP pages
to insert malicious payloads or take advantage of improperly handled SSL/TLS (in
third-party apps) to perform a man-in-the-middle (MITM) attack [35] and insert
the malicious payload that way. Note, however, that attacks targeting smartphone
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browsers have more limited potential than desktop browsers due to application
isolation via sandboxing.

Drive-by attacks can also leverage any one of a device’s wireless interfaces. Var-
ious spoofing attacks can be performed against Wi-Fi and Bluetooth, and indeed,
base station spoofing can used against the baseband processor. Other targets of drive-
by attacks may include WebViews (operating system), a user interface component in
smartphone development frameworks that allows apps to easily render web pages
from within the app. A WebView can be used to provide an interface to a Javascript
component and thus external Javascript can be executed on a device. Additionally,
WebViews can also allow a website to access data stored on devices. If an attacker
is able to intercept or modify the content of a URL that is loaded by a WebView
(using an MITM attack or cross-site scripting), they can use functions from within
theWebView framework to access data from the device.Worryingly, privilege escala-
tion exploits have been published that allow arbitrary code execution on vulnerable
devices through WebViews [36]. Another class of attacks, known as component
hijacking attacks [37], leverage the drive-by attack principle to access private data
and spoof intents.

Drive-by attacks may exploit network services, pieces of software running on a
device that open ports to listen for incoming connections. Traditionally, network
services only run on devices acting as servers, such as web (HTTP) servers listening
on port 80. In the smartphone landscape, however, to satisfy the great need for inter-
connectivity, mobile devices can be found running network services such as Android
Debug Bridge (ADB) [38], Virtual Private Network (VPN), Virtual Network Com-
puting (VNC), Remote Desktop (RDP), and Secure Shell (SSH) services. In the
case where smartphones are configured to share their Internet connection through
a mobile hotspot, they can be expected to also run Dynamic Host Configuration
Protocol (DHCP) services and act as a default gateway. These additional services
all increase the number of avenues for exploit. Network services offer an attractive
interface for attackers to attempt to exploit, since they provide a (usually) always
open entrance that is accessible via the network. Exploiting network services is also
particularly attractive to an adversary since no user intervention is typically required
to allow the exploit to take place and after successful exploitation there may be no
immediate indication to the user that an attack has indeed happened. By default,
smartphones may not have any network services installed, but there are a wide vari-
ety of third-party apps that users install, which offer additional functionality that
requires the use of network services. Indeed, Nielson reports that the average user
uses 26.8 different apps per month [39], and any of these could potentially leverage
network services.

Drive-by attacks, while successful on traditional workstations, may have more
limited impact when translated to the smartphone arena. On Android, most soft-
ware is implemented in Java and executed by the Dalvik Virtual Machine. This mit-
igates some of the typical attack strategies (such as buffer overflows) since low-level
data structures are protected by boundary checks. However, many Android apps also
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leverage libraries implemented in native code; thus, some parts of many apps con-
tinue to be susceptible to traditional attacks against memory corruption bugs. These
attacks are quite dangerous since they can lead to code execution on the device [40],
with the user not necessarily knowing that they have been compromised.

2.3.2 App Ecosystems
Vulnerable areas affected : Third-party apps.

By and large, user installation of grayware/malware is limited due to the use of
“trusted” software repositories such as the official app stores. App stores and smart-
phone operating systems utilize strong technical mechanisms to ensure a restriction
on the third-party apps that can be installed on a device. Attacks coming from app
ecosystems leverage the fact that if grayware/malware can be placed in a marketplace,
it can quite quickly be available for infecting the entire ecosystem. Additionally,
grayware/malware authors are incentivized by the fact that users are typically more
trusting of apps if they find them in the official app marketplaces.

As mentioned in Section 2.2, app stores employ various degrees of vetting before
allowing an app to become available for the general public to download. Addition-
ally, smartphone operating systems restrict, by default, the “sideloading” of apps,
that is, installing apps to a device through unofficial channels. For this reason,
most grayware/malware affecting smartphones are delivered as Trojan-horse apps via
an app store. Thus, malicious authors must develop apps with some functionality,
but containing malicious payloads hidden from app store vetting using timebombs,
dynamic code loading, reflection, code obfuscation, and/or IP address checking (to
determine whether the app is being run through an app store’s vetting engine).
Recently, the BrainTest trojan [41] utilized all the aforementioned strategies to evade
app store detection.

One strategy used by grayware/malware authors, and most commonly observed
in third-party app marketplaces, involves the repackaging of legitimate apps to inject
malware [15], which can then attempt to exploit the operating system/firmware or
steal data from the memory card. Fraudsters have also been known to modify the
advertising portions of legitimate apps to insert their own code. This allows them to
fraudulently obtain revenue from a legitimate app [42]. Other less malicious apps
(and their included libraries) have been known to leverage additional and unneces-
sary dangerous permissions, ostensibly to have greater access to sensitive data and
resources, which can then be used for profiling a user [43–45] for reasons such
as better advertisement targeting, or more maliciously, selling user data directly to
other third parties.

Smartphone worms are much more limited than Trojan-horse apps but may
begin to see wider adoption with the availability of operating system exploits propa-
gated by modern smartphone connectivity features such as portable hotspots/NFC
and even older channels such as Bluetooth/SMS/MMS/WAP. Operating system
protection mechanisms, such as SELinux, offer mitigation for system exploits by
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enhancing the boundaries of app sandboxes [46] and thus worms may have more
limited success.

2.3.3 Physical Attacks
Vulnerable areas affected : SIM card, memory card, hardware interfaces/ports, mem-
ory, firmware, device itself.

One class of physical attacks come about from dismantling the device itself
and/or being able to connect to and interface directly with the hardware inter-
faces/ports on the device; we call these physical (tampering) attacks. Physical attacks
may also make use of side channels that enable the inference of private data located
on a device; we call these physical (general) attacks. We expand on specific phys-
ical attacks in Section 2.4.1, but right now we enumerate general physical attack
approaches:

1. Accessing a device that does not use a screen-lock and transferring the data
from the device using copy/paste/attach features within the operating system.

2. Accessing memory cards within the device itself and removing them to obtain
data that was stored on the device.

3. Inferring PIN/screen-lock codes from smudges on a smartphone touch-
screen [47].

4. Leveraging ports, such as USB ports, on the device to perform further
attacks [48–50].

5. Modifying physical memory chips on the circuit board to introduce new
software and/or affect the firmware of low-level hardware (such as Wi-Fi
adaptors).

6. The SIM card(s) in a device can be removed to retrieve sensitive data such
as messages and phone numbers. Malicious payloads can also be written to a
SIM card.

An attacker can leverage their access to the hardware interfaces/ports of a device to
place malware or other data on the device or execute commands. Lau et al. demon-
strated how it was possible to install arbitrary apps on an iOS device through the
USB port [49]. The ADB can also be used to launch attacks. The ADB is a com-
mand line tool that can be used to connect to and run commands on Android
devices using a desktop.

Another class of physical attacks comes from leveraging the physical state of a
device or physical access to the device to attack it. Leveraging the physical sensors
on a smartphone is an example of utilizing the physical state of a device to enable
attacks. The literature exemplifies using the accelerometer/gyroscope [25,51], and
light sensor [52] to steal device credentials/passwords.

Attackers can also leverage physical access to a device to attempt to pass the
“lock screen,” provided that screen-locking is enabled in the first place [53]. A
locked device is usually guarded by PINs, patterns, and passwords, and more
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recently, using biometrics such as fingerprints. An adversary being able to success-
fully unlock a device depends on the complexity of the credential used to lock the
device. Approaches as rudimentary as looking at screen smudges have demonstrated
potential in assisting attackers to bypass locked screens [47]. Biometric approaches,
which show much promise, have been shown to be dangerous if implemented incor-
rectly [54], with the end result being a potential compromise of a user’s biometric
data such as a fingerprint. Needless to say, the compromise of a user’s biometric is a
serious problem, as by nature it cannot be replaced.

2.3.4 Social Engineering
Vulnerable areas affected : Browser, operating system, users.

With social engineering, the user of a smartphone is tricked into revealing cre-
dentials or performing actions that assist the attacker in furthering their attack.
These attacks are dangerous in that they employ nontechnical strategies to elicit
private information from users and, as such, generic IDS solutions to address social
engineering are not available. The problem of social engineering is exacerbated by
the fact that users may not know that they have been successfully attacked until
long after the fact, if at all. Three common social engineering attacks specific to
smartphones are

1. Making malicious apps look like legitimate apps: Malware/grayware authors typ-
ically build clones of popular applications to trick a user into installing their
version because it has a name and description very similar to the app they
actually want [42,55].

2. Enticing users using device-specific details: Smartphone users may be tricked
by ads and web pages that give them advice specific to their device make
and model. Attackers commonly use the User-Agent sent by a browser/app
to identify the device before sending customized messages to the user about
faults with their specific device such as poor battery or malware infections.
The users are then led to download malware, which supposedly solves their
“problems” [56].

3. Malware pretending to be a second factor of authentication: Desktops infected by
the Zeus malware may instruct users to download an authentication compo-
nent to their smartphone as a second factor of authentication when the user
attempts to log in to their online bank [57]. The malware then captures a
user’s bank login credentials.

Aside from social engineering that leads to malware installation, other typical
social engineering attacks that result in the user giving away their credentials are
just as detrimental as on traditional desktops. Especially considering that a user
may be logged into several services from their smartphone at the same time, social
engineering presents a high-reward attack vector to adversaries.
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Table 2.2 Attack Vectors and What Vulnerable Area on the
Smartphone They Target

Attack Vector Vulnerable Area Affected

Drive-by attacks Browser, messaging services, wireless interfaces,
SIM card, memory card, operating system,
third-party apps, users, memory, firmware

App ecosystems Third-party apps

Physical attacks Baseband processor, SIM card, memory card,
hardware interfaces, USB, memory, firmware

Social engineering Browser, operating system, users

Table 2.2 summarizes the relationship between the attack vectors and the vul-
nerable areas that they target. From the table, it can be seen that drive-by attacks
have the potential to affect the most areas on a smartphone. This is perhaps unsur-
prising, as drive-by attacks are made possible by bugs/vulnerabilities in the software
on the smartphone itself, and thus there is a rich attack surface that can be tar-
geted. Physical attacks have the second largest number of vulnerable areas and target
weaknesses in the physical hardware/characteristics of the smartphone. App ecosys-
tems and social engineering target fewer vulnerable areas directly, but can be used
as a proxy for delivering more dangerous drive-by exploits if users are tricked into
installing apps or performing particular actions on their device.

Table 2.3 shows common attack vectors, the level of sophistication required
to achieve success, and the potential effect of device compromise. The level of
sophistication refers to the technical expertise required from the attacker and ranges
from low (minimal technical ability required), medium (moderate technical abil-
ity required, with published exploits easily available/adaptable), to high (advanced
technical ability required, usually requiring the development of zero-day exploits
or advanced reverse-engineering skills). The effect of compromise ranges from low
(information disclosure or minor annoyance), medium (low + greater annoyance

Table 2.3 Attack Vectors and Their Main Characteristics

Attack Vector Level of Sophistication Effect of Compromise

Drive-by attacks Medium/high Low/medium/high

App ecosystems Low Low/medium

Physical (tampering) High High

Physical (general) Low/medium Low/medium

Social engineering Low Low/medium
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and potentially costing the user money, e.g., premium rate SMS/calls), to high (full
compromise of the device with unfettered access by the adversary). The main insight
from Table 2.3 is that social engineering requires minimal skill and has the poten-
tial to affect many victims, but the effect of the attack is typically low. Drive-by
attacks, on the other hand, can prove to be very effective to attackers since published
exploits are available (especially for older devices that are still widely used [58])
and can yield good returns in terms of the effect of compromise while targeting a
moderate number of victims. Physical tampering of devices requires high sophis-
tication by adversaries but may yield significant rewards and are usually employed
at the nation-state/law-enforcement level. Worryingly, unsophisticated attackers can
combine social engineering with published drive-by exploits to obtain a significant
return on investment, especially if attacks target users with older devices.

2.4 Smartphone Attack Hierarchy
We classify smartphone attacks based on the position of the attacker in the “space”
relative to the smartphone under attack as follows:

� Physical versus nonphysical : As shown in Figure 2.2, the first level of differen-
tiation is whether the attack is performed by physically accessing the device.
This is a logical separation of attacks as it broadly divides attacks into those
that require tangible access to a device as opposed to those that access the
device in an intangible way. IDS developers will typically focus on nonphys-
ical attacks. Nonphysical (or intangible) attacks can be further separated into
two categories: local and remote.

� Local versus Remote: Local and remote refer to the logical proximity of the
attacker to the victim device in terms of location on the network. Broadly
speaking, local attacks are carried out by attackers that are on the current local

Attack

Physical Nonphysical

Local Remote

SIM card, memory card,
hardware interfaces/ports,

memory, device itself, users 

Browser, wireless interfaces,
operating system,

third-party apps, users,
firmware

Browser, baseband processor,
messaging services, wireless
interfaces, operating system,

third-party apps, users,
firmware

Attack
Vulnerable areas

Figure 2.2 Taxonomy of smartphone attacks.
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area network (LAN) segment (or otherwise logically adjacent to the victim)
and includes well-known attacks such as Address Resolution Protocol (ARP)
spoofing, MITM, and traffic analysis attacks. Remote attacks are carried out
by adversaries who are able to launch attacks from beyond the local network
segment, that is, more than one network hop away.

� Interactive versus noninteractive: Attacks can also be categorized into whether
they are interactive or noninteractive. By interactive and noninteractive, we
mean whether the smartphone user is required to perform a particular action
on their smartphone for the attack to be successful. In general, noninterac-
tive attacks are more attractive (and more difficult to exploit) since no user
intervention is required and, as a result, may be more stealthy.

In Sections 2.4.1 and 2.4.2, we compare typical attacks that fall into the cat-
egories of physical and nonphysical, to assess their characteristics relative to each
other and gain an understanding of the motivations of attackers for using one type
of attack over another. Table 2.4 provides a compendium of examples of attacks for
all the exploits mentioned in this section.

2.4.1 Physical Attacks
Physical attacks are carried out by attackers that target the hardware of the device
itself. In other words, these attacks require attackers to physically touch the device in
order to carry out their malfeasance. The main classes of physical attacks are: hard-
ware tampering, attacking the device over its built-in ports, and leveraging physical
sensors on the device to garner data.

2.4.1.1 Hardware Tampering

Hardware tampering attacks are directed at the physical circuitry of the device itself.
Security of hardware is often an afterthought since many manufacturers consider
the device hardware secure through obscurity. Tampering with hardware requires
esoteric knowledge and a particular skillset, but common low-level interfaces and
circuitry on most electronic devices allow attacks to be performed against a wide
range of devices. For example, many electronic devices, when disassembled to the
circuit board level, will have exposed serial and JTAG ports. These ports can be used
to intercept debug messages, send commands, or flash the firmware of the device.
Serial and JTAG interfaces are widely used for communication between submodules
in embedded systems and an attacker with reasonable skill and patience can usually
find ways of accessing these buses. By being in physical possession of or in close prox-
imity to a device, an attacker may also leverage data gleaned from any of the physical
side channels on the device such as power consumption or electromagnetic emana-
tions. By leveraging side-channel information, attackers can cheaply [59] determine
secret keys from a device’s embedded circuitry [27].
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