

Cryptography
Theory and Practice

Fourth Edition

Textbooks in Mathematics

Series editors:
Al Boggess and Ken Rosen

MATHEMATICAL MODELING FOR BUSINESS ANALYTICS
William P. Fox

ELEMENTARY LINEAR ALGEBRA
James R. Kirkwood and Bessie H. Kirkwood

APPLIED FUNCTIONAL ANALYSIS, THIRD EDITION
J. Tinsley Oden and Leszek Demkowicz

AN INTRODUCTION TO NUMBER THEORY WITH CRYPTOGRAPHY, SECOND
EDITION
James R. Kraft and Lawrence Washington

MATHEMATICAL MODELING: BRANCHING BEYOND CALCULUS
Crista Arangala, Nicolas S. Luke and Karen A. Yokley

ELEMENTARY DIFFERENTIAL EQUATIONS, SECOND EDITION
Charles Roberts

ELEMENTARY INTRODUCTION TO THE LEBESGUE INTEGRAL
Steven G. Krantz

LINEAR METHODS FOR THE LIBERAL ARTS
David Hecker and Stephen Andrilli

CRYPTOGRAPHY: THEORY AND PRACTICE, FOURTH EDITION
Douglas R. Stinson and Maura B. Paterson

DISCRETE MATHEMATICS WITH DUCKS, SECOND EDITION
Sarah-Marie Belcastro

BUSINESS PROCESS MODELING, SIMULATION AND DESIGN, THIRD EDITION
Manual Laguna and Johan Marklund

GRAPH THEORY AND ITS APPLICATIONS, THIRD EDITION
Jonathan L. Gross, Jay Yellen and Mark Anderson

Cryptography
Theory and Practice

Fourth Edition

Douglas R. Stinson
Maura B. Paterson

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20180724

International Standard Book Number-13: 978-1-1381-9701-5 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity
of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized
in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers,
MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of
users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been
arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Library of Congress Cataloging-in-Publication Data

Names: Stinson, Douglas R. (Douglas Robert), 1956- author. | Paterson, Maura
B., author.
Title: Cryptography : theory and practice / Douglas R. Stinson and Maura B.
Paterson.
Description: Fourth edition. | Boca Raton : CRC Press, Taylor & Francis
Group, 2018.
Identifiers: LCCN 2018018724 | ISBN 9781138197015
Subjects: LCSH: Coding theory. | Cryptography.
Classification: LCC QA268 .S75 2018 | DDC 005.8/2--dc23
LC record available at https://lccn.loc.gov/2018018724

http://www.crcpress.com
http://www.taylorandfrancis.com
https://lccn.loc.gov/2018018724
http://www.copyright.com/
http://www.copyright.com

To my children, Michela and Aiden
DRS

To my father, Hamish
MBP

http://taylorandfrancis.com

Contents

Preface xv

1 Introduction to Cryptography 1
1.1 Cryptosystems and Basic Cryptographic Tools 1

1.1.1 Secret-key Cryptosystems 1
1.1.2 Public-key Cryptosystems 2
1.1.3 Block and Stream Ciphers 3
1.1.4 Hybrid Cryptography 3

1.2 Message Integrity . 4
1.2.1 Message Authentication Codes 6
1.2.2 Signature Schemes 6
1.2.3 Nonrepudiation . 7
1.2.4 Certificates . 8
1.2.5 Hash Functions . 8

1.3 Cryptographic Protocols . 9
1.4 Security . 10
1.5 Notes and References . 13

2 Classical Cryptography 15
2.1 Introduction: Some Simple Cryptosystems 15

2.1.1 The Shift Cipher . 17
2.1.2 The Substitution Cipher 20
2.1.3 The Affine Cipher . 22
2.1.4 The Vigenère Cipher 26
2.1.5 The Hill Cipher . 27
2.1.6 The Permutation Cipher 32
2.1.7 Stream Ciphers . 34

2.2 Cryptanalysis . 38
2.2.1 Cryptanalysis of the Affine Cipher 40
2.2.2 Cryptanalysis of the Substitution Cipher 42
2.2.3 Cryptanalysis of the Vigenère Cipher 45
2.2.4 Cryptanalysis of the Hill Cipher 48
2.2.5 Cryptanalysis of the LFSR Stream Cipher 49

2.3 Notes and References . 51
Exercises . 51

vii

viii Contents

3 Shannon’s Theory, Perfect Secrecy, and the One-Time Pad 61
3.1 Introduction . 61
3.2 Elementary Probability Theory 62
3.3 Perfect Secrecy . 64
3.4 Entropy . 70

3.4.1 Properties of Entropy 72
3.5 Spurious Keys and Unicity Distance 75
3.6 Notes and References . 79
Exercises . 80

4 Block Ciphers and Stream Ciphers 83
4.1 Introduction . 83
4.2 Substitution-Permutation Networks 84
4.3 Linear Cryptanalysis . 89

4.3.1 The Piling-up Lemma 89
4.3.2 Linear Approximations of S-boxes 91
4.3.3 A Linear Attack on an SPN 94

4.4 Differential Cryptanalysis 98
4.5 The Data Encryption Standard 105

4.5.1 Description of DES 105
4.5.2 Analysis of DES . 107

4.6 The Advanced Encryption Standard 109
4.6.1 Description of AES 110
4.6.2 Analysis of AES . 115

4.7 Modes of Operation . 116
4.7.1 Padding Oracle Attack on CBC Mode 120

4.8 Stream Ciphers . 122
4.8.1 Correlation Attack on a Combination Generator . . 123
4.8.2 Algebraic Attack on a Filter Generator 127
4.8.3 Trivium . 130

4.9 Notes and References . 131
Exercises . 131

5 Hash Functions and Message Authentication 137
5.1 Hash Functions and Data Integrity 137
5.2 Security of Hash Functions 139

5.2.1 The Random Oracle Model 140
5.2.2 Algorithms in the Random Oracle Model 142
5.2.3 Comparison of Security Criteria 146

5.3 Iterated Hash Functions . 148
5.3.1 The Merkle-Damgård Construction 151
5.3.2 Some Examples of Iterated Hash Functions 156

5.4 The Sponge Construction 157
5.4.1 SHA-3 . 160

5.5 Message Authentication Codes 161

Contents ix

5.5.1 Nested MACs and HMAC 163
5.5.2 CBC-MAC . 166
5.5.3 Authenticated Encryption 167

5.6 Unconditionally Secure MACs 170
5.6.1 Strongly Universal Hash Families 173
5.6.2 Optimality of Deception Probabilities 175

5.7 Notes and References . 177
Exercises . 178

6 The RSA Cryptosystem and Factoring Integers 185
6.1 Introduction to Public-key Cryptography 185
6.2 More Number Theory . 188

6.2.1 The Euclidean Algorithm 188
6.2.2 The Chinese Remainder Theorem 191
6.2.3 Other Useful Facts 194

6.3 The RSA Cryptosystem . 196
6.3.1 Implementing RSA 198

6.4 Primality Testing . 200
6.4.1 Legendre and Jacobi Symbols 202
6.4.2 The Solovay-Strassen Algorithm 205
6.4.3 The Miller-Rabin Algorithm 208

6.5 Square Roots Modulo n . 210
6.6 Factoring Algorithms . 211

6.6.1 The Pollard p− 1 Algorithm 212
6.6.2 The Pollard Rho Algorithm 213
6.6.3 Dixon’s Random Squares Algorithm 216
6.6.4 Factoring Algorithms in Practice 221

6.7 Other Attacks on RSA . 223
6.7.1 Computing φ(n) . 223
6.7.2 The Decryption Exponent 223
6.7.3 Wiener’s Low Decryption Exponent Attack 228

6.8 The Rabin Cryptosystem 232
6.8.1 Security of the Rabin Cryptosystem 234

6.9 Semantic Security of RSA 236
6.9.1 Partial Information Concerning Plaintext Bits 237
6.9.2 Obtaining Semantic Security 239

6.10 Notes and References . 245
Exercises . 246

7 Public-Key Cryptography and Discrete Logarithms 255
7.1 Introduction . 255

7.1.1 The ElGamal Cryptosystem 256
7.2 Algorithms for the Discrete Logarithm Problem 258

7.2.1 Shanks’ Algorithm 258
7.2.2 The Pollard Rho Discrete Logarithm Algorithm . . 260

x Contents

7.2.3 The Pohlig-Hellman Algorithm 263
7.2.4 The Index Calculus Method 266

7.3 Lower Bounds on the Complexity of Generic Algorithms . 268
7.4 Finite Fields . 272

7.4.1 Joux’s Index Calculus 276
7.5 Elliptic Curves . 278

7.5.1 Elliptic Curves over the Reals 278
7.5.2 Elliptic Curves Modulo a Prime 281
7.5.3 Elliptic Curves over Finite Fields 284
7.5.4 Properties of Elliptic Curves 285
7.5.5 Pairings on Elliptic Curves 286
7.5.6 ElGamal Cryptosystems on Elliptic Curves 290
7.5.7 Computing Point Multiples on Elliptic Curves . . . 292

7.6 Discrete Logarithm Algorithms in Practice 294
7.7 Security of ElGamal Systems 296

7.7.1 Bit Security of Discrete Logarithms 296
7.7.2 Semantic Security of ElGamal Systems 299
7.7.3 The Diffie-Hellman Problems 300

7.8 Notes and References . 301
Exercises . 302

8 Signature Schemes 309
8.1 Introduction . 309

8.1.1 RSA Signature Scheme 310
8.2 Security Requirements for Signature Schemes 312

8.2.1 Signatures and Hash Functions 313
8.3 The ElGamal Signature Scheme 314

8.3.1 Security of the ElGamal Signature Scheme 317
8.4 Variants of the ElGamal Signature Scheme 320

8.4.1 The Schnorr Signature Scheme 320
8.4.2 The Digital Signature Algorithm 322
8.4.3 The Elliptic Curve DSA 325

8.5 Full Domain Hash . 326
8.6 Certificates . 330
8.7 Signing and Encrypting . 331
8.8 Notes and References . 333
Exercises . 334

9 Post-Quantum Cryptography 341
9.1 Introduction . 341
9.2 Lattice-based Cryptography 344

9.2.1 NTRU . 344
9.2.2 Lattices and the Security of NTRU 348
9.2.3 Learning With Errors 351

9.3 Code-based Cryptography and the McEliece Cryptosystem 353

Contents xi

9.4 Multivariate Cryptography 358
9.4.1 Hidden Field Equations 359
9.4.2 The Oil and Vinegar Signature Scheme 364

9.5 Hash-based Signature Schemes 367
9.5.1 Lamport Signature Scheme 368
9.5.2 Winternitz Signature Scheme 370
9.5.3 Merkle Signature Scheme 373

9.6 Notes and References . 376
Exercises . 376

10 Identification Schemes and Entity Authentication 379
10.1 Introduction . 379

10.1.1 Passwords . 381
10.1.2 Secure Identification Schemes 383

10.2 Challenge-and-Response in the Secret-key Setting 384
10.2.1 Attack Model and Adversarial Goals 389
10.2.2 Mutual Authentication 391

10.3 Challenge-and-Response in the Public-key Setting 394
10.3.1 Public-key Identification Schemes 394

10.4 The Schnorr Identification Scheme 397
10.4.1 Security of the Schnorr Identification Scheme 400

10.5 The Feige-Fiat-Shamir Identification Scheme 406
10.6 Notes and References . 411
Exercises . 412

11 Key Distribution 415
11.1 Introduction . 415

11.1.1 Attack Models and Adversarial Goals 418
11.2 Key Predistribution . 419

11.2.1 Diffie-Hellman Key Predistribution 419
11.2.2 The Blom Scheme . 421
11.2.3 Key Predistribution in Sensor Networks 428

11.3 Session Key Distribution Schemes 432
11.3.1 The Needham-Schroeder Scheme 432
11.3.2 The Denning-Sacco Attack on the NS Scheme 433
11.3.3 Kerberos . 435
11.3.4 The Bellare-Rogaway Scheme 438

11.4 Re-keying and the Logical Key Hierarchy 441
11.5 Threshold Schemes . 444

11.5.1 The Shamir Scheme 445
11.5.2 A Simplified (t, t)-threshold Scheme 448
11.5.3 Visual Threshold Schemes 450

11.6 Notes and References . 454
Exercises . 454

xii Contents

12 Key Agreement Schemes 461
12.1 Introduction . 461

12.1.1 Transport Layer Security (TLS) 461
12.2 Diffie-Hellman Key Agreement 463

12.2.1 The Station-to-station Key Agreement Scheme . . . 465
12.2.2 Security of STS . 466
12.2.3 Known Session Key Attacks 469

12.3 Key Derivation Functions 471
12.4 MTI Key Agreement Schemes 472

12.4.1 Known Session Key Attacks on MTI/A0 476
12.5 Deniable Key Agreement Schemes 478
12.6 Key Updating . 481
12.7 Conference Key Agreement Schemes 484
12.8 Notes and References . 488
Exercises . 488

13 Miscellaneous Topics 491
13.1 Identity-based Cryptography 491

13.1.1 The Cocks Identity-based Cryptosystem 492
13.1.2 Boneh-Franklin Identity-based Cryptosystem 498

13.2 The Paillier Cryptosystem 503
13.3 Copyright Protection . 506

13.3.1 Fingerprinting . 507
13.3.2 Identifiable Parent Property 509
13.3.3 2-IPP Codes . 511
13.3.4 Tracing Illegally Redistributed Keys 514

13.4 Bitcoin and Blockchain Technology 518
13.5 Notes and References . 522
Exercises . 523

A Number Theory and Algebraic Concepts for Cryptography 527
A.1 Modular Arithmetic . 527
A.2 Groups . 528

A.2.1 Orders of Group Elements 530
A.2.2 Cyclic Groups and Primitive Elements 531
A.2.3 Subgroups and Cosets 532
A.2.4 Group Isomorphisms and Homomorphisms 533
A.2.5 Quadratic Residues 534
A.2.6 Euclidean Algorithm 535
A.2.7 Direct Products . 536

A.3 Rings . 536
A.3.1 The Chinese Remainder Theorem 538
A.3.2 Ideals and Quotient Rings 539

A.4 Fields . 540

Contents xiii

B Pseudorandom Bit Generation for Cryptography 543
B.1 Bit Generators . 543
B.2 Security of Pseudorandom Bit Generators 548
B.3 Notes and References . 550

Bibliography 551

Index 567

http://taylorandfrancis.com

Preface

The first edition of this book was published in 1995. The objective at that time was
to produce a general textbook that treated all the essential core areas of cryptogra-
phy, as well as a selection of more advanced topics. More recently, a second edition
was published in 2002 and the third edition appeared in 2006.

There have been many exciting advances in cryptography since the publication
of the first edition of this book 23 years ago. At the same time, many of the “core”
areas of cryptography that were important then are still relevant now—providing
a strong grounding in the fundamentals remains a primary goal of this book. Many
decisions had to be made in terms of which older topics to retain and which new
subjects should be incorporated into the book. Our choices were guided by crite-
ria such as the relevance to practical applications of cryptography as well as the
influence of new approaches and techniques to the design and analysis of cryp-
tographic protocols. In many cases, this involved studying cutting-edge research
and attempting to present it in an accessible manner suitable for presentation in
the classroom.

In light of the above, the basic core material of secret-key and public-key cryp-
tography is treated in a similar fashion as in previous editions. However, there are
many topics that have been added to this edition, the most important being the
following:

• There is a brand new chapter on the exciting, emerging area of post-quantum
cryptography, which covers the most important cryptosystems that are de-
signed to provide security against attacks by quantum computers (Chapter
9).

• A new high-level, nontechnical overview of the goals and tools of cryptog-
raphy has been added (Chapter 1).

• A new mathematical appendix is included, which summarizes definitions
and main results on number theory and algebra that are used throughout
the book. This provides a quick way to reference any mathematical terms or
theorems that a reader might wish to find (Appendix A).

• An expanded treatment of stream ciphers is provided, including common
design techniques along with a description of the popular stream cipher
known as Trivium.

• The book now presents additional interesting attacks on cryptosystems, in-
cluding:

xv

xvi Preface

– padding oracle attack
– correlation attacks and algebraic attacks on stream ciphers
– attack on the DUAL-EC random bit generator that makes use of a trap-

door.

• A treatment of the sponge construction for hash functions and its use in the
new SHA-3 hash standard is provided. This is a significant new approach to
the design of hash functions.

• Methods of key distribution in sensor networks are described.

• There is a section on the basics of visual cryptography. This allows a secure
method to split a secret visual message into pieces (shares) that can later be
combined to reconstruct the secret.

• The fundamental techniques of cryptocurrencies, as used in BITCOIN and
blockchain, are described.

• We explain the basics of the new cryptographic methods employed in mes-
saging protocols such as Signal. This includes topics such as deniability and
Diffie-Hellman key ratcheting.

We hope that this book can be used in a variety of courses. An introductory
undergraduate level course could be based on a selection of material from the first
eight chapters. We should point out that, in several chapters, the later sections
can be considered to be more advanced than earlier sections. These sections could
provide material for graduate courses or for self-study. Material in later chapters
can also be included in an introductory or follow-up course, depending on the
interests of the instructor.

Cryptography is a broad subject, and it requires knowledge of several areas
of mathematics, including number theory, groups, rings and fields, linear algebra,
probability and information theory. As well, some familiarity with computational
complexity, algorithms, and NP-completeness theory is useful. In our opinion, it
is the breadth of mathematical background required that often creates difficulty
for students studying cryptography for the first time. With this in mind, we have
maintained the mathematical presentation from previous editions. One basic guid-
ing principle is that understanding relevant mathematics is essential to the com-
prehension of the various cryptographic schemes and topics. At the same time,
we try to avoid unnecessarily advanced mathematical techniques—we provide
the essentials, but we do not overload the reader with superfluous mathematical
concepts.

The following features are common to all editions of this book:

• Mathematical background is provided where it is needed, in a “just-in-time”
fashion.

• Informal descriptions of the cryptosystems are given along with more pre-
cise pseudo-code descriptions.

Preface xvii

• Numerical examples are presented to illustrate the workings of most of the
algorithms described in the book.

• The mathematical underpinnings of the algorithms and cryptosystems are
explained carefully and rigorously.

• Numerous exercises are included, some of them quite challenging.

We have received useful feedback from various people on the content of this
book as we prepared this new edition. In particular, we would like to thank
Colleen Swanson for many helpful comments and suggestions. Several anony-
mous reviewers provided useful suggestions, and we also appreciate comments
from Steven Galbraith and Jalaj Upadhyay. Finally, we thank Roberto De Prisco,
who prepared the examples of shares in a visual threshold scheme that are in-
cluded in Chapter 11.

Douglas R. Stinson
Maura B. Paterson

http://taylorandfrancis.com

Chapter 1

Introduction to Cryptography

In this chapter, we present a brief overview of the kinds of problems
studied in cryptography and the techniques used to solve them. These
problems and the cryptographic tools that are employed in their solu-
tion are discussed in more detail and rigor in the rest of this book. This
introduction may serve to provide an informal, non-technical, non-
mathematical summary of the topics to be addressed. As such, it can
be considered to be optional reading.

1.1 Cryptosystems and Basic Cryptographic Tools

In this section, we discuss basic notions relating to encryption. This includes
secret-key and public-key cryptography, block and stream ciphers, and hybrid
cryptography.

1.1.1 Secret-key Cryptosystems

Cryptography has been used for thousands of years to help to provide confi-
dential communications between mutually trusted parties. In its most basic form,
two people, often denoted as Alice and Bob, have agreed on a particular secret key.
At some later time, Alice may wish to send a secret message to Bob (or Bob might
want to send a message to Alice). The key is used to transform the original message
(which is usually termed the plaintext) into a scrambled form that is unintelligible
to anyone who does not possess the key. This process is called encryption and the
scrambled message is called the ciphertext. When Bob receives the ciphertext, he
can use the key to transform the ciphertext back into the original plaintext; this is
the decryption process. A cryptosystem constitutes a complete specification of the
keys and how they are used to encrypt and decrypt information.

Various types of cryptosystems of increasing sophistication have been used for
many purposes throughout history. Important applications have included sensi-
tive communications between political leaders and/or royalty, military maneu-
vers, etc. However, with the development of the internet and applications such
as electronic commerce, many new diverse applications have emerged. These in-
clude scenarios such as encryption of passwords, credit card numbers, email, doc-
uments, files, and digital media.

1

2 Cryptography: Theory and Practice

It should also be mentioned that cryptographic techniques are also widely used
to protect stored data in addition to data that is transmitted from one party to an-
other. For example, users may wish to encrypt data stored on laptops, on external
hard disks, in the cloud, in databases, etc. Additionally, it might be useful to be able
to perform computations on encrypted data (without first decrypting the data).

The development and deployment of a cryptosystem must address the issue
of security. Traditionally, the threat that cryptography addressed was that of an
eavesdropping adversary who might intercept the ciphertext and attempt to de-
crypt it. If the adversary happens to possess the key, then there is nothing that can
be done. Thus the main security consideration involves an adversary who does not
possess the key, who is still trying to decrypt the ciphertext. The techniques used
by the adversary to attempt to “break” the cryptosystem are termed cryptanaly-
sis. The most obvious type of cryptanalysis is to try to guess the key. An attack
wherein the adversary tries to decrypt the ciphertext with every possible key in
turn is termed an exhaustive key search. When the adversary tries the correct key,
the plaintext will be found, but when any other key is used, the “decrypted” ci-
phertext will likely be random gibberish. So an obvious first step in designing a
secure cryptosystem is to specify a very large number of possible keys, so many
that the adversary will not be able to test them all in any reasonable amount of
time.

The model of cryptography described above is usually called secret-key cryp-
tography. This indicates that there is one secret key, which is known to both Alice
and Bob. That is, the key is a “secret” that is known to two parties. This key is em-
ployed both to encrypt plaintexts and to decrypt ciphertexts. The actual encryp-
tion and decryption functions are thus inverses of each other. Some basic secret-
key cryptosystems are introduced and analyzed with respect to different security
notions in Chapters 2 and 3.

The drawback of secret-key cryptography is that Alice and Bob must somehow
be able to agree on the secret key ahead of time (before they want to send any
messages to each other). This might be straightforward if Alice and Bob are in the
same place when they choose their secret key. But what if Alice and Bob are far
apart, say on different continents? One possible solution is for Alice and Bob to
use a public-key cryptosystem.

1.1.2 Public-key Cryptosystems

The revolutionary idea of public-key cryptography was introduced in the 1970s
by Diffie and Hellman. Their idea was that it might be possible to devise a cryp-
tosystem in which there are two distinct keys. A public key would be used to
encrypt the plaintext and a private key would enable the ciphertext to be de-
crypted. Note that a public key can be known to “everyone,” whereas a private
key is known to only one person (namely, the recipient of the encrypted message).
So a public-key cryptosystem would enable anyone to encrypt a message to be
transmitted to Bob, say, and only Bob could decrypt the message. The first and
best-known example of a public-key cryptosystem is the RSA Cyptosystem that

Introduction to Cryptography 3

was invented by Rivest, Shamir and Adleman. Various types of public-key cryp-
tosystems are presented in Chapters 6, 7, and 9.

Public-key cryptography obviates the need for two parties to agree on a prior
shared secret key. However, it is still necessary to devise a method to distribute
public keys securely. But this is not necessarily a trivial goal to accomplish, the
main issue being the correctness or authenticity of purported public keys. Certifi-
cates, which we will discuss a bit later, are one common method to deal with this
problem.

1.1.3 Block and Stream Ciphers

Cryptosystems are usually categorized as block ciphers or stream ciphers. In a
block cipher, the plaintext is divided into fixed-sized chunks called blocks. A block
is specified to be a bitstring (i.e., a string of 0’s and 1’s) of some fixed length (e.g., 64
or 128 bits). A block cipher will encrypt (or decrypt) one block at a time. In contrast,
a stream cipher first uses the key to construct a keystream, which is a bitstring that
has exactly the same length as the plaintext (the plaintext is a bitstring of arbitrary
length). The encryption operation constructs the ciphertext as the exclusive-or of
the plaintext and the keystream. Decryption is accomplished by computing the
exclusive-or of the ciphertext and the keystream. Public-key cryptosystems are
invariably block ciphers, while secret-key cryptosystems can be block ciphers or
stream ciphers. Block ciphers are studied in detail in Chapter 4.

1.1.4 Hybrid Cryptography

One of the drawbacks of public-key cryptosystems is that they are much slower
than secret-key cryptosystems. As a consequence, public-key cryptosystems are
mainly used to encrypt small amounts of data, e.g., a credit card number. However,
there is a nice way to combine secret- and public-key cryptography to achieve the
benefits of both. This technique is called hybrid cryptography. Suppose that Alice
wants to encrypt a “long” message and send it to Bob. Assume that Alice and Bob
do not have a prior shared secret key. Alice can choose a random secret key and
encrypt the plaintext, using a (fast) secret-key cryptosystem. Alice then encrypts
this secret key using Bob’s public key. Alice sends the ciphertext and the encrypted
key to Bob. Bob first uses his private decryption key to decrypt the secret key, and
then he uses this secret key to decrypt the ciphertext.

Notice that the “slow” public-key cryptosystem is only used to encrypt a short
secret key. The much faster secret-key cryptosystem is used to encrypt the longer
plaintext. Thus, hybrid cryptography (almost) achieves the efficiency of secret-key
cryptography, but it can be used in a situation where Alice and Bob do not have a
previously determined secret key.

4 Cryptography: Theory and Practice

1.2 Message Integrity

This section discusses various tools that help to achieve integrity of data, in-
cluding message authentication codes (MACs), signature schemes, and hash func-
tions.

Cryptosystems provide secrecy (equivalently, confidentiality) against an
eavesdropping adversary, which is often called a passive adversary. A passive
adversary is assumed to be able to access whatever information is being sent from
Alice to Bob; see Figure 1.1. However, there are many other threats that we might
want to protect against, particularly when an active adversary is present. An ac-
tive adversary is one who can alter information that is transmitted from Alice to
Bob.

Figure 1.2 depicts some of the possible actions of an active adversary. An active
adversary might

• alter the information that is sent from Alice to Bob,

• send information to Bob in such a way that Bob thinks the information orig-
inated from Alice, or

• divert information sent from Alice to Bob in such a way that a third party
(Charlie) receives this information instead of Bob.

Possible objectives of an active adversary could include fooling Bob (say) into ac-
cepting “bogus” information, or misleading Bob as to who sent the information to
him in the first place.

We should note that encryption, by itself, cannot protect against these kinds of
active attacks. For example, a stream cipher is susceptible to a bit-flipping attack.
If some ciphertext bits are “flipped” (i.e., 0’s are replaced by 1’s and vice versa),
then the effect is to flip the corresponding plaintext bits. Thus, an adversary can
modify the plaintext in a predictable way, even though the adversary does not
know what the plaintext bits are.

There are various types of “integrity” guarantees that we might seek to pro-
vide, in order to protect against the possible actions of an active adversary. Such
an adversary might change the information that is being transmitted from Alice to
Bob (and note that this information may or may not be encrypted). Alternatively,
the adversary might try to “forge” a message and send it to Bob, hoping that he
will think that it originated from Alice. Cryptographic tools that protect against
these and related types of threats can be constructed in both the secret-key and
public-key settings. In the secret-key setting, we will briefly discuss the notion of
a message authentication code (or MAC). In the public-key setting, the tool that
serves a roughly similar purpose is a signature scheme.

Introduction to Cryptography 5

Alice Bob

adversary

y y
y

FIGURE 1.1: A passive adversary

Alice Bob

adversary

y y′

Alice Bob

adversary

y′

Alice Bob

Charlie

adversary

y
y

or

or

FIGURE 1.2: Active adversaries

6 Cryptography: Theory and Practice

1.2.1 Message Authentication Codes

A message authentication code requires Alice and Bob to share a secret key.
When Alice wants to send a message to Bob, she uses the secret key to create a
tag that she appends to the message (the tag depends on both the key and the
message). When Bob receives the message and tag, he uses the key to re-compute
the tag and checks to see if it is the same as the tag that he received. If so, Bob
accepts the message as an authentic message from Alice; if not, then Bob rejects the
message as being invalid. We note that the message may or may not be encrypted.
MACs are discussed in Chapter 5.

If there is no need for confidentiality, then the message can be sent as plain-
text. However, if confidentiality is desired, then the plaintext would be encrypted,
and then the tag would be computed on the ciphertext. Bob would first verify the
correctness of the tag. If the tag is correct, Bob would then decrypt the cipher-
text. This process is often called encrypt-then-MAC (see Section 5.5.3 for a more
detailed discussion of this topic).

For a MAC to be considered secure, it should be infeasible for the adversary
to compute a correct tag for any message for which they have not already seen a
valid tag. Suppose we assume that a secure MAC is being employed by Alice and
Bob (and suppose that the adversary does not know the secret key that they are
using). Then, if Bob receives a message and a valid tag, he can be confident that
Alice created the tag on the given message (provided that Bob did not create it
himself) and that neither the message nor the tag was altered by an adversary. A
similar conclusion can be reached by Bob when he receives a message from Alice,
along with a correct tag.

1.2.2 Signature Schemes

In the public-key setting, a signature scheme provides assurance similar to that
provided by a MAC. In a signature scheme, the private key specifies a signing al-
gorithm that Alice can use to sign messages. Similar to a MAC, the signing algo-
rithm produces an output, which in this case is called a signature, that depends on
the message being signed as well as the key. The signature is then appended to the
message. Notice that the signing algorithm is known only to Alice. On the other
hand, there is a verification algorithm that is a public key (known to everyone).
The verification algorithm takes as input a message and a signature, and outputs
true or false to indicate whether the signature should be accepted as valid. One
nice feature of a signature scheme is that anyone can verify Alice’s signatures on
messages, provided that they have an authentic copy of Alice’s verification key.
In contrast, in the MAC setting, only Bob can verify tags created by Alice (when
Alice and Bob share a secret key). Signature schemes are studied in Chapter 8.

Security requirements for signature schemes are similar to MACs. It should be
infeasible for an adversary to create a valid signature on any message not previ-
ously signed by Alice. Therefore, if Bob (or anyone else) receives a message and a
valid tag (i.e., one that can be verified using Alice’s public verification algorithm),

Introduction to Cryptography 7

then the recipient can be confident that the signature was created by Alice and
neither the message nor the signature was modified by an adversary.

One common application of signatures is to facilitate secure software updates.
When a user purchases software from an online website, it typically includes a
verification algorithm for a signature scheme. Later, when an updated version of
the software is downloaded, it includes a signature (on the updated software). This
signature can be verified using the verification algorithm that was downloaded
when the original version of the software was purchased. This enables the user’s
computer to verify that the update comes from the same source as the original
version of the software.

Signature schemes can be combined with public-key encryption schemes to
provide confidentiality along with the integrity guarantees of a signature scheme.
Assume that Alice wants to send a signed, encrypted (short) message to Bob. In
this situation, the most commonly used technique is for Alice to first create a sig-
nature on the plaintext using her private signing algorithm, and then encrypt the
plaintext and signature using Bob’s public encryption key. When Bob receives the
message, he first decrypts it, and then he checks the validity of the signature. This
process is called sign-then-encrypt; note that this is in some sense the reverse of
the “encrypt-then-MAC” procedure that is used in the secret-key setting.

1.2.3 Nonrepudiation

There is one somewhat subtle difference between MACs and signature
schemes. In a signature scheme, the verification algorithm is public. This means
that the signature can be verified by anyone. So, if Bob receives a message from
Alice containing her valid signature on the message, he can show the message
and the signature to anyone else and be confident that the third party will also
accept the signature as being valid. Consequently, Alice cannot sign a message
and later try to claim that she did not sign the message, a property that is termed
nonrepudiation. This is useful in the setting of contracts, where we do not want
someone to be able to renege on a signed contract by claiming (falsely) that their
signature has been “forged,” for example.

However, for a MAC, there is no third-party verifiability because the secret key
is required to verify the correctness of the tag, and the key is known only to Alice
and Bob. Even if the secret key is revealed to a third party (e.g., as a result of a court
order), there is no way to determine if the tag was created by Alice or by Bob, be-
cause anything Bob can do, Alice can do as well, and vice versa. So a MAC does not
provide nonrepudiation, and for this reason, a MAC is sometimes termed “deni-
able.” It is interesting to note, however, that there are situations where deniability
is desirable. This could be the case in real-time communications, where Alice and
Bob want to be assured of the authenticity of their communications as they take
place, but they do not want a permanent, verifiable record of this communication
to exist. Such communication is analogous to an “off-the-record” conversation,
e.g., between a journalist and an anonymous source. A MAC is useful in the con-

8 Cryptography: Theory and Practice

text of conversations of this type, especially if care is taken, after the conversation
is over, to delete the secret keys that are used during the communication.

1.2.4 Certificates

We mentioned that verifying the authenticity of public keys, before they are
used, is important. A certificate is a common tool to help achieve this objective.
A certificate will contain information about a particular user or, more commonly,
a website, including the website’s public keys. These public keys will be signed
by a trusted authority. It is assumed that everyone has possession of the trusted
authority’s public verification key, so anyone can verify the trusted authority’s
signature on a certificate. See Section 8.6 for more information about certificates.

This technique is used on the internet in Transport Layer Security (which is
commonly called TLS). When a user connects to a secure website, say one belong-
ing to a business engaged in electronic commerce, the website of the company will
send a certificate to the user so the user can verify the authenticity of the website’s
public keys. These public keys will subsequently be used to set up a secure chan-
nel, between the user and the website, in which all information is encrypted. Note
that the public key of the trusted authority, which is used to verify the public key
of the website, is typically hard-coded into the web browser.

1.2.5 Hash Functions

Signature schemes tend to be much less efficient than MACs. So it is not advis-
able to use a signature scheme to sign “long” messages. (Actually, most signature
schemes are designed to only sign messages of a short, fixed length.) In practice,
messages are “hashed” before they are signed. A cryptographic hash function is
used to compress a message of arbitrary length to a short, random-looking, fixed-
length message digest. Note that a hash function is a public function that is as-
sumed to be known to everyone. Further, a hash function has no key. Hash func-
tions are discussed in Chapter 5.

After Alice hashes the message, she signs the message digest, using her private
signing algorithm. The original message, along with the signature on the message,
is then transmitted to Bob, say. This process is called hash-then-sign. To verify the
signature, Bob will compute the message digest by hashing the message. Then he
will use the public verification algorithm to check the validity of the signature on
the message digest. When a signature is used along with public-key encryption,
the process would actually be hash-then-sign-then-encrypt. That is, the message is
hashed, the message digest is then signed, and finally, the message and signature
are encrypted.

A cryptographic hash function is very different from a hash function that is
used to construct a hash table, for instance. In the context of hash tables, a hash
function is generally required only to yield collisions1 with a sufficiently small
probability. On the other hand, if a cryptographic hash function is used, it should

1A collision for a function h occurs when h(x) = h(y) for some x 6= y.

Introduction to Cryptography 9

be computationally infeasible to find collisions, even though they must exist.
Cryptographic hash functions are usually required to satisfy additional security
properties, as discussed in Section 5.2.

Cryptographic hash functions also have other uses, such as for key derivation.
When used for key derivation, a hash function would be applied to a long random
string in order to create a short random key.

Finally, it should be emphasized that hash functions cannot be used for encryp-
tion, for two fundamental reasons. First is the fact that hash functions do not have
a key. The second is that hash functions cannot be inverted (they are not injective
functions) so a message digest cannot be “decrypted” to yield a unique plaintext
value.

1.3 Cryptographic Protocols

Cryptographic tools such as cryptosystems, signature schemes, hash functions,
etc., can be used on their own to achieve specific security objectives. However,
these tools are also used as components in more complicated protocols. (Of course,
protocols can also be designed “from scratch,” without making use of prior prim-
itives.)

In general, a protocol (or interactive protocol) refers to a specified sequence
of messages exchanged between two (or possibly more) parties. A session of a
protocol between Alice and Bob, say, will consist of one or more flows, where
each flow consists of a message sent from Alice to Bob or vice versa. At the end
of the session, the parties involved may have established some common shared
information, or confirmed possession of some previously shared information.

One important type protocol is an identification scheme, in which one party
“proves” their identity to another by demonstrating possession of a password, for
example. More sophisticated identification protocols will instead consist of two (or
more) flows, for example a challenge followed by a response, where the response
is computed from the challenge using a certain secret or private key. Identification
schemes are the topic of Chapter 10.

There are many kinds of protocols associated with various aspects of choos-
ing keys or communicating keys from one party to another. In a key distribution
scheme, keys might be chosen by a trusted authority and communicated to one or
more members of a certain network. Another approach, which does not require
the participation of an active trusted authority, is called key agreement. In a key
agreement scheme, Alice and Bob (say) are able to end up with a common shared
secret key, which should not become known to an adversary. These and related
topics are discussed in Chapters 11 and 12.

A secret sharing scheme involves a trusted authority distributing “pieces” of
information (called “shares”) in such a way that certain subsets of shares can be
suitably combined to reconstruct a certain predefined secret. One common type

10 Cryptography: Theory and Practice

of secret sharing scheme is a threshold scheme. In a (k, n)-threshold scheme, there
are n shares, and any k shares permit the reconstruction of the secret. On the other
hand, k− 1 or fewer shares provide no information about the value of the secret.
Secret sharing schemes are studied in Chapter 11.

1.4 Security

A fundamental goal for a cryptosystem, signature scheme, etc., is for it to be
“secure.” But what does it mean to be secure and how can we gain confidence
that something is indeed secure? Roughly speaking, we would want to say that an
adversary cannot succeed in “breaking” a cryptosystem, for example, but we have
to make this notion precise. Security in cryptography involves consideration of
three different aspects: an attack model, an adversarial goal, and a security level.
We will discuss each of these in turn.

The attack model specifies the information that is available to the adversary. We
will always assume that the adversary knows the scheme or protocol being used
(this is called Kerckhoffs’ Principle). The adversary is also assumed to know the
public key (if the system is a public-key system). On the other hand, the adversary
is assumed not to know any secret or private keys being used. Possible additional
information provided to the adversary should be specified in the attack model.

The adversarial goal specifies exactly what it means to “break” the cryptosys-
tem. What is the adversary attempting to do and what information are they trying
to determine? Thus, the adversarial goal defines a “successful attack.”

The security level attempts to quantify the effort required to break the cryp-
tosystem. Equivalently, what computational resources does the adversary have
access to and how much time would it take to carry out an attack using those
resources?

A statement of security for a cryptographic scheme will assert that a particular
adversarial goal cannot be achieved in a specified attack model, given specified
computational resources.

We now illustrate some of the above concepts in relation to a cryptosystem.
There are four commonly considered attack models. In a known ciphertext at-
tack, the adversary has access to some amount of ciphertext that is all encrypted
with the same unknown key. In a known plaintext attack, the adversary gains
access to some plaintext as well as the corresponding ciphertext (all of which is
encrypted with the same key). In a chosen plaintext attack, the adversary is al-
lowed to choose plaintext, and then they are given the corresponding ciphertext.
Finally, in a chosen ciphertext attack, the adversary chooses some ciphertext and
they are then given the corresponding plaintext.

Clearly a chosen plaintext or chosen ciphertext attack provides the adversary
with more information than a known ciphertext attack. So they would be con-

Introduction to Cryptography 11

sidered to be stronger attack models than a known ciphertext attack, since they
potentially make the adversary’s job easier.

The next aspect to study is the adversarial goal. In a complete break of a cryp-
tosystem, the adversary determines the private (or secret) key. However, there are
other, weaker goals that the adversary could potentially achieve, even if a com-
plete break is not possible. For example, the adversary might be able to decrypt
a previously unseen ciphertext with some specified non-zero probability, even
though they have not been able to determine the key. Or, the adversary might be
able to determine some partial information about the plaintext, given a previously
unseen ciphertext, with some specified non-zero probability. “Partial information”
could include the values of certain plaintext bits. Finally, as an example of a weak
goal, the adversary might be able distinguish between encryptions of two given
plaintexts.2

Other cryptographic primitives will have different attack models and adver-
sarial goals. In a signature scheme, the attack model would specify what kind
of (valid) signatures the adversary has access to. Perhaps the adversary just sees
some previously signed messages, or maybe the adversary can request the signer
to sign some specific messages of the adversary’s choosing. The adversarial goal
is typically to sign some “new” message (i.e., one for which the adversary does
not already know a valid signature). Perhaps the adversary can find a valid sig-
nature for some specific message that the adversary chooses, or perhaps they can
find a valid signature for any message. These would represent weak and strong
adversarial goals, respectively.

Three levels of security are often studied, which are known as computational
security, provable security, and unconditional security.

Computational security means that a specific algorithm to break the system is
computationally infeasible, i.e., it cannot be accomplished in a reasonable amount
of time using currently available computational resources. Of course, a system that
is computationally secure today may not be computationally secure indefinitely.
For example, new algorithms might be discovered, computers may get faster, or
fundamental new computing paradigms such as quantum computing might be-
come practical. Quantum computing, if it becomes practical, could have an enor-
mous impact on the security of many kinds of public-key cryptography; this is
addressed in more detail in Section 9.1.

It is in fact very difficult to predict how long something that is considered
secure today will remain secure. There are many examples where many crypto-
graphic schemes have not survived as long as originally expected due to the rea-
sons mentioned above. This has led to rather frequent occurrences of replacing
standards with improved standards. For example, in the case of hash functions,
there have been a succession of proposed and/or approved standards, denoted
as SHA-0, SHA-1, SHA-2 and SHA-3, as new attacks have been found and old
standards have become insecure.

2Whether or not this kind of limited information can be exploited by the adversary in a malicious
way is another question, of course.

12 Cryptography: Theory and Practice

An interesting example relating to broken predictions is provided by the
public-key RSA Cryptosystem. In the August 1977 issue of Scientific American, the
eminent mathematical expositor Martin Gardner wrote a column on the newly de-
veloped RSA public-key cryptosystem entitled “A new kind of cipher that would
take millions of years to break.” Included in the article was a challenge cipher-
text, encrypted using a 512-bit key. However, the challenge was solved 17 years
later, on April 26, 1994, by factoring the given public key (the plaintext was “the
magic words are squeamish ossifrage”). The statement that the cipher would take
millions of years to break probably referred to how long it would take to run the
best factoring algorithm known in 1977 on the fastest computer available in 1977.
However, between 1977 and 1994, there were several developments, including the
following:

• computers became much faster,

• improved factoring algorithms were found, and

• the development of the internet facilitated large-scale distributed computa-
tions.

Of course, it is basically impossible to predict when new algorithms will be dis-
covered. Also, the third item listed above can be regarded as a “paradigm shift”
that was probably not on anyone’s radar in 1977.

The next “level” of security we address is provable security (also known as
reductionist security), which refers to a situation where breaking the cryptosys-
tem (i.e., achieving the adversarial goal) can be reduced in a complexity-theoretic
sense to solving some underlying (assumed difficult) mathematical problem. This
would show that breaking the cryptosystem is at least as difficult as solving the
given hard problem. Provable security often involves reductions to the factoring
problem or the discrete logarithm problem (these problems are studied in Sections
6.6 and 7.2, respectively).

Finally, unconditional security means that the cryptosystem cannot be broken
(i.e., the adversarial goal is not achievable), even with unlimited computational
resources, because there is not enough information available to the adversary (as
specified in the attack model) for them to be able to do this. The most famous
example of an unconditionally secure cryptosystem is the One-time Pad. In this
cryptosystem, the key is a random bitstring having the same length as the plain-
text. The ciphertext is formed as the exclusive-or of the plaintext and the key. For
the One-time Pad, it can be proven mathematically that the adversary can obtain
no partial information whatsoever about the plaintext (other than its length), given
the ciphertext, provided the key is used to encrypt only one string of plaintext and
the key has the same length as the plaintext. The One-time Pad is discussed in
Chapter 3.

When we analyze a cryptographic scheme, our goal would be to show that the
adversary cannot achieve a weak adversarial goal in a strong attack model, given
significant computational resources.

Introduction to Cryptography 13

The preceding discussion of security has dealt mostly with the situation of a
cryptographic primitive such as a cryptosystem. However, cryptographic prim-
itives are generally combined in complicated ways when protocols are defined
and ultimately implemented. Even seemingly simple implementation decisions
can lead to unexpected vulnerabilities. For example, when data is encrypted using
a block cipher, it first needs to be split into fixed length chunks, e.g., 128-bit blocks.
If the data does not exactly fill up an integral number of blocks, then some padding
has to be introduced. It turns out that a standard padding technique, when used
with the common CBC mode of operation, is susceptible to an attack known as
a padding oracle attack, which was discovered by Vaudenay in 2002 (see Section
4.7.1 for a description of this attack).

There are also various kinds of attacks against physical implementations of
cryptography that are known as side channel attacks. Examples of these include
timing attacks, fault analysis attacks, power analysis attacks, and cache attacks.
The idea is that information about a secret or private key might be leaked by ob-
serving or physically manipulating a device (such as a smart card) on which a par-
ticular cryptographic scheme is implemented. One example would be observing
the time taken by the device to perform certain computations (a so-called “timing
attack”). This leakage of information can take place even though the scheme is
“secure.”

1.5 Notes and References

There are many monographs and textbooks on the subject of cryptography. We
will mention here a few general treatments that may be useful to readers.

For an accessible, non-mathematical treatment, we recommend

• Everyday Cryptography: Fundamental Principles and Applications, Second Edition
by Keith Martin [127].

For a more mathematical point of view, the following recent texts are helpful:

• An Introduction to Mathematical Cryptography by J. Hoffstein, J. Pipher, and
J. Silverman [96]

• Introduction to Modern Cryptography, Second Edition by J. Katz and Y. Lindell
[104]

• Understanding Cryptography: A Textbook for Students and Practitioners by
C. Paar and J. Pelzl [157]

• Cryptography Made Simple by Nigel Smart [185]

• A Classical Introduction to Cryptography: Applications for Communications Secu-
rity by Serge Vaudenay [196].

14 Cryptography: Theory and Practice

For mathematical background, especially for public-key cryptography, we recom-
mend

• Mathematics of Public Key Cryptography by Stephen Galbraith [84].

Finally, the following is a valuable reference, even though it is quite out of date:

• Handbook of Applied Cryptography by A.J. Menezes, P.C. Van Oorschot, and
S.A. Vanstone [134].

Chapter 2

Classical Cryptography

In this chapter, we provide a gentle introduction to cryptography and
cryptanalysis. We present several simple systems, and describe how
they can be “broken.” Along the way, we discuss various mathematical
techniques that will be used throughout the book.

2.1 Introduction: Some Simple Cryptosystems

The fundamental objective of cryptography is to enable two people, usually
referred to as Alice and Bob, to communicate over an insecure channel in such a
way that an opponent, Oscar, cannot understand what is being said. This channel
could be a telephone line or computer network, for example. The information that
Alice wants to send to Bob, which we call “plaintext,” can be English text, numer-
ical data, or anything at all—its structure is completely arbitrary. Alice encrypts
the plaintext, using a predetermined key, and sends the resulting ciphertext over
the channel. Oscar, upon seeing the ciphertext in the channel by eavesdropping,
cannot determine what the plaintext was; but Bob, who knows the encryption key,
can decrypt the ciphertext and reconstruct the plaintext.

These ideas are described formally using the following mathematical notation.

Definition 2.1: A cryptosystem is a five-tuple (P , C,K, E ,D), where the fol-
lowing conditions are satisfied:

1. P is a finite set of possible plaintexts;

2. C is a finite set of possible ciphertexts;

3. K, the keyspace, is a finite set of possible keys;

4. For each K ∈ K, there is an encryption rule eK ∈ E and a corresponding
decryption rule dK ∈ D. Each eK : P → C and dK : C → P are functions
such that dK(eK(x)) = x for every plaintext element x ∈ P .

The main property is property 4. It says that if a plaintext x is encrypted us-
ing eK, and the resulting ciphertext is subsequently decrypted using dK, then the
original plaintext x results.

15

16 Cryptography: Theory and Practice

Alice
x encrypter y

key source

K
secure channel

Oscar

decrypter x
Bob

FIGURE 2.1: The communication channel

Alice and Bob will employ the following protocol to use a specific cryptosys-
tem. First, they choose a random key K ∈ K. This is done when they are in the
same place and are not being observed by Oscar, or, alternatively, when they do
have access to a secure channel, in which case they can be in different places. At a
later time, suppose Alice wants to communicate a message to Bob over an insecure
channel. We suppose that this message is a string

x = x1x2 · · · xn

for some integer n ≥ 1, where each plaintext symbol xi ∈ P , 1 ≤ i ≤ n. Each xi
is encrypted using the encryption rule eK specified by the predetermined key K.
Hence, Alice computes yi = eK(xi), 1 ≤ i ≤ n, and the resulting ciphertext string

y = y1y2 · · · yn

is sent over the channel. When Bob receives y1y2 · · · yn, he decrypts it using the de-
cryption function dK, obtaining the original plaintext string, x1x2 · · · xn. See Figure
2.1 for an illustration of the communication channel.

Clearly, it must be the case that each encryption function eK is an injective
function (i.e., one-to-one); otherwise, decryption could not be accomplished in an
unambiguous manner. For example, if

y = eK(x1) = eK(x2)

where x1 6= x2, then Bob has no way of knowing whether y should decrypt to x1
or x2. Note that if P = C, it follows that each encryption function is a permutation.
That is, if the set of plaintexts and ciphertexts are identical, then each encryption
function just rearranges (or permutes) the elements of this set.

Classical Cryptography 17

2.1.1 The Shift Cipher

In this section, we will describe the Shift Cipher, which is based on modular
arithmetic. But first we review some basic definitions of modular arithmetic.

Definition 2.2: Suppose a and b are integers, and m is a positive integer. Then
we write a ≡ b (mod m) if m divides b− a. The phrase a ≡ b (mod m) is called
a congruence, and it is read as “a is congruent to b modulo m.” The integer m is
called the modulus.

Suppose we divide a and b by m, obtaining integer quotients and remainders,
where the remainders are between 0 and m − 1. That is, a = q1m + r1 and b =
q2m + r2, where 0 ≤ r1 ≤ m − 1 and 0 ≤ r2 ≤ m − 1. Then it is not difficult to
see that a ≡ b (mod m) if and only if r1 = r2. We will use the notation a mod m
(without parentheses) to denote the remainder when a is divided by m, i.e., the
value r1 above. Thus a ≡ b (mod m) if and only if a mod m = b mod m. If we
replace a by a mod m, we say that a is reduced modulo m.

We give a couple of examples. To compute 101 mod 7, we write 101 = 7× 14+
3. Since 0 ≤ 3 ≤ 6, it follows that 101 mod 7 = 3. As another example, suppose
we want to compute (−101) mod 7. In this case, we write −101 = 7× (−15) + 4.
Since 0 ≤ 4 ≤ 6, it follows that (−101) mod 7 = 4.

REMARK Many computer programming languages define a mod m to be the
remainder in the range −m + 1, . . . , m − 1 having the same sign as a. For ex-
ample, (−101) mod 7 would be −3, rather than 4 as we defined it above. But
for our purposes, it is much more convenient to define a mod m always to be
non-negative.

We now define arithmetic modulo m: Zm is the set {0, . . . , m − 1}, equipped
with two operations, + and ×. Addition and multiplication in Zm work exactly
like real addition and multiplication, except that the results are reduced modulo
m.

For example, suppose we want to compute 11 × 13 in Z16. As integers, we
have 11× 13 = 143. Then we reduce 143 modulo 16 as described above: 143 =
8× 16 + 15, so 143 mod 16 = 15, and hence 11× 13 = 15 in Z16.

These definitions of addition and multiplication in Zm satisfy most of the fa-
miliar rules of arithmetic. We will list these properties now, without proof:

1. addition is closed, i.e., for any a, b ∈ Zm, a + b ∈ Zm

2. addition is commutative, i.e., for any a, b ∈ Zm, a + b = b + a

3. addition is associative, i.e., for any a, b, c ∈ Zm, (a + b) + c = a + (b + c)

4. 0 is an additive identity, i.e., for any a ∈ Zm, a + 0 = 0 + a = a

5. the additive inverse of any a ∈ Zm is m− a, i.e., a + (m− a) = (m− a) + a =
0 for any a ∈ Zm

18 Cryptography: Theory and Practice

Cryptosystem 2.1: Shift Cipher

Let P = C = K = Z26. For 0 ≤ K ≤ 25, define

eK(x) = (x + K) mod 26

and
dK(y) = (y− K) mod 26

(x, y ∈ Z26).

6. multiplication is closed, i.e., for any a, b ∈ Zm, ab ∈ Zm

7. multiplication is commutative, i.e., for any a, b ∈ Zm, ab = ba

8. multiplication is associative, i.e., for any a, b, c ∈ Zm, (ab)c = a(bc)

9. 1 is a multiplicative identity, i.e., for any a ∈ Zm, a× 1 = 1× a = a

10. the distributive property is satisfied, i.e., for any a, b, c ∈ Zm, (a + b)c =
(ac) + (bc) and a(b + c) = (ab) + (ac).

Properties 1, 3–5 say that Zm forms an algebraic structure called a group with
respect to the addition operation. Since property 2 also holds, the group is said to
be an abelian group.

Properties 1–10 establish that Zm is, in fact, a ring. We will see many other ex-
amples of groups and rings in this book. Some familiar examples of rings include
the integers, Z; the real numbers, R; and the complex numbers, C. However, these
are all infinite rings, and our attention will be confined almost exclusively to finite
rings.

Since additive inverses exist in Zm, we can also subtract elements in Zm. We
define a− b in Zm to be (a− b) mod m. That is, we compute the integer a− b and
then reduce it modulo m. For example, to compute 11− 18 in Z31, we first subtract
18 from 11, obtaining −7, and then compute (−7) mod 31 = 24.

We present the Shift Cipher as Cryptosystem 2.1. It is defined over Z26 since
there are 26 letters in the English alphabet, though it could be defined over Zm
for any modulus m. It is easy to see that the Shift Cipher forms a cryptosystem as
defined above, i.e., dK(eK(x)) = x for every x ∈ Z26.

REMARK For the particular key K = 3, the cryptosystem is often called the Cae-
sar Cipher , which was purportedly used by Julius Caesar.

We would use the Shift Cipher (with a modulus of 26) to encrypt ordinary
English text by setting up a correspondence between alphabetic characters and

Classical Cryptography 19

residues modulo 26 as follows: A↔ 0, B↔ 1, . . . , Z ↔ 25. Since we will be using
this correspondence in several examples, let’s record it for future use:

A B C D E F G H I J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

A small example will illustrate.

Example 2.1 Suppose the key for a Shift Cipher is K = 11, and the plaintext is

wewillmeetatmidnight.

We first convert the plaintext to a sequence of integers using the specified corre-
spondence, obtaining the following:

22 4 22 8 11 11 12 4 4 19
0 19 12 8 3 13 8 6 7 19

Next, we add 11 to each value, reducing each sum modulo 26:

7 15 7 19 22 22 23 15 15 4
11 4 23 19 14 24 19 17 18 4

Finally, we convert the sequence of integers to alphabetic characters, obtaining the
ciphertext:

HPHTWWXPPELEXTOYTRSE.

To decrypt the ciphertext, Bob will first convert the ciphertext to a sequence of in-
tegers, then subtract 11 from each value (reducing modulo 26), and finally convert
the sequence of integers to alphabetic characters.

REMARK In the above example we are using upper case letters for ciphertext
and lower case letters for plaintext, in order to improve readability. We will do
this elsewhere as well.

If a cryptosystem is to be of practical use, it should satisfy certain properties.
We informally enumerate two of these properties now.

1. Each encryption function eK and each decryption function dK should be effi-
ciently computable.

2. An opponent, upon seeing a ciphertext string y, should be unable to deter-
mine the key K that was used, or the plaintext string x.

20 Cryptography: Theory and Practice

The second property is defining, in a very vague way, the idea of “security.”
The process of attempting to compute the key K, given a string of ciphertext y, is
called cryptanalysis. (We will make these concepts more precise as we proceed.)
Note that, if Oscar can determine K, then he can decrypt y just as Bob would, using
dK. Hence, determining K is at least as difficult as determining the plaintext string
x, given the ciphertext string y.

We observe that the Shift Cipher (modulo 26) is not secure, since it can be crypt-
analyzed by the obvious method of exhaustive key search. Since there are only 26
possible keys, it is easy to try every possible decryption rule dK until a “meaning-
ful” plaintext string is obtained. This is illustrated in the following example.

Example 2.2 Given the ciphertext string

JBCRCLQRWCRVNBJENBWRWN,

we successively try the decryption keys d0, d1, etc. The following is obtained:

jbcrclqrwcrvnbjenbwrwn

iabqbkpqvbqumaidmavqvm

hzapajopuaptlzhclzupul

gyzozinotzoskygbkytotk

fxynyhmnsynrjxfajxsnsj

ewxmxglmrxmqiweziwrmri

dvwlwfklqwlphvdyhvqlqh

cuvkvejkpvkogucxgupkpg

btujudijoujnftbwftojof

astitchintimesavesnine

At this point, we have determined the plaintext to be the phrase “a stitch in time
saves nine,” and we can stop. The key is K = 9.

On average, a plaintext will be computed using this method after trying
26/2 = 13 decryption rules.

As the above example indicates, a necessary condition for a cryptosystem to
be secure is that an exhaustive key search should be infeasible; i.e., the keyspace
should be very large. As might be expected, however, a large keyspace is not suf-
ficient to guarantee security.

2.1.2 The Substitution Cipher

Another well-known cryptosystem is the Substitution Cipher , which we de-
fine now. This cryptosystem has been used for hundreds of years. Puzzle “cryp-
tograms” in newspapers are examples of Substitution Ciphers. This cipher is de-
fined as Cryptosystem 2.2.

Actually, in the case of the Substitution Cipher, we might as well take P and C
both to be the 26-letter English alphabet. We used Z26 in the Shift Cipher because

Classical Cryptography 21

Cryptosystem 2.2: Substitution Cipher

Let P = C = Z26. K consists of all possible permutations of the 26 symbols
0, 1, . . . , 25. For each permutation π ∈ K, define

eπ(x) = π(x),

and define
dπ(y) = π−1(y),

where π−1 is the inverse permutation to π.

encryption and decryption were algebraic operations. But in the Substitution Ci-
pher, it is more convenient to think of encryption and decryption as permutations
of alphabetic characters.

Here is an example of a “random” permutation, π, which could comprise an
encryption function. (As before, plaintext characters are written in lower case and
ciphertext characters are written in upper case.)

a b c d e f g h i j k l m
X N Y A H P O G Z Q W B T

n o p q r s t u v w x y z
S F L R C V M U E K J D I

Thus, eπ(a) = X, eπ(b) = N, etc. The decryption function is the inverse permuta-
tion. This is formed by writing the second lines first, and then sorting in alphabet-
ical order. The following is obtained:

A B C D E F G H I J K L M
d l r y v o h e z x w p t

N O P Q R S T U V W X Y Z
b g f j q n m u s k a c i

Hence, dπ(A) = d, dπ(B) = l, etc.
As an exercise, the reader might decrypt the following ciphertext using this

decryption function:

MGZVYZLGHCMHJMYXSSFMNHAHYCDLMHA.

A key for the Substitution Cipher just consists of a permutation of the 26 al-
phabetic characters. The number of possible permutations is 26!, which is more
than 4.0× 1026, a very large number. Thus, an exhaustive key search is infeasible,
even for a computer. However, we shall see later that a Substitution Cipher can
easily be cryptanalyzed by other methods.

22 Cryptography: Theory and Practice

2.1.3 The Affine Cipher

The Shift Cipher is a special case of the Substitution Cipher, which includes
only 26 of the 26! possible permutations of 26 elements. Another special case of
the Substitution Cipher is the Affine Cipher, which we describe now. In the Affine
Cipher, we restrict the encryption functions to functions of the form

e(x) = (ax + b) mod 26,

a, b ∈ Z26. Such a function is called an affine function; hence the name Affine
Cipher. (Observe that when a = 1, we have a Shift Cipher.)

In order that decryption is possible, it is necessary to ask when an affine func-
tion is injective. In other words, for any y ∈ Z26, we want the congruence

ax + b ≡ y (mod 26)

to have a unique solution for x. This congruence is equivalent to

ax ≡ y− b (mod 26).

Now, as y varies over Z26, so, too, does y− b vary over Z26. Hence, it suffices to
study the congruence ax ≡ y (mod 26) (y ∈ Z26).

We claim that this congruence has a unique solution for every y if and only if
gcd(a, 26) = 1 (where the gcd function denotes the greatest common divisor of its
arguments). First, suppose that gcd(a, 26) = d > 1. Then the congruence ax ≡ 0
(mod 26) has (at least) two distinct solutions in Z26, namely x = 0 and x = 26/d.
In this case e(x) = (ax + b) mod 26 is not an injective function and hence not a
valid encryption function.

For example, since gcd(4, 26) = 2, it follows that 4x + 7 is not a valid encryp-
tion function: x and x + 13 will encrypt to the same value, for any x ∈ Z26.

Let’s next suppose that gcd(a, 26) = 1. Suppose for some x1 and x2 that

ax1 ≡ ax2 (mod 26).

Then
a(x1 − x2) ≡ 0 (mod 26),

and thus
26 | a(x1 − x2).

We now make use of a fundamental property of integer division: if gcd(a, b) = 1
and a | bc, then a | c. Since 26 | a(x1 − x2) and gcd(a, 26) = 1, we must therefore
have that

26 | (x1 − x2),

i.e., x1 ≡ x2 (mod 26).
At this point we have shown that, if gcd(a, 26) = 1, then a congruence of the

form ax ≡ y (mod 26) has, at most, one solution in Z26. Hence, if we let x vary
over Z26, then ax mod 26 takes on 26 distinct values modulo 26. That is, it takes on

Classical Cryptography 23

every value exactly once. It follows that, for any y ∈ Z26, the congruence ax ≡ y
(mod 26) has a unique solution for x.

There is nothing special about the number 26 in this argument. The following
result can be proved in an analogous fashion.

THEOREM 2.1 The congruence ax ≡ b (mod m) has a unique solution x ∈ Zm for
every b ∈ Zm if and only if gcd(a, m) = 1.

Since 26 = 2× 13, the values of a ∈ Z26 such that gcd(a, 26) = 1 are a = 1,
3, 5, 7, 9, 11, 15, 17, 19, 21, 23, and 25. The parameter b can be any element in Z26.
Hence the Affine Cipher has 12× 26 = 312 possible keys. (Of course, this is much
too small to be secure.)

Let’s now consider the general setting where the modulus is m. We need an-
other definition from number theory.

Definition 2.3: Suppose a ≥ 1 and m ≥ 2 are integers. If gcd(a, m) = 1, then
we say that a and m are relatively prime. The number of integers in Zm that are
relatively prime to m is often denoted by φ(m) (this function is called the Euler
phi-function).

A well-known result from number theory gives the value of φ(m) in terms of
the prime power factorization of m. (An integer p > 1 is prime if it has no positive
divisors other than 1 and p. Every integer m > 1 can be factored as a product of
powers of primes in a unique way. For example, 60 = 22 × 3× 5 and 98 = 2× 72.)

We record the formula for φ(m) in the following theorem.

THEOREM 2.2 Suppose

m =
n

∏
i=1

pi
ei ,

where the pi’s are distinct primes and ei > 0, 1 ≤ i ≤ n. Then

φ(m) =
n

∏
i=1

(pi
ei − pei−1

i).

It follows that the number of keys in the Affine Cipher over Zm is mφ(m),
where φ(m) is given by the formula above. (The number of choices for b is m,
and the number of choices for a is φ(m), where the encryption function is e(x) =
ax + b.) For example, suppose m = 60. We have

60 = 22 × 31 × 51

and hence

φ(60) = (4− 2)× (3− 1)× (5− 1) = 2× 2× 4 = 16.

The number of keys in the Affine Cipher is 60× 16 = 960.

24 Cryptography: Theory and Practice

Let’s now consider the decryption operation in the Affine Cipher with mod-
ulus m = 26. Suppose that gcd(a, 26) = 1. To decrypt, we need to solve the con-
gruence y ≡ ax + b (mod 26) for x. The discussion above establishes that the con-
gruence will have a unique solution in Z26, but it does not give us an efficient
method of finding the solution. What we require is an efficient algorithm to do
this. Fortunately, some further results on modular arithmetic will provide us with
the efficient decryption algorithm we seek.

We require the idea of a multiplicative inverse.

Definition 2.4: Suppose a ∈ Zm. The multiplicative inverse of a modulo m,
denoted a−1 mod m, is an element a′ ∈ Zm such that aa′ ≡ a′a ≡ 1 (mod m). If
m is fixed, we sometimes write a−1 for a−1 mod m.

By similar arguments to those used above, it can be shown that a has a mul-
tiplicative inverse modulo m if and only if gcd(a, m) = 1; and if a multiplicative
inverse exists, it is unique modulo m. Also, observe that if b = a−1, then a = b−1.
If p is prime, then every non-zero element of Zp has a multiplicative inverse. A
ring in which this is true is called a field.

In Section 6.2.1, we will describe an efficient algorithm for computing multi-
plicative inverses in Zm for any m. However, in Z26, trial and error suffices to find
the multiplicative inverses of the elements relatively prime to 26:

1−1 = 1,
3−1 = 9,
5−1 = 21,
7−1 = 15,

11−1 = 19,
17−1 = 23, and
25−1 = 25.

(All of these can be verified easily. For example, 7× 15 = 105 ≡ 1 (mod 26), so
7−1 = 15 and 15−1 = 7.)

Consider our congruence y ≡ ax + b (mod 26). This is equivalent to

ax ≡ y− b (mod 26).

Since gcd(a, 26) = 1, a has a multiplicative inverse modulo 26. Multiplying both
sides of the congruence by a−1, we obtain

a−1(ax) ≡ a−1(y− b) (mod 26).

By associativity of multiplication modulo 26, we have that

a−1(ax) ≡ (a−1a)x ≡ 1x ≡ x (mod 26).

Classical Cryptography 25

Cryptosystem 2.3: Affine Cipher

Let P = C = Z26 and let

K = {(a, b) ∈ Z26 ×Z26 : gcd(a, 26) = 1}.

For K = (a, b) ∈ K, define

eK(x) = (ax + b) mod 26

and
dK(y) = a−1(y− b) mod 26

(x, y ∈ Z26).

Consequently, x = a−1(y− b) mod 26. This is an explicit formula for x, that is, the
decryption function is

dK(y) = a−1(y− b) mod 26.

So, finally, the complete description of the Affine Cipher is given as Cryptosys-
tem 2.3.

Let’s do a small example.

Example 2.3 Suppose that K = (7, 3). As noted above, 7−1 mod 26 = 15. The
encryption function is

eK(x) = 7x + 3,

and the corresponding decryption function is

dK(y) = 15(y− 3) = 15y− 19,

where all operations are performed in Z26. It is a good check to verify that
dK(eK(x)) = x for all x ∈ Z26. Computing in Z26, we get

dK(eK(x)) = dK(7x + 3)
= 15(7x + 3)− 19
= x + 45− 19
= x.

To illustrate, let’s encrypt the plaintext hot. We first convert the letters h, o, t to
residues modulo 26. These are respectively 7, 14, and 19. Now, we encrypt:

(7× 7 + 3) mod 26 = 52 mod 26 = 0
(7× 14 + 3) mod 26 = 101 mod 26 = 23
(7× 19 + 3) mod 26 = 136 mod 26 = 6.

So the three ciphertext characters are 0, 23, and 6, which corresponds to the alpha-
betic string AXG. We leave the decryption as an exercise for the reader.

26 Cryptography: Theory and Practice

Cryptosystem 2.4: Vigenère Cipher

Let m be a positive integer. Define P = C = K = (Z26)
m. For a key K =

(k1, k2, . . . , km), we define

eK(x1, x2, . . . , xm) = (x1 + k1, x2 + k2, . . . , xm + km)

and
dK(y1, y2, . . . , ym) = (y1 − k1, y2 − k2, . . . , ym − km),

where all operations are performed in Z26.

2.1.4 The Vigenère Cipher

In both the Shift Cipher and the Substitution Cipher, once a key is chosen, each
alphabetic character is mapped to a unique alphabetic character. For this reason,
these cryptosystems are called monoalphabetic cryptosystems. We now present
a cryptosystem that is not monoalphabetic, the well-known Vigenère Cipher , as
Cryptosystem 2.4. This cipher is named after Blaise de Vigenère, who lived in the
sixteenth century.

Using the correspondence A↔ 0, B↔ 1, . . . , Z ↔ 25 described earlier, we can
associate each key K with an alphabetic string of length m, called a keyword. The
Vigenère Cipher encrypts m alphabetic characters at a time: each plaintext element
is equivalent to m alphabetic characters.

Let’s do a small example.

Example 2.4 Suppose m = 6 and the keyword is CIPHER. This corresponds to
the numerical equivalent K = (2, 8, 15, 7, 4, 17). Suppose the plaintext is the string

thiscryptosystemisnotsecure.

We convert the plaintext elements to residues modulo 26, write them in groups of
six, and then “add” the keyword modulo 26, as follows:

19 7 8 18 2 17 24 15 19 14 18 24
2 8 15 7 4 17 2 8 15 7 4 17

21 15 23 25 6 8 0 23 8 21 22 15

18 19 4 12 8 18 13 14 19 18 4 2
2 8 15 7 4 17 2 8 15 7 4 17

20 1 19 19 12 9 15 22 8 25 8 19

20 17 4
2 8 15

22 25 19

Classical Cryptography 27

The alphabetic equivalent of the ciphertext string would thus be:

VPXZGIAXIVWPUBTTMJPWIZITWZT.

To decrypt, we can use the same keyword, but we would subtract it modulo 26
from the ciphertext, instead of adding it.

Observe that the number of possible keywords of length m in a Vigenère Ci-
pher is 26m, so even for relatively small values of m, an exhaustive key search
would require a long time. For example, if we take m = 5, then the keyspace has
size exceeding 1.1× 107. This is already large enough to preclude exhaustive key
search by hand (but not by computer).

In a Vigenère Cipher having keyword length m, an alphabetic character can be
mapped to one of m possible alphabetic characters (assuming that the keyword
contains m distinct characters). Such a cryptosystem is called a polyalphabetic
cryptosystem. In general, cryptanalysis is more difficult for polyalphabetic than
for monoalphabetic cryptosystems.

2.1.5 The Hill Cipher

In this section, we describe another polyalphabetic cryptosystem called the Hill
Cipher. This cipher was invented in 1929 by Lester S. Hill. Let m be a positive inte-
ger, and define P = C = (Z26)

m. The idea is to take m linear combinations of the
m alphabetic characters in one plaintext element, thus producing the m alphabetic
characters in one ciphertext element.

For example, if m = 2, we could write a plaintext element as x = (x1, x2) and
a ciphertext element as y = (y1, y2). Here, y1 would be a linear combination of x1
and x2, as would y2. We might take

y1 = (11x1 + 3x2) mod 26
y2 = (8x1 + 7x2) mod 26.

Of course, this can be written more succinctly in matrix notation as follows:

(y1, y2) = (x1, x2)

(
11 8

3 7

)
,

where all operations are performed in Z26. In general, we will take an m×m ma-
trix K as our key. If the entry in row i and column j of K is ki,j, then we write K =
(ki,j). For x = (x1, . . . , xm) ∈ P and K ∈ K, we compute y = eK(x) = (y1, . . . , ym)
as follows:

(y1, y2, . . . , ym) = (x1, x2, . . . , xm)

k1,1 k1,2 . . . k1,m
k2,1 k2,2 . . . k2,m

...
...

...
km,1 km,2 . . . km,m

 .

28 Cryptography: Theory and Practice

In other words, using matrix notation, y = xK.
We say that the ciphertext is obtained from the plaintext by means of a linear

transformation. We have to consider how decryption will work, that is, how x
can be computed from y. Readers familiar with linear algebra will realize that we
will use the inverse matrix K−1 to decrypt. The ciphertext is decrypted using the
matrix equation x = yK−1.

Here are the definitions of necessary concepts from linear algebra. If A = (ai,j)
is an ` × m matrix and B = (bj,k) is an m × n matrix, then we define the matrix
product AB = (ci,k) by the formula

ci,k =
m

∑
j=1

ai,jbj,k

for 1 ≤ i ≤ ` and 1 ≤ k ≤ n. That is, the entry in row i and column k of AB
is formed by taking the ith row of A and the kth column of B, multiplying corre-
sponding entries together, and summing. Note that AB is an `× n matrix.

Matrix multiplication is associative (that is, (AB)C = A(BC)) but not, in gen-
eral, commutative (it is not always the case that AB = BA, even for square matri-
ces A and B).

The m×m identity matrix, denoted by Im, is the m×m matrix with 1’s on the
main diagonal and 0’s elsewhere. Thus, the 2× 2 identity matrix is

I2 =

(
1 0
0 1

)
.

Im is termed an identity matrix since AIm = A for any `×m matrix A and ImB = B
for any m× n matrix B. Now, the inverse matrix of an m×m matrix A (if it exists)
is the matrix A−1 such that AA−1 = A−1A = Im. Not all matrices have inverses,
but if an inverse exists, it is unique.

With these facts at hand, it is easy to derive the decryption formula given
above, assuming that K has an inverse matrix K−1. Since y = xK, we can mul-
tiply both sides of the formula by K−1, obtaining

yK−1 = (xK)K−1 = x(KK−1) = xIm = x.

(Note the use of the associativity property.)
We can verify that the example encryption matrix defined above has an inverse

in Z26: (
11 8
3 7

)−1

=

(
7 18

23 11

)
since(

11 8
3 7

)(
7 18

23 11

)
=

(
11× 7 + 8× 23 11× 18 + 8× 11

3× 7 + 7× 23 3× 18 + 7× 11

)
=

(
261 286
182 131

)
=

(
1 0
0 1

)
.

Classical Cryptography 29

(Remember that all arithmetic operations are done modulo 26.)
Let’s now do an example to illustrate encryption and decryption in the Hill

Cipher.

Example 2.5 Suppose the key is

K =

(
11 8

3 7

)
.

From the computations above, we have that

K−1 =

(
7 18

23 11

)
.

Suppose we want to encrypt the plaintext july. We have two elements of plain-
text to encrypt: (9, 20) (corresponding to ju) and (11, 24) (corresponding to ly). We
compute as follows:

(9, 20)
(

11 8
3 7

)
= (99 + 60, 72 + 140) = (3, 4)

and

(11, 24)
(

11 8
3 7

)
= (121 + 72, 88 + 168) = (11, 22).

Hence, the encryption of july is DELW. To decrypt, Bob would compute:

(3, 4)
(

7 18
23 11

)
= (9, 20)

and

(11, 22)
(

7 18
23 11

)
= (11, 24).

Hence, the correct plaintext is obtained.

At this point, we have shown that decryption is possible if K has an inverse.
In fact, for decryption to be possible, it is necessary that K has an inverse. (This
follows fairly easily from elementary linear algebra, but we will not give a proof
here.) So we are interested precisely in those matrices K that are invertible.

The invertibility of a (square) matrix depends on the value of its determinant,
which we define now.

Definition 2.5: Suppose that A = (ai,j) is an m × m matrix. For 1 ≤ i ≤ m,
1 ≤ j ≤ m, define Aij to be the matrix obtained from A by deleting the ith row
and the jth column. The determinant of A, denoted det A, is the value a1,1 if
m = 1. If m > 1, then det A is computed recursively from the formula

det A =
m

∑
j=1

(−1)i+jai,j det Aij,

where i is any fixed integer between 1 and m.

30 Cryptography: Theory and Practice

It is not at all obvious that the value of det A is independent of the choice of i
in the formula given above, but it can be proved that this is indeed the case. It will
be useful to write out the formulas for determinants of 2× 2 and 3× 3 matrices. If
A = (ai,j) is a 2× 2 matrix, then

det A = a1,1a2,2 − a1,2a2,1.

If A = (ai,j) is a 3× 3 matrix, then

det A = a1,1a2,2a3,3 + a1,2a2,3a3,1 + a1,3a2,1a3,2

−(a1,1a2,3a3,2 + a1,2a2,1a3,3 + a1,3a2,2a3,1).

For large m, the recursive formula given in the definition above is not usually a
very efficient method of computing the determinant of an m×m square matrix. A
preferred method is to compute the determinant using so-called “elementary row
operations”; see any text on linear algebra.

Two important properties of determinants that we will use are det Im = 1 and
the multiplication rule det(AB) = det A× det B.

A real matrix K has an inverse if and only if its determinant is non-zero. How-
ever, it is important to remember that we are working over Z26. The relevant re-
sult for our purposes is that a matrix K has an inverse modulo 26 if and only if
gcd(det K, 26) = 1. To see that this condition is necessary, suppose K has an in-
verse, denoted K−1. By the multiplication rule for determinants, we have

1 = det I = det(KK−1) = det K det K−1.

Hence, det K is invertible in Z26, which is true if and only if gcd(det K, 26) = 1.
Sufficiency of this condition can be established in several ways. We will give

an explicit formula for the inverse of the matrix K. Define a matrix K∗ to have as its
(i, j)-entry the value (−1)i+j det Kji. (Recall that Kji is obtained from K by deleting
the jth row and the ith column.) K∗ is called the adjoint matrix of K. We state the
following theorem, concerning inverses of matrices over Zn, without proof.

THEOREM 2.3 Suppose K = (ki,j) is an m × m matrix over Zn such that det K is
invertible in Zn. Then K−1 = (det K)−1K∗, where K∗ is the adjoint matrix of K.

REMARK The above formula for K−1 is not very efficient computationally, except
for small values of m (e.g., m = 2, 3). For larger m, the preferred method of com-
puting inverse matrices would involve performing elementary row operations on
the matrix K.

In the 2× 2 case, we have the following formula, which is an immediate corol-
lary of Theorem 2.3.

COROLLARY 2.4 Suppose

K =

(
k1,1 k1,2
k2,1 k2,2

)

Classical Cryptography 31

is a matrix having entries in Zn, and det K = k1,1k2,2− k1,2k2,1 is invertible in Zn. Then

K−1 = (det K)−1
(

k2,2 −k1,2
−k2,1 k1,1

)
.

Let’s look again at the example considered earlier. First, we have

det
(

11 8
3 7

)
= (11× 7− 8× 3) mod 26

= (77− 24) mod 26
= 53 mod 26
= 1.

Now, 1−1 mod 26 = 1, so the inverse matrix is(
11 8

3 7

)−1

=

(
7 18

23 11

)
,

as we verified earlier.
Here is another example, using a 3× 3 matrix.

Example 2.6 Suppose that

K =

 10 5 12
3 14 21
8 9 11

 ,

where all entries are in Z26. The reader can verify that det K = 7. In Z26, we have
that 7−1 mod 26 = 15. The adjoint matrix is

K∗ =

 17 1 15
5 14 8

19 2 21

 .

Finally, the inverse matrix is

K−1 = 15K∗ =

 21 15 17
23 2 16
25 4 3

 .

As mentioned above, encryption in the Hill Cipher is done by multiplying
the plaintext by the matrix K, while decryption multiplies the ciphertext by the
inverse matrix K−1. We now give a precise mathematical description of the Hill
Cipher over Z26; see Cryptosystem 2.5.

32 Cryptography: Theory and Practice

Cryptosystem 2.5: Hill Cipher

Let m ≥ 2 be an integer. Let P = C = (Z26)
m and let

K = {m×m invertible matrices over Z26}.

For a key K, we define
eK(x) = xK

and
dK(y) = yK−1,

where all operations are performed in Z26.

2.1.6 The Permutation Cipher

All of the cryptosystems we have discussed so far involve substitution: plain-
text characters are replaced by different ciphertext characters. The idea of a per-
mutation cipher is to keep the plaintext characters unchanged, but to alter their
positions by rearranging them using a permutation.

A permutation of a finite set X is a bijective function π : X → X. In other
words, the function π is one-to-one (injective) and onto (surjective). It follows
that, for every x ∈ X, there is a unique element x′ ∈ X such that π(x′) = x. This
allows us to define the inverse permutation, π−1 : X → X by the rule

π−1(x) = x′ if and only if π(x′) = x.

Then π−1 is also a permutation of X.
The Permutation Cipher (also known as the Transposition Cipher) is defined

formally as Cryptosystem 2.6. This cryptosystem has been in use for hundreds of
years. In fact, the distinction between the Permutation Cipher and the Substitution
Cipher was pointed out as early as 1563 by Giovanni Porta.

As with the Substitution Cipher, it is more convenient to use alphabetic char-
acters as opposed to residues modulo 26, since there are no algebraic operations
being performed in encryption or decryption.

Here is an example to illustrate:

Example 2.7 Suppose m = 6 and the key is the following permutation π:

x 1 2 3 4 5 6
π(x) 3 5 1 6 4 2

.

Note that the first row of the above diagram lists the values of x, 1 ≤ x ≤ 6, and
the second row lists the corresponding values of π(x). Then the inverse permuta-
tion π−1 can be constructed by interchanging the two rows, and rearranging the

Classical Cryptography 33

Cryptosystem 2.6: Permutation Cipher

Let m be a positive integer. Let P = C = (Z26)
m and let K consist of all permu-

tations of {1, . . . , m}. For a key (i.e., a permutation) π, we define

eπ(x1, . . . , xm) = (xπ(1), . . . , xπ(m))

and
dπ(y1, . . . , ym) = (yπ−1(1), . . . , yπ−1(m)),

where π−1 is the inverse permutation to π.

columns so that the first row is in increasing order. Carrying out these operations,
we see that the permutation π−1 is the following:

x 1 2 3 4 5 6
π−1(x) 3 6 1 5 2 4

.

Now, suppose we are given the plaintext

shesellsseashellsbytheseashore.

We first partition the plaintext into groups of six letters:

shesel lsseas hellsb ythese ashore

Now each group of six letters is rearranged according to the permutation π, yield-
ing the following:

EESLSH SALSES LSHBLE HSYEET HRAEOS

So, the ciphertext is:

EESLSHSALSESLSHBLEHSYEETHRAEOS.

The ciphertext can be decrypted in a similar fashion, using the inverse permutation
π−1.

We now show that the Permutation Cipher is a special case of the Hill Cipher.
Given a permutation π of the set {1, . . . , m}, we can define an associated m × m
permutation matrix Kπ = (ki,j) according to the formula

ki,j =

{
1 if i = π(j)
0 otherwise.

(A permutation matrix is a matrix in which every row and column contains exactly

34 Cryptography: Theory and Practice

one “1,” and all other values are “0.” A permutation matrix can be obtained from
an identity matrix by permuting rows or columns.)

It is not difficult to see that Hill encryption using the matrix Kπ is, in fact,
equivalent to permutation encryption using the permutation π. Moreover, Kπ

−1 =
Kπ−1 , i.e., the inverse matrix to Kπ is the permutation matrix defined by the per-
mutation π−1. Thus, Hill decryption is equivalent to permutation decryption.

For the permutation π used in the example above, the associated permutation
matrices are

Kπ =

0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0

and

Kπ
−1 =

0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0

 .

The reader can verify that the product of these two matrices is the identity matrix.

2.1.7 Stream Ciphers

In the cryptosystems we have studied so far, successive plaintext elements are
encrypted using the same key, K. That is, the ciphertext string y is obtained as
follows:

y = y1y2 · · · = eK(x1)eK(x2) · · · .

Cryptosystems of this type are often called block ciphers.
An alternative approach is to use what are called stream ciphers. The basic idea

is to generate a keystream z = z1z2 · · · , and use it to encrypt a plaintext string
x = x1x2 · · · according to the rule

y = y1y2 · · · = ez1(x1)ez2(x2) · · · .

The simplest type of stream cipher is one in which the keystream is constructed
from the key, independent of the plaintext string, using some specified algorithm.
This type of stream cipher is called “synchronous” and can be defined formally as
follows:

Classical Cryptography 35

Definition 2.6: A synchronous stream cipher is a tuple (P , C,K,L, E ,D), to-
gether with a function g, such that the following conditions are satisfied:

1. P is a finite set of possible plaintexts

2. C is a finite set of possible ciphertexts

3. K, the keyspace, is a finite set of possible keys

4. L is a finite set called the keystream alphabet

5. g is the keystream generator. g takes a key K as input, and generates an
infinite string z1z2 · · · called the keystream, where zi ∈ L for all i ≥ 1.

6. For each z ∈ L, there is an encryption rule ez ∈ E and a corresponding
decryption rule dz ∈ D. ez : P → C and dz : C → P are functions such
that dz(ez(x)) = x for every plaintext element x ∈ P .

To illustrate this definition, we show how the Vigenère Cipher can be de-
fined as a synchronous stream cipher. Suppose that m is the keyword length of
a Vigenère Cipher. Define K = (Z26)

m and P = C = L = Z26; and define
ez(x) = (x + z) mod 26 and dz(y) = (y− z) mod 26. Finally, define the keystream
z1z2 · · · as follows:

zi =

{
ki if 1 ≤ i ≤ m
zi−m if i ≥ m + 1,

where K = (k1, . . . , km). This generates the keystream

k1k2 · · · kmk1k2 · · · kmk1k2 · · ·

from the key K = (k1, k2, . . . , km).

REMARK We can think of a block cipher as a special case of a stream cipher where
the keystream is constant: zi = K for all i ≥ 1.

A stream cipher is a periodic stream cipher with period d if zi+d = zi for all
integers i ≥ 1. The Vigenère Cipher with keyword length m, as described above,
can be thought of as a periodic stream cipher with period m.

Stream ciphers are often described in terms of binary alphabets, i.e., P = C =
L = Z2. In this situation, the encryption and decryption operations are just addi-
tion modulo 2:

ez(x) = (x + z) mod 2

and
dz(y) = (y + z) mod 2.

If we think of “0” as representing the boolean value “false” and “1” as representing

36 Cryptography: Theory and Practice

“true,” then addition modulo 2 corresponds to the exclusive-or operation. Hence,
encryption (and decryption) can be implemented very efficiently in hardware.

Let’s look at another method of generating a (synchronous) keystream. We will
work over binary alphabets. Suppose we start with a binary m-tuple (k1, . . . , km)
and let zi = ki, 1 ≤ i ≤ m (as before). Now we generate the keystream using a
linear recurrence of degree m:

zi+m =
m−1

∑
j=0

cjzi+j mod 2,

for all i ≥ 1, where c0, . . . , cm−1 ∈ Z2 are specified constants.

REMARK This recurrence is said to have degree m since each term depends on
the previous m terms. It is a linear recurrence because zi+m is a linear function
of previous terms. Note that we can take c0 = 1 without loss of generality, for
otherwise the recurrence will be of degree (at most) m− 1.

Here, the key K consists of the 2m values k1, . . . , km, c0, . . . , cm−1. If

(k1, . . . , km) = (0, . . . , 0),

then the keystream consists entirely of 0’s. Of course, this should be avoided,
as the ciphertext will then be identical to the plaintext. However, if the con-
stants c0, . . . , cm−1 are chosen in a suitable way, then any other initialization vec-
tor (k1, . . . , km) will give rise to a periodic keystream having period 2m − 1. So a
“short” key can give rise to a keystream having a very long period. This is cer-
tainly a desirable property: we will see in a later section how the Vigenère Cipher
can be cryptanalyzed by exploiting the fact that the keystream has a short period.

Here is an example to illustrate.

Example 2.8 Suppose m = 4 and the keystream is generated using the linear re-
currence

zi+4 = (zi + zi+1) mod 2,

i ≥ 1. If the keystream is initialized with any vector other than (0, 0, 0, 0), then
we obtain a keystream of period 15. For example, starting with (1, 0, 0, 0), the
keystream is

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 · · · .

Any other non-zero initialization vector will give rise to a cyclic permutation of
the same keystream.

Another appealing aspect of this method of keystream generation is that
the keystream can be produced efficiently in hardware using a linear feedback
shift register, or LFSR. We would use a shift register with m stages. The vector
(k1, . . . , km) would be used to initialize the shift register. At each time unit, the
following operations would be performed concurrently:

Classical Cryptography 37

k1 k2 k3 k4

+

FIGURE 2.2: A linear feedback shift register

1. k1 would be tapped as the next keystream bit

2. k2, . . . , km would each be shifted one stage to the left

3. the “new” value of km would be computed to be

m−1

∑
j=0

cjk j+1

(this is the “linear feedback”).

At any given point in time, the shift register contains m consecutive keystream
elements, say zi, . . . , zi+m−1. After one time unit, the shift register contains
zi+1, . . . , zi+m.

Observe that the linear feedback is carried out by tapping certain stages of the
register (as specified by the constants cj having the value “1”) and computing a
sum modulo 2 (which is an exclusive-or). This is illustrated in Figure 2.2, where
we depict the LFSR that will generate the keystream of Example 2.8.

A non-synchronous stream cipher is a stream cipher in which each keystream
element zi depends on previous plaintext or ciphertext elements (x1, . . . , xi−1
and/or y1, . . . , yi−1) as well as the key K. A simple type of non-synchronous stream
cipher, known as the Autokey Cipher , is presented as Cryptosystem 2.7. It is ap-
parently due to Vigenère. The reason for the terminology “autokey” is that the
plaintext is used to construct the keystream (aside from the initial “priming key”
K). Of course, the Autokey Cipher is insecure since there are only 26 possible keys.

Here is an example to illustrate:

Example 2.9 Suppose the key is K = 8, and the plaintext is

rendezvous.

We first convert the plaintext to a sequence of integers:

17 4 13 3 4 25 21 14 20 18

The keystream is as follows:

8 17 4 13 3 4 25 21 14 20

38 Cryptography: Theory and Practice

Cryptosystem 2.7: Autokey Cipher

Let P = C = K = L = Z26. Let z1 = K, and define zi = xi−1 for all i ≥ 2. For
0 ≤ z ≤ 25, define

ez(x) = (x + z) mod 26

and
dz(y) = (y− z) mod 26

(x, y ∈ Z26).

Now we add corresponding elements, reducing modulo 26:

25 21 17 16 7 3 20 9 8 12

In alphabetic form, the ciphertext is:

ZVRQHDUJIM.

Now let’s look at how the ciphertext would be decrypted. First, we convert the
alphabetic string to the numeric string

25 21 17 16 7 3 20 9 8 12

Then we compute

x1 = d8(25) = (25− 8) mod 26 = 17.

Next,
x2 = d17(21) = (21− 17) mod 26 = 4,

and so on. Each time we obtain another plaintext character, we also use it as the
next keystream element.

In the next section, we discuss methods that can be used to cryptanalyze the
various cryptosystems we have presented.

2.2 Cryptanalysis

In this section, we discuss some techniques of cryptanalysis. The general as-
sumption that is usually made is that the opponent, Oscar, knows the cryptosys-
tem being used. This is usually referred to as Kerckhoffs’ Principle. Of course, if
Oscar does not know the cryptosystem being used, that will make his task more

Classical Cryptography 39

difficult. But we do not want to base the security of a cryptosystem on the (possibly
shaky) premise that Oscar does not know what system is being employed. Hence,
our goal in designing a cryptosystem will be to obtain security while assuming
that Kerckhoffs’ principle holds.

First, we want to differentiate between different attack models on cryptosys-
tems. The attack model specifies the information available to the adversary when
he mounts his attack. The most common types of attack models are enumerated
as follows.

ciphertext-only attack
The opponent possesses a string of ciphertext, y.

known plaintext attack
The opponent possesses a string of plaintext, x, and the corresponding ci-
phertext, y.

chosen plaintext attack
The opponent has obtained temporary access to the encryption machinery.
Hence he can choose a plaintext string, x, and construct the corresponding
ciphertext string, y.

chosen ciphertext attack
The opponent has obtained temporary access to the decryption machinery.
Hence he can choose a ciphertext string, y, and construct the corresponding
plaintext string, x.

In each case, the objective of the adversary is to determine the key that was
used. This would allow the opponent to decrypt a specific “target” ciphertext
string, and further, to decrypt any additional ciphertext strings that are encrypted
using the same key.

At first glance, a chosen ciphertext attack may seem to be a bit artificial. For, if
there is only one ciphertext string of interest to the opponent, then the opponent
can obviously decrypt that ciphertext string if a chosen ciphertext attack is permit-
ted. However, we are suggesting that the opponent’s objective normally includes
determining the key that is used by Alice and Bob, so that other ciphertext strings
can be decrypted (at a later time, perhaps). A chosen ciphertext attack makes sense
in this context.

We first consider the weakest type of attack, namely a ciphertext-only at-
tack (this is sometimes called a known ciphertext attack). We also assume that
the plaintext string is ordinary English text, without punctuation or “spaces.”
(This makes cryptanalysis more difficult than if punctuation and spaces were en-
crypted.)

Many techniques of cryptanalysis use statistical properties of the English lan-
guage. Various people have estimated the relative frequencies of the 26 letters by
compiling statistics from numerous novels, magazines, and newspapers. The esti-
mates in Table 2.1 were obtained by Beker and Piper. On the basis of these proba-
bilities, Beker and Piper partition the 26 letters into five groups as follows:

40 Cryptography: Theory and Practice

TABLE 2.1: Probabilities of occurrence of the 26 letters

letter probability letter probability
A .082 N .067
B .015 O .075
C .028 P .019
D .043 Q .001
E .127 R .060
F .022 S .063
G .020 T .091
H .061 U .028
I .070 V .010
J .002 W .023
K .008 X .001
L .040 Y .020
M .024 Z .001

1. E, having probability about 0.120

2. T, A, O, I, N, S, H, R, each having probability between 0.06 and 0.09

3. D, L, each having probability around 0.04

4. C, U, M, W, F, G, Y, P, B, each having probability between 0.015 and 0.028

5. V, K, J, X, Q, Z, each having probability less than 0.01.

It is also useful to consider sequences of two or three consecutive letters, called
digrams and trigrams, respectively. The 30 most common digrams are (in decreas-
ing order):

TH, HE, IN, ER, AN, RE, ED, ON, ES, ST,
EN, AT, TO, NT, HA, ND, OU, EA, NG, AS,

OR, TI, IS, ET, IT, AR, TE, SE, HI, OF.

The twelve most common trigrams are:

THE, ING, AND, HER, ERE, ENT,
THA, NTH, WAS, ETH, FOR, DTH.

2.2.1 Cryptanalysis of the Affine Cipher

As a simple illustration of how cryptanalysis can be performed using statis-
tical data, let’s look first at the Affine Cipher. Suppose Oscar has intercepted the
ciphertext shown in the following example:

Classical Cryptography 41

TABLE 2.2: Frequency of occurrence of the 26 ciphertext letters

letter frequency letter frequency
A 2 N 1
B 1 O 1
C 0 P 2
D 7 Q 0
E 5 R 8
F 4 S 3
G 0 T 0
H 5 U 2
I 0 V 4
J 0 W 0
K 5 X 2
L 2 Y 1
M 2 Z 0

Example 2.10 Ciphertext obtained from an Affine Cipher

FMXVEDKAPHFERBNDKRXRSREFMORUDSDKDVSHVUFEDK

APRKDLYEVLRHHRH

The frequency analysis of this ciphertext is given in Table 2.2.
There are only 57 characters of ciphertext, but this is usually sufficient to crypt-

analyze an Affine Cipher. The most frequent ciphertext characters are: R (8 occur-
rences), D (7 occurrences), E, H, K (5 occurrences each), and F, S, V (4 occurrences
each). As a first guess, we might hypothesize that R is the encryption of e and
D is the encryption of t, since e and t are (respectively) the two most common
letters. Expressed numerically, we have eK(4) = 17 and eK(19) = 3. Recall that
eK(x) = ax + b, where a and b are unknowns. So we get two linear equations in
two unknowns:

4a + b = 17
19a + b = 3.

This system has the unique solution a = 6, b = 19 (in Z26). But this is an illegal
key, since gcd(a, 26) = 2 > 1. So our hypothesis must be incorrect.

Our next guess might be that R is the encryption of e and E is the encryption of
t. Proceeding as above, we obtain a = 13, which is again illegal. So we try the next
possibility, that R is the encryption of e and H is the encryption of t. This yields
a = 8, again impossible. Continuing, we suppose that R is the encryption of e and
K is the encryption of t. This produces a = 3, b = 5, which is at least a legal key.
It remains to compute the decryption function corresponding to K = (3, 5), and
then to decrypt the ciphertext to see if we get a meaningful string of English, or
nonsense. This will confirm the validity of (3, 5).

