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Preface

This book contains invited lectures and full papers presented at VipIMAGE 2013 – IV ECCOMAS The-
matic Conference on Computational Vision and Medical Image Processing, which was held in Funchal, 
Madeira Island, Portugal, during the period 14–16 October 2013. The event had 6 invited lectures, and 74 
contributed presentations originated from 17 countries: Austria, Brazil, Canada, Cuba, Czech Republic, 
Finland, France, Germany, Italy, Poland, Portugal, Republic of Korea, Romania, Spain, Sweden and 
Venezuela.

Computational methodologies of signal processing and analyses have been commonly used in our soci-
ety. For instances, full automatic or semi-automatic Computational Vision systems have been increas-
ing used in surveillance tasks, traffic analysis, recognition process, inspection purposes, human-machine 
interfaces, 3D vision and deformation analysis.

One of the notable aspects of the Computational Vision domain is the inter- and multi-disciplinarily. 
Actually, methodologies of more traditional sciences, such as Informatics, Mathematics, Statistics, Psy-
chology, Mechanics and Physics, are regularly comprised in this domain. One of the key motives that 
contributes for the continually effort done in this field of the human knowledge is the high number of 
applications that can be easily found in Medicine. For instance, computational algorithms can be applied 
on medical images for shape reconstruction, motion and deformation analysis, tissue characterization or 
computer-assisted diagnosis and therapy.

The main objective of these ECCOMAS Thematic Conferences on Computational Vision and Medi-
cal Image Processing, initiated in 2007, is to promote a comprehensive forum for discussion on the recent 
advances in the related fields in order to identify potential collaboration between researchers of different 
sciences. Henceforth, VipIMAGE 2013 brought together researchers representing fields related to Biome-
chanics, Biomedical Engineering, Computational Vision, Computer Graphics, Computer Sciences, Com-
putational Mechanics, Electrical Engineering, Mathematics, Statistics, Medical Imaging and Medicine.

The expertises spanned a broad range of techniques for Image Acquisition, Image Processing and 
Analysis, Signal Processing and Analysis, Data Interpolation, Registration, Acquisition and Compres-
sion, Image Segmentation, Tracking and Analysis of Motion, 3D Vision, Computer Simulation, Medical 
Imaging, Computer Aided Diagnosis, Surgery, Therapy, and Treatment, Computational Bio- imaging and 
Visualization and Telemedicine, Virtual Reality, Software Development and Applications.

The conference co-chairs would like to take this opportunity to express gratitude for the support given 
by The International European Community on Computational Methods in Applied Sciences and The 
Portuguese Association of Theoretical, Applied and Computational Mechanics, and thank to all spon-
sors, to all members of the Scientific Committee, to all Invited Lecturers, to all Session-Chairs and to all 
Authors for submitting and sharing their knowledge.

João Manuel R.S. Tavares
Renato M. Natal Jorge
(Conference co-chairs)
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Machine learning meets medical imaging: Learning and discovery 
of clinically useful information from images

Daniel Rueckert & Robin Wolz
Biomedical Image Analysis Group, Department of Computing, Imperial College London, UK

Paul Aljabar
Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, 
King’s College London, UK

ABSTRACT: Three-dimensional (3D) and four-dimensional (4D) imaging plays an increasingly impor-
tant role in computer-assisted diagnosis, intervention and therapy. However, in many cases the interpreta-
tion of these images is heavily dependent on the subjective assessment of the imaging data by clinicians. 
Over the last decades image registration has transformed the clinical workflow in many areas of medical 
imaging. At the same time, advances in machine learning have transformed many of the classical problems 
in computer vision into machine learning problems. This paper will focus on the convergence of image 
registration and machine learning techniques for the discovery and quantification of clinically useful 
information from medical images. We will illustrate this with several examples such as the segmentation 
of neuro-anatomical structures, the discovery of biomarkers for neurodegenerative diseases and the quan-
tification of temporal changes such as atrophy in Alzheimer’s disease.

such as the heart, liver and lungs to the computer-
aided detection, diagnosis and therapy. For exam-
ple, machine learning techniques such as clustering 
can be used to identify classes in the image data 
and classifiers may be used to differentiate clini-
cal groups across images or tissue types within an 
image. These techniques may be applied to images 
at different levels: At the lowest level or voxel level 
one may be interested in classifying the voxel as 
part of a tissue class such as white matter or grey 
matter. At a more intermediate level, classification 
may be applied to some representation or features 
extracted from the images. For example, one may 
be interested in classifying the shape of the hippoc-
ampus as belonging to a healthy control or to a sub-
ject with dementia. At the highest level, clustering 
may be applied in order to classify entire images.

In the following we will discuss two particular 
applications of image registration and machine 
learning in medical imaging: (a) segmentation and 
(b) biomarker discovery and classification.

2 MACHINE LEARNING FOR 
SEGMENTATION

The amount of data produced by imaging increas-
ingly exceeds the capacity for expert visual 

1 INTRODUCTION

For many clinical applications the analysis of med-
ical images represents an important aspect in deci-
sion making in the context of diagnosis, treatment 
planning and therapy. Different imaging modalities 
often provide complementary anatomical informa-
tion about the underlying tissues such as the X-ray 
attenuation coefficients from X-ray computed 
tomography (CT), and proton density or proton 
relaxation times from magnetic resonance (MR) 
imaging. Medical images allow clinicians to gather 
information about thesize, shape and spatial rela-
tionship between anatomical structures and any 
pathology, if  present. In addition to CT and MR, 
other imaging modalities provide functional infor-
mation such as the blood flow or glucose metabo-
lism from positron emission tomography (PET) or 
single-photon emission tomography (SPECT), and 
permit clinicians to study the relationship between 
anatomy and physiology. Finally, histological 
images provide another important source of infor-
mation which depicts structures at a microscopi-
clevel of resolution.

The use of machine learning in the analysis of 
medical images has become increasingly important 
in many real-world, clinical applications ranging 
from the acquisition of images of moving organs 
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analysis, resulting in a growing need for automated 
image analysis. In particular, accurate and reli-
able methods for segmentation (classifying image 
regions) are a key requirement for the extraction 
of information from images. In recent years many 
approaches to image segmentation have emerged 
that use image registration as a key component. 
Many of these approaches are based on so-called 
atlases. An atlas can be viewed as a map or chart 
of the anatomy or function, either from a single 
individual or from an entire population. In many 
cases the atlases are annotated to include geomet-
ric information about points, curves or surfaces, or 
label information about voxels (anatomical regions 
or function). Such atlases are often used in brain 
imaging applications (Mazziotta, Toga, Evans, 
Fox, & Lancaster 1995).

Atlases can be used as prior information for 
image segmentation. In general, an atlas A can be 
viewed as a mapping from a set of spatial coordi-
nates (i.e. the voxels) to a set of labels Λ = { }, , . 
By warping the atlas to the target, one can make 
the atlas and its prior information subject-specific 
and obtain a segmentation L of  image I:

L A A I→� TA  (1)

Here TA→I denotes the transformation that maps 
the atlas A into the space of the image I. This 
transformation can be obtained using different 
image registration techniques, e.g. (Rueckert, Son-
oda, Hayes, Hill, Leach, & Hawkes 1999).

Indeed the earliest approaches to segmentation 
via registration have used such approaches: By 
registering a labelled atlas to the target images and 
transforming the segmentation of the atlas into the 
coordinate system of the subject one can obtain a 
segmentation of the subject’s image (Miller, Chris-
tensen, Amit, & Grenander 1993, Collins & Evans 
1997). This segmentation approach is simple yet 
effective since the approach can segment any of 
the structures that are present and annotated in 
the atlas. However, the accuracy and robustness of 
the segmentation is dictated by the accuracy and 
robustness of the image registration. Errors in the 
registration process will directly affect the accuracy 
of the propagated segmentation.

2.1 Multi-atlas segmentation

In the area of machine learning it is well know that 
the performance of pattern recognition techniques 
can be boosted using combining classifiers (Kittler, 
Hatef, Duin, & Matas 1998). This concept can be 
exploited in the context of atlas-based segmenta-
tion: Assuming the availability of multiple atlases, 
the output of atlas-based segmentation using a 

particular atlas instance can be viewed the output 
of the classifier. Combining the output of multiple 
classifiers (or segmentations) into a single consen-
sus segmentation has been show to reduce random 
errors in the individual atlas-to-image registration 
resulting in an improved segmentation (Rohlfing 
& Maurer Jr. 2005, Heckemann, Hajnal, Aljabar, 
Rueckert, & Hammers 2006). Using this method 
each atlas is registered to the the target image in 
question. The resulting transformation is thenused 
to transform the segmentation from the atlas into 
the coordinate system of the target image.

By applying classifier fusion techniques at every 
voxel in subject space the final consensus segmen-
tation can be applied. Several classifier fusion 
techniques can be used, see (Kittler, Hatef, Duin, 
& Matas 1998) for a detailed review and discussion 
of the different classifier fusion techniques. One of 
the most popular techniques is the majority vote 
rule (Rohlfing & Maurer Jr. 2005): It simply uses 
a winner-takes-all approach in which each voxel 
is assigned the label that gets the most votes from 
the individual segmentations. Assuming K classi-
fiers (i.e. atlases) final segmentation L(p) can be 
expressed as

L f fLff( ) ( )]p(f ( ,)f ( ,1ffffff �  (2)

where

f w l Llff
k

K

k l ( )pwk l ( l)wk l ( , ,
=

,∑
1

for
 

(3)

and

w
l e

k l
k

, =
, =l
,

⎧
⎨
⎧⎧

⎩
⎨⎨( )

( )1
0

if
otherwise  

(4)

Here ek denotes the output or label of classifier 
k. An extension of multi-atlas segmentation has 
been proposed in (Aljabar, Heckemann, Ham-
mers, Hajnal, & Rueckert 2009). In their work a 
large number of atlases are used. However, instead 
of using all atlases for for multi-atlas segmenta-
tion, only the most similar atlases are used: In the 
first step all atlases are registered to a common 
standard space using a coarse registration (e.g. 
affine registration). In addition, the target image 
is also aligned to the common standard space. 
After this initial alignment the similarity between 
each atlas and the target image can be determined 
using an image similarity measure S, e.g. sums of 
squared differences (SSD), cross-correlation (CC), 
mutual information (MI) (Collins, Evans, Holmes, 
& Peters 1995, Viola & Wells 1995) or normalised 
mutual information (NMI) (Studholme, Constable, 
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& Duncan 1999). This allows the ranking of all 
atlases with respect to the similarity to the target 
image. The m top-ranked atlases are then regis-
tered non-rigidly to the target image and as before 
a classifier fusion framework is applied to obtain a 
final consensus segmentation.

The use of a common standard space allows the 
pre-registration of all atlases to the standard com-
mon space avoiding the necessity for performing 
registration of each atlas to the target image for 
atlas selection. In principle it is also possible to 
rank atlases based on meta-information available 
from the atlases and the target image. Such meta-
information can include gender, age, handedness 
and clinical status. In this case atlas selection can 
be carried out independently from the actual image 
data and does not require any initial registration 
for the atlas selections step.

Instead of ranking atlases based on their similar-
ity to the target image and using the top m atlases 
for classifier fusion, it is possible to weight each 
atlas according to its similarity to the target image. 
In this case the weight w can be written as

w
S l e

k l
k

, =
, =l
,

⎧
⎨
⎧⎧

⎩
⎨⎨( )

( )if
otherwise0  

(5)

where S measures the similarity between atlas Ak 
and the target image. It should be noted that the 
atlas selection scheme can be viewed as a special 
case of the weighted atlas fusion scheme described 
above where w = 1 for the top-ranked atlasesand 
w = 0 for all other atlases.

While weighted voting allows the incorporation 
of a notation of atlas similarity into the classifier 
fusion, it does not account for the fact that images 
can be dissimilar at a global level but similar at a 
local level and vice versa. For example, two brain 
MR images may have ventricles that are very dif-
ferent in size and shape but their hippocampi may 
have similar shape and size. Since the ventricle is 
much larger than the hippocampus, its appear-
ance will dominate the similarity calculations. A 
more flexible approach is to measure image simi-
larity locally and to adjust the weighting function 
accordingly:

w
S l

k l
k

, =
,

⎧
⎨
⎧⎧

⎩
⎨⎨( )

( ( )p pl ek, =l) (if
otherwise0  

(6)

Another approach is based on simultaneous 
truth and performance level estimation (STA-
PLE) (Warfield, Zhou, &Wells 2004). The STA-
PLE framework was initially created in order to 

Figure 1. Result of multi-atlas segmentation of brain MR images from a normal control subject (top) and subject 
with Alzheimer’s disease (bottom).
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fuse several manual or automated segmentations 
of the same image. More specifically it computesa 
probabilistic estimate of the true segmentation as 
a measure of the performance level represented by 
each segmentation in an expectation-maximization 
(EM) framework. This framework has extended 
to account for spatially varying performance by 
extending the performance level parameters to 
account for a smooth, voxelwise performance level 
field that is unique to each atlas-based segmenta-
tion (Commowick, Akhondi-Asl, & Warfield 2012, 
Asman & Landman 2012).

3 MACHINE LEARNING FOR 
BIOMARKER DISCOVERY AND 
CLASSIFICATION

A biomarker is a measurement or physical sign 
used as a substitute for a clinically meaningful 
endpoint that measures directly how a patient 
feels, functions, or survives. Changes induced by 
a therapy on a surrogate endpoint are expected 
to reflect changes on a clinically meaningful end-
point. A practical example of a biomarker could 
be the volume of region of interest (ROI) such as 
the hippocampus. However, this requires a-priori 
information about what anatomical ROI maybe 
affected by a particular disease. An alternative 
approach is to learn the biomarker directly from 
the images without any a-priori knowledge.

One of the key challenges in applying machine 
learning techniques for biomarker discovery in med-
ical images is the fact that medical images are often 
represented as data points in a very high-dimen-
sional space, yet they only occupy a small part of this 
space. Another key challenge that is often faced is 
commonly referred to as the small sample size prob-
lem: While the data lives in a very high-dimensional 
space we often only have a comparatively small 
number of images from which to learn. In this con-
text manifold learning techniques (Aljabar,Wolz, & 
Rueckert 2012) offer a powerful approach to find a 
representation of images or image-derived features 
that facilitates the application of machine learning 
techniques such as clustering or regression.

The basic idea of manifold learning is closely 
related to that of dimensionality reduction tech-
niques such as Principal Component Analysis 
(PCA). The key assumption in applying manifold 
learning techniques is that dimensionality of the 
original data can be reduced with a negligible loss 
of information. For example, a 3D brain image with 
256 × 256 × 128 voxels may be viewed as a point in 
a more than 8 million dimensional vector space. 
However, brain images from different subjects have 
a large degree of similarity in their appearance. 
Thus, most regions of this high-dimensional space 

correspond to images that have no similarity to 
brain images. Instead the assumption is that the 
images are data points on a low dimensional mani-
fold, which is embedded in the high-dimensional 
space. The goal of manifold learning algorithms is 
to uncover or learn this low dimensional manifold 
directly from the data.

A good example of the application of manifold 
learning to biomarker discovery can be found in 
(Wolz, Aljabar, Hajnal, & Rueckert 2010): In their 
work, the MR brain images from a population of 
subjects with and without Alzheimer’s disease were 
analysed using a manifold learning approach based 
on Laplacian eigenmaps (Belkin & Niyogi 2003):: 
The set of images {x1,...,xn} is described by N images 
xi ∈ R, each being defined as a vector of intensities, 
where D is the number of voxels per image or region 
of interest. Assuming that {x1,...,xn} lie on or near 
a d-dimensional manifold M embedded in RD and 
d << D, it is possible to learn a new, low dimensional 
representation {y1,...,yn} with yi ∈ R, of the input 
images. In Laplacian eigenmaps a set of weights 
wij are defined as the similarities between images 
within a local neighborhood and are set to zero for 
all other pairings. Similarities can be derived from 
distances dij using a heat kernel such as

w eij

dijd

t−
2

 
(7)

where t defines the width of the kernel. The Lapla-
cian eigenmap embedding is obtained by minimiz-
ing the objective function

φ( )φ Y y) y Y LY−y∑∑
ij

i jy ij
T2 2

 
(8)

where L = DW is the graph Laplacian matrix 
which is derived from the weight matrix W and 
the diagonal degree matrix D where ii j ijw= ∑ . 
The Laplacian eigenmap objective function is opti-
mized under the constraint that yT Dy = 1 which 
removes an arbitrary scaling factor in the embed-
ding and prevents the trivial solution where all yi 
are zero. The yi that optimize the objective func-
tion are defined by the eigenvectors corresponding 
to the smallest nonzero eigenvaluesof the general-
ized eigenvalue problem Lv = λDv.

An example of a manifold constructed from 
brain MR images using Laplacian eigenmaps is 
shown in Figure 2: In this example a set of baseline 
and follow-up MR images from the ADNI study 
have been embedded into a two-dimensional mani-
fold. In this manifold each pair of baseline and 
follow-up images correspond to a pair of points 
in the manifold connected by a line. The line indi-
cates the magnitude and direction of movement of 
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each subject between baseline and follow-up (in 
this case 24 months after baseline). Using the posi-
tion, magnitude and direction of movement in the 
manifold as features for a linear SVM it is possi-
ble to achieve classification rates of up-to 86% for 
the classification of controls and subjects with AD 
(Wolz, Aljabar, Hajnal, & Rueckert 2010).

4 SUMMARY AND CONCLUSIONS

Machine learning is becoming increasingly impor-
tant in the context of medical imaging. In this 
article we have described two different exemplar 
applications of machine learning for image seg-
mentation and biomarker discovery/classification. 
There are many more potential applications for 
machine learning in this area. However, one of the 
challenges is that the application of machine learn-
ing usually requires a large number of training 
datasets. In medical imaging it is often very costly 
and time-consuming to acquire such large number 
of training datasets. In future this challenge may 
be overcome as shared data repositories become 
more widely available.
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ABSTRACT: This manuscript and associated talk gives an historical but not exhaustive overview 
of work in the Cognitive Vision Lab at the University of Surrey’s Centre for Vision Speech and Signal 
Processing. Work concentrates on people, tracking or identifying their actions and interpreting the mean-
ing of those actions. To do this we employ techniques from a variety of sources which include the use of 
Mutual Information in Tracking, Data mining in Learning and using linguistics in classification. This 
Manuscript covers approaches to General Tracking, Multutal Information Estimation, Human Pose Esti-
mation, Head and Hand Tracking, Expression Recognition, Lip Reading, Non Verbal Communication, 
Sign Language Recognition and Activity Recognition.

do not come from different imaging modalities 
but due to lighting variation and the properties of 
the object surface, the relationship between pixels 
in two consecutive images can be far from linear. 
One of the earliest and widely used techniques for 
matching image patches between frames was pro-
posed by Lucas and Kanade (Lucas and Kanade 
1981).

LK matching typically employs simple bright-
ness constancy assumptions and uses Sum of 
Squared Difference (SSD). We chose to base our 
tracking on MI because of its robustness to envi-
ronmental lighting/noise, pronounced maxima 
and similar computation cost to SSD. Our earli-
est attempt at using MI in a tracking context was 
the M3I tracker (Dowson and Bowden 2004) which 
developed into the Simultaneous Modelling and 
Tracking (SMAT) algorithm (Dowson and Bow-
den 2005) (Dowson and Bowden 2006b). SMAT 
was an on-line tracking algorithm that, given a sin-
gle image patch in the first frame, would track and 
learn a hierarchical constellation model of appear-
ance and structure on the fly. As such, it builds a 
model of appearance variation as it tracks, becom-
ing more robust overtime. Tracking was performed 
in an optimised LK framework but using MI as the 
similarity measure.

Work by (Baker and Matthews 2004) revolution-
ized LK when they proposed the inverse composi-
tional method. The key to the approach was posing 
the warp function as a function of two warps and 
inverting the roles of the template and image. This 
allowed an approximation of the Hessian to be 
derived that was solely based on the template. As 
the template is typically constant, the Hessian can 
be precomputed and this decreases the complexity 
of each iterative update. In (Dowson and Bowden 

1 INTRODUCTION

Computer vision has its roots in Artificial Intel-
ligence, but over the past two decades has firmly 
established itself  as a research field in its own right. 
Related areas have their own communities but we 
all share a substantial body of techniques and 
terminology.

Computer/cognitive vision has moved beyond 
image processing with classification and regres-
sion techniques developed in the machine learning 
community predominant in current state-of-the-
art. Another community which shares many tech-
niques, but typically operating in isolation, is that 
of data mining.

This manuscript gives a overview of work in the 
Cognitive Vision Lab within the Centre for Vision 
Speech and Signal Processing at the University of 
Surrey and demonstrates how techniques from dif-
ferent disciplines can be used to tackle common 
problems. The common theme is seeing and under-
standing people which includes head and hand 
tracking, sign language recognition, expression 
recognition, non-verbal communication and more 
general activity recognition. A common approach 
being weakly supervised learning using many tech-
niques inspired from the data mining community.

2 FROM MUTUAL INFORMATION TO 
TRACKING

Our interest in mutual information (MI) came from 
the same properties that have made it an important 
technique in medical image registration, its ability 
to register two images from different modalities. In 
terms of 2D tracking, typically consecutive frames 
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2006a, Dowson and Bowden 2008) we presented 
a single mathematical framework for an inverse 
compositional approach to MI for four common 
variants including Standard Sampling, Partial Vol-
ume Estimation, In- and Post- Parzen Window-
ing. However, our work highlighted problems with 
PDF estimation due to the discrete nature of the 
underlying histograms used and the sparsity of 
samples when applied in 2D.

The histogram accuracy, and hence registration 
accuracy, is limited by the quantization of inten-
sity and number of samples available. For volumet-
ric data, the number of samples are high, but in 
2D, histograms are typically under populated. This 
is a well understood problem, with a considerable 
body of work devoted to In Parzen or post Parzen 
windowing, Partial Volume (PV) Interpolation or 
PV Estimation (Dowson et al. 2008) all of which 
attempt to overcome these issues but in some cases 
actually introduce bias due to the kernels used. In 
(Dowson et al. 2008) we applied Non-Parametric 
(NP) Windows to the problem of estimating the 
joint statistics of images, equivalent to sampling at 
a high (infinite) resolution for an assumed interpo-
lation model. This overcomes sampling issues and 
introducing less bias than other approaches.

3 TRACKING VS PREDICTION

One of the fundamental problems with LK is 
that it relies on the appearance of a template. It 
is posed as an optimization problem where some 
metric (e.g. SSD or MI etc.) is used to calculate the 
warp between a template and image. Models like 
SMAT allow variation in the template, gradually 
incorporating change into the model. But there are 
a whole class of problem where appearance change 
is so radical, that template based approaches can-
not cope. Furthermore, tracking is limited by the 
basin of convergence of the optimization approach 
meaning that the motion between frames must be 
small. Multi-scale approaches can help or we can 
abandon optimization in favour of treating track-
ing as an offset prediction problem.

Linear Predictors (Matas et al. 2006) are a sim-
ple displacement predictor that maps a sparse set of 
support pixels, to a displacement in the image. The 
relationship is a simple linear mapping between 
pixel intensities and translational displacement 
learnt through synthetically offsetting a tracker 
during training. In (Ellis et al. 2007) we integrated 
this predictor approach into the SMAT algorithm, 
later developing more robust partitioning of the 
appearance modes and demonstrated how banks 
of different predictors could be used for different 
appearances of an object (Ellis et al. 2008) (Ellis 
et al. 2011).

Perhaps one of the most important aspects of 
linear predictor tracking is their ability to make 
predictions from a varied support region. Consider 
the problem of tracking the face. Figure 1 shows 
several features that one might want to track.
Standard features consist of the corner of the eyes 
and mouth. The key word being corners. Corners 
are easy to track, they are well localized, robust to 
scale and remain consistent in terms of appear-
ance. It is perhaps unsurprising then that many 
approaches to facial feature extraction employ 
such easily detected landmarks. However, if  one 
considers the contour of the lips, the problem is 
more complex. Tracking a point on an edge suffers 
from the aperture problem, where edge points are 
only well defined in one direction, perpendicular 
to the line. Points on the inner lip are even more 
problematic, as the texture can change dramati-
cally as the mouth opens and closes. Perhaps the 
most challenging task is some arbitrary point on 
the cheek. Assuming the resolution of the image is 
insufficient to see micro texture or the pores of the 
skin, there is no information with which to track. 
Linear predictors can overcome this problem. If  
the motion of any given point can be modelled by 
its relationship to other points in the image that are 
well localized, then a predictor can be constructed. 
The key idea here is selection of support: can we 
find points in the image which allow a linear dis-
placement predictor to be constructed?

In (Ong and Bowden 2008) we proposed such a 
selection framework that allows a learning frame-
work to choose the best visual support regions 
for any specific feature point and motion. Fig-
ure 2 shows the selection for a point on the inner, 
lower lip depicted by the dark circle. Predictors 
are separated into horizontal (Fig.2a) and vertical 
prediction (Fig.2b). Lighter circles show the flock 
of linear predictors selected for motion prediction. 

Figure 1. Facial Feature Tracking.
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Note that although we are tracking the lower lip, 
the approach selects support from the upper lip to 
localize in the horizontal direction as the structure 
of the upper lip as this is a good feature with which 
to localize horizontally. In (Fig.2b), the selection 
procedure chooses support from the lip and chin 
to localize vertically, away from mouth itself  which 
can change so drastically in appearance.

In (Ong et al. 2009) and (Ong and Bowden 
2011c) we developed this approach into a tracker 
capable of tracking any facial feature, using hiera-
chical predictors to provide robust and accurate 
tracking. The underlying linear mathematical 
assumptions in the approach provide an efficient 
solution.

While this tracking methodology has been used 
in much of our lip-reading work1, we have recently 
proposed a non-linear version based on regression 
trees (Sheerman-Chase et al. 2013). Replacing the 
underlying linear assumption with a nonlinear 
model overcomes some of the limiting assump-
tions. This newer version is more robust to head 
pose, requires less training data, is more resilient to 
lighting while retaining computational efficiency.

While this allows tracking of features with vari-
able or no visual appearance, it is only possible 
where some mathematical relationship to other 
features can be established. There is another class 
of problem where features simply do not exist. To 
tackle this, our most recent work has developed 
FLO-track, a feature-less tracking algorithm that 
uses line correspondences within a SMAT like 
tracking framework (Lebeda et al. 2013). Using 
low-level line correspondences in tracking allows 
operation even when there is a lack of texture. 
While such approaches work well for tracking 
objects with relatively consistent appearance, such 
as faces, tracking highly deformable objects such 
as people or hands requires a different approach.

4 TRACKING AND DETECTING PEOPLE

Tracking people in the context of surveillance 
is typically done using static camera assump-

tions (Kaew-TrakulPong and Bowden 2003, 
KaewTraKulPong and Bowden 2002). However, 
such approaches lack the fidelity required to rec-
ognize activity and typically concentrate onmore 
general behaviour. Simple approaches to identify-
ing behaviour can be used as priors during tacking 
when objects are occluded (Kaew-TraKulPong and 
Bowden 2004) or moving between cameras (Bow-
den and Kaewtrakulpong 2005). In (Gilbert and 
Bowden 2005), (Gilbert and Bowden 2006), (Gil-
bert and Bowden 2008) we developed approaches 
to self  calibrating distributed camera networks 
using the people moving between cameras as the 
calibration targets by looking for statistical trends 
in weakly correlated motion cues.

Body part detection became popular when Viola 
and Jones (Viola and Jones 2004) proposed an 
efficient method for head detection and it is rela-
tively simple to extend the approach to other body 
parts such as the torso (Micilotta and Bowden 
2004) or hands (Ong and Bowden 2004). Detect-
ing parts in isolation has many advantages over 
full body detection as independance reduces the 
complexity of the detector. Overall structure can 
then be applied after detection using probabilistic 
body part assembly (Micilotta et al. 2005). Such 
approaches have gained popularity since pictorial 
structures were reformulated (Felzenszwalb and 
Huttenlocher 2005) allowing an efficient frame-
work for part based modelling.

More recently, the introduction of the Micro-
soft KinectTM has resulted in an explosion in 
approaches that employ depth. Our first work 
with the Kinect was to apply poselets (Bourdev et 
al. 2010) in the depth domain (Holt et al. 2011). 
Although part detection can still be used, as in the 
seminal work of (Shotton et al. 2011), we chose to 
adopt direct regression based approaches (Holt 
and Bowden 2012), (Holt et al. 2013), the later of 
which combines regression of joints with the iden-
tification of geodesic extrema. As seen in Figure 3, 
regression works well for the torso but degrades as 
the degrees of freedom of the body parts increase, 
leading to poor hand prediction. However, the 

Figure 3. Pose Estimation via Regression and Geodesic 
Extrema.

Figure 2. Linear Predictor Support Selection. a) Hori-
zontal Predictor, b) Vertical Predictor.

1 http://www.youtube.com/watch?v = Tu2vInqqHX8
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hands form extrema which can be efficiently com-
puted bytreating the depth map as a geodesic sur-
face using Dikstra’s algorithm.

The concept of geodesic extrema can also be 
applied to the hands allowing fingertip extrac-
tion to be performed (Krejov and Bowden 2013). 
Figure 4 shows geodesic extrema computed on a 
depth image of the hand. The advantage of oper-
ating in the depthdomain being that discontinuities 
in object segmentation through self  occlusion can 
be identified more easily and corrected for. This 
approach to tracking fingertips is extremely fast 
allowing the fingers of up to 4 hands to be tracked 
in real time and forms the input to our work on 
MultiTouchless interfaces2.

5 SIGN LANGUAGE RECOGNITION

Although the KinectTM plays a key role in provid-
ing robust real-time Sign Language Recognition 
(SLR) demonstration systems, our work in this 
area predates the sensor considerably.

Sign consists of three main parts: Manual fea-
tures involving gestures made with the hands, Non-
manual features such as facial expressions or body 
posture, which can form part of a sign or modify 
the meaning of a sign, and Finger spelling, where 
words are spelt out in the local verbal language. 
Naturally this is an over simplification, sign lan-
guage is as complex as any spoken language and 
each sign language has many thousands of signs, 
differing from the next by minor changes in hand 
shape, motion, position, non-manual features or 
context. It also has its own grammar.

To date, most work in the literature has con-
centrated on the manual aspects of sign or the 
simpler problem of finger spelling (Cooper et al. 
2011). Our own work on finger spelling is limited 
to (Bowden and Sarhadi 2002) and (Pugeault and 
Bowden 2011) as it ismore an artefact of modelling 
hand shape as part of continuous sign than work-
ing on the problem per se.

Although we know the importance of non-man-
ual features in communication, this is also some-
thing we have yet to integrate successfully into SLR. 
However, we have investigated facial expression rec-
ognition (Moore et al. 2010), (?); the effects of pose 
on expression recognition (Moore and Bowden 
2011), (Moore and Bowden 2009); and non verbal 
communication during speech (Sheerman-Chase 
et al. 2009), (Sheerman-Chase et al. 2011).

Any SLR system needs to recognise thousands 
of different signs. As such the simple approach of 
training a classifier per sign soon becomes intrac-
table especially when one considers the training 
requirements needed to cope with natural variabil-
ity between individuals, motion epenthesis and co-
articulation. The emergent solution in speech was 
to recognise the subcomponents (phonemes), then 
combine them into words using Hidden Markov 
Models (HMMs). Sub-unit based SLR uses a simi-
lar two stage approach, sign linguistic sub-units 
are identified and sub-units combined together to 
create a sign level classifier.

Our early work in this area turned to the lin-
guistic annotation used in the British Sign Lan-
guage (BSL) Dictionary which used a HA (hand 
arrangement), TAB (hand position), SIG (hand 
movement), all of which are relative measures and 
DEZ (hand shape). A setof deterministic rules 
converted incoming tracking data into a symbol 
sequence based on these linguistic descriptors 
(Bowden et al. 2004), (Kadir et al. 2004). A sec-
ond stage classification was then used to recognise 
the temporal ordering of the symbols that corre-
sponded to a particular sign. This provided huge 
advantages. As the initial stage of classification 
generalise well, models could be trained with as lit-
tle as 1 example. Despite its simplicity, its legacy 
remains with us today, however, the evolution of 
the approach now allows us to tackle far higher 
lexical sizes with better generalization between 
people. We have attempted various approaches to 
overcoming tracking failure and noise in the ini-
tial stage of classification which is often a limiting 
factor for fast and/or subtle hand motion (Cooper 
and Bowden 2007) (?) a good overview is given in 
(Cooper et al. 2012).

Figure 5. Pose Estimation via Regression and Geodesic 
Extrema.Figure 4. Pose Estimation via Regression and Geodesic 

Extrema.

2 www.ee.surrey.ac.uk/Personal/R.Bowden/multitouchless/
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Within the EU project Dictasign, a Sign Wiki 
application was developed. The system incor-
porated a recognition engine based on a kinect 
sensor, editing software and an avatar for replay 
(Efthimiou et al. 2012). Maintaining a 2 stage clas-
sification architecture, the initial level was based on 
HamNoSys3 and second stage classification based 
on markov chains (Cooper et al. 2011).

In (Ong and Bowden 2011b) and (Ong and 
Bowden 2011a) we developed Sequential Pattern 
recognition primarily for lip reading, but employed 
this classification approach in the final versions of 
the Sign Wiki recognition engine. The technique 
identifies patterns by performing spatio temporal 
feature selection to find minimal signatures that 
are both distinctive and discriminative. Although 
initially developed for lip reading as binary classi-
fiers, in (Ong et al. 2012) we developed a multiclass 
approach, sequential pattern trees which provides 
excellent state-of-the-art performance by combining 
aspects of classical machine learning with efficient 
tree pruning strategies taken from data mining.

In (Cooper and Bowden 2009) we identified signs 
from broadcast footage using the subtitles as weak 
supervision. To achieve this, we used an adapted ver-
sion of the a priori data mining algorithm to identify 
co-occurring motions in the sign stream that corre-
spond to possible repetitions of words in the subti-
tles. The process is weakly supervised as there is no 
guarantee that a sign will be present and the tempo-
ral offset between subtitle and sign is unknown. The 
approach was able to automatically identify signs 
without user intervention or ground truth labelling. 
More recent work attempts to automatically identify 
subunits of sign for training using an iterative forced 
alignment algorithm to transfer the knowledge of a 
user edited open sign dictionary tothe task of anno-
tating a challenging, large vocabulary, multi-signer 
corpus recorded from public TV (Koller et al. 2013).

A priori mining has become an important tool 
in our learning frameworks. Commonly know as 
the shopping basket algorithm its ability to proc-
ess extremely large amounts of data to find co-
occurring symbols directly lends itself  to large 
scale video learning. We have used this algorithm 
to identify subtle social signals in videos of people 
conversing and to identify participant interest in a 
topic from body motion (Okwechime et al. 2011b). 
Rules can also be used in animation (Okwechime et 
al. 2011a). We have also used it to find the relation-
ship between perception and action in the context 
of learning autonomous control in robotics (Ellis 
et al. 2011), but one of our largest applications has 
been in its use in action recognition.

6 ACTION RECOGNITION

A priori is ideally suited to activity/action recogni-
tion as datasets typically provide positive and nega-
tive examples of the action but do not specify when 
or where the important information is located. In 
its native form a priori calculates co-occurrence 
statistics, so we force the algorithm to find items 
that are both frequent and discriminative. This is 
achieved by appending features from positive and 
negative examples with a symbol that delineates its 
source class and then extracting rules that co-occur 
with the positive symbol. Our activity recognition 
approach starts with low level corners in 3 different 
planes: (x, y), (x, t) and (y, t). This makes features 
more dense than normal interest point detectors, a 
single short video can contain millions of features. 
Each corner is encoded relative to its neighbours 
and mining performed to find small spatio-tempo-
ral structures that are both frequent in the posi-
tive example and infrequent in the negative data 
i.e. discriminative. The processis repeated hierar-
chically using the features from the last stage in a 
wider encoding. As the spatiotemporal structures 
become more complex, they become more accurate 
in both classification and localisation and because 
they are based on collections of simple corners, 
they are extremely quick to compute, see (Gilbert 
et al. 2008), (Gilbert et al. 2009) and (Gilbert et al. 
2011).

While action recognition in the wild, involving 
broadcast footage, has become prevalent in the 
literature, recognition is still performed in 2D. 
However, there is a growing source of 3D foot-
age available and our recent dataset Hollywood3D 
(Hadfield and Bowden 2013) provides an action 
recognition dataset taken from Hollywood films 
but with dense stereo depth available. This addi-
tional 3D information can be incorporated in clas-
sification to improve classification performance. 
Our current work is to apply our Scene Particles 
algorithm (Hadfield and Bowden Nov) to this 
dataset. Scene Particles allows the efficient compu-
tation of Scene Flow, the 3D motion field, which 
will provide richer 3D features for classification 
and scene understanding.
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On the strain–line patterns in a real human left ventricle
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ABSTRACT: We present and discuss a method to infer non invasively information on the fiber archi-
tecture in real LV walls. The method post–processes the echocardiographic data acquired by three–di-
mensional Speckle Tracking Echocardiography (3DSTE) through a MatLab–based protocol, already 
presented, discussed and validated in [5]. Our results reveals the difference between the role of endocardial 
and epicardial principal strain lines, at the systolic peak, and set the bases for possible future investiga-
tions aimed to analyze the onset of specific cardiac diseases through noninvasive analysis of LV fiber 
architecture.

given that only the endocardial surface is subjected 
to high blood pressures, the roles of the endocar-
dial and epicardial fibers may differ.

The present paper wishes to make some progress 
towards improving the ability to obtain informa-
tion on the fiber architecture within the heart walls 
thanks to the detection of the PSL. Now that full-
volume images of the heart walls can be obtained 
by high-resolution 3-dimensional Real Time 
(3DRT) speckle tracking-based motion-detecting 
echocardiography (STE) (in short, 3DSTE), many 
of the shortcomings of 2D echocardiography (as 
opposed to NMRI) can be overcome, to the extent 
that myocardium strains may be investigated non-
invasively with high accuracy [1,2,3]. The same 
issue was treated in [4]. However, the approach 
followed therein for determining the strain ten-
sor once 3DSTE data were acquired is much dif-
ferent; moreover, the analysis in [4] was limited to 
the endocardial surface, as the echocardiographic 
data relative to the epicardium were evaluated not 
adequate.

The analysis we propose is based on echocar-
diographic data acquired by an Aplio–Artida 
ultrasound system (Toshiba Medical Systems Co, 
Tochigi, Japan) in our University Hospital Depart-
ment (Sapienza—Università di Roma), as shortly 
described in Section2. The 3DSTE data were post–
processed, using a MatLab–based protocol which 
was presented, discussed and validated in [5]. The 
protocol allows for extracting from 3DSTE data 
the surface strain tensor on the endocardial and 
epicardial surface, in correspondence of the points 
tracked by the Artida system during a cardiac 
cycle; it is summed up in the Section 3. The results 

1 INTRODUCTION

In structural mechanics, the stresses and strains 
within a body are limited above and below by their 
principal counterparts; this allows for the discus-
sion and verification of the mechanical state of 
that body. Moreover, the principal stress and strain 
lines (which are the same only when special sym-
metry conditions are verified) determine the direc-
tions where the largest strains and/or stresses are 
to be expected. Due to these characteristics, the 
mechanics of fiber–reinforced bodies are often 
based on the detection of the principal strain lines 
and, wherever needed, fiber architecture is con-
ceived in order to make the fiber lines coincide 
with the principal strain lines (PSL). Fibers make 
a tissue highly anisotropic; hence, principal strain 
and stress lines may be distinct. Whereas principal 
strains can be measured starting with the analy-
sis of tissue motion, being only dependent on the 
three–dimensional strain state of the tissue, prin-
cipal stresses can only be inferred. Thus, the PSL 
have a predominant role where the analysis of the 
mechanics of a body is concerned. Where cardiac 
tissues are concerned, it is worth noting that mus-
cle fibers function as uniaxial actuators that drive 
tissue contraction (while collagen fibers act as the 
passive reinforcement of the myocardial tissue) and 
that it is often assumed that they share the same 
direction. Hence, it can be expected that, during 
the systolic phase, strains will mainly be suffered 
by highly-contracting muscle fibers and, in this 
case, PSL may very well agree with muscle fiber 
lines. Outside of this time range, the identification 
of strain lines is not straightforward. In addition, 
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of the analysis consists in information on the fiber 
architecture on the endocardial and epicardial sur-
faces which, as it is well-known, can’t be acquired 
by noninvasive, even if  accurate, methods such as 
3DSTE. Our results are illustrated with reference to 
a representative element of the group of volunteers 
invited to participate to the data acquisitionproc-
ess. We applied our protocol to compute strains in 
the real LV by using those raw data acquired by 
3DSTE on 11 individuals, and infer the real fiber 
lines from eigen-analysis, assuming that during the 
systolic phase, PSL may very well agree with muscle 
fiber lines. In particular, the same representative ele-
ment was the object of a successful computational 
analysis presented in [6] based on the elaboration 
of a finite element model of the corresponding 
real LV which matched the spatial-averaged values 
ofstrains detected by 3DSTE. In the model, fiber 
architecture is a datum of the experiments, strain 
field is among the results of the experiments, and 
eigen-analysis of strain yields strain lines. Hence, 
we conclude the paper with a comparison of the 
PSL detected through our protocol applied on real 
data and the data on fiber architecture actually 
used in the corresponding model.

2 3DSTE

Speckle tracking echocardiography (STE) is an 
application of pattern-matching technology to 
ultrasound cine data and is based on the tracking 
of the ‘speckles’ in a 2D plane or in a 3D volume 
(2DSTE and 3DSTE, respectively). Speckles are 
disturbances in ultrasounds caused by reflections 
in the ultrasound beam: each structure in the body 
has a unique speckle pattern that moves with tissue 
(Figure 1, left panel).

A square or cubic template image is created using 
a local myocardial region in the starting frame of 
the image data. The size of the template image is 

around 1 cm2 in 2D or 1 cm3 in 3D. In the succes-
sive frame, the algorithm identifies the localspeckle 
pattern that most closely matches the template [?]. 
A displacement vector is created using the location 
of the template and the matching image in the sub-
sequent frame. Multiple templates can be used to 
observe displacements of the entire myocardium. 
By using hundreds of these samples in a single 
image, it is possible to provide regional informa-
tion on the displacement of the LV walls, and thus, 
other parameters such as strain, rotation, twist 
and torsion can be derived. When the LV shape 
has been approved, 16 segments are automatically 
identified, according to the American Heart Asso-
ciation standards for myocardial segmentation 
[7]; in particular, we have: 6 basal segments (basal 
anterior (BA), basal antero–septum (BAS), basal 
infero–septum (BS), basal inferior (BI), basal pos-
terior (BP), basal lateral (BL)); 6 middle segments 
(middle anterior (MA), middle antero–septum 
(MAS), middle infero–septum (MS), middle infe-
rior (MI), middle posterior (MP), middle lateral 
(ML)); 4 apical segments (apical anterior (AA), 
apical septal (AS), apical inferior (AI), apical lat-
eral (AL)). Typically, the results of the 3D-wall 
motion analysis are presented to the user as aver-
aged values for each segment in each frame of the 
cardiac cycle generating time-curves graphs, as 
the ones shown in figure 2, with reference to the 
3DSTE analysis used to verify the quality of the 
procedure we proposed.

As the aim of the present work is to analyze 
the primary and secondary strain–line patterns 
in the LV walls, data from 3DSTE (Dycom files) 
are played through MatLab, as prescribed by the 
protocol of measurement proposed and tested in 
[5], and shortly summed up in the next section. 

Figure 1. Speckles moving with tissue as viewed through 
STE (left); the apical four chamber view (A); the second 
apical view orthogonal to plane A (B); three short-axis 
planes (C), in the apical region (C1), in the mid-ventri-
cle (C2), and at the basal portion of the LV (C3) (right) 
(unmodified from the original ARTIDA image).

Figure 2. Mean values of the circumferential strain on 
the six middle segments versus time (thin lines), and the 
mean value on the medium part of the LV (thick blue 
line).
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3DSTE data were based on the acquisition made 
on a group of volunteers, who were randomly 
selected from the local list of employees at a single 
University Hospital Department. They were solic-
ited for participation which was agreed by 95% of 
invited individuals. Individuals were subjectively 
healthy without a history of hypertension or car-
diac disease and were not taking medications. They 
all had normal ECG and blood pressure below 
140/90 mmHg.

Echocardiographic examinations were per-
formed with an Aplio–Artida ultrasound system 
(Toshiba Medical Systems Co, Tochigi, Japan). 
Full-volume ECG-gated 3D data sets were acquired 
from apical positions using a 1–4 MHz 3D matrix 
array transducer to visualize the entire LV in a vol-
umetric image. To obtain these 3D data sets, four or 
six sectors were scanned from consecutive cardiac 
cycles and combined to provide a larger pyramidal 
volume covering the entire LV (see [8]).

3 STRAIN ANALYSIS

Starting from 3DSTE data on walls’s motion and 
using the protocol proposed and verified in [5], 
the surface strain tensor C on the LV epicardium 
and endocardium can be evaluated. Precisely, C is 
evaluated in correspondence of the specific points 
corresponding to the markers automatically set 
by the software supporting 3DSTE, at each time 
along the cardiac cycle. Typically, 3DSTE systems 
adopt a discretization of the LV through 36 planes 
taken perpendicular to the longitudinal axis of the 
LV; each plane is then divided into 10 parts, hence 

identifying other 36 points on both the endocardial 
and the epicardial surface (see figure 3).

Hence, the real LV is identified by a cloud of 
36 × 36 × 2 + 1 points (called markers pi) whose 
motion is followed along the cardiac cycle: the 
position of each of the (36 × 36) × 2 points pi 
(i = 1,36 × 36 × 2)) is registered by the device at each 
time frame j of  the cardiac cycle, and represented 
through the set of its Cartesian coordinates. These 
coordinates refer to a system represented by the i3 
axis defined by the longitudinal LV axis and the 
(i1, i2) axes on the orthogonal planes. The clouds of 
markers are intrinsically ordered. Figure 4 shows 
the endocardial cloud Sendo of  points correspond-
ing to our representative individual within the sam-
ple survey. To each point P ∈ Sendo (Sepi), identified 
within the intrinsic reference system by the pairs 
of 3DSTE coordinates z and φ, corresponds a set 
of n positions within the Cartesian coordinate 
system, where n is the number of equally spaced 
frames registered by the device along the cardiac 
cycle. Moreover, let Pz ∈ Sepi Pφ ∈ Sepi and  be the 
points close to the point P in the 3DSTE topology, 
i.e. identified within the intrinsic reference system 
by the pair (z + hz, φ) and (z, φ + hφ) of 3DSTE 
coordinates, where hz = H(LV)/36, hφ = 2π/10, and 
H(LV) the height of the LV model. The vectors 
Pz − P and Pφ − P span a non-orthonormal covari-
ant basis (a1, a2) which corresponds to the 3DSTE 
coordinate system. The corresponding controvari-
ant basis (a1, a2) can be easily evaluated.

Let p, pz, and pφ denote the positions occupied 
by the points P, Pz, and Pφ respectively at the frame 
j; they define the covariant basis 1�a = p p−z  and 

2�a = ( )−φ .

Figure 3. The markers automatically set by the software supporting 3DSTE are shown as small yellow points on both 
three planes taken perpendicularly to the LV axis (left panel) and on two vertical sections (right panel). In particular, 
in the figure the color code corresponds to the torsional rotation of the LV at the beginning of the cardiac cycle (as 
evidenced by the small bar at the right bottom corner of the figure).
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Both aα and α�a  are known in terms of their 
Cartesian coordinates. Thus, the following holds:

1�a i= ,λ λi φλiλλ i i ij jλ2�i =2i a φλλi i2 λ2( j ( )j  (3.1)

where j refers to the frame along the cardiac cycle;

a i1 ,λ λi ai ai ai a φλi i i2 λ2a i  (3.2)

where λ λφ φλ λλ λi iλ λλ ( )  and λ λiλλλλ iλ zλ ( ).

At each point, the nonlinear strain tensor C can 
be evaluated through its components

C F Fβδ β
α

δ
γ

α γ α βF Fβ
α , αα = , ,( )a aα γa⋅a 1 2,

 
(3.3)

with

F Fa a a aβ β
α

β
αFa = ⋅aβ .�  

(3.4)

The eigenvalue analysis on C reveals a plane 
strain state, thus delivering the expected results 
concerning the primary and secondary strain lines. 
The corresponding eigenvalue–eigenvector pairs 
are denoted as ( )αγ , where α = 2,3.

4 RESULTS AND DISCUSSION

The aim of the strain analysis is the detection of 
the PSL on the endocardial and epicardial surface 
during the systolic phase, when strains are mainly 
suffered by highly contracting muscle fibers. 
Hence, it can be expected that in this phase PSL 
may verywell agree with muscle fiber lines. This 
basic assumption was also shared by other Authors 
[4] who recently implemented the same analysis we 
are here proposing. Unlike [4], we can verify this 
assumption thanks to the computational analysis 
previously developed [6]. Interestingly, our results 
show a basic difference with respect to the conclu-
sions resolved in [4], concerning the very different 
role of PSL on the endocardium and on the epicar-
dium, as we discuss in this section.

Figure 4. Cloud of 1296 points automatically identified 
by the software on the endocardial surface, so as ren-
dered by MatLab.

Figure 5. PSL on the endocardial (left panel) and epicardial (right panel) surface; muscle architecture in the finite 
element model of the LV (in the center of the figure). Note orientation correspondence between epicardial muscle 
architecture and epicardial PSL.
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The first result we aim to present deals with the 
evaluation of the epicardial and endocardial PSL 
at a time identified with the systolic peak time, 
in the finite element model of our representative 
real LV. The systolic peak time is identified with 
the one corresponding to the highest blood pres-
sure and muscle contraction. Of course, within the 
computational model both the strain tensor field C 
and the corresponding PSL can be easily evaluated: 
the first is among the results of the computational 
analysis, whereas the PSL can be derived through 
a simple eigen–analysis performed on the values 
attained by the strain tensor field C. However, this 
is ignored and the tensor field C is evaluated ab ini-
tio, following the protocol presentedin [5] with Sendo 
(Sepi) identified with the set of nodes defined by the 
discretization of the endocardial surface.

Actually, figure 5 shows the principal strain lines, 
represented through small green line elements, on 
the endocardial (left) and epicardial (right) sur-
face when the finite element model is analyzed. 
The central panel shows the fiber architecture of 
the model: denoted by β the angle between a fiber 
and the circumferential direction, it was assumed 
that β = −60 on the epicardial surface ∂Bepi (fibers 
spiraling counterclockwise toward the base), and 
β = 60° on the endocardial surface ∂Bendo (fibers spi-
raling clockwise). What the analysis shows is that, 
whereas the epicardial PSL actually agree with the 
muscle fibers, on the endocardial surface the PSL 
are circumferential, hence do not revealing any-
thing about the endocardial fiber architecture. Our 
conjecture, if  verified by the analysis on the real 
LV, is that at the systolic peak time the endocardial 
surface is suffering high pressures, and the PSL 
are circumferential, due to the relevant stiffening 
effect of the circumferential material lines when 
high pressures are involved and to their capacity 

to contrast the dilation of the left ventricle. On the 
contrary, the epicardial surface is almost traction 
free, and there the PSL actually identify the highly 
contracted muscle fiber lines.

When the same analysis is developed on the 
3DSTE data acquired on the corresponding real 
LV, the results confirm our conclusions. Indeed, 
aside from specific parts of the endocardial sur-
face where the strain analysis is complex due to 
the interaction of the LV with stiffer structures, 
the analysis shows PSL almost circumferential. 
The pattern of the PSL on the epicardium is less 
homogeneous, even if  a regular structure of these 
PSL can be inferred in the middle part of the LV. 
Figure 6 shows these last results.

It is evident that the strains at the basal part of 
the LV have a complex pattern both on the endo-
cardial and epicardial surface, due to the presence 
of the stiffer mitral annulus. Moreover, it has to be 
considered also the effects of the inter ventricular 
septum which alters the strain pattern on both the 
surfaces. However, in our opinion at least two main 
conclusions can be drawn, based on our results. 
The first is that epicardial surface more then 
endocardial surface has to be taken into account 
if  3DSTE data may provide information on myo-
cardial fiber architecture, even if  the meaningful 
part of the epicardial surface is limited enough. 
The second conclusion is that the role of PSL on 
the endocardial surface is completely different, as 
they identify the lines which stiffen the LV when 
high pressures are involved. This last result can be 
extremely important, if  confirmed when cardiac 
diseases characterized by a significative loss of the 
stiffening capacity of the LV walls are present. In 
this case, the circumferential lines could lose their 
role and this circumstance could be revealed by the 
analysis of endocardial PSL.

Figure 6. From left to right: PSL on the endocardial surface of the finite element model and of the real LV, respec-
tively; PSL on the epicardial surface of the finite element model and of the real LV, respectively.
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5 CONCLUSIONS

It was presented a novel 3DSTE-based analysis 
aimed at obtaining insight on patterns directly 
related to transmural fiber structure; moreover, 
it allows for obtaining non invasively from a real 
human LV in vigil subjects crucial anatomo-physi-
ological information obtained non invasively from 
a real human LV in vigil subjects. This is a prereq-
uisite to decipher potential abnormalities in patho-
physiological situations.
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MR-T2-weighted signal intensity: A new imaging marker of prostate 
cancer aggressiveness
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ABSTRACT: Prostate Cancer (PCa) is the most common solid neoplasm in males and a major cause 
of cancer-related death. Behavior of PCa is dichotomous, as patients may either have an indolent clini-
cal course or rapidly progress towards metastatic disease. Unfortunately, biopsy Gleason score (GS) may 
fail to predict cancer aggressiveness; tumour heterogeneity and inaccurate sampling during biopsy are 
major causes of underestimation. As a consequence, this frequently results in overtreatment, i.e. low risk 
patients that overcautiously undergo radical prostatectomy or radiotherapy, frequently with devastating 
side effects. Some patients with PCa could be offered a more conservative approach if  it were possible 
to predict patient risk confidently, especially insubject lying in the gray zone of intermediate risk (i.e. 
GS = 7), which are the majority. Recent studies have demonstrated that Magnetic Resonance Imaging 
(MRI) may help improving risk stratification in patients with PCa, providing imaging markers of cancer 
aggressiveness. The aim of this study is to implement an automatic algorithm pipeline to discriminate dif-
ferent risks of progression from T2-weighted (T2w) MRI. The obtained results confirm that T2w signal 
intensity, together with other imaging markers, may represent a new non-invasive approach to assess 
cancer aggressiveness, potentially helping to plan personalized treatments, and thus dramatically limiting 
overdiagnosis and overtreatment risks, and reducing the costs for the National Healthcare System.

used to determine the choice of therapy and prog-
nosis (Hoeks et al. 2011). In particular, localized 
PCa can be stratified into three groups (Barentsz et 
al. 2012) based on the likelihood of tumour spread 
and recurrence: low-risk: PSA < 10 ng/mL, and 
biopsy GS < 7; intermediate-risk: PSA 10–20 ng/
mL, or biopsy GS = 7; high-risk: PSA > 20 ng/
mL, or GS > 7. While low-risk patients can benefit 
from a wait-and-see or a minimally invasive strat-
egy, and radical prostatectomy (RP) or radiother-
apy are recommended for high risk patients with 
localized disease, the therapeutic management of 
intermediate-risk patients is much more complex 
as it may suffer from therapeutic nihilism or over-
treatment risks. This results in a compelling clinical 
need to distinguish, among intermediate-risk PCa 
(which are the majority of biopsy proven PCa), the 
ones for which minimal or no treatment represents 
a viable option, from those needing radical treat-
ment. Moreover, although Gleason grading has 
good intraobserver and interobserver reliability, 
the concordance between the GS provided by the 
biopsy and the pathological GS (pGS) provided by 
the prostatectomy is 45% in contemporary series. 
These differences are attributed to multifocality 

1 INTRODUCTION

In Europe, prostate cancer (PCa) is the most com-
mon solid neoplasm, with an incidence rate of 
214 cases per 1000 men, outnumbering lung and 
colorectal cancer. PCa affects elderly men more 
often and therefore is a bigger health concern in 
developed countries (Heidenreich et al. 2011). PCa 
diagnostics are initiated on the basis of prostate-
specific antigen (PSA) measurements and determi-
nation of clinical stage by means of digital rectal 
examination (DRE). Definite diagnosis is usually 
obtained by means of transrectal ultrasonography 
(TRUS)-guided systematic random prostate biop-
sies. Histopathologic analysis of these biopsy sam-
ples provides the clinician with information on the 
Gleason score (GS), a histopathologic score that 
correlates with biologic activity and aggressiveness. 
According to current international convention, the 
GS of cancers detected in a prostate biopsy con-
sists of the Gleason grade of the dominant (most 
extensive) carcinoma component plus the highest 
grade among the remaining patterns, regardless of 
its extent. Nomograms based on the combination 
of PSA level, DRE findings, and biopsy GS are 
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and heterogeneity of PCa. For this reason, Partin 
tables and risk stratification schemes that incorpo-
rate information from biopsy-determined Gleason 
grades into decision making are rendered less accu-
rate and less reliable. There is a definite need for 
a method with which to improve the accuracy in 
determining the risk of progression before treat-
ment (Hambrock et al. 2011). Currently, if  clinical 
suspicion for PCa persists in spite of negative pros-
tate biopsies, a patient may undergoes Magnetic 
Resonance Imaging (MRI) examination, using a 
multiparametric (mp) approach, which combines 
anatomical and functional data. A second biopsy 
is then performed exploiting the information on 
tumour localization provided by the mp-MRI. 
The advent of mp-MRI suggests an increased role 
for imaging also in risk stratification and treat-
ment planning (Turkbey et al. 2009). Specifically, 
recentstudies have shown that quantitative MRI 
metrics may serve as non-invasive biomarkers of 
tumor aggressiveness, with the potential to com-
plement biopsy and PSA findings in guiding man-
agement (Hambrock et al. 2011, Rosenkrantz et 
al. 2012). However, these preliminary results have 
been assessed using TRUS biopsy as reference 
standard, which is known to result in undergrad-
ing in a fraction of tumors in comparison with 
prostatectomy (Rosenkrantz et al. 2012). Consid-
ering T2-weighted (T2w) images, it is well know 
that PCa usually shows a lower signal intensity (SI) 
than non-neoplastic prostatic tissue, while only one 
study investigated retrospectively whether the SI of 
PCa correlates with the Gleason grade at whole-
mount step-section pathologic evaluation after RP 
(Wang et al. 2008). The purpose of this study is to 
differentiate PCa aggressiveness from T2w MRI 
in a dataset including also intermediate-risk PCa, 
exploiting an algorithm pipeline completely auto-
matic and therefore easily integrable in Computer 
Aided Diagnosis (CAD) systems and in the clinical 
routine practices.

2 MATERIALS AND METHODS

2.1 Data

The study dataset comprises 31 men (64 y, mean 
age) with a PSA level between 4.1–10.0 ng/ml, and 
all with PCa diagnosis at TRUS guided biopsy. 
All patients underwent mp-MRI at 1.5T using 
an endorectal coil with integrated pelvic phased 
multi-coil array (Signa LX, GE Healthcare, Mil-
waukee, WI). In particular, a conventional axial 
T2w sequence was obtained using the following 
protocol: TR/TE, 2960/85 ms; FOV, 16 cm; slice 
thickness, 3 mm; acquisition matrix, 384 × 288; 
reconstruction matrix, 512 × 512. After the T2w 
series, Diffusion-Weighted and Dynamic Con-

trast-Enhanced sequences were performed. Within 
3 months of MRI all patients underwent RP. Each 
prostate was cut into axial sections of the same 
thickness and orientation as the axial MR images 
and pGS was derived. Foci of cancer were con-
toured on each slide with ink by the pathologist 
and the histological samples were digitalized. A 
radiologist, with more than 5 years of experience in 
interpreting prostate MRI, compared the acquired 
sequences with histopathologic sections and out-
lined a ROI on the T2w images in correspondence 
of each foci marked on the prostate specimen by 
the pathologist. The dataset includes a total of 31 
tumours with size greater than 0.5 cc (mean tumor 
volume: 3.3 cc), with the following pGS: 9 tumours 
with pGS 3 + 3, 11 with pGS 3 + 4, 5 with pGS 
4 + 3, and 6 with pGS 4 + 4.

2.2 Data processing

Image inhomogeneities were corrected by applying 
in-house developed software packages based on 
C++ algorithms and ITK libraries. To correct the 
coil-induced deformation field, the T2w image was 
divided by the T2w image obtained on a homog-
enous phantom, while the homomorphic unsharp 
masking (HUM, Axel et al. 1987) was performed 
to correct patient-induced inhomogeneities. The 
HUM consisted of a median image filter with ker-
nel [11 × 11 × 5] applied on a downsampled T2w 
image (spatial resolution, 1.26 × 1.26 × 3 mm), 
in order to reduce the computational time. The 
median filter was preferred to the mean image filter 
to better preserve edges between anatomical struc-
tures. To normalize the corrected T2w image, a seg-
mentation algorithm to automatically extract the 
obturator muscle (OM) was developed. From the 
central 2D image of the T2w volume, the coil was 
segmented by a Hough transformation, and two 
lines were created starting from the upper board 
of the segmented coil, one horizontal and the other 
forming an angle of 35 degrees with the first line 
(figure 2.2). Using these two lines, it was possible to 
crop the original T2w 2D image, obtaining a small 
image that contains the OM and few other struc-
tures. On the cropped image, the k-means algorithm 
was applied to extract two different classes, the OM 
and the background. The T2w volume was finally 
normalized by dividing each voxel by the median 
value automatically computed on the OM.

2.3 Statistical analysis

The effect of the image correction was assessed by 
computing the median value of the right and left 
OM before and after the correction and differ-
ences between the two sides were evaluated. The 
two-tailed t-test was used to compute the p-values 
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