
Faster and smaller hardware, larger and cheaper Internet bandwidth, and abundant and near-free
software: these are some of the powerful trends in computing technologies that have emerged
over the past few decades, paving the way for enormous volumes of data being generated at
rapidly increasing speeds and quantities.

Since the latest innovations in programming today are “all about the data”—be it data science,
data analytics, big data, or databases—the authors have seamlessly integrated data science into
computer science topics to create a book that reaches several audiences in the field, their choice of
programming language being Python. Python is an excellent first programming language to learn for
beginners, but, because of its expressive power, readability, conciseness, and interactivity, it is equally
appropriate for professional programmers.

Key Features

• All the code in the book uses the IPython interpreter, which provides a friendly, immediate-
feedback, interactive mode for quickly exploring, discovering, and experimenting with Python
and its extensive libraries.

• The book uses Jupyter Notebooks to help meet the reproducibility recommendations of data
science undergraduate curricula. Jupyter Notebooks, part of a free, open-source project, enable
authors to combine text, graphics, audio, video, and interactive coding functionality for entering,
editing, executing, debugging, and modifying code quickly and conveniently in a web browser.

• Data science topics like machine learning, deep learning, and cognitive computing covered in the
later chapters see AI, big data, and cloud computing woven into them through case studies
that present opportunities to use real-world datasets.

• Privacy, security, and ethical challenges arising from AI and big data are discussed
throughout the book from a Python-specific point of view, with practical and relevant examples.

• Over 1500 examples, exercises, and projects drawn from computer science, data science,
and other fields provide an engaging introduction to Python programming. Students can attack
exciting challenges with AI, big data, and cloud technologies like IBM Watson, Hadoop, Spark, or
MapReduce.

This is a special edition of an established title widely used by
colleges and universities throughout the world. Pearson published
this exclusive edition for the benefit of students outside the
United States and Canada. If you purchased this book within the
United States or Canada, you should be aware that it has been
imported without the approval of the Publisher or Author.

Intro to Python
®

for Com
puter Science and D

ata Science
D

eitel • D
eitel

G
L

O
B

A
L

ED
IT

IO
N

GLOBAL
EDITION

GLOBAL
EDITION

Intro to Python®

for Computer Science and Data Science
Paul Deitel • Harvey Deitel

Learning to Program with AI, Big Data and the Cloud

CVR_DEIT4902_01_GE_CVR_Vivar.indd 1 29/07/21 9:50 AM

Digital Resources for Students

Your eBook provides 12-month access to digital resources that may include VideoNotes
(step-by-step video tutorials on programming concepts), source code, and more. Refer to
the preface in the textbook for a detailed list of resources.

Follow the instructions below to register for the Companion Website for Paul and Harvey
Deitel’s Intro to Python®: for Computer Science and Data Science, Global Edition.

 1. Go to www.pearsonglobaleditions.com.
 2. Enter the title of your textbook or browse by author name.
 3. Click Companion Website.
 4. Click Register and follow the on-screen instructions to create a login name

and password.

IMPORTANT:
This access code can only be used once. This subscription is valid for 12 months upon
activation and is not transferable.

For technical support, go to https://support.pearson.com/getsupport.

Use the login name and password you created during registration to start using the
online resources that accompany your textbook.

ISSPCD-WAHOO-DIARY-KALPA-FRACK-OOSSE

CVR_DEIT4902_01_GE_CVR_eBook.indd 1 08/06/21 10:01 AM

https://support.pearson.com/getsupport
http://www.pearsonglobaleditions.com

_ _ _ _ g y, y ,

D
S

14
. I

B
M

 W
at

so
n®

 a
nd

C

og
ni

ti
ve

 C
om

pu
ti

ng

D
S

In
tr

o:
 T

im
e

Se
rie

s
an

d
Si

m
pl

e
Li

ne
ar

 R
eg

re
ss

io
n

D
S

16
. D

ee
p

Le
ar

ni
ng

C
on

vo
lu

tio
na

l a
nd

 R
ec

ur
re

nt

N
eu

ra
l N

et
w

or
ks

; R
ei

nf
or

ce
m

en
t

Le
ar

ni
ng

 in
 th

e
Ex

er
ci

se
s

C
S

an
d

D
S

O
th

er
 T

op
ic

s
B

lo
g

C
S

11
. C

om
pu

te
r

Sc
ie

nc
e

T
hi

nk
in

g:
 R

ec
ur

si
on

,
Se

ar
ch

in
g,

 S
or

ti
ng

 a
nd

 B
ig

 O

D
S

15
. M

ac
hi

ne
 L

ea
rn

in
g:

C

la
ss

if
ic

at
io

n,
 R

eg
re

ss
io

n
an

d
C

lu
st

er
in

g

C
S

10
. O

bj
ec

t-
O

ri
en

te
d

Pr
og

ra
m

m
in

g

D
S

13
. D

at
a

M
in

in
g

T
w

it
te

r®
Se

nt
im

en
t A

na
ly

si
s,

 JS
O

N
 a

nd

W
eb

 S
er

vi
ce

s

C
S

1.
 I

nt
ro

du
ct

io
n

to

C
om

pu
te

rs
 a

nd
 P

yt
ho

n
D

S
12

. N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 (
N

LP
)

W
eb

 S
cr

ap
in

g
in

 th
e

Ex
er

ci
se

s

D
S

17
. B

ig
 D

at
a:

 H
ad

oo
p®

,
Sp

ar
k™

, N
oS

Q
L

an
d

Io
T

C
S

2.
 I

nt
ro

du
ct

io
n

to

Py
th

on
 P

ro
gr

am
m

in
g

D
S

In
tr

o:
 B

as
ic

 D
es

cr
ip

tiv
e

St
at

s

C
S

3.
 C

on
tr

ol
 S

ta
te

m
en

ts
 a

nd

Pr
og

ra
m

 D
ev

el
op

m
en

t

D
S

In
tro

: M
ea

su
re

s
of

 C
en

tra
l

Te
nd

en
cy

—
M

ea
n,

 M
ed

ia
n,

 M
od

e

C
S

4.
 F

un
ct

io
ns

D
S

In
tr

o:
 B

as
ic

 S
ta

tis
tic

s—

M
ea

su
re

s
of

 D
is

pe
rs

io
n

C
S

5.
 L

is
ts

 a
nd

 T
up

le
s

D
S

In
tr

o:
 S

im
ul

at
io

n
an

d
St

at
ic

V
is

ua
liz

at
io

n

C
S

7.
 A

rr
ay

-O
ri

en
te

d
Pr

og
ra

m
m

in
g

w
it

h
N

um
Py

H
ig

h-
Pe

rfo
rm

an
ce

 N
um

Py
 A

rra
ys

D
S

In
tr

o:

Pa
nd

as
 S

er
ie

s
an

d
D

at
aF

ra
m

es

D
S

In
tr

o:
 A

I—
at

 th
e

In
te

rs
ec

tio
n

of
 C

S
an

d
D

S

C
S:

 P
yt

ho
n

Fu
nd

am
en

ta
ls

 Q
ui

ck
st

ar
t

C
S:

 P
yt

ho
n

D
at

a
St

ru
ct

ur
es

,
St

ri
ng

s
an

d
Fi

le
s

C
S:

 P
yt

ho
n

H
ig

h-
En

d
T

op
ic

s
A

I,
 B

ig
 D

at
a

an
d

C
lo

ud

C
as

e
St

ud
ie

s

PA
R

T
 1

PA
R

T
 2

PA
R

T
 3

PA
R

T
 4

1.
Ch

ap
te

rs
 1

–1
1

m
ar

ke
d

CS
 a

re

tra
di

tio
na

l P
yt

ho
n

pr
og

ra
m

m
in

g
an

d
co

m
pu

te
r-s

ci
en

ce
 to

pi
cs

.
2.

Li
gh

t-t
in

te
d

bo
tto

m
 b

ox
es

 in

Ch
ap

te
rs

 1
–1

0
m

ar
ke

d
D

S
In

tro

ar
e

br
ie

f,
fri

en
dl

y
in

tro
du

ct
io

ns

to
 d

at
a-

sc
ie

nc
e

to
pi

cs
.

3.
Ch

ap
te

rs
 1

2–
17

 m
ar

ke
d

D
S

ar
e

Py
th

on
-b

as
ed

, A
I,

bi
g

da
ta

 a
nd

cl

ou
d

ch
ap

te
rs

, e
ac

h
co

nt
ai

ni
ng

se

ve
ra

l f
ul

l-i
m

pl
em

en
ta

tio
n

st
ud

ie
s.

4.

Fu
nc

tio
na

l-s
ty

le
 p

ro
gr

am
m

in
g

is
 in

te
gr

at
ed

 b
oo

k
w

id
e.

5.
Pr

ef
ac

e
ex

pl
ai

ns
 th

e
de

pe
nd

en
-

ci
es

 a
m

on
g

th
e

ch
ap

te
rs

.
6.

V
is

ua
liz

at
io

ns
 th

ro
ug

ho
ut

.

7.
 C

S
co

ur
se

s
m

ay
 c

ov
er

 m
or

e
of

th

e
Py

th
on

 c
ha

pt
er

s
an

d
le

ss

of
 th

e
D

S
co

nt
en

t.
V

ic
e

ve
rs

a
fo

r
D

at
a

Sc
ie

nc
e

co
ur

se
s.

8.
 W

e
pu

t C
ha

pt
er

 5
 in

 P
ar

t 1
. I

t’s

al
so

 a
 n

at
ur

al
 fi

t w
ith

 P
ar

t 2
.

Q
ue

st
io

ns
? d

e
i
t
e
l
@
d
e
i
t
e
l
.
c
o
m

C
S

6.
 D

ic
ti

on
ar

ie
s

an
d

Se
ts

D
S

In
tr

o:
 S

im
ul

at
io

n
an

d
D

yn
am

ic
 V

is
ua

liz
at

io
n

In
tr

o
to

 P
yt

ho
n®

 fo
r

C
om

pu
te

r
Sc

ie
nc

e
an

d
D

at
a

Sc
ie

nc
e

Le
ar

ni
ng

 to
 P

ro
gr

am
 w

ith
 A

I,
Bi

g
D

at
a

an
d

th
e

C
lo

ud
by

 P
au

l D
ei

te
l &

 H
ar

ve
y

D
ei

te
l

C
S

9.
 F

ile
s

an
d

Ex
ce

pt
io

ns

D
S

In
tr

o:
 L

oa
di

ng
 D

at
as

et
s

fro
m

C

SV
 F

ile
s

in
to

 P
an

da
s

D
at

aF
ra

m
es

C
S

8.
 S

tr
in

gs
: A

 D
ee

pe
r

Lo
ok

In
cl

ud
es

 R
eg

ul
ar

 E
xp

re
ss

io
ns

D
S

In
tr

o:
 P

an
da

s,

Re
gu

la
r E

xp
re

ss
io

ns
 a

nd

D
at

a
W

ra
ng

lin
g

mailto:deitel@deitel.com

_ _ _ _ g y, y ,

This page is intentionally left blank

_ _ _ _ g y, y ,

Cover Designer: Straive

Cover Art: ©Yuriy2012/Shutterstock

Pearson Education Limited

KAO Two
KAO Park
Hockham Way
Harlow
CM17 9SR
United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

Please contact https://support.pearson.com/getsupport/s/contactsupport with any queries on this content.

© Pearson Education Limited 2022

The rights of Paul Deitel and Harvey Deitel to be identified as the authors of this work have been asserted by them in accordance with the
Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Intro to Python for Computer Science and Data Science: Learning to Program with
AI, Big Data and The Cloud, ISBN 978-0-13-540467-6 by Paul Deitel and Harvey Deitel published by Pearson Education © 2020.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license
permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street,
London EC1N 8TS. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or
publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or
endorsement of this book by such owners.

Attributions of third-party content appear on the appropriate page within the text.

PEARSON, ALWAYS LEARNING, and MYLAB are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S.
and/or other countries. Deitel and the double-thumbs-up bug are registered trademarks of Deitel and Associates, Inc.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and
any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are
not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson’s products by the owners of such marks, or
any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees, or distributors.

This eBook is a standalone product and may or may not include all assets that were part of the print version. It also does not provide access
to other Pearson digital products like MyLab and Mastering. The publisher reserves the right to remove any material in this eBook at any
time.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN 10: 1-292-36490-4 (print)
ISBN 13: 978-1-292-36490-2 (print)
ISBN 13: 978-1-292-36493-3 (uPDF eBook)

http://www.pearsoned.com/permissions/
https://support.pearson.com/getsupport/s/contactsupport
http://www.pearsonglobaleditions.com

_ _ _ _ g y, y ,

_ _ _ _ g y, y ,

In Memory of Marvin Minsky,
a founding father of
artificial intelligence

It was a privilege to be your student in two
artificial-intelligence graduate courses at M.I.T.
You inspired your students to think beyond limits.

Harvey Deitel

Preface 19

Before You Begin 45

1 Introduction to Computers and Python 49
1.1 Introduction 50
1.2 Hardware and Software 51

1.2.1 Moore’s Law 52
1.2.2 Computer Organization 52

1.3 Data Hierarchy 54
1.4 Machine Languages, Assembly Languages and High-Level Languages 57
1.5 Introduction to Object Technology 58
1.6 Operating Systems 61
1.7 Python 64
1.8 It’s the Libraries! 66

1.8.1 Python Standard Library 66
1.8.2 Data-Science Libraries 66

1.9 Other Popular Programming Languages 68
1.10 Test-Drives: Using IPython and Jupyter Notebooks 69

1.10.1 Using IPython Interactive Mode as a Calculator 69
1.10.2 Executing a Python Program Using the IPython Interpreter 71
1.10.3 Writing and Executing Code in a Jupyter Notebook 72

1.11 Internet and World Wide Web 77
1.11.1 Internet: A Network of Networks 77
1.11.2 World Wide Web: Making the Internet User-Friendly 78
1.11.3 The Cloud 78
1.11.4 Internet of Things 79

1.12 Software Technologies 80
1.13 How Big Is Big Data? 81

1.13.1 Big Data Analytics 86
1.13.2 Data Science and Big Data Are Making a Difference: Use Cases 87

1.14 Case Study—A Big-Data Mobile Application 88
1.15 Intro to Data Science: Artificial Intelligence—at the Intersection of

CS and Data Science 90

Contents

_ _ _ _ g y, y ,

8 Contents

2 Introduction to Python Programming 97
2.1 Introduction 98
2.2 Variables and Assignment Statements 98
2.3 Arithmetic 100
2.4 Function print and an Intro to Single- and Double-Quoted Strings 104
2.5 Triple-Quoted Strings 106
2.6 Getting Input from the User 107
2.7 Decision Making: The if Statement and Comparison Operators 109
2.8 Objects and Dynamic Typing 114
2.9 Intro to Data Science: Basic Descriptive Statistics 116
2.10 Wrap-Up 118

3 Control Statements and Program Development 121
3.1 Introduction 122
3.2 Algorithms 122
3.3 Pseudocode 123
3.4 Control Statements 123
3.5 if Statement 126
3.6 if…else and if…elif…else Statements 128
3.7 while Statement 133
3.8 for Statement 134

3.8.1 Iterables, Lists and Iterators 136
3.8.2 Built-In range Function 136

3.9 Augmented Assignments 137
3.10 Program Development: Sequence-Controlled Repetition 138

3.10.1 Requirements Statement 138
3.10.2 Pseudocode for the Algorithm 138
3.10.3 Coding the Algorithm in Python 139
3.10.4 Introduction to Formatted Strings 140

3.11 Program Development: Sentinel-Controlled Repetition 141
3.12 Program Development: Nested Control Statements 145
3.13 Built-In Function range: A Deeper Look 149
3.14 Using Type Decimal for Monetary Amounts 150
3.15 break and continue Statements 153
3.16 Boolean Operators and, or and not 154
3.17 Intro to Data Science: Measures of Central Tendency—

Mean, Median and Mode 157
3.18 Wrap-Up 159

4 Functions 167
4.1 Introduction 168
4.2 Defining Functions 168
4.3 Functions with Multiple Parameters 171
4.4 Random-Number Generation 173

_ _ _ _ g y, y ,

Contents 9

4.5 Case Study: A Game of Chance 176
4.6 Python Standard Library 179
4.7 math Module Functions 180
4.8 Using IPython Tab Completion for Discovery 181
4.9 Default Parameter Values 183
4.10 Keyword Arguments 184
4.11 Arbitrary Argument Lists 184
4.12 Methods: Functions That Belong to Objects 186
4.13 Scope Rules 186
4.14 import: A Deeper Look 188
4.15 Passing Arguments to Functions: A Deeper Look 190
4.16 Function-Call Stack 193
4.17 Functional-Style Programming 194
4.18 Intro to Data Science: Measures of Dispersion 196
4.19 Wrap-Up 198

5 Sequences: Lists and Tuples 203
5.1 Introduction 204
5.2 Lists 204
5.3 Tuples 209
5.4 Unpacking Sequences 211
5.5 Sequence Slicing 214
5.6 del Statement 217
5.7 Passing Lists to Functions 219
5.8 Sorting Lists 220
5.9 Searching Sequences 222
5.10 Other List Methods 224
5.11 Simulating Stacks with Lists 226
5.12 List Comprehensions 227
5.13 Generator Expressions 229
5.14 Filter, Map and Reduce 230
5.15 Other Sequence Processing Functions 233
5.16 Two-Dimensional Lists 235
5.17 Intro to Data Science: Simulation and Static Visualizations 239

5.17.1 Sample Graphs for 600, 60,000 and 6,000,000 Die Rolls 239
5.17.2 Visualizing Die-Roll Frequencies and Percentages 241

5.18 Wrap-Up 247

6 Dictionaries and Sets 257
6.1 Introduction 258
6.2 Dictionaries 258

6.2.1 Creating a Dictionary 258
6.2.2 Iterating through a Dictionary 260
6.2.3 Basic Dictionary Operations 260

_ _ _ _ g y, y ,

10 Contents

6.2.4 Dictionary Methods keys and values 262
6.2.5 Dictionary Comparisons 264
6.2.6 Example: Dictionary of Student Grades 265
6.2.7 Example: Word Counts 266
6.2.8 Dictionary Method update 268
6.2.9 Dictionary Comprehensions 268

6.3 Sets 269
6.3.1 Comparing Sets 271
6.3.2 Mathematical Set Operations 273
6.3.3 Mutable Set Operators and Methods 274
6.3.4 Set Comprehensions 276

6.4 Intro to Data Science: Dynamic Visualizations 276
6.4.1 How Dynamic Visualization Works 276
6.4.2 Implementing a Dynamic Visualization 279

6.5 Wrap-Up 282

7 Array-Oriented Programming with NumPy 287
7.1 Introduction 288
7.2 Creating arrays from Existing Data 289
7.3 array Attributes 290
7.4 Filling arrays with Specific Values 292
7.5 Creating arrays from Ranges 292
7.6 List vs. array Performance: Introducing %timeit 294
7.7 array Operators 296
7.8 NumPy Calculation Methods 298
7.9 Universal Functions 300
7.10 Indexing and Slicing 302
7.11 Views: Shallow Copies 304
7.12 Deep Copies 306
7.13 Reshaping and Transposing 307
7.14 Intro to Data Science: pandas Series and DataFrames 310

7.14.1 pandas Series 310
7.14.2 DataFrames 315

7.15 Wrap-Up 323

8 Strings: A Deeper Look 331
8.1 Introduction 332
8.2 Formatting Strings 333

8.2.1 Presentation Types 333
8.2.2 Field Widths and Alignment 334
8.2.3 Numeric Formatting 335
8.2.4 String’s format Method 336

8.3 Concatenating and Repeating Strings 337
8.4 Stripping Whitespace from Strings 338

_ _ _ _ g y, y ,

Contents 11

8.5 Changing Character Case 339
8.6 Comparison Operators for Strings 340
8.7 Searching for Substrings 340
8.8 Replacing Substrings 342
8.9 Splitting and Joining Strings 342
8.10 Characters and Character-Testing Methods 345
8.11 Raw Strings 346
8.12 Introduction to Regular Expressions 347

8.12.1 re Module and Function fullmatch 348
8.12.2 Replacing Substrings and Splitting Strings 351
8.12.3 Other Search Functions; Accessing Matches 352

8.13 Intro to Data Science: Pandas, Regular Expressions and Data Munging 355
8.14 Wrap-Up 360

9 Files and Exceptions 367
9.1 Introduction 368
9.2 Files 369
9.3 Text-File Processing 369

9.3.1 Writing to a Text File: Introducing the with Statement 370
9.3.2 Reading Data from a Text File 371

9.4 Updating Text Files 373
9.5 Serialization with JSON 375
9.6 Focus on Security: pickle Serialization and Deserialization 378
9.7 Additional Notes Regarding Files 378
9.8 Handling Exceptions 379

9.8.1 Division by Zero and Invalid Input 380
9.8.2 try Statements 380
9.8.3 Catching Multiple Exceptions in One except Clause 383
9.8.4 What Exceptions Does a Function or Method Raise? 384
9.8.5 What Code Should Be Placed in a try Suite? 384

9.9 finally Clause 384
9.10 Explicitly Raising an Exception 387
9.11 (Optional) Stack Unwinding and Tracebacks 387
9.12 Intro to Data Science: Working with CSV Files 390

9.12.1 Python Standard Library Module csv 390
9.12.2 Reading CSV Files into Pandas DataFrames 392
9.12.3 Reading the Titanic Disaster Dataset 394
9.12.4 Simple Data Analysis with the Titanic Disaster Dataset 395
9.12.5 Passenger Age Histogram 396

9.13 Wrap-Up 397

10 Object-Oriented Programming 403
10.1 Introduction 404
10.2 Custom Class Account 406

_ _ _ _ g y, y ,

12 Contents

10.2.1 Test-Driving Class Account 406
10.2.2 Account Class Definition 408
10.2.3 Composition: Object References as Members of Classes 409

10.3 Controlling Access to Attributes 411
10.4 Properties for Data Access 412

10.4.1 Test-Driving Class Time 412
10.4.2 Class Time Definition 414
10.4.3 Class Time Definition Design Notes 418

10.5 Simulating “Private” Attributes 419
10.6 Case Study: Card Shuffling and Dealing Simulation 421

10.6.1 Test-Driving Classes Card and DeckOfCards 421
10.6.2 Class Card—Introducing Class Attributes 423
10.6.3 Class DeckOfCards 425
10.6.4 Displaying Card Images with Matplotlib 426

10.7 Inheritance: Base Classes and Subclasses 430
10.8 Building an Inheritance Hierarchy; Introducing Polymorphism 432

10.8.1 Base Class CommissionEmployee 432
10.8.2 Subclass SalariedCommissionEmployee 435
10.8.3 Processing CommissionEmployees and

SalariedCommissionEmployees Polymorphically 439
10.8.4 A Note About Object-Based and Object-Oriented Programming 439

10.9 Duck Typing and Polymorphism 440
10.10 Operator Overloading 441

10.10.1 Test-Driving Class Complex 442
10.10.2 Class Complex Definition 443

10.11 Exception Class Hierarchy and Custom Exceptions 445
10.12 Named Tuples 447
10.13 A Brief Intro to Python 3.7’s New Data Classes 448

10.13.1 Creating a Card Data Class 449
10.13.2 Using the Card Data Class 451
10.13.3 Data Class Advantages over Named Tuples 453
10.13.4 Data Class Advantages over Traditional Classes 454

10.14 Unit Testing with Docstrings and doctest 454
10.15 Namespaces and Scopes 459
10.16 Intro to Data Science: Time Series and Simple Linear Regression 462
10.17 Wrap-Up 471

11 Computer Science Thinking: Recursion,
Searching, Sorting and Big O 479

11.1 Introduction 480
11.2 Factorials 481
11.3 Recursive Factorial Example 481
11.4 Recursive Fibonacci Series Example 484
11.5 Recursion vs. Iteration 487
11.6 Searching and Sorting 488

_ _ _ _ g y, y ,

Contents 13

11.7 Linear Search 488
11.8 Efficiency of Algorithms: Big O 490
11.9 Binary Search 492

11.9.1 Binary Search Implementation 493
11.9.2 Big O of the Binary Search 495

11.10 Sorting Algorithms 496
11.11 Selection Sort 496

11.11.1 Selection Sort Implementation 497
11.11.2 Utility Function print_pass 498
11.11.3 Big O of the Selection Sort 499

11.12 Insertion Sort 499
11.12.1 Insertion Sort Implementation 500
11.12.2 Big O of the Insertion Sort 501

11.13 Merge Sort 502
11.13.1 Merge Sort Implementation 502
11.13.2 Big O of the Merge Sort 507

11.14 Big O Summary for This Chapter’s Searching and Sorting Algorithms 507
11.15 Visualizing Algorithms 508

11.15.1 Generator Functions 510
11.15.2 Implementing the Selection Sort Animation 511

11.16 Wrap-Up 516

12 Natural Language Processing (NLP) 525
12.1 Introduction 526
12.2 TextBlob 527

12.2.1 Create a TextBlob 529
12.2.2 Tokenizing Text into Sentences and Words 530
12.2.3 Parts-of-Speech Tagging 530
12.2.4 Extracting Noun Phrases 531
12.2.5 Sentiment Analysis with TextBlob’s Default Sentiment Analyzer 532
12.2.6 Sentiment Analysis with the NaiveBayesAnalyzer 534
12.2.7 Language Detection and Translation 535
12.2.8 Inflection: Pluralization and Singularization 537
12.2.9 Spell Checking and Correction 537
12.2.10 Normalization: Stemming and Lemmatization 538
12.2.11 Word Frequencies 539
12.2.12 Getting Definitions, Synonyms and Antonyms from WordNet 540
12.2.13 Deleting Stop Words 542
12.2.14 n-grams 544

12.3 Visualizing Word Frequencies with Bar Charts and Word Clouds 545
12.3.1 Visualizing Word Frequencies with Pandas 545
12.3.2 Visualizing Word Frequencies with Word Clouds 548

12.4 Readability Assessment with Textatistic 551
12.5 Named Entity Recognition with spaCy 553
12.6 Similarity Detection with spaCy 555

_ _ _ _ g y, y ,

14 Contents

12.7 Other NLP Libraries and Tools 557
12.8 Machine Learning and Deep Learning Natural Language Applications 557
12.9 Natural Language Datasets 558
12.10 Wrap-Up 558

13 Data Mining Twitter 563
13.1 Introduction 564
13.2 Overview of the Twitter APIs 566
13.3 Creating a Twitter Account 567
13.4 Getting Twitter Credentials—Creating an App 568
13.5 What’s in a Tweet? 569
13.6 Tweepy 573
13.7 Authenticating with Twitter Via Tweepy 573
13.8 Getting Information About a Twitter Account 575
13.9 Introduction to Tweepy Cursors: Getting an Account’s

Followers and Friends 577
13.9.1 Determining an Account’s Followers 577
13.9.2 Determining Whom an Account Follows 580
13.9.3 Getting a User’s Recent Tweets 580

13.10 Searching Recent Tweets 582
13.11 Spotting Trends: Twitter Trends API 584

13.11.1 Places with Trending Topics 584
13.11.2 Getting a List of Trending Topics 585
13.11.3 Create a Word Cloud from Trending Topics 587

13.12 Cleaning/Preprocessing Tweets for Analysis 589
13.13 Twitter Streaming API 590

13.13.1 Creating a Subclass of StreamListener 591
13.13.2 Initiating Stream Processing 593

13.14 Tweet Sentiment Analysis 595
13.15 Geocoding and Mapping 599

13.15.1 Getting and Mapping the Tweets 600
13.15.2 Utility Functions in tweetutilities.py 604
13.15.3 Class LocationListener 606

13.16 Ways to Store Tweets 607
13.17 Twitter and Time Series 608
13.18 Wrap-Up 608

14 IBM Watson and Cognitive Computing 613
14.1 Introduction: IBM Watson and Cognitive Computing 614
14.2 IBM Cloud Account and Cloud Console 616
14.3 Watson Services 616
14.4 Additional Services and Tools 620
14.5 Watson Developer Cloud Python SDK 621
14.6 Case Study: Traveler’s Companion Translation App 622

_ _ _ _ g y, y ,

Contents 15

14.6.1 Before You Run the App 623
14.6.2 Test-Driving the App 624
14.6.3 SimpleLanguageTranslator.py Script Walkthrough 625

14.7 Watson Resources 635
14.8 Wrap-Up 637

15 Machine Learning: Classification, Regression
and Clustering 641

15.1 Introduction to Machine Learning 642
15.1.1 Scikit-Learn 643
15.1.2 Types of Machine Learning 644
15.1.3 Datasets Bundled with Scikit-Learn 646
15.1.4 Steps in a Typical Data Science Study 647

15.2 Case Study: Classification with k-Nearest Neighbors and the
Digits Dataset, Part 1 647
15.2.1 k-Nearest Neighbors Algorithm 649
15.2.2 Loading the Dataset 650
15.2.3 Visualizing the Data 654
15.2.4 Splitting the Data for Training and Testing 656
15.2.5 Creating the Model 657
15.2.6 Training the Model 658
15.2.7 Predicting Digit Classes 658

15.3 Case Study: Classification with k-Nearest Neighbors and the
Digits Dataset, Part 2 660
15.3.1 Metrics for Model Accuracy 660
15.3.2 K-Fold Cross-Validation 664
15.3.3 Running Multiple Models to Find the Best One 665
15.3.4 Hyperparameter Tuning 667

15.4 Case Study: Time Series and Simple Linear Regression 668
15.5 Case Study: Multiple Linear Regression with the California

Housing Dataset 673
15.5.1 Loading the Dataset 674
15.5.2 Exploring the Data with Pandas 676
15.5.3 Visualizing the Features 678
15.5.4 Splitting the Data for Training and Testing 682
15.5.5 Training the Model 682
15.5.6 Testing the Model 683
15.5.7 Visualizing the Expected vs. Predicted Prices 684
15.5.8 Regression Model Metrics 685
15.5.9 Choosing the Best Model 686

15.6 Case Study: Unsupervised Machine Learning, Part 1—
Dimensionality Reduction 687

15.7 Case Study: Unsupervised Machine Learning, Part 2—
k-Means Clustering 690
15.7.1 Loading the Iris Dataset 692

_ _ _ _ g y, y ,

16 Contents

15.7.2 Exploring the Iris Dataset: Descriptive Statistics with Pandas 694
15.7.3 Visualizing the Dataset with a Seaborn pairplot 695
15.7.4 Using a KMeans Estimator 698
15.7.5 Dimensionality Reduction with Principal Component Analysis 700
15.7.6 Choosing the Best Clustering Estimator 703

15.8 Wrap-Up 704

16 Deep Learning 713
16.1 Introduction 714

16.1.1 Deep Learning Applications 716
16.1.2 Deep Learning Demos 717
16.1.3 Keras Resources 717

16.2 Keras Built-In Datasets 717
16.3 Custom Anaconda Environments 718
16.4 Neural Networks 720
16.5 Tensors 722
16.6 Convolutional Neural Networks for Vision; Multi-Classification

with the MNIST Dataset 724
16.6.1 Loading the MNIST Dataset 725
16.6.2 Data Exploration 726
16.6.3 Data Preparation 728
16.6.4 Creating the Neural Network 730
16.6.5 Training and Evaluating the Model 739
16.6.6 Saving and Loading a Model 744

16.7 Visualizing Neural Network Training with TensorBoard 745
16.8 ConvnetJS: Browser-Based Deep-Learning Training and Visualization 748
16.9 Recurrent Neural Networks for Sequences; Sentiment Analysis

with the IMDb Dataset 749
16.9.1 Loading the IMDb Movie Reviews Dataset 750
16.9.2 Data Exploration 751
16.9.3 Data Preparation 753
16.9.4 Creating the Neural Network 754
16.9.5 Training and Evaluating the Model 757

16.10 Tuning Deep Learning Models 758
16.11 Convnet Models Pretrained on ImageNet 759
16.12 Reinforcement Learning 760

16.12.1 Deep Q-Learning 761
16.12.2 OpenAI Gym 761

16.13 Wrap-Up 762

17 Big Data: Hadoop, Spark, NoSQL and IoT 771
17.1 Introduction 772
17.2 Relational Databases and Structured Query Language (SQL) 776

17.2.1 A books Database 778

_ _ _ _ g y, y ,

Contents 17

17.2.2 SELECT Queries 782
17.2.3 WHERE Clause 782
17.2.4 ORDER BY Clause 784
17.2.5 Merging Data from Multiple Tables: INNER JOIN 785
17.2.6 INSERT INTO Statement 786
17.2.7 UPDATE Statement 787
17.2.8 DELETE FROM Statement 787

17.3 NoSQL and NewSQL Big-Data Databases: A Brief Tour 789
17.3.1 NoSQL Key–Value Databases 789
17.3.2 NoSQL Document Databases 790
17.3.3 NoSQL Columnar Databases 790
17.3.4 NoSQL Graph Databases 791
17.3.5 NewSQL Databases 791

17.4 Case Study: A MongoDB JSON Document Database 792
17.4.1 Creating the MongoDB Atlas Cluster 793
17.4.2 Streaming Tweets into MongoDB 794

17.5 Hadoop 803
17.5.1 Hadoop Overview 803
17.5.2 Summarizing Word Lengths in Romeo and Juliet via MapReduce 806
17.5.3 Creating an Apache Hadoop Cluster in Microsoft

Azure HDInsight 806
17.5.4 Hadoop Streaming 808
17.5.5 Implementing the Mapper 808
17.5.6 Implementing the Reducer 809
17.5.7 Preparing to Run the MapReduce Example 810
17.5.8 Running the MapReduce Job 811

17.6 Spark 814
17.6.1 Spark Overview 814
17.6.2 Docker and the Jupyter Docker Stacks 815
17.6.3 Word Count with Spark 818
17.6.4 Spark Word Count on Microsoft Azure 821

17.7 Spark Streaming: Counting Twitter Hashtags Using the
pyspark-notebook Docker Stack 825
17.7.1 Streaming Tweets to a Socket 825
17.7.2 Summarizing Tweet Hashtags; Introducing Spark SQL 828

17.8 Internet of Things and Dashboards 834
17.8.1 Publish and Subscribe 836
17.8.2 Visualizing a PubNub Sample Live Stream with a Freeboard

Dashboard 836
17.8.3 Simulating an Internet-Connected Thermostat in Python 838
17.8.4 Creating the Dashboard with Freeboard.io 840
17.8.5 Creating a Python PubNub Subscriber 842

17.9 Wrap-Up 846

Index 853

_ _ _ _ g y, y ,

_ _ _ _ g y, y ,

This page is intentionally left blank

“There’s gold in them thar hills!”1

For many decades, some powerful trends have been in place. Computer hardware has rap-
idly been getting faster, cheaper and smaller. Internet bandwidth (that is, its information
carrying capacity) has rapidly been getting larger and cheaper. And quality computer soft-
ware has become ever more abundant and essentially free or nearly free through the “open
source” movement. Soon, the “Internet of Things” will connect tens of billions of devices
of every imaginable type. These will generate enormous volumes of data at rapidly increas-
ing speeds and quantities.

Not so many years ago, if people had told us that we’d write a college-level introduc-
tory programming textbook with words like “Big Data” and “Cloud” in the title and a
graphic of a multicolored whale (emblematic of “big”) on the cover, our reaction might
have been, “Huh?” And, if they’d told us we’d include AI (for artificial intelligence) in the
title, we might have said, “Really? Isn’t that pretty advanced stuff for novice programmers?”

If people had said, we’d include “Data Science” in the title, we might have responded,
“Isn’t data already included in the domain of ‘Computer Science’? Why would we need a
separate academic discipline for it?” Well, in programming today, the latest innovations
are “all about the data”—data science, data analytics, big data, relational databases (SQL),
and NoSQL and NewSQL databases.

So, here we are! Welcome to Intro to Python for Computer Science and Data Science:
Learning to Program with AI, Big Data and the Cloud.

In this book, you’ll learn hands-on with today’s most compelling, leading-edge com-
puting technologies—and, as you’ll see, with an easily tunable mix of computer science
and data science appropriate for introductory courses in those and related disciplines. And,
you’ll program in Python—one of the world’s most popular languages and the fastest
growing among them. In this Preface, we present the “soul of the book.”

Professional programmers often quickly discover that they like Python. They appre-
ciate its expressive power, readability, conciseness and interactivity. They like the world of
open-source software development that’s generating an ever-growing base of reusable soft-
ware for an enormous range of application areas.

Whether you’re an instructor, a novice student or an experienced professional pro-
grammer, this book has much to offer you. Python is an excellent first programming lan-
guage for novices and is equally appropriate for developing industrial-strength applications.
For the novice, the early chapters establish a solid programming foundation.

We hope you’ll find Intro to Python for Computer Science and Data Science educational,
entertaining and challenging. It has been a joy to work on this project.

1. Source unknown, frequently misattributed to Mark Twain.

Preface

_ _ _ _ g y, y ,

20 Preface

Python for Computer Science and Data Science Education
Many top U.S. universities have switched to Python as their language of choice for teach-
ing introductory computer science, with “eight of the top 10 CS departments (80%), and
27 of the top 39 (69%)” using Python.2 It’s now particularly popular for educational and
scientific computing,3 and it recently surpassed R as the most popular data science pro-
gramming language.4,5,6

Modular Architecture
We anticipate that the computer science undergraduate curriculum will evolve to include
a data science component—this book is designed to facilitate that and to meet the needs
of introductory data science courses with a Python programming component.

The book’s modular architecture (please see the Table of Contents graphic on the
book’s first page) helps us meet the diverse needs of computer science, data science and
related audiences. Instructors can adapt it conveniently to a wide range of courses offered
to students drawn from many majors.

Chapters 1–11 cover traditional introductory computer science programming topics.
Chapters 1–10 each include an optional brief Intro to Data Science section introducing
artificial intelligence, basic descriptive statistics, measures of central tendency and disper-
sion, simulation, static and dynamic visualization, working with CSV files, pandas for data
exploration and data wrangling, time series and simple linear regression. These help you
prepare for the data science, AI, big data and cloud case studies in Chapters 12–17, which
present opportunities for you to use real-world datasets in complete case studies.

After covering Python Chapters 1–5 and a few key parts of Chapters 6–7, you’ll be
able to handle significant portions of the data science, AI and big data case studies in
Chapters 12–17, which are appropriate for all contemporary programming courses:

• Computer science courses will likely work through more of Chapters 1–11 and
fewer of the Intro to Data Science sections in Chapters 1–10. CS instructors will
want to cover some or all of the case-study Chapters 12–17.

• Data science courses will likely work through fewer of Chapters 1–11, most or all
of the Intro to Data Science sections in Chapters 1–10, and most or all of the
case-study Chapters 12–17.

The “Chapter Dependencies” section of this Preface will help instructors plan their syllabi
in the context of the book’s unique architecture.

Chapters 12–17 are loaded with cool, powerful, contemporary content. They present
hands-on implementation case studies on topics such as supervised machine learning, unsu-
pervised machine learning, deep learning, reinforcement learning (in the exercises), natural

2. Guo, Philip., “Python Is Now the Most Popular Introductory Teaching Language at Top U.S. Univer-
sities,” ACM, July 07, 2014, https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-
the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext.

3. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.
4. https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-

science.html.
5. https://www.r-bloggers.com/data-science-job-report-2017-r-passes-sas-but-python-

leaves-them-both-behind/.
6. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.

_ _ _ _ g y, y ,

https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017
https://www.r-bloggers.com/data-science-job-report-2017-r-passes-sas-but-python-leaves-them-both-behind/
https://www.r-bloggers.com/data-science-job-report-2017-r-passes-sas-but-python-leaves-them-both-behind/
https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-science.html
https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-science.html
https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext

 Audiences for the Book 21

language processing, data mining Twitter, cognitive computing with IBM’s Watson, big
data and more. Along the way, you’ll acquire a broad literacy of data science terms and con-
cepts, ranging from briefly defining terms to using concepts in small, medium and large pro-
grams. Browsing the book’s detailed index will give you a sense of the breadth of coverage.

Audiences for the Book
The modular architecture makes this book appropriate for several audiences:

• All standard Python computer science and related majors. First and foremost, our
book is a solid contemporary Python CS 1 entry. The computing curriculum rec-
ommendations from the ACM/IEEE list five types of computing programs: Com-
puter Engineering, Computer Science, Information Systems, Information
Technology and Software Engineering.7 The book is appropriate for each of these.

• Undergraduate courses for data science majors—Our book is useful in many
data science courses. It follows the curriculum recommendations for integration
of all the key areas in all courses, as appropriate for intro courses. In the proposed
data science curriculum, the book can be the primary textbook for the first com-
puter science course or the first data science course, then be used as a Python ref-
erence throughout the upper curriculum.

• Service courses for students who are not computer science or data science majors.

• Graduate courses in data science—The book can be used as the primary text-
book in the first course, then as a Python reference in other graduate-level data
science courses.

• Two-year colleges—These schools will increasingly offer courses that prepare
students for data science programs in the four-year colleges—the book is an ap-
propriate option for that purpose.

• High schools—Just as they began teaching computer classes in response to strong
interest, many are already teaching Python programming and data science class-
es.8 According to a recent article on LinkedIn, “data science should be taught in
high school,” where the “curriculum should mirror the types of careers that our
children will go into, focused directly on where jobs and technology are going.”9

We believe that data science could soon become a popular college advanced-
placement course and that eventually there will be a data science AP exam.

• Professional industry training courses.

Key Features

KIS (Keep It Simple), KIS (Keep it Small), KIT (Keep it Topical)
• Keep it simple—In every aspect of the book and its instructor and student sup-

plements, we strive for simplicity and clarity. For example, when we present nat-

7. https://www.acm.org/education/curricula-recommendations.
8. http://datascience.la/introduction-to-data-science-for-high-school-students/.
9. https://www.linkedin.com/pulse/data-science-should-taught-high-school-rebecca-

croucher/.

_ _ _ _ g y, y ,

https://www.linkedin.com/pulse/data-science-should-taught-high-school-rebecca-croucher/
https://www.linkedin.com/pulse/data-science-should-taught-high-school-rebecca-croucher/
http://datascience.la/introduction-to-data-science-for-high-school-students/
https://www.acm.org/education/curricula-recommendations

22 Preface

ural language processing, we use the simple and intuitive TextBlob library rather
than the more complex NLTK. In general, when multiple libraries could be used
to perform similar tasks, we use the simplest one.

• Keep it small—Most of the book’s 538 examples are small—often just a few lines
of code, with immediate interactive IPython feedback. We use large examples as
appropriate in approximately 40 larger scripts and complete case studies.

• Keep it topical—We read scores of recent Python-programming and data science
textbooks and professional books. In all we browsed, read or watched about
15,000 current articles, research papers, white papers, videos, blog posts, forum
posts and documentation pieces. This enabled us to “take the pulse” of the
Python, computer science, data science, AI, big data and cloud communities to
create 1566 up-to-the-minute examples, exercises and projects (EEPs).

IPython’s Immediate-Feedback, Explore, Discover and Experiment Pedagogy
• The ideal way to learn from this book is to read it and run the code examples in

parallel. Throughout the book, we use the IPython interpreter, which provides
a friendly, immediate-feedback, interactive mode for quickly exploring, discover-
ing and experimenting with Python and its extensive libraries.

• Most of the code is presented in small, interactive IPython sessions (which we
call IIs). For each code snippet you write, IPython immediately reads it, evaluates
it and prints the results. This instant feedback keeps your attention, boosts learn-
ing, facilitates rapid prototyping and speeds the software-development process.

• Our books always emphasize the live-code teaching approach, focusing on com-
plete, working programs with sample inputs and outputs. IPython’s “magic” is that
it turns snippets into live code that “comes alive” as you enter each line. This pro-
motes learning and encourages experimentation.

• IPython is a great way to learn the error messages associated with common errors.
We’ll intentionally make errors to show you what happens. When we say some-
thing is an error, try it to see what happens.

• We use this same immediate-feedback philosophy in the book’s 557 Self-Check
Exercises (ideal for “flipped classrooms”—we’ll soon say more about that phe-
nomenon) and many of the 471 end-of-chapter exercises and projects.

Python Programming Fundamentals
• First and foremost, this is an introductory Python textbook. We provide rich cov-

erage of Python and general programming fundamentals.

• We discuss Python’s programming models—procedural programming, func-
tional-style programming and object-oriented programming.

• We emphasize problem-solving and algorithm development.

• We use best practices to prepare students for industry.

• Functional-style programming is used throughout the book as appropriate. A
chart in Chapter 4 lists most of Python’s key functional-style programming capa-
bilities and the chapters in which we initially cover many of them.

_ _ _ _ g y, y ,

 Key Features 23

538 Examples, and 471 Exercises and Projects (EEPs)
• Students use a hands-on applied approach to learn from a broad selection of real-

world examples, exercises and projects (EEPs) drawn from computer science,
data science and many other fields.

• The 538 examples range from individual code snippets to complete computer
science, data science, artificial intelligence and big data case studies.

• The 471 exercises and projects naturally extend the chapter examples. Each
chapter concludes with a substantial set of exercises covering a wide variety of
topics. This helps instructors tailor their courses to the unique requirements of
their audiences and to vary course assignments each semester.

• The EEPs give you an engaging, challenging and entertaining introduction to
Python programming, including hands-on AI, computer science and data science.

• Students attack exciting and entertaining challenges with AI, big data and cloud
technologies like natural language processing, data mining Twitter, machine
learning, deep learning, Hadoop, MapReduce, Spark, IBM Watson, key data sci-
ence libraries (NumPy, pandas, SciPy, NLTK, TextBlob, spaCy, BeautifulSoup,
Textatistic, Tweepy, Scikit-learn, Keras), key visualization libraries (Matplotlib,
Seaborn, Folium) and more.

• Our EEPs encourage you to think into the future. We had the following idea as we
wrote this Preface—although it’s not in the text, many similar thought-provoking
projects are: With deep learning, the Internet of Things and large numbers of TV
cameras trained on sporting events, it will become possible to keep automatic statis-
tics, review the details of every play and resolve instant-replay reviews immediately.
So, fans won’t have to endure the bad calls and delays common in today’s sporting
events. Here’s a thought—we can use these technologies to eliminate referees. Why
not? We’re increasingly entrusting our lives to other deep-learning-based technolo-
gies like robotic surgeons and self-driving cars!

• The project exercises encourage you to go deeper into what you’ve learned and
research technologies we have not covered. Projects are often larger in scope and
may require significant Internet research and implementation effort.

• In the instructor supplements, we provide solutions to many exercises, including
most in the core Python Chapters 1–11. Solutions are available only to instruc-
tors—see the section “Instructor Supplements on Pearson’s Instructor Resource
Center” later in this Preface for details. We do not provide solutions to the proj-
ect and research exercises.

• We encourage you to look at lots of demos and free open-source code examples
(available on sites such as GitHub) for inspiration on additional class projects, term
projects, directed-study projects, capstone-course projects and thesis research.

557 Self-Check Exercises and Answers
• Most sections end with an average of three Self-Check Exercises.

• Fill-in-the-blank, true/false and discussion Self Checks enable you to test your
understanding of the concepts you just studied.

_ _ _ _ g y, y ,

24 Preface

• IPython interactive Self Checks give you a chance to try out and reinforce the
programming techniques you just learned.

• For rapid learning, answers immediately follow all Self-Check Exercises.

Avoid Heavy Math in Favor of English Explanations
• Data science topics can be highly mathematical. This book will be used in first com-

puter science and data science courses where students may not have deep mathe-
matical backgrounds, so we avoid heavy math, leaving it to upper-level courses.

• We capture the conceptual essence of the mathematics and put it to work in our
examples, exercises and projects. We do this by using Python libraries such as sta-
tistics, NumPy, SciPy, pandas and many others, which hide the mathematical
complexity. So, it’s straightforward for students to get many of the benefits of
mathematical techniques like linear regression without having to know the math-
ematics behind them. In the machine-learning and deep-learning examples, we
focus on creating objects that do the math for you “behind the scenes.” This is one
of the keys to object-based programming. It’s like driving a car safely to your des-
tination without knowing all the math, engineering and science that goes into
building engines, transmissions, power steering and anti-skid braking systems.

Visualizations
• 67 full-color static, dynamic, animated and interactive two-dimensional and

three-dimensional visualizations (charts, graphs, pictures, animations etc.) help
you understand concepts.

• We focus on high-level visualizations produced by Matplotlib, Seaborn, pandas
and Folium (for interactive maps).

• We use visualizations as a pedagogic tool. For example, we make the law of large
numbers “come alive” in a dynamic die-rolling simulation and bar chart. As the
number of rolls increases, you’ll see each face’s percentage of the total rolls grad-
ually approach 16.667% (1/6th) and the sizes of the bars representing the per-
centages equalize.

• You need to get to know your data. One way is simply to look at the raw data. For
even modest amounts of data, you could rapidly get lost in the detail. Visualiza-
tions are especially crucial in big data for data exploration and communicating
reproducible research results, where the data items can number in the millions,
billions or more. A common saying is that a picture is worth a thousand words10—
in big data, a visualization could be worth billions or more items in a database.

• Sometimes, you need to “fly 40,000 feet above the data” to see it “in the large.”
Descriptive statistics help but can be misleading. Anscombe’s quartet, which
you’ll investigate in the exercises, demonstrates through visualizations that sig-
nificantly different datasets can have nearly identical descriptive statistics.

• We show the visualization and animation code so you can implement your own.
We also provide the animations in source-code files and as Jupyter Notebooks, so

10. https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words.

_ _ _ _ g y, y ,

https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words

 Key Features 25

you can conveniently customize the code and animation parameters, re-execute the
animations and see the effects of the changes.

• Many exercises ask you to create your own visualizations.

Data Experiences
• The undergraduate data science curriculum proposal says “Data experiences

need to play a central role in all courses.”11

• In the book’s examples, exercises and projects (EEPs), you’ll work with many
real-world datasets and data sources. There’s a wide variety of free open datasets
available online for you to experiment with. Some of the sites we reference list
hundreds or thousands of datasets. We encourage you to explore these.

• We collected hundreds of syllabi, tracked down instructor dataset preferences
and researched the most popular datasets for supervised machine learning, unsu-
pervised machine learning and deep learning studies. Many of the libraries you’ll
use come bundled with popular datasets for experimentation.

• You’ll learn the steps required to obtain data and prepare it for analysis, analyze
that data using many techniques, tune your models and communicate your
results effectively, especially through visualization.

Thinking Like a Developer
• You’ll work with a developer focus, using such popular sites as GitHub and

StackOverflow, and doing lots of Internet research. Our Intro to Data Science
sections and case studies in Chapters 12–17 provide rich data experiences.

• GitHub is an excellent venue for finding open-source code to incorporate into
your projects (and to contribute your code to the open-source community). It’s
also a crucial element of the software developer’s arsenal with version control
tools that help teams of developers manage open-source (and private) projects.

• We encourage you to study developers’ code on sites like GitHub.

• To get ready for career work in computer science and data science, you’ll use an
extraordinary range of free and open-source Python and data science libraries,
free and open real-world datasets from government, industry and academia, and
free, free-trial and freemium offerings of software and cloud services.

Hands-On Cloud Computing
• Much of big data analytics occurs in the cloud, where it’s easy to scale dynamically

the amount of hardware and software your applications need. You’ll work with
various cloud-based services (some directly and some indirectly), including Twit-
ter, Google Translate, IBM Watson, Microsoft Azure, OpenMapQuest, geopy,
Dweet.io and PubNub. You’ll explore more in the exercises and projects.

• We encourage you to use free, free trial or freemium services from various cloud
vendors. We prefer those that don’t require a credit card because you don’t want

11. “Curriculum Guidelines for Undergraduate Programs in Data Science,” http://www.annualre-
views.org/doi/full/10.1146/annurev-statistics-060116-053930 (p. 18).

_ _ _ _ g y, y ,

http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930
http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930

26 Preface

to risk accidentally running up big bills. If you decide to use a service that
requires a credit card, ensure that the tier you’re using for free will not auto-
matically jump to a paid tier.

Database, Big Data and Big Data Infrastructure
• According to IBM (Nov. 2016), 90% of the world’s data was created in the last

two years.12 Evidence indicates that the speed of data creation is accelerating.

• According to a March 2016 AnalyticsWeek article, within five years there will be
over 50 billion devices connected to the Internet and by 2020 we’ll be producing
1.7 megabytes of new data every second for every person on the planet!13

• We include an optional treatment of relational databases and SQL with SQLite.

• Databases are critical big data infrastructure for storing and manipulating the mas-
sive amounts of data you’ll process. Relational databases process structured data—
they’re not geared to the unstructured and semi-structured data in big data applica-
tions. So, as big data evolved, NoSQL and NewSQL databases were created to
handle such data efficiently. We include a NoSQL and NewSQL overview and a
hands-on case study with a MongoDB JSON document database.

• We include a solid treatment of big data hardware and software infrastructure in
Chapter 17, “Big Data: Hadoop, Spark, NoSQL and IoT (Internet of Things).”

Artificial Intelligence Case Studies
• Why doesn’t this book have an artificial intelligence chapter? After all, AI is on

the cover. In the case study Chapters 12–16, we present artificial intelligence
topics (a key intersection between computer science and data science), including
natural language processing, data mining Twitter to perform sentiment analy-
sis, cognitive computing with IBM Watson, supervised machine learning,
unsupervised machine learning, deep learning and reinforcement learning (in
the exercises). Chapter 17 presents the big data hardware and software infrastruc-
ture that enables computer scientists and data scientists to implement leading-
edge AI-based solutions.

Computer Science
• The Python fundamentals treatment in Chapters 1–10 will get you thinking like

a computer scientist. Chapter 11, “Computer Science Thinking: Recursion,
Searching, Sorting and Big O,” gives you a more advanced perspective—these are
classic computer science topics. Chapter 11 emphasizes performance issues.

Built-In Collections: Lists, Tuples, Sets, Dictionaries
• There’s little reason today for most application developers to build custom data

structures. This is a subject for CS2 courses—our scope is strictly CS1 and the
corresponding data science course(s). The book features a solid two-chapter

12. https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-

engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf.
13. https://analyticsweek.com/content/big-data-facts/.

_ _ _ _ g y, y ,

https://analyticsweek.com/content/big-data-facts/
https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf
https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf

 Key Features 27

treatment of Python’s built-in data structures—lists, tuples, dictionaries and
sets—with which most data-structuring tasks can be accomplished.

Array-Oriented Programming with NumPy Arrays and Pandas Series/DataFrames
• We take an innovative approach in this book by focusing on three key data struc-

tures from open-source libraries—NumPy arrays, pandas Series and pandas
DataFrames. These libraries are used extensively in data science, computer sci-
ence, artificial intelligence and big data. NumPy offers as much as two orders of
magnitude higher performance than built-in Python lists.

• We include in Chapter 7 a rich treatment of NumPy arrays. Many libraries, such
as pandas, are built on NumPy. The Intro to Data Science sections in Chapters
7–9 introduce pandas Series and DataFrames, which along with NumPy arrays
are then used throughout the remaining chapters.

File Processing and Serialization
• Chapter 9 presents text-file processing, then demonstrates how to serialize objects

using the popular JSON (JavaScript Object Notation) format. JSON is a com-
monly used data-interchange format that you’ll frequently see used in the data sci-
ence chapters—often with libraries that hide the JSON details for simplicity.

• Many data science libraries provide built-in file-processing capabilities for load-
ing datasets into your Python programs. In addition to plain text files, we process
files in the popular CSV (comma-separated values) format using the Python
Standard Library’s csv module and capabilities of the pandas data science library.

Object-Based Programming
• In all the Python code we studied during our research for this book, we rarely

encountered custom classes. These are common in the powerful libraries used by
Python programmers.

• We emphasize using the enormous number of valuable classes that the Python
open-source community has packaged into industry standard class libraries.
You’ll focus on knowing what libraries are out there, choosing the ones you’ll
need for your app, creating objects from existing classes (usually in one or two
lines of code) and making them “jump, dance and sing.” This is called object-
based programming—it enables you to build impressive applications concisely,
which is a significant part of Python’s appeal.

• With this approach, you’ll be able to use machine learning, deep learning, rein-
forcement learning (in the exercises) and other AI technologies to solve a wide
range of intriguing problems, including cognitive computing challenges like
speech recognition and computer vision. In the past, with just an introductory
programming course, you never would have been able to tackle such tasks.

Object-Oriented Programming
• For computer science students, developing custom classes is a crucial object-

oriented programming skill, along with inheritance, polymorphism and duck
typing. We discuss these in Chapter 10.

_ _ _ _ g y, y ,

28 Preface

• The object-oriented programming treatment is modular, so instructors can pres-
ent basic or intermediate coverage.

• Chapter 10 includes a discussion of unit testing with doctest and a fun card-
shuffling-and-dealing simulation.

• The six data science, AI, big data and cloud chapters require only a few straight-
forward custom class definitions. Instructors who do not wish to cover Chapter
10 can have students simply mimic our class definitions.

Privacy
• In the exercises, you’ll research ever-stricter privacy laws such as HIPAA (Health

Insurance Portability and Accountability Act) in the United States and GDPR
(General Data Protection Regulation) for the European Union. A key aspect of
privacy is protecting users’ personally identifiable information (PII), and a key
challenge with big data is that it’s easy to cross-reference facts about individuals
among databases. We mention privacy issues in several places throughout the book.

Security
• Security is crucial to privacy. We deal with some Python-specific security issues.

• AI and big data present unique privacy, security and ethical challenges. In the ex-
ercises, students will research the OWASP Python Security Project (http://
www.pythonsecurity.org/), anomaly detection, blockchain (the technology be-
hind cryptocurrencies like BitCoin and Ethereum) and more.

Ethics
• Ethics conundrum: Suppose big data analytics with AI predicts that a person with

no criminal record has a significant chance of committing a serious crime. Should
that person be arrested? In the exercises, you’ll research this and other ethical
issues, including deep fakes (AI-generated images and videos that appear to be
real), bias in machine learning and CRISPR gene editing. Students also investigate
privacy and ethical issues surrounding AIs and intelligent assistants, such as IBM
Watson, Amazon Alexa, Apple Siri, Google Assistant and Microsoft Cortana.
For example, just recently, a judge ordered Amazon to turn over Alexa recordings
for use in a criminal case.14

Reproducibility
• In the sciences in general, and data science in particular, there’s a need to repro-

duce the results of experiments and studies, and to communicate those results
effectively. Jupyter Notebooks are a preferred means for doing this.

• We provide you with a Jupyter Notebooks experience to help meet the reproduc-
ibility recommendations of the data science undergraduate curriculum proposal.

• We discuss reproducibility throughout the book in the context of programming
techniques and software such as Jupyter Notebooks and Docker.

14. https://techcrunch.com/2018/11/14/amazon-echo-recordings-judge-murder-case/.

_ _ _ _ g y, y ,

https://techcrunch.com/2018/11/14/amazon-echo-recordings-judge-murder-case/
http://www.pythonsecurity.org/
http://www.pythonsecurity.org/

 Key Features 29

Transparency
• The data science curriculum proposal mentions data transparency. One aspect of

data transparency is the availability of data. Many governments and other organi-
zation now adhere to open-data principles, enabling anyone to access their data.15

We point you to a wide range of datasets that are made available by such entities.

• Other aspects of data transparency include determining that data is correct and
knowing its origin (think, for example, of “fake news”). Many of the datasets we
use are bundled with key libraries we present, such as Scikit-learn for machine
learning and Keras for deep learning. We also point you to various curated data-
set repositories such as the University of California Irvine (UCI) Machine
Learning Repository (with 450+ datasets)16 and Carnegie Mellon University’s
StatLib Datasets Archive (with 100+ datasets).17

Performance
• We use the timeit profiling tool in several examples and exercises to compare

the performance of different approaches to performing the same tasks. Other per-
formance-related discussions include generator expressions, NumPy arrays vs.
Python lists, performance of machine-learning and deep-learning models, and
Hadoop and Spark distributed-computing performance.

Big Data and Parallelism
• Computer applications have generally been good at doing one thing at a time.

Today’s more sophisticated applications need to be able to do many things in par-
allel. The human brain is believed to have the equivalent of 100 billion parallel
processors.18 For years we’ve written about parallelism at the program level,
which is complex and error-prone.

• In this book, rather than writing your own parallelization code, you’ll let libraries
like Keras running over TensorFlow, and big data tools like Hadoop and Spark
parallelize operations for you. In this big data/AI era, the sheer processing require-
ments of massive data apps demand taking advantage of true parallelism provided
by multicore processors, graphics processing units (GPUs), tensor processing
units (TPUs) and huge clusters of computers in the cloud. Some big data tasks
could have thousands of processors working in parallel to analyze massive
amounts of data in reasonable time. Sequentializing such processing is typically
not an option, because it would take too long.

15. https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digi-

tal/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/

MGI_big_data_full_report.ashx (page 56).
16. https://archive.ics.uci.edu/ml/datasets.html.
17. http://lib.stat.cmu.edu/datasets/.
18. https://www.technologyreview.com/s/532291/fmri-data-reveals-the-number-of-

parallel-processes-running-in-the-brain/.

_ _ _ _ g y, y ,

https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx
https://www.technologyreview.com/s/532291/fmri-data-reveals-the-number-of-parallel-processes-running-in-the-brain/
https://www.technologyreview.com/s/532291/fmri-data-reveals-the-number-of-parallel-processes-running-in-the-brain/
http://lib.stat.cmu.edu/datasets/
https://archive.ics.uci.edu/ml/datasets.html
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx

30 Preface

Chapter Dependencies
If you’re an instructor planning your course syllabus or a professional deciding which
chapters to read, this section will help you make the best decisions. Please read the one-
page Table of Contents on the first page of the book—this will quickly familiarize you
with the book’s unique architecture. Teaching or reading the chapters in order is easiest.
However, much of the content in the Intro to Data Science sections at the ends of Chap-
ters 1–10 and the case studies in Chapters 12–17 requires only Chapters 1–5 and small
portions of Chapters 6–10 as discussed below.

Part 1: Python Fundamentals Quickstart
We recommend that all courses cover Python Chapters 1–5:

• Chapter 1, Introduction to Computers and Python, introduces concepts that
lay the groundwork for the Python programming in Chapters 2–11 and the big
data, artificial-intelligence and cloud-based case studies in Chapters 12–17. The
chapter also includes test-drives of IPython and Jupyter Notebooks.

• Chapter 2, Introduction to Python Programming, presents Python program-
ming fundamentals with code examples illustrating key language features.

• Chapter 3, Control Statements and Program Development, presents Python’s
control statements, focuses on problem-solving and algorithm development,
and introduces basic list processing.

• Chapter 4, Functions, introduces program construction using existing functions
and custom functions as building blocks, presents simulation techniques with
random-number generation and introduces tuple fundamentals.

• Chapter 5, Sequences: Lists and Tuples, presents Python’s built-in list and tuple
collections in more detail and begins our introduction to functional-style pro-
gramming.

Part 2: Python Data Structures, Strings and Files19

The following summarizes inter-chapter dependencies for Python Chapters 6–9 and
assumes that you’ve read Chapters 1–5.

• Chapter 6, Dictionaries and Sets—The Intro to Data Science section is not
dependent on Chapter 6’s contents.

• Chapter 7, Array-Oriented Programming with NumPy—The Intro to Data
Science section requires dictionaries (Chapter 6) and arrays (Chapter 7).

• Chapter 8, Strings: A Deeper Look—The Intro to Data Science section requires
raw strings and regular expressions (Sections 8.11–8.12), and pandas Series and
DataFrame features from Section 7.14’s Intro to Data Science.

• Chapter 9, Files and Exceptions—For JSON serialization, it’s useful to under-
stand dictionary fundamentals (Section 6.2). Also, the Intro to Data Science sec-
tion requires the built-in open function and the with statement (Section 9.3), and
pandas DataFrame features from Section 7.14’s Intro to Data Science.

19. We could have included Chapter 5 in Part 2. We placed it in Part 1 because that’s the group of chap-
ters all courses should cover.

_ _ _ _ g y, y ,

 Chapter Dependencies 31

Part 3: Python High-End Topics
The following summarizes inter-chapter dependencies for Python Chapters 10–11 and
assumes that you’ve read Chapters 1–5.

• Chapter 10, Object-Oriented Programming—The Intro to Data Science
requires pandas DataFrame features from the Intro to Data Science Section 7.14.
Instructors wanting to cover only classes and objects can present Sections 10.1–
10.6. Instructors wanting to cover more advanced topics like inheritance, poly-
morphism and duck typing, can present Sections 10.7–10.9. Sections 10.10–
10.15 provide additional advanced perspectives.

• Chapter 11, Computer Science Thinking: Recursion, Searching, Sorting and
Big O—Requires creating and accessing the elements of arrays (Chapter 7), the
%timeit magic (Section 7.6), string method join (Section 8.9) and Matplotlib
FuncAnimation from Section 6.4’s Intro to Data Science.

Part 4: AI, Cloud and Big Data Case Studies
The following summary of inter-chapter dependencies for Chapters 12–17 assumes that
you’ve read Chapters 1–5. Most of Chapters 12–17 also require dictionary fundamentals
from Section 6.2.

• Chapter 12, Natural Language Processing (NLP), uses pandas DataFrame fea-
tures from Section 7.14’s Intro to Data Science.

• Chapter 13, Data Mining Twitter, uses pandas DataFrame features from
Section 7.14’s Intro to Data Science, string method join (Section 8.9), JSON fun-
damentals (Section 9.5), TextBlob (Section 12.2) and Word clouds (Section 12.3).
Several examples require defining a class via inheritance (Chapter 10), but readers
can simply mimic the class definitions we provide without reading Chapter 10.

• Chapter 14, IBM Watson and Cognitive Computing, uses built-in function
open and the with statement (Section 9.3).

• Chapter 15, Machine Learning: Classification, Regression and Clustering, uses
NumPy array fundamentals and method unique (Chapter 7), pandas DataFrame
features from Section 7.14’s Intro to Data Science and Matplotlib function sub-
plots (Section 10.6).

• Chapter 16, Deep Learning, requires NumPy array fundamentals (Chapter 7),
string method join (Section 8.9), general machine-learning concepts from
Chapter 15 and features from Chapter 15’s Case Study: Classification with k-
Nearest Neighbors and the Digits Dataset.

• Chapter 17, Big Data: Hadoop, Spark, NoSQL and IoT, uses string method
split (Section 6.2.7), Matplotlib FuncAnimation from Section 6.4’s Intro to
Data Science, pandas Series and DataFrame features from Section 7.14’s Intro
to Data Science, string method join (Section 8.9), the json module
(Section 9.5), NLTK stop words (Section 12.2.13) and from Chapter 13 Twitter
authentication, Tweepy’s StreamListener class for streaming tweets, and the
geopy and folium libraries. A few examples require defining a class via inheritance
(Chapter 10), but readers can simply mimic the class definitions we provide with-
out reading Chapter 10.

_ _ _ _ g y, y ,

32 Preface

Computing and Data Science Curricula
We read the following ACM/IEEE CS-and-related curriculum documents in preparation
for writing this book:

• Computer Science Curricula 2013,20

• CC2020: A Vision on Computing Curricula,21

• Information Technology Curricula 2017,22

• Cybersecurity Curricula 2017,23

and the 2016 data science initiative “Curriculum Guidelines for Undergraduate Pro-
grams in Data Science”24 from the faculty group sponsored by the NSF and the Institute
for Advanced Study.

Computing Curricula
• According to “CC2020: A Vision on Computing Curricula,” the curriculum

“needs to be reviewed and updated to include the new and emerging areas of
computing such as cybersecurity and data science.”25

• Data science includes key topics (besides general-purpose programming) such as
machine learning, deep learning, natural language processing, speech synthesis
and recognition and others that are classic artificial intelligence (AI)—and hence
CS topics as well.

Data Science Curriculum
• Graduate-level data science is well established and the undergraduate level is grow-

ing rapidly to meet strong industry demand. Our hands-on, nonmathematical,
project-oriented, programming-intensive approach facilitates moving data science
into the undergraduate curriculum, based on the proposed new curriculum.

• There already are lots of undergraduate data science and data analytics programs,
but they’re not uniform. That was part of the motivation for the 25 faculty mem-
bers on the data science curriculum committee to get together in 2016 and
develop the proposed 10-course undergraduate major in data science, “Curricu-
lum Guidelines for Undergraduate Programs in Data Science.”

• The curriculum committee says that “many of the courses traditionally found in
computer science, statistics, and mathematics offerings should be redesigned for

20. ACM/IEEE (Assoc. Comput. Mach./Inst. Electr. Electron. Eng.). 2013. Computer Science Curricula
2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Science (New York: ACM),
http://ai.stanford.edu/users/sahami/CS2013/final-draft/CS2013-final-report.pdf.

21. A. Clear, A. Parrish, G. van der Veer and M. Zhang “CC2020: A Vision on Computing Curricula,”
https://dl.acm.org/citation.cfm?id= 3017690.

22. Information Technology Curricula 2017, http://www.acm.org/binaries/content/assets/edu-
cation/it2017.pdf.

23. Cybersecurity Curricula 2017, https://cybered.hosting.acm.org/wp-content/uploads/2018/
02/newcover_csec2017.pdf.

24. “Curriculum Guidelines for Undergraduate Programs in Data Science,” http://www.annualre-
views.org/doi/full/10.1146/annurev-statistics-060116-053930.

25. http://delivery.acm.org/10.1145/3020000/3017690/p647-clear.pdf.

_ _ _ _ g y, y ,

https://cybered.hosting.acm.org/wp-content/uploads/2018/02/newcover_csec2017.pdf
http://delivery.acm.org/10.1145/3020000/3017690/p647-clear.pdf
http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930
http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930
https://cybered.hosting.acm.org/wp-content/uploads/2018/02/newcover_csec2017.pdf
http://www.acm.org/binaries/content/assets/education/it2017.pdf
http://www.acm.org/binaries/content/assets/education/it2017.pdf
https://dl.acm.org/citation.cfm?id=3017690
http://ai.stanford.edu/users/sahami/CS2013/final-draft/CS2013-final-report.pdf

 Data Science Overlaps with Computer Science 33

the data science major in the interests of efficiency and the potential synergy that
integrated courses would offer.”26

• The committee recommends integrating these areas with computational and sta-
tistical thinking in all courses, and indicates that new textbooks will be essen-
tial27—this book is designed with the committee’s recommendations in mind.

• Python has rapidly become one of the world’s most popular general-purpose pro-
gramming languages. For schools that want to cover only one language in their
data science major, it’s reasonable that Python be that language.

Data Science Overlaps with Computer Science28

The undergraduate data science curriculum proposal includes algorithm development, pro-
gramming, computational thinking, data structures, database, mathematics, statistical think-
ing, machine learning, data science and more—a significant overlap with computer science,
especially given that the data science courses include some key AI topics. Even though ours
is a Python programming textbook, it touches each of these areas (except for heavy mathe-
matics) from the recommended data science 10-course curriculum, as we efficiently work
data science into various examples, exercises, projects and full-implementation case studies.

Key Points from the Data Science Curriculum Proposal
In this section, we call out some key points from the data science undergraduate curricu-
lum proposal29 or its detailed course descriptions appendix.30 We worked hard to incor-
porate these and many other objectives:

• learn programming fundamentals commonly presented in computer science
courses, including working with data structures.

• be able to solve problems by creating algorithms.

• work with procedural, functional and object-oriented programming.

• receive an integrated presentation of computational and statistical thinking,
including exploring concepts via simulations.

• use development environments (we use IPython and Jupyter Notebooks).

• work with real-world data in practical case studies and projects in every course.

• obtain, explore and transform (wrangle) data for analysis.

• create static, dynamic and interactive data visualizations.

26. “Curriculum Guidelines for Undergraduate Programs in Data Science,” http://www.annualre-
views.org/doi/full/10.1146/annurev-statistics-060116-053930 (pp. 16–17).

27. “Curriculum Guidelines for Undergraduate Programs in Data Science,” http://www.annualre-
views.org/doi/full/10.1146/annurev-statistics-060116-053930 (pp. 16–17).

28. This section is intended primarily for data science instructors. Given that the emerging 2020 Com-
puting Curricula for computer science and related disciplines is likely to include some key data
science topics, this section includes important information for computer science instructors as well.

29. “Curriculum Guidelines for Undergraduate Programs in Data Science,” http://www.annualre-
views.org/doi/full/10.1146/annurev-statistics-060116-053930.

30. “Appendix—Detailed Courses for a Proposed Data Science Major,” http://www.annualre-
views.org/doi/suppl/10.1146/annurev-statistics-060116-053930/suppl_file/

st04_de_veaux_supmat.pdf.

_ _ _ _ g y, y ,

http://www.annualreviews.org/doi/suppl/10.1146/annurev-statistics-060116-053930/suppl_file/st04_de_veaux_supmat.pdf
http://www.annualreviews.org/doi/suppl/10.1146/annurev-statistics-060116-053930/suppl_file/st04_de_veaux_supmat.pdf
http://www.annualreviews.org/doi/suppl/10.1146/annurev-statistics-060116-053930/suppl_file/st04_de_veaux_supmat.pdf
http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930
http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930
http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930
http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930
http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930
http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930

34 Preface

• communicate reproducible results.

• work with existing software and cloud-based tools.

• work with statistical and machine-learning models.

• work with high-performance tools (Hadoop, Spark, MapReduce and NoSQL).

• focus on data’s ethics, security, privacy, reproducibility and transparency issues.

Jobs Requiring Data Science Skills
In 2011, McKinsey Global Institute produced their report, “Big data: The next frontier
for innovation, competition and productivity.” In it, they said, “The United States alone
faces a shortage of 140,000 to 190,000 people with deep analytical skills as well as 1.5 mil-
lion managers and analysts to analyze big data and make decisions based on their find-
ings.”31 This continues to be the case. The August 2018 “LinkedIn Workforce Report”
says the United States has a shortage of over 150,000 people with data science skills.32 A
2017 report from IBM, Burning Glass Technologies and the Business-Higher Education
Forum, says that by 2020 in the United States there will be hundreds of thousands of new
jobs requiring data science skills.33

Jupyter Notebooks
For your convenience, we provide the book’s examples in Python source code (.py) files
for use with the command-line IPython interpreter and as Jupyter Notebooks (.ipynb)
files that you can load into your web browser and execute. You can use whichever method
of executing code examples you prefer.

Jupyter Notebooks is a free, open-source project that enables authors to combine text,
graphics, audio, video, and interactive coding functionality for entering, editing, execut-
ing, debugging, and modifying code quickly and conveniently in a web browser. Accord-
ing to the article, “What Is Jupyter?”:

Jupyter has become a standard for scientific research and data analysis. It pack-
ages computation and argument together, letting you build “computational nar-
ratives”; … and it simplifies the problem of distributing working software to
teammates and associates.34

In our experience, it’s a wonderful learning environment and rapid prototyping tool for nov-
ices and experienced developers alike. For this reason, we use Jupyter Notebooks rather than
a traditional integrated development environment (IDE), such as Eclipse, Visual Studio,
PyCharm or Spyder. Academics and professionals already use Jupyter extensively for sharing
research results. Jupyter Notebooks support is provided through the traditional open-source
community mechanisms35 (see “Getting Your Questions Answered” later in this Preface).

31. https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digi-

tal/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/

MGI_big_data_full_report.ashx (page 3).
32. https://economicgraph.linkedin.com/resources/linkedin-workforce-report-august-2018.
33. https://www.burning-glass.com/wp-content/uploads/The_Quant_Crunch.pdf (page 3).
34. https://www.oreilly.com/ideas/what-is-jupyter.
35. https://jupyter.org/community.

_ _ _ _ g y, y ,

https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx
https://jupyter.org/community
https://www.oreilly.com/ideas/what-is-jupyter
https://www.burning-glass.com/wp-content/uploads/The_Quant_Crunch.pdf
https://economicgraph.linkedin.com/resources/linkedin-workforce-report-august-2018
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx

 Jupyter Notebooks 35

We believe Jupyter Notebooks are a compelling way to teach and learn Python and
that most instructors will choose to use Jupyter. The notebooks include:

• examples,

• Self Check exercises,

• all end-of-chapter exercises containing code, such as “What does this code do?”
and “What’s wrong with this code?” exercises.

• Visualizations and animations, which are a crucial part of the book’s pedagogy.
We provide the code in Jupyter Notebooks so students can conveniently
reproduce our results.

See the Before You Begin section that follows this Preface for software installation details
and see the test-drives in Section 1.10 for information on running the book’s examples.

Collaboration and Sharing Results
Working in teams and communicating research results are both emphasized in the pro-
posed undergraduate data science curriculum36 and are important for students moving
into data-analytics positions in industry, government or academia:

• The notebooks you create are easy to share among team members simply by
copying the files or via GitHub.

• Research results, including code and insights, can be shared as static web pages
via tools like nbviewer (https://nbviewer.jupyter.org) and GitHub—both
automatically render notebooks as web pages.

Reproducibility: A Strong Case for Jupyter Notebooks
In data science, and in the sciences in general, experiments and studies should be repro-
ducible. This has been written about in the literature for many years, including

• Donald Knuth’s 1992 computer science publication—Literate Programming.37

• The article “Language-Agnostic Reproducible Data Analysis Using Literate Pro-
gramming,”38 which says, “Lir (literate, reproducible computing) is based on the
idea of literate programming as proposed by Donald Knuth.”

Essentially, reproducibility captures the complete environment used to produce
results—hardware, software, communications, algorithms (especially code), data and the
data’s provenance (origin and lineage).

The undergraduate data science curriculum proposal mentions reproducibility as a
goal in four places. The article “50 Years of Data Science” says, “teaching students to work
reproducibly enables easier and deeper evaluation of their work; having them reproduce
parts of analyses by others allows them to learn skills like Exploratory Data Analysis that
are commonly practiced but not yet systematically taught; and training them to work
reproducibly will make their post-graduation work more reliable.”39

36. “Curriculum Guidelines for Undergraduate Programs in Data Science,” http://www.annualre-
views.org/doi/full/10.1146/annurev-statistics-060116-053930 (pp. 18–19).

37. Knuth, D., “Literate Programming” (PDF), The Computer Journal, British Computer Society, 1992.
38. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164023.

_ _ _ _ g y, y ,

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164023
http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930
http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930
https://nbviewer.jupyter.org

36 Preface

Docker
In Chapter 17, we’ll introduce Docker—a tool for packaging software into containers that
bundle everything required to execute that software conveniently, reproducibly and porta-
bly across platforms. Some software packages we use in Chapter 17 require complicated
setup and configuration. For many of these, you can download free preexisting Docker
containers. These enable you to avoid complex installation issues and execute software
locally on your desktop or notebook computers, making Docker a great way to help you
get started with new technologies quickly and conveniently.

Docker also helps with reproducibility. You can create custom Docker containers
that are configured with the versions of every piece of software and every library you used
in your study. This would enable others to recreate the environment you used, then repro-
duce your work, and will help you reproduce your own results. In Chapter 17, you’ll use
Docker to download and execute a container that’s preconfigured for you to code and run
big data Spark applications using Jupyter Notebooks.

Class Tested
While the book was under development, one of our academic reviewers—Dr. Alison San-
chez, Assistant Professor in Economics, University of San Diego—class tested it in a new
course, “Business Analytics Strategy.” She commented: “Wonderful for first-time Python
learners from all educational backgrounds and majors. My business analytics students had
little to no coding experience when they began the course. In addition to loving the mate-
rial, it was easy for them to follow along with the example exercises and by the end of the
course were able to mine and analyze Twitter data using techniques learned from the book.
The chapters are clearly written with detailed explanations of the example code—which
makes it easy for students without a computer science background to understand. The
modular structure, wide range of contemporary data science topics, and companion Jupy-
ter notebooks make this a fantastic resource for instructors and students of a variety of
Data Science, Business Analytics and Computer Science courses.”

“Flipped Classroom”
Many instructors are now using “flipped classrooms.”40,41 Students learn the content on
their own before coming to class (typically via video lectures), and class time is used for
tasks such as hands-on coding, working in groups and discussions. Our book and supple-
ments are appropriate for flipped classrooms:

• We provide extensive VideoNotes in which co-author Paul Deitel teaches the
concepts in the core Python chapters. See “Student and Instructor Supplements”
later in this Preface for details on accessing the videos.

• Some students learn best by —and video is not hands-on. One of the most com-
pelling features of the book is its interactive approach with 538 Python code

39. “50 Years of Data Science,” http://courses.csail.mit.edu/18.337/2015/docs/50YearsData-
Science.pdf, p. 33.

40. https://en.wikipedia.org/wiki/Flipped_classroom.
41. https://www.edsurge.com/news/2018-05-24-a-case-for-flipping-learning-without-videos.

_ _ _ _ g y, y ,

https://www.edsurge.com/news/2018-05-24-a-case-for-flipping-learning-without-videos
https://en.wikipedia.org/wiki/Flipped_classroom
http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf
http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf

 Special Feature: IBM Watson Analytics and Cognitive Computing 37

examples—many with just one or a few snippets—and 557 Self Check exercises
with answers. These enable students to learn in small pieces with immediate feed-
back—perfect for active self-paced learning. Students can easily modify the “hot”
code and see the effects of their changes.

• Our Jupyter Notebooks supplements provide a convenient mechanism for stu-
dents to work with the code.

• We provide 471 exercises and projects, which students can work on at home and/
or in class. Many of these are appropriate for group projects.

• We provide lots of probing questions on ethics, privacy, security and more in the
exercises and projects. These are appropriate for in-class discussions and group
work.

Special Feature: IBM Watson Analytics and Cognitive Computing
Early in our research for this book, we recognized the rapidly growing interest in IBM’s
Watson. We investigated competitive services and found Watson’s “no credit card
required” policy for its “free tiers” to be among the most friendly for our readers.

IBM Watson is a cognitive-computing platform being employed across a wide range
of real-world scenarios. Cognitive-computing systems simulate the pattern-recognition
and decision-making capabilities of the human brain to “learn” as they consume more
data.42,43,44 We include a significant hands-on Watson treatment. We use the free Watson
Developer Cloud: Python SDK, which provides application programming interfaces
(APIs) that enable you to interact with Watson’s services programmatically. Watson is fun
to use and a great platform for letting your creative juices flow. You’ll demo or use the fol-
lowing Watson APIs: Conversation, Discovery, Language Translator, Natural Language
Classifier, Natural Language Understanding, Personality Insights, Speech to Text, Text
to Speech, Tone Analyzer and Visual Recognition.

Watson’s Lite Tier Services and Watson Case Study
IBM encourages learning and experimentation by providing free lite tiers for many of their
APIs.45 In Chapter 14, you’ll try demos of many Watson services.46 Then, you’ll use the
lite tiers of Watson’s Text to Speech, Speech to Text and Translate services to implement
a “traveler’s assistant” translation app. You’ll speak a question in English, then the app
will transcribe your speech to English text, translate the text to Spanish and speak the
Spanish text. Next, you’ll speak a Spanish response (in case you don’t speak Spanish, we
provide an audio file you can use). Then, the app will quickly transcribe the speech to
Spanish text, translate the text to English and speak the English response. Cool stuff!

42. http://whatis.techtarget.com/definition/cognitive-computing.
43. https://en.wikipedia.org/wiki/Cognitive_computing.
44. https://www.forbes.com/sites/bernardmarr/2016/03/23/what-everyone-should-know-

about-cognitive-computing.
45. Always check the latest terms on IBM’s website, as the terms and services may change.
46. https://console.bluemix.net/catalog/.

_ _ _ _ g y, y ,

https://console.bluemix.net/catalog/
https://www.forbes.com/sites/bernardmarr/2016/03/23/what-everyone-should-know-about-cognitive-computing
https://www.forbes.com/sites/bernardmarr/2016/03/23/what-everyone-should-know-about-cognitive-computing
https://en.wikipedia.org/wiki/Cognitive_computing
http://whatis.techtarget.com/definition/cognitive-computing

38 Preface

Teaching Approach
Intro to Python for Computer Science and Data Science contains a rich collection of exam-
ples, exercises and projects drawn from many fields. Students solve interesting, real-world
problems working with real-world datasets. The book concentrates on the principles of
good software engineering and stresses program clarity.

Using Fonts for Emphasis
We place the key terms and the index’s page reference for each defining occurrence in bold
text for easier reference. We place on-screen components in the bold Helvetica font (for
example, the File menu) and use the Lucida font for Python code (for example, x = 5).

Syntax Coloring
The book is in full color. For readability, we syntax color all the code. Our syntax-coloring
conventions are as follows:

comments appear in green
keywords appear in dark blue
constants and literal values appear in light blue
errors appear in red
all other code appears in black

Objectives and Outline
Each chapter begins with objectives that tell you what to expect and give you an opportu-
nity, after reading the chapter, to determine whether it has met the intended goals. The
chapter outline enables students to approach the material in top-down fashion.

538 Examples
The book’s 538 examples contain approximately 4000 lines of code. This is a relatively
small amount of code for a book this size and is due to the fact that Python is such an
expressive language. Also, our coding style is to use powerful class libraries to do most of
the work wherever possible.

160 Tables/Illustrations/Visualizations
Abundant tables, line drawings, and visualizations are included. The visualizations are in
color and include some 2D and 3D, some static and dynamic and some interactive.

Programming Wisdom
We integrate into the discussions programming wisdom from the authors’ combined nine
decades of programming and teaching experience, including:

• Good programming practices and preferred Python idioms that help you pro-
duce clearer, more understandable and more maintainable programs.

• Common programming errors to reduce the likelihood that you’ll make them.

• Error-prevention tips with suggestions for exposing bugs and removing them
from your programs. Many of these tips describe techniques for preventing bugs
from getting into your programs in the first place.

• Performance tips that highlight opportunities to make your programs run faster
or minimize the amount of memory they occupy.

_ _ _ _ g y, y ,

 Software Used in the Book 39

• Software engineering observations that highlight architectural and design issues
for proper software construction, especially for larger systems.

Wrap-Up
Chapters 2–17 end with Wrap-Up sections summarizing what you’ve learned.

Index
We have included an extensive index. The defining occurrences of key terms are high-
lighted with a bold page number.

Software Used in the Book
All the software you’ll need for this book is available for Windows, macOS and Linux and is
free for download from the Internet. We wrote the book’s examples using the free Anaconda
Python distribution. It includes most of the Python, visualization and data science libraries
you’ll need, as well as Python, the IPython interpreter, Jupyter Notebooks and Spyder, con-
sidered one of the best Python data science integrated development environments (IDEs)—
we use only IPython and Jupyter Notebooks for program development in the book. The
Before You Begin section discusses installing Anaconda and other items you’ll need for work-
ing with our examples.

Python Documentation
You’ll find the following documentation especially helpful as you work through the book:

• The Python Standard Library:

 https://docs.python.org/3/library/index.html

• The Python Language Reference:

 https://docs.python.org/3/reference/index.html

• Python documentation list:

 https://docs.python.org/3/

Getting Your Questions Answered
Online forums enable you to interact with other Python programmers and get your
Python questions answered. Popular Python and general programming forums include:

• python-forum.io

• StackOverflow.com

• https://www.dreamincode.net/forums/forum/29-python/

Also, many vendors provide forums for their tools and libraries. Most of the libraries you’ll
use in this book are managed and maintained at github.com. Some library maintainers
provide support through the Issues tab on a given library’s GitHub page. If you cannot
find an answer to your questions online, please see our web page for the book at

http://www.deitel.com47

47. Our website is undergoing a major upgrade. If you do not find something you need, please write to
us directly at deitel@deitel.com.

_ _ _ _ g y, y ,

http://github.com
http://python-forum.io
http://StackOverflow.com
mailto:deitel@deitel.com
http://www.deitel.com
https://www.dreamincode.net/forums/forum/29-python/
https://docs.python.org/3/
https://docs.python.org/3/reference/index.html
https://docs.python.org/3/library/index.html

https://www.pearsonglobaleditions.com

contains:

• Downloadable Python source code (.py files) and Jupyter Notebooks (.ipynb
files) for the book’s code examples, for code-based Self-Check Exercises and for
end-of-chapter exercises that have code as part of the exercise description.

• VideoNotes, in which co-author Paul Deitel explains most of the examples in the
book’s core Python chapters.

For download instructions, see the Before You Begin section that follows this Preface. New
copies of this book come with a Companion Website access code on the book’s inside
front cover. If the access code is already visible or there isn’t one, you purchased a used
book. Access codes are also available on the inside front cover if you are using the eBook
or the eText.

Instructor Supplements on Pearson’s Instructor Resource Center
The following supplements are available to qualified instructors only through Pearson Edu-
cation’s IRC (Instructor Resource Center) at https://www.pearsonglobaleditions.com:

• PowerPoint slides.

• Instructor Solutions Manual with solutions to many of the exercises. Solutions
are not provided for “project” and “research” exercises—many of which are sub-
stantial and appropriate for term projects, directed-study projects, capstone-course

_ _ _ _ g y, y ,

40 Preface

Getting Jupyter Help
Jupyter Notebooks support is provided through:

• Project Jupyter Google Group:

 https://groups.google.com/forum/#!forum/jupyter

• Jupyter real-time chat room:

 https://gitter.im/jupyter/jupyter

• GitHub

 https://github.com/jupyter/help

• StackOverflow:

 https://stackoverflow.com/questions/tagged/jupyter

• Jupyter for Education Google Group (for instructors teaching with Jupyter):

 https://groups.google.com/forum/#!forum/jupyter-education

Student and Instructor Supplements
The following supplements are available to students and instructors.

Code Examples, Videos Notes and Companion Website
To get the most out of the presentation, you should execute each code example in parallel
with reading the corresponding discussion. The book’s Companion Website at

https://groups.google.com/forum/#!forum/jupyter-education
https://stackoverflow.com/questions/tagged/jupyter
https://github.com/jupyter/help
https://gitter.im/jupyter/jupyter
https://groups.google.com/forum/#!forum/jupyter
https://www.pearsonglobaleditions.com
https://www.pearsonglobaleditions.com

 Keeping in Touch with the Authors 41

projects and thesis topics. Before assigning a particular exercise for homework,
instructors should check the IRC to be sure the solution is available.

• Test Item File with multiple-choice, short-answer questions and answers. These
are easy to use in automated assessment tools.

Please do not write to us requesting access to the Pearson Instructor’s Resource
Center which contains the book’s instructor supplements, including exercise solutions.
Access is strictly limited to college instructors teaching from the book. Instructors may
obtain access through their Pearson representatives.

Keeping in Touch with the Authors
For answers to questions, syllabus assistance or to report an error, send an e-mail to us at

deitel@deitel.com

or interact with us via social media:

• Facebook® (http://www.deitel.com/deitelfan)

• Twitter® (@deitel)

• LinkedIn® (http://linkedin.com/company/deitel-&-associates)

• YouTube® (http://youtube.com/DeitelTV)

Acknowledgments
We’d like to thank Barbara Deitel for long hours devoted to Internet research on this
project. We’re fortunate to have worked with the dedicated team of publishing profes-
sionals at Pearson. We appreciate the guidance, wisdom and energy of Tracy Johnson
(Executive Portfolio Manager, Higher Ed Courseware, Computer Science)—she
challenged us at every step of the process to “get it right.” Carole Snyder managed the
book’s production and interacted with Pearson’s permissions team, promptly clearing
our graphics and citations.

We wish to acknowledge the efforts of our academic and professional reviewers. Meghan
Jacoby and Patricia Byron-Kimball recruited the reviewers and managed the review process.

_ _ _ _ g y, y ,

http://youtube.com/DeitelTV
http://linkedin.com/company/deitel-&-associates
http://www.deitel.com/deitelfan
mailto:deitel@deitel.com

42 Preface

Adhering to a tight schedule, the reviewers scrutinized our work, providing countless sugges-
tions for improving the accuracy, completeness and timeliness of the presentation.

A Special Thank You
Our thanks to Prof. Alison Sanchez for class-testing the book prepublication in her new
“Business Analytics Strategy” class at the University of San Diego. She reviewed the
lengthy proposal, adopting the book sight unseen and signed on as a full-book reviewer in
parallel with using the book in her class. Her guidance (and courage) throughout the entire
book-development process are sincerely appreciated.

Well, there you have it! As you read the book, we’d appreciate your comments, criti-
cisms, corrections and suggestions for improvement. Please send all correspondence to:

deitel@deitel.com

We’ll respond promptly.
Welcome again to the exciting open-source world of Python programming. We hope

you enjoy this look at leading-edge computer-applications development with Python, IPy-
thon, Jupyter Notebooks, AI, big data and the cloud. We wish you great success!

Paul and Harvey Deitel

Reviewers

Proposal Reviewers
Dr. Irene Bruno, Associate Professor in the

Department of Information Sciences and
Technology, George Mason University

Lance Bryant, Associate Professor, Department
of Mathematics, Shippensburg University

Daniel Chen, Data Scientist, Lander Analytics
Garrett Dancik, Associate Professor of Com-

puter Science/Bioinformatics Department of
Computer Science, Eastern Connecticut
State University

Dr. Marsha Davis, Department Chair of Mathe-
matical Sciences, Eastern Connecticut State
University

Roland DePratti, Adjunct Professor of Computer
Science, Eastern Connecticut State University

Shyamal Mitra, Senior Lecturer, Computer Sci-
ence, University of Texas at Austin

Dr. Mark Pauley, Senior Research Fellow, Bioin-
formatics, School of Interdisciplinary Infor-
matics, University of Nebraska at Omaha

Sean Raleigh, Associate Professor of Mathemat-
ics, Chair of Data Science, Westminster
College

Alison Sanchez, Assistant Professor in Econom-
ics, University of San Diego

Dr. Harvey Siy, Associate Professor of Com-
puter Science, Information Science and Tech-
nology, University of Nebraska at Omaha

Jamie Whitacre, Independent Data Science
Consultant

Book Reviewers
Daniel Chen, Data Scientist, Lander Analytics
Garrett Dancik, Associate Professor of Com-

puter Science/Bioinformatics, Eastern Con-
necticut State University

Pranshu Gupta, Assistant Professor, Computer
Science, DeSales University

David Koop, Assistant Professor, Data Science
Program Co-Director, U-Mass Dartmouth

Ramon Mata-Toledo, Professor, Computer Sci-
ence, James Madison University

Shyamal Mitra, Senior Lecturer, Computer Sci-
ence, University of Texas at Austin

Alison Sanchez, Assistant Professor in Econom-
ics, University of San Diego

José Antonio González Seco, IT Consultant
Jamie Whitacre, Independent Data Science

Consultant
Elizabeth Wickes, Lecturer, School of Informa-

tion Sciences, University of Illinois

_ _ _ _ g y, y ,

mailto:deitel@deitel.com

Acknowledgments for the Global Edition
Pearson would like to acknowledge and thank the following for their work on the
Global Edition.

Contributor
Greet Baldewijns, KU Leuven

Reviewers
Ritesh Ajoodha, The University of the Witwatersrand
David Merand, The University of the Witwatersrand
Faruk Tokdemir, Middle East Technical University

_ _ _ _ g y, y ,

44 Preface

About the Authors
Paul J. Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is an MIT
graduate with 38 years of experience in computing. Paul is one of the world’s most expe-
rienced programming-languages trainers, having taught professional courses to software
developers since 1992. He has delivered hundreds of programming courses to industry cli-
ents internationally, including Cisco, IBM, Siemens, Sun Microsystems (now Oracle),
Dell, Fidelity, NASA at the Kennedy Space Center, the National Severe Storm Labora-
tory, White Sands Missile Range, Rogue Wave Software, Boeing, Nortel Networks, Puma,
iRobot and many more. He and his co-author, Dr. Harvey M. Deitel, are the world’s best-
selling programming-language textbook/professional book/video authors.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates,
Inc., has 58 years of experience in computing. Dr. Deitel earned B.S. and M.S. degrees in
Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston University—
he studied computing in each of these programs before they spun off Computer Science
programs. He has extensive college teaching experience, including earning tenure and serv-
ing as the Chairman of the Computer Science Department at Boston College before
founding Deitel & Associates, Inc., in 1991 with his son, Paul. The Deitels’ publications
have earned international recognition, with more than 100 translations published in Jap-
anese, German, Russian, Spanish, French, Polish, Italian, Simplified Chinese, Traditional
Chinese, Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hun-
dreds of programming courses to academic, corporate, government and military clients.

About Deitel® & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s training clients include some of the world’s largest
companies, government agencies, branches of the military, and academic institutions. The
company offers instructor-led training courses delivered at client sites worldwide on major
programming languages and platforms.

Through its 44-year publishing partnership with Pearson/Prentice Hall, Deitel & Asso-
ciates, Inc., publishes leading-edge programming textbooks and professional books in print
and e-book formats, LiveLessons video courses, Safari-Live online seminars and Revel™
interactive multimedia courses. To contact Deitel & Associates, Inc. and the authors, or to
request a proposal on-site, instructor-led training, write to:

deitel@deitel.com

To learn more about Deitel on-site corporate training, visit

http://www.deitel.com/training

_ _ _ _ g y, y ,

http://www.deitel.com/training
mailto:deitel@deitel.com

Before You
Begin

This section contains information you should review before using this book.

Font and Naming Conventions
We show Python code and commands and file and folder names in a sans-serif font,
and on-screen components, such as menu names, in a bold sans-serif font. We use italics
for emphasis and bold occasionally for strong emphasis.

Getting the Code Examples
You can download the examples.zip file containing the book’s examples from Pearson’s
Companion Website for the book at:

https://www.pearsonglobaleditions.com

When the download completes, locate it on your system, and extract its examples
folder into your user account’s Documents folder:

• Windows: C:\Users\YourAccount\Documents\examples

• macOS or Linux: ~/Documents/examples

Most operating systems have a built-in extraction tool. You also may use an archive tool
such as 7-Zip (www.7-zip.org) or WinZip (www.winzip.com).

Structure of the examples Folder
You’ll execute three kinds of examples in this book:

• Individual code snippets in the IPython interactive environment.

• Complete applications, which are known as scripts.

• Jupyter Notebooks—a convenient interactive, web-browser-based environment
in which you can write and execute code and intermix the code with text, images
and video.

We demonstrate each in Section 1.10’s test drives.
The examples folder contains one subfolder per chapter. These are named ch##,

where ## is the two-digit chapter number 01 to 17—for example, ch01. Except for Chap-
ters 14, 16 and 17, each chapter’s folder contains the following items:

• snippets_ipynb—A folder containing the chapter’s Jupyter Notebook files.

• snippets_py—A folder containing Python source code files in which each code
snippet we present is separated from the next by a blank line. You can copy and
paste these snippets into IPython or into new Jupyter Notebooks that you create.

• Script files and their supporting files.

_ _ _ _ g y, y ,

http://www.winzip.com
http://www.7-zip.org
https://www.pearsonglobaleditions.com

46 Before You Begin

Chapter 14 contains one application. Chapters 16 and 17 explain where to find the files
you need in the ch16 and ch17 folders, respectively.

Installing Anaconda
We use the easy-to-install Anaconda Python distribution with this book. It comes with
almost everything you’ll need to work with our examples, including:

• the IPython interpreter,

• most of the Python and data science libraries we use,

• a local Jupyter Notebooks server so you can load and execute our notebooks, and

• various other software packages, such as the Spyder Integrated Development
Environment (IDE)—we use only IPython and Jupyter Notebooks in this book.

Download the Python 3.x Anaconda installer for Windows, macOS or Linux from:

https://www.anaconda.com/download/

When the download completes, run the installer and follow the on-screen instructions. To
ensure that Anaconda runs correctly, do not move its files after you install it.

Updating Anaconda
Next, ensure that Anaconda is up to date. Open a command-line window on your system
as follows:

• On macOS, open a Terminal from the Applications folder’s Utilities subfolder.

• On Windows, open the Anaconda Prompt from the start menu. When doing this
to update Anaconda (as you’ll do here) or to install new packages (discussed
momentarily), execute the Anaconda Prompt as an administrator by right-click-
ing, then selecting More > Run as administrator. (If you cannot find the Anaconda
Prompt in the start menu, simply search for it in the Type here to search field at
the bottom of your screen.)

• On Linux, open your system’s Terminal or shell (this varies by Linux distribution).

In your system’s command-line window, execute the following commands to update
Anaconda’s installed packages to their latest versions:

1. conda update conda

2. conda update --all

Package Managers
The conda command used above invokes the conda package manager—one of the two key
Python package managers you’ll use in this book. The other is pip. Packages contain the files
required to install a given Python library or tool. Throughout the book, you’ll use conda to
install additional packages, unless those packages are not available through conda, in which
case you’ll use pip. Some people prefer to use pip exclusively as it currently supports more
packages. If you ever have trouble installing a package with conda, try pip instead.

_ _ _ _ g y, y ,

https://www.anaconda.com/download/

 Installing the Prospector Static Code Analysis Tool 47

Installing the Prospector Static Code Analysis Tool
In the book’s exercises, we ask you to analyze Python code using the Prospector analysis
tool, which checks your Python code for common errors and helps you improve your code.
To install Prospector and the Python libraries it uses, run the following command in the
command-line window:

pip install prospector

Installing jupyter-matplotlib
We implement several animations using a visualization library called Matplotlib. To use
them in Jupyter Notebooks, you must install a tool called ipympl. In the Terminal, Ana-
conda Command Prompt or shell you opened previously, execute the following com-
mands1 one at a time:

conda install -c conda-forge ipympl
conda install nodejs
jupyter labextension install @jupyter-widgets/jupyterlab-manager
jupyter labextension install jupyter-matplotlib

Installing the Other Packages
Anaconda comes with approximately 300 popular Python and data science packages for
you, such as NumPy, Matplotlib, pandas, Regex, BeautifulSoup, requests, Bokeh, SciPy,
SciKit-Learn, Seaborn, Spacy, sqlite, statsmodels and many more. The number of addi-
tional packages you’ll need to install throughout the book will be small and we’ll provide
installation instructions as necessary. As you discover new packages, their documentation
will explain how to install them.

Get a Twitter Developer Account
If you intend to use our “Data Mining Twitter” chapter and any Twitter-based examples
in subsequent chapters, apply for a Twitter developer account. Twitter now requires reg-
istration for access to their APIs. To apply, fill out and submit the application at

https://developer.twitter.com/en/apply-for-access

Twitter reviews every application. At the time of this writing, personal developer accounts
were being approved immediately and company-account applications were taking from
several days to several weeks. Approval is not guaranteed.

Internet Connection Required in Some Chapters
While using this book, you’ll need an Internet connection to install various additional
Python libraries. In some chapters, you’ll register for accounts with cloud-based services,
mostly to use their free tiers. Some services require credit cards to verify your identity. In
a few cases, you’ll use services that are not free. In these cases, you’ll take advantage of
monetary credits provided by the vendors so you can try their services without incurring
charges. Caution: Some cloud-based services incur costs once you set them up. When

1. https://github.com/matplotlib/jupyter-matplotlib.

_ _ _ _ g y, y ,

https://github.com/matplotlib/jupyter-matplotlib
https://developer.twitter.com/en/apply-for-access

48 Before You Begin

you complete our case studies using such services, be sure to promptly delete the
resources you allocated.

Slight Differences in Program Outputs
When you execute our examples, you might notice some differences between the results
we show and your own results:

• Due to differences in how calculations are performed with floating-point num-
bers (like –123.45, 7.5 or 0.0236937) across operating systems, you might see
minor variations in outputs—especially in digits far to the right of the decimal
point.

• When we show outputs that appear in separate windows, we crop the windows
to remove their borders.

Getting Your Questions Answered
Online forums enable you to interact with other Python programmers and get your
Python questions answered. Popular Python and general programming forums include:

• python-forum.io

• StackOverflow.com

• https://www.dreamincode.net/forums/forum/29-python/

Also, many vendors provide forums for their tools and libraries. Most of the libraries you’ll
use in this book are managed and maintained at github.com. Some library maintainers
provide support through the Issues tab on a given library’s GitHub page. If you cannot
find an answer to your questions online, please see our web page for the book at

http://www.deitel.com1

You’re now ready to begin reading Intro to Python for Computer Science and Data Sci-
ences: Learning to Program with AI, Big Data and the Cloud. We hope you enjoy the book!

1. Our website is undergoing a major upgrade. If you do not find something you need, please write to
us directly at deitel@deitel.com.

_ _ _ _ g y, y ,

http://github.com
http://python-forum.io
http://StackOverflow.com
mailto:deitel@deitel.com
http://www.deitel.com
https://www.dreamincode.net/forums/forum/29-python/

1Introduction to Computers
and Python

O b j e c t i v e s
In this chapter you’ll:
 Learn about exciting recent

developments in computing.
 Learn computer hardware,

software and Internet basics.
 Understand the data hierarchy

from bits to databases.
 Understand the different types

of programming languages.
 Understand object-oriented

programming basics.
 Understand the strengths of

Python and other leading
programming languages.

 Understand the importance of
libraries.

 Be introduced to key Python
and data-science libraries
you’ll use in this book.

 Test-drive the IPython
interpreter’s interactive mode
for executing Python code.

 Execute a Python script that
animates a bar chart.

 Create and test-drive a web-
browser-based Jupyter
Notebook for executing
Python code.

 Learn how big “big data” is
and how quickly it’s getting
even bigger.

 Read a big-data case study on
a mobile navigation app.

 Be introduced to artificial
intelligence—at the
intersection of computer
science and data science.

_ _ _ _ g y, y ,

50 Introduction to Computers and Python

1.1 Introduction
Welcome to Python—one of the world’s most widely used computer programming lan-
guages and, according to the Popularity of Programming Languages (PYPL) Index, the
world’s most popular.1 You’re probably familiar with many of the powerful tasks comput-
ers perform. In this textbook, you’ll get intensive, hands-on experience writing Python
instructions that command computers to perform those and other tasks. Software (that is,
the Python instructions you write, which are also called code) controls hardware (that is,
computers and related devices).

Here, we introduce terminology and concepts that lay the groundwork for the Python
programming you’ll learn in Chapters 2–11 and the big-data, artificial-intelligence and
cloud-based case studies we present in Chapters 12–17. We’ll introduce hardware and
software concepts and overview the data hierarchy—from individual bits to databases,
which store the massive amounts of data companies need to implement contemporary
applications such as Google Search, Waze, Uber, Airbnb and a myriad of others.

We’ll discuss the types of programming languages and introduce object-oriented pro-
gramming terminology and concepts. You’ll learn why Python has become so popular. We’ll
introduce the Python Standard Library and various data-science libraries that help you avoid
“reinventing the wheel.” You’ll use these libraries to create software objects that you’ll interact
with to perform significant tasks with modest numbers of instructions. We’ll introduce addi-
tional software technologies that you’re likely to use as you develop software.

Next, you’ll work through three test-drives showing how to execute Python code:

• In the first, you’ll use IPython to execute Python instructions interactively and
immediately see their results.

1.1 Introduction
1.2 Hardware and Software

1.2.1 Moore’s Law
1.2.2 Computer Organization

1.3 Data Hierarchy
1.4 Machine Languages, Assembly

Languages and High-Level Languages
1.5 Introduction to Object Technology
1.6 Operating Systems
1.7 Python
1.8 It’s the Libraries!

1.8.1 Python Standard Library
1.8.2 Data-Science Libraries

1.9 Other Popular Programming
Languages

1.10 Test-Drives: Using IPython and
Jupyter Notebooks

1.10.1 Using IPython Interactive Mode as a
Calculator

1.10.2 Executing a Python Program Using
the IPython Interpreter

1.10.3 Writing and Executing Code in a
Jupyter Notebook

1.11 Internet and World Wide Web
1.11.1 Internet: A Network of Networks
1.11.2 World Wide Web: Making the

Internet User-Friendly
1.11.3 The Cloud
1.11.4 Internet of Things

1.12 Software Technologies
1.13 How Big Is Big Data?

1.13.1 Big Data Analytics
1.13.2 Data Science and Big Data Are Making

a Difference: Use Cases
1.14 Case Study—A Big-Data Mobile

Application
1.15 Intro to Data Science: Artificial

Intelligence—at the Intersection of
CS and Data Science
Exercises

1. https://pypl.github.io/PYPL.html (as of January 2019).

_ _ _ _ g y, ,

https://pypl.github.io/PYPL.html

1.2 Hardware and Software 51

• In the second, you’ll execute a substantial Python application that will display an
animated bar chart summarizing rolls of a six-sided die as they occur. You’ll see
the “Law of Large Numbers” in action. In Chapter 6, you’ll build this application
with the Matplotlib visualization library.

• In the last, we’ll introduce Jupyter Notebooks using JupyterLab—an interactive,
web-browser-based tool in which you can conveniently write and execute Python
instructions. Jupyter Notebooks enable you to include text, images, audios, vid-
eos, animations and code.

In the past, most computer applications ran on “standalone” computers (that is, not
networked together). Today’s applications can be written with the aim of communicating
among the world’s computers via the Internet. We’ll introduce the Internet, the World
Wide Web, the Cloud and the Internet of Things (IoT), laying the groundwork for the
contemporary applications you’ll develop in Chapters 12–17.

You’ll learn just how big “big data” is and how quickly it’s getting even bigger. Next,
we’ll present a big-data case study on the Waze mobile navigation app, which uses many
current technologies to provide dynamic driving directions that get you to your destina-
tion as quickly and as safely as possible. As we walk through those technologies, we’ll men-
tion where you’ll use many of them in this book. The chapter closes with our first Intro to
Data Science section in which we discuss a key intersection between computer science and
data science—artificial intelligence.

1.2 Hardware and Software
Computers can perform calculations and make logical decisions phenomenally faster than
human beings can. Many of today’s personal computers can perform billions of calcula-
tions in one second—more than a human can perform in a lifetime. Supercomputers are
already performing thousands of trillions (quadrillions) of instructions per second! IBM has
developed the IBM Summit supercomputer, which can perform over 122 quadrillion cal-
culations per second (122 petaflops)!2 To put that in perspective, the IBM Summit super-
computer can perform in one second almost 16 million calculations for every person on the
planet!3 And supercomputing upper limits are growing quickly.

Computers process data under the control of sequences of instructions called com-
puter programs (or simply programs). These software programs guide the computer
through ordered actions specified by people called computer programmers.

A computer consists of various physical devices referred to as hardware (such as the
keyboard, screen, mouse, solid-state disks, hard disks, memory, DVD drives and process-
ing units). Computing costs are dropping dramatically, due to rapid developments in hard-
ware and software technologies. Computers that might have filled large rooms and cost
millions of dollars decades ago are now inscribed on computer chips smaller than a finger-
nail, costing perhaps a few dollars each. Ironically, silicon is one of the most abundant
materials on Earth—it’s an ingredient in common sand. Silicon-chip technology has made
computing so economical that computers have become a commodity.

2. https://en.wikipedia.org/wiki/FLOPS.
3. For perspective on how far computing performance has come, consider this: In his early computing

days, Harvey Deitel used the Digital Equipment Corporation PDP-1 (https://en.wikipedia.org/
wiki/PDP-1), which was capable of performing only 93,458 operations per second.

_ _ _ _ g y, ,

https://en.wikipedia.org/wiki/PDP-1
https://en.wikipedia.org/wiki/PDP-1
https://en.wikipedia.org/wiki/FLOPS

52 Introduction to Computers and Python

1.2.1 Moore’s Law
Every year, you probably expect to pay at least a little more for most products and services.
The opposite has been the case in the computer and communications fields, especially
with regard to the hardware supporting these technologies. For many decades, hardware
costs have fallen rapidly.

Every year or two, the capacities of computers have approximately doubled inexpen-
sively. This remarkable trend often is called Moore’s Law, named for the person who iden-
tified it in the 1960s, Gordon Moore, co-founder of Intel—one of the leading
manufacturers of the processors in today’s computers and embedded systems. Moore’s
Law and related observations apply especially to

• the amount of memory that computers have for programs,

• the amount of secondary storage (such as solid-state drive storage) they have to
hold programs and data over longer periods of time, and

• their processor speeds—the speeds at which they execute their programs (that is,
do their work).

Similar growth has occurred in the communications field—costs have plummeted as
enormous demand for communications bandwidth (that is, information-carrying capac-
ity) has attracted intense competition. We know of no other fields in which technology
improves so quickly and costs fall so rapidly. Such phenomenal improvement is truly fos-
tering the Information Revolution.

1.2.2 Computer Organization
Regardless of differences in physical appearance, computers can be envisioned as divided
into various logical units or sections:

Input Unit
This “receiving” section obtains information (data and computer programs) from input
devices and places it at the disposal of the other units for processing. Most user input is
entered into computers through keyboards, touch screens and mouse devices. Other forms
of input include receiving voice commands, scanning images and barcodes, reading from
secondary storage devices (such as hard drives, Blu-ray Disc™ drives and USB flash
drives—also called “thumb drives” or “memory sticks”), receiving video from a webcam
and having your computer receive information from the Internet (such as when you
stream videos from YouTube® or download e-books from Amazon). Newer forms of
input include position data from a GPS device, motion and orientation information from
an accelerometer (a device that responds to up/down, left/right and forward/backward
acceleration) in a smartphone or wireless game controller (such as those for Microsoft®

Xbox®, Nintendo Switch™ and Sony® PlayStation®) and voice input from intelligent
assistants like Apple Siri®, Amazon Echo® and Google Home®.

Output Unit
This “shipping” section takes information the computer has processed and places it on var-
ious output devices to make it available for use outside the computer. Most information
that’s output from computers today is displayed on screens (including touch screens),
printed on paper (“going green” discourages this), played as audio or video on smart-

_ _ _ _ g y, ,

1.2 Hardware and Software 53

phones, tablets, PCs and giant screens in sports stadiums, transmitted over the Internet or
used to control other devices, such as self-driving cars, robots and “intelligent” appliances.
Information is also commonly output to secondary storage devices, such as solid-state
drives (SSDs), hard drives, DVD drives and USB flash drives. Popular recent forms of out-
put are smartphone and game-controller vibration, virtual reality devices like Oculus
Rift®, Sony® PlayStation® VR and Google Daydream View™ and Samsung Gear VR®,
and mixed reality devices like Magic Leap® One and Microsoft HoloLens™.

Memory Unit
This rapid-access, relatively low-capacity “warehouse” section retains information that has
been entered through the input unit, making it immediately available for processing when
needed. The memory unit also retains processed information until it can be placed on out-
put devices by the output unit. Information in the memory unit is volatile—it’s typically
lost when the computer’s power is turned off. The memory unit is often called either
memory, primary memory or RAM (Random Access Memory). Main memories on desk-
top and notebook computers contain as much as 128 GB of RAM, though 8 to 16 GB is
most common. GB stands for gigabytes; a gigabyte is approximately one billion bytes. A
byte is eight bits. A bit is either a 0 or a 1.

Arithmetic and Logic Unit (ALU)
This “manufacturing” section performs calculations, such as addition, subtraction, multi-
plication and division. It also contains the decision mechanisms that allow the computer,
for example, to compare two items from the memory unit to determine whether they’re
equal. In today’s systems, the ALU is part of the next logical unit, the CPU.

Central Processing Unit (CPU)
This “administrative” section coordinates and supervises the operation of the other sec-
tions. The CPU tells the input unit when information should be read into the memory
unit, tells the ALU when information from the memory unit should be used in calcula-
tions and tells the output unit when to send information from the memory unit to specific
output devices. Most computers have multicore processors that implement multiple pro-
cessors on a single integrated-circuit chip. Such processors can perform many operations
simultaneously. A dual-core processor has two CPUs, a quad-core processor has four and an
octa-core processor has eight. Intel has some processors with up to 72 cores. Today’s desktop
computers have processors that can execute billions of instructions per second.

Secondary Storage Unit
This is the long-term, high-capacity “warehousing” section. Programs or data not actively
being used by the other units normally are placed on secondary storage devices (e.g., your
hard drive) until they’re again needed, possibly hours, days, months or even years later.
Information on secondary storage devices is persistent—it’s preserved even when the com-
puter’s power is turned off. Secondary storage information takes much longer to access
than information in primary memory, but its cost per unit is much less. Examples of sec-
ondary storage devices include solid-state drives (SSDs), hard drives, read/write Blu-ray
drives and USB flash drives. Many current drives hold terabytes (TB) of data—a terabyte
is approximately one trillion bytes). Typical hard drives on desktop and notebook com-
puters hold up to 4 TB, and some recent desktop-computer hard drives hold up to 15 TB.4

_ _ _ _ g y, ,

54 Introduction to Computers and Python

Self Check for Section 1.2
1 (Fill-In) Every year or two, the capacities of computers have approximately doubled
inexpensively. This remarkable trend often is called .
Answer: Moore’s Law.

2 (True/False) Information in the memory unit is persistent—it’s preserved even when
the computer’s power is turned off
Answer: False. Information in the memory unit is volatile—it’s typically lost when the
computer’s power is turned off.

3 (Fill-In) Most computers have processors that implement multiple proces-
sors on a single integrated-circuit chip. Such processors can perform many operations
simultaneously.
Answer: multicore.

1.3 Data Hierarchy
Data items processed by computers form a data hierarchy that becomes larger and more
complex in structure as we progress from the simplest data items (called “bits”) to richer
ones, such as characters and fields. The following diagram illustrates a portion of the data
hierarchy:

4. https://www.zdnet.com/article/worlds-biggest-hard-drive-meet-western-digitals-

15tb-monster/.

Tom Blue

Sally Black

Judy Green File

J u d y Field

Character J

Record

Iris Orange

Randy Red

01001010

1 Bit

Judy Green

_ _ _ _ g y, ,

https://www.zdnet.com/article/worlds-biggest-hard-drive-meet-western-digitals-15tb-monster/
https://www.zdnet.com/article/worlds-biggest-hard-drive-meet-western-digitals-15tb-monster/

1.3 Data Hierarchy 55

Bits
A bit (short for “binary digit”—a digit that can assume one of two values) is the smallest
data item in a computer. It can have the value 0 or 1. Remarkably, the impressive functions
performed by computers involve only the simplest manipulations of 0s and 1s—examining
a bit’s value, setting a bit’s value and reversing a bit’s value (from 1 to 0 or from 0 to 1). Bits
for the basis of the binary number system, which you can study in-depth in our online
“Number Systems” appendix.

Characters
Work with data in the low-level form of bits is tedious. Instead, people prefer to work with
decimal digits (0–9), letters (A–Z and a–z) and special symbols such as

$ @ % & * () – + " : ; , ? /

Digits, letters and special symbols are known as characters. The computer’s character set
contains the characters used to write programs and represent data items. Computers pro-
cess only 1s and 0s, so a computer’s character set represents every character as a pattern of
1s and 0s. Python uses Unicode® characters that are composed of one, two, three or four
bytes (8, 16, 24 or 32 bits, respectively)—known as UTF-8 encoding.5

Unicode contains characters for many of the world’s languages. The ASCII (Ameri-
can Standard Code for Information Interchange) character set is a subset of Unicode that
represents letters (a–z and A–Z), digits and some common special characters. You can view
the ASCII subset of Unicode at

https://www.unicode.org/charts/PDF/U0000.pdf

The Unicode charts for all languages, symbols, emojis and more are viewable at

http://www.unicode.org/charts/

Fields
Just as characters are composed of bits, fields are composed of characters or bytes. A field
is a group of characters or bytes that conveys meaning. For example, a field consisting of
uppercase and lowercase letters can be used to represent a person’s name, and a field con-
sisting of decimal digits could represent a person’s age.

Records
Several related fields can be used to compose a record. In a payroll system, for example,
the record for an employee might consist of the following fields (possible types for these
fields are shown in parentheses):

• Employee identification number (a whole number).

• Name (a string of characters).

• Address (a string of characters).

• Hourly pay rate (a number with a decimal point).

• Year-to-date earnings (a number with a decimal point).

• Amount of taxes withheld (a number with a decimal point).

5. https://docs.python.org/3/howto/unicode.html.

_ _ _ _ g y, ,

https://docs.python.org/3/howto/unicode.html
http://www.unicode.org/charts/
https://www.unicode.org/charts/PDF/U0000.pdf

56 Introduction to Computers and Python

Thus, a record is a group of related fields. All the fields listed above belong to the same
employee. A company might have many employees and a payroll record for each.

Files
A file is a group of related records. More generally, a file contains arbitrary data in arbitrary
formats. In some operating systems, a file is viewed simply as a sequence of bytes—any orga-
nization of the bytes in a file, such as organizing the data into records, is a view created by
the application programmer. You’ll see how to do that in Chapter 9, “Files and Excep-
tions.” It’s not unusual for an organization to have many files, some containing billions,
or even trillions, of characters of information.

Databases
A database is a collection of data organized for easy access and manipulation. The most
popular model is the relational database, in which data is stored in simple tables. A table
includes records and fields. For example, a table of students might include first name, last
name, major, year, student ID number and grade-point-average fields. The data for each
student is a record, and the individual pieces of information in each record are the fields.
You can search, sort and otherwise manipulate the data, based on its relationship to multi-
ple tables or databases. For example, a university might use data from the student database
in combination with data from databases of courses, on-campus housing, meal plans, etc.
We discuss databases in Chapter 17, “Big Data: Hadoop, Spark, NoSQL and IoT.”

Big Data
The table below shows some common byte measurements:

The amount of data being produced worldwide is enormous and its growth is accelerating.
Big data applications deal with massive amounts of data. This field is growing quickly, cre-
ating lots of opportunity for software developers. Millions of IT jobs globally already are
supporting big data applications. Section 1.13 discusses big data in more depth. You’ll
study big data and associated technologies in Chapter 17.

Self Check
1 (Fill-In) A(n) (short for “binary digit”—a digit that can assume one of two
values) is the smallest data item in a computer.
Answer: bit.

Unit Bytes Which is approximately

 1 kilobyte (KB) 1024 bytes 103 (1024) bytes exactly

 1 megabyte (MB) 1024 kilobytes 106 (1,000,000) bytes

 1 gigabyte (GB) 1024 megabytes 109 (1,000,000,000) bytes

 1 terabyte (TB) 1024 gigabytes 1012 (1,000,000,000,000) bytes

 1 petabyte (PB) 1024 terabytes 1015 (1,000,000,000,000,000) bytes

 1 exabyte (EB) 1024 petabytes 1018 (1,000,000,000,000,000,000) bytes

 1 zettabyte (ZB) 1024 exabytes 1021 (1,000,000,000,000,000,000,000) bytes

_ _ _ _ g y, ,

1.4 Machine Languages, Assembly Languages and High-Level Languages 57

2 (True/False) In some operating systems, a file is viewed simply as a sequence of
bytes—any organization of the bytes in a file, such as organizing the data into records, is
a view created by the application programmer.
Answer: True.

3 (Fill-In) A database is a collection of data organized for easy access and manipulation.
The most popular model is the database, in which data is stored in simple tables.
Answer: relational

1.4 Machine Languages, Assembly Languages and High-
Level Languages
Programmers write instructions in various programming languages, some directly under-
standable by computers and others requiring intermediate translation steps. Hundreds of
such languages are in use today. These may be divided into three general types:

1. Machine languages.

2. Assembly languages.

3. High-level languages.

Machine Languages
Any computer can directly understand only its own machine language, defined by its
hardware design. Machine languages generally consist of strings of numbers (ultimately
reduced to 1s and 0s) that instruct computers to perform their most elementary operations
one at a time. Machine languages are machine dependent (a particular machine language
can be used on only one type of computer). Such languages are cumbersome for humans.
For example, here’s a section of an early machine-language payroll program that adds over-
time pay to base pay and stores the result in gross pay:

+1300042774
+1400593419
+1200274027

Assembly Languages and Assemblers
Programming in machine language was simply too slow and tedious for most program-
mers. Instead of using the strings of numbers that computers could directly understand,
programmers began using English-like abbreviations to represent elementary operations.
These abbreviations formed the basis of assembly languages. Translator programs called
assemblers were developed to convert assembly-language programs to machine language
at computer speeds. The following section of an assembly-language payroll program also
adds overtime pay to base pay and stores the result in gross pay:

load basepay
add overpay
store grosspay

Although such code is clearer to humans, it’s incomprehensible to computers until trans-
lated to machine language.

_ _ _ _ g y, ,

58 Introduction to Computers and Python

High-Level Languages and Compilers
With the advent of assembly languages, computer usage increased rapidly, but program-
mers still had to use numerous instructions to accomplish even the simplest tasks. To
speed the programming process, high-level languages were developed in which single
statements could be written to accomplish substantial tasks. A typical high-level-language
program contains many statements, known as the program’s source code.

Translator programs called compilers convert high-level-language source code into
machine language. High-level languages allow you to write instructions that look almost
like everyday English and contain commonly used mathematical notations. A payroll pro-
gram written in a high-level language might contain a single statement such as

grossPay = basePay + overTimePay

From the programmer’s standpoint, high-level languages are preferable to machine
and assembly languages. Python is among the world’s most widely used high-level pro-
gramming languages.

Interpreters
Compiling a large high-level language program into machine language can take consider-
able computer time. Interpreter programs, developed to execute high-level language pro-
grams directly, avoid the delay of compilation, although they run slower than compiled
programs. The most widely used Python implementation—CPython (which is written in
the C programming language)—uses a clever mixture of compilation and interpretation
to run programs.6

Self Check
1 (Fill-In) Translator programs called convert assembly-language programs to
machine language at computer speeds.
Answer: assemblers.

2 (Fill-In) programs, developed to execute high-level-language programs
directly, avoid the delay of compilation, although they run slower than compiled programs
Answer: Interpreter.

3 (True/False) High-level languages allow you to write instructions that look almost like
everyday English and contain commonly used mathematical notations.
Answer: True.

1.5 Introduction to Object Technology
As demands for new and more powerful software are soaring, building software quickly,
correctly and economically is important. Objects, or more precisely, the classes objects come
from, are essentially reusable software components. There are date objects, time objects,
audio objects, video objects, automobile objects, people objects, etc. Almost any noun can
be reasonably represented as a software object in terms of attributes (e.g., name, color and
size) and behaviors (e.g., calculating, moving and communicating). Software-development
groups can use a modular, object-oriented design-and-implementation approach to be

6. https://opensource.com/article/18/4/introduction-python-bytecode.

_ _ _ _ g y, ,

https://opensource.com/article/18/4/introduction-python-bytecode

1.5 Introduction to Object Technology 59

much more productive than with earlier popular techniques like “structured program-
ming.” Object-oriented programs are often easier to understand, correct and modify.

Automobile as an Object
To help you understand objects and their contents, let’s begin with a simple analogy. Sup-
pose you want to drive a car and make it go faster by pressing its accelerator pedal. What must
happen before you can do this? Well, before you can drive a car, someone has to design it.
A car typically begins as engineering drawings, similar to the blueprints that describe the
design of a house. These drawings include the design for an accelerator pedal. The pedal
hides from the driver the complex mechanisms that make the car go faster, just as the brake
pedal “hides” the mechanisms that slow the car, and the steering wheel “hides” the mech-
anisms that turn the car. This enables people with little or no knowledge of how engines,
braking and steering mechanisms work to drive a car easily.

Just as you cannot cook meals in the blueprint of a kitchen, you cannot drive a car’s
engineering drawings. Before you can drive a car, it must be built from the engineering
drawings that describe it. A completed car has an actual accelerator pedal to make it go
faster, but even that’s not enough—the car won’t accelerate on its own (hopefully!), so the
driver must press the pedal to accelerate the car.

Methods and Classes
Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a method. The method houses the program state-
ments that perform its tasks. The method hides these statements from its user, just as the
accelerator pedal of a car hides from the driver the mechanisms of making the car go faster.
In Python, a program unit called a class houses the set of methods that perform the class’s
tasks. For example, a class that represents a bank account might contain one method to
deposit money to an account, another to withdraw money from an account and a third to
inquire what the account’s balance is. A class is similar in concept to a car’s engineering
drawings, which house the design of an accelerator pedal, steering wheel, and so on.

Instantiation
Just as someone has to build a car from its engineering drawings before you can drive a car,
you must build an object of a class before a program can perform the tasks that the class’s
methods define. The process of doing this is called instantiation. An object is then referred
to as an instance of its class.

Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and
effective systems because existing classes and components often have undergone extensive
testing, debugging (that is, finding and removing errors) and performance tuning. Just as the
notion of interchangeable parts was crucial to the Industrial Revolution, reusable classes are
crucial to the software revolution that has been spurred by object technology.

In Python, you’ll typically use a building-block approach to create your programs. To
avoid reinventing the wheel, you’ll use existing high-quality pieces wherever possible. This
software reuse is a key benefit of object-oriented programming.

_ _ _ _ g y, ,

60 Introduction to Computers and Python

Messages and Method Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is implemented
as a method call that tells a method of the object to perform its task. For example, a pro-
gram might call a bank-account object’s deposit method to increase the account’s balance.

Attributes and Instance Variables
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank-account object has
a balance attribute that represents the amount of money in the account. Each bank-
account object knows the balance in the account it represents, but not the balances of the
other accounts in the bank. Attributes are specified by the class’s instance variables. A
class’s (and its object’s) attributes and methods are intimately related, so classes wrap
together their attributes and methods.

Inheritance
A new class of objects can be created conveniently by inheritance—the new class (called
the subclass) starts with the characteristics of an existing class (called the superclass), pos-
sibly customizing them and adding unique characteristics of its own. In our car analogy,
an object of class “convertible” certainly is an object of the more general class “automo-
bile,” but more specifically, the roof can be raised or lowered.

Object-Oriented Analysis and Design (OOAD)
Soon you’ll be writing programs in Python. How will you create the code (i.e., the pro-
gram instructions) for your programs? Perhaps, like many programmers, you’ll simply
turn on your computer and start typing. This approach may work for small programs (like
the ones we present in the early chapters of the book), but what if you were asked to create
a software system to control thousands of automated teller machines for a major bank? Or
suppose you were asked to work on a team of 1,000 software developers building the next
generation of the U.S. air traffic control system? For projects so large and complex, you
should not simply sit down and start writing programs.

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining what the system is supposed to do), then
develop a design that satisfies them (i.e., specifying how the system should do it). Ideally,
you’d go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis-and-design (OOAD) process. Languages like Python are object-
oriented. Programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

_ _ _ _ g y, ,

1.6 Operating Systems 61

Self Check for Section 1.5
1 (Fill-In) To create the best solutions, you should follow a detailed analysis process for
determining your project’s (i.e., defining what the system is supposed to do) and
developing a design that satisfies them (i.e., specifying how the system should do it).
Answer: requirements.

2 (Fill-In) The size, shape, color and weight of an object are of the object’s class.
Answer: attributes.

3 (True/False) Objects, or more precisely, the classes objects come from, are essentially
reusable software components.
Answer: True.

1.6 Operating Systems
Operating systems are software systems that make using computers more convenient for
users, application developers and system administrators. They provide services that allow
each application to execute safely, efficiently and concurrently with other applications. The
software that contains the core components of the operating system is called the kernel.
Linux, Windows and macOS are popular desktop computer operating systems—you can
use any of these with this book. The most popular mobile operating systems used in smart-
phones and tablets are Google’s Android and Apple’s iOS.

Windows—A Proprietary Operating System
In the mid-1980s, Microsoft developed the Windows operating system, consisting of a
graphical user interface built on top of DOS (Disk Operating System)—an enormously
popular personal-computer operating system that users interacted with by typing com-
mands. Windows 10 is Microsoft’s latest operating system—it includes the Cortana per-
sonal assistant for voice interactions. Windows is a proprietary operating system—it’s
controlled by Microsoft exclusively. Windows is by far the world’s most widely used desk-
top operating system.

Linux—An Open-Source Operating System
The Linux operating system is among the greatest successes of the open-source movement.
Open-source software departs from the proprietary software development style that dom-
inated software’s early years. With open-source development, individuals and companies
contribute their efforts in developing, maintaining and evolving software in exchange for
the right to use that software for their own purposes, typically at no charge. Open-source
code is often scrutinized by a much larger audience than proprietary software, so errors
often get removed faster. Open source also encourages innovation.

There are many organizations in the open-source community. Some key ones are:

• Python Software Foundation (responsible for Python).

• GitHub (provides tools for managing open-source projects—it has millions of
them under development).

• The Apache Software Foundation (originally the creators of the Apache web
server, they now oversee 350 open-source projects, including several big data
infrastructure technologies we present in Chapter 17.

_ _ _ _ g y, ,

62 Introduction to Computers and Python

• The Eclipse Foundation (the Eclipse Integrated Development Environment
helps programmers conveniently develop software)

• The Mozilla Foundation (creators of the Firefox web browser)

• OpenML (which focuses on open-source tools and data for machine learning—
you’ll explore machine learning in Chapter 15).

• OpenAI (which does research on artificial intelligence and publishes open-source
tools used in AI reinforcement-learning research).

• OpenCV (which focuses on open-source computer-vision tools that can be used
across a range of operating systems and programming languages—you’ll study
computer-vision applications in Chapter 16).

Rapid improvements to computing and communications, decreasing costs and open-
source software have made it much easier and more economical to create software-based
businesses now than just a decade ago. A great example is Facebook, which was launched
from a college dorm room and built with open-source software.

The Linux kernel is the core of the most popular open-source, freely distributed, full-
featured operating system. It’s developed by a loosely organized team of volunteers and is
popular in servers, personal computers and embedded systems (such as the computer sys-
tems at the heart of smartphones, smart TVs and automobile systems). Unlike that of pro-
prietary operating systems like Microsoft’s Windows and Apple’s macOS, Linux source
code (the program code) is available to the public for examination and modification and
is free to download and install. As a result, Linux users benefit from a huge community of
developers actively debugging and improving the kernel, and the ability to customize the
operating system to meet specific needs.

Apple’s macOS and Apple’s iOS for iPhone® and iPad® Devices
Apple, founded in 1976 by Steve Jobs and Steve Wozniak, quickly became a leader in per-
sonal computing. In 1979, Jobs and several Apple employees visited Xerox PARC (Palo
Alto Research Center) to learn about Xerox’s desktop computer that featured a graphical
user interface (GUI). That GUI served as the inspiration for the Apple Macintosh,
launched in 1984.

The Objective-C programming language, created by Stepstone in the early 1980s,
added capabilities for object-oriented programming (OOP) to the C programming lan-
guage. Steve Jobs left Apple in 1985 and founded NeXT Inc. In 1988, NeXT licensed
Objective-C from Stepstone and developed an Objective-C compiler and libraries which
were used as the platform for the NeXTSTEP operating system’s user interface, and Inter-
face Builder—used to construct graphical user interfaces.

Jobs returned to Apple in 1996 when they bought NeXT. Apple’s macOS operating
system is a descendant of NeXTSTEP. Apple’s proprietary operating system, iOS, is derived
from macOS and is used in the iPhone, iPad, Apple Watch and Apple TV devices. In 2014,
Apple introduced its new Swift programming language, which became open source in 2015.
The iOS app-development community has largely shifted from Objective-C to Swift.

Google’s Android
Android—the fastest growing mobile and smartphone operating system—is based on the
Linux kernel and the Java programming language. Android is open source and free.

_ _ _ _ g y, ,

1.6 Operating Systems 63

According to idc.com, as of 2018, Android had 86.8% of the global smartphone mar-
ket share, compared to 13.2% for Apple.7 The Android operating system is used in numer-
ous smartphones, e-reader devices, tablets, in-store touch-screen kiosks, cars, robots,
multimedia players and more.

Billions of Devices
In use today are Billions of personal computers and an even larger number of mobile
devices. The following table lists many computerized devices. The explosive growth of
mobile phones, tablets and other devices is creating significant opportunities for program-
ming mobile apps. There are now various tools that enable you to use Python for Android
and iOS app development, including BeeWare, Kivy, PyMob, Pythonista and others.
Many are cross-platform, meaning that you can use them to develop apps that will run
portably on Android, iOS and other platforms (like the web).

Self Check for Section 1.6
1 (Fill-In) Windows is a(n) operating system—it’s controlled by Microsoft
exclusively.
Answer: proprietary.

2 (True/False) Proprietary code is often scrutinized by a much larger audience than
open-source software, so errors often get removed faster.
Answer: False. Open-source code is often scrutinized by a much larger audience than pro-
prietary software, so errors often get removed faster.

3 (True/False) iOS dominates the global smartphone market over Android.
Answer: False. Android currently controls 88% of the smartphone market.

7. https://www.idc.com/promo/smartphone-market-share/os.

Computerized devices

Access control systems
Automobiles
Cable boxes
CT scanners
Game consoles
Home security systems
Logic controllers
Mobile phones
Optical sensors
Point-of-sale terminals
Routers
Smart meters
Tablets
Transportation passes

Airplane systems
Blu-ray Disc™ players
Copiers
Desktop computers
GPS navigation systems
Internet-of-Things gateways
Lottery systems
MRIs
Parking meters
Printers
Servers
Smartpens
Televisions
TV set-top boxes

ATMs
Building controls
Credit cards
e-Readers
Home appliances
Light switches
Medical devices
Network switches
Personal computers
Robots
Smartcards
Smartphones
Thermostats
Vehicle diagnostic systems

_ _ _ _ g y, ,

http://idc.com
https://www.idc.com/promo/smartphone-market-share/os

64 Introduction to Computers and Python

1.7 Python
Python is an object-oriented scripting language that was released publicly in 1991. It was
developed by Guido van Rossum of the National Research Institute for Mathematics and
Computer Science in Amsterdam.

Python has rapidly become one of the world’s most popular programming languages.
It’s now particularly popular for educational and scientific computing,8 and it recently
surpassed the programming language R as the most popular data-science programming
language.9,10,11 Here are some reasons why Python is popular and everyone should con-
sider learning it:12,13,14

• It’s open source, free and widely available with a massive open-source commu-
nity.

• It’s easier to learn than languages like C, C++, C# and Java, enabling novices and
professional developers to get up to speed quickly.

• It’s easier to read than many other popular programming languages.

• It’s widely used in education.15

• It enhances developer productivity with extensive standard libraries and thousands
of third-party open-source libraries, so programmers can write code faster and per-
form complex tasks with minimal code. We’ll say more about this in Section 1.8.

• There are massive numbers of free open-source Python applications.

• It’s popular in web development (e.g., Django, Flask).

• It supports popular programming paradigms—procedural, functional, object-
oriented and reflective.16 We’ll begin introducing functional-style programming
features in Chapter 4 and use them in subsequent chapters.

• It simplifies concurrent programming—with asyncio and async/await, you’re
able to write single-threaded concurrent code17, greatly simplifying the inher-
ently complex processes of writing, debugging and maintaining that code.18

• There are lots of capabilities for enhancing Python performance.

• It’s used to build anything from simple scripts to complex apps with massive
numbers of users, such as Dropbox, YouTube, Reddit, Instagram and Quora.19

8. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.
9. https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-

science.html.
10. https://www.r-bloggers.com/data-science-job-report-2017-r-passes-sas-but-python-

leaves-them-both-behind/.
11. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.
12. https://dbader.org/blog/why-learn-python.
13. https://simpleprogrammer.com/2017/01/18/7-reasons-why-you-should-learn-python/.
14. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.
15. Tollervey, N., Python in Education: Teach, Learn, Program (O’Reilly Media, Inc., 2015).
16. https://en.wikipedia.org/wiki/Python_(programming_language).
17. https://docs.python.org/3/library/asyncio.html.
18. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.
19. https://www.hartmannsoftware.com/Blog/Articles_from_Software_Fans/Most-Famous-

Software-Programs-Written-in-Python.

_ _ _ _ g y, ,

https://www.hartmannsoftware.com/Blog/Articles_from_Software_Fans/Most-Famous-Software-Programs-Written-in-Python
https://www.hartmannsoftware.com/Blog/Articles_from_Software_Fans/Most-Famous-Software-Programs-Written-in-Python
https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017
https://docs.python.org/3/library/asyncio.html
https://en.wikipedia.org/wiki/Python_(programming_language)
https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017
https://simpleprogrammer.com/2017/01/18/7-reasons-why-you-should-learn-python/
https://dbader.org/blog/why-learn-python
https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017
https://www.r-bloggers.com/data-science-job-report-2017-r-passes-sas-but-python-leaves-them-both-behind/
https://www.r-bloggers.com/data-science-job-report-2017-r-passes-sas-but-python-leaves-them-both-behind/
https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-science.html
https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-science.html
https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017

1.7 Python 65

• It’s popular in artificial intelligence, which is enjoying explosive growth, in part
because of its special relationship with data science.

• It’s widely used in the financial community.20

• There’s an extensive job market for Python programmers across many disciplines,
especially in data-science-oriented positions, and Python jobs are among the
highest paid of all programming jobs.21,22

Anaconda Python Distribution
We use the Anaconda Python distribution because it’s easy to install on Windows, macOS
and Linux and supports the latest versions of Python (3.7 at the time of this writing), the
IPython interpreter (introduced in Section 1.10.1) and Jupyter Notebooks (introduced in
Section 1.10.3). Anaconda also includes other software packages and libraries commonly
used in Python programming and data science, allowing students to focus on learning
Python, computer science and data science, rather than software installation issues. The
IPython interpreter23 has features that help students and professionals explore, discover
and experiment with Python, the Python Standard Library and the extensive set of third-
party libraries.

Zen of Python
We adhere to Tim Peters’ The Zen of Python, which summarizes Python creator Guido van
Rossum’s design principles for the language. This list can be viewed in IPython with the
command import this. The Zen of Python is defined in Python Enhancement Proposal
(PEP) 20. “A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment.”24

Self Check
1 (Fill-In) The summarizes Python creator Guido van Rossum’s design prin-
ciples for the Python language.
Answer: Zen of Python.

2 (True/False) The Python language supports popular programming paradigms—pro-
cedural, functional, object-oriented and reflective.
Answer: True.

3 (True/False) R is most the popular data-science programming language.
Answer: False. Python recently surpassed R as the most popular data-science program-
ming language.

20. Kolanovic, M. and R. Krishnamachari, Big Data and AI Strategies: Machine Learning and Alternative
Data Approach to Investing (J.P. Morgan, 2017).

21. https://www.infoworld.com/article/3170838/developer/get-paid-10-programming-lan-

guages-to-learn-in-2017.html.
22. https://medium.com/@ChallengeRocket/top-10-of-programming-languages-with-the-

highest-salaries-in-2017-4390f468256e.
23. https://ipython.org/.
24. https://www.python.org/dev/peps/pep-0001/.

_ _ _ _ g y, ,

https://www.python.org/dev/peps/pep-0001/
https://ipython.org/
https://medium.com/@ChallengeRocket/top-10-of-programming-languages-with-the-highest-salaries-in-2017-4390f468256e
https://medium.com/@ChallengeRocket/top-10-of-programming-languages-with-the-highest-salaries-in-2017-4390f468256e
https://www.infoworld.com/article/3170838/developer/get-paid-10-programming-languages-to-learn-in-2017.html
https://www.infoworld.com/article/3170838/developer/get-paid-10-programming-languages-to-learn-in-2017.html

66 Introduction to Computers and Python

1.8 It’s the Libraries!
Throughout the book, we focus on using existing libraries to help you avoid “reinventing
the wheel,” thus leveraging your program-development efforts. Often, rather than devel-
oping lots of original code—a costly and time-consuming process—you can simply create
an object of a pre-existing library class, which takes only a single Python statement. So,
libraries will help you perform significant tasks with modest amounts of code. You’ll use
a broad range of Python standard libraries, data-science libraries and other third-party
libraries.

1.8.1 Python Standard Library
The Python Standard Library provides rich capabilities for text/binary data processing,
mathematics, functional-style programming, file/directory access, data persistence, data
compression/archiving, cryptography, operating-system services, concurrent program-
ming, interprocess communication, networking protocols, JSON/XML/other Internet
data formats, multimedia, internationalization, GUI, debugging, profiling and more. The
following table lists some of the Python Standard Library modules that we use in examples
or that you’ll explore in the exercises.

1.8.2 Data-Science Libraries
Python has an enormous and rapidly growing community of open-source developers in
many fields. One of the biggest reasons for Python’s popularity is the extraordinary range
of open-source libraries developed by the open-source community. One of our goals is to
create examples, exercises, projects (EEPs) and implementation case studies that give you
an engaging, challenging and entertaining introduction to Python programming, while
also involving you in hands-on data science, key data-science libraries and more. You’ll be
amazed at the substantial tasks you can accomplish in just a few lines of code. The follow-
ing table lists various popular data-science libraries. You’ll use many of these as you work
through our data-science examples, exercises and projects. For visualization, we’ll focus
primarily on Matplotlib and Seaborn, but there are many more. For a nice summary of
Python visualization libraries see http://pyviz.org/.

Some of the Python Standard Library modules we use in the book

collections—Additional data structures
beyond lists, tuples, dictionaries and sets.

csv—Processing comma-separated value files.
datetime, time—Date and time manipulations.
decimal—Fixed-point and floating-point arith-

metic, including monetary calculations.
doctest—Simple unit testing via validation tests

and expected results embedded in docstrings.
json—JavaScript Object Notation (JSON) pro-

cessing for use with web services and NoSQL
document databases.

math—Common math constants and operations.

os—Interacting with the operating system.
timeit—Performance analysis.
queue—First-in, first-out data structure.
random—Pseudorandom numbers.
re—Regular expressions for pattern matching.
sqlite3—SQLite relational database access.
statistics—Mathematical statistics functions

like mean, median, mode and variance.
string—String processing.
sys—Command-line argument processing;

standard input, standard output and standard
error streams.

_ _ _ _ g y, ,

http://pyviz.org/

1.8 It’s the Libraries! 67

Self Check for Section 1.8
1 (Fill-In) help you avoid “reinventing the wheel,” thus leveraging your pro-
gram-development efforts.
Answer: Libraries.

Popular Python libraries used in data science

Scientific Computing and Statistics
NumPy (Numerical Python)—Python does not have a built-in array data structure. It uses lists,
which are convenient but relatively slow. NumPy provides the more efficient ndarray data structure
to represent lists and matrices, and it also provides routines for processing such data structures.

SciPy (Scientific Python)—Built on NumPy, SciPy adds routines for scientific processing, such as
integrals, differential equations, additional matrix processing and more. scipy.org controls SciPy
and NumPy.

StatsModels—Provides support for estimations of statistical models, statistical tests and statistical
data exploration.

Data Manipulation and Analysis
Pandas—An extremely popular library for data manipulations. Pandas makes abundant use of
NumPy’s ndarray. Its two key data structures are Series (one dimensional) and DataFrames (two
dimensional).

Visualization
Matplotlib—A highly customizable visualization and plotting library. Supported plots include regu-
lar, scatter, bar, contour, pie, quiver, grid, polar axis, 3D and text.

Seaborn—A higher-level visualization library built on Matplotlib. Seaborn adds a nicer look-and-
feel, additional visualizations and enables you to create visualizations with less code.

Machine Learning, Deep Learning and Reinforcement Learning
scikit-learn—Top machine-learning library. Machine learning is a subset of AI. Deep learning is a
subset of machine learning that focuses on neural networks.

Keras—One of the easiest to use deep-learning libraries. Keras runs on top of TensorFlow (Google),
CNTK (Microsoft’s cognitive toolkit for deep learning) or Theano (Université de Montréal).

TensorFlow—From Google, this is the most widely used deep learning library. TensorFlow works with
GPUs (graphics processing units) or Google’s custom TPUs (Tensor processing units) for performance.
TensorFlow is important in AI and big data analytics—where processing demands are enormous. You’ll
use the version of Keras that’s built into TensorFlow.

OpenAI Gym—A library and environment for developing, testing and comparing reinforcement-
learning algorithms. You’ll explore this in the Chapter 16 exercises.

Natural Language Processing (NLP)
NLTK (Natural Language Toolkit)—Used for natural language processing (NLP) tasks.

TextBlob—An object-oriented NLP text-processing library built on the NLTK and pattern NLP
libraries. TextBlob simplifies many NLP tasks.

Gensim—Similar to NLTK. Commonly used to build an index for a collection of documents, then
determine how similar another document is to each of those in the index. You’ll explore this in the
Chapter 12 exercises.

_ _ _ _ g y, ,

http://scipy.org

68 Introduction to Computers and Python

2 (Fill-In) The provides rich capabilities for many common Python program-
ming tasks.
Answer: Python Standard Library.

1.9 Other Popular Programming Languages
The following is a brief introduction to several other popular programming languages—
in the next section, we take a deeper look at Python:

• Basic was developed in the 1960s at Dartmouth College to familiarize novices
with programming techniques. Many of its latest versions are object-oriented.

• C was developed in the early 1970s by Dennis Ritchie at Bell Laboratories. It ini-
tially became widely known as the UNIX operating system’s development lan-
guage. Today, most code for general-purpose operating systems and other
performance-critical systems is written in C or C++.

• C++, which is based on C, was developed by Bjarne Stroustrup in the early 1980s
at Bell Laboratories. C++ provides features that enhance the C language and adds
capabilities for object-oriented programming.

• Java—Sun Microsystems in 1991 funded an internal corporate research project
led by James Gosling, which resulted in the C++-based object-oriented program-
ming language called Java. A key goal of Java is to enable developers to write pro-
grams that will run on a great variety of computer systems. This is called “write
once, run anywhere.” Java is used to develop enterprise applications, to enhance
the functionality of web servers (the computers that provide the content to our
web browsers), to provide applications for consumer devices (e.g., smartphones,
tablets, television set-top boxes, appliances, automobiles and more) and for many
other purposes. Java was originally the key language for developing Android
smartphone and tablet apps, though several other languages are now supported.

• C# (based on C++ and Java) is one of Microsoft’s three primary object-oriented
programming languages—the other two are Visual C++ and Visual Basic. C# was
developed to integrate the web into computer applications and is now widely
used to develop many types of applications. As part of Microsoft’s many open-
source initiatives implemented over the last few years, they now offer open-source
versions of C# and Visual Basic.

• JavaScript is the most widely used scripting language. It’s primarily used to add
programmability to web pages—for example, animations and interactivity with
the user. All major web browsers support it. Many Python visualization libraries
output JavaScript as part of visualizations that you can interact with in your web
browser. Tools like NodeJS also enable JavaScript to run outside of web browsers.

• Swift, which was introduced in 2014, is Apple’s programming language for devel-
oping iOS and macOS apps. Swift is a contemporary language that includes pop-
ular features from languages such as Objective-C, Java, C#, Ruby, Python and
others. Swift is open source, so it can be used on non-Apple platforms as well.

• R is a popular open-source programming language for statistical applications and
visualization. Python and R are the two most widely used data-science languages.

_ _ _ _ g y, ,

1.10 Test-Drives: Using IPython and Jupyter Notebooks 69

Self Check
1 (Fill-In) Today, most code for general-purpose operating systems and other perfor-
mance-critical systems is written in .
Answer: C or C++.

2 (Fill-In) A key goal of is to enable developers to write programs that will run
on a great variety of computer systems and computer-controlled devices. This is some-
times called “write once, run anywhere.”
Answer: Java.

1.10 Test-Drives: Using IPython and Jupyter Notebooks
In this section, you’ll test-drive the IPython interpreter25 in two modes:

• In interactive mode, you’ll enter small bits of Python code called snippets and
immediately see their results.

• In script mode, you’ll execute code loaded from a file that has the .py extension
(short for Python). Such files are called scripts or programs, and they’re generally
longer than the code snippets you’ll do in interactive mode.

Then, you’ll learn how to use the browser-based environment known as the Jupyter Note-
book for writing and executing Python code.26

1.10.1 Using IPython Interactive Mode as a Calculator
Let’s use IPython interactive mode to evaluate simple arithmetic expressions.

Entering IPython in Interactive Mode
First, open a command-line window on your system:

• On macOS, open a Terminal from the Applications folder’s Utilities subfolder.

• On Windows, open the Anaconda Command Prompt from the start menu.

• On Linux, open your system’s Terminal or shell (this varies by Linux distribu-
tion).

In the command-line window, type ipython, then press Enter (or Return). You’ll see text
like the following, this varies by platform and by IPython version:

The text "In [1]:" is a prompt, indicating that IPython is waiting for your input. You can
type ? for help or begin entering snippets, as you’ll do momentarily.

25. Before reading this section, follow the instructions in the Before You Begin section to install the
Anaconda Python distribution, which contains the IPython interpreter.

26. Jupyter supports many programming languages by installing their "kernels." For more information
see https://github.com/jupyter/jupyter/wiki/Jupyter-kernels.

Python 3.7.0 | packaged by conda-forge | (default, Jan 20 2019, 17:24:52)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]:

_ _ _ _ g y, ,

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

70 Introduction to Computers and Python

Evaluating Expressions
In interactive mode, you can evaluate expressions:

After you type 45 + 72 and press Enter, IPython reads the snippet, evaluates it and prints its
result in Out[1].27 Then IPython displays the In [2] prompt to show that it’s waiting for
you to enter your second snippet. For each new snippet, IPython adds 1 to the number in
the square brackets. Each In [1] prompt in the book indicates that we’ve started a new
interactive session. We generally do that for each new section of a chapter.

Let’s evaluate a more complex expression:

Python uses the asterisk (*) for multiplication and the forward slash (/) for division. As in
mathematics, parentheses force the evaluation order, so the parenthesized expression
(12.7 - 4) evaluates first, giving 8.7. Next, 5 * 8.7 evaluates giving 43.5. Then, 43.5 / 2

evaluates, giving the result 21.75, which IPython displays in Out[2]. Whole numbers, like
5, 4 and 2, are called integers. Numbers with decimal points, like 12.7, 43.5 and 21.75,
are called floating-point numbers.

Exiting Interactive Mode
To leave interactive mode, you can:

• Type the exit command at the current In [] prompt and press Enter to exit
immediately.

• Type the key sequence <Ctrl> + d (or <control> + d) . This displays the prompt
"Do you really want to exit ([y]/n)?". The square brackets around y indicate
that it’s the default response—pressing Enter submits the default response and
exits.

• Type <Ctrl> + d (or <control> + d) twice (macOS and Linux only).

Self Check
1 (Fill-In) In IPython interactive mode, you’ll enter small bits of Python code called

 and immediately see their results.
Answer: snippets.

2 In IPython mode, you’ll execute Python code loaded from a file that has the
.py extension (short for Python).
Answer: script.

3 (IPython Session) Evaluate the expression 5 * (3 + 4) both with and without the
parentheses. Do you get the same result? Why or why not?

In [1]: 45 + 72
Out[1]: 117

In [2]:

27. In the next chapter, you’ll see that there are some cases in which Out[] is not displayed.

In [2]: 5 * (12.7 - 4) / 2
Out[2]: 21.75

_ _ _ _ g y, ,

1.10 Test-Drives: Using IPython and Jupyter Notebooks 71

Answer: You get different results because snippet [1] first calculates 3 + 4, which is 7, then
multiplies that by 5. Snippet [2] first multiplies 5 * 3, which is 15, then adds that to 4.

1.10.2 Executing a Python Program Using the IPython Interpreter
In this section, you’ll execute a script named RollDieDynamic.py that you’ll write in
Chapter 6. The .py extension indicates that the file contains Python source code. The
script RollDieDynamic.py simulates rolling a six-sided die. It presents a colorful animated
visualization that dynamically graphs the frequencies of each die face.

Changing to This Chapter’s Examples Folder
You’ll find the script in the book’s ch01 source-code folder. In the Before You Begin sec-
tion you extracted the examples folder to your user account’s Documents folder. Each
chapter has a folder containing that chapter’s source code. The folder is named ch##,
where ## is a two-digit chapter number from 01 to 17. First, open your system’s command-
line window. Next, use the cd (“change directory”) command to change to the ch01 folder:

• On macOS/Linux, type cd ~/Documents/examples/ch01, then press Enter.

• On Windows, type cd C:\Users\YourAccount\Documents\examples\ch01, then
press Enter.

Executing the Script
To execute the script, type the following command at the command line, then press Enter:

ipython RollDieDynamic.py 6000 1

The script displays a window, showing the visualization. The numbers 6000 and 1 tell this
script the number of times to roll dice and how many dice to roll each time. In this case,
we’ll update the chart 6000 times for 1 die at a time.

For a six-sided die, the values 1 through 6 should each occur with “equal likelihood”—
the probability of each is 1/6th or about 16.667%. If we roll a die 6000 times, we’d expect
about 1000 of each face. Like coin tossing, die rolling is random, so there could be some
faces with fewer than 1000, some with 1000 and some with more than 1000. We took the
screen captures on the next page during the script’s execution. This script uses randomly
generated die values, so your results will differ. Experiment with the script by changing the
value 1 to 100, 1000 and 10000. Notice that as the number of die rolls gets larger, the fre-
quencies zero in on 16.667%. This is a phenomenon of the “Law of Large Numbers.”

Creating Scripts
Typically, you create your Python source code in an editor that enables you to type text.
Using the editor, you type a program, make any necessary corrections and save it to your
computer. Integrated development environments (IDEs) provide tools that support the
entire software-development process, such as editors, debuggers for locating logic errors
that cause programs to execute incorrectly and more. Some popular Python IDEs include
Spyder (which comes with Anaconda), PyCharm and Visual Studio Code.

In [1]: 5 * (3 + 4)
Out[1]: 35

In [2]: 5 * 3 + 4
Out[2]: 19

_ _ _ _ g y, ,

72 Introduction to Computers and Python

Problems That May Occur at Execution Time
Programs often do not work on the first try. For example, an executing program might try
to divide by zero (an illegal operation in Python). This would cause the program to display
an error message. If this occurred in a script, you’d return to the editor, make the necessary
corrections and re-execute the script to determine whether the corrections fixed the prob-
lem(s).

Errors such as division by zero occur as a program runs, so they’re called runtime
errors or execution-time errors. Fatal runtime errors cause programs to terminate imme-
diately without having successfully performed their jobs. Non-fatal runtime errors allow
programs to run to completion, often producing incorrect results.

Self Check
1 (Discussion) When the example in this section finishes all 6000 rolls, does the chart
show that the die faces appeared about 1000 times each?
Answer: Most likely, yes. This example is based on random-number generation, so the re-
sults may vary. Because of this randomness, most of the counts will be a little more than
1000 or a little less.

2 (Discussion) Run the example in this section again. Do the faces appear the same
number of times as they did in the previous execution?
Answer: Probably not. This example uses random-number generation, so successive exe-
cutions likely will produce different results. In Chapter 4, we’ll show how to force Python
to produce the same sequence of random numbers. This is important for reproducibility—
a crucial data-science topic you’ll investigate in the chapter exercises and throughout the
book. You’ll want other data scientists to be able to reproduce your results. Also, you’ll
want to be able to reproduce your own experimental results. This is helpful when you find
and fix an error in your program and want to make sure that you’ve corrected it properly.

1.10.3 Writing and Executing Code in a Jupyter Notebook
The Anaconda Python Distribution that you installed in the Before You Begin section
comes with the Jupyter Notebook—an interactive, browser-based environment in which

Roll the dice 6000 times and roll 1 die each time:
ipython RollDieDynamic.py 6000 1

_ _ _ _ g y, ,

1.10 Test-Drives: Using IPython and Jupyter Notebooks 73

you can write and execute code and intermix the code with text, images and video. Jupyter
Notebooks are broadly used in the data-science community in particular and the broader
scientific community in general. They’re the preferred means of doing Python-based data
analytics studies and reproducibly communicating their results. The Jupyter Notebook
environment actually supports many programming languages.

For your convenience, all of the book’s source code also is provided in Jupyter Note-
books that you can simply load and execute. In this section, you’ll use the JupyterLab
interface, which enables you to manage your notebook files and other files that your note-
books use (like images and videos). As you’ll see, JupyterLab also makes it convenient to
write code, execute it, see the results, modify the code and execute it again.

You’ll see that coding in a Jupyter Notebook is similar to working with IPython—in
fact, Jupyter Notebooks use IPython by default. In this section, you’ll create a notebook,
add the code from Section 1.10.1 to it and execute that code.

Opening JupyterLab in Your Browser
To open JupyterLab, change to the ch01 examples folder in your Terminal, shell or Ana-
conda Command Prompt (as in Section 1.10.2), type the following command, then press
Enter (or Return):

jupyter lab

This executes the Jupyter Notebook server on your computer and opens JupyterLab in
your default web browser, showing the ch01 folder’s contents in the File Browser tab

at the left side of the JupyterLab interface:

_ _ _ _ g y, ,

74 Introduction to Computers and Python

The Jupyter Notebooks server enables you to load and run Jupyter Notebooks in your web
browser. From the JupyterLab Files tab, you can double-click files to open them in the
right side of the window where the Launcher tab is currently displayed. Each file you open
appears as a separate tab in this part of the window. If you accidentally close your browser,
you can reopen JupyterLab by entering the following address in your web browser

http://localhost:8888/lab

Creating a New Jupyter Notebook
In the Launcher tab under Notebook, click the Python 3 button to create a new Jupyter
Notebook named Untitled.ipynb in which you can enter and execute Python 3 code.
The file extension .ipynb is short for IPython Notebook—the original name of the Jupy-
ter Notebook.

Renaming the Notebook
Rename Untitled.ipynb as TestDrive.ipynb:

1. Right-click the Untitled.ipynb tab and select Rename Notebook….

2. Change the name to TestDrive.ipynb and click RENAME.

The top of JupyterLab should now appear as follows:

Evaluating an Expression
The unit of work in a notebook is a cell in which you can enter code snippets. By default,
a new notebook contains one cell—the rectangle in the TestDrive.ipynb notebook—but
you can add more. To the cell’s left, the notation []: is where the Jupyter Notebook will
display the cell’s snippet number after you execute the cell. Click in the cell, then type the
expression

45 + 72

To execute the current cell’s code, type Ctrl + Enter (or control + Enter). JupyterLab exe-
cutes the code in IPython, then displays the results below the cell:

Adding and Executing Another Cell
Let’s evaluate a more complex expression. First, click the + button in the toolbar above the
notebook’s first cell—this adds a new cell below the current one:

_ _ _ _ g y, ,

http://localhost:8888/lab

1.10 Test-Drives: Using IPython and Jupyter Notebooks 75

Click in the new cell, then type the expression

5 * (12.7 - 4) / 2

and execute the cell by typing Ctrl + Enter (or control + Enter):

Saving the Notebook
If your notebook has unsaved changes, the X in the notebook’s tab will change to . To
save the notebook, select the File menu in JupyterLab (not at the top of your browser’s
window), then select Save Notebook.

Notebooks Provided with Each Chapter’s Examples
For your convenience, each chapter’s examples also are provided as ready-to-execute note-
books without their outputs. This enables you to work through them snippet-by-snippet
and see the outputs appear as you execute each snippet.

So that we can show you how to load an existing notebook and execute its cells, let’s
reset the TestDrive.ipynb notebook to remove its output and snippet numbers. This will
return it to a state like the notebooks we provide for the subsequent chapters’ examples.
From the Kernel menu select Restart Kernel and Clear All Outputs…, then click the
RESTART button. The preceding command also is helpful whenever you wish to re-exe-
cute a notebook’s snippets. The notebook should now appear as follows:

_ _ _ _ g y, ,

76 Introduction to Computers and Python

From the File menu, select Save Notebook, then click the TestDrive.ipynb tab’s X button
to close the notebook.

Opening and Executing an Existing Notebook
When you launch JupyterLab from a given chapter’s examples folder, you’ll be able to
open notebooks from that folder or any of its subfolders. Once you locate a specific note-
book, double-click it to open it. Open the TestDrive.ipynb notebook again now. Once
a notebook is open, you can execute each cell individually, as you did earlier in this section,
or you can execute the entire notebook at once. To do so, from the Run menu select Run
All Cells. The notebook will execute the cells in order, displaying each cell’s output below
that cell.

Closing JupyterLab
When you’re done with JupyterLab, you can close its browser tab, then in the Terminal,
shell or Anaconda Command Prompt from which you launched JupyterLab, type Ctrl + c
(or control + c) twice.

JupyterLab Tips
While working in JupyterLab, you might find these tips helpful:

• If you need to enter and execute many snippets, you can execute the current cell
and add a new one below it by typing Shift + Enter, rather than Ctrl + Enter (or
control + Enter).

• As you get into the later chapters, some of the snippets you’ll enter in Jupyter
Notebooks will contain many lines of code. To display line numbers within each
cell, select Show line numbers from JupyterLab’s View menu.

More Information on Working with JupyterLab
JupyterLab has many more features that you’ll find helpful. We recommend that you read
the Jupyter team’s introduction to JupyterLab at:

https://jupyterlab.readthedocs.io/en/stable/index.html

For a quick overview, click Overview under GETTING STARTED. Also, under USER GUIDE
read the introductions to The JupyterLab Interface, Working with Files, Text Editor and
Notebooks for many additional features.

Self Check
1 (True/False) Jupyter Notebooks are the preferred means of doing Python-based data
analytics studies and reproducibly communicating their results.
Answer: True.

2 (Jupyter Notebook Session) Ensure that JupyterLab is running, then open your Test-
Drive.ipynb notebook. Add and execute two more snippets that evaluate the expression
5 * (3 + 4) both with and without the parentheses. You should see the same results as in
Section 1.10.1’s Self Check Exercise 3.

_ _ _ _ g y, ,

https://jupyterlab.readthedocs.io/en/stable/index.html

1.11 Internet and World Wide Web 77

Answer:

1.11 Internet and World Wide Web
In the late 1960s, ARPA—the Advanced Research Projects Agency of the United States
Department of Defense—rolled out plans for networking the main computer systems of
approximately a dozen ARPA-funded universities and research institutions. The comput-
ers were to be connected with communications lines operating at speeds on the order of
50,000 bits per second, a stunning rate at a time when most people (of the few who even
had networking access) were connecting over telephone lines to computers at a rate of 110
bits per second. Academic research was about to take a giant leap forward. ARPA pro-
ceeded to implement what quickly became known as the ARPANET, the precursor to
today’s Internet. Today’s fastest Internet speeds are on the order of billions of bits per sec-
ond with trillion-bits-per-second (terabit) speeds already being tested!28

Things worked out differently from the original plan. Although the ARPANET
enabled researchers to network their computers, its main benefit proved to be the capability
for quick and easy communication via what came to be known as electronic mail (e-mail).
This is true even on today’s Internet, with e-mail, instant messaging, file transfer and social
media such as Snapchat, Instagram, Facebook and Twitter enabling billions of people
worldwide to communicate quickly and easily.

The protocol (set of rules) for communicating over the ARPANET became known as
the Transmission Control Protocol (TCP). TCP ensured that messages, consisting of
sequentially numbered pieces called packets, were properly delivered from sender to
receiver, arrived intact and were assembled in the correct order.

1.11.1 Internet: A Network of Networks
In parallel with the early evolution of the Internet, organizations worldwide were imple-
menting their own networks for both intra-organization (that is, within an organization)
and inter-organization (that is, between organizations) communication. A huge variety of
networking hardware and software appeared. One challenge was to enable these different

28. https://testinternetspeed.org/blog/bt-testing-1-4-terabit-internet-connections/.

_ _ _ _ g y, ,

https://testinternetspeed.org/blog/bt-testing-1-4-terabit-internet-connections/

78 Introduction to Computers and Python

networks to communicate with each other. ARPA accomplished this by developing the
Internet Protocol (IP), which created a true “network of networks,” the current architec-
ture of the Internet. The combined set of protocols is now called TCP/IP. Each Internet-
connected device has an IP address—a unique numerical identifier used by devices com-
municating via TCP/IP to locate one another on the Internet.

Businesses rapidly realized that by using the Internet, they could improve their oper-
ations and offer new and better services to their clients. Companies started spending large
amounts of money to develop and enhance their Internet presence. This generated fierce
competition among communications carriers and hardware and software suppliers to meet
the increased infrastructure demand. As a result, bandwidth—the information-carrying
capacity of communications lines—on the Internet has increased tremendously, while
hardware costs have plummeted.

1.11.2 World Wide Web: Making the Internet User-Friendly
The World Wide Web (simply called “the web”) is a collection of hardware and software
associated with the Internet that allows computer users to locate and view documents
(with various combinations of text, graphics, animations, audios and videos) on almost
any subject. In 1989, Tim Berners-Lee of CERN (the European Organization for Nuclear
Research) began developing HyperText Markup Language (HTML)—the technology for
sharing information via “hyperlinked” text documents. He also wrote communication
protocols such as HyperText Transfer Protocol (HTTP) to form the backbone of his new
hypertext information system, which he referred to as the World Wide Web.

In 1994, Berners-Lee founded the World Wide Web Consortium (W3C, https://
www.w3.org), devoted to developing web technologies. One of the W3C’s primary goals
is to make the web universally accessible to everyone regardless of disabilities, language or
culture.

1.11.3 The Cloud
More and more computing today is done “in the cloud”—that is, distributed across the
Internet worldwide. The apps you use daily are heavily dependent on various cloud-based
services that use massive clusters of computing resources (computers, processors, memory,
disk drives, etc.) and databases that communicate over the Internet with each other and
the apps you use. A service that provides access to itself over the Internet is known as a web
service. As you’ll see, using cloud-based services in Python often is as simple as creating a
software object and interacting with it. That object then uses web services that connect to
the cloud on your behalf.

Throughout the Chapters 12–17 examples and exercises, you’ll work with many
cloud-based services:

• In Chapters 13 and 17, you’ll use Twitter’s web services (via the Python library
Tweepy) to get information about specific Twitter users, search for tweets from
the last seven days and to receive streams of tweets as they occur—that is, in real
time.

• In Chapters 12 and 13, you’ll use the Python library TextBlob to translate text
between languages. Behind the scenes, TextBlob uses the Google Translate web
service to perform those translations.

_ _ _ _ g y, ,

https://www.w3.org
https://www.w3.org

1.11 Internet and World Wide Web 79

• In Chapter 14, you’ll use the IBM Watson’s Text to Speech, Speech to Text and
Translate services. You’ll implement a traveler’s assistant translation app that
enables you to speak a question in English, transcribes the speech to text, trans-
lates the text to Spanish and speaks the Spanish text. The app then allows you to
speak a Spanish response (in case you don’t speak Spanish, we provide an audio
file you can use), transcribes the speech to text, translates the text to English and
speaks the English response. Via IBM Watson demos, you’ll also experiment with
many other Watson cloud-based services in Chapter 14.

• In Chapter 17, you’ll work with Microsoft Azure’s HDInsight service and other
Azure web services as you learn to implement big-data applications using Apache
Hadoop and Spark. Azure is Microsoft’s set of cloud-based services.

• In Chapter 17, you’ll use the Dweet.io web service to simulate an Internet-
connected thermostat that publishes temperature readings online. You’ll also use
a web-based service to create a “dashboard” that visualizes the temperature read-
ings over time and warns you if the temperature gets too low or too high.

• In Chapter 17, you’ll use a web-based dashboard to visualize a simulated stream
of live sensor data from the PubNub web service. You’ll also create a Python app
that visualizes a PubNub simulated stream of live stock-price changes.

• In multiple exercises, you’ll research, explore and use Wikipedia web services.

In most cases, you’ll create Python objects that interact with web services on your behalf,
hiding the details of how to access these services over the Internet.

Mashups
The applications-development methodology of mashups enables you to rapidly develop
powerful software applications by combining (often free) complementary web services and
other forms of information feeds—as you’ll do in our IBM Watson traveler’s assistant
translation app. One of the first mashups combined the real-estate listings provided by
http://www.craigslist.org with the mapping capabilities of Google Maps to offer
maps that showed the locations of homes for sale or rent in a given area.

ProgrammableWeb (http://www.programmableweb.com/) provides a directory of
over 20,750 web services and almost 8,000 mashups. They also provide how-to guides and
sample code for working with web services and creating your own mashups. According to
their website, some of the most widely used web services are Facebook, Google Maps, Twit-
ter and YouTube.

1.11.4 Internet of Things
The Internet is no longer just a network of computers—it’s an Internet of Things (IoT).
A thing is any object with an IP address and the ability to send, and in some cases receive,
data automatically over the Internet. Such things include:

• a car with a transponder for paying tolls,

• monitors for parking-space availability in a garage,

• a heart monitor implanted in a human,

• water quality monitors,

_ _ _ _ g y, ,

http://www.programmableweb.com/
http://www.craigslist.org

80 Introduction to Computers and Python

• a smart meter that reports energy usage,

• radiation detectors,

• item trackers in a warehouse,

• mobile apps that can track your movement and location,

• smart thermostats that adjust room temperatures based on weather forecasts and
activity in the home, and

• intelligent home appliances.

According to statista.com, there are already over 23 billion IoT devices in use today, and
there could be over 75 billion IoT devices in 2025.29

Self Check for Section 1.11
1 (Fill-In) The was the precursor to today’s Internet.
Answer: ARPANET.

2 (Fill-In) The (simply called “the web”) is a collection of hardware and soft-
ware associated with the Internet that allows computer users to locate and view documents
(with various combinations of text, graphics, animations, audios and videos).
Answer: World Wide Web.

3 (Fill-In) In the Internet of Things (IoT), a thing is any object with a(n) and
the ability to send, and in some cases receive, data automatically over the Internet.
Answer: IP address.

1.12 Software Technologies
As you learn about and work in software development, you’ll frequently encounter the fol-
lowing buzzwords:

• Refactoring: Reworking programs to make them clearer and easier to maintain
while preserving their correctness and functionality. Many IDEs contain built-in
refactoring tools to do major portions of the reworking automatically.

• Design patterns: Proven architectures for constructing flexible and maintainable
object-oriented software. The field of design patterns tries to enumerate those
recurring patterns, encouraging software designers to reuse them to develop bet-
ter-quality software using less time, money and effort.

• Cloud computing: You can use software and data stored in the “cloud”—i.e.,
accessed on remote computers (or servers) via the Internet and available on
demand—rather than having it stored locally on your desktop, notebook com-
puter or mobile device. This allows you to increase or decrease computing
resources to meet your needs at any given time, which is more cost effective than
purchasing hardware to provide enough storage and processing power to meet
occasional peak demands. Cloud computing also saves money by shifting to the

29. https://www.statista.com/statistics/471264/iot-number-of-connected-devices-world-

wide/.

_ _ _ _ g y, ,

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-world-wide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-world-wide/
http://statista.com

1.13 How Big Is Big Data? 81

service provider the burden of managing these apps (such as installing and
upgrading the software, security, backups and disaster recovery).

• Software Development Kits (SDKs)—The tools and documentation that devel-
opers use to program applications. For example, in Chapter 14, you’ll use the
Watson Developer Cloud Python SDK to interact with IBM Watson services
from a Python application.

Self Check
1 (Fill-In) is the process of reworking programs to make them clearer and eas-
ier to maintain while preserving their correctness and functionality.
Answer: refactoring.

1.13 How Big Is Big Data?
For computer scientists and data scientists, data is now as important as writing programs.
According to IBM, approximately 2.5 quintillion bytes (2.5 exabytes) of data are created
daily,30 and 90% of the world’s data was created in the last two years.31 According to IDC,
the global data supply will reach 175 zettabytes (equal to 175 trillion gigabytes or 175 bil-
lion terabytes) annually by 2025.32 Consider the following examples of various popular
data measures.

Megabytes (MB)
One megabyte is about one million (actually 220) bytes. Many of the files we use on a daily
basis require one or more MBs of storage. Some examples include:

• MP3 audio files—High-quality MP3s range from 1 to 2.4 MB per minute.33

• Photos—JPEG format photos taken on a digital camera can require about 8 to
10 MB per photo.

• Video—Smartphone cameras can record video at various resolutions. Each minute
of video can require many megabytes of storage. For example, on one of our
iPhones, the Camera settings app reports that 1080p video at 30 frames-per-second
(FPS) requires 130 MB/minute and 4K video at 30 FPS requires 350 MB/minute.

Gigabytes (GB)
One gigabyte is about 1000 megabytes (actually 230 bytes). A dual-layer DVD can store
up to 8.5 GB34, which translates to:

• as much as 141 hours of MP3 audio,

• approximately 1000 photos from a 16-megapixel camera,

30. https://www.ibm.com/blogs/watson/2016/06/welcome-to-the-world-of-a-i/.
31. https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-

engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf.
32. https://www.networkworld.com/article/3325397/storage/idc-expect-175-zettabytes-

of-data-worldwide-by-2025.html.
33. https://www.audiomountain.com/tech/audio-file-size.html.
34. https://en.wikipedia.org/wiki/DVD.

_ _ _ _ g y, ,

https://en.wikipedia.org/wiki/DVD
https://www.audiomountain.com/tech/audio-file-size.html
https://www.networkworld.com/article/3325397/storage/idc-expect-175-zettabytes-of-data-worldwide-by-2025.html
https://www.networkworld.com/article/3325397/storage/idc-expect-175-zettabytes-of-data-worldwide-by-2025.html
https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf
https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf
https://www.ibm.com/blogs/watson/2016/06/welcome-to-the-world-of-a-i/

82 Introduction to Computers and Python

• approximately 7.7 minutes of 1080p video at 30 FPS, or

• approximately 2.85 minutes of 4K video at 30 FPS.

The current highest-capacity Ultra HD Blu-ray discs can store up to 100 GB of video.35

Streaming a 4K movie can use between 7 and 10 GB per hour (highly compressed).

Terabytes (TB)
One terabyte is about 1000 gigabytes (actually 240 bytes). Recent disk drives for desktop
computers come in sizes up to 15 TB,36 which is equivalent to:

• approximately 28 years of MP3 audio,

• approximately 1.68 million photos from a 16-megapixel camera,

• approximately 226 hours of 1080p video at 30 FPS and

• approximately 84 hours of 4K video at 30 FPS.

Nimbus Data now has the largest solid-state drive (SSD) at 100 TB, which can store 6.67
times the 15-TB examples of audio, photos and video listed above.37

Petabytes, Exabytes and Zettabytes
There are nearly four billion people online creating about 2.5 quintillion bytes of data each
day38—that’s 2500 petabytes (each petabyte is about 1000 terabytes) or 2.5 exabytes (each
exabyte is about 1000 petabytes). According to a March 2016 AnalyticsWeek article, within
five years there will be over 50 billion devices connected to the Internet (most of them
through the Internet of Things, which we discuss in Sections 1.11.4 and 17.8) and by
2020 we’ll be producing 1.7 megabytes of new data every second for every person on the
planet.39 At today’s numbers (approximately 7.7 billion people40), that’s about

• 13 petabytes of new data per second,

• 780 petabytes per minute,

• 46,800 petabytes (46.8 exabytes) per hour and

• 1,123 exabytes per day—that’s 1.123 zettabytes (ZB) per day (each zettabyte is
about 1000 exabytes).

That’s the equivalent of over 5.5 million hours (over 600 years) of 4K video every day or
approximately 116 billion photos every day!

Additional Big-Data Stats
For a real-time sense of big data, check out https://www.internetlivestats.com, with
various statistics, including the numbers so far today of

• Google searches.

35. https://en.wikipedia.org/wiki/Ultra_HD_Blu-ray.
36. https://www.zdnet.com/article/worlds-biggest-hard-drive-meet-western-digitals-

15tb-monster/.
37. https://www.cinema5d.com/nimbus-data-100tb-ssd-worlds-largest-ssd/.
38. https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-

engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf.
39. https://analyticsweek.com/content/big-data-facts/.
40. https://en.wikipedia.org/wiki/World_population.

_ _ _ _ g y, ,

https://en.wikipedia.org/wiki/World_population
https://analyticsweek.com/content/big-data-facts/
https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf
https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf
https://www.cinema5d.com/nimbus-data-100tb-ssd-worlds-largest-ssd/
https://www.zdnet.com/article/worlds-biggest-hard-drive-meet-western-digitals-15tb-monster/
https://www.zdnet.com/article/worlds-biggest-hard-drive-meet-western-digitals-15tb-monster/
https://en.wikipedia.org/wiki/Ultra_HD_Blu-ray
https://www.internetlivestats.com

1.13 How Big Is Big Data? 83

• Tweets.

• Videos viewed on YouTube.

• Photos uploaded on Instagram.

You can click each statistic to drill down for more information. For instance, they say over
250 billion tweets have been sent in 2018.

Some other interesting big-data facts:

• Every hour, YouTube users upload 24,000 hours of video, and almost 1 billion
hours of video are watched on YouTube every day.41

• Every second, there are 51,773 GBs (or 51.773 TBs) of Internet traffic, 7894
tweets sent, 64,332 Google searches and 72,029 YouTube videos viewed.42

• On Facebook each day there are 800 million “likes,”43 60 million emojis are
sent,44 and there are over two billion searches of the more than 2.5 trillion Face-
book posts since the site’s inception.45

• In June 2017, Will Marshall, CEO of Planet, said the company has 142 satellites
that image the whole planet’s land mass once per day. They add one million
images and seven TBs of new data each day. Together with their partners, they’re
using machine learning on that data to improve crop yields, see how many ships
are in a given port and track deforestation. With respect to Amazon deforestation,
he said: “Used to be we’d wake up after a few years and there’s a big hole in the
Amazon. Now we can literally count every tree on the planet every day.”46

Domo, Inc. has a nice infographic called “Data Never Sleeps 6.0” showing how much
data is generated every minute, including:47

• 473,400 tweets sent.

• 2,083,333 Snapchat photos shared.

• 97,222 hours of Netflix video viewed.

• 12,986,111 million text messages sent.

• 49,380 Instagram posts.

• 176,220 Skype calls.

• 750,000 Spotify songs streamed.

• 3,877,140 Google searches.

• 4,333,560 YouTube videos watched.

41. https://www.brandwatch.com/blog/youtube-stats/.
42. http://www.internetlivestats.com/one-second.
43. https://newsroom.fb.com/news/2017/06/two-billion-people-coming-together-on-facebook.
44. https://mashable.com/2017/07/17/facebook-world-emoji-day/.
45. https://techcrunch.com/2016/07/27/facebook-will-make-you-talk/.
46. https://www.bloomberg.com/news/videos/2017-06-30/learning-from-planet-s-shoe-

boxed-sized-satellites-video, June 30, 2017.
47. https://www.domo.com/learn/data-never-sleeps-6.

_ _ _ _ g y, ,

https://www.bloomberg.com/news/videos/2017-06-30/learning-from-planet-s-shoe-boxed-sized-satellites-video
https://www.domo.com/learn/data-never-sleeps-6
https://www.bloomberg.com/news/videos/2017-06-30/learning-from-planet-s-shoe-boxed-sized-satellites-video
https://techcrunch.com/2016/07/27/facebook-will-make-you-talk/
https://mashable.com/2017/07/17/facebook-world-emoji-day/
https://newsroom.fb.com/news/2017/06/two-billion-people-coming-together-on-facebook
http://www.internetlivestats.com/one-second
https://www.brandwatch.com/blog/youtube-stats/

84 Introduction to Computers and Python

Computing Power Over the Years
Data is getting more massive and so is the computing power for processing it. The perfor-
mance of today’s processors is often measured in terms of FLOPS (floating-point operations
per second). In the early to mid-1990s, the fastest supercomputer speeds were measured in
gigaflops (109 FLOPS). By the late 1990s, Intel produced the first teraflop (1012 FLOPS)
supercomputers. In the early-to-mid 2000s, speeds reached hundreds of teraflops, then in
2008, IBM released the first petaflop (1015 FLOPS) supercomputer. Currently, the fastest
supercomputer—the IBM Summit, located at the Department of Energy’s (DOE) Oak
Ridge National Laboratory (ORNL)—is capable of 122.3 petaflops.48

Distributed computing can link thousands of personal computers via the Internet to
produce even more FLOPS. In late 2016, the Folding@home network—a distributed net-
work in which people volunteer their personal computers’ resources for use in disease
research and drug design49—was capable of over 100 petaflops.50 Companies like IBM are
now working toward supercomputers capable of exaflops (1018 FLOPS).51

The quantum computers now under development theoretically could operate at
18,000,000,000,000,000,000 times the speed of today’s “conventional computers”!52 This
number is so extraordinary that in one second, a quantum computer theoretically could do
staggeringly more calculations than the total that have been done by all computers since the
world’s first computer appeared. This almost unimaginable computing power could wreak
havoc with blockchain-based cryptocurrencies like Bitcoin. Engineers are already rethinking
blockchain to prepare for such massive increases in computing power.53

The history of supercomputing power is that it eventually works its way down from
research labs, where extraordinary amounts of money have been spent to achieve those per-
formance numbers, into “reasonably priced” commercial computer systems and even
desktop computers, laptops, tablets and smartphones.

Computing power’s cost continues to decline, especially with cloud computing. Peo-
ple used to ask the question, “How much computing power do I need on my system to
deal with my peak processing needs?” Today, that thinking has shifted to “Can I quickly
carve out on the cloud what I need temporarily for my most demanding computing
chores?” You pay for only what you use to accomplish a given task.

Processing the World’s Data Requires Lots of Electricity
Data from the world’s Internet-connected devices is exploding, and processing that data
requires tremendous amounts of energy. According to a recent article, energy use for pro-
cessing data in 2015 was growing at 20% per year and consuming approximately three to
five percent of the world’s power. The article says that total data-processing power con-
sumption could reach 20% by 2025.54

48. https://en.wikipedia.org/wiki/FLOPS.
49. https://en.wikipedia.org/wiki/Folding@home.
50. https://en.wikipedia.org/wiki/FLOPS.
51. https://www.ibm.com/blogs/research/2017/06/supercomputing-weather-model-exascale/.
52. https://medium.com/@n.biedrzycki/only-god-can-count-that-fast-the-world-of-quan-

tum-computing-406a0a91fcf4.
53. https://singularityhub.com/2017/11/05/is-quantum-computing-an-existential-threat-

to-blockchain-technology/.
54. https://www.theguardian.com/environment/2017/dec/11/tsunami-of-data-could-

consume-fifth-global-electricity-by-2025.

_ _ _ _ g y, ,

https://www.theguardian.com/environment/2017/dec/11/tsunami-of-data-could-consume-fifth-global-electricity-by-2025
https://www.theguardian.com/environment/2017/dec/11/tsunami-of-data-could-consume-fifth-global-electricity-by-2025
https://singularityhub.com/2017/11/05/is-quantum-computing-an-existential-threat-to-blockchain-technology/
https://singularityhub.com/2017/11/05/is-quantum-computing-an-existential-threat-to-blockchain-technology/
https://medium.com/@n.biedrzycki/only-god-can-count-that-fast-the-world-of-quantum-computing-406a0a91fcf4
https://medium.com/@n.biedrzycki/only-god-can-count-that-fast-the-world-of-quantum-computing-406a0a91fcf4
https://www.ibm.com/blogs/research/2017/06/supercomputing-weather-model-exascale/
https://en.wikipedia.org/wiki/FLOPS
https://en.wikipedia.org/wiki/Folding@home
https://en.wikipedia.org/wiki/FLOPS

1.13 How Big Is Big Data? 85

Another enormous electricity consumer is the blockchain-based cryptocurrency Bit-
coin. Processing just one Bitcoin transaction uses approximately the same amount of
energy as powering the average American home for a week. The energy use comes from
the process Bitcoin “miners” use to prove that transaction data is valid.55

According to some estimates, a year of Bitcoin transactions consumes more energy
than many countries.56 Together, Bitcoin and Ethereum (another popular blockchain-
based platform and cryptocurrency) consume more energy per year than Israel and almost
as much as Greece.57

Morgan Stanley predicted in 2018 that “the electricity consumption required to cre-
ate cryptocurrencies this year could actually outpace the firm’s projected global electric
vehicle demand—in 2025.”58 This situation is unsustainable, especially given the huge
interest in blockchain-based applications, even beyond the cryptocurrency explosion. The
blockchain community is working on fixes.59,60

Big-Data Opportunities
The big-data explosion is likely to continue exponentially for years to come. With 50 bil-
lion computing devices on the horizon, we can only imagine how many more there will
be over the next few decades. It’s crucial for businesses, governments, the military, and
even individuals to get a handle on all this data.

It’s interesting that some of the best writings about big data, data science, artificial
intelligence and more are coming out of distinguished business organizations, such as J.P.
Morgan, McKinsey and more. Big data’s appeal to big business is undeniable given the
rapidly accelerating accomplishments. Many companies are making significant invest-
ments and getting valuable results through technologies in this book, such as big data,
machine learning, deep learning, and natural-language processing. This is forcing compet-
itors to invest as well, rapidly increasing the need for computing professionals with data-
science and computer science experience. This growth is likely to continue for many years.

Self Check
1 (Fill-In) Today’s processor performance is often measured in terms of .
Answer: FLOPS (floating-point operations per second).

2 (Fill-In) The technology that could wreak havoc with blockchain-based cryptocur-
rencies, like Bitcoin, and other blockchain-based technologies is .
Answer: quantum computers.

3 (True/False) With cloud computing you pay a fixed price for cloud services regardless
of how much you use those services?
Answer: False. A key cloud-computing benefit is that you pay for only what you use to
accomplish a given task.

55. https://motherboard.vice.com/en_us/article/ywbbpm/bitcoin-mining-electricity-

consumption-ethereum-energy-climate-change.
56. https://digiconomist.net/bitcoin-energy-consumption.
57. https://digiconomist.net/ethereum-energy-consumption.
58. https://www.morganstanley.com/ideas/cryptocurrencies-global-utilities.
59. https://www.technologyreview.com/s/609480/bitcoin-uses-massive-amounts-of-energy-

but-theres-a-plan-to-fix-it/.
60. http://mashable.com/2017/12/01/bitcoin-energy/.

_ _ _ _ g y, ,

http://mashable.com/2017/12/01/bitcoin-energy/
https://www.technologyreview.com/s/609480/bitcoin-uses-massive-amounts-of-energy-but-theres-a-plan-to-fix-it/
https://www.technologyreview.com/s/609480/bitcoin-uses-massive-amounts-of-energy-but-theres-a-plan-to-fix-it/
https://www.morganstanley.com/ideas/cryptocurrencies-global-utilities
https://digiconomist.net/ethereum-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption
https://motherboard.vice.com/en_us/article/ywbbpm/bitcoin-mining-electricity-consumption-ethereum-energy-climate-change
https://motherboard.vice.com/en_us/article/ywbbpm/bitcoin-mining-electricity-consumption-ethereum-energy-climate-change

86 Introduction to Computers and Python

1.13.1 Big Data Analytics
Data analytics is a mature and well-developed academic and professional discipline. The
term “data analysis” was coined in 1962,61 though people have been analyzing data using
statistics for thousands of years going back to the ancient Egyptians.62 Big data analytics
is a more recent phenomenon—the term “big data” was coined around 2000.63

Consider four of the V’s of big data64,65:

1. Volume—the amount of data the world is producing is growing exponentially.

2. Velocity—the speed at which that data is being produced, the speed at which it
moves through organizations and the speed at which data changes are growing
quickly.66,67,68

3. Variety—data used to be alphanumeric (that is, consisting of alphabetic charac-
ters, digits, punctuation and some special characters)—today it also includes im-
ages, audios, videos and data from an exploding number of Internet of Things
sensors in our homes, businesses, vehicles, cities and more.

4. Veracity—the validity of the data—is it complete and accurate? Can we trust that
data when making crucial decisions? Is it real?

Most data is now being created digitally in a variety of types, in extraordinary volumes
and moving at astonishing velocities. Moore’s Law and related observations have enabled
us to store data economically and to process and move it faster—and all at rates growing
exponentially over time. Digital data storage has become so vast in capacity, cheap and
small that we can now conveniently and economically retain all the digital data we’re cre-
ating.69 That’s big data.

The following Richard W. Hamming quote—although from 1962—sets the tone for
the rest of this book:

“The purpose of computing is insight, not numbers.”70

Data science is producing new, deeper, subtler and more valuable insights at a remarkable
pace. It’s truly making a difference. Big data analytics is an integral part of the answer. We
address big data infrastructure in Chapter 17 with hands-on case studies on NoSQL data-

61. https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-

science/.
62. https://www.flydata.com/blog/a-brief-history-of-data-analysis/.
63. https://bits.blogs.nytimes.com/2013/02/01/the-origins-of-big-data-an-etymological-

detective-story/.
64. https://www.ibmbigdatahub.com/infographic/four-vs-big-data.
65. There are lots of articles and papers that add many other “V-words” to this list.
66. https://www.zdnet.com/article/volume-velocity-and-variety-understanding-the-

three-vs-of-big-data/.
67. https://whatis.techtarget.com/definition/3Vs.
68. https://www.forbes.com/sites/brentdykes/2017/06/28/big-data-forget-volume-and-

variety-focus-on-velocity.
69. http://www.lesk.com/mlesk/ksg97/ksg.html. [The following article pointed us to this Michael

Lesk article: https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-
of-data-science/.]

70. Hamming, R. W., Numerical Methods for Scientists and Engineers (New York, NY., McGraw Hill, 1962).
[The following article pointed us to Hamming’s book and his quote that we cited: https://
www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/.]

_ _ _ _ g y, ,

https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/
http://www.lesk.com/mlesk/ksg97/ksg.html
https://www.forbes.com/sites/brentdykes/2017/06/28/big-data-forget-volume-and-variety-focus-on-velocity
https://www.forbes.com/sites/brentdykes/2017/06/28/big-data-forget-volume-and-variety-focus-on-velocity
https://whatis.techtarget.com/definition/3Vs
https://www.zdnet.com/article/volume-velocity-and-variety-understanding-the-three-vs-of-big-data/
https://www.zdnet.com/article/volume-velocity-and-variety-understanding-the-three-vs-of-big-data/
https://www.ibmbigdatahub.com/infographic/four-vs-big-data
https://bits.blogs.nytimes.com/2013/02/01/the-origins-of-big-data-an-etymological-detective-story/
https://bits.blogs.nytimes.com/2013/02/01/the-origins-of-big-data-an-etymological-detective-story/
https://www.flydata.com/blog/a-brief-history-of-data-analysis/
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/

1.13 How Big Is Big Data? 87

bases, Hadoop MapReduce programming, Spark, real-time Internet of Things (IoT)
stream programming and more.

To get a sense of big data’s scope in industry, government and academia, check out
the high-resolution graphic.71 You can click to zoom for easier readability:

http://mattturck.com/wp-content/uploads/2018/07/
Matt_Turck_FirstMark_Big_Data_Landscape_2018_Final.png

1.13.2 Data Science and Big Data Are Making a Difference: Use Cases
The data-science field is growing rapidly because it’s producing significant results that are
making a difference. We enumerate data-science and big data use cases in the following
table. We expect that the use cases and our examples, exercises and projects will inspire
interesting term projects, directed-study projects, capstone-course projects and thesis
research. Big-data analytics has resulted in improved profits, better customer relations, and
even sports teams winning more games and championships while spending less on play-
ers.72,73,74

71. Turck, M., and J. Hao, “Great Power, Great Responsibility: The 2018 Big Data & AI Landscape,”
http://mattturck.com/bigdata2018/.

Data-science use cases

anomaly detection
assisting people with disabili-

ties
auto-insurance risk prediction
automated closed captioning
automated image captions
automated investing
autonomous ships
brain mapping
caller identification
cancer diagnosis/treatment
carbon emissions reduction
classifying handwriting
computer vision
credit scoring
crime: predicting locations
crime: predicting recidivism
crime: predictive policing
crime: prevention
CRISPR gene editing
crop-yield improvement

customer churn
customer experience
customer retention
customer satisfaction
customer service
customer service agents
customized diets
cybersecurity
data mining
data visualization
detecting new viruses
diagnosing breast cancer
diagnosing heart disease
diagnostic medicine
disaster-victim identification
drones
dynamic driving routes
dynamic pricing
electronic health records
emotion detection
energy-consumption reduction

facial recognition
fitness tracking
fraud detection
game playing
genomics and healthcare
Geographic Information Sys-

tems (GIS)
GPS Systems
health outcome improvement
hospital readmission reduction
human genome sequencing
identity-theft prevention
immunotherapy
insurance pricing
intelligent assistants
Internet of Things (IoT) and

medical device monitoring
Internet of Things and weather

forecasting
inventory control
language translation

72. Sawchik, T., Big Data Baseball: Math, Miracles, and the End of a 20-Year Losing Streak (New York,
Flat Iron Books, 2015).

73. Ayres, I., Super Crunchers (Bantam Books, 2007), pp. 7–10.
74. Lewis, M., Moneyball: The Art of Winning an Unfair Game (W. W. Norton & Company, 2004).

_ _ _ _ g y, ,

http://mattturck.com/wp-content/uploads/2018/07/Matt_Turck_FirstMark_Big_Data_Landscape_2018_Final.png
http://mattturck.com/bigdata2018/
http://mattturck.com/wp-content/uploads/2018/07/Matt_Turck_FirstMark_Big_Data_Landscape_2018_Final.png

