

DIGITAL RESOURCES FOR STUDENTS

Use the login name and password you created during registration to
start using the digital resources that accompany your textbook.

IMPORTANT
This prepaid subscription does not include access to MyProgrammingLab,

which is available at www.myprogramminglab.com for purchase.

This access code can only be used once. This subscription is valid for 12 months upon
activation and is not transferable.

For technical support go to https://support.pearson.com/getsupport

Your new textbook provides 12-month access to digital resources that may include
VideoNotes (step-by-step video tutorials on programming concepts), source code,
web chapters, quizzes, and more. Refer to the preface in the textbook for a detailed
list of resources.

Follow the instructions below to register for the Companion Website for Paul Deitel and
Harvey Deitel’s Java™ How to Program, Late Objects, Eleventh Edition, Global Edition.

1 �Go�to�www.pearsonglobaleditions.com/deitel.
2 �Enter�the�title�of�your�textbook�or�browse�by�author�name.

3 Click�Companion�Website.

4 Click�Register�and�follow�the�on-screen�instructions�to�create�a�login�name�and�password.

ISSLDO-WHIFF-SAURY-LAMBS-DOLBY-LIKES

Paul Deitel
Deitel & Associates, Inc.

 Harvey Deitel
 Deitel & Associates, Inc.

Senior Vice President Courseware Portfolio Management: Marcia J. Horton
Director, Portfolio Management: Engineering, Computer Science & Global Editions: Julian Partridge
Higher Ed Portfolio Management: Tracy Johnson (Dunkelberger)
Portfolio Management Assistant: Kristy Alaura
Acquisitions Editor, Global Edition: Aditee Agarwal
Managing Content Producer: Scott Disanno
Content Producer: Robert Engelhardt
Senior Project Editor, Global Edition: K.K. Neelakantan
Web Developer: Steve Wright
Rights and Permissions Manager: Ben Ferrini
Manufacturing Buyer, Higher Ed, Lake Side Communications Inc (LSC): Maura Zaldivar-Garcia
Senior Manufacturing Controller, Global Edition: Kay Holman
Inventory Manager: Ann Lam
Product Marketing Manager: Yvonne Vannatta
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Manager, Media Production, Global Edition: Vikram Kumar
Cover Designer: Lumina Datamatics, Inc.
Cover Art: ©MchlSkhrv/Shutterstock

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear
on page 6.

Java™ and Netbeans™ screenshots ©2017 by Oracle Corporation, all rights reserved. Reprinted with permission.

Pearson Education Limited
KAO Two
KAO Park
Harlow
CM17 9SR
United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited 2020

The rights of Paul Deitel and Harvey Deitel to be identified as the authors of this work have been asserted by them
in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Java How to Program, Late Objects, 11thEdition, ISBN
978-0-13-479140-1 by Paul Deitel and Harvey Deitel published by Pearson Education © 2020.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior
written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the
Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text
does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use
of such trademarks imply any affiliation with or endorsement of this book by such owners. For information
regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights
and Permissions department, please visit www.pearsoned.com/permissions.

This eBook is a standalone product and may or may not include all assets that were part of the print version. It
also does not provide access to other Pearson digital products like MyLab and Mastering. The publisher
reserves the right to remove any material in this eBook at any time.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN 10: 1-292-27373-9
ISBN 13: 978-1-292-27373-0
eBook ISBN 13: 978-1-292-27374-7

eBook formatted by GEX Inc.

http://www.pearsonglobaleditions.com

In memory of Dr. Henry Heimlich:
Barbara Deitel used your Heimlich maneuver to
save Abbey Deitel’s life. Our family is forever
grateful to you.

Harvey, Barbara, Paul and Abbey Deitel

Trademarks
DEITEL and the double-thumbs-up bug are registered trademarks of Deitel and Associates, Inc.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All
such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/
or its respective suppliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied or statutory, fitness
for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective sup-
pliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typograph-
ical errors. Changes are periodically added to the information herein. Microsoft and/or its respective sup-
pliers may make improvements and/or changes in the product(s) and/or the program(s) described herein
at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

UNIX is a registered trademark of The Open Group.

Apache is a trademark of The Apache Software Foundation.

CSS and XML are registered trademarks of the World Wide Web Consortium.

Firefox is a registered trademark of the Mozilla Foundation.

Google is a trademark of Google, Inc.

Mac and macOS are trademarks of Apple Inc., registered in the U.S. and other countries.

Linux is a registered trademark of Linus Torvalds. All trademarks are property of their respective owners.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

The online chapters and appendices listed at the end of this Table of Contents are located
on the book’s Companion Website (http://www.pearsonglobaleditions.com)—see
the inside front cover of your book for details.

Foreword 25

Preface 27

Before You Begin 47

1 Introduction to Computers, the Internet and Java 53
1.1 Introduction 54
1.2 Hardware and Software 56

1.2.1 Moore’s Law 56
1.2.2 Computer Organization 57

1.3 Data Hierarchy 59
1.4 Machine Languages, Assembly Languages and High-Level Languages 61
1.5 Basic Introduction to Object Terminology 62

1.5.1 Automobile as an Object 63
1.5.2 Methods and Classes 63
1.5.3 Instantiation 63
1.5.4 Reuse 63
1.5.5 Messages and Method Calls 64
1.5.6 Attributes and Instance Variables 64
1.5.7 Encapsulation and Information Hiding 64
1.5.8 Inheritance 64
1.5.9 Interfaces 65
1.5.10 Object-Oriented Analysis and Design (OOAD) 65
1.5.11 The UML (Unified Modeling Language) 65

1.6 Operating Systems 66
1.6.1 Windows—A Proprietary Operating System 66
1.6.2 Linux—An Open-Source Operating System 66
1.6.3 Apple’s macOS and Apple’s iOS for iPhone®, iPad® and

iPod Touch® Devices 67
1.6.4 Google’s Android 67

Contents

http://www.pearsonglobaleditions.com

8 Contents

1.7 Programming Languages 68
1.8 Java 70
1.9 A Typical Java Development Environment 71
1.10 Test-Driving a Java Application 74
1.11 Internet and World Wide Web 78

1.11.1 Internet: A Network of Networks 79
1.11.2 World Wide Web: Making the Internet User-Friendly 79
1.11.3 Web Services and Mashups 79
1.11.4 Internet of Things 80

1.12 Software Technologies 81
1.13 Getting Your Questions Answered 83

2 Introduction to Java Applications; Input/Output
and Operators 87

2.1 Introduction 88
2.2 Your First Program in Java: Printing a Line of Text 88

2.2.1 Compiling the Application 92
2.2.2 Executing the Application 93

2.3 Modifying Your First Java Program 94
2.4 Displaying Text with printf 96
2.5 Another Application: Adding Integers 97

2.5.1 import Declarations 98
2.5.2 Declaring and Creating a Scanner to Obtain User Input

from the Keyboard 98
2.5.3 Prompting the User for Input 99
2.5.4 Declaring a Variable to Store an Integer and Obtaining an

Integer from the Keyboard 99
2.5.5 Obtaining a Second Integer 100
2.5.6 Using Variables in a Calculation 100
2.5.7 Displaying the Calculation Result 100
2.5.8 Java API Documentation 101
2.5.9 Declaring and Initializing Variables in Separate Statements 101

2.6 Memory Concepts 101
2.7 Arithmetic 102
2.8 Decision Making: Equality and Relational Operators 106
2.9 Wrap-Up 109

3 Control Statements: Part 1; Assignment,
++ and -- Operators 120

3.1 Introduction 121
3.2 Algorithms 121
3.3 Pseudocode 122
3.4 Control Structures 122

3.4.1 Sequence Structure in Java 123

Contents 9

3.4.2 Selection Statements in Java 124
3.4.3 Iteration Statements in Java 124
3.4.4 Summary of Control Statements in Java 124

3.5 if Single-Selection Statement 125
3.6 if…else Double-Selection Statement 126

3.6.1 Nested if…else Statements 127
3.6.2 Dangling-else Problem 128
3.6.3 Blocks 128
3.6.4 Conditional Operator (?:) 129

3.7 while Iteration Statement 129
3.8 Formulating Algorithms: Counter-Controlled Iteration 131
3.9 Formulating Algorithms: Sentinel-Controlled Iteration 135
3.10 Formulating Algorithms: Nested Control Statements 142
3.11 Compound Assignment Operators 146
3.12 Increment and Decrement Operators 147
3.13 Primitive Types 150
3.14 Wrap-Up 150

4 Control Statements: Part 2; Logical Operators 164
4.1 Introduction 165
4.2 Essentials of Counter-Controlled Iteration 165
4.3 for Iteration Statement 166
4.4 Examples Using the for Statement 170

4.4.1 Application: Summing the Even Integers from 2 to 20 171
4.4.2 Application: Compound-Interest Calculations 172

4.5 do…while Iteration Statement 175
4.6 switch Multiple-Selection Statement 176
4.7 break and continue Statements 182

4.7.1 break Statement 182
4.7.2 continue Statement 182

4.8 Logical Operators 183
4.8.1 Conditional AND (&&) Operator 184
4.8.2 Conditional OR (||) Operator 184
4.8.3 Short-Circuit Evaluation of Complex Conditions 185
4.8.4 Boolean Logical AND (&) and Boolean Logical Inclusive OR (|)

Operators 185
4.8.5 Boolean Logical Exclusive OR (^) 186
4.8.6 Logical Negation (!) Operator 186
4.8.7 Logical Operators Example 187

4.9 Structured-Programming Summary 189
4.10 Wrap-Up 194

5 Methods 204
5.1 Introduction 205

10 Contents

5.2 Program Units in Java 205
5.3 static Methods, static Variables and Class Math 207
5.4 Declaring Methods 209
5.5 Notes on Declaring and Using Methods 213
5.6 Method-Call Stack and Activation Records 214

5.6.1 Method-Call Stack 214
5.6.2 Stack Frames 214
5.6.3 Local Variables and Stack Frames 215
5.6.4 Stack Overflow 215

5.7 Argument Promotion and Casting 215
5.8 Java API Packages 216
5.9 Case Study: Secure Random-Number Generation 218
5.10 Case Study: A Game of Chance; Introducing enums 223
5.11 Scope of Declarations 227
5.12 Method Overloading 230

5.12.1 Declaring Overloaded Methods 230
5.12.2 Distinguishing Between Overloaded Methods 231
5.12.3 Return Types of Overloaded Methods 231

5.13 Wrap-Up 232

6 Arrays and ArrayLists 245
6.1 Introduction 246
6.2 Primitive Types vs. Reference Types 247
6.3 Arrays 247
6.4 Declaring and Creating Arrays 249
6.5 Examples Using Arrays 250

6.5.1 Creating and Initializing an Array 250
6.5.2 Using an Array Initializer 251
6.5.3 Calculating the Values to Store in an Array 252
6.5.4 Summing the Elements of an Array 253
6.5.5 Using Bar Charts to Display Array Data Graphically 254
6.5.6 Using the Elements of an Array as Counters 256
6.5.7 Using Arrays to Analyze Survey Results 257

6.6 Exception Handling: Processing the Incorrect Response 259
6.6.1 The try Statement 259
6.6.2 Executing the catch Block 259
6.6.3 toString Method of the Exception Parameter 260

6.7 Enhanced for Statement 260
6.8 Passing Arrays to Methods 261
6.9 Pass-By-Value vs. Pass-By-Reference 264
6.10 Multidimensional Arrays 264

6.10.1 Arrays of One-Dimensional Arrays 265
6.10.2 Two-Dimensional Arrays with Rows of Different Lengths 265
6.10.3 Creating Two-Dimensional Arrays with Array-Creation

Expressions 266

Contents 11

6.10.4 Two-Dimensional Array Example: Displaying Element Values 266
6.10.5 Common Multidimensional-Array Manipulations Performed

with for Statements 267
6.11 Variable-Length Argument Lists 268
6.12 Using Command-Line Arguments 269
6.13 Class Arrays 271
6.14 Introduction to Collections and Class ArrayList 274
6.15 Wrap-Up 278

7 Introduction to Classes and Objects 298
7.1 Introduction 299
7.2 Instance Variables, set Methods and get Methods 300

7.2.1 Account Class with an Instance Variable, and set and get Methods 300
7.2.2 AccountTest Class That Creates and Uses an Object of

Class Account 302
7.2.3 Compiling and Executing an App with Multiple Classes 305
7.2.4 Account UML Class Diagram 305
7.2.5 Additional Notes on Class AccountTest 306
7.2.6 Software Engineering with private Instance Variables and

public set and get Methods 307
7.3 Default and Explicit Initialization for Instance Variables 308
7.4 Account Class: Initializing Objects with Constructors 309

7.4.1 Declaring an Account Constructor for Custom Object
Initialization 309

7.4.2 Class AccountTest: Initializing Account Objects When
They’re Created 310

7.5 Account Class with a Balance 312
7.5.1 Account Class with a balance Instance Variable of Type double 312
7.5.2 AccountTest Class to Use Class Account 313

7.6 Case Study: Card Shuffling and Dealing Simulation 316
7.7 Case Study: Class GradeBook Using an Array to Store Grades 320
7.8 Case Study: Class GradeBook Using a Two-Dimensional Array 326
7.9 Wrap-Up 331

8 Classes and Objects: A Deeper Look 339
8.1 Introduction 340
8.2 Time Class Case Study 340
8.3 Controlling Access to Members 345
8.4 Referring to the Current Object’s Members with the this Reference 346
8.5 Time Class Case Study: Overloaded Constructors 348
8.6 Default and No-Argument Constructors 353
8.7 Notes on Set and Get Methods 354
8.8 Composition 355
8.9 enum Types 358

12 Contents

8.10 Garbage Collection 361
8.11 static Class Members 361
8.12 static Import 365
8.13 final Instance Variables 366
8.14 Package Access 367
8.15 Using BigDecimal for Precise Monetary Calculations 368
8.16 (Optional) GUI and Graphics Case Study: Using Objects with Graphics 371
8.17 Wrap-Up 375

9 Object-Oriented Programming: Inheritance 383
9.1 Introduction 384
9.2 Superclasses and Subclasses 385
9.3 protected Members 387
9.4 Relationship Between Superclasses and Subclasses 388

9.4.1 Creating and Using a CommissionEmployee Class 388
9.4.2 Creating and Using a BasePlusCommissionEmployee Class 393
9.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy 398
9.4.4 CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy Using protected Instance Variables 401
9.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using private Instance Variables 404
9.5 Constructors in Subclasses 408
9.6 Class Object 409
9.7 Designing with Composition vs. Inheritance 410
9.8 Wrap-Up 412

10 Object-Oriented Programming: Polymorphism
and Interfaces 417

10.1 Introduction 418
10.2 Polymorphism Examples 420
10.3 Demonstrating Polymorphic Behavior 421
10.4 Abstract Classes and Methods 423
10.5 Case Study: Payroll System Using Polymorphism 426

10.5.1 Abstract Superclass Employee 427
10.5.2 Concrete Subclass SalariedEmployee 429
10.5.3 Concrete Subclass HourlyEmployee 431
10.5.4 Concrete Subclass CommissionEmployee 432
10.5.5 Indirect Concrete Subclass BasePlusCommissionEmployee 434
10.5.6 Polymorphic Processing, Operator instanceof and Downcasting 435

10.6 Allowed Assignments Between Superclass and Subclass Variables 440
10.7 final Methods and Classes 440
10.8 A Deeper Explanation of Issues with Calling Methods from Constructors 441
10.9 Creating and Using Interfaces 442

10.9.1 Developing a Payable Hierarchy 444

Contents 13

10.9.2 Interface Payable 445
10.9.3 Class Invoice 445
10.9.4 Modifying Class Employee to Implement Interface Payable 447
10.9.5 Using Interface Payable to Process Invoices and Employees

Polymorphically 449
10.9.6 Some Common Interfaces of the Java API 450

10.10 Java SE 8 Interface Enhancements 451
10.10.1 default Interface Methods 451
10.10.2 static Interface Methods 452
10.10.3 Functional Interfaces 452

10.11 Java SE 9 private Interface Methods 453
10.12 private Constructors 453
10.13 Program to an Interface, Not an Implementation 454

10.13.1 Implementation Inheritance Is Best for Small Numbers of
Tightly Coupled Classes 454

10.13.2 Interface Inheritance Is Best for Flexibility 454
10.13.3 Rethinking the Employee Hierarchy 455

10.14 (Optional) GUI and Graphics Case Study: Drawing with Polymorphism 456
10.15 Wrap-Up 458

11 Exception Handling: A Deeper Look 465
11.1 Introduction 466
11.2 Example: Divide by Zero without Exception Handling 467
11.3 Example: Handling ArithmeticExceptions and

InputMismatchExceptions 469
11.4 When to Use Exception Handling 475
11.5 Java Exception Hierarchy 475
11.6 finally Block 479
11.7 Stack Unwinding and Obtaining Information from an Exception 483
11.8 Chained Exceptions 486
11.9 Declaring New Exception Types 488
11.10 Preconditions and Postconditions 489
11.11 Assertions 489
11.12 try-with-Resources: Automatic Resource Deallocation 491
11.13 Wrap-Up 492

12 JavaFX Graphical User Interfaces: Part 1 498
12.1 Introduction 499
12.2 JavaFX Scene Builder 500
12.3 JavaFX App Window Structure 501
12.4 Welcome App—Displaying Text and an Image 502

12.4.1 Opening Scene Builder and Creating the File Welcome.fxml 502
12.4.2 Adding an Image to the Folder Containing Welcome.fxml 503
12.4.3 Creating a VBox Layout Container 503
12.4.4 Configuring the VBox Layout Container 504
12.4.5 Adding and Configuring a Label 504

14 Contents

12.4.6 Adding and Configuring an ImageView 505
12.4.7 Previewing the Welcome GUI 507

12.5 Tip Calculator App—Introduction to Event Handling 507
12.5.1 Test-Driving the Tip Calculator App 508
12.5.2 Technologies Overview 509
12.5.3 Building the App’s GUI 511
12.5.4 TipCalculator Class 518
12.5.5 TipCalculatorController Class 520

12.6 Features Covered in the Other JavaFX Chapters 525
12.7 Wrap-Up 525

13 JavaFX GUI: Part 2 533
13.1 Introduction 534
13.2 Laying Out Nodes in a Scene Graph 534
13.3 Painter App: RadioButtons, Mouse Events and Shapes 536

13.3.1 Technologies Overview 536
13.3.2 Creating the Painter.fxml File 538
13.3.3 Building the GUI 538
13.3.4 Painter Subclass of Application 541
13.3.5 PainterController Class 542

13.4 Color Chooser App: Property Bindings and Property Listeners 546
13.4.1 Technologies Overview 546
13.4.2 Building the GUI 547
13.4.3 ColorChooser Subclass of Application 549
13.4.4 ColorChooserController Class 550

13.5 Cover Viewer App: Data-Driven GUIs with JavaFX Collections 552
13.5.1 Technologies Overview 553
13.5.2 Adding Images to the App’s Folder 553
13.5.3 Building the GUI 553
13.5.4 CoverViewer Subclass of Application 555
13.5.5 CoverViewerController Class 555

13.6 Cover Viewer App: Customizing ListView Cells 557
13.6.1 Technologies Overview 558
13.6.2 Copying the CoverViewer App 558
13.6.3 ImageTextCell Custom Cell Factory Class 559
13.6.4 CoverViewerController Class 560

13.7 Additional JavaFX Capabilities 561
13.8 JavaFX 9: Java SE 9 JavaFX Updates 563
13.9 Wrap-Up 565

14 Strings, Characters and Regular Expressions 574
14.1 Introduction 575
14.2 Fundamentals of Characters and Strings 575
14.3 Class String 576

14.3.1 String Constructors 576

Contents 15

14.3.2 String Methods length, charAt and getChars 577
14.3.3 Comparing Strings 579
14.3.4 Locating Characters and Substrings in Strings 583
14.3.5 Extracting Substrings from Strings 585
14.3.6 Concatenating Strings 586
14.3.7 Miscellaneous String Methods 587
14.3.8 String Method valueOf 588

14.4 Class StringBuilder 589
14.4.1 StringBuilder Constructors 590
14.4.2 StringBuilder Methods length, capacity, setLength and

ensureCapacity 591
14.4.3 StringBuilder Methods charAt, setCharAt, getChars and

reverse 592
14.4.4 StringBuilder append Methods 593
14.4.5 StringBuilder Insertion and Deletion Methods 595

14.5 Class Character 596
14.6 Tokenizing Strings 601
14.7 Regular Expressions, Class Pattern and Class Matcher 602

14.7.1 Replacing Substrings and Splitting Strings 607
14.7.2 Classes Pattern and Matcher 609

14.8 Wrap-Up 611

15 Files, Input/Output Streams, NIO and
XML Serialization 622

15.1 Introduction 623
15.2 Files and Streams 623
15.3 Using NIO Classes and Interfaces to Get File and Directory Information 625
15.4 Sequential Text Files 629

15.4.1 Creating a Sequential Text File 629
15.4.2 Reading Data from a Sequential Text File 632
15.4.3 Case Study: A Credit-Inquiry Program 633
15.4.4 Updating Sequential Files 638

15.5 XML Serialization 638
15.5.1 Creating a Sequential File Using XML Serialization 638
15.5.2 Reading and Deserializing Data from a Sequential File 644

15.6 FileChooser and DirectoryChooser Dialogs 645
15.7 (Optional) Additional java.io Classes 651

15.7.1 Interfaces and Classes for Byte-Based Input and Output 651
15.7.2 Interfaces and Classes for Character-Based Input and Output 653

15.8 Wrap-Up 654

16 Generic Collections 662
16.1 Introduction 663
16.2 Collections Overview 663

16 Contents

16.3 Type-Wrapper Classes 665
16.4 Autoboxing and Auto-Unboxing 665
16.5 Interface Collection and Class Collections 665
16.6 Lists 666

16.6.1 ArrayList and Iterator 667
16.6.2 LinkedList 669

16.7 Collections Methods 674
16.7.1 Method sort 674
16.7.2 Method shuffle 678
16.7.3 Methods reverse, fill, copy, max and min 680
16.7.4 Method binarySearch 682
16.7.5 Methods addAll, frequency and disjoint 683

16.8 Class PriorityQueue and Interface Queue 685
16.9 Sets 686
16.10 Maps 689
16.11 Synchronized Collections 693
16.12 Unmodifiable Collections 693
16.13 Abstract Implementations 694
16.14 Java SE 9: Convenience Factory Methods for Immutable Collections 694
16.15 Wrap-Up 698

17 Lambdas and Streams 704
17.1 Introduction 705
17.2 Streams and Reduction 707

17.2.1 Summing the Integers from 1 through 10 with a for Loop 707
17.2.2 External Iteration with for Is Error Prone 708
17.2.3 Summing with a Stream and Reduction 708
17.2.4 Internal Iteration 709

17.3 Mapping and Lambdas 710
17.3.1 Lambda Expressions 711
17.3.2 Lambda Syntax 712
17.3.3 Intermediate and Terminal Operations 713

17.4 Filtering 714
17.5 How Elements Move Through Stream Pipelines 716
17.6 Method References 717

17.6.1 Creating an IntStream of Random Values 718
17.6.2 Performing a Task on Each Stream Element with forEach and

a Method Reference 718
17.6.3 Mapping Integers to String Objects with mapToObj 719
17.6.4 Concatenating Strings with collect 719

17.7 IntStream Operations 720
17.7.1 Creating an IntStream and Displaying Its Values 721
17.7.2 Terminal Operations count, min, max, sum and average 721
17.7.3 Terminal Operation reduce 722
17.7.4 Sorting IntStream Values 724

Contents 17

17.8 Functional Interfaces 725
17.9 Lambdas: A Deeper Look 726
17.10 Stream<Integer> Manipulations 727

17.10.1 Creating a Stream<Integer> 728
17.10.2 Sorting a Stream and Collecting the Results 729
17.10.3 Filtering a Stream and Storing the Results for Later Use 729
17.10.4 Filtering and Sorting a Stream and Collecting the Results 730
17.10.5 Sorting Previously Collected Results 730

17.11 Stream<String> Manipulations 730
17.11.1 Mapping Strings to Uppercase 731
17.11.2 Filtering Strings Then Sorting Them in Case-Insensitive

Ascending Order 732
17.11.3 Filtering Strings Then Sorting Them in Case-Insensitive

Descending Order 732
17.12 Stream<Employee> Manipulations 733

17.12.1 Creating and Displaying a List<Employee> 734
17.12.2 Filtering Employees with Salaries in a Specified Range 735
17.12.3 Sorting Employees By Multiple Fields 738
17.12.4 Mapping Employees to Unique-Last-Name Strings 740
17.12.5 Grouping Employees By Department 741
17.12.6 Counting the Number of Employees in Each Department 742
17.12.7 Summing and Averaging Employee Salaries 743

17.13 Creating a Stream<String> from a File 744
17.14 Streams of Random Values 747
17.15 Infinite Streams 749
17.16 Lambda Event Handlers 751
17.17 Additional Notes on Java SE 8 Interfaces 751
17.18 Wrap-Up 752

18 Recursion 766
18.1 Introduction 767
18.2 Recursion Concepts 768
18.3 Example Using Recursion: Factorials 769
18.4 Reimplementing Class FactorialCalculator Using BigInteger 771
18.5 Example Using Recursion: Fibonacci Series 773
18.6 Recursion and the Method-Call Stack 776
18.7 Recursion vs. Iteration 777
18.8 Towers of Hanoi 779
18.9 Fractals 781

18.9.1 Koch Curve Fractal 782
18.9.2 (Optional) Case Study: Lo Feather Fractal 783
18.9.3 (Optional) Fractal App GUI 785
18.9.4 (Optional) FractalController Class 787

18.10 Recursive Backtracking 792
18.11 Wrap-Up 792

18 Contents

19 Searching, Sorting and Big O 801
19.1 Introduction 802
19.2 Linear Search 803
19.3 Big O Notation 806

19.3.1 O(1) Algorithms 806
19.3.2 O(n) Algorithms 806
19.3.3 O(n2) Algorithms 806
19.3.4 Big O of the Linear Search 807

19.4 Binary Search 807
19.4.1 Binary Search Implementation 808
19.4.2 Efficiency of the Binary Search 811

19.5 Sorting Algorithms 812
19.6 Selection Sort 812

19.6.1 Selection Sort Implementation 813
19.6.2 Efficiency of the Selection Sort 815

19.7 Insertion Sort 815
19.7.1 Insertion Sort Implementation 816
19.7.2 Efficiency of the Insertion Sort 818

19.8 Merge Sort 819
19.8.1 Merge Sort Implementation 819
19.8.2 Efficiency of the Merge Sort 824

19.9 Big O Summary for This Chapter’s Searching and Sorting Algorithms 824
19.10 Massive Parallelism and Parallel Algorithms 825
19.11 Wrap-Up 825

20 Generic Classes and Methods: A Deeper Look 831
20.1 Introduction 832
20.2 Motivation for Generic Methods 832
20.3 Generic Methods: Implementation and Compile-Time Translation 834
20.4 Additional Compile-Time Translation Issues: Methods That Use a Type

Parameter as the Return Type 837
20.5 Overloading Generic Methods 840
20.6 Generic Classes 841
20.7 Wildcards in Methods That Accept Type Parameters 848
20.8 Wrap-Up 852

21 Custom Generic Data Structures 856
21.1 Introduction 857
21.2 Self-Referential Classes 858
21.3 Dynamic Memory Allocation 858
21.4 Linked Lists 859

21.4.1 Singly Linked Lists 859
21.4.2 Implementing a Generic List Class 860
21.4.3 Generic Classes ListNode and List 863

Contents 19

21.4.4 Class ListTest 863
21.4.5 List Method insertAtFront 865
21.4.6 List Method insertAtBack 866
21.4.7 List Method removeFromFront 866
21.4.8 List Method removeFromBack 867
21.4.9 List Method print 868
21.4.10 Creating Your Own Packages 868

21.5 Stacks 873
21.6 Queues 876
21.7 Trees 878
21.8 Wrap-Up 885

22 JavaFX Graphics and Multimedia 910
22.1 Introduction 911
22.2 Controlling Fonts with Cascading Style Sheets (CSS) 912

22.2.1 CSS That Styles the GUI 912
22.2.2 FXML That Defines the GUI—Introduction to XML Markup 915
22.2.3 Referencing the CSS File from FXML 918
22.2.4 Specifying the VBox’s Style Class 918
22.2.5 Programmatically Loading CSS 918

22.3 Displaying Two-Dimensional Shapes 919
22.3.1 Defining Two-Dimensional Shapes with FXML 919
22.3.2 CSS That Styles the Two-Dimensional Shapes 922

22.4 Polylines, Polygons and Paths 924
22.4.1 GUI and CSS 925
22.4.2 PolyShapesController Class 926

22.5 Transforms 929
22.6 Playing Video with Media, MediaPlayer and MediaViewer 931

22.6.1 VideoPlayer GUI 932
22.6.2 VideoPlayerController Class 934

22.7 Transition Animations 938
22.7.1 TransitionAnimations.fxml 938
22.7.2 TransitionAnimationsController Class 940

22.8 Timeline Animations 944
22.9 Frame-by-Frame Animation with AnimationTimer 947
22.10 Drawing on a Canvas 949
22.11 Three-Dimensional Shapes 954
22.12 Wrap-Up 957

23 Concurrency 973
23.1 Introduction 974
23.2 Thread States and Life Cycle 976

23.2.1 New and Runnable States 977
23.2.2 Waiting State 977

20 Contents

23.2.3 Timed Waiting State 977
23.2.4 Blocked State 977
23.2.5 Terminated State 977
23.2.6 Operating-System View of the Runnable State 978
23.2.7 Thread Priorities and Thread Scheduling 978
23.2.8 Indefinite Postponement and Deadlock 979

23.3 Creating and Executing Threads with the Executor Framework 979
23.4 Thread Synchronization 983

23.4.1 Immutable Data 984
23.4.2 Monitors 984
23.4.3 Unsynchronized Mutable Data Sharing 985
23.4.4 Synchronized Mutable Data Sharing—Making

Operations Atomic 989
23.5 Producer/Consumer Relationship without Synchronization 992
23.6 Producer/Consumer Relationship: ArrayBlockingQueue 1000
23.7 (Advanced) Producer/Consumer Relationship with synchronized,

wait, notify and notifyAll 1003
23.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers 1009
23.9 (Advanced) Producer/Consumer Relationship: The Lock and

Condition Interfaces 1017
23.10 Concurrent Collections 1024
23.11 Multithreading in JavaFX 1026

23.11.1 Performing Computations in a Worker Thread:
Fibonacci Numbers 1027

23.11.2 Processing Intermediate Results: Sieve of Eratosthenes 1032
23.12 sort/parallelSort Timings with the Java SE 8 Date/Time API 1038
23.13 Java SE 8: Sequential vs. Parallel Streams 1041
23.14 (Advanced) Interfaces Callable and Future 1043
23.15 (Advanced) Fork/Join Framework 1048
23.16 Wrap-Up 1048

24 Accessing Databases with JDBC 1060
24.1 Introduction 1061
24.2 Relational Databases 1062
24.3 A books Database 1063
24.4 SQL 1067

24.4.1 Basic SELECT Query 1068
24.4.2 WHERE Clause 1068
24.4.3 ORDER BY Clause 1070
24.4.4 Merging Data from Multiple Tables: INNER JOIN 1072
24.4.5 INSERT Statement 1073
24.4.6 UPDATE Statement 1074
24.4.7 DELETE Statement 1075

24.5 Setting Up a Java DB Database 1076
24.5.1 Creating the Chapter’s Databases on Windows 1077

Contents 21

24.5.2 Creating the Chapter’s Databases on macOS 1078
24.5.3 Creating the Chapter’s Databases on Linux 1078

24.6 Connecting to and Querying a Database 1078
24.6.1 Automatic Driver Discovery 1080
24.6.2 Connecting to the Database 1080
24.6.3 Creating a Statement for Executing Queries 1081
24.6.4 Executing a Query 1081
24.6.5 Processing a Query’s ResultSet 1082

24.7 Querying the books Database 1083
24.7.1 ResultSetTableModel Class 1083
24.7.2 DisplayQueryResults App’s GUI 1090
24.7.3 DisplayQueryResultsController Class 1090

24.8 RowSet Interface 1095
24.9 PreparedStatements 1098

24.9.1 AddressBook App That Uses PreparedStatements 1099
24.9.2 Class Person 1099
24.9.3 Class PersonQueries 1101
24.9.4 AddressBook GUI 1104
24.9.5 Class AddressBookController 1105

24.10 Stored Procedures 1110
24.11 Transaction Processing 1110
24.12 Wrap-Up 1111

25 Introduction to JShell: Java 9’s REPL for
Interactive Java 1119

25.1 Introduction 1120
25.2 Installing JDK 9 1122
25.3 Introduction to JShell 1122

25.3.1 Starting a JShell Session 1123
25.3.2 Executing Statements 1123
25.3.3 Declaring Variables Explicitly 1124
25.3.4 Listing and Executing Prior Snippets 1126
25.3.5 Evaluating Expressions and Declaring Variables Implicitly 1128
25.3.6 Using Implicitly Declared Variables 1128
25.3.7 Viewing a Variable’s Value 1129
25.3.8 Resetting a JShell Session 1129
25.3.9 Writing Multiline Statements 1129
25.3.10 Editing Code Snippets 1130
25.3.11 Exiting JShell 1133

25.4 Command-Line Input in JShell 1133
25.5 Declaring and Using Classes 1134

25.5.1 Creating a Class in JShell 1135
25.5.2 Explicitly Declaring Reference-Type Variables 1135
25.5.3 Creating Objects 1136
25.5.4 Manipulating Objects 1136

22 Contents

25.5.5 Creating a Meaningful Variable Name for an Expression 1137
25.5.6 Saving and Opening Code-Snippet Files 1138

25.6 Discovery with JShell Auto-Completion 1138
25.6.1 Auto-Completing Identifiers 1139
25.6.2 Auto-Completing JShell Commands 1140

25.7 Exploring a Class’s Members and Viewing Documentation 1140
25.7.1 Listing Class Math’s static Members 1141
25.7.2 Viewing a Method’s Parameters 1141
25.7.3 Viewing a Method’s Documentation 1142
25.7.4 Viewing a public Field’s Documentation 1142
25.7.5 Viewing a Class’s Documentation 1143
25.7.6 Viewing Method Overloads 1143
25.7.7 Exploring Members of a Specific Object 1144

25.8 Declaring Methods 1146
25.8.1 Forward Referencing an Undeclared Method—Declaring

Method displayCubes 1146
25.8.2 Declaring a Previously Undeclared Method 1146
25.8.3 Testing cube and Replacing Its Declaration 1147
25.8.4 Testing Updated Method cube and Method displayCubes 1147

25.9 Exceptions 1148
25.10 Importing Classes and Adding Packages to the CLASSPATH 1149
25.11 Using an External Editor 1151
25.12 Summary of JShell Commands 1153

25.12.1 Getting Help in JShell 1154
25.12.2 /edit Command: Additional Features 1155
25.12.3 /reload Command 1155
25.12.4 /drop Command 1156
25.12.5 Feedback Modes 1156
25.12.6 Other JShell Features Configurable with /set 1158

25.13 Keyboard Shortcuts for Snippet Editing 1159
25.14 How JShell Reinterprets Java for Interactive Use 1159
25.15 IDE JShell Support 1160
25.16 Wrap-Up 1160

Chapters on the Web 1176

A Operator Precedence Chart 1177

B ASCII Character Set 1179

C Keywords and Reserved Words 1180

D Primitive Types 1181

Contents 23

E Using the Debugger 1182
E.1 Introduction 1183
E.2 Breakpoints and the run, stop, cont and print Commands 1183
E.3 The print and set Commands 1187
E.4 Controlling Execution Using the step, step up and next Commands 1189
E.5 The watch Command 1191
E.6 The clear Command 1193
E.7 Wrap-Up 1196

Appendices on the Web 1197

Index 1199

Online Chapters and Appendices
The online chapters and appendices are located on the book’s Companion Website. See
the book’s inside front cover for details.

26 Swing GUI Components: Part 1

27 Graphics and Java 2D

28 Networking

29 Java Persistence API (JPA)

30 JavaServer™ Faces Web Apps: Part 1

31 JavaServer™ Faces Web Apps: Part 2

32 REST-Based Web Services

33 (Optional) ATM Case Study, Part 1:
Object-Oriented Design with the UML

34 (Optional) ATM Case Study, Part 2:
Implementing an Object-Oriented Design

35 Swing GUI Components: Part 2

36 Java Module System and Other Java 9 Features

24 Contents

F Using the Java API Documentation

G Creating Documentation with javadoc

H Unicode®

I Formatted Output

J Number Systems

K Bit Manipulation

L Labeled break and continue Statements

M UML 2: Additional Diagram Types

N Design Patterns

Throughout my career I’ve met and interviewed many expert Java developers who’ve
learned from Paul and Harvey, through one or more of their college textbooks, profession-
al books, videos and corporate training. Many Java User Groups have joined together
around the Deitels’ publications, which are used internationally in university courses and
professional training programs. You are joining an elite group.

How do I become an expert Java developer?
This is one of the most common questions I receive at talks for university students and at
events with Java professionals. Students want to become expert developers—and this is a
great time to be one.

The market is wide open, full of opportunities and fascinating projects, especially for
those who take the time to learn, practice and master software development. The world
needs good, focused expert developers.

So, how do you do it? First, let’s be clear: Software development is hard. But do not
be discouraged. Mastering it opens the door to great opportunities. Accept that it’s hard,
embrace the complexity, enjoy the ride. There are no limits to how much you can expand
your skills.

Software development is an amazing skill. It can take you anywhere. You can work in
any field. From nonprofits making the world a better place, to bleeding-edge biological
technologies. From the frenetic daily run of the financial world to the deep mysteries of
religion. From sports to music to acting. Everything has software. The success or failure of
initiatives everywhere will depend on developers’ knowledge and skills.

The push for you to get the relevant skills is what makes Java How to Program, 11/e so
compelling. Written for students and new developers, it’s easy to follow. It’s written by
authors who are educators and developers, with input over the years from some of the
world’s leading academics and professional Java experts—Java Champions, open-source
Java developers, even creators of Java itself. Their collective knowledge and experience will
guide you. Even seasoned Java professionals will learn and grow their expertise with the
wisdom in these pages.

How can this book help you become an expert?
Java was released in 1995—Paul and Harvey had the first edition of Java How to Program
ready for Fall 1996 classes. Since that groundbreaking book, they’ve produced ten more
editions, keeping current with the latest developments and idioms in the Java software-
engineering community. You hold in your hands the map that will enable you to rapidly
develop your Java skills.

The Deitels have broken down the humongous Java world into well-defined, specific
goals. Put in your full attention, and consciously “beat” each chapter. You’ll soon find

Foreword

26 Foreword

yourself moving nicely along your road to excellence. And with both Java 8 and Java 9 in
the same book, you’ll have up-to-date skills on the latest Java technologies.

Most importantly, this book is not just meant for you to read—it’s meant for you to
practice. Be it in the classroom or at home after work, experiment with the abundant
sample code and practice with the book’s extraordinarily rich and diverse collection of
exercises. Take the time to do all that is in here and you’ll be well on your way to achieving
a level of expertise that will challenge professional developers out there. After working with
Java for more than 20 years, I can tell you that this is not an exaggeration.

For example, one of my favorite chapters is Lambdas and Streams. The chapter covers
the topic in detail and the exercises shine—many real-world challenges that developers will
encounter every day and that will help you sharpen your skills. After solving these exer-
cises, novices and experienced developers alike will deeply understand these important
Java features. And if you have a question, don’t be shy—the Deitels publish their email
address in every book they write to encourage interaction.

That’s also why I love the chapter about JShell—the new Java 9 tool that enables
interactive Java. JShell allows you to explore, discover and experiment with new concepts,
language features and APIs, make mistakes—accidentally and intentionally—and correct
them, and rapidly prototype new code. It may prove to be the most important tool for
leveraging your learning and productivity. Paul and Harvey give a full treatment of JShell
that both students and experienced developers will be able to put to use immediately.

I’m impressed with the care that the Deitels always take care to accommodate readers
at all levels. They ease you into difficult concepts and deal with the challenges that profes-
sionals will encounter in industry projects.

There’s lots of information about Java 9, the important new Java release. You can
jump right in and learn the latest Java features. If you’re still working with Java 8, you can
ease into Java 9 at your own pace—be sure to begin with the extraordinary JShell coverage.

Another example is the amazing coverage of JavaFX—Java’s latest GUI, graphics and
multimedia capabilities. JavaFX is the recommended toolkit for new projects. But if you’ll
be working on legacy projects that use the older Swing API, those chapters are still avail-
able to you.

Make sure to dig in on Paul and Harvey’s treatment of concurrency. They explain the
basic concepts so clearly that the intermediate and advanced examples and discussions will
be easy to master. You will be ready to maximize your applications’ performance in an
increasingly multi-core world.

I encourage you to participate in the worldwide Java community. There are many
helpful folks out there who stand ready to help you. Ask questions, get answers and answer
your peers’ questions. Along with this book, the Internet and the academic and profes-
sional communities will help speed you on your way to becoming an expert Java developer.
I wish you success!

Bruno Sousa
bruno@javaman.com.br

Java Champion
Java Specialist at ToolsCloud
President of SouJava (the Brazilian Java Society)
SouJava representative at the Java Community Process

mailto:bruno@javaman.com.br

Welcome to the Java programming language and Java How to Program, Late Objects,
Eleventh Edition! This book presents leading-edge computing technologies for students,
instructors and software developers. It’s appropriate for introductory academic and pro-
fessional course sequences based on the curriculum recommendations of the ACM and the
IEEE professional societies,1 and for Advanced Placement (AP) Computer Science exam
preparation.2 It also will help you prepare for most topics covered by the following Oracle
Java Standard Edition 8 (Java SE 8) Certifications:3

• Oracle Certified Associate, Java SE 8 Programmer

• Oracle Certified Professional, Java SE 8 Programmer

 If you haven’t already done so, please read the bullet points and reviewer comments
on the back cover and inside back cover—these concisely capture the essence of the book.
In this Preface we provide more detail for students, instructors and professionals.

Our primary goal is to prepare college students to meet the Java programming chal-
lenges they’ll encounter in upper-level courses and in industry. We focus on software engi-
neering best practices. At the heart of the book is the Deitel signature live-code
approach—we present most concepts in the context of hundreds of complete working
programs that have been tested on Windows®, macOS® and Linux®. The complete code
examples are accompanied by live sample executions.

New and Updated Features
In the following sections, we discuss the key features and updates we’ve made for Java How
to Program, 11/e, including:

• Flexibility Using Java SE 8 or the New Java SE 9 (which includes Java SE 8)

• Java How to Program, 11/e’s Modular Organization

• Introduction and Programming Fundamentals

• Flexible Coverage of Java SE 9: JShell, the Module System and Other Java SE 9
Topics

• Object-Oriented Programming

• Flexible JavaFX/Swing GUI, Graphics, Animation and Video Coverage

1. Computer Science Curricula 2013 Curriculum Guidelines for Undergraduate Degree Programs in Com-
puter Science, December 20, 2013, The Joint Task Force on Computing Curricula, Association for
Computing Machinery (ACM), IEEE Computer Society.

2. https://apstudent.collegeboard.org/apcourse/ap-computer-science-a/exam-practice
3. http://bit.ly/OracleJavaSE8Certification (At the time of this writing, the Java SE 9 certifica-

tion exams were not yet available.)

Preface

http://bit.ly/OracleJavaSE8Certification
https://apstudent.collegeboard.org/apcourse/ap-computer-science-a/exam-practice

28 Preface

• Data Structures and than

• Flexible Lambdas and Streams Coverage

• Concurrency and Multi-Core Performance

• Database: JDBC and JPA

• Web-Application Development and Web Services

• Optional Online Object-Oriented Design Case Study

Flexibility Using Java SE 8 or the New Java SE 9
To meet the needs of our diverse audiences, we designed the book for college and profes-
sional courses based on Java SE 8 or Java SE 9, which from this point forward we’ll refer
to simply as Java 8 and Java 9, respectively. Each feature first introduced in Java 8 or Java
9 is accompanied by an 8 or 9 icon in the margin, like those to the left of this paragraph.
The new Java 9 capabilities are covered in clearly marked, easy-to-include-or-omit chapters
and sections—some in the print book and some online. Figures 1 and 2 list some key Java
8 and Java 9 features that we cover, respectively.

Java 8 features

Lambdas and streams
Type-inference improvements
@FunctionalInterface annotation
Bulk data operations for Java Collections—

filter, map and reduce
Library enhancements to support lambdas (e.g.,

java.util.stream, java.util.function)

Date & Time API (java.time)
Parallel array sorting
Java concurrency API improvements
static and default methods in interfaces
Functional interfaces that define only one

abstract method and can include static
and default methods

Fig. 1 | Some key features we cover that were introduced in Java 8.

Java 9 features

In the Print Book
New JShell chapter
_ is no longer allowed as an identifier
private interface methods
Effectively final variables can be used in try-

with-resources statements
Mention of the Stack Walking API
Mention of JEP 254, Compact Strings
Collection factory methods

On the Companion Website
Module system
HTML5 Javadoc enhancements
Matcher class’s new method overloads
CompletableFuture enhancements
JavaFX 9 skin APIs and other enhancements
Mentions of:

Overview of Java 9 security enhancements
G1 garbage collector
Object serialization security enhancements
Enhanced deprecation

Fig. 2 | Some key new features we cover that were introduced in Java 9.

 Java How to Program, Late Objects, 11/e’s Modular Organization 29

Java How to Program, Late Objects, 11/e’s Modular Organization
The book’s modular organization helps instructors plan their syllabi.

Java How to Program, Late Objects, 11/e, is appropriate for programming courses at various
levels. Chapters 1–25 are popular in core CS 1 and CS 2 courses and introductory course
sequences in related disciplines—these chapters appear in the print book. Chapters 26–36
are intended for advanced courses and are located on the book’s Companion Website.

Part 1: Introduction
Chapter 1, Introduction to Computers, the Internet and Java
Chapter 2, Introduction to Java Applications; Input/Output and Operators

Chapter 25, Introduction to JShell: Java 9’s REPL for Interactive Java

Part 2: Additional Programming Fundamentals
Chapter 3, Control Statements: Part 1; Assignment, ++ and -- Operators
Chapter 4, Control Statements: Part 2; Logical Operators
Chapter 5, Methods
Chapter 6, Arrays and ArrayLists

Chapter 14, Strings, Characters and Regular Expressions
Chapter 15, Files, Input/Output Streams, NIO and XML Serialization

Part 3: Object-Oriented Programming
Chapter 7, Introduction to Classes and Objects
Chapter 8, Classes and Objects: A Deeper Look
Chapter 9, Object-Oriented Programming: Inheritance
Chapter 10, Object-Oriented Programming: Polymorphism and Interfaces
Chapter 11, Exception Handling: A Deeper Look

Part 4: JavaFX Graphical User Interfaces, Graphics and Multimedia
Chapter 12, JavaFX Graphical User Interfaces: Part 1
Chapter 13, JavaFX GUI: Part 2

Chapter 22, JavaFX Graphics and Multimedia

Part 5: Data Structures, Generic Collections, Lambdas and Streams
Chapter 16, Generic Collections
Chapter 17, Lambdas and Streams
Chapter 18, Recursion
Chapter 19, Searching, Sorting and Big O
Chapter 20, Generic Classes and Methods: A Deeper Look
Chapter 21, Custom Generic Data Structures

30 Preface

Part 6: Concurrency; Networking
Chapter 23, Concurrency

Chapter 28, Networking

Part 7: Database-Driven Desktop Development
Chapter 24, Accessing Databases with JDBC

Chapter 29, Java Persistence API (JPA)

Part 8: Web App Development and Web Services
Chapter 30, JavaServer™ Faces Web Apps: Part 1
Chapter 31, JavaServer™ Faces Web Apps: Part 2
Chapter 32, REST Web Services

Part 9: Other Java 9 Topics
Chapter 36, Java Module System and Other Java 9 Features

Part 10: (Optional) Object-Oriented Design
Chapter 33, ATM Case Study, Part 1: Object-Oriented Design with the UML
Chapter 34, ATM Case Study Part 2: Implementing an Object-Oriented Design

Part 11: (Optional) Swing Graphical User Interfaces and Java 2D Graphics
Chapter 26, Swing GUI Components: Part 1
Chapter 27, Graphics and Java 2D

Chapter 35, Swing GUI Components: Part 2

Introduction and Programming Fundamentals (Parts 1 and 2)
Chapters 1 through 7 provide a friendly, example-driven treatment of traditional introduc-
tory programming topics. This book features a late objects approach—see the section “Ob-
ject-Oriented Programming” later in this Preface. Note in the preceding outline that Part 1
includes the (optional) Chapter 25 on Java 9’s new JShell. Instructors and students who cov-
er JShell will appreciate how its interactivity makes Java “come alive,” leveraging the learning
process—see the next section.

Flexible Coverage of Java 9: JShell, the Module System and Other
Java 9 Topics
JShell: Java 9’s REPL (Read-Eval-Print-Loop) for Interactive Java
JShell provides a friendly environment that enables you to quickly explore, discover and
experiment with Java’s language features and its extensive libraries. JShell replaces the te-
dious cycle of editing, compiling and executing with its read-evaluate-print-loop. Rather
than complete programs, you write JShell commands and Java code snippets. When you
enter a snippet, JShell immediately

• reads it,

• evaluates it and

 Flexible Coverage of Java 9: JShell, the Module System and Other Java 9 Topics 31

• prints messages that help you see the effects of your code, then it

• loops to perform this process again for the next snippet.

As you work through Chapter 25’s scores of examples and exercises, you’ll see how
JShell and its instant feedback keep your attention, enhance your performance and speed
the learning and software development processes.

As a student you’ll find JShell easy and fun to use. It will help you learn Java features
faster and more deeply and will help you verify that these features work the way they’re
supposed to. As an instructor, you’ll appreciate how JShell encourages your students to dig
in, and that it leverages the learning process. As a professional you’ll appreciate how JShell
helps you rapidly prototype key code segments and how it helps you discover and experi-
ment with new APIs. If you’re staying with Java 8 for a while, you can install JDKs 8
and 9 side-by-side and use JShell on JDK 9 for experimentation. The JDK 9 section of
the Before You Begin that follows this Preface shows how to manage multiple JDKs
on Windows, macOS and Linux.

The JShell content is packaged modularly in Chapter 25. The chapter:

1. is easy to include or omit.

2. is organized as a series of 16 sections, many of which are designed to be covered
after a specific earlier chapter of the book (Fig. 3).

3. offers rich coverage of JShell’s capabilities. It’s example-intensive—you should
do each of the examples. Get JShell into your fingertips. You’ll appreciate how
quickly and conveniently you can do things.

4. includes dozens of Self-Review Exercises, each with an answer. These exercises
can be done after you read Chapter 2 and Section 25.3. As you do each of them,
flip the page and check your answer. This will help you master the basics of JShell
quickly. Then as you do each of the examples in the remainder of the chapter
you’ll master the vast majority of JShell’s capabilities.

JShell discussions Can be covered after

Section 25.3 introduces JShell, including starting a session,
executing statements, declaring variables, evaluating
expressions, JShell’s type-inference capabilities and more.

Chapter 2, Introduction to Java
Applications; Input/Output and
Operators

Section 25.4 discusses command-line input with Scanner
in JShell.

Section 25.5 discusses how to declare and use classes in
JShell, including how to load a Java source-code file
containing an existing class declaration.

Chapter 7, Introduction to Classes
and Objects

Section 25.6 shows how to use JShell’s auto-completion
capabilities to discover a class’s capabilities and JShell
commands.

Fig. 3 | Chapter 25 JShell discussions that are designed to be covered after specific earlier
chapters. (Part 1 of 2.)

32 Preface

New Chapter—The Java Module System and Other Java 9 Topics
Because Java 9 was still under development when this book was published, we included an
online chapter on the book’s Companion Website that discusses Java 9’s module system and
various other Java 9 topics. This online content will be available before Fall 2017 courses.

Object-Oriented Programming (Part 3)
Object-oriented programming. We use a late objects approach, covering programming
fundamentals such as data types, variables, operators, control stattements, methods and ar-
rays in the early chapters. Then students develop their first customized classes and objects
in Chapter 7. [For courses that require an early-objects approach, you may want to con-
sider our sister book Java How to Program, Early Objects, 11/e.]

Real-world case studies. The object-oriented programing presentation in the classes chapters
features Account, Time, Employee, GradeBook and Card shuffling-and-dealing case studies.

Inheritance, Interfaces, Polymorphism and Composition. We use additional real-world
case studies—including class Time, an Employee class hierarchy, and a Payable interface
implemented in disparate Employee and Invoice classes—to illustrate these OO concepts
and explain situations in which each is preferred in building industrial-strength applica-
tions. We also explain the use of current idioms, such as “programming to an interface
not an implementation” and “preferring composition to inheritance.”

Exception handling. We integrate basic exception handling beginning in Chapter 6 then
present a deeper treatment in Chapter 11. Exception handling is important for building
mission-critical and business-critical applications. To use a Java component, you need to

Section 25.7 presents additional JShell auto-completion
capabilities for experimentation and discovery, includ-
ing viewing method parameters, documentation and
method overloads.

Chapter 5, Methods

 Section 25.8 shows how to declare and use methods in
JShell, including forward referencing a method that
does not yet exist in the JShell session.

Section 25.9 shows how exceptions are handled in JShell. Chapter 6, Arrays and ArrayLists

Section 25.10 shows how to add existing packages to the
classpath and import them for use in JShell.

Chapter 21, Custom Generic Data
Structures

The remaining JShell sections are reference material that can be covered after Section 25.10. Topics
include using an external editor, a summary of JShell commands, getting help in JShell, additional
features of /edit command, /reload command, /drop command, feedback modes, other JShell fea-
tures configurable with /set, keyboard shortcuts for snippet editing, how JShell reinterprets Java for
interactive use and IDE JShell support.

JShell discussions Can be covered after

Fig. 3 | Chapter 25 JShell discussions that are designed to be covered after specific earlier
chapters. (Part 2 of 2.)

 Flexible JavaFX GUI, Graphics, Animation and Video Coverage 33

know not only how that component behaves when “things go well,” but also what excep-
tions that component “throws” when “things go poorly” and how your code should handle
those exceptions.

Classes Arrays and ArrayList. Chapter 6 covers class Arrays—which contains methods
for performing common array manipulations—and class ArrayList—which implements
a dynamically resizable array-like data structure. This follows our philosophy of getting
lots of practice using existing classes while learning how to define your own. The chapter’s
rich selection of exercises includes a substantial project on building your own computer
through the technique of software simulation. Chapter 21 includes a follow-on project on
building your own compiler that can compile high-level language programs into machine
language code that will actually execute on your computer simulator. Students in first and
second programming courses, respectively, enjoy these challenges.

Flexible JavaFX GUI, Graphics, Animation and Video Coverage
(Part 4) and Optional Swing Coverage (Part 11)
Students enjoy building applications with GUI, graphics, animations and videos. Instruc-
tors teaching introductory courses can choose the amount of GUI, graphics, animation and
video they’d like to cover—from none at all to the four options discussed below. Those who
want to use the newer JavaFX GUI, graphics, animation and video capabilities (today’s
most popular options for college courses and professionals) in their courses can choose from:

• a deep treatment of JavaFX GUI, graphics (2D and 3D), animation and video
in Chapters 12, 13 and 22, or

• a lighter treatment of JavaFX GUI and 2D graphics on the Companion Website
that can be taught anytime after Chapter 7.

Those who want to continue using the older Swing GUI and Java 2D graphics in their
courses can choose from the following options on the Companion Website:

• a deep treatment of Swing GUI and Java 2D graphics in online Chapters 26, 27
and 35, or

• a lighter treatment of Swing GUI and Java 2D graphics that can be taught any-
time after Chapter 7.

Let’s consider these four options in more detail.

Deep Treatment of JavaFX GUI, Graphics, Animation and Video in Chapters 12, 13, 22
For this 11th edition, we’ve significantly updated our JavaFX presentation and moved all
three chapters into the print book, replacing our Swing GUI and graphics coverage
(which is now on the book’s Companion Website for instructors who want to continue
with Swing).

In Chapters 12–13, we use JavaFX and Scene Builder—a drag-and-drop tool for cre-
ating JavaFX GUIs quickly and conveniently—to build several apps that demonstrate var-
ious JavaFX GUI layouts, controls and event-handling capabilities. In Swing, drag-and-drop
tools and their generated code are IDE dependent. Scene Builder is a standalone tool that you
can use separately or with any of the Java IDEs to do portable drag-and-drop GUI design.

In Chapter 22, we present JavaFX 2D and 3D graphics, animation and video capa-
bilities. We also provide 36 programming exercises and projects that students will find

34 Preface

challenging and entertaining, including many game-programming exercises. Chapter 22
can be covered immediately after Section 13.3. We also use JavaFX in several GUI-based
examples in Chapter 23, Concurrency and Chapter 24, Accessing Databases with JDBC.

Lighter Treatment of JavaFX GUI and 2D Graphics
For instructors who like to introduce a lighter treatment of JavaFX GUI and graphics ear-
lier than Chapter 12, we’ve placed on the book’s Companion Website a lighter case study
(Fig. 4)1 that can be taught anytime after Chapter 7. The goal is to create a simple poly-
morphic drawing application in which the user can select a shape to draw and the shape’s
characteristics (such as its color, stroke thickness and whether it’s hollow or filled) then
drag the mouse to position and size the shape. The case study builds gradually toward that
goal, with the reader implementing a polymorphic drawing app, then adding a more ro-
bust user interface. For courses that include these case study sections, instructors can opt
to cover none, some or all of the deeper treatment in Chapters 12, 13 and 22.

Deep Treatment Swing GUI and 2D Graphics
Swing is still widely used, but Oracle will provide only minor updates going forward. For
instructors and readers who wish to continue using Swing, we’ve moved to the book’s Com-
panion Website the 10th edition’s

• Chapter 26, Swing GUI Components: Part 1

• Chapter 27, Graphics and Java 2D

• Chapter 35, Swing GUI Components: Part 2.

See the “Companion Website” section later in this Preface.

1. The deeper graphics treatment in Chapter 22 uses JavaFX shape types that can be added directly to
the GUI using Scene Builder.

Part What you’ll do

1. A Simple GUI Display text and an image.

2. Event Handling and Drawing Lines In response to a Button click, draw lines using JavaFX
graphics capabilities.

3. Drawing Rectangles and Ovals Draw rectangles and ovals.

4. Colors and Filled Shapes Draw filled shapes in multiple colors.

5. Drawing Arcs Draw a rainbow of colored arcs.

6. Using Objects with Graphics Store shapes as objects then have those objects to draw
themselves on the screen.

7. Drawing with Polymorphism Identify the similarities between shape classes and create
and use a shape class hierarchy.

8. Interactive Polymorphic Drawing
Application

In capstone Exercise 13.9 you’ll enable users to select each
shape to draw, configure its properties (such as color and
fill), and drag the mouse to position and size the shape.

Fig. 4 | Optional JavaFX GUI and Graphics Case Study.

 Data Structures and Generic Collections 35

Lighter Treatment of Swing GUI and 2D Graphics
We’ve also moved to the Companion Website the older Swing-based version of the lighter
JavaFX case study in Fig. 4.

Integrating Swing GUI Components in JavaFX GUIs
If you move to JavaFX, you still can use your favorite Swing capabilities. For example, in
Chapter 24, we demonstrate how to display database data in a Swing JTable component
that’s embedded in a JavaFX GUI via a JavaFX 8 SwingNode. As you explore Java further,
you’ll see that you also can incorporate JavaFX capabilities into your Swing GUIs.

Data Structures and Generic Collections (Part 5)
Data structures presentation. The chapters of Part 5 form the core of a second program-
ming course emphasizing data structures. We begin with generic collection class Array-
List in Chapter 6. Our later data structures discussions (Chapters 16–21) provide a
deeper treatment of generic collections—showing how to use many additional built-in
collections of the Java API.

We discuss recursion, which is important for many reasons including implementing
tree-like, data-structure classes. For computer-science majors and students in related dis-
ciplines, we discuss searching and sorting algorithms for manipulating the contents of
collections, and provide a friendly introduction to Big O—a means of describing mathe-
matically how hard an algorithm might have to work to solve a problem. Most program-
mers should use the built-in searching and sorting capabilities of the collections classes.

We then show how to implement custom generic methods and classes, including
custom generic data structures (this, too, is intended for computer-science majors—in
industry, most programmers should use the pre-built generic collections). Lambdas and
streams (introduced in Chapter 17) are especially useful for working with generic collections.

Flexible Lambdas and Streams Coverage (Chapter 17)
The most significant new features in Java 8 were lambdas and streams. This book has several
audiences, including

• those who’d like a significant treatment of lambdas and streams

• those who want a basic introduction with a few simple examples

• those who do not want to use lambdas and streams yet.

For this reason, we’ve placed most of the lambdas and streams treatment in Chapter 17,
which is architected as a series of easy-to-include-or-omit sections that are keyed to the book’s
earlier sections and chapters. We do integrate lambdas and streams into a few examples after
Chapter 17, because their capabilities are so compelling.

In Chapter 17, you’ll see that lambdas and streams can help you write programs faster,
more concisely, more simply, with fewer bugs and that are easier to parallelize (to realize
performance improvements on multi-core systems) than programs written with previous
techniques. You’ll see that “functional programming” with lambdas and streams comple-
ments object-oriented programming.

Many of Chapter 17’s sections are written so they can be covered earlier in the book
(Fig. 5)—we suggest that students begin by covering Sections 17.1––17.7 after Chapter 6
and that professionals begin by covering Sections 17.1––17.5 after Chapter 4. After reading
Chapter 17, you’ll be able to cleverly reimplement many examples throughout the book.

Flexible Lambdas and Streams Coverage

36 Preface

Concurrency and Multi-Core Performance (Part 6)
We were privileged to have as a reviewer of Java How to Program, 10/e Brian Goetz, co-
author of Java Concurrency in Practice (Addison-Wesley). We updated Chapter 23, Con-
currency, with Java 8 technology and idiom. We added a parallelSort vs. sort example
that uses the Java 8 Date/Time API to time each operation and demonstrate parallel-
Sort’s better performance on a multi-core system. We included a Java 8 parallel vs. se-
quential stream processing example, again using the Date/Time API to show performance
improvements. We added a Java 8 CompletableFuture example that demonstrates se-
quential and parallel execution of long-running calculations and we discuss Completable-

Lambdas and streams discussions Can be covered after

Sections 17.1––17.5 introduce basic lambda and
streams capabilities that you can use to replace
counting loops, and discuss the mechanics of
how streams are processed.

Chapter 4, Control Statements: Part 2; Logi-
cal Operators

Section 17.6 introduces method references and
additional streams capabilities.

Chapter 5, Methods

Section 17.7 introduces streams capabilities that
process one-dimensional arrays.

Chapter 6, Arrays and ArrayLists

Sections 17.8––17.10 demonstrate additional
streams capabilities and present various func-
tional interfaces used in streams processing.

Chapter 10, Object-Oriented Programming:
Polymorphism and Interfaces—
Section 10.10 introduces Java 8 interface
features (default methods, static
methods and the concept of functional
interfaces) for the functional interfaces
that support lambdas and streams.

Section 17.11 uses lambdas and streams to process
collections of String objects.

Chapter 14, Strings, Characters and Regular
Expressions

Section 17.12 uses lambdas and streams to process
a List<Employee>.

Chapter 16, Generic Collections

Section 17.13 uses lambdas and streams to process
lines of text from a file.

Chapter 15, Files, Input/Output Streams,
NIO and XML Serialization

Section 17.14 introduces streams of random values All earlier Chapter 17 sections.

Section 17.15 introduces infinite streams All earlier Chapter 17 sections.

Section 17.16 uses lambdas to implement JavaFX
event-listener interfaces.

Chapter 12, JavaFX Graphical User Inter-
faces: Part 1

Chapter 23, Concurrency, shows that programs using lambdas and streams are often easier to
parallelize so they can take advantage of multi-core architectures to enhance performance. The
chapter demonstrates parallel stream processing and shows that Arrays method parallelSort
improves performance on multi-core architectures when sorting large arrays.

Fig. 5 | Java 8 lambdas and streams discussions and examples.

 Database: JDBC and JPA 37

Future enhancements in the online Java 9 chapter. Finally, we added several new
exercises, including one that demonstrates the problems with parallelizing Java 8 streams
that apply non-associative operations and several that have the reader investigate and use
the Fork/Join framework to parallelize recursive algorithms.

JavaFX concurrency. In this edition, we converted Chapter 23’s Swing-based GUI exam-
ples to JavaFX. We now use JavaFX concurrency features, including class Task to execute
long-running tasks in separate threads and display their results in the JavaFX application
thread, and the Platform class’s runLater method to schedule a Runnable for execution
in the JavaFX application thread.

Database: JDBC and JPA (Part 7)
JDBC. Chapter 24 covers the widely used JDBCand uses the Java DB database manage-
ment system. The chapter introduces Structured Query Language (SQL) and features a
case study on developing a JavaFX database-driven address book that demonstrates pre-
pared statements. In JDK 9, Oracle no longer bundles Java DB, which is simply an Ora-
cle-branded version of Apache Derby. JDK 9 users can download and use Apache Derby
instead (https://db.apache.org/derby/).

Java Persistence API. Chapter 29 covers the newer Java Persistence API (JPA)—a stan-
dard for object relational mapping (ORM) that uses JDBC “under the hood.” ORM tools
can look at a database’s schema and generate a set of classes that enabled you to interact
with a database without having to use JDBC and SQL directly. This speeds database-
application development, reduces errors and produces more portable code.

Web Application Development and Web Services (Part 8)
Java Server Faces (JSF). Chapters 30–31 introduce the JavaServer™ Faces (JSF) technol-
ogy for building web-based applications. Chapter 30 includes examples on building web
application GUIs, validating forms and session tracking. Chapter 31 discusses data-driven
JSF applications—including a multi-tier web address book application that allows users
to add and search for contacts.

Web services. Chapter 32 now concentrates on creating and consuming REST-based web
services. Most of today’s web services use REST, which is simpler and more flexible than old-
er web-services technologies that often required manipulating data in only XML format.
REST can use a variety of formats, such as JSON, HTML, plain text, media files and XML.

Optional Online Object-Oriented Design Case Study (Part 10)
Developing an Object-Oriented Design and Java Implementation of an ATM. Chapters 33–
34 include an optional case study on object-oriented design using the UML (Unified Mod-
eling Language™)—the industry-standard graphical language for modeling object-oriented
systems. We design and implement the software for a simple automated teller machine
(ATM). We analyze a typical requirements document that specifies the system to be built.
We determine the classes needed to implement that system, the attributes the classes need
to have, the behaviors the classes need to exhibit and specify how the classes must interact
with one another to meet the system requirements. From the design we produce a complete
Java implementation. Students often report having a “light-bulb moment”—the case study
helps them “tie it all together” and understand object orientation more deeply.

Optional Online Object-Oriented Design Case Study

https://db.apache.org/derby/

38 Preface

Teaching Approach
Java How to Program, 11/e, contains hundreds of complete working code examples. We
stress program clarity and concentrate on building well-engineered software.

Syntax Shading. For readability, we syntax shade all the Java code, similar to the way most
Java integrated-development environments and code editors syntax color code. Our syn-
tax-shading conventions are as follows:

Code Highlighting. We place gray rectangles around key code segments.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold text for easier reference. We emphasize on-screen components
in the bold Helvetica font (e.g., the File menu) and emphasize Java program text in the Lu-
cida font (for example, int x = 5;).

Objectives. The list of chapter objectives provides a high-level overview of the chapter’s
contents.

Illustrations/Figures. Abundant tables, line drawings, UML diagrams, programs and pro-
gram outputs are included.

Summary Bullets. We present a section-by-section bullet-list summary of the chapter. For
ease of reference, we generally include the page number of each key term’s defining occur-
rence in the text.

Self-Review Exercises and Answers. Extensive self-review exercises and answers are includ-
ed for self study. All of the exercises in the optional ATM case study are fully solved.

Exercises. The chapter exercises include:

• simple recall of important terminology and concepts

• What’s wrong with this code?

• What does this code do?

• writing individual statements and small portions of methods and classes

• writing complete methods, classes and programs

• major projects

• in many chapters, Making a Difference exercises that encourage you to use com-
puters and the Internet to research and address significant social problems.

• In this edition, we added new exercises to our game-programming set (SpotOn,
Horse Race, Cannon, 15 Puzzle, Hangman, Block Breaker, Snake and Word
Search), as well as others on the JavaMoney API, final instance variables, com-
bining composition and inheritance, working with interfaces, drawing fractals,
recursively searching directories, visualizing sorting algorithms and implement-
ing parallel recursive algorithms with the Fork/Join framework. Many of these re-
quire students to research additional Java features online and use them.

comments appear in light gray like this
keywords appear bold black like this
constants and literal values appear in bold dark gray like this
all other code appears in black like this

 Programming Wisdom 39

Index. We’ve included an extensive index. Defining occurrences of key terms are high-
lighted with a bold page number. The print book index mentions only those terms used
in the print book. The online chapters index on the Companion Website includes all the
print book terms and the online chapter terms.

Programming Wisdom
We include hundreds of programming tips to help you focus on important aspects of pro-
gram development. These represent the best we’ve gleaned from a combined nine decades
of programming and teaching experience.

What are JEPs, JSRs and the JCP?
Throughout the book we encourage you to research various aspects of Java online. Some
acronyms you’re likely to see are JEP, JSR and JCP.

JEPs (JDK Enhancement Proposals) are used by Oracle to gather proposals from the
Java community for changes to the Java language, APIs and tools, and to help create the
roadmaps for future Java Standard Edition (Java SE), Java Enterprise Edition (Java EE)

Good Programming Practice
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Error
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

Error-Prevention Tip
These tips contain suggestions for exposing bugs and removing them from your programs;
many describe aspects of Java that prevent bugs from getting into programs in the first
place.

Performance Tip
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tip
The Portability Tips help you write code that will run on a variety of platforms.

Software Engineering Observation
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

Look-and-Feel Observation
The Look-and-Feel Observations highlight graphical-user-interface conventions. These
observations help you design attractive, user-friendly graphical user interfaces that con-
form to industry norms.

What are JEPs, JSRs and the JCP?

40 Preface

and Java Micro Edition (Java ME) platform versions and the JSRs (Java Specification
Requests) that define them. The complete list of JEPs can be found at

JSRs (Java Specification Requests) are the formal descriptions of Java platform fea-
tures’ technical specifications. Each new feature that gets added to Java (Standard Edition,
Enterprise Edition or Micro Edition) has a JSR that goes through a review and approval
process before the feature is added to Java. Sometimes JSRs are grouped together into an
umbrella JSR. For example JSR 337 is the umbrella for Java 8 features, and JSR 379 is the
umbrella for Java 9 features. The complete list of JSRs can be found at

The JCP (Java Community Process) is responsible for developing JSRs. JCP expert
groups create the JSRs, which are publicly available for review and feedback. You can learn
more about the JCP at:

Secure Java Programming
It’s difficult to build industrial-strength systems that stand up to attacks from viruses,
worms, and other forms of “malware.” Today, via the Internet, such attacks can be instan-
taneous and global in scope. Building security into software from the beginning of the de-
velopment cycle can greatly reduce vulnerabilities. We audited our book against the
CERT Oracle Secure Coding Standard for Java

and adhered to various secure coding practices as appropriate for a textbook at this level.
The CERT® Coordination Center (www.cert.org) was created to analyze and

respond promptly to attacks. CERT—the Computer Emergency Response Team—is a
government-funded organization within the Carnegie Mellon University Software Engi-
neering Institute™. CERT publishes and promotes secure coding standards for various
popular programming languages to help software developers implement industrial-
strength systems by employing programming practices that prevent system attacks from
succeeding.

We’d like to thank Robert C. Seacord. A few years back, when Mr. Seacord was the
Secure Coding Manager at CERT and an adjunct professor in the Carnegie Mellon Univer-
sity School of Computer Science, he was a technical reviewer for our book, C How to Pro-
gram, 7/e, where he scrutinized our C programs from a security standpoint, recommending
that we adhere to the CERT C Secure Coding Standard. This experience also influenced our
coding practices in C++ How to Program, 10/e and Java How to Program, 11/e.

Companion Website: Source Code, VideoNotes, Online Chapters
and Online Appendices
All the source code for the book’s code examples is available at the book’s Companion
Website, which also contains extensive VideoNotes and the online chapters and appendices:

 http://openjdk.java.net/jeps/0

 https://www.jcp.org/en/jsr/all

https://www.jcp.org

 http://bit.ly/CERTOracleSecureJava

www.pearsonglobaleditions.com

http://www.pearsonglobaleditions.com
http://www.cert.org
http://bit.ly/CERTOracleSecureJava
https://www.jcp.org
https://www.jcp.org/en/jsr/all
http://openjdk.java.net/jeps/0

 Software Used in Java How to Program, 11/e 41

See the book’s inside front cover for information on accessing the Companion Website.
In the extensive VideoNotes, co-author Paul Deitel patiently explains most of the

programs in the book’s core chapters. Students like viewing the VideoNotes for reinforce-
ment of core concepts and for additional insights.

Software Used in Java How to Program, 11/e
All the software you’ll need for this book is available free for download from the Internet.
See the Before You Begin section that follows this Preface for links to each download. We
wrote most of the examples using the free Java Standard Edition Development Kit (JDK)
8. For the optional Java 9 content, we used the OpenJDK’s early access version of JDK 9.
All of the Java 9 programs run on the early access versions of JDK 9. All of the programs
were tested on Windows, macOS and Linux. Several online chapters use the Netbeans
IDE.

Java Documentation Links
Throughout the book, we provide links to Java documentation where you can learn more
about various topics that we present. For Java 8 documentation, the links begin with

and for Java 9 documentation, the links currently begin with

The Java 9 documentation links will change when Oracle releases Java 9—possibly to links
beginning with

Java How to Program, Early Objects Version, 11/e
There are several approaches to teaching first courses in Java programming. The two most
popular are the late objects approach and the early objects approach. To meet these di-
verse needs, we’ve published two versions of this book:

• Java How to Program, Late Objects Version, 11/e (this book), and

• Java How to Program, Early Objects Version, 11/e

The key difference between them is the order in which we present Chapters 1–7. The
books have identical content in Chapter 8 and higher. Instructors can request an examina-
tion copy of either of these books from their Pearson representative.

http://docs.oracle.com/javase/8/

http://download.java.net/java/jdk9/

http://docs.oracle.com/javase/9/

Java How to Program, Early Objects Version, 11/e

http://docs.oracle.com/javase/9/
http://download.java.net/java/jdk9/
http://docs.oracle.com/javase/8/

42 Preface

Instructor Supplements
The following supplements are available to qualified instructors only through Pearson
Education’s Instructor Resource Center (www.pearsonglobaleditions.com):

• PowerPoint® slides containing all the code and figures in the text, plus bulleted
items that summarize key points.

• Test Item File of multiple-choice questions and answers (approximately two per
book section).

• Solutions Manual with solutions to most of the end-of-chapter exercises. Before
assigning an exercise for homework, instructors should check the IRC to be
sure it includes the solution. Solutions are not provided for “project” exercises.

Please do not write to us requesting access to the Pearson Instructor’s Resource Center
which contains the book’s instructor supplements, including the exercise solutions. Ac-
cess is limited strictly to college instructors teaching from the book. Instructors may ob-
tain access only through their Pearson representatives. Solutions are not provided for
“project” exercises. If you’re not a registered faculty member, contact your Pearson repre-
sentative.

Acknowledgments
We’d like to thank Barbara Deitel for long hours devoted to technical research on this
project. We’re fortunate to have worked with the dedicated team of publishing profession-
als at Pearson. We appreciate the guidance, wisdom and energy of Tracy Johnson, Execu-
tive Editor, Computer Science. Tracy and her team handle all of our academic textbooks.
Kristy Alaura recruited the book’s reviewers and managed the review process. Bob Engel-
hardt managed the book’s publication. We selected the cover art and Chuti Prasertsith de-
signed the cover.

Reviewers
We wish to acknowledge the efforts of our recent editions reviewers—a distinguished
group of academics, Oracle Java team members, Oracle Java Champions and other indus-
try professionals. They scrutinized the text and the programs and provided countless sug-
gestions for improving the presentation. Any remaining faults in the book are our own.

We appreciate the guidance of JavaFX experts Jim Weaver and Johan Vos (co-authors
of Pro JavaFX 8), Jonathan Giles and Simon Ritter on the three JavaFX chapters.

http://www.pearsonglobaleditions.com

 Acknowledgments 43

Eleventh Edition reviewers: Marty Allen (University of Wisconsin-La Crosse), Robert
Field (JShell chapter only; JShell Architect, Oracle), Trisha Gee (JetBrains, Java Cham-
pion), Jonathan Giles (Consulting Member of Technical Staff, Oracle), Brian Goetz
(JShell chapter only; Oracle’s Java Language Architect), Edwin Harris (M.S. Instructor at
The University of North Florida’s School of Computing), Maurice Naftalin (Java Cham-
pion), José Antonio González Seco (Consultant), Bruno Souza (President of SouJava—the
Brazilian Java Society, Java Specialist at ToolsCloud, Java Champion and SouJava repre-
sentative at the Java Community Process), Dr. Venkat Subramaniam (President, Agile
Developer, Inc. and Instructional Professor, University of Houston, Java Champion),
Johan Vos (CTO, Cloud Products at Gluon, Java Champion).

Tenth Edition reviewers: Lance Andersen (Oracle Corporation), Dr. Danny Coward
(Oracle Corporation), Brian Goetz (Oracle Corporation), Evan Golub (University of
Maryland), Dr. Huiwei Guan (Professor, Department of Computer & Information Sci-
ence, North Shore Community College), Manfred Riem (Java Champion), Simon Ritter
(Oracle Corporation), Robert C. Seacord (CERT, Software Engineering Institute, Carn-
egie Mellon University), Khallai Taylor (Assistant Professor, Triton College and Adjunct
Professor, Lonestar College—Kingwood), Jorge Vargas (Yumbling and a Java Champion),
Johan Vos (LodgON and Oracle Java Champion) and James L. Weaver (Oracle Corpora-
tion and author of Pro JavaFX 2).

Earlier editions reviewers: Soundararajan Angusamy (Sun Microsystems), Joseph
Bowbeer (Consultant), William E. Duncan (Louisiana State University), Diana Franklin
(University of California, Santa Barbara), Edward F. Gehringer (North Carolina State
University), Ric Heishman (George Mason University), Dr. Heinz Kabutz (JavaSpecial-
ists.eu), Patty Kraft (San Diego State University), Lawrence Premkumar (Sun Microsys-
tems), Tim Margush (University of Akron), Sue McFarland Metzger (Villanova
University), Shyamal Mitra (The University of Texas at Austin), Peter Pilgrim (Consul-
tant), Manjeet Rege, Ph.D. (Rochester Institute of Technology), Susan Rodger (Duke
University), Amr Sabry (Indiana University), José Antonio González Seco (Parliament of
Andalusia), Sang Shin (Sun Microsystems), S. Sivakumar (Astra Infotech Private Lim-
ited), Raghavan “Rags” Srinivas (Intuit), Monica Sweat (Georgia Tech), Vinod Varma
(Astra Infotech Private Limited) and Alexander Zuev (Sun Microsystems).

A Special Thank You to Robert Field
Robert Field, Oracle’s JShell Architect reviewed the new JShell chapter, responding to our
numerous emails in which we asked JShell questions, reported bugs we encountered as
JShell evolved and suggested improvements. It was a privilege having our content scruti-
nized by the person responsible for JShell.

44 Preface

A Special Thank You to Brian Goetz
Brian Goetz, Oracle’s Java Language Architect and Specification Lead for Java 8’s Project
Lambda, and co-author of Java Concurrency in Practice, did a full-book review of the 10th
edition. He provided us with an extraordinary collection of insights and constructive com-
ments. For the 11th edition, he did a detailed review of our new JShell chapter and an-
swered our Java questions throughout the project.

Well, there you have it! As you read the book, we’d appreciate your comments, criti-
cisms, corrections and suggestions for improvement. Please send your questions and all
other correspondence to:

We’ll respond promptly. We hope you enjoy working with Java How to Program, 11/e, as
much as we enjoyed researching and writing it!

Paul and Harvey Deitel

About the Authors
Paul J. Deitel, CEO and Chief Technical
Officer of Deitel & Associates, Inc., is a
graduate of MIT and has over 35 years of
experience in computing. He holds the
Java Certified Programmer and Java Certi-
fied Developer designations, and is an Or-
acle Java Champion. Through Deitel &

Associates, Inc., he has delivered hundreds of programming courses worldwide to clients,
including Cisco, IBM, Siemens, Sun Microsystems (now Oracle), Dell, Fidelity, NASA at
the Kennedy Space Center, the National Severe Storm Laboratory, White Sands Missile
Range, Rogue Wave Software, Boeing, SunGard Higher Education, Nortel Networks, Pu-
ma, iRobot, Invensys and many more. He and his co-author, Dr. Harvey M. Deitel, are
the world’s best-selling programming-language textbook/professional book/video authors.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates,
Inc., has over 55 years of experience in computing. Dr. Deitel earned B.S. and M.S.
degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston
University—he studied computing in each of these programs before they spun off Com-
puter Science programs. He has extensive college teaching experience, including earning
tenure and serving as the Chairman of the Computer Science Department at Boston Col-
lege before founding Deitel & Associates, Inc., in 1991 with his son, Paul. The Deitels’
publications have earned international recognition, with more than 100 translations pub-
lished in Japanese, German, Russian, Spanish, French, Polish, Italian, Simplified Chinese,
Traditional Chinese, Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has deliv-
ered hundreds of programming courses to academic, corporate, government and military
clients.

deitel@deitel.com

mailto:deitel@deitel.com

 About Deitel® & Associates, Inc. 45

About Deitel® & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s training clients include many of the world’s largest
companies, government agencies, branches of the military, and academic institutions. The
company offers instructor-led training courses delivered at client sites worldwide on major
programming languages and platforms, including Java™, Android app development,
Swift and iOS app development, C++, C, Visual C#®, Visual Basic®, object technology,
Internet and web programming and a growing list of additional programming and soft-
ware development courses.

Through its 42-year publishing partnership with Pearson/Prentice Hall, Deitel &
Associates, Inc., publishes leading-edge programming textbooks and professional books in
print and e-book formats, LiveLessons video courses and REVEL™ online interactive
multimedia courses with integrated MyProgrammingLab. Deitel & Associates, Inc. and
the authors can be reached at:

To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum, visit:

To request a proposal for worldwide on-site, instructor-led training, write to

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information, visit

deitel@deitel.com

http://www.deitel.com/training

deitel@deitel.com

http://www.informit.com/store/sales.aspx

http://www.informit.com/store/sales.aspx
http://www.deitel.com
mailto:deitel@deitel.com
http://www.deitel.com/training
mailto:deitel@deitel.com

46 Preface

Acknowledgments for the Global Edition
Pearson would like to thank and acknowledge the following people for their contribution
to the Global Edition.

Contributor: Muthuraj M.

Reviewers: Annette Bieniusa (University of Kaiserslautern), Bogdan Oancea (University
of Bucharest), and Shaligram Prajapat (Devi Ahilya University)

This section contains information you should review before using this book. In addition,
we provide getting-started videos that demonstrate the instructions in this Before You
Begin section.

Font and Naming Conventions
We use fonts to distinguish between on-screen components (such as menu names and
menu items) and Java code or commands. Our convention is to emphasize on-screen com-
ponents in a sans-serif bold Helvetica font (for example, File menu) and to emphasize Java
code and commands in a sans-serif Lucida font (for example, System.out.println()).

Java SE Development Kit (JDK)
The software you’ll need for this book is available free for download from the web. Most of
the examples were tested with the Java SE Development Kit 8 (also known as JDK 8). The
most recent JDK version is available from:

The current version of the JDK at the time of this writing is JDK 8 update 121.

Java SE 9
The Java SE 9-specific features that we discuss in optional sections and chapters require JDK
9. At the time of this writing, JDK 9 was available as an early access verion. If you’re using
this book before the final JDK 9 is released, see the section “Installing and Configuring JDK
9 Early Access Version” later in this Before You Begin. We also discuss in that section how
you can manage multiple JDK versions on Windows, macOS and Linux.

JDK Installation Instructions
After downloading the JDK installer, be sure to carefully follow the installation instruc-
tions for your platform at:

You’ll need to update the JDK version number in any version-specific instructions. For exam-
ple, the instructions refer to jdk1.8.0, but the current version at the time of this writing
is jdk1.8.0_121. If you’re a Linux user, your distribution’s software package manager

http://www.oracle.com/technetwork/java/javase/downloads/index.html

https://docs.oracle.com/javase/8/docs/technotes/guides/install/
install_overview.html

Before You
Begin

https://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html
https://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

48 Before You Begin

might provide an easier way to install the JDK. For example, you can learn how to install
the JDK on Ubuntu here:

Setting the PATH Environment Variable
The PATH environment variable on your computer designates which directories the com-
puter searches when looking for applications, such as the applications that enable you to
compile and run your Java applications (called javac and java, respectively). Carefully fol-
low the installation instructions for Java on your platform to ensure that you set the PATH envi-
ronment variable correctly. The steps for setting environment variables differ by operating
system. Instructions for various platforms are listed at:

If you do not set the PATH variable correctly on Windows and some Linux installations,
when you use the JDK’s tools, you’ll receive a message like:

In this case, go back to the installation instructions for setting the PATH and recheck your
steps. If you’ve downloaded a newer version of the JDK, you may need to change the name
of the JDK’s installation directory in the PATH variable.

JDK Installation Directory and the bin Subdirectory
The JDK’s installation directory varies by platform. The directories listed below are for
Oracle’s JDK 8 update 121:

• JDK on Windows:
C:\Program Files\Java\jdk1.8.0_121

• macOS (formerly called OS X):
/Library/Java/JavaVirtualMachines/jdk1.8.0_121.jdk/Contents/Home

• Ubuntu Linux:
/usr/lib/jvm/java-8-oracle

Depending on your platform, the JDK installation folder’s name might differ if you’re us-
ing a different JDK 8 update. For Linux, the install location depends on the installer you
use and possibly the Linux version as well. We used Ubuntu Linux. The PATH environment
variable must point to the JDK installation directory’s bin subdirectory.

When setting the PATH, be sure to use the proper JDK-installation-directory name for
the specific version of the JDK you installed—as newer JDK releases become available, the
JDK-installation-directory name changes with a new update version number. For example,
at the time of this writing, the most recent JDK 8 release was update 121. For this version,
the JDK-installation-directory name typically ends with _121.

CLASSPATH Environment Variable
If you attempt to run a Java program and receive a message like

http://askubuntu.com/questions/464755/how-to-install-openjdk-8-on-
14-04-lts

http://www.java.com/en/download/help/path.xml

'java' is not recognized as an internal or external command,
operable program or batch file.

Exception in thread "main" java.lang.NoClassDefFoundError: YourClass

http://www.java.com/en/download/help/path.xml
http://askubuntu.com/questions/464755/how-to-install-openjdk-8-on-14-04-lts
http://askubuntu.com/questions/464755/how-to-install-openjdk-8-on-14-04-lts

 Setting the JAVA_HOME Environment Variable 49

then your system has a CLASSPATH environment variable that must be modified. To fix the
preceding error, follow the steps in setting the PATH environment variable, to locate the
CLASSPATH variable, then edit the variable’s value to include the local directory—typically
represented as a dot (.). On Windows add

at the beginning of the CLASSPATH’s value (with no spaces before or after these characters).
On macOS and Linux, add

Setting the JAVA_HOME Environment Variable
The Java DB database software that you’ll use in Chapter 24 and several online chapters
requires you to set the JAVA_HOME environment variable to your JDK’s installation direc-
tory. The same steps you used to set the PATH may also be used to set other environment
variables, such as JAVA_HOME.

Java Integrated Development Environments (IDEs)
There are many Java integrated development environments that you can use for Java pro-
gramming. Because the steps for using them differ, we used only the JDK command-line
tools for most of the book’s examples. We provide getting-started videos that show how
to download, install and use three popular IDEs—NetBeans, Eclipse and IntelliJ IDEA.
We use NetBeans in several of the book’s online chapters.

NetBeans Downloads
You can download the JDK/NetBeans bundle from:

The NetBeans version that’s bundled with the JDK is for Java SE development. The on-
line JavaServer Faces (JSF) chapters and web services chapter use the Java Enterprise Edi-
tion (Java EE) version of NetBeans, which you can download from:

This version supports both Java SE and Java EE development.

Eclipse Downloads
You can download the Eclipse IDE from:

For Java SE development choose the Eclipse IDE for Java Developers. For Java Enterprise
Edition (Java EE) development (such as JSF and web services), choose the Eclipse IDE for
Java EE Developers—this version supports both Java SE and Java EE development.

IntelliJ IDEA Community Edition Downloads
You can download the free IntelliJ IDEA Community from:

The free version supports only Java SE development.

.;

.:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

https://netbeans.org/downloads/

https://eclipse.org/downloads/eclipse-packages/

https://www.jetbrains.com/idea/download/index.html

https://www.jetbrains.com/idea/download/index.html
https://eclipse.org/downloads/eclipse-packages/
https://netbeans.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

50 Before You Begin

Scene Builder
Our JavaFX GUI, graphics and multimedia examples (starting in Chapter 12) use the free
Scene Builder tool, which enables you to create graphical user interfaces (GUIs) with drag-
and-drop techniques. You can download Scene Builder from:

Obtaining the Code Examples
Java How to Program, 11/e’s examples are available for download at

Click the Download Code Examples link to download a ZIP archive file containing the ex-
amples—typically, the file will be saved in you user account’s Downloads folder.

Extract the contents of examples.zip using a ZIP extraction tool such as 7-Zip
(www.7-zip.org), WinZip (www.winzip.com) or the built-in capabilities of your operating
system. Instructions throughout the book assume that the examples are located at:

• C:\examples on Windows

• your user account’s Documents/examples subfolder on macOS and Linux

Installing and Configuring JDK 9 Early Access Version
Throughout the book, we introduce various new Java 9 features in optional sections and
chapters. The Java 9 features require JDK 9, which at the time of this writing was still early
access software available from

This page provides installers for Windows and macOS (formerly Mac OS X). On these
platforms, download the appropriate installer, double click it and follow the on-screen in-
structions. For Linux, the download page provides only a tar.gz archive file. You can
download that file, then extract its contents to a folder on your system. If you have both
JDK 8 and JDK 9 installed, we provide instructions below showing how to specify which
JDK to use on Windows, macOS or Linux.

JDK Version Numbers
Prior to Java 9, JDK versions were numbered 1.X.0_updateNumber where X was the major
Java version. For example,

• Java 8’s current JDK version number is jdk1.8.0_121 and

• Java 7’s final JDK version number was jdk1.7.0_80.

As of Java 9, Oracle has changed the numbering scheme. JDK 9 initially will be known as
jdk-9. Once Java 9 is officially released, there will be future minor version updates that
add new features, and security updates that fix security holes in the Java platform. These
updates will be reflected in the JDK version numbers. For example, in 9.1.3:

• 9—is the major Java version number

• 1—is the minor version update number and

• 3—is the security update number.

http://gluonhq.com/labs/scene-builder/

http://www.deitel.com/books/jhtp11LOV/

https://jdk9.java.net/download/

https://jdk9.java.net/download/
http://www.winzip.com
http://www.7-zip.org
http://www.deitel.com/books/jhtp11LOV/
http://gluonhq.com/labs/scene-builder/

 Installing and Configuring JDK 9 Early Access Version 51

So 9.2.5 would indicate the version of Java 9 for which there have been two minor version
updates and five total security updates (across major and minor versions). For the new ver-
sion-numbering scheme’s details, see JEP (Java Enhancement Proposal) 223 at

Managing Multiple JDKs on Windows
On Windows, you use the PATH environment variable to tell the operating system where
to find a JDK’s tools. The instructions at

specify how to update the PATH. Replace the JDK version number in the instructions with
the JDK version number you wish to use—currently jdk-9. You should check your JDK
9’s installation folder name for an updated version number. This setting will automatically
be applied to each new Command Prompt you open.

If you prefer not to modify your system’s PATH—perhaps because you’re also using
JDK 8—you can open a Command Prompt window then set the PATH only for that
window. To do so, use the command

where location is the full path to JDK 9’s bin folder and ;%PATH% appends the Command
Prompt window’s original PATH contents to the new PATH. Typically, the command would be

Each time you open a new Command Prompt window to use JDK 9, you’ll have to reissue
this command.

Managing Multiple JDKs on macOS
On a Mac, you can determine which JDKs you have installed by opening a Terminal win-
dow and entering the command

which shows the version numbers, names and locations of your JDKs. In our case

the version numbers are 9 and 1.8.0_121. In “Java SE 9-ea” above, “ea” means “early access.”
To set the default JDK version, enter

where # is the version number of the specific JDK that should be the default. At the time
of this writing, for JDK 8, # should be 1.8.0_121 and, for JDK 9, # should be 9.

Next, enter the command:

http://openjdk.java.net/jeps/223

https://docs.oracle.com/javase/8/docs/technotes/guides/install/
windows_jdk_install.html#BABGDJFH

set PATH=location;%PATH%

set PATH="C:\Program Files\Java\jdk-9\bin";%PATH%

/usr/libexec/java_home -V

Matching Java Virtual Machines (2):
 9, x86_64: "Java SE 9-ea "/Library/Java/JavaVirtualMachines/
 jdk-9.jdk/Contents/Home
 1.8.0_121, x86_64: "Java SE 8 "/Library/Java/
 JavaVirtualMachines/jdk1.8.0_121.jdk/Contents/Home

/usr/libexec/java_home -v # --exec javac -version

export JAVA_HOME=`/usr/libexec/java_home -v #`

https://docs.oracle.com/javase/8/docs/technotes/guides/install/windows_jdk_install.html#BABGDJFH
https://docs.oracle.com/javase/8/docs/technotes/guides/install/windows_jdk_install.html#BABGDJFH
http://openjdk.java.net/jeps/223

52 Before You Begin

where # is the version number of the current default JDK. This sets the Terminal window’s
JAVA_HOME environment variable to that JDK’s location. This environment variable will
be used when launching JShell.

Managing Multiple JDKs on Linux
The way you manage multiple JDK versions on Linux depends on how you install your
JDKs. If you use your Linux distribution’s tools for installing software (we used apt-get
on Ubuntu Linux), then on many Linux distributions you can use the following command
to list the installed JDKs:

If more than one is installed, the preceding command shows you a numbered list of
JDKs—you then enter the number for the JDK you wish to use as the default. For a tuto-
rial showing how to use apt-get to install JDKs on Ubuntu Linux, see

If you installed JDK 9 by downloading the tar.gz file and extracting it to your
system, you’ll need to specify in a shell window the path to the JDK’s bin folder. To do
so, enter the following command in your shell window:

where location is the path to JDK 9’s bin folder. This updates the PATH environment vari-
able with the location of JDK 9’s commands, like javac and java, so that you can execute
the JDK’s commands in the shell window.

You’re now ready to begin your Java studies with Java How to Program, Late Objects,
11/e. We hope you enjoy the book!

sudo update-alternatives --config java

https://www.digitalocean.com/community/tutorials/how-to-install-
java-with-apt-get-on-ubuntu-16-04

export PATH="location:$PATH"

https://www.digitalocean.com/community/tutorials/how-to-install-java-with-apt-get-on-ubuntu-16-04

1Introduction to Computers,
the Internet and Java

O b j e c t i v e s
In this chapter you’ll:
■ Learn about exciting recent

developments in the computer
field.

■ Learn computer hardware,
software and networking
basics.

■ Understand the data hierarchy.
■ Understand the different types

of programming languages.
■ Understand the importance of

Java and other leading
programming languages.

■ Understand object-oriented
programming basics.

■ Learn Internet and web basics.
■ Learn a typical Java program-

development environment.
■ Test-drive a Java application.
■ Learn some key recent

software technologies.
■ See how to keep up-to-date

with information
technologies.

54 Chapter 1 Introduction to Computers, the Internet and Java

1.1 Introduction
Welcome to Java—one of the world’s most widely used computer programming languages
and, according to the TIOBE Index, the world’s most popular.1 You’re probably familiar
with the powerful tasks computers perform. Using this textbook, you’ll write instructions
in the Java programming language commanding computers to perform those tasks. Soft-
ware (i.e., the instructions you write) controls hardware (i.e., computers).

You’ll learn object-oriented programming—today’s key programming methodology.
You’ll create and work with many software objects.

For many organizations, the preferred language for meeting their enterprise program-
ming needs is Java. Java is also widely used for implementing Internet-based applications
and software for devices that communicate over a network.

There are billions of personal computers in use and an even larger number of mobile
devices with computers at their core. According to Oracle’s 2016 JavaOne conference key-
note presentation,2 there are now 10 million Java developers worldwide and Java runs on
15 billion devices (Fig. 1.1), including two billion vehicles and 350 million medical
devices. In addition, the explosive growth of mobile phones, tablets and other devices is
creating significant opportunities for programming mobile apps.

1.1 Introduction
1.2 Hardware and Software

1.2.1 Moore’s Law
1.2.2 Computer Organization

1.3 Data Hierarchy
1.4 Machine Languages, Assembly

Languages and High-Level Languages
1.5 Basic Introduction to Object

Terminology
1.5.1 Automobile as an Object
1.5.2 Methods and Classes
1.5.3 Instantiation
1.5.4 Reuse
1.5.5 Messages and Method Calls
1.5.6 Attributes and Instance Variables
1.5.7 Encapsulation and Information Hiding
1.5.8 Inheritance
1.5.9 Interfaces

1.5.10 Object-Oriented Analysis and Design
(OOAD)

1.5.11 The UML (Unified Modeling
Language)

1.6 Operating Systems
1.6.1 Windows—A Proprietary Operating

System
1.6.2 Linux—An Open-Source Operating

System
1.6.3 Apple’s macOS and Apple’s iOS for

iPhone®, iPad® and iPod Touch®
Devices

1.6.4 Google’s Android
1.7 Programming Languages
1.8 Java
1.9 A Typical Java Development

Environment
1.10 Test-Driving a Java Application
1.11 Internet and World Wide Web

1.11.1 Internet: A Network of Networks
1.11.2 World Wide Web: Making the

Internet User-Friendly
1.11.3 Web Services and Mashups
1.11.4 Internet of Things

1.12 Software Technologies
1.13 Getting Your Questions Answered

Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

1. http://www.tiobe.com/tiobe-index/

2. http://bit.ly/JavaOne2016Keynote

http://bit.ly/JavaOne2016Keynote
http://www.tiobe.com/tiobe-index/

1.1 Introduction 55

Java Standard Edition
Java has evolved so rapidly that this eleventh edition of Java How to Program—based on
Java Standard Edition 8 (Java SE 8) and the new Java Standard Edition 9 (Java SE 9)—
was published just 21 years after the first edition. Java Standard Edition contains the ca-
pabilities needed to develop desktop and server applications. The book can be used con-
veniently with either Java SE 8 or Java SE 9 (released just after this book was published).
For instructors and professionals who want to stay with Java 8 for a while, the Java SE 9
features are discussed in modular, easy-to-include-or-omit sections throughout this book
and its Companion Website.

Prior to Java SE 8, Java supported three programming paradigms:

• procedural programming,

• object-oriented programming and

• generic programming.

Java SE 8 added the beginnings of functional programming with lambdas and streams. In
Chapter 17, we’ll show how to use lambdas and streams to write programs faster, more
concisely, with fewer bugs and that are easier to parallelize (i.e., perform multiple calcula-
tions simultaneously) to take advantage of today’s multi-core hardware architectures to en-
hance application performance.

Java Enterprise Edition
Java is used in such a broad spectrum of applications that it has two other editions. The
Java Enterprise Edition (Java EE) is geared toward developing large-scale, distributed net-
working applications and web-based applications. In the past, most computer applications
ran on “standalone” computers (that is, not networked together). Today’s applications can

Devices

Access control systems Airplane systems ATMs

Automobiles Blu-ray Disc™ players Building controls

Cable boxes Copiers Credit cards

CT scanners Desktop computers e-Readers

Game consoles GPS navigation systems Home appliances

Home security systems Internet-of-Things gateways Light switches

Logic controllers Lottery systems Medical devices

Mobile phones MRIs Network switches

Optical sensors Parking meters Personal computers

Point-of-sale terminals Printers Robots

Routers Servers Smart cards

Smart meters Smartpens Smartphones

Tablets Televisions Thermostats

Transportation passes TV set-top boxes Vehicle diagnostic systems

Fig. 1.1 | Some devices that use Java.

56 Chapter 1 Introduction to Computers, the Internet and Java

be written with the aim of communicating among the world’s computers via the Internet
and the web. Later in this book we discuss how to build such web-based applications with
Java.

Java Micro Edition
The Java Micro Edition (Java ME)—a subset of Java SE—is geared toward developing
applications for resource-constrained embedded devices, such as smartwatches, television
set-top boxes, smart meters (for monitoring electric energy usage) and more. Many of the
devices in Fig. 1.1 use Java ME.

1.2 Hardware and Software
Computers can perform calculations and make logical decisions phenomenally faster than
human beings can. Many of today’s personal computers can perform billions of calcula-
tions in one second—more than a human can perform in a lifetime. Supercomputers are
already performing thousands of trillions (quadrillions) of instructions per second! China’s
National Research Center of Parallel Computer Engineering & Technology (NRCPC)
has developed the Sunway TaihuLight supercomputer can perform over 93 quadrillion
calculations per second (93 petaflops)!3 To put that in perspective, the Sunway TaihuLight
supercomputer can perform in one second over 12 million calculations for every person on the
planet! And supercomputing upper limits are growing quickly.

Computers process data under the control of sequences of instructions called com-
puter programs. These software programs guide the computer through ordered actions
specified by people called computer programmers. In this book, you’ll learn key program-
ming methodologies that are enhancing programmer productivity, thereby reducing soft-
ware development costs.

A computer consists of various devices referred to as hardware (e.g., the keyboard,
screen, mouse, hard disks, memory, DVD drives and processing units). Computing costs
are dropping dramatically, owing to rapid developments in hardware and software technol-
ogies. Computers that might have filled large rooms and cost millions of dollars decades
ago are now inscribed on silicon chips smaller than a fingernail, costing perhaps a few dol-
lars each. Ironically, silicon is one of the most abundant materials on Earth—it’s an ingre-
dient in common sand. Silicon-chip technology has made computing so economical that
computers have become a commodity.

1.2.1 Moore’s Law
Every year, you probably expect to pay at least a little more for most products and services.
The opposite has been the case in the computer and communications fields, especially
with regard to the hardware supporting these technologies. For many decades, hardware
costs have fallen rapidly.

Every year or two, the capacities of computers have approximately doubled inexpen-
sively. This remarkable trend often is called Moore’s Law, named for the person who iden-
tified it in the 1960s, Gordon Moore, co-founder of Intel—the leading manufacturer of
the processors in today’s computers and embedded systems. Moore’s Law and related
observations apply especially to the amount of memory that computers have for programs,

3. https://www.top500.org/lists/2016/06/

https://www.top500.org/lists/2016/06/

1.2 Hardware and Software 57

the amount of secondary storage (such as solid-state drive storage) they have to hold
programs and data over longer periods of time, and their processor speeds—the speeds at
which they execute their programs (i.e., do their work).

Similar growth has occurred in the communications field—costs have plummeted as
enormous demand for communications bandwidth (i.e., information-carrying capacity)
has attracted intense competition. We know of no other fields in which technology
improves so quickly and costs fall so rapidly. Such phenomenal improvement is truly fos-
tering the Information Revolution.

1.2.2 Computer Organization
Regardless of differences in physical appearance, computers can be envisioned as divided
into various logical units or sections (Fig. 1.2).

Logical unit Description

Input unit This “receiving” section obtains information (data and computer pro-
grams) from input devices and places it at the disposal of the other
units for processing. Most user input is entered into computers
through keyboards, touch screens and mouse devices. Other forms of
input include receiving voice commands, scanning images and bar
codes, reading from secondary storage devices (such as hard drives,
DVD drives, Blu-ray Disc™ drives and USB flash drives—also called
“thumb drives” or “memory sticks”), receiving video from a webcam
and having your computer receive information from the Internet (such
as when you stream videos from YouTube® or download e-books from
Amazon). Newer forms of input include position data from a GPS
device, motion and orientation information from an accelerometer (a
device that responds to up/down, left/right and forward/backward
acceleration) in a smartphone or game controller (such as Microsoft®
Kinect® for Xbox®, Wii™ Remote and Sony® PlayStation® Move)
and voice input from intelligent assistants like Amazon Echo and Goo-
gle Home.

Output unit This “shipping” section takes information the computer has processed
and places it on various output devices to make it available for use
outside the computer. Most information that’s output from comput-
ers today is displayed on screens (including touch screens), printed on
paper (“going green” discourages this), played as audio or video on
PCs and media players (such as Apple’s iPods) and giant screens in
sports stadiums, transmitted over the Internet or used to control other
devices, such as robots and “intelligent” appliances. Information is
also commonly output to secondary storage devices, such as solid-state
drives (SSDs), hard drives, DVD drives and USB flash drives. Popular
recent forms of output are smartphone and game-controller vibration,
virtual reality devices like Oculus Rift® and Google Cardboard™ and
mixed reality devices like Microsoft’s HoloLens™.

Fig. 1.2 | Logical units of a computer. (Part 1 of 2.)

58 Chapter 1 Introduction to Computers, the Internet and Java

Memory unit This rapid-access, relatively low-capacity “warehouse” section retains
information that has been entered through the input unit, making it
immediately available for processing when needed. The memory unit
also retains processed information until it can be placed on output
devices by the output unit. Information in the memory unit is
volatile—it’s typically lost when the computer’s power is turned off.
The memory unit is often called either memory, primary memory or
RAM (Random Access Memory). Main memories on desktop and
notebook computers contain as much as 128 GB of RAM, though 2
to 16 GB is most common. GB stands for gigabytes; a gigabyte is
approximately one billion bytes. A byte is eight bits. A bit is either a 0
or a 1.

Arithmetic
and logic unit
(ALU)

This “manufacturing” section performs calculations, such as addition,
subtraction, multiplication and division. It also contains the decision
mechanisms that allow the computer, for example, to compare two
items from the memory unit to determine whether they’re equal. In
today’s systems, the ALU is implemented as part of the next logical
unit, the CPU.

Central
processing
unit (CPU)

This “administrative” section coordinates and supervises the operation
of the other sections. The CPU tells the input unit when information
should be read into the memory unit, tells the ALU when information
from the memory unit should be used in calculations and tells the out-
put unit when to send information from the memory unit to certain
output devices. Many of today’s computers have multiple CPUs and,
hence, can perform many operations simultaneously. A multicore pro-
cessor implements multiple processors on a single integrated-circuit
chip—a dual-core processor has two CPUs, a quad-core processor has four
and an octa-core processor has eight. Intel has some processors with up
to 72 cores. Today’s desktop computers have processors that can exe-
cute billions of instructions per second. Chapter 23 explores how to
write apps that can take full advantage of multicore architecture.

Secondary
storage unit

This is the long-term, high-capacity “warehousing” section. Programs
or data not actively being used by the other units normally are placed
on secondary storage devices (e.g., your hard drive) until they’re again
needed, possibly hours, days, months or even years later. Information
on secondary storage devices is persistent—it’s preserved even when
the computer’s power is turned off. Secondary storage information
takes much longer to access than information in primary memory, but
its cost per unit is much less. Examples of secondary storage devices
include solid-state drives (SSDs), hard drives, DVD drives and USB
flash drives, some of which can hold over 2 TB (TB stands for tera-
bytes; a terabyte is approximately one trillion bytes). Typical hard
drives on desktop and notebook computers hold up to 2 TB, and
some desktop hard drives can hold up to 10 TB.

Logical unit Description

Fig. 1.2 | Logical units of a computer. (Part 2 of 2.)

1.3 Data Hierarchy 59

1.3 Data Hierarchy
Data items processed by computers form a data hierarchy that becomes larger and more
complex in structure as we progress from the simplest data items (called “bits”) to richer
ones, such as characters and fields. Figure 1.3 illustrates a portion of the data hierarchy.

Bits
The smallest data item in a computer can assume the value 0 or the value 1. It’s called a
bit (short for “binary digit”—a digit that can assume one of two values). Remarkably, the
impressive functions performed by computers involve only the simplest manipulations of
0s and 1s—examining a bit’s value, setting a bit’s value and reversing a bit’s value (from 1 to
0 or from 0 to 1).

Characters
It’s tedious for people to work with data in the low-level form of bits. Instead, they prefer
to work with decimal digits (0–9), letters (A–Z and a–z), and special symbols (e.g., $, @, %,
&, *, (,), –, +, ", :, ? and /). Digits, letters and special symbols are known as characters.
The computer’s character set is the set of all the characters used to write programs and
represent data items. Computers process only 1s and 0s, so a computer’s character set rep-
resents every character as a pattern of 1s and 0s. Java uses Unicode® characters that are
composed of one, two or four bytes (8, 16 or 32 bits). Unicode contains characters for
many of the world’s languages. See Appendix H for more information on Unicode. See

Fig. 1.3 | Data hierarchy.

Tom Blue

Sally Black

Judy Green File

J u d y Field

Unicode character J

Record

Iris Orange

Randy Red

00000000 01001010

1 Bit

Judy Green

60 Chapter 1 Introduction to Computers, the Internet and Java

Appendix B for more information on the ASCII (American Standard Code for Informa-
tion Interchange) character set—the popular subset of Unicode that represents uppercase
and lowercase letters, digits and some common special characters.

Fields
Just as characters are composed of bits, fields are composed of characters or bytes. A field
is a group of characters or bytes that conveys meaning. For example, a field consisting of
uppercase and lowercase letters can be used to represent a person’s name, and a field con-
sisting of decimal digits could represent a person’s age.

Records
Several related fields can be used to compose a record (implemented as a class in Java). In
a payroll system, for example, the record for an employee might consist of the following
fields (possible types for these fields are shown in parentheses):

• Employee identification number (a whole number)

• Name (a string of characters)

• Address (a string of characters)

• Hourly pay rate (a number with a decimal point)

• Year-to-date earnings (a number with a decimal point)

• Amount of taxes withheld (a number with a decimal point)

Thus, a record is a group of related fields. In the preceding example, all the fields belong
to the same employee. A company might have many employees and a payroll record for
each.

Files
A file is a group of related records. [Note: More generally, a file contains arbitrary data in
arbitrary formats. In some operating systems, a file is viewed simply as a sequence of bytes—
any organization of the bytes in a file, such as organizing the data into records, is a view
created by the application programmer. You’ll see how to do that in Chapter 15.] It’s not
unusual for an organization to have many files, some containing billions, or even trillions,
of characters of information.

Database
A database is a collection of data organized for easy access and manipulation. The most
popular model is the relational database, in which data is stored in simple tables. A table
includes records and fields. For example, a table of students might include first name, last
name, major, year, student ID number and grade point average fields. The data for each
student is a record, and the individual pieces of information in each record are the fields.
You can search, sort and otherwise manipulate the data based on its relationship to multiple
tables or databases. For example, a university might use data from the student database in
combination with data from databases of courses, on-campus housing, meal plans, etc. We
discuss databases in Chapter 24, Accessing Databases with JDBC and online Chapter 29,
Java Persistence API (JPA).

1.4 Machine Languages, Assembly Languages and High-Level Languages 61

Big Data
The amount of data being produced worldwide is enormous and growing quickly. Accord-
ing to IBM, approximately 2.5 quintillion bytes (2.5 exabytes) of data are created daily,4

and according to Salesforce.com, as of October 2015 90% of the world’s data was created
in just the prior 12 months!5 According to an IDC study, the global data supply will reach
40 zettabytes (equal to 40 trillion gigabytes) annually by 2020.6 Figure 1.4 shows some
common byte measurements. Big data applications deal with massive amounts of data and
this field is growing quickly, creating lots of opportunity for software developers. Millions
of IT jobs globally already are supporting big data applications.

1.4 Machine Languages, Assembly Languages and High-
Level Languages
Programmers write instructions in various programming languages, some directly under-
standable by computers and others requiring intermediate translation steps. Hundreds of
such languages are in use today. These may be divided into three general types:

1. Machine languages

2. Assembly languages

3. High-level languages

Machine Languages
Any computer can directly understand only its own machine language, defined by its
hardware design. Machine languages generally consist of strings of numbers (ultimately re-
duced to 1s and 0s) that instruct computers to perform their most elementary operations
one at a time. Machine languages are machine dependent (a particular machine language
can be used on only one type of computer). Such languages are cumbersome for humans.

4. http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html

5. https://www.salesforce.com/blog/2015/10/salesforce-channel-ifttt.html

6. http://recode.net/2014/01/10/stuffed-why-data-storage-is-hot-again-really/

Unit Bytes Which is approximately

 1 kilobyte (KB) 1024 bytes 103 (1024) bytes exactly

 1 megabyte (MB) 1024 kilobytes 106 (1,000,000) bytes

 1 gigabyte (GB) 1024 megabytes 109 (1,000,000,000) bytes

 1 terabyte (TB) 1024 gigabytes 1012 (1,000,000,000,000) bytes

 1 petabyte (PB) 1024 terabytes 1015 (1,000,000,000,000,000) bytes

 1 exabyte (EB) 1024 petabytes 1018 (1,000,000,000,000,000,000) bytes

 1 zettabyte (ZB) 1024 exabytes 1021 (1,000,000,000,000,000,000,000) bytes

Fig. 1.4 | Byte measurements.

http://recode.net/2014/01/10/stuffed-why-data-storage-is-hot-again-really/
https://www.salesforce.com/blog/2015/10/salesforce-channel-ifttt.html
http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html

62 Chapter 1 Introduction to Computers, the Internet and Java

For example, here’s a section of an early machine-language payroll program that adds over-
time pay to base pay and stores the result in gross pay:

Assembly Languages and Assemblers
Programming in machine language was simply too slow and tedious for most program-
mers. Instead of using the strings of numbers that computers could directly understand,
programmers began using English-like abbreviations to represent elementary operations.
These abbreviations formed the basis of assembly languages. Translator programs called as-
semblers were developed to convert early assembly-language programs to machine lan-
guage at computer speeds. The following section of an assembly-language payroll program
also adds overtime pay to base pay and stores the result in gross pay:

Although such code is clearer to humans, it’s incomprehensible to computers until trans-
lated to machine language.

High-Level Languages and Compilers
With the advent of assembly languages, computer usage increased rapidly, but program-
mers still had to use numerous instructions to accomplish even the simplest tasks. To
speed the programming process, high-level languages were developed in which single
statements could be written to accomplish substantial tasks. Translator programs called
compilers convert high-level language programs into machine language. High-level lan-
guages allow you to write instructions that look almost like everyday English and contain
commonly used mathematical notations. A payroll program written in a high-level lan-
guage might contain a single statement such as

From the programmer’s standpoint, high-level languages are preferable to machine and as-
sembly languages. Java is the world’s most widely used high-level programming language.

Interpreters
Compiling a large high-level language program into machine language can take consider-
able computer time. Interpreter programs, developed to execute high-level language pro-
grams directly, avoid the delay of compilation, although they run slower than compiled
programs. We’ll say more about interpreters in Section 1.9, where you’ll learn that Java uses
a clever performance-tuned mixture of compilation and interpretation to run programs.

1.5 Basic Introduction to Object Terminology
[Note: In Java, even simple programs, such as those we begin with in Chapter 2, use basic
object-oriented concepts like “classes,” “objects” and “methods.” This section gently in-
troduces those basics. Chapters 7–11 provide our late-objects deep treatment of object-

+1300042774

+1400593419

+1200274027

load basepay

add overpay

store grosspay

grossPay = basePay + overTimePay

1.5 Basic Introduction to Object Terminology 63

oriented programming.] As demands for more powerful software soar, building software
quickly, correctly and economically remains an elusive goal. Objects, or more precisely, the
classes objects come from, are essentially reusable software components. There are date ob-
jects, time objects, audio objects, video objects, automobile objects, people objects, etc. Al-
most any noun can be represented as a software object in terms of attributes (e.g., name,
color and size) and behaviors (e.g., calculating, moving and communicating). Software-de-
velopment groups can use an object-oriented design-and-implementation approach to be
much more productive than with earlier techniques like “structured programming”—ob-
ject-oriented programs are often easier to understand, correct and modify.

1.5.1 Automobile as an Object
To help you understand objects and their contents, let’s begin with a simple analogy. Sup-
pose you want to drive a car and make it go faster by pressing its accelerator pedal. What must
happen before you can do this? Well, before you can drive a car, someone has to design it.
A car typically begins as engineering drawings, similar to the blueprints that describe the
design of a house. These drawings include the design for an accelerator pedal. The pedal
hides from the driver the complex mechanisms that actually make the car go faster, just as
the brake pedal “hides” the mechanisms that slow the car, and the steering wheel “hides”
the mechanisms that turn the car. This enables people with little or no knowledge of how
engines, braking and steering mechanisms work to drive a car easily.

Just as you cannot cook meals in the kitchen of a blueprint, you cannot drive a car’s
engineering drawings. Before you can drive a car, it must be built from the engineering
drawings that describe it. A completed car has an actual accelerator pedal to make it go
faster, but even that’s not enough—the car won’t accelerate on its own (hopefully!), so the
driver must press the pedal to accelerate the car.

1.5.2 Methods and Classes
Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a method. The method houses the program state-
ments that perform its tasks. The method hides these statements from its user, just as the
accelerator pedal of a car hides from the driver the mechanisms of making the car go faster.
In Java, we create a program unit called a class to house the set of methods that perform
the class’s tasks. For example, a bank-account class might contain one method to deposit
money to an account, another to withdraw money from an account and a third to inquire
what the account’s current balance is. A class is similar in concept to a car’s engineering
drawings, which house the design of an accelerator pedal, steering wheel, and so on.

1.5.3 Instantiation
Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object of a class before a program can perform the tasks that
the class’s methods define. The process of doing this is called instantiation. An object is
then referred to as an instance of its class.

1.5.4 Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new

64 Chapter 1 Introduction to Computers, the Internet and Java

classes and programs saves time and effort. Reuse also helps you build more reliable and
effective systems, because existing classes and components often have undergone extensive
testing, debugging and performance tuning. Just as the notion of interchangeable parts was
crucial to the Industrial Revolution, reusable classes are crucial to the software revolution
that has been spurred by object technology.

1.5.5 Messages and Method Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is implemented
as a method call that tells a method of the object to perform its task. For example, a pro-
gram might call a bank-account object’s deposit method to increase the account’s balance.

1.5.6 Attributes and Instance Variables
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank-account object has
a balance attribute that represents the amount of money in the account. Each bank-
account object knows the balance in the account it represents, but not the balances of the
other accounts in the bank. Attributes are specified by the class’s instance variables.

1.5.7 Encapsulation and Information Hiding
Classes (and their objects) encapsulate, i.e., encase, their attributes and methods. A class’s
(and its object’s) attributes and methods are intimately related. Objects may communicate
with one another, but they’re normally not allowed to know how other objects are imple-
mented—implementation details can be hidden within the objects themselves. This infor-
mation hiding, as we’ll see, is crucial to good software engineering.

1.5.8 Inheritance
A new class of objects can be created conveniently by Inheritance—the new class (called
the subclass) starts with the characteristics of an existing class (called the superclass), pos-
sibly customizing them and adding unique characteristics of its own. In our car analogy,
an object of class “convertible” certainly is an object of the more general class “automo-
bile,” but more specifically, the roof can be raised or lowered.

Software Engineering Observation 1.1
Use a building-block approach to creating your programs. Avoid reinventing the wheel—
use existing high-quality pieces wherever possible. This software reuse is a key benefit of
object-oriented programming.

1.5 Basic Introduction to Object Terminology 65

1.5.9 Interfaces
Java also supports interfaces—collections of related methods that typically enable you to
tell objects what to do, but not how to do it (we’ll see exceptions to this in Java SE 8 and
Java SE 9 when we discuss interfaces in Chapter 10). In the car analogy, a “basic-driving-
capabilities” interface consisting of a steering wheel, an accelerator pedal and a brake pedal
would enable a driver to tell the car what to do. Once you know how to use this interface
for turning, accelerating and braking, you can drive many types of cars, even though man-
ufacturers may implement these systems differently.

A class implements zero or more interfaces, each of which can have one or more
methods, just as a car implements separate interfaces for basic driving functions, con-
trolling the radio, controlling the heating and air conditioning systems, and the like. Just
as car manufacturers implement capabilities differently, classes may implement an inter-
face’s methods differently. For example a software system may include a “backup” interface
that offers the methods save and restore. Classes may implement those methods differently,
depending on the types of things being backed up, such as programs, text, audios, videos,
etc., and the types of devices where these items will be stored.

1.5.10 Object-Oriented Analysis and Design (OOAD)
Soon you’ll be writing programs in Java. How will you create the code (i.e., the program
instructions) for your programs? Perhaps, like many programmers, you’ll simply turn on
your computer and start typing. This approach may work for small programs (like the ones
we present in the early chapters of the book), but what if you were asked to create a soft-
ware system to control thousands of automated teller machines for a major bank? Or sup-
pose you were asked to work on a team of 1,000 software developers building the next
generation of the U.S. air traffic control system? For projects so large and complex, you
should not simply sit down and start writing programs.

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining what the system is supposed to do) and
developing a design that satisfies them (i.e., specifying how the system should do it). Ide-
ally, you’d go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis-and-design (OOAD) process. Languages like Java are object ori-
ented. Programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

1.5.11 The UML (Unified Modeling Language)
Although many different OOAD processes exist, a single graphical language for commu-
nicating the results of any OOAD process has come into wide use. The Unified Modeling
Language (UML) is now the most widely used graphical scheme for modeling object-
oriented systems. We use UML diagrams in our discussions of control statements in
Chapters 3 and 4, and in our discussions of object-oriented programming in Chapters 7–
11. In our optional online ATM Software Engineering Case Study in Chapters 33–34 we
present a simple subset of the UML’s features as we guide you through an object-oriented
design experience.

66 Chapter 1 Introduction to Computers, the Internet and Java

1.6 Operating Systems
Operating systems are software systems that make using computers more convenient for
users, application developers and system administrators. They provide services that allow
each application to execute safely, efficiently and concurrently (i.e., in parallel) with other
applications. The software that contains the core components of the operating system is
called the kernel. Popular desktop operating systems include Linux, Windows and macOS
(formerly called OS X)—we used all three in developing this book. The most popular mo-
bile operating systems used in smartphones and tablets are Google’s Android and Apple’s
iOS (for iPhone, iPad and iPod Touch devices).

1.6.1 Windows—A Proprietary Operating System
In the mid-1980s, Microsoft developed the Windows operating system, consisting of a
graphical user interface built on top of DOS (Disk Operating System)—an enormously
popular personal-computer operating system that users interacted with by typing com-
mands. Windows borrowed from many concepts (such as icons, menus and windows) de-
veloped by Xerox PARC and popularized by early Apple Macintosh operating systems.
Windows 10 is Microsoft’s latest operating system—its features include enhancements to
the Start menu and user interface, Cortana personal assistant for voice interactions, Action
Center for receiving notifications, Microsoft’s new Edge web browser, and more. Win-
dows is a proprietary operating system—it’s controlled by Microsoft exclusively. Windows
is by far the world’s most widely used desktop operating system.

1.6.2 Linux—An Open-Source Operating System
The Linux operating system is perhaps the greatest success of the open-source movement.
Open-source software departs from the proprietary software development style that dom-
inated software’s early years. With open-source development, individuals and companies
contribute their efforts in developing, maintaining and evolving software in exchange for
the right to use that software for their own purposes, typically at no charge. Open-source
code is often scrutinized by a much larger audience than proprietary software, so errors of-
ten get removed faster. Open source also encourages innovation. Enterprise systems com-
panies, such as IBM, Oracle and many others, have made significant investments in Linux
open-source development.

Some key organizations in the open-source community are

• the Eclipse Foundation (the Eclipse Integrated Development Environment helps
programmers conveniently develop software)

• the Mozilla Foundation (creators of the Firefox web browser)

• the Apache Software Foundation (creators of the Apache web server used to de-
velop web-based applications)

• GitHub (which provides tools for managing open-source projects—it has mil-
lions of them under development).

Rapid improvements to computing and communications, decreasing costs and open-
source software have made it much easier and more economical to create a software-based

1.6 Operating Systems 67

business now than just a decade ago. A great example is Facebook, which was launched
from a college dorm room and built with open-source software.

The Linux kernel is the core of the most popular open-source, freely distributed, full-
featured operating system. It’s developed by a loosely organized team of volunteers and is
popular in servers, personal computers and embedded systems (such as the computer sys-
tems at the heart of smartphones, smart TVs and automobile systems). Unlike that of pro-
prietary operating systems like Microsoft’s Windows and Apple’s macOS, Linux source
code (the program code) is available to the public for examination and modification and
is free to download and install. As a result, Linux users benefit from a huge community of
developers actively debugging and improving the kernel, and the ability to customize the
operating system to meet specific needs.

A variety of issues—such as Microsoft’s market power, the small number of user-
friendly Linux applications and the diversity of Linux distributions, such as Red Hat
Linux, Ubuntu Linux and many others—have prevented widespread Linux use on
desktop computers. Linux has become extremely popular on servers and in embedded sys-
tems, such as Google’s Android-based smartphones.

1.6.3 Apple’s macOS and Apple’s iOS for iPhone®, iPad® and iPod
Touch® Devices
Apple, founded in 1976 by Steve Jobs and Steve Wozniak, quickly became a leader in per-
sonal computing. In 1979, Jobs and several Apple employees visited Xerox PARC (Palo
Alto Research Center) to learn about Xerox’s desktop computer that featured a graphical
user interface (GUI). That GUI served as the inspiration for the Apple Macintosh,
launched with much fanfare in a memorable Super Bowl ad in 1984.

The Objective-C programming language, created by Brad Cox and Tom Love at
Stepstone in the early 1980s, added capabilities for object-oriented programming (OOP)
to the C programming language. Steve Jobs left Apple in 1985 and founded NeXT Inc.
In 1988, NeXT licensed Objective-C from StepStone and developed an Objective-C com-
piler and libraries which were used as the platform for the NeXTSTEP operating system’s
user interface, and Interface Builder—used to construct graphical user interfaces.

Jobs returned to Apple in 1996 when Apple bought NeXT. Apple’s macOS operating
system is a descendant of NeXTSTEP. Apple’s proprietary operating system, iOS, is derived
from Apple’s macOS and is used in the iPhone, iPad, iPod Touch, Apple Watch and Apple
TV devices. In 2014, Apple introduced its new Swift programming language, which became
open source in 2015. The iOS app-development community is shifting from Objective-C
to Swift.

1.6.4 Google’s Android
Android—the fastest growing mobile and smartphone operating system—is based on the
Linux kernel and Java. Android apps can also be developed in C++ and C. One benefit of
developing Android apps is the openness of the platform. The operating system is open
source and free.

The Android operating system was developed by Android, Inc., which was acquired
by Google in 2005. In 2007, the Open Handset Alliance™

http://www.openhandsetalliance.com/oha_members.html

http://www.openhandsetalliance.com/oha_members.html

68 Chapter 1 Introduction to Computers, the Internet and Java

was formed to develop, maintain and evolve Android, driving innovation in mobile tech-
nology and improving the user experience while reducing costs. According to Statista.com,
as of Q3 2016, Android had 87.8% of the global smartphone market share, compared to
11.5% for Apple.7 The Android operating system is used in numerous smartphones, e-read-
er devices, tablets, in-store touch-screen kiosks, cars, robots, multimedia players and more.

We present an introduction to Android app development in our textbook, Android
How to Program, Third Edition, and in our professional book, Android 6 for Programmers:
An App-Driven Approach, Third Edition. After you learn Java, you’ll find it straightforward
to begin developing and running Android apps. You can place your apps on Google Play
(play.google.com), and if they’re successful, you may even be able to launch a business.
Just remember—Facebook, Microsoft and Dell were all launched from college dorm
rooms.

1.7 Programming Languages
Figure 1.6 provides brief comments on several popular programming languages. In the
next section, we introduce Java.

7. https://www.statista.com/statistics/266136/global-market-share-held-by-smart-

phone-operating-systems

Programming
language Description

Ada Ada, based on Pascal, was developed under the sponsorship of the U.S. Depart-
ment of Defense (DOD) during the 1970s and early 1980s. The DOD wanted a
single language that would fill most of its needs. The Pascal-based language was
named after Lady Ada Lovelace, daughter of the poet Lord Byron. She’s credited
with writing the world’s first computer program in the early 1800s (for the Ana-
lytical Engine mechanical computing device designed by Charles Babbage). Ada
also supports object-oriented programming.

Basic Basic was developed in the 1960s at Dartmouth College to familiarize novices
with programming techniques. Many of its latest versions are object oriented.

C C was developed in the early 1970s by Dennis Ritchie at Bell Laboratories. It ini-
tially became widely known as the UNIX operating system’s development language.
Today, most code for general-purpose operating systems is written in C or C++.

C++ C++, which is based on C, was developed by Bjarne Stroustrup in the early 1980s at
Bell Laboratories. C++ provides several features that “spruce up” the C language, but
more important, it provides capabilities for object-oriented programming.

C# Microsoft’s three primary object-oriented programming languages are C# (based
on C++ and Java), Visual C++ (based on C++) and Visual Basic (based on the
original Basic). C# was developed to integrate the web into computer applica-
tions, and is now widely used to develop enterprise applications and for mobile
application development.

Fig. 1.5 | Some other programming languages. (Part 1 of 3.)

http://play.google.com
https://www.statista.com/statistics/266136/global-market-share-held-by-smart-phone-operating-systems

1.7 Programming Languages 69

COBOL COBOL (COmmon Business Oriented Language) was developed in the late
1950s by computer manufacturers, the U.S. government and industrial computer
users, based on a language developed by Grace Hopper, a career U.S. Navy officer
and computer scientist. (She was posthumously awarded the Presidential Medal of
Freedom in November of 2016.) COBOL is still widely used for commercial
applications that require precise and efficient manipulation of large amounts of
data. Its latest version supports object-oriented programming.

Fortran Fortran (FORmula TRANslator) was developed by IBM Corporation in the mid-
1950s to be used for scientific and engineering applications that require complex
mathematical computations. It’s still widely used, and its latest versions support
object-oriented programming.

JavaScript JavaScript is the most widely used scripting language. It’s primarily used to add
programmability to web pages—for example, animations and interactivity with
the user. All major web browsers support it.

Objective-C Objective-C is an object-oriented language based on C. It was developed in the
early 1980s and later acquired by NeXT, which in turn was acquired by Apple. It
became the key programming language for the OS X operating system and all
iOS-powered devices (such as iPods, iPhones and iPads).

Pascal Research in the 1960s resulted in structured programming—a disciplined approach
to writing programs that are clearer, easier to test and debug and easier to modify
than programs produced with previous techniques. The Pascal language, devel-
oped by Professor Niklaus Wirth in 1971, grew out of this research. It was popu-
lar for teaching structured programming for several decades.

PHP PHP is an object-oriented, open-source “scripting” language supported by a com-
munity of developers and used by numerous websites. PHP is platform indepen-
dent—implementations exist for all major UNIX, Linux, Mac and Windows
operating systems.

Python Python, another object-oriented scripting language, was released publicly in 1991.
Developed by Guido van Rossum of the National Research Institute for Mathe-
matics and Computer Science in Amsterdam, Python draws heavily from Mod-
ula-3—a systems programming language. Python is “extensible”—it can be
extended through classes and programming interfaces.

Ruby on Rails Ruby—created in the mid-1990s by Yukihiro Matsumoto—is an open-source,
object-oriented programming language with a simple syntax that’s similar to
Python. Ruby on Rails combines the scripting language Ruby with the Rails web-
application framework developed by the company 37Signals. Their book, Getting
Real (free at http://gettingreal.37signals.com/toc.php), is a must-read for
web developers. Many Ruby on Rails developers have reported productivity gains
over other languages when developing database-intensive web applications.

Programming
language Description

Fig. 1.5 | Some other programming languages. (Part 2 of 3.)

http://gettingreal.37signals.com/toc.php

70 Chapter 1 Introduction to Computers, the Internet and Java

1.8 Java
The microprocessor revolution’s most important contribution to date is that it enabled the
development of personal computers. Microprocessors also have had a profound impact in
intelligent consumer-electronic devices, including the recent explosion in the “Internet of
Things.” Recognizing this early on, Sun Microsystems in 1991 funded an internal corpo-
rate research project led by James Gosling, which resulted in a C++-based object-oriented
programming language that Sun called Java. Using Java, you can write programs that will
run on a great variety of computer systems and computer-controlled devices. This is some-
times called “write once, run anywhere.”

Java drew the attention of the business community because of the phenomenal
interest in the Internet. It’s now used to develop large-scale enterprise applications, to
enhance the functionality of web servers (the computers that provide the content we see
in our web browsers), to provide applications for consumer devices (cell phones, smart-
phones, television set-top boxes and more), to develop robotics software and for many
other purposes. It’s also the key language for developing Android smartphone and tablet
apps. Sun Microsystems was acquired by Oracle in 2010.

Java has become the most widely used general-purpose programming language with
more than 10 million developers. In this textbook, you’ll learn the two most recent versions
of Java—Java Standard Edition 8 (Java SE 8) and Java Standard Edition 9 (Java SE 9).

Java Class Libraries
You can create each class and method you need to form your programs. However, most Java
programmers take advantage of the rich collections of existing classes and methods in the
Java class libraries, also known as the Java APIs (Application Programming Interfaces).

Scala Scala (http://www.scala-lang.org/what-is-scala.html)—short for “scalable
language”—was designed by Martin Odersky, a professor at École Polytechnique
Fédérale de Lausanne (EPFL) in Switzerland. Released in 2003, Scala uses both
the object-oriented programming and functional programming paradigms and is
designed to integrate with Java. Programming in Scala can reduce the amount of
code in your applications significantly.

Swift Swift, which was introduced in 2014, is Apple’s programming language of the
future for developing iOS and OS X applications (apps). Swift is a contemporary
language that includes popular programming-language features from languages
such as Objective-C, Java, C#, Ruby, Python and others. According to the Tiobe
Index, Swift has already become one of the most popular programming languages.
Swift is now open source, so it can be used on non-Apple platforms as well.

Visual Basic Microsoft’s Visual Basic language was introduced in the early 1990s to simplify
the development of Microsoft Windows applications. Its features are comparable
to those of C#.

Programming
language Description

Fig. 1.5 | Some other programming languages. (Part 3 of 3.)

http://www.scala-lang.org/what-is-scala.html

1.9 A Typical Java Development Environment 71

1.9 A Typical Java Development Environment
We now explain the steps to create and execute a Java application. Normally there are five
phases—edit, compile, load, verify and execute. We discuss them in the context of the Java
SE 8 Development Kit (JDK). See the Before You Begin section for information on down-
loading and installing the JDK on Windows, Linux and macOS.

Phase 1: Creating a Program
Phase 1 consists of editing a file with an editor program, normally known simply as an editor
(Fig. 1.6). Using the editor, you type a Java program (typically referred to as source code),
make any necessary corrections and save it on a secondary storage device, such as your hard
drive. Java source code files are given a name ending with the .java extension, indicating
that the file contains Java source code.

Two editors widely used on Linux systems are vi and emacs (). Windows provides
Notepad. macOS provides TextEdit. Many freeware and shareware editors are also available
online, including Notepad++ (http://notepad-plus-plus.org), EditPlus (http://

www.editplus.com), TextPad (http://www.textpad.com), jEdit (http://www.jedit.org)
and more.

Integrated development environments (IDEs) provide tools that support the soft-
ware development process, such as editors, debuggers for locating logic errors that cause
programs to execute incorrectly and more. The most popular Java IDEs are:

• Eclipse (http://www.eclipse.org)

• IntelliJ IDEA (http://www.jetbrains.com)

• NetBeans (http://www.netbeans.org)

On the book’s website at

we provide videos that show you how to execute this book’s Java applications and how to
develop new Java applications with Eclipse, NetBeans and IntelliJ IDEA.

Phase 2: Compiling a Java Program into Bytecodes
In Phase 2, you use the command javac (the Java compiler) to compile a program
(Fig. 1.7). For example, to compile a program called Welcome.java, you’d type

Performance Tip 1.1
Using Java API classes and methods instead of writing your own versions can improve pro-
gram performance, because they’re carefully written to perform efficiently. This also short-
ens program development time.

Fig. 1.6 | Typical Java development environment—editing phase.

http://www.deitel.com/books/jhtp11LOV

Secondary
Storage

Editor
Program is created in an
editor and stored in a file
with a name ending in.java

Phase 1: Edit

http://www.deitel.com/books/jhtp11LOV
http://www.netbeans.org
http://www.jetbrains.com
http://www.eclipse.org
http://www.jedit.org
http://www.textpad.com
http://www.editplus.com
http://www.editplus.com
http://notepad-plus-plus.org

72 Chapter 1 Introduction to Computers, the Internet and Java

in your system’s command window (i.e., the Command Prompt in Windows, the Terminal
application in macOS) or a Linux shell (also called Terminal in some Linux versions). If the
program compiles, the compiler produces a .class file called Welcome.class. IDEs typi-
cally provide a menu item, such as Build or Make, that invokes the javac command for
you. If the compiler detects errors, you’ll need to go back to Phase 1 and correct them. In
Chapter 2, we’ll say more about the kinds of errors the compiler can detect.

The Java compiler translates Java source code into bytecodes that represent the tasks
to execute in the execution phase (Phase 5). The Java Virtual Machine (JVM)—a part of
the JDK and the foundation of the Java platform—executes bytecodes. A virtual machine
(VM) is a software application that simulates a computer but hides the underlying oper-
ating system and hardware from the programs that interact with it. If the same VM is
implemented on many computer platforms, applications written for that type of VM can
be used on all those platforms. The JVM is one of the most widely used virtual machines.
Microsoft’s .NET uses a similar virtual-machine architecture.

Unlike machine-language instructions, which are platform dependent (that is, depen-
dent on specific computer hardware), bytecode instructions are platform independent. So,
Java’s bytecodes are portable—without recompiling the source code, the same bytecode
instructions can execute on any platform containing a JVM that understands the version
of Java in which the bytecodes were compiled. The JVM is invoked by the java command.
For example, to execute a Java application called Welcome, you’d type the command

in a command window to invoke the JVM, which would then initiate the steps necessary
to execute the application. This begins Phase 3. IDEs typically provide a menu item, such
as Run, that invokes the java command for you.

Phase 3: Loading a Program into Memory
In Phase 3, the JVM places the program in memory to execute it—this is known as loading
(Fig. 1.8).The JVM’s class loader takes the .class files containing the program’s byte-

javac Welcome.java

Fig. 1.7 | Typical Java development environment—compilation phase.

Common Programming Error 1.1
When using javac, if you receive a message such as “bad command or filename,” “javac:
command not found” or “'javac' is not recognized as an internal or external com-
mand, operable program or batch file,” then your Java software installation was not
completed properly. This indicates that the system’s PATH environment variable was not
set properly. Carefully review the installation instructions in the Before You Begin section
of this book. On some systems, after correcting the PATH, you may need to reboot your com-
puter or open a new command window for these settings to take effect.

java Welcome

Secondary
Storage

Compiler

Compiler creates bytecodes
and stores them in a
file with a name ending
in .class

Phase 2: Compile

1.9 A Typical Java Development Environment 73

codes and transfers them to primary memory. It also loads any of the .class files provided
by Java that your program uses. The .class files can be loaded from a disk on your system
or over a network (e.g., your local college or company network, or the Internet).

Phase 4: Bytecode Verification
In Phase 4, as the classes are loaded, the bytecode verifier examines their bytecodes to en-
sure that they’re valid and do not violate Java’s security restrictions (Fig. 1.9). Java enforces
strong security to make sure that Java programs arriving over the network do not damage
your files or your system (as computer viruses and worms might).

Phase 5: Execution
In Phase 5, the JVM executes the bytecodes to perform the program’s specified actions
(Fig. 1.10). In early Java versions, the JVM was simply a Java-bytecode interpreter. Most pro-
grams would execute slowly, because the JVM would interpret and execute one bytecode at
a time. Some modern computer architectures can execute several instructions in parallel. To-
day’s JVMs typically execute bytecodes using a combination of interpretation and just-in-
time (JIT) compilation. In this process, the JVM analyzes the bytecodes as they’re interpret-
ed, searching for hot spots—bytecodes that execute frequently. For these parts, a just-in-time
(JIT) compiler, such as Oracle’s Java HotSpot™ compiler, translates the bytecodes into the
computer’s machine language. When the JVM encounters these compiled parts again, the
faster machine-language code executes. Thus programs actually go through two compilation
phases—one in which Java code is translated into bytecodes (for portability across JVMs on
different computer platforms) and a second in which, during execution, the bytecodes are
translated into machine language for the computer on which the program executes.

Fig. 1.8 | Typical Java development environment—loading phase.

Fig. 1.9 | Typical Java development environment—verification phase.

Secondary
Storage

Class Loader Class loader reads
bytecodes from
.class files and
puts those bytecodes
in memory

Phase 3: Load

Primary
Memory

.
.
.

Bytecode Verifier
Bytecode verifier
confirms that all
bytecodes are valid and
do not violate Java’s
security restrictions

Phase 4: Verify

.
.
.

Primary
Memory

74 Chapter 1 Introduction to Computers, the Internet and Java

Problems That May Occur at Execution Time
Programs might not work on the first try. Each of the preceding phases can fail because of
various errors that we’ll discuss throughout this book. For example, an executing program
might try to divide by zero (an illegal operation for whole-number arithmetic in Java).
This would cause the Java program to display an error message. If this occurred, you’d re-
turn to the edit phase, make the necessary corrections and proceed through the remaining
phases again to determine whether the corrections fixed the problem(s). [Note: Most pro-
grams in Java input or output data. When we say that a program displays a message, we
normally mean that it displays that message on your computer’s screen.]

1.10 Test-Driving a Java Application
In this section, you’ll run and interact with an existing Java Painter app, which you’ll build
in a later chapter. The elements and functionality you’ll see are typical of what you’ll learn
to program in this book. Using the Painter’s graphical user interface (GUI), you choose a
drawing color and pen size, then drag the mouse to draw circles in the specified color and
size. You also can undo each drawing operation or clear the entire drawing. [Note: We em-
phasize screen features like window titles and menus (e.g., the File menu) in a sans-serif
font and emphasize nonscreen elements, such as file names and program code (e.g., Pro-
gramName.java), in a fixed-width sans-serif font.]

The steps in this section show you how to execute the Painter app from a Command
Prompt (Windows), shell (Linux) or Terminal (macOS) window on your system.
Throughout the book, we’ll refer to these windows simply as command windows. We
assume that the book’s examples are located in C:\examples on Windows or in your user
account’s Documents/examples folder on Linux or macOS.

Checking Your Setup
Read the Before You Begin section that follows the Preface to set up Java on your comput-
er and ensure that you’ve downloaded the book’s examples to your hard drive.

Fig. 1.10 | Typical Java development environment—execution phase.

Common Programming Error 1.2
Errors such as division by zero occur as a program runs, so they’re called runtime errors
or execution-time errors. Fatal runtime errors cause programs to terminate immediately
without having successfully performed their jobs. Nonfatal runtime errors allow pro-
grams to run to completion, often producing incorrect results.

Java Virtual Machine (JVM)

Primary
Memory

Phase 5: Execute

To execute the program, the
JVM reads bytecodes and
just-in-time (JIT) compiles
(i.e., translates) them into a
language that the computer
can understand. As the
program executes, it may store
data values in primary
memory.

.
.
.

1.10 Test-Driving a Java Application 75

Changing to the Completed Application’s Directory
Open a command window and use the cd command to change to the directory (also called
a folder) for the Painter application:

• On Windows type cd C:\examples\ch01\Painter, then press Enter.

• On Linux/macOS, type cd ~/Documents/examples/ch01/Painter, then press
Enter.

Compiling the Application
In the command window, type the following command then press Enter to compile all the
files for the Painter example:

The * indicates that all files with names that end in .java should be compiled.

Running the Painter Application
Recall from Section 1.9 that the java command, followed by the name of an app’s .class
file (in this case, Painter), executes the application. Type the command java Painter

then press Enter to execute the app. Figure 1.11 shows the Painter app running on Win-
dows, Linux and macOS, respectively. The app’s capabilities are identical across operating
systems, so the remaining steps in this section show only Windows screen captures. Java
commands are case sensitive—that is, uppercase letters are different from lowercase letters.
It’s important to type Painter with a capital P. Otherwise, the application will not execute.
Also, if you receive the error message, “Exception in thread "main" java.lang.NoClass-
DefFoundError: Painter," your system has a CLASSPATH problem. Please refer to the
Before You Begin section for instructions to help you fix this problem.

javac *.java

Fig. 1.11 | Painter app executing in Windows, Linux and macOS. (Part 1 of 2.)

a) Painter app running on Windows

Close button Select a drawing
color by clicking

the Black, Red,
Green or Blue

radio button

Select a pen size by
clicking the Small,
Medium or Large

radio button

Undo the last
drawing operation

Clear the drawing

Drawing area

76 Chapter 1 Introduction to Computers, the Internet and Java

Drawing the Flower Petals
In this section’s remaining steps, you’ll draw a red flower with a green stem, green grass
and blue rain. We’ll begin with the flower petals in a red, medium-sized pen. Change the
drawing color to red by clicking the Red radio button. Next, drag your mouse on the draw-
ing area to draw flower petals (Fig. 1.12). If you don’t like a portion of what you’ve drawn,
you can click the Undo button repeatedly to remove the most recent circles that were
drawn, or you can begin again by clicking the Clear button.

Fig. 1.11 | Painter app executing in Windows, Linux and macOS. (Part 2 of 2.)

b) Painter app running on Linux.
Close
button

c) Painter app running on macOS.
Close
button

1.10 Test-Driving a Java Application 77

Drawing the Stem, Leaves and Grass
Change the drawing color to green and the pen size to large by clicking the Green and
Large radio buttons. Then, draw the stem and the leaves as shown in Fig. 1.13. Next,
change the pen size to medium by clicking the Medium radio button, then draw the grass
as shown in Fig. 1.13.

Fig. 1.12 | Drawing the flower petals.

Fig. 1.13 | Drawing the stem and grass.

78 Chapter 1 Introduction to Computers, the Internet and Java

Drawing the Rain
Change the drawing color to blue and the pen size to small by clicking the Blue and Small
radio buttons. Then, draw some rain as shown in Fig. 1.14.

Exiting the Painter App
At this point, you can close the Painter app. To do so, simply click the app’s close box
(shown for Windows, Linux and macOS in Fig. 1.11).

1.11 Internet and World Wide Web
In the late 1960s, ARPA—the Advanced Research Projects Agency of the United States
Department of Defense—rolled out plans for networking the main computer systems of
approximately a dozen ARPA-funded universities and research institutions. The comput-
ers were to be connected with communications lines operating at speeds on the order of
50,000 bits per second, a stunning rate at a time when most people (of the few who even
had networking access) were connecting over telephone lines to computers at a rate of 110
bits per second. Academic research was about to take a giant leap forward. ARPA proceed-
ed to implement what quickly became known as the ARPANET, the precursor to today’s
Internet. Today’s fastest Internet speeds are on the order of billions of bits per second with
trillion-bits-per-second speeds on the horizon!

Things worked out differently from the original plan. Although the ARPANET
enabled researchers to network their computers, its main benefit proved to be the capa-
bility for quick and easy communication via what came to be known as electronic mail (e-
mail). This is true even on today’s Internet, with e-mail, instant messaging, file transfer
and social media such as Facebook and Twitter enabling billions of people worldwide to
communicate quickly and easily.

Fig. 1.14 | Drawing the rain.

1.11 Internet and World Wide Web 79

The protocol (set of rules) for communicating over the ARPANET became known as
the Transmission Control Protocol (TCP). TCP ensured that messages, consisting of
sequentially numbered pieces called packets, were properly routed from sender to receiver,
arrived intact and were assembled in the correct order.

1.11.1 Internet: A Network of Networks
In parallel with the early evolution of the Internet, organizations worldwide were imple-
menting their own networks for both intraorganization (that is, within an organization)
and interorganization (that is, between organizations) communication. A huge variety of
networking hardware and software appeared. One challenge was to enable these different
networks to communicate with each other. ARPA accomplished this by developing the In-
ternet Protocol (IP), which created a true “network of networks,” the current architecture
of the Internet. The combined set of protocols is now called TCP/IP. Each Internet-
connected device has an IP address—a unique numerical identifier used by devices com-
municating via TCP/IP to locate one another on the Internet.

Businesses rapidly realized that by using the Internet, they could improve their oper-
ations and offer new and better services to their clients. Companies started spending large
amounts of money to develop and enhance their Internet presence. This generated fierce
competition among communications carriers and hardware and software suppliers to meet
the increased infrastructure demand. As a result, bandwidth—the information-carrying
capacity of communications lines—on the Internet has increased tremendously, while
hardware costs have plummeted.

1.11.2 World Wide Web: Making the Internet User-Friendly
The World Wide Web (simply called “the web”) is a collection of hardware and software
associated with the Internet that allows computer users to locate and view documents
(with various combinations of text, graphics, animations, audios and videos) on almost
any subject. In 1989, Tim Berners-Lee of CERN (the European Organization for Nuclear
Research) began developing HyperText Markup Language (HTML)—the technology for
sharing information via “hyperlinked” text documents. He also wrote communication
protocols such as HyperText Transfer Protocol (HTTP) to form the backbone of his new
hypertext information system, which he referred to as the World Wide Web.

In 1994, Berners-Lee founded the World Wide Web Consortium (W3C, http://
www.w3.org), devoted to developing web technologies. One of the W3C’s primary goals
is to make the web universally accessible to everyone regardless of disabilities, language or
culture.

1.11.3 Web Services and Mashups
In online Chapter 32, we implement web services (Fig. 1.15). The applications-develop-
ment methodology of mashups enables you to rapidly develop powerful software applica-
tions by combining (often free) complementary web services and other forms of
information feeds. One of the first mashups combined the real-estate listings provided by
http://www.craigslist.org with the mapping capabilities of Google Maps to offer maps

http://www.craigslist.org
http://www.w3.org
http://www.w3.org

80 Chapter 1 Introduction to Computers, the Internet and Java

that showed the locations of homes for sale or rent in a given area. ProgrammableWeb
(http://www.programmableweb.com/) provides a directory of over 16,500 APIs and 6,300
mashups. Their API University (https://www.programmableweb.com/api-university)
includes how-to guides and sample code for working with APIs and creating your own mash-
ups. According to their website, some of the most widely used APIs are Facebook, Google
Maps, Twitter and YouTube.

1.11.4 Internet of Things
The Internet is no longer just a network of computers—it’s an Internet of Things (IoT).
A thing is any object with an IP address and the ability to send data automatically over the
Internet. Such things include:

• a car with a transponder for paying tolls,

• monitors for parking-space availability in a garage,

Web services source How it’s used

Google Maps Mapping services

Twitter Microblogging

YouTube Video search

Facebook Social networking

Instagram Photo sharing

Foursquare Mobile check-in

LinkedIn Social networking for business

Groupon Social commerce

Netflix Movie rentals

eBay Internet auctions

Wikipedia Collaborative encyclopedia

PayPal Payments

Last.fm Internet radio

Amazon eCommerce Shopping for books and many other products

Salesforce.com Customer Relationship Management (CRM)

Skype Internet telephony

Microsoft Bing Search

Flickr Photo sharing

Zillow Real-estate pricing

Yahoo Search Search

WeatherBug Weather

Fig. 1.15 | Some popular web services (https://www.programmableweb.com/
category/all/apis).

https://www.programmableweb.com/category/all/apis
https://www.programmableweb.com/category/all/apis
https://www.programmableweb.com/api-university
http://www.programmableweb.com/

1.12 Software Technologies 81

• a heart monitor implanted in a human,

• monitors for drinkable water quality,

• a smart meter that reports energy usage,

• radiation detectors,

• item trackers in a warehouse,

• mobile apps that can track your movement and location,

• smart thermostats that adjust room temperatures based on weather forecasts and
activity in the home

• intelligent home appliances

• and many more.

According to statista.com, there are already over 22 billion IoT devices in use today and
there are expected to be over 50 billion IoT devices in 2020.8

1.12 Software Technologies
Figure 1.16 lists a number of buzzwords that you’ll hear in the software development com-
munity. We’ve created Resource Centers on most of these topics, with more on the way.

8. https://www.statista.com/statistics/471264/iot-number-of-connected-devices-world-

wide/

Technology Description

Agile software
development

Agile software development is a set of methodologies that try to get soft-
ware implemented faster and using fewer resources. Check out the Agile
Alliance (www.agilealliance.org) and the Agile Manifesto
(www.agilemanifesto.org).

Refactoring Refactoring involves reworking programs to make them clearer and easier
to maintain while preserving their correctness and functionality. It’s
widely employed with agile development methodologies. Many IDEs
contain built-in refactoring tools to do major portions of the reworking
automatically.

Design patterns Design patterns are proven architectures for constructing flexible and
maintainable object-oriented software. The field of design patterns tries
to enumerate those recurring patterns, encouraging software designers to
reuse them to develop better-quality software using less time, money and
effort (see online Appendix N, Design Patterns).

Fig. 1.16 | Software technologies. (Part 1 of 2.)

http://statista.com
http://www.agilemanifesto.org
http://www.agilealliance.org

82 Chapter 1 Introduction to Computers, the Internet and Java

Software is complex. Large, real-world software applications can take many months
or even years to design and implement. When large software products are under develop-
ment, they typically are made available to the user communities as a series of releases, each
more complete and polished than the last (Fig. 1.17).

LAMP LAMP is an acronym for the open-source technologies that many devel-
opers use to build web applications inexpensively—it stands for Linux,
Apache, MySQL and PHP (or Perl or Python—two other popular scripting
languages). MySQL is an open-source database-management system.
PHP is a popular open-source server-side “scripting” language for devel-
oping web applications. Apache is the most popular web server software.
The equivalent for Windows development is WAMP—Windows, Apache,
MySQL and PHP.

Software as a Service
(SaaS)

Software has generally been viewed as a product; most software still is
offered this way. If you want to run an application, you buy a software
package from a software vendor—often a CD, DVD or web download.
You then install that software on your computer and run it as needed. As
new versions appear, you upgrade your software, often at considerable
cost in time and money. This process can become cumbersome for orga-
nizations that must maintain tens of thousands of systems on a diverse
array of computer equipment. With Software as a Service (SaaS), the
software runs on servers elsewhere on the Internet. When that server is
updated, all clients worldwide see the new capabilities—no local installa-
tion is needed. You access the service through a browser. Browsers are
quite portable, so you can run the same applications on a wide variety of
computers from anywhere in the world. Salesforce.com, Google, Micro-
soft and many other companies offer SaaS.

Platform as a Service
(PaaS)

Platform as a Service (PaaS) provides a computing platform for develop-
ing and running applications as a service over the web, rather than install-
ing the tools on your computer. Some PaaS providers are Google App
Engine, Amazon EC2 and Windows Azure™.

Cloud computing SaaS and PaaS are examples of cloud computing. You can use software
and data stored in the “cloud”—i.e., accessed on remote computers (or
servers) via the Internet and available on demand—rather than having it
stored locally on your desktop, notebook computer or mobile device.
This allows you to increase or decrease computing resources to meet your
needs at any given time, which is more cost effective than purchasing
hardware to provide enough storage and processing power to meet occa-
sional peak demands. Cloud computing also saves money by shifting to
the service provider the burden of managing these apps (such as installing
and upgrading the software, security, backups and disaster recovery).

Software Develop-
ment Kit (SDK)

Software Development Kits (SDKs) include the tools and documenta-
tion developers use to program applications.

Technology Description

Fig. 1.16 | Software technologies. (Part 2 of 2.)

1.13 Getting Your Questions Answered 83

1.13 Getting Your Questions Answered
There are many online forums in which you can get your Java questions answered and in-
teract with other Java programmers. Some popular Java and general programming forums
include:

• StackOverflow.com

• Coderanch.com

• The Oracle Java Forum—https://community.oracle.com/community/java

• </dream.in.code>—http://www.dreamincode.net/forums/forum/32-java/

Version Description

Alpha Alpha software is the earliest release of a software product that’s still under
active development. Alpha versions are often buggy, incomplete and unstable
and are released to a relatively small number of developers for testing new
features, getting early feedback, etc. Alpha software also is commonly called
early access software.

Beta Beta versions are released to a larger number of developers later in the devel-
opment process after most major bugs have been fixed and new features are
nearly complete. Beta software is more stable, but still subject to change.

Release
candidates

Release candidates are generally feature complete, (mostly) bug free and ready
for use by the community, which provides a diverse testing environment—
the software is used on different systems, with varying constraints and for a
variety of purposes.

Final release Any bugs that appear in the release candidate are corrected, and eventually
the final product is released to the general public. Software companies often
distribute incremental updates over the Internet.

Continuous
beta

Software that’s developed using this approach (for example, Google search or
Gmail) generally does not have version numbers. It’s hosted in the cloud (not
installed on your computer) and is constantly evolving so that users always
have the latest version.

Fig. 1.17 | Software product-release terminology.

Self-Review Exercises
1.1 Fill in the blanks in each of the following statements:

a) Computers process data under the control of sets of instructions called .
b) The key logical units of the computer are the , , ,

, and .
c) The three types of languages discussed in the chapter are , and

.
d) The programs that translate high-level language programs into machine language are

called .

http://www.dreamincode.net/forums/forum/32-java/
https://community.oracle.com/community/java

84 Chapter 1 Introduction to Computers, the Internet and Java

e) is an operating system for mobile devices based on the Linux kernel and Java.
f) software is generally feature complete, (supposedly) bug free and ready for

use by the community.
g) The Wii Remote, as well as many smartphones, use a(n) which allows the

device to respond to motion.

1.2 Fill in the blanks in each of the following sentences about the Java environment:
a) The command from the JDK executes a Java application.
b) The command from the JDK compiles a Java program.
c) A Java source code file must end with the file extension.
d) When a Java program is compiled, the file produced by the compiler ends with the

 file extension.
e) The file produced by the Java compiler contains that are executed by the

Java Virtual Machine.

1.3 Fill in the blanks in each of the following statements (based on Section 1.5):
a) Objects enable the design practice of —although they may know how to

communicate with one another across well-defined interfaces, they normally are not al-
lowed to know how other objects are implemented.

b) Java programmers concentrate on creating , which contain fields and the
set of methods that manipulate those fields and provide services to clients.

c) The process of analyzing and designing a system from an object-oriented point of view
is called .

d) A new class of objects can be created conveniently by —the new class
(called the subclass) starts with the characteristics of an existing class (called the super-
class), possibly customizing them and adding unique characteristics of its own.

e) is a graphical language that allows people who design software systems to
use an industry-standard notation to represent them.

f) The size, shape, color and weight of an object are considered of the object’s
class.

Answers to Self-Review Exercises
1.1 a) programs. b) input unit, output unit, memory unit, central processing unit, arithmetic
and logic unit, secondary storage unit. c) machine languages, assembly languages, high-level lan-
guages. d) compilers. e) Android. f) Release candidate. g) accelerometer.

1.2 a) java. b) javac. c) .java. d) .class. e) bytecodes.

1.3 a) information hiding. b) classes. c) object-oriented analysis and design (OOAD).
d) Inheritance. e) The Unified Modeling Language (UML). f) attributes.

Exercises
1.4 Fill in the blanks in each of the following statements:

a) The logical unit that receives information from outside the computer for use by the
computer is the .

b) The process of instructing the computer to solve a problem is called .
c) is a type of computer language that uses Englishlike abbreviations for ma-

chine-language instructions.
d) is a logical unit that sends information which has already been processed

by the computer to various devices so that it may be used outside the computer.
e) and are logical units of the computer that retain information.

1.13 Getting Your Questions Answered 85

f) is a logical unit of the computer that performs calculations.
g) is a logical unit of the computer that makes logical decisions.
h) languages are most convenient to the programmer for writing programs

quickly and easily.
i) The only language a computer can directly understand is that computer’s .
j) is a logical unit of the computer that coordinates the activities of all the

other logical units.

1.5 Fill in the blanks in each of the following statements:
a) is a platform independent programming language that was built with the ob-

jective of allowing programs to be written once and then run on a large variety of elec-
tronic devices without modification.

b) , , and are the names of the three editions of Java that can
be used to build different kinds of applications.

c) is the information-carrying capacity of communication lines, and has rapidly
increased over the years and become more affordable. Its availability is a cornerstone for
building applications that are significantly connected.

d) A(n) is a translator that can convert early assembly-language programs to ma-
chine language with reasonable efficiency.

1.6 Fill in the blanks in each of the following statements:
a) Java programs normally go through five phases— , ,

, and .
b) A(n) provides many tools that support the software development process,

such as editors for writing and editing programs, debuggers for locating logic errors in
programs, and many other features.

c) The command java invokes the , which executes Java programs.
d) A(n) is a software application that simulates a computer, but hides the un-

derlying operating system and hardware from the programs that interact with it.
e) The takes the .class files containing the program’s bytecodes and trans-

fers them to primary memory.
f) The examines bytecodes to ensure that they’re valid.

1.7 Explain what a just-in-time (JIT) compiler of Java does.

1.8 One of the world’s most common objects is a wrist watch. Discuss how each of the follow-
ing terms and concepts applies to the notion of a watch: object, attributes, behaviors, class, inheri-
tance (consider, for example, an alarm clock), modeling, messages, encapsulation, interface and
information hiding.

Making a Difference
The Making-a-Difference exercises will ask you to work on problems that really matter to individ-
uals, communities, countries and the world.

1.9 (Test Drive: Carbon Footprint Calculator) Some scientists believe that carbon emissions,
especially from the burning of fossil fuels, contribute significantly to global warming and that this
can be combated if individuals take steps to limit their use of carbon-based fuels. Various organiza-
tions and individuals are increasingly concerned about their “carbon footprints.” Websites such as
TerraPass

http://www.terrapass.com/carbon-footprint-calculator-2/

and Carbon Footprint

http://www.carbonfootprint.com/calculator.aspx

http://www.carbonfootprint.com/calculator.aspx
http://www.terrapass.com/carbon-footprint-calculator-2/

86 Chapter 1 Introduction to Computers, the Internet and Java

provide carbon-footprint calculators. Test drive these calculators to determine your carbon foot-
print. Exercises in later chapters will ask you to program your own carbon-footprint calculator. To
prepare for this, research the formulas for calculating carbon footprints.

1.10 (Test Drive: Body-Mass-Index Calculator) By recent estimates, two-thirds of the people in
the United States are overweight and about half of those are obese. This causes significant increases
in illnesses such as diabetes and heart disease. To determine whether a person is overweight or obese,
you can use a measure called the body mass index (BMI). The United States Department of Health
and Human Services provides a BMI calculator at http://www.nhlbi.nih.gov/guidelines/
obesity/BMI/bmicalc.htm. Use it to calculate your own BMI. An exercise in Chapter 2 will ask you
to program your own BMI calculator. To prepare for this, research the formulas for calculating BMI.

1.11 (Attributes of Hybrid Vehicles) In this chapter you learned the basics of classes. Now you’ll
begin “fleshing out” aspects of a class called “Hybrid Vehicle.” Hybrid vehicles are becoming increas-
ingly popular, because they often get much better mileage than purely gasoline-powered vehicles.
Browse the web and study the features of four or five of today’s popular hybrid cars, then list as many
of their hybrid-related attributes as you can. For example, common attributes include city-miles-per-
gallon and highway-miles-per-gallon. Also list the attributes of the batteries (type, weight, etc.).

1.12 (Gender Neutrality) Some people want to eliminate sexism in all forms of communication.
You’ve been asked to create a program that can process a paragraph of text and replace gender-spe-
cific words with gender-neutral ones. Assuming that you’ve been given a list of gender-specific
words and their gender-neutral replacements (e.g., replace “wife” with “spouse,” “man” with “per-
son,” “daughter” with “child” and so on), explain the procedure you’d use to read through a para-
graph of text and manually perform these replacements. How might your procedure generate a
strange term like “woperchild?” In Chapter 3, you’ll learn that a more formal term for “procedure”
is “algorithm,” and that an algorithm specifies the steps to be performed and the order in which to
perform them.

1.13 (Intelligent Assistants) Developments in the field of artificial intelligence have been acceler-
ating in recent years. Many companies now offer computerized intelligent assistants, such as IBM’s
Watson, Amazon’s Alexa, Apple’s Siri, Google’s Google Now and Microsoft’s Cortana. Research
these and others and list uses that can improve people’s lives.

1.14 (Big Data) Research the rapidly growing field of big data. List applications that hold great
promise in fields such as healthcare and scientific research.

1.15 (Internet of Things) It’s now possible to have a microprocessor at the heart of just about any
device and to connect those devices to the Internet. This has led to the notion of the Internet of
Things (IoT), which already interconnects tens of billions of devices. Research the IoT and indicate
the many ways it’s improving people’s lives.

http://www.nhlbi.nih.gov/guidelines/obesity/BMI/bmicalc.htm
http://www.nhlbi.nih.gov/guidelines/obesity/BMI/bmicalc.htm

2Introduction to Java
Applications; Input/Output
and Operators

O b j e c t i v e s
In this chapter you’ll:
■ Write simple Java applications.
■ Use input and output

statements.
■ Learn about Java’s primitive

types.
■ Understand basic memory

concepts.
■ Use arithmetic operators.
■ Learn the precedence of

arithmetic operators.
■ Write decision-making

statements.
■ Use relational and equality

operators.

88 Chapter 2 Introduction to Java Applications; Input/Output and Operators

2.1 Introduction
This chapter introduces Java programming. We begin with examples of programs that dis-
play (output) messages on the screen. We then present a program that obtains (inputs) two
numbers from a user, calculates their sum and displays the result. You’ll learn how to in-
struct the computer to perform arithmetic calculations and save their results for later use.
The last example demonstrates how to make decisions. The application compares two
numbers, then displays messages that show the comparison results. You’ll use the JDK
command-line tools to compile and run this chapter’s programs. If you prefer to use an
integrated development environment (IDE), we’ve also posted getting-started videos at

for the three most popular Java IDEs—Eclipse, NetBeans and IntelliJ IDEA.

2.2 Your First Program in Java: Printing a Line of Text
A Java application is a computer program that executes when you use the java command
to launch the Java Virtual Machine (JVM). Sections 2.2.1––2.2.2 discuss how to compile
and run a Java application. First we consider a simple application that displays a line of
text. Figure 2.1 shows the program followed by a box that displays its output.

2.1 Introduction
2.2 Your First Program in Java: Printing a

Line of Text
2.2.1 Compiling the Application
2.2.2 Executing the Application

2.3 Modifying Your First Java Program
2.4 Displaying Text with printf
2.5 Another Application: Adding

Integers
2.5.1 import Declarations
2.5.2 Declaring and Creating a Scanner to

Obtain User Input from the Keyboard
2.5.3 Prompting the User for Input

2.5.4 Declaring a Variable to Store an
Integer and Obtaining an Integer from
the Keyboard

2.5.5 Obtaining a Second Integer
2.5.6 Using Variables in a Calculation
2.5.7 Displaying the Calculation Result
2.5.8 Java API Documentation
2.5.9 Declaring and Initializing Variables in

Separate Statements
2.6 Memory Concepts
2.7 Arithmetic
2.8 Decision Making: Equality and

Relational Operators
2.9 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

http://www.deitel.com/books/jhtp11LOV

1 // Fig. 2.1: Welcome1.java
2 // Text-printing program.
3
4 public class Welcome1 {
5 // main method begins execution of Java application
6 public static void main(String[] args) {
7 System.out.println("Welcome to Java Programming!");
8 } // end method main
9 } // end class Welcome1

Fig. 2.1 | Text-printing program. (Part 1 of 2.)

http://www.deitel.com/books/jhtp11LOV

2.2 Your First Program in Java: Printing a Line of Text 89

We use line numbers for instructional purposes—they’re not part of a Java program.
This example illustrates several important Java features. We’ll see that line 7 does the
work—displaying the phrase "Welcome to Java Programming!" on the screen.

Commenting Your Programs
We insert comments to document programs and improve their readability. The Java com-
piler ignores comments, so they do not cause the computer to perform any action when the
program is run.

By convention, we begin every program with a comment indicating the figure number
and the program’s filename. The comment in line 1

begins with //, indicating that it’s an end-of-line comment—it terminates at the end of
the line on which the // appears. An end-of-line comment need not begin a line; it also
can begin in the middle of a line and continue until the end (as in lines 5, 8 and 9). Line 2,

by our convention, is a comment that describes the purpose of the program.
Java also has traditional comments, which can be spread over several lines as in

These begin with the delimiter /* and end with */. The compiler ignores all text between
the delimiters. Java incorporated traditional comments and end-of-line comments from
the C and C++ programming languages, respectively.

Java provides comments of a third type—Javadoc comments. These are delimited by
/** and */. The compiler ignores all text between the delimiters. Javadoc comments
enable you to embed program documentation directly in your programs. Such comments
are the preferred Java documenting format in industry. The javadoc utility program (part
of the JDK) reads Javadoc comments and uses them to prepare program documentation
in HTML5 web-page format. We use // comments throughout our code, rather than tra-
ditional or Javadoc comments, to save space. We demonstrate Javadoc comments and the
javadoc utility in online Appendix , Creating Documentation with javadoc.

Welcome to Java Programming!

// Fig. 2.1: Welcome1.java

// Text-printing program.

/* This is a traditional comment. It
 can be split over multiple lines */

Common Programming Error 2.1
Forgetting one of the delimiters of a traditional or Javadoc comment is a syntax error. A
syntax error occurs when the compiler encounters code that violates Java’s language rules
(i.e., its syntax). These rules are similar to natural-language grammar rules specifying sen-
tence structure, such as those in English, French, Spanish, etc. Syntax errors are also called
compiler errors, compile-time errors or compilation errors, because the compiler detects
them when compiling the program. When a syntax error is encountered, the compiler is-
sues an error message. You must eliminate all compilation errors before your program will
compile properly.

Fig. 2.1 | Text-printing program. (Part 2 of 2.)

90 Chapter 2 Introduction to Java Applications; Input/Output and Operators

Using Blank Lines
Blank lines (like line 3), space characters and tabs can make programs easier to read. To-
gether, they’re known as white space. The compiler ignores white space.

Declaring a Class
Line 4

begins a class declaration for class Welcome1. Every Java program consists of at least one
class that you define. The class keyword introduces a class declaration and is immediately
followed by the class name (Welcome1). Keywords are reserved for use by Java and are
spelled with all lowercase letters. The complete list of keywords is shown in Appendix C.

In Chapters 2–6, every class we define begins with the public keyword. For now, we
simply require it. You’ll learn more about public and non-public classes in Chapter 8.

Filename for a public Class
A public class must be placed in a file that has a filename of the form ClassName.java, so
class Welcome1 is stored in the file Welcome1.java.

Class Names and Identifiers
By convention, class names begin with a capital letter and capitalize the first letter of each
word they include (e.g., SampleClassName). A class name is an identifier—a series of char-
acters consisting of letters, digits, underscores (_) and dollar signs ($) that does not begin
with a digit and does not contain spaces. Some valid identifiers are Welcome1, $value,
_value, m_inputField1 and button7. The name 7button is not a valid identifier because
it begins with a digit, and the name input field is not a valid identifier because it contains
a space. Normally, an identifier that does not begin with a capital letter is not a class name.
Java is case sensitive—uppercase and lowercase letters are distinct—so value and Value
are different (but both valid) identifiers.

Good Programming Practice 2.1
Some organizations require that every program begin with a comment that states the pur-
pose of the program and the author, date and time when the program was last modified.

Good Programming Practice 2.2
Use white space to enhance program readability.

public class Welcome1 {

Common Programming Error 2.2
A compilation error occurs if a public class’s filename is not exactly the same name as the
class (in terms of both spelling and capitalization) followed by the .java extension.

Good Programming Practice 2.3
By convention, every word in a class-name identifier begins with an uppercase letter. For
example, the class-name identifier DollarAmount starts its first word, Dollar, with an
uppercase D and its second word, Amount, with an uppercase A. This naming convention
is known as camel case, because the uppercase letters stand out like a camel’s humps.

2.2 Your First Program in Java: Printing a Line of Text 91

Underscore (_) in Java 9
As of Java 9, you can no longer use an underscore (_) by itself as an identifier.

Class Body
A left brace (at the end of line 4), {, begins the body of every class declaration. A corre-
sponding right brace (at line 9), }, must end each class declaration. Lines 5–8 are indented.

Declaring a Method
Line 5

is a comment indicating the purpose of lines 6–8 of the program. Line 6

is the starting point of every Java application. The parentheses after the identifier main in-
dicate that it’s a program building block called a method. Java class declarations normally
contain one or more methods. For a Java application, one of the methods must be called
main and must be defined as in line 6; otherwise, the program will not execute.

Methods perform tasks and can return information when they complete their tasks.
We’ll explain the purpose of keyword static in Section 7.2.5. Keyword void indicates
that this method will not return any information. Later, we’ll see how a method can return
information. For now, simply mimic main’s first line in your programs. The String[]
args in parentheses is a required part of main’s declaration—we discuss this in Chapter 6.

The left brace at the end of line 6 begins the body of the method declaration. A cor-
responding right brace ends it (line 8). Line 7 is indented between the braces.

Good Programming Practice 2.4
Indent the entire body of each class declaration one “level” between the braces that delimit
the class’s. This format emphasizes the class declaration’s structure and makes it easier to
read. We use three spaces to form a level of indent—many programmers prefer two or four
spaces. Whatever you choose, use it consistently.

Good Programming Practice 2.5
IDEs typically indent code for you. The Tab key may also be used to indent code. You can
configure each IDE to specify the number of spaces inserted when you press Tab.

Common Programming Error 2.3
It’s a syntax error if braces do not occur in matching pairs.

Error-Prevention Tip 2.1
When you type an opening left brace, {, immediately type the closing right brace, }, then
reposition the cursor between the braces and indent to begin typing the body. This practice
helps prevent errors due to missing braces. Many IDEs do this for you.

// main method begins execution of Java application

public static void main(String[] args) {

Good Programming Practice 2.6
Indent the entire body of each method declaration one “level” between the braces that de-
fine the method’s body. This emphasizes the method’s structure and makes it easier to read.

92 Chapter 2 Introduction to Java Applications; Input/Output and Operators

Performing Output with System.out.println
Line 7

instructs the computer to perform an action—namely, to display the characters between
the double quotation marks. The quotation marks themselves are not displayed. Together,
the quotation marks and the characters between them are a string—also known as a char-
acter string or a string literal. White-space characters in strings are not ignored by the
compiler. Strings cannot span multiple lines of code—later we’ll show how to conveniently
deal with long strings.

The System.out object—which is predefined for you—is known as the standard
output object. It allows a program to display information in the command window from
which the program executes. In Microsoft Windows, the command window is the Com-
mand Prompt. In UNIX/Linux/macOS, the command window is called a terminal or a
shell. Many programmers call it simply the command line.

Method System.out.println displays (or prints) a line of text in the command
window. The string in the parentheses in line 7 is the method’s argument. When
System.out.println completes its task, it positions the output cursor (the location where
the next character will be displayed) at the beginning of the next line in the command
window. This is similar to what happens when you press the Enter key while typing in a
text editor—the cursor appears at the beginning of the next line in the document.

The entire line 7, including System.out.println, the argument "Welcome to Java
Programming!" in the parentheses and the semicolon (;), is called a statement. A method
typically contains statements that perform its task. Most statements end with a semicolon.

Using End-of-Line Comments on Right Braces for Readability
As an aid to programming novices, we include an end-of-line comment after a closing
brace that ends a method declaration and after a closing brace that ends a class declaration.
For example, line 8

indicates the closing brace of method main, and line 9

indicates the closing brace of class Welcome1. Each comment indicates the method or class
that the right brace terminates. We’ll omit such ending comments after this chapter.

2.2.1 Compiling the Application
We’re now ready to compile and execute the program. We assume you’re using the Java
Development Kit’s command-line tools, not an IDE. The following instructions assume
that the book’s examples are located in c:\examples on Windows or in your user ac-
count’s Documents/examples folder on Linux/macOS.

To prepare to compile the program, open a command window and change to the
directory where the program is stored. Many operating systems use the command cd to
change directories (or folders). On Windows, for example,

System.out.println("Welcome to Java Programming!");

 } // end method main

} // end class Welcome1

cd c:\examples\ch02\fig02_01

2.2 Your First Program in Java: Printing a Line of Text 93

changes to the fig02_01 directory. On UNIX/Linux/macOS, the command

changes to the fig02_01 directory. To compile the program, type

If the program does not contain compilation errors, this command creates the file called
Welcome1.class (known as Welcome1’s class file) containing the platform-independent
Java bytecodes that represent our application. When we use the java command to execute
the application on a given platform, the JVM will translate these bytecodes into instruc-
tions that are understood by the underlying operating system and hardware.

When learning how to program, sometimes it’s helpful to “break” a working program
to get familiar with the compiler’s error messages. These messages do not always state the
exact problem in the code. When you encounter an error, it will give you an idea of what
caused it. Try removing a semicolon or brace from the program of Fig. 2.1, then recom-
piling to see the error messages generated by the omission.

Each compilation-error message contains the filename and line number where the
error occurred. For example, Welcome1.java:6 indicates that an error occurred at line 6
in Welcome1.java. The rest of the message provides information about the syntax error.

2.2.2 Executing the Application
Now that you’ve compiled the program, type the following command and press Enter:

to launch the JVM and load the Welcome1.class file. The command omits the .class file-
name extension; otherwise, the JVM will not execute the program. The JVM calls Wel-
come1’s main method. Next, line 7 of main displays "Welcome to Java Programming!".
Figure 2.2 shows the program executing in a Microsoft Windows Command Prompt win-
dow. [Note: Many environments show command windows with black backgrounds and
white text. We adjusted these settings to make our screen captures more readable.]

cd ~/Documents/examples/ch02/fig02_01

javac Welcome1.java

Common Programming Error 2.4
The compiler error message “class Welcome1 is public, should be declared in a file
named Welcome1.java” indicates that the filename does not match the name of the pub-
lic class in the file or that you typed the class name incorrectly when compiling the class.

Error-Prevention Tip 2.2
When the compiler reports a syntax error, it may not be on the line that the error message
indicates. First, check the line for which the error was reported. If you don’t find an error
on that line, check several preceding lines.

java Welcome1

Error-Prevention Tip 2.3
When attempting to run a Java program, if you receive a message such as “Exception in
thread "main" java.lang.NoClassDefFoundError: Welcome1,” your CLASSPATH envi-
ronment variable has not been set properly. Please carefully review the installation in-
structions in the Before You Begin section of this book. On some systems, you may need to
reboot your computer or open a new command window after configuring the CLASSPATH.

94 Chapter 2 Introduction to Java Applications; Input/Output and Operators

2.3 Modifying Your First Java Program
In this section, we modify the example in Fig. 2.1 to print text on one line by using mul-
tiple statements and to print text on several lines by using a single statement.

Displaying a Single Line of Text with Multiple Statements
Welcome to Java Programming! can be displayed several ways. Class Welcome2, shown in
Fig. 2.3, uses two statements (lines 7–8) to produce the output shown in Fig. 2.1. [Note:
From this point forward, we highlight the new and key features in each code listing, as
we’ve done for lines 7–8.]

The program is similar to Fig. 2.1, so we discuss only the changes here. Line 2

is an end-of-line comment stating the purpose of the program. Line 4 begins the Welcome2
class declaration. Lines 7–8 in method main

display one line of text. The first statement uses System.out’s method print to display a
string. Each print or println statement resumes displaying characters from where the last

Fig. 2.2 | Executing Welcome1 from the Command Prompt.

1 // Fig. 2.3: Welcome2.java
2 // Printing a line of text with multiple statements.
3
4 public class Welcome2 {
5 // main method begins execution of Java application
6 public static void main(String[] args) {
7
8
9 } // end method main

10 } // end class Welcome2

Welcome to Java Programming!

Fig. 2.3 | Printing a line of text with multiple statements.

// Printing a line of text with multiple statements.

System.out.print("Welcome to ");
System.out.println("Java Programming!");

You type this
command to execute
the application

The program outputs to the screen
Welcome to Java Programming!

System.out.print("Welcome to ");
System.out.println("Java Programming!");

2.3 Modifying Your First Java Program 95

print or println statement stopped displaying characters. Unlike println, after display-
ing its argument, print does not position the output cursor at the beginning of the next
line—the next character the program displays will appear immediately after the last char-
acter that print displays. So, line 8 positions the first character in its argument (the letter
“J”) immediately after the last character that line 7 displays (the space character before the
string’s closing double-quote character).

Displaying Multiple Lines of Text with a Single Statement
A single statement can display multiple lines by using newline characters (\n), which in-
dicate to System.out’s print and println methods when to position the output cursor at
the beginning of the next line in the command window. Like blank lines, space characters
and tab characters, newline characters are white space characters. The program in Fig. 2.4
outputs four lines of text, using newline characters to determine when to begin each new
line. Most of the program is identical to those in Figs. 2.1 and 2.3.

Line 7

displays four lines of text in the command window. Normally, the characters in a string
are displayed exactly as they appear in the double quotes. However, the paired characters
\ and n (repeated three times in the statement) do not appear on the screen. The backslash
(\) is an escape character, which has special meaning to System.out’s print and println
methods. When a backslash appears in a string, Java combines it with the next character
to form an escape sequence—\n represents the newline character. When a newline char-
acter appears in a string being output with System.out, the newline character causes the
screen’s output cursor to move to the beginning of the next line in the command window.

Figure 2.5 lists several escape sequences and describes how they affect the display of
characters in the command window. For the complete list of escape sequences, visit

1 // Fig. 2.4: Welcome3.java
2 // Printing multiple lines of text with a single statement.
3
4 public class Welcome3 {
5 // main method begins execution of Java application
6 public static void main(String[] args) {
7 System.out.println("Welcome to Java Programming!");
8 } // end method main
9 } // end class Welcome3

Welcome
to
Java
Programming!

Fig. 2.4 | Printing multiple lines of text with a single statement.

System.out.println("Welcome\nto\nJava\nProgramming!");

http://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html#jls-
3.10.6

\n \n \n

http://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html#jls-3.10.6
http://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html#jls-3.10.6

96 Chapter 2 Introduction to Java Applications; Input/Output and Operators

2.4 Displaying Text with printf
Method System.out.printf (f means “formatted”) displays formatted data. Figure 2.6
uses this to output on two lines the strings "Welcome to" and "Java Programming!".

Line 7

calls method System.out.printf to display the program’s output. The method call spec-
ifies three arguments. When a method requires multiple arguments, they’re placed in a
comma-separated list. Calling a method is also referred to as invoking a method.

Method printf’s first argument is a format string that may consist of fixed text and
format specifiers. Fixed text is output by printf just as it would be by print or println.

Escape
sequence Description

\n Newline. Position the screen cursor at the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r Carriage return. Position the screen cursor at the beginning of the current
line—do not advance to the next line. Any characters output after the car-
riage return overwrite the characters previously output on that line.

\\ Backslash. Used to print a backslash character.

\" Double quote. Used to print a double-quote character. For example,
 System.out.println("\"in quotes\"");
displays "in quotes".

Fig. 2.5 | Some common escape sequences.

1 // Fig. 2.6: Welcome4.java
2 // Displaying multiple lines with method System.out.printf.
3
4 public class Welcome4 {
5 // main method begins execution of Java application
6 public static void main(String[] args) {
7
8 } // end method main
9 } // end class Welcome4

Welcome to
Java Programming!

Fig. 2.6 | Displaying multiple lines with method System.out.printf.

System.out.printf("%s%n%s%n", "Welcome to", "Java Programming!");

Good Programming Practice 2.7
Place a space after each comma (,) in an argument list to make programs more readable.

System.out.printf("%s%n%s%n", "Welcome to", "Java Programming!");

2.5 Another Application: Adding Integers 97

Each format specifier is a placeholder for a value and specifies the type of data to output.
Format specifiers also may include optional formatting information.

Format specifiers begin with a percent sign (%) followed by a character that represents
the data type. For example, the format specifier %s is a placeholder for a string. The format
string specifies that printf should output two strings, each followed by a newline char-
acter. At the first format specifier’s position, printf substitutes the value of the first argu-
ment after the format string. At each subsequent format specifier’s position, printf
substitutes the value of the next argument. So this example substitutes "Welcome to" for
the first %s and "Java Programming!" for the second %s. The output shows that two lines
of text are displayed on two lines.

Notice that instead of using the escape sequence \n, we used the %n format specifier,
which is a line separator that’s portable across operating systems. You cannot use %n in the
argument to System.out.print or System.out.println; however, the line separator
output by System.out.println after it displays its argument is portable across operating
systems. Online Appendix presents more details of formatting output with printf.

2.5 Another Application: Adding Integers
Our next application reads (or inputs) two integers (whole numbers, such as –22, 7, 0 and
1024) typed by a user at the keyboard, computes their sum and displays it. This program
must keep track of the numbers supplied by the user for the calculation later in the pro-
gram. Programs remember numbers and other data in the computer’s memory and access
that data through program elements called variables. The program of Fig. 2.7 demon-
strates these concepts. In the sample output, we use bold text to identify the user’s input
(i.e., 45 and 72). As per our convention in prior programs, lines 1–2 state the figure num-
ber, filename and purpose of the program.

1 // Fig. 2.7: Addition.java
2 // Addition program that inputs two numbers then displays their sum.
3
4
5 public class Addition {
6 // main method begins execution of Java application
7 public static void main(String[] args) {
8
9

10
11 System.out.print("Enter first integer: "); // prompt
12
13
14 System.out.print("Enter second integer: "); // prompt
15
16
17
18
19
20 } // end method main
21 } // end class Addition

Fig. 2.7 | Addition program that inputs two numbers then displays their sum. (Part 1 of 2.)

import java.util.Scanner; // program uses class Scanner

// create a Scanner to obtain input from the command window
Scanner input = new Scanner(System.in);

int number1 = input.nextInt(); // read first number from user

int number2 = input.nextInt(); // read second number from user

int sum = number1 + number2; // add numbers, then store total in sum

System.out.printf("Sum is %d%n", sum); // display sum

98 Chapter 2 Introduction to Java Applications; Input/Output and Operators

2.5.1 import Declarations
A great strength of Java is its rich set of predefined classes that you can reuse rather than
“reinventing the wheel.” These classes are grouped into packages—named groups of related
classes—and are collectively referred to as the Java class library, or the Java Application
Programming Interface (Java API). Line 3

is an import declaration that helps the compiler locate a class that’s used in this program.
It indicates that the program uses the predefined Scanner class (discussed shortly) from
the package named java.util. The compiler then ensures that you use the class correctly.

2.5.2 Declaring and Creating a Scanner to Obtain User Input from the
Keyboard
A variable is a location in the computer’s memory where a value can be stored for use later
in a program. All Java variables must be declared with a name and a type before they can
be used. A variable’s name enables the program to access the variable’s value in memory.
A variable name can be any valid identifier—again, a series of characters consisting of let-
ters, digits, underscores (_) and dollar signs ($) that does not begin with a digit and does
not contain spaces. A variable’s type specifies what kind of information is stored at that lo-
cation in memory. Like other statements, declaration statements end with a semicolon (;).

Line 9 of main

is a variable declaration statement that specifies the name (input) and type (Scanner) of a
variable that’s used in this program. A Scanner (package java.util) enables a program to
read data (e.g., numbers and strings) for use in a program. The data can come from many
sources, such as the user at the keyboard or a file on disk. Before using a Scanner, you must
create it and specify the source of the data.

The = in line 9 indicates that Scanner variable input should be initialized (i.e., pre-
pared for use in the program) in its declaration with the result of the expression to the right

Enter first integer: 45
Enter second integer: 72
Sum is 117

import java.util.Scanner; // program uses class Scanner

Common Programming Error 2.5
All import declarations must appear before the first class declaration in the file. Placing
an import declaration inside or after a class declaration is a syntax error.

Common Programming Error 2.6
Forgetting to include an import declaration for a class that must be imported results in a
compilation error containing a message such as “cannot find symbol.” When this occurs,
check that you provided the proper import declarations and that the names in them are
correct, including proper capitalization.

Scanner input = new Scanner(System.in);

Fig. 2.7 | Addition program that inputs two numbers then displays their sum. (Part 2 of 2.)

2.5 Another Application: Adding Integers 99

of the equals sign—new Scanner(System.in). This expression uses the new keyword to
create a Scanner object that reads characters typed by the user at the keyboard. The stan-
dard input object, System.in, enables applications to read bytes of data typed by the user.
The Scanner translates these bytes into types (like ints) that can be used in a program.

2.5.3 Prompting the User for Input
Line 11

uses System.out.print to display the message "Enter first integer: ". This message is
called a prompt because it directs the user to take a specific action. We use method print
here rather than println so that the user’s input appears on the same line as the prompt.
Recall from Section 2.2 that identifiers starting with capital letters typically represent class
names. Class System is part of package java.lang.

2.5.4 Declaring a Variable to Store an Integer and Obtaining an Integer
from the Keyboard
The variable declaration statement in line 12

declares that variable number1 holds data of type int—that is, integer values, which are
whole numbers such as 72, –1127 and 0. The range of values for an int is –2,147,483,648
to +2,147,483,647. The int values you use in a program may not contain commas; how-
ever, for readability, you can place underscores in numbers. So 60_000_000 represents the
int value 60,000,000.

Some other types of data are float and double, for holding real numbers, and char,
for holding character data. Real numbers contain decimal points, such as in 3.4, 0.0 and
–11.19. Variables of type char represent individual characters, such as an uppercase letter
(e.g., A), a digit (e.g., 7), a special character (e.g., * or %) or an escape sequence (e.g., the
tab character, \t). The types int, float, double and char are called primitive types.
Primitive-type names are keywords and must appear in all lowercase letters. Appendix D
summarizes the characteristics of the eight primitive types (boolean, byte, char, short,
int, long, float and double).

Good Programming Practice 2.8
Choosing meaningful variable names helps a program to be self-documenting (i.e., one
can understand the program simply by reading it rather than by reading associated docu-
mentation or creating and viewing an excessive number of comments).

Good Programming Practice 2.9
By convention, variable-name identifiers use the camel-case naming convention with a
lowercase first letter—for example, firstNumber.

System.out.print("Enter first integer: "); // prompt

Software Engineering Observation 2.1
By default, package java.lang is imported in every Java program; thus, classes in
java.lang are the only ones in the Java API that do not require an import declaration.

int number1 = input.nextInt(); // read first number from user

100 Chapter 2 Introduction to Java Applications; Input/Output and Operators

The = in line 12 indicates that int variable number1 should be initialized in its decla-
ration with the result of input.nextInt(). This uses the Scanner object input’s nextInt
method to obtain an integer from the user at the keyboard. At this point the program waits
for the user to type the number and press the Enter key to submit the number to the pro-
gram.

Our program assumes that the user enters a valid integer value. If not, a logic error
will occur and the program will terminate. Chapter 11, Exception Handling: A Deeper
Look, discusses how to make your programs more robust by enabling them to handle such
errors. This is also known as making your program fault tolerant.

2.5.5 Obtaining a Second Integer
Line 14

prompts the user to enter the second integer. Line 15

declares the int variable number2 and initializes it with a second integer read from the user
at the keyboard.

2.5.6 Using Variables in a Calculation
Line 17

declares the int variable sum and initializes it with the result of number1 + number2. When
the program encounters the addition operation, it performs the calculation using the val-
ues stored in the variables number1 and number2.

In the preceding statement, the addition operator is a binary operator, because it has
two operands—number1 and number2. Portions of statements that contain calculations are
called expressions. In fact, an expression is any portion of a statement that has a value. The
value of the expression number1 + number2 is the sum of the numbers. Similarly, the value
of the expression input.nextInt() (lines 12 and 15) is the integer typed by the user.

2.5.7 Displaying the Calculation Result
After the calculation has been performed, line 19

uses method System.out.printf to display the sum. The format specifier %d is a placehold-
er for an int value (in this case the value of sum)—the letter d stands for “decimal integer.”
The remaining characters in the format string are all fixed text. So, method printf dis-
plays "Sum is ", followed by the value of sum (in the position of the %d format specifier)
and a newline.

System.out.print("Enter second integer: "); // prompt

int number2 = input.nextInt(); // read second number from user

int sum = number1 + number2; // add numbers then store total in sum

Good Programming Practice 2.10
Place spaces on either side of a binary operator for readability.

System.out.printf("Sum is %d%n", sum); // display sum

2.6 Memory Concepts 101

Calculations also can be performed inside printf statements. We could have com-
bined the statements at lines 17 and 19 into the statement

The parentheses around the expression number1 + number2 are optional—they’re included
to emphasize that the value of the entire expression is output in the position of the %d for-
mat specifier. Such parentheses are said to be redundant.

2.5.8 Java API Documentation
For each new Java API class we use, we indicate the package in which it’s located. This
information helps you locate descriptions of each package and class in the Java API docu-
mentation. A web-based version of this documentation can be found at

You can download it from the Additional Resources section at

Online Appendix shows how to use this documentation.

2.5.9 Declaring and Initializing Variables in Separate Statements
Each variable must have a value before you can use the variable in a calculation (or other
expression). The variable declaration statement in line 12 both declared number1 and ini-
tialized it with a value entered by the user.

Sometimes you declare a variable in one statement, then initialize in another. For
example, line 12 could have been written in two statements as

The first statement declares number1, but does not initialize it. The second statement uses
the assignment operator, =, to assign (that is, give) number1 the value entered by the user.
You can read this statement as “number1 gets the value of input.nextInt().” Everything
to the right of the assignment operator, =, is always evaluated before the assignment is per-
formed.

2.6 Memory Concepts
Variable names such as number1, number2 and sum actually correspond to locations in the
computer’s memory. Every variable has a name, a type, a size (in bytes) and a value.

In the addition program of Fig. 2.7, when the following statement (line 12) executes:

the number typed by the user is placed into a memory location corresponding to the name
number1. Suppose that the user enters 45. The computer places that integer value into lo-
cation number1 (Fig. 2.8), replacing the previous value (if any) in that location. The pre-
vious value is lost, so this process is said to be destructive.

System.out.printf("Sum is %d%n", (number1 + number2));

http://docs.oracle.com/javase/8/docs/api/index.html

http://www.oracle.com/technetwork/java/javase/downloads

int number1; // declare the int variable number1
number1 = input.nextInt(); // assign the user's input to number1

int number1 = input.nextInt(); // read first number from user

http://www.oracle.com/technetwork/java/javase/downloads
http://docs.oracle.com/javase/8/docs/api/index.html

102 Chapter 2 Introduction to Java Applications; Input/Output and Operators

When the statement (line 15)

executes, suppose that the user enters 72. The computer places that integer value into lo-
cation number2. The memory now appears as shown in Fig. 2.9.

After the program of Fig. 2.7 obtains values for number1 and number2, it adds the
values and places the total into variable sum. The statement (line 17)

performs the addition, then replaces any previous value in sum. After sum has been calcu-
lated, memory appears as shown in Fig. 2.10. The values of number1 and number2 appear
exactly as they did before they were used in the calculation of sum. These values were used,
but not destroyed, as the computer performed the calculation. When a value is read from
a memory location, the process is nondestructive.

2.7 Arithmetic
Most programs perform arithmetic calculations. The arithmetic operators are summa-
rized in Fig. 2.11. Note the use of various special symbols not used in algebra. The asterisk
(*) indicates multiplication, and the percent sign (%) is the remainder operator, which
we’ll discuss shortly. The arithmetic operators in Fig. 2.11 are binary operators, because
each operates on two operands. For example, the expression f + 7 contains the binary op-
erator + and the two operands f and 7.

Fig. 2.8 | Memory location showing the name and value of variable number1.

int number2 = input.nextInt(); // read second number from user

Fig. 2.9 | Memory locations after storing values for number1 and number2.

int sum = number1 + number2; // add numbers, then store total in
sum

Fig. 2.10 | Memory locations after storing the sum of number1 and number2.

45number1

45

72

number1

number2

45

72

117

number1

number2

sum

2.7 Arithmetic 103

Integer division yields an integer quotient. For example, the expression 7 / 4 evaluates
to 1, and the expression 17 / 5 evaluates to 3. Any fractional part in integer division is
simply truncated (i.e., discarded)—no rounding occurs. Java provides the remainder oper-
ator, %, which yields the remainder after division. The expression x % y yields the remainder
after x is divided by y. Thus, 7 % 4 yields 3, and 17 % 5 yields 2. This operator is most com-
monly used with integer operands but it can also be used with other arithmetic types. In
this chapter’s exercises and in later chapters, we consider several interesting applications of
the remainder operator, such as determining whether one number is a multiple of another.

Arithmetic Expressions in Straight-Line Form
Arithmetic expressions in Java must be written in straight-line form to facilitate entering
programs into computers. Thus, expressions such as “a divided by b” must be written as
a / b, so that all constants, variables and operators appear in a straight line. The following
algebraic notation is generally not acceptable to compilers:

Parentheses for Grouping Subexpressions
Parentheses are used to group terms in Java expressions in the same manner as in algebraic
expressions. For example, to multiply a times the quantity b + c, we write

If an expression contains nested parentheses, such as

the expression in the innermost set of parentheses (a + b in this case) is evaluated first.

Rules of Operator Precedence
Java applies the arithmetic operators in a precise sequence determined by the rules of op-
erator precedence, which are generally the same as those followed in algebra:

1. Multiplication, division and remainder operations are applied first. If an expres-
sion contains several such operations, they’re applied from left to right. Multipli-
cation, division and remainder operators have the same level of precedence.

2. Addition and subtraction operations are applied next. If an expression contains
several such operations, the operators are applied from left to right. Addition and
subtraction operators have the same level of precedence.

Java operation Operator Algebraic expression Java expression

Addition + f + 7 f + 7

Subtraction – p – c p - c

Multiplication * bm b * m

Division / x / y or or x ÷ y x / y

Remainder % r mod s r % s

Fig. 2.11 | Arithmetic operators.

a * (b + c)

((a + b) * c)

x
y--

a
b
--

104 Chapter 2 Introduction to Java Applications; Input/Output and Operators

These rules enable Java to apply operators in the correct order.1 When we say that opera-
tors are applied from left to right, we’re referring to their associativity. Some associate
from right to left. Figure 2.12 summarizes these rules of operator precedence. A complete
precedence chart is included in Appendix .

Sample Algebraic and Java Expressions
Let’s consider several sample expressions. Each example shows an algebraic expression and
its Java equivalent. The following is an example of an average of five terms:

The parentheses are required because division has higher precedence than addition. The
entire quantity (a + b + c + d + e) is to be divided by 5. If the parentheses are erroneously
omitted, we obtain a + b + c + d + e / 5, which evaluates to the different expression

Here’s an example of the equation of a straight line:

No parentheses are required. The multiplication operator is applied first because multipli-
cation has a higher precedence than addition. The assignment occurs last because it has a
lower precedence than multiplication or addition.

The following example contains remainder (%), multiplication, division, addition and
subtraction operations:

1. We use simple examples to explain the order of evaluation. Subtle order-of-evaluation issues occur in
the more complex expressions. For more information, see Chapter 15 of The Java™ Language Spec-
ification (https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html).

Operator(s) Operation(s) Order of evaluation (precedence)

*
/
%

Multiplication
Division
Remainder

Evaluated first. If there are several operators of this
type, they’re evaluated from left to right.

+
-

Addition
Subtraction

Evaluated next. If there are several operators of this
type, they’re evaluated from left to right.

= Assignment Evaluated last.

Fig. 2.12 | Precedence of arithmetic operators.

Algebra:

Java: m = (a + b + c + d + e) / 5;

Algebra:
Java: y = m * x + b;

m
a b c d e+ + + +

5
-------------------------------------=

a b c d
e
5
-+ + + +

y mx b+=

z

6 1 2 4 3 5

= p * r % q + w / x - y;

z = pr%q + w/x – yAlgebra:
Java:

https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html

2.7 Arithmetic 105

The circled numbers under the statement indicate the order in which Java applies the op-
erators. The *, % and / operations are evaluated first in left-to-right order (i.e., they associ-
ate from left to right), because they have higher precedence than + and -. The + and -
operations are evaluated next. These operations are also applied from left to right. The as-
signment (=) operation is evaluated last.

Evaluation of a Second-Degree Polynomial
To develop a better understanding of the rules of operator precedence, consider the eval-
uation of an assignment expression that includes a second-degree polynomial ax2 + bx + c:

The multiplication operations are evaluated first in left-to-right order (i.e., they associate
from left to right), because they have higher precedence than addition. (Java has no arith-
metic operator for exponentiation, so x2 is represented as x * x. Section 4.4 shows an al-
ternative for performing exponentiation.) The addition operations are evaluated next from
left to right. Suppose that a, b, c and x are initialized (given values) as follows: a = 2, b = 3,
c = 7 and x = 5. Figure 2.13 illustrates the order in which the operators are applied.

You can use redundant parentheses to make an expression clearer. For example, the
preceding statement might be parenthesized as follows:

Fig. 2.13 | Order in which a second-degree polynomial is evaluated.

 y = (a * x * x) + (b * x) + c;

6 1 2 4 3 5

y = a * x * x + b * x + c;

(Leftmost multiplication)

(Leftmost multiplication)

(Multiplication before addition)

(Leftmost addition)

(Last addition)

(Last operation—place 72 in y)

Step 1. y = 2 * 5 * 5 + 3 * 5 + 7;

 2 * 5 is 10

Step 2. y = 10 * 5 + 3 * 5 + 7;

 10 * 5 is 50

Step 3. y = 50 + 3 * 5 + 7;

 3 * 5 is 15

Step 4. y = 50 + 15 + 7;

 50 + 15 is 65

Step 5. y = 65 + 7;

 65 + 7 is 72

Step 6. y = 72

106 Chapter 2 Introduction to Java Applications; Input/Output and Operators

2.8 Decision Making: Equality and Relational Operators
A condition is an expression that can be true or false. This section introduces Java’s if
selection statement, which allows a program to make a decision based on a condition’s
value. For example, the condition “grade is greater than or equal to 60” determines wheth-
er a student passed a test. If an if statement’s condition is true, its body executes. If the
condition is false, its body does not execute.

Conditions in if statements can be formed by using the equality operators (== and
!=) and relational operators (>, <, >= and <=) summarized in Fig. 2.14. Both equality oper-
ators have the same level of precedence, which is lower than that of the relational operators.
The equality operators associate from left to right. The relational operators all have the
same level of precedence and also associate from left to right.

Figure 2.15 uses six if statements to compare two integers input by the user. If the
condition in any of these if statements is true, the statement associated with that if state-
ment executes; otherwise, the statement is skipped. We use a Scanner to input the integers
from the user and store them in variables number1 and number2. The program compares
the numbers and displays the results of the comparisons that are true. We show three
sample outputs for different values entered by the user.

Algebraic
operator

Java equality or
relational operator

Sample Java
condition Meaning of Java condition

Equality operators
= == x == y x is equal to y
≠ != x != y x is not equal to y

Relational operators
> > x > y x is greater than y
< < x < y x is less than y
≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Fig. 2.14 | Equality and relational operators.

1 // Fig. 2.15: Comparison.java
2 // Compare integers using if statements, relational operators
3 // and equality operators.
4 import java.util.Scanner; // program uses class Scanner
5
6 public class Comparison {
7 // main method begins execution of Java application
8 public static void main(String[] args) {
9 // create Scanner to obtain input from command line

10 Scanner input = new Scanner(System.in);

Fig. 2.15 | Compare integers using if statements, relational operators and equality operators.
(Part 1 of 2.)

2.8 Decision Making: Equality and Relational Operators 107

11
12 System.out.print("Enter first integer: "); // prompt
13 int number1 = input.nextInt(); // read first number from user
14
15 System.out.print("Enter second integer: "); // prompt
16 int number2 = input.nextInt(); // read second number from user
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 } // end method main
42 } // end class Comparison

Enter first integer: 777
Enter second integer: 777
777 == 777
777 <= 777
777 >= 777

Enter first integer: 1000
Enter second integer: 2000
1000 != 2000
1000 < 2000
1000 <= 2000

Enter first integer: 2000
Enter second integer: 1000
2000 != 1000
2000 > 1000
2000 >= 1000

Fig. 2.15 | Compare integers using if statements, relational operators and equality operators.
(Part 2 of 2.)

if (number1 == number2)
 System.out.printf("%d == %d%n", number1, number2);
}

if (number1 != number2) {
 System.out.printf("%d != %d%n", number1, number2);
}

if (number1 < number2) {
 System.out.printf("%d < %d%n", number1, number2);
}

if (number1 > number2) {
 System.out.printf("%d > %d%n", number1, number2);
}

if (number1 <= number2) {
 System.out.printf("%d <= %d%n", number1, number2);
}

if (number1 >= number2) {
 System.out.printf("%d >= %d%n", number1, number2);
}

108 Chapter 2 Introduction to Java Applications; Input/Output and Operators

Class Comparison’s main method (lines 8–41) begins the execution of the program.
Line 10

declares Scanner variable input and assigns it a Scanner that inputs data from the stan-
dard input (i.e., the keyboard).

Lines 12–13

prompt the user to enter the first integer and input the value, respectively. The value is
stored in the int variable number1.

Lines 15–16

prompt the user to enter the second integer and input the value, respectively. The value is
stored in the int variable number2.

Lines 18–20

compare the values of variables number1 and number2 to test for equality. If the values are
equal, the statement in line 19 displays a line of text indicating that the numbers are equal.
The if statements starting in lines 22, 26, 30, 34 and 38 compare number1 and number2 us-
ing the operators !=, <, >, <= and >=, respectively. If the conditions are true in one or more
of those if statements, the corresponding body statement displays an appropriate line of text.

Each if statement in Fig. 2.15 contains a single body statement that’s indented. Also
notice that we’ve enclosed each body statement in a pair of braces, { }, creating what’s
called a compound statement or a block.

Scanner input = new Scanner(System.in);

System.out.print("Enter first integer: "); // prompt
int number1 = input.nextInt(); // read first number from user

System.out.print("Enter second integer: "); // prompt
int number2 = input.nextInt(); // read second number from user

if (number1 == number2) {
 System.out.printf("%d == %d%n", number1, number2);
}

Good Programming Practice 2.11
Indent the statement(s) in the body of an if statement to enhance readability. IDEs typ-
ically do this for you, allowing you to specify the indent size.

Error-Prevention Tip 2.4
You don’t need to use braces, { }, around single-statement bodies, but you must include
the braces around multiple-statement bodies. You’ll see later that forgetting to enclose
multiple-statement bodies in braces leads to errors. To avoid errors, as a rule, always
enclose an if statement’s body statement(s) in braces.

Common Programming Error 2.7
Placing a semicolon immediately after the right parenthesis after the condition in an if
statement is often a logic error (although not a syntax error). The semicolon causes the body
of the if statement to be empty, so the if statement performs no action, regardless of
whether or not its condition is true. Worse yet, the original body statement of the if state-
ment always executes, often causing the program to produce incorrect results.

2.9 Wrap-Up 109

White Space
Note the use of white space in Fig. 2.15. Recall that the compiler normally ignores white
space. So, statements may be split over several lines and may be spaced according to your
preferences without affecting a program’s meaning. It’s incorrect to split identifiers and
strings. Ideally, statements should be kept small, but this is not always possible.

Operators Discussed So Far
Figure 2.16 shows the operators discussed so far in decreasing order of precedence. All but
the assignment operator, =, associate from left to right. The assignment operator, =, associ-
ates from right to left. An assignment expression’s value is whatever was assigned to the vari-
able on the = operator’s left side—for example, the value of the expression x = 7 is 7. So an
expression like x = y = 0 is evaluated as if it had been written as x = (y = 0), which first
assigns the value 0 to variable y, then assigns the result of that assignment, 0, to x.

2.9 Wrap-Up
In this chapter, you learned many important features of Java, including displaying data on
the screen in a command window, inputting data from the keyboard, performing calcula-
tions and making decisions. The applications presented here introduced you to many basic
programming concepts. In the next chapter we begin our introduction to control state-
ments, which specify the order in which a program’s actions are performed. You’ll use these
in your methods to specify how they should order their tasks.

Error-Prevention Tip 2.5
A lengthy statement can be spread over several lines. If a single statement must be split
across lines, choose natural breaking points, such as after a comma in a comma-separated
list, or after an operator in a lengthy expression. If a statement is split across two or more
lines, indent all subsequent lines until the end of the statement.

Good Programming Practice 2.12
When writing expressions containing many operators, refer to the operator precedence
chart (Appendix A). Confirm that the operations in the expression are performed in the
order you expect. If, in a complex expression, you’re uncertain about the order of evalua-
tion, use parentheses to force the order, exactly as you’d do in algebraic expressions.

Operators Associativity Type

* / % left to right multiplicative
+ - left to right additive
< <= > >= left to right relational
== != left to right equality
= right to left assignment

Fig. 2.16 | Precedence and associativity of operators discussed so far.

110 Chapter 2 Introduction to Java Applications; Input/Output and Operators

Summary
Section 2.2 Your First Program in Java: Printing a Line of Text
• A Java application (p. 88) executes when you use the java command to launch the JVM.

• Comments (p. 89) document programs and improve their readability. The compiler ignores them.

• An end-of-line comment begins with // and terminates at the end of the line on which it appears.

• Traditional comments (p. 89) can be spread over several lines and are delimited by /* and */.

• Javadoc comments (p. 89), delimited by /** and */, enable you to embed program documenta-
tion in your code. The javadoc program generates web pages based on these comments.

• A syntax error (p. 89) occurs when the compiler encounters code that violates Java’s language
rules. It’s similar to a grammar error in a natural language.

• Blank lines, space characters and tab characters are known as white space (p. 90). White space
makes programs easier to read and is normally ignored by the compiler.

• Keywords (p. 90) are reserved for use by Java and are always spelled with all lowercase letters.

• Keyword class (p. 90) introduces a class declaration.

• By convention, all class names in Java begin with a capital letter and capitalize the first letter of
each word they include (e.g., SampleClassName).

• A Java class name is an identifier—a series of characters consisting of letters, digits, underscores
(_) and dollar signs ($) that does not begin with a digit and does not contain spaces.

• A public (p. 90) class declaration must be saved in a file with the same name as the class followed
by the “.java” filename extension.

• Java is case sensitive (p. 90)—that is, uppercase and lowercase letters are distinct.

• The body of every class declaration (p. 91) is delimited by braces, { and }.

• Method main (p. 91) is the starting point of every Java application and must begin with

public static void main(String[] args)

otherwise, the JVM will not execute the application.

• Methods perform tasks and return information when they complete them. Keyword void (p. 91)
indicates that a method will perform a task but return no information.

• Statements instruct the computer to perform actions.

• A string (p. 92) in double quotes is sometimes called a character string or a string literal.

• The standard output object (System.out; p. 92) displays characters in the command window.

• Method System.out.println (p. 92) displays its argument (p. 92) in the command window fol-
lowed by a newline character to position the output cursor to the beginning of the next line.

Section 2.2.1 Compiling the Application
• You compile a program with the command javac. If the program contains no syntax errors, a

class file (p. 93) containing the Java bytecodes that represent the application is created. These
bytecodes are interpreted by the JVM when you execute the program.

Section 2.2.2 Executing the Application
• To run an application, type java followed by the name of the class that contains method main.

Section 2.3 Modifying Your First Java Program
• System.out.print (p. 94) displays its argument and positions the output cursor immediately af-

ter the last character displayed.

Summary 111

• A backslash (\) in a string is an escape character (p. 95). Java combines it with the next character
to form an escape sequence (p. 95)—\n (p. 95) represents the newline character.

Section 2.4 Displaying Text with printf
• System.out.printf method (p. 96; f means “formatted”) displays formatted data.

• Method printf’s first argument is a format string (p. 96) containing fixed text and/or format
specifiers. Each format specifier (p. 96) indicates the type of data to output and is a placeholder
for a corresponding argument that appears after the format string.

• Format specifiers begin with a percent sign (%) and are followed by a character that represents the
data type. The format specifier %s (p. 97) is a placeholder for a string.

• The %n format specifier (p. 97) is a portable line separator. You cannot use %n in the argument to
System.out.print or System.out.println; however, the line separator output by Sys-

tem.out.println after it displays its argument is portable across operating systems.

Section 2.5.1 import Declarations
• An import declaration (p. 98) helps the compiler locate a class that’s used in a program.

• Java’s rich set of predefined classes are grouped into packages (p. 98)—named groups of classes.
These are referred to as the Java class library, or the Java Application Programming Interface
(Java API; p. 98).

Section 2.5.2 Declaring and Creating a Scanner to Obtain User Input from the Keyboard
• A variable (p. 98) is a location in the computer’s memory where a value can be stored for use later

in a program. All variables must be declared with a name and a type before they can be used.

• A variable’s name enables the program to access the variable’s value in memory.

• A Scanner (package java.util; p. 98) enables a program to read data that the program will use.
Before a Scanner can be used, the program must create it and specify the source of the data.

• Variables should be initialized (p. 98) to prepare them for use in a program.

• The expression new Scanner(System.in) creates a Scanner that reads from the standard input
object (System.in; p. 99)—normally the keyboard.

Section 2.5.3 Prompting the User for Input
• A prompt (p. 99) directs the user to take a specific action.

Section 2.5.4 Declaring a Variable to Store an Integer and Obtaining an Integer from
the Keyboard
• Data type int (p. 99) is used to declare variables that will hold integer values. The range of values

for an int is –2,147,483,648 to +2,147,483,647.

• The int values you use in a program may not contain commas; however, for readability, you can
place underscores in numbers (e.g., 60_000_000).

• Types float and double (p. 99) specify real numbers with decimal points, such as –11.19 and 3.4.

• Variables of type char (p. 99) represent individual characters, such as an uppercase letter (e.g.,
A), a digit (e.g., 7), a special character (e.g., * or %) or an escape sequence (e.g., tab, \t).

• Types such as int, float, double and char are primitive types (p. 99). Primitive-type names are
keywords; thus, they must appear in all lowercase letters.

• Scanner method nextInt obtains an integer for use in a program.

Section 2.5.6 Using Variables in a Calculation
• Portions of statements that have values are called expressions (p. 100).

112 Chapter 2 Introduction to Java Applications; Input/Output and Operators

Section 2.5.7 Displaying the Calculation Result
• The format specifier %d (p. 100) is a placeholder for an int value.

Section 2.5.9 Declaring and Initializing Variables in Separate Statements
• A variable must be assigned a value before it’s used in a program.

• The assignment operator, = (p. 101), enables the program to give a value to a variable.

Section 2.6 Memory Concepts
• Variable names (p. 101) correspond to locations in the computer’s memory. Every variable has a

name, a type, a size and a value.

• A value that’s placed in a memory location replaces the location’s previous value, which is lost.

Section 2.7 Arithmetic
• The arithmetic operators (p. 102) are + (addition), - (subtraction), * (multiplication), / (division)

and % (remainder).

• Integer division (p. 103) yields an integer quotient.

• The remainder operator, % (p. 103), yields the remainder after division.

• Arithmetic expressions must be written in straight-line form (p. 103).

• If an expression contains nested parentheses (p. 103), the innermost set is evaluated first.

• Java applies the operators in arithmetic expressions in a precise sequence determined by the rules
of operator precedence (p. 103).

• When we say that operators are applied from left to right, we’re referring to their associativity
(p. 104). Some operators associate from right to left.

• Redundant parentheses (p. 105) can make an expression clearer.

Section 2.8 Decision Making: Equality and Relational Operators
• The if statement (p. 106) makes a decision based on a condition’s value (true or false).

• Conditions in if statements can be formed by using the equality (== and !=) and relational (>,
<, >= and <=) operators (p. 106).

• An if statement begins with keyword if followed by a condition in parentheses and expects one
statement in its body. You must include braces around multiple-statement bodies.

Self-Review Exercises
2.1 Fill in the blanks in each of the following statements:

a) A(n) and a(n) begin and end the body of every method.
b) You can use the statement to make decisions.
c) begins an end-of-line comment.
d) , and are called white space.
e) are reserved for use by Java.
f) Java applications begin execution at method .
g) Methods , and display information in a command

window.

2.2 State whether each of the following is true or false. If false, explain why.
a) Comments cause the computer to display the text after the // on the screen when the

program executes.
b) All variables must be given a type when they’re declared.
c) Java considers the variables number and NuMbEr to be identical.

Answers to Self-Review Exercises 113

d) The remainder operator (%) can be used only with integer operands.
e) The arithmetic operators *, /, %, + and - all have the same level of precedence.
f) The identifier _ (underscore) is valid in Java 9.

2.3 Write statements to accomplish each of the following tasks:
a) Declare variables c, thisIsAVariable, q76354 and number to be of type int and initialize

each to 0.
b) Prompt the user to enter an integer.
c) Input an integer and assign the result to int variable value. Assume Scanner variable

input can be used to read a value from the keyboard.
d) Print "This is a Java program" on one line in the command window. Use method

System.out.println.
e) Print "This is a Java program" on two lines in the command window. The first line

should end with Java. Use method System.out.printf and two %s format specifiers.
f) If the variable number is not equal to 7, display "The variable number is not equal to 7".

2.4 Identify and correct the errors in each of the following statements:
a) if (c < 7); {

 System.out.println("c is less than 7");

}
b) if (c => 7) {

 System.out.println("c is equal to or greater than 7");

}

2.5 Write declarations, statements or comments that accomplish each of the following tasks:
a) State that a program will calculate the product of three integers.
b) Create a Scanner called input that reads values from the standard input.
c) Prompt the user to enter the first integer.
d) Read the first integer from the user and store it in the int variable x.
e) Prompt the user to enter the second integer.
f) Read the second integer from the user and store it in the int variable y.
g) Prompt the user to enter the third integer.
h) Read the third integer from the user and store it in the int variable z.
i) Compute the product of the three integers contained in variables x, y and z, and store

the result in the int variable result.
j) Use System.out.printf to display the message "Product is" followed by the value of

the variable result.

2.6 Using the statements you wrote in Exercise 2.5, write a complete program that calculates
and prints the product of three integers.

Answers to Self-Review Exercises
2.1 a) left brace ({), right brace (}). b) if. c) //. d) Space characters, newlines and tabs.
e) Keywords. f) main. g) System.out.print, System.out.println and System.out.printf.

2.2 The answers to Self-Review Exercise 2.2 are:
a) False. Comments do not cause any action to be performed when the program executes.

They’re used to document programs and improve their readability.
b) True.
c) False. Java is case sensitive, so these variables are distinct.
d) False. The remainder operator can also be used with noninteger operands in Java.
e) False. The operators *, / and % have higher precedence than operators + and -.
f) False. As of Java 9, _ (underscore) by itself is no longer a valid identifier.

114 Chapter 2 Introduction to Java Applications; Input/Output and Operators

2.3 The answers to Self-Review Exercise 2.3 are:
a) int c = 0;

int thisIsAVariable = 0;

int q76354 = 0;

int number = 0;
b) System.out.print("Enter an integer: ");
c) int value = input.nextInt();
d) System.out.println("This is a Java program");
e) System.out.printf("%s%n%s%n", "This is a Java", "program");
f) if (number != 7) {

 System.out.println("The variable number is not equal to 7");

}

2.4 The answers to Self-Review Exercise 2.4 are:
a) Error: Semicolon after the right parenthesis of the condition (c < 7) in the if. As a re-

sult, the output statement executes regardless of whether the condition in the if is true.
Correction: Remove the semicolon after the right parenthesis.

b) Error: The relational operator => is incorrect.
Correction: Change => to >=.

2.5 The answers to Self-Review Exercise 2.5 are:
a) // Calculate the product of three integers
b) Scanner input = new Scanner(System.in);
c) System.out.print("Enter first integer: ");
d) int x = input.nextInt();
e) System.out.print("Enter second integer: ");
f) int y = input.nextInt();
g) System.out.print("Enter third integer: ");
h) int z = input.nextInt();
i) int result = x * y * z;
j) System.out.printf("Product is %d%n", result);

2.6 The answer to Self-Review Exercise 2.6 is:

1 // Ex. 2.6: Product.java
2 // Calculate the product of three integers.
3 import java.util.Scanner; // program uses Scanner
4
5 public class Product {
6 public static void main(String[] args) {
7 // create Scanner to obtain input from command window
8 Scanner input = new Scanner(System.in);
9

10 System.out.print("Enter first integer: "); // prompt for input
11 int x = input.nextInt(); // read first integer
12
13 System.out.print("Enter second integer: "); // prompt for input
14 int y = input.nextInt(); // read second integer
15
16 System.out.print("Enter third integer: "); // prompt for input
17 int z = input.nextInt(); // read third integer
18
19 int result = x * y * z; // calculate product of numbers
20
21 System.out.printf("Product is %d%n", result);
22 } // end method main
23 } // end class Product

Exercises 115

Exercises
2.7 Fill in the blanks in each of the following statements:

a) are used to document a program and improve its readability.
b) A decision can be made in a Java program with a(n) .
c) The arithmetic operators with the same precedence as multiplication are

and .
d) When parentheses in an arithmetic expression are nested, the set of paren-

theses is evaluated first.
e) A location in the computer’s memory that may contain different values at various times

throughout the execution of a program is called a(n) .

2.8 Write Java statements that accomplish each of the following tasks:
a) Display the message "Enter an integer: ", leaving the cursor on the same line.
b) Assign the product of variables b and c to the int variable a.
c) Use a comment to state that a program performs a sample payroll calculation.

2.9 State whether each of the following is true or false. If false, explain why.
a) Addition is executed first in the following expression: a * b / (c + d) * 5.
b) The following are all valid variable names: AccountValue, $value, value_in_$,

account_no_1234, US$, her_sales_in_$, his_$checking_account, X!, _$_, a@b,
and _name.

c) In 2 + 3 + 5 / 4, addition has the highest precedence.
d) The following are all invalid variable names: name@email.com, 87, x%, 99er, and 2_.

2.10 Assuming that x = 5 and y = 1, what does each of the following statements display?
a) System.out.printf("x = %d\n", x + 5);
b) System.out.printf("Value of %d * %d is %d\n", x, y, (x * y));
c) System.out.printf("x is %d and y is %d", x, y);
d) System.out.printf("%d is not equal to %d\n", (x + y), (x * y));

2.11 Which of the following Jav statements contain variables whose values are not modified?
a) int m = (p + 2) + 3;
b) System.out.println("m = m + 1");
c) int m = p / 2;
d) int j = k + 2;

2.12 Given that y = ax2 + 5x + 2, which of the following are correct Java statements for this equation?
a) y = a * x * x + 5 * x + 2;
b) y = a * x * x + (5 * x) + 2;
c) y = a * x * x + 5 * (x + 2);
d) y = a * (x * x) + 5 * x + 2;
e) y = a * x * (x + 5 * x) + 2;
f) y = a * (x * x + 5 * x + 2);

2.13 What is the output that will be printed after execution of the following Java code snippet?
Explain why.

int p = 5;
System.out.printf("%d", p + 2 * 4);
System.out.printf("%d", p * 2 + 4);

Enter first integer: 10
Enter second integer: 20
Enter third integer: 30
Product is 6000

mailto:name@email.com

116 Chapter 2 Introduction to Java Applications; Input/Output and Operators

2.14 Write an application that displays the numbers 1 to 4 on the same line, with each pair of
adjacent numbers separated by one space. Use the following techniques:

a) Use one System.out.println statement.
b) Use four System.out.print statements.
c) Use one System.out.printf statement.

2.15 (Arithmetic) Write an application that asks the user to enter two integers, obtains them
from the user and prints the square of each, the sum of their squares, and the difference of the squares
(first number squared minus the second number squared). Use the techniques shown in Fig. 2.7.

2.16 (Comparing Integers) Write an application that asks the user to enter one integer, obtains
it from the user and displays whether the number and its square are greater than, equal to, not equal
to, or less than the number 100. Use the techniques shown in Fig. 2.15.

2.17 (Arithmetic, Smallest and Largest) Write an application that inputs three integers from the
user and displays the sum, average, product, smallest and largest of the numbers. Use the techniques
shown in Fig. 2.15. [Note: The calculation of the average in this exercise should result in an integer
representation of the average. So, if the sum of the values is 7, the average should be 2, not 2.3333….]

2.18 (Displaying Shapes with Asterisks) Write an application that displays a box, an oval, an ar-
row and a diamond using asterisks (*), as follows:

2.19 What does the following code print?

System.out.printf(" ****%n ******%n*******%n ******%n ****%n");

2.20 What does the following code print?

System.out.println("*");
System.out.println("***");
System.out.println("*****");
System.out.println("****");
System.out.println("**");

2.21 What does the following code print?

System.out.print("*");
System.out.print("***");
System.out.print("*****");
System.out.print("****");
System.out.println("**");

2.22 What does the following code print?

System.out.print("*");
System.out.println("***");
System.out.println("*****");
System.out.print("****");
System.out.println("**");

2.23 What does the following code print?

System.out.printf("%s%n%s%n%s%n%s%n", " *", " ***", "*****", " ***", " *");

********* *** * *
* * * * *** * *
* * * * ***** * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
********* *** * *

Exercises 117

2.24 (Largest and Smallest Integers) Write an application that reads five integers and determines
and prints the largest and smallest integers in the group. Use only the programming techniques you
learned in this chapter.

2.25 (Divisible by 3) Write an application that reads an integer and determines and prints
whether it’s divisible by 3 or not. [Hint: Use the remainder operator. A number is divisible by 3 if
it’s divided by 3 with a remainder of 0.]

2.26 (Multiples) Write an application that reads two integers, determines whether the first num-
ber tripled is a multiple of the second number doubled, and prints the result. [Hint: Use the remain-
der operator.]

2.27 (Checkerboard Pattern of Asterisks) Write an application that displays a checkerboard pat-
tern, as follows:

2.28 (Diameter, Circumference and Area of a Circle) Here’s a peek ahead. In this chapter, you
learned about integers and the type int. Java can also represent floating-point numbers that contain
decimal points, such as 3.14159. Write an application that inputs from the user the radius of a circle
as an integer and prints the circle’s diameter, circumference and area using the floating-point value
3.14159 for π. Use the techniques shown in Fig. 2.7. [Note: You may also use the predefined con-
stant Math.PI for the value of π. This constant is more precise than the value 3.14159. Class Math
is defined in package java.lang. Classes in that package are imported automatically, so you do not
need to import class Math to use it.] Use the following formulas (r is the radius):

diameter = 2r
circumference = 2πr
area = πr2

Do not store the results of each calculation in a variable. Rather, specify each calculation as the value
that will be output in a System.out.printf statement. The values produced by the circumference
and area calculations are floating-point numbers. Such values can be output with the format specifier
%f in a System.out.printf statement. You’ll learn more about floating-point numbers in Chapter 3.

2.29 (Integer Value of a Character) Here’s another peek ahead. In this chapter, you learned
about integers and the type int. Java can also represent uppercase letters, lowercase letters and a con-
siderable variety of special symbols. Every character has a corresponding integer representation. The
set of characters a computer uses together with the corresponding integer representations for those
characters is called that computer’s character set. You can indicate a character value in a program
simply by enclosing that character in single quotes, as in 'A'.

You can determine a character’s integer equivalent by preceding that character with (int), as in

(int) 'A'

An operator of this form is called a cast operator. (You’ll learn about cast operators in Chapter 3.)
The following statement outputs a character and its integer equivalent:

System.out.printf("The character %c has the value %d%n", 'A', ((int) 'A'));

When the preceding statement executes, it displays the character A and the value 65 (from the Uni-
code® character set) as part of the string. The format specifier %c is a placeholder for a character (in
this case, the character 'A').

* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *

118 Chapter 2 Introduction to Java Applications; Input/Output and Operators

Using statements similar to the one shown earlier in this exercise, write an application that dis-
plays the integer equivalents of some uppercase letters, lowercase letters, digits and special symbols.
Display the integer equivalents of the following: A B C a b c 0 1 2 $ * + / and the blank character.

2.30 (Separating the Digits in an Integer) Write an application that inputs one number consist-
ing of five digits from the user, separates the number into its individual digits and prints the digits
separated from one another by three spaces each. For example, if the user types in the number 42339,
the program should print

Assume that the user enters the correct number of digits. What happens when you enter a
number with more than five digits? What happens when you enter a number with fewer than five
digits? [Hint: It’s possible to do this exercise with the techniques you learned in this chapter. You’ll
need to use both division and remainder operations to “pick off ” each digit.]

2.31 (Table of Squares and Cubes) Using only the programming techniques you learned in this
chapter, write an application that calculates the squares and cubes of the numbers from 0 to 10 and
prints the resulting values in table format, as shown below.

2.32 (Negative, Positive and Zero Values) Write a program that inputs five numbers and deter-
mines and prints the number of negative numbers input, the number of positive numbers input and
the number of zeros input.

Making a Difference
2.33 (Body Mass Index Calculator) We introduced the body mass index (BMI) calculator in
Exercise 1.10. The formulas for calculating BMI are

or

Create a BMI calculator that reads the user’s weight in pounds and height in inches (or, if you pre-
fer, the user’s weight in kilograms and height in meters), then calculates and displays the user’s
body mass index. Also, display the BMI categories and their values from the National Heart Lung
and Blood Institute

http://www.nhlbi.nih.gov/health/educational/lose_wt/BMI/bmicalc.htm

so the user can evaluate his/her BMI.

4 2 3 3 9

number square cube
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

BMI weightInPounds 703×
heightInInches heightInInches×
--=

BMI weightInKi ramslog
heightInMeters heightInMeters×

-=

http://www.nhlbi.nih.gov/health/educational/lose_wt/BMI/bmicalc.htm

 Making a Difference 119

[Note: In this chapter, you learned to use the int type to represent whole numbers. The BMI
calculations when done with int values will both produce whole-number results. In Chapter 7
you’ll learn to use the double type to represent numbers with decimal points. When the BMI cal-
culations are performed with doubles, they’ll both produce numbers with decimal points—these
are called “floating-point” numbers.]

2.34 (World Population Growth Calculator) Search the Internet to determine the current world
population and the annual world population growth rate. Write an application that inputs these val-
ues, then displays the estimated world population after one, two, three, four and five years.

2.35 (Statistics for the Great Pyramid of Giza) The Great Pyramid of Giza is considered an en-
gineering marvel of its time. Use the web to get statistics related to the Great Pyramid of Giza, and
find the estimated number of stones used to build it, the average weight of each stone, and the num-
ber of years it took to build. Create an application that calculates an estimate of how much, by
weight, of the pyramid was built each year, each hour, and each minute as it was being built. The
application should input the following information:

a) Estimated number of stones used.
b) Average weight of each stone.
c) Number of years taken to build the pyramid (assuming a year comprises 365 days).

3 Control Statements: Part 1;
Assignment, ++ and --
Operators

O b j e c t i v e s
In this chapter you’ll:
■ Learn basic problem-solving

techniques.
■ Develop algorithms through

the process of top-down,
stepwise refinement.

■ Use the if and if…else
selection statements to
choose between alternative
actions.

■ Use the while iteration
statement to execute
statements in a program
repeatedly.

■ Use counter-controlled
iteration and sentinel-
controlled iteration.

■ Use the compound
assignment operator and the
increment and decrement
operators.

■ Learn about the portability of
primitive data types.

3.1 Introduction 121

3.1 Introduction
Before writing a program to solve a problem, you should have a thorough understanding
of the problem and a carefully planned approach to solving it. When writing a program,
you also should understand the available building blocks and employ proven program-
construction techniques. In this chapter and the next, we discuss these issues in presenting
the theory and principles of structured programming. The concepts presented here are
crucial in building classes and manipulating objects. We discuss Java’s if statement in ad-
ditional detail and introduce the if…else and while statements—all of these building
blocks allow you to specify the logic required for methods to perform their tasks. We also
introduce the compound assignment operator and the increment and decrement opera-
tors. Finally, we consider the portability of Java’s primitive types.

3.2 Algorithms
Any computing problem can be solved by executing a series of actions in a specific order.
A procedure for solving a problem in terms of

1. the actions to execute and

2. the order in which these actions execute

is called an algorithm. The following example demonstrates that correctly specifying the
order in which the actions execute is important.

Consider the “rise-and-shine algorithm” followed by one executive for getting out of
bed and going to work: (1) Get out of bed; (2) take off pajamas; (3) take a shower; (4) get
dressed; (5) eat breakfast; (6) carpool to work. This routine gets the executive to work well
prepared to make critical decisions. Suppose that the same steps are performed in a slightly
different order: (1) Get out of bed; (2) take off pajamas; (3) get dressed; (4) take a shower;
(5) eat breakfast; (6) carpool to work. In this case, our executive shows up for work soaking
wet. Specifying the order in which statements (actions) execute in a program is called pro-
gram control. This chapter investigates program control using Java’s control statements.

3.1 Introduction
3.2 Algorithms
3.3 Pseudocode
3.4 Control Structures

3.4.1 Sequence Structure in Java
3.4.2 Selection Statements in Java
3.4.3 Iteration Statements in Java
3.4.4 Summary of Control Statements in Java

3.5 if Single-Selection Statement
3.6 if…else Double-Selection Statement

3.6.1 Nested if…else Statements
3.6.2 Dangling-else Problem
3.6.3 Blocks
3.6.4 Conditional Operator (?:)

3.7 while Iteration Statement
3.8 Formulating Algorithms: Counter-

Controlled Iteration
3.9 Formulating Algorithms: Sentinel-

Controlled Iteration
3.10 Formulating Algorithms: Nested

Control Statements
3.11 Compound Assignment Operators
3.12 Increment and Decrement Operators
3.13 Primitive Types
3.14 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

122 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

3.3 Pseudocode
Pseudocode is an informal language that helps you develop algorithms without having to
worry about the strict details of Java language syntax. The pseudocode we present is par-
ticularly useful for developing algorithms that will be converted to structured portions of
Java programs. The pseudocode we use in this book is similar to everyday English—it’s
convenient and user friendly, but it’s not an actual computer programming language.
You’ll see an algorithm written in pseudocode in Fig. 3.5. You may, of course, use your
own native language(s) to develop your own pseudocode.

Pseudocode does not execute on computers. Rather, it helps you “think out” a pro-
gram before attempting to write it in a programming language, such as Java. This chapter
provides several examples of using pseudocode to develop Java programs.

The style of pseudocode we present consists purely of characters, so you can type
pseudocode conveniently, using any text-editor program. A carefully prepared pseudocode
program can easily be converted to a corresponding Java program.

Pseudocode normally describes only statements representing the actions that occur
after you convert a program from pseudocode to Java and the program is run on a com-
puter. Such actions might include input, output or calculations. In our pseudocode, we typ-
ically do not include variable declarations, but some programmers choose to list variables
and mention their purposes.

3.4 Control Structures
Normally, statements in a program are executed one after the other in the order in which
they’re written. This process is called sequential execution. Various Java statements,
which we’ll soon discuss, enable you to specify that the next statement to execute is not
necessarily the next one in sequence. This is called transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control
was the root of much difficulty experienced by software development groups. The blame
was pointed at the goto statement (used in most programming languages of the time),
which allows you to specify a transfer of control to one of a wide range of destinations in
a program. [Note: Java does not have a goto statement; however, the word goto is reserved
by Java and should not be used as an identifier in programs.]

The research of Bohm and Jacopini1 demonstrated that programs could be written
without any goto statements. The challenge of the era for programmers was to shift their
styles to “goto-less programming.” The term structured programming became almost
synonymous with “goto elimination.” Not until the 1970s did most programmers start
taking structured programming seriously. The results were impressive. Software develop-
ment groups reported shorter development times, more frequent on-time delivery of sys-
tems and more frequent within-budget completion of software projects. The key to these
successes was that structured programs were clearer, easier to debug and modify, and more
likely to be bug free in the first place.

Bohm and Jacopini’s work demonstrated that all programs could be written in terms
of only three control structures—the sequence structure, the selection structure and the

1. C. Bohm and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two For-
mation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336–371.

3.4 Control Structures 123

iteration structure. When we introduce Java’s control-structure implementations, we’ll
refer to them in the terminology of the Java Language Specification as “control statements.”

3.4.1 Sequence Structure in Java
The sequence structure is built into Java. Unless directed otherwise, the computer executes
Java statements one after the other in the order in which they’re written—that is, in se-
quence. The UML activity diagram in Fig. 3.1 illustrates a typical sequence structure in
which two calculations are performed in order. Java lets you have as many actions as you
want in sequence. As we’ll soon see, anywhere a single action may be placed, we may place
several actions in sequence.

A UML activity diagram models the workflow (also called the activity) of a portion
of a software system. Such workflows may include a portion of an algorithm, like the
sequence structure in Fig. 3.1. Activity diagrams are composed of symbols, such as action-
state symbols (rectangles with their left and right sides replaced with outward arcs), dia-
monds and small circles. These symbols are connected by transition arrows, which rep-
resent the flow of the activity—that is, the order in which the actions should occur.

Like pseudocode, activity diagrams help you develop and represent algorithms.
Activity diagrams clearly show how control structures operate. We use the UML in this
chapter and Chapter 4 to show control flow in control statements. Online Chapters 33–
34 use the UML in a real-world automated-teller-machine case study.

Consider the activity diagram in Fig. 3.1. It contains two action states, each con-
taining an action expression—“add grade to total” or “add 1 to counter”—that specifies
a particular action to perform. Other actions might include calculations or input/output
operations. The arrows represent transitions, which indicate the order in which the
actions represented by the action states occur. The program that implements the activities
illustrated by the diagram in Fig. 3.1 first adds grade to total, then adds 1 to counter.

The solid circle at the top of the activity diagram represents the initial state—the
beginning of the workflow before the program performs the modeled actions. The solid
circle surrounded by a hollow circle at the bottom of the diagram represents the final
state—the end of the workflow after the program performs its actions.

Figure 3.1 also includes rectangles with the upper-right corners folded over. These are
UML notes (like comments in Java)—explanatory remarks that describe the purpose of

Fig. 3.1 | Sequence-structure activity diagram.

add 1 to counter

add grade to total Corresponding Java statement:
total = total + grade;

Corresponding Java statement:
counter = counter + 1;

