
GLOBAL
EDITION

JavaTM

An Introduction to Problem Solving & Programming

EIGHTH EDITION

Walter Savitch

Digital Resources for Students

Your new textbook provides 12-month access to digital resources that may include
VideoNotes (step-by-step video tutorials on programming concepts), source code, web
chapters, quizzes, and more. Refer to the preface in the textbook for a detailed list of
resources.

Follow the instructions below to register for the Companion Website for Walter Savitch’s
Java™: An Introduction to Problem Solving and Programming, Eighth Edition,
Global Edition.

1. Go to www.pearsonglobaleditions.com/Savitch
2. Enter the title of your textbook or browse by author name.
3. Click Companion Website.
4. Click Register and follow the on-screen instructions to create a login name

and password.

Use the login name and password you created during registration to start using the
online resources that accompany your textbook.

IMPORTANT:
This prepaid subscription does not include access to Pearson MyLab Programming, which
is available at www.myprogramminglab.com for purchase.

This access code can only be used once. This subscription is valid for 12 months upon
activation and is not transferable. If the access code has already been revealed it may no
longer be valid.

For technical support go to https://support.pearson.com/getsupport

ISSIPS-PRANK-BURRY-ENDUE-GABBY-TOUSE

http://www.pearsonglobaleditions.com/Savitch
http://www.myprogramminglab.com
https://support.pearson.com/getsupport

An Introduction to
Problem Solving & Programming

™

Eighth edition

Global edition

This page intentionally left blank

An Introduction to
Problem Solving & Programming

Walter Savitch
University of California, San Diego

Contributor

Kenrick Mock
University of Alaska Anchorage

330 Hudson Street, New York, NY 10013

™ Eighth edition

Global edition

Senior Vice President Courseware Portfolio Management: Marcia J. Horton
 Director, Portfolio Management: Engineering,
 Computer Science & Global Editions: Julian Partridge
 Portfolio Manager: Matt Goldstein
 Portfolio Management Assistant: Kristy Alaura
 Acquisitions Editor, Global Edition: Sourabh Maheshwari
 Assistant Project Editor, Global Edition: Aurko Mitra
 Field Marketing Manager: Demetrius Hall
 Product Marketing Manager: Yvonne Vannatta
 Managing Producer, ECS and Math: Scott Disanno
 Content Producer: Sandra L. Rodriguez
 Media Production Manager, Global Edition: Vikram Kumar
 Senior Manufacturing Controller, Global Edition: Caterina Pellegrino
 Cover Designer: Lumina Datamatics, Inc.
 Cover Photo: Racheal Grazias/Shutterstock

Pearson Education Limited
KAO Two
KAO Park
Harlow
CM17 9NA
United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited 2019

The right of Walter Savitch to be identified as the author of this work has been asserted by him in accordance with
the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Java: An Introduction to Problem Solving & Programming, 8th
Edition, ISBN 978-0-13-446203-5 by Walter Savitch, published by Pearson Education © 2018.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior
written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the
Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does
not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such
trademarks imply any affiliation with or endorsement of this book by such owners.

ISBN 10: 1-292-24747-9
ISBN 13: 978-1-292-24747-2

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

Printed and bound by Vivar in Malaysia

Typeset by iEnergizer Aptara®, Ltd.

http://www.pearsonglobaleditions.com

55

Preface for Instructors

Welcome to the eighth edition of Java: An Introduction to Problem Solving &
Programming. This book is designed for a first course in programming and
computer science. It covers programming techniques, as well as the basics of
the Java programming language. It is suitable for courses as short as one
quarter or as long as a full academic year. No previous programming experience
is required, nor is any mathematics, other than a little high school algebra. The
book can also be used for a course designed to teach Java to students who have
already had another programming course, in which case the first few chapters
can be assigned as outside reading.

Changes in This Edition

The following list highlights how this eighth edition differs from the seventh
edition:

■■ Correction of errors and edits for readability.
■■ The material on Java applets has been removed from the printed text but is
available as an online chapter.

■■ With the exception of JOptionPane the graphics supplements have changed
from Swing to JavaFX. The Swing chapters are available online. The JavaFX
material introduces drawing, layout, event handling, and common UI
controls.

■■ Examples of event-driven programming with the event handler in a
separate class, the main application class, an anonymous inner class, and
using lambda functions.

■■ Introduction to the Timeline and Scene Builder.
■■ Five new VideoNotes for a total of seventy seven VideoNotes. These
VideoNotes walk students through the process of both problem solving
and coding to help reinforce key programming concepts. An icon appears
in the margin of the book when a VideoNote is available regarding the
topic covered in the text.

■■ Ten new/revised Programming Projects.

6 Preface for Instructors

Latest Java Coverage

All of the code in this book has been tested using Oracle’s Java SE Development
Kit (JDK), version 8. Any imported classes are standard and in the Java Class
Library that is part of Java. No additional classes or specialized libraries are
needed.

Flexibility

If you are an instructor, this book adapts to the way you teach, rather than
making you adapt to the book. It does not tightly prescribe the sequence in
which your course must cover topics. You can easily change the order in which
you teach many chapters and sections. The particulars involved in rearranging
material are explained in the dependency chart that follows this preface and in
more detail in the “Prerequisites” section at the start of each chapter.

Early Graphics

Graphics supplement sections in each of the chapters. This gives you the
option of covering graphics and GUI programming from the start of your
course. The graphics supplement sections emphasize GUIs built using JavaFX.
Any time after Chapter 8, you can move on to the supplemental chapters on
GUI programming using Swing (Chapters 13 through 15), which are now on
the Web. Alternatively, you can continue through Chapter 10 with a mix of
graphics and more traditional programming. Instructors who prefer to
postpone the coverage of graphics can postpone or skip the graphics
supplement sections.

Coverage of Problem-Solving and Programming Techniques

This book is designed to teach students basic problem-solving and
programming techniques and is not simply a book about Java syntax. It
contains numerous case studies, programming examples, and programming
tips. In addition, many sections explain important problem-solving and
programming techniques, such as loop design techniques, debugging
techniques, style techniques, abstract data types, and basic object-oriented
programming techniques, including UML, event-driven programming, and
generic programming using type parameters.

Early Introduction to Classes

Any course that really teaches Java must teach classes early, since everything in
Java involves classes. A Java program is a class. The data type for strings of
characters is a class. Even the behavior of the equals operator (==) depends on
whether it is comparing objects from classes or simpler data items. Classes
cannot be avoided, except by means of absurdly long and complicated “magic

 Preface for Instructors 7

formulas.” This book introduces classes fairly early. Some exposure to using
classes is given in Chapters 1 and 2. Chapter 5 covers how to define classes. All
of the basic information about classes, including inheritance, is presented by
the end of Chapter 8 (even if you omit Chapter 7). However, some topics
regarding classes, including inheritance, can be postponed until later in the
course.

Although this book introduces classes early, it does not neglect tradition-
al programming techniques, such as top-down design and loop design tech-
niques. These older topics may no longer be glamorous, but they are informa-
tion that all beginning students need.

Generic Programming

Students are introduced to type parameters when they cover lists in Chapter
12. The class ArrayList is presented as an example of how to use a class that
has a type parameter. Students are then shown how to define their own classes
that include a type parameter.

Language Details and Sample Code

This book teaches programming technique, rather than simply the Java
language. However, neither students nor instructors would be satisfied with an
introductory programming course that did not also teach the programming
language. Until you calm students’ fears about language details, it is often
impossible to focus their attention on bigger issues. For this reason, the book
gives complete explanations of Java language features and lots of sample code.
Programs are presented in their entirety, along with sample input and output.
In many cases, in addition to the complete examples in the text, extra complete
examples are available over the Internet.

Self-Test Questions

Self-test questions are spread throughout each chapter. These questions have a
wide range of difficulty levels. Some require only a one-word answer, whereas
others require the reader to write an entire, nontrivial program. Complete
answers for all the self-test questions, including those requiring full programs,
are given at the end of each chapter.

Exercises and Programming Projects

Completely new exercises appear at the end of each chapter. Since only you,
and not your students, will have access to their answers, these exercises are
suitable for homework. Some could be expanded into programming projects.
However, each chapter also contains other programming projects, several of
which are new to this edition.

Support Material

The following support materials are available on the Internet at www
.pearsonglobaleditions.com/Savitch:

For instructors only:
■■ Solutions to most exercises and programming projects
■■ PowerPoint slides

Instructors should click on the registration link and follow instructions to
receive a password. If you encounter any problems, please contact your local
Pearson Sales Representative.

For students:
■■ Source code for programs in the book and for extra examples
■■ VideoNotes: video solutions to programming examples and exercises.

Visit www.pearsonglobaleditions.com/Savitch to access the student resources.

Online Practice and Assessment with Pearson MyLab
Programming

Pearson MyLab Programming helps students fully grasp the logic, semantics,
and syntax of programming. Through practice exercises and immediate,
personalized feedback, MyLab Programming improves the programming
competence of beginning students who often struggle with the basic concepts
and paradigms of popular high-level programming languages.

A self-study and homework tool, a MyLab Programming course consists of
hundreds of small practice problems organized around the structure of this text-
book. For students, the system automatically detects errors in the logic and syntax
of their code submissions and offers targeted hints that enable students to figure out
what went wrong—and why. For instructors, a comprehensive gradebook tracks
correct and incorrect answers and stores the code inputted by students for review.

MyLab Programming is offered to users of this book in partnership with
Turing’s Craft, the makers of the CodeLab interactive programming exercise
system. For a full demonstration, to see feedback from instructors and stu-
dents, or to get started using MyLab Programming in your course, visit www.
myprogramminglab.com.

VideoNotes

VideoNotes are designed for teaching students key programming concepts and
techniques. These short step-by-step videos demonstrate how to solve
problems from design through coding. VideoNotes allow for self-placed
instruction with easy navigation including the ability to select, play, rewind,
fast-forward, and stop within each VideoNote exercise.

VideoNote

8 Preface for Instructors

http://www.pearsonglobaleditions.com/Savitch
http://www.myprogramminglab.com
http://www.myprogramminglab.com
http://www.pearsonglobaleditions.com/Savitch
http://www.pearsonglobaleditions.com/Savitch

 Preface for Instructors 9

Margin icons in your textbook let you know when a VideoNote video is
available for a particular concept or homework problem.

Contact Us

Your comments, suggestions, questions, and corrections are always welcome.
Please e-mail them to savitch.programming.java@gmail.com.

 Preface for Instructors 9

mailto:java@gmail.com

10

Preface for Students

This book is designed to teach you the Java programming language and, even
more importantly, to teach you basic programming techniques. It requires no
previous programming experience and no mathematics other than some
simple high school algebra. However, to get the full benefit of the book, you
should have Java available on your computer, so that you can practice with the
examples and techniques given. The latest version of Java is preferable.

If You Have Programmed Before

You need no previous programming experience to use this book. It was
designed for beginners. If you happen to have had experience with some other
programming language, do not assume that Java is the same as the
programming language(s) you are accustomed to using. All languages are
different, and the differences, even if small, are large enough to give you
problems. Browse the first four chapters, reading at least the Recap portions.
By the time you reach Chapter 5, it would be best to read the entire chapter.

If you have programmed before in either C or C++, the transition to Java
can be both comfortable and troublesome. At first glance, Java may seem al-
most the same as C or C++. However, Java is very different from these lan-
guages, and you need to be aware of the differences. Appendix 6 compares Java
and C++ to help you see what the differences are.

Obtaining a Copy of Java

Appendix 1 provides links to sites for downloading Java compilers and
programming environments. For beginners, we recommend Oracle’s Java JDK
for your Java compiler and related software and TextPad or DrJava as a simple
editor environment for writing Java code. When downloading the Java JDK, be
sure to obtain the latest version available.

Support Materials for Students

■■ Source code for programs in the book and for extra examples
■■ Student lab manual
■■ VideoNotes: video solutions to programming examples and exercises.

Visit www.pearsonglobaleditions.com/Savitch to access the student resources.

http://www.pearsonglobaleditions.com/Savitch

 Preface for stuDents 11

Learning Aids

Each chapter contains several features to help you learn the material:

■■ The opening overview includes a brief table of contents, chapter objectives
and prerequisites, and a paragraph or two about what you will study.

■■ Recaps concisely summarize major aspects of Java syntax and other
important concepts.

■■ FAQs, or “frequently asked questions,” answer questions that other
students have asked.

■■ Remembers highlight important ideas you should keep in mind.
■■ Programming Tips suggest ways to improve your programming skills.
■■ Gotchas identify potential mistakes you could make—and should avoid—
while programming.

■■ Asides provide short commentaries on relevant issues.
■■ Self-Test Questions test your knowledge throughout, with answers given at
the end of each chapter. One of the best ways to practice what you are
learning is to do the self-test questions before you look at the answers.

■■ A summary of important concepts appears at the end of each chapter.

Online Practice with Pearson MyLab Programming

A self-study and practice tool, a MyLab Programming course consists of
hundreds of small practice problems organized around the structure of this
textbook. The system automatically detects errors in the logic and syntax of
your code submissions and offers targeted hints that enable you to figure out
what went wrong—and why. Visit www.myprogramminglab.com for more
information.

VideoNotes

These short step-by-step videos demonstrate how to solve problems from
design through coding. VideoNotes allow for self-placed instruction with easy
navigation including the ability to select, play, rewind, fast-forward, and stop
within each VideoNote exercise. Margin icons in your textbook let you know
when a VideoNote video is available for a particular concept or homework
problem.

This Text Is Also a Reference Book

In addition to using this book as a textbook, you can and should use it as a
reference. When you need to check a point that you have forgotten or that you
hear mentioned by somebody but have not yet learned yourself, just look in
the index. Many index entries give a page number for a “recap.” Turn to that
page. It will contain a short, highlighted entry giving all the essential points on

VideoNote

http://www.myprogramminglab.com

12 Preface for stuDents

that topic. You can do this to check details of the Java language as well as
details on programming techniques.

Recap sections in every chapter give you a quick summary of the main
points in that chapter. Also, a summary of important concepts appears at the
end of each chapter. You can use these features to review the chapter or to
check details of the Java language.

This page intentionally left blank

Acknowledgments

We thank the many people who have made this eighth edition possible,
including everyone who has contributed to the first seven editions. We begin
by recognizing and thanking the people involved in the development of this
new edition. The comments and suggestions of the following reviewers were
invaluable and are greatly appreciated. In alphabetical order, they are:

Christopher Crick—Oklahoma State University
Christopher Plaue—University of Georgia
Frank Moore—University of Alaska Anchorage
Frank Witmer—University of Alaska Anchorage
Greg Gagne—Westminster College
Helen Hu—Westminster College
Paul Bladek—Edmonds Community College, Washington
Paul LaFollette—Temple University
Pei Wang—Temple University
Richard Cassoni—Palomar College
Walter Pistone—Palomar College

Many other reviewers took the time to read drafts of earlier editions of the book.
Their advice continues to benefit this new edition. Thank you once again to:

Adel Elmaghraby—University of Louisville
Alan Saleski—Loyola University Chicago
Anthony Larrain—DePaul University
Arijit Sengupta—Raj Soin College of Business, Wright State University
Asa Ben-Hur—Colorado State University
Ashraful A. Chowdhury—Georgia Perimeter College
Billie Goldstein—Temple University
Blayne Mayfield—Oklahoma State University
Boyd Trolinger—Butte College
Charles Hoot—Oklahoma City University
Chris Hoffmann—University of Massachusetts, Amherst
Dan Adrian German—Indiana University
Dennis Brylow—Marquette University
Dolly Samson—Hawaii Pacific University
Donald E. Smith—Rutgers University
Drew McDermott—Yale University
Ed Gellenbeck—Central Washington University
Faye Tadayon-Navabi—Arizona State University
Gerald Baumgartner—Louisiana State University
Gerald H. Meyer—LaGuardia Community College
Gobi Gopinath—Suffolk County Community College

15

16 acKnoWLeDGMents

Gopal Gupta—University of Texas, Dallas
H. E. Dunsmore—Purdue University, Lafayette
Helen H. Hu—Westminster College
Howard Straubing—Boston College
James Roberts—Carnegie Mellon University
Jim Buffenbarger—Boise State University
Joan Boone—University of North Carolina at Chapel Hill
John Motil—California State University, Northridge
Ken Slonneger—University of Iowa
Laird Dornan—Sun Microsystems, Inc.
Le Gruenwald—University of Oklahoma
Lily Hou—Carnegie Mellon University
Liuba Shrira—Brandeis University
Martin Chetlen—Moorpark College
Mary Elaine Califf—Illinois State University
Michael Clancy—University of California, Berkeley
Michael Litman—Western Illinois University
Michael Long—California State University
Michael Olan—Richard Stockton College of New Jersey
Michal Young—University of Oregon
Michele Kleckner—Elon University
Nan C. Schaller—Rochester Institute of Technology
Peter Spoerri—Fairfield University
Ping-Chu Chu—Fayetteville State University
Prasun Dewan—University of North Carolina, Chapel Hill
Ricci Heishman—North Virginia Community College
Richard A. Johnson—Missouri State University
Richard Ord—University of California, San Diego
Richard Whitehouse—Arizona State University
Robert Herrmann—Sun Microsystems, Inc., Java Soft
Robert Holloway—University of Wisconsin, Madison
Robert P. Burton—Brigham Young University
Rob Kelly—State University of New York at Stony Brook
Ryan Shoemaker—Sun Microsystems, Inc.
Stan Kwasny—Washington University
Stephen F. Weiss—University of North Carolina, Chapel Hill
Steven Cater—Kettering University
Subramanian Vijayarangam—University of Massachusetts, Lowell
Tammy VanDeGrift—University of Portland
Thomas Cortina—Carnegie Mellon University
Thomas VanDrunen—Wheaton College
Y. Annie Liu—State University of New York at Stony Brook

 acKnoWLeDGMents 17

We thank Frank Carrano for his revision of the fifth edition of this
textbook. Last but not least, we thank the many students in classes at the
University of California, San Diego (UCSD), who were kind enough to help
correct preliminary versions of this text, as well as the instructors who class-
tested these drafts. In particular, we extend a special thanks to Carole McNamee
of California State University, Sacramento, and to Paul Kube of UCSD. These
student comments and the detailed feedback and class testing of earlier
editions of the book were a tremendous help in shaping the final book.

W. S.
K. M.

Acknowledgments for
the Global Edition

Pearson would like to thank and acknowledge the following people for their
contributions to this Global Edition.

Contributors

Komal Arora

Reviewers

Arup Bhattacharya—RCC Institute of Technology
Ajay Mittal—University Institute of Engineering and Technology
Khyat Sharma

18

This chart shows the prerequisites for the chapters in the book. If there is a line between two
boxes, the material in the higher box should be covered before the material in the lower box.
Minor variations to this chart are discussed in the “Prerequisites” section at the start of each
chapter. These variations usually provide more, rather than less, flexibility than what is shown on
the chart.

Dependency Chart

* Note that some sections of these
chapters can be covered sooner.
Those sections are given in this chart.
** These chapters contain sections
that can be covered sooner. See the
chapter’s “Prerequisites” section for
full details.
† Online chapter

Chapter 1 Introduction

Chapter 2
Primitive Types, Strings

Chapter 3
Flow of Control: Branching

Chapter 4
Flow of Control: Loops

Section 7.1
Array Basics

Chapter 7*
Arrays

Chapter 11**
Recursion

Chapter 8**
Inheritance

Chapter 13**,†
Basic Swing

Chapter 14†
Applets

Chapter 15†
More Swing

Chapter 9*
Exceptions

Section 9.1
Exception Basics

Section 10.1
Overview of Files

Section 10.2
Text Files

Section 10.3
Any Files

Section 10.4
Binary Files

Section 10.5
File I/O for Objects

Section 10.6
Network Communi-
cation with Streams

Chapter 12**
Data Structures, Generics

Chapter 5 and 6
Classes and Methods

20

Recaps
Summarize Java syntax and other
important concepts.

Remembers
Highlight important ideas that
students should keep in mind.

Features of This Text

 1.1 Computer Basics 41

Recall that main memory holds the current program and much of its data.
Auxiliary memory is used to hold data in a more or less permanent form.
Auxiliary memory is also divided into bytes, but these bytes are grouped into
much larger units known as files. A file can contain almost any sort of data,
such as a program, an essay, a list of numbers, or a picture, each in an encoded
form. For example, when you write a Java program, you will store the program
in a file that will typically reside in some kind of disk storage. When you use
the program, the contents of the program file are copied from auxiliary
memory to main memory.

You name each file and can organize groups of files into directories, or
folders. Folder and directory are two names for the same thing. Some computer
systems use one name, and some use the other.

FAQ1 Why just 0s and 1s?

Computers use 0s and 1s because it is easy to make an electrical device
that has only two stable states. However, when you are programming,
you normally need not be concerned about the encoding of data as 0s
and 1s. You can program as if the computer directly stored numbers,
letters, or strings of characters in memory.

There is nothing special about calling the states zero and one. We
could just as well use any two names, such as A and B or true and false.
The important thing is that the underlying physical device has two stable
states, such as on and off or high voltage and low voltage. Calling these
two states zero and one is simply a convention, but it’s one that is
almost universally followed.

1 FAQ stands for “frequently asked question.”

RECAP Bytes and Memory Locations

A computer’s main memory is divided into numbered units called bytes.
The number of a byte is called its address. Each byte can hold eight
binary digits, or bits, each of which is either 0 or 1. To store a piece of
data that is too large to fit into a single byte, the computer uses several
adjacent bytes. These adjacent bytes are thought of as a single, larger
memory location whose address is the address of the first of the adjacent
bytes.

A file is a group
of bytes stored in
auxiliary memory

A directory, or
folder, contains
groups of files

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M01_SAVI7472_08_GE_C01.indd Page 41 24/05/18 8:28 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100

 2.1 Variables and Expressions 89

Data Types

As you have learned, a data type specifies a set of values and their operations.
In fact, the values have a particular data type because they are stored in memory
in the same format and have the same operations defined for them.

RECAP Variable Declarations

In a Java program, you must declare a variable before it can be used.
A variable declaration has the following form:

SYNTAX

Type Variable_1, Variable_2, . . .;

EXAMPLES

int styleNumber, numberOfChecks, numberOfDeposits;
double amount, interestRate;
char answer;

REMEMBER Syntactic Variables

When you see something in this book like Type, Variable_1, or Variable_2
used to describe Java syntax, these words do not literally appear in your
Java code. They are syntactic variables, which are a kind of blank that you
fill in with something from the category that they describe. For example,
Type can be replaced by int, double, char, or any other type name.
Variable_1 and Variable_2 can each be replaced by any variable name.

Java has two main kinds of data types: class types and primitive types. As
the name implies, a class type is a data type for objects of a class. Since a class
is like a blueprint for objects, the class specifies how the values of its type are
stored and defines the possible operations on them. As we implied in the
previous chapter, a class type has the same name as the class. For example,
quoted strings such as "Java is fun" are values of the class type String,
which is discussed later in this chapter.

Variables of a primitive type are simpler than objects (values of a class
type), which have both data and methods. A value of a primitive type is an
indecomposable value, such as a single number or a single letter. The types
int, double, and char are examples of primitive types.

A data type
specifies a set of
values and
operations

Class types and
primitive types

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M02_SAVI7472_08_GE_C02.indd Page 89 29/05/18 7:04 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100/Global%20crx.

 2.1 Variables and Expressions 95

■ PROGRAMMING TIP Initialize Variables

A variable that has been declared, but that has not yet been given a value by an
assignment statement (or in some other way), is said to be uninitialized. If
the variable is a variable of a class type, it literally has no value. If the variable
has a primitive type, it likely has some default value. However, your program
will be clearer if you explicitly give the variable a value, even if you are simply
reassigning the default value. (The exact details on default values have been
known to change and should not be counted on.)

One easy way to ensure that you do not have an uninitialized variable is to
initialize it within the declaration. Simply combine the declaration and an
assignment statement, as in the following examples:

int count = 0;
double taxRate = 0.075;
char grade = 'A';
int balance = 1000, newBalance;

Note that you can initialize some variables and not initialize others in a
declaration.

Sometimes the compiler may complain that you have failed to initialize a
variable. In most cases, that will indeed be true. Occasionally, though, the
compiler is mistaken in giving this advice. However, the compiler will not
compile your program until you convince it that the variable in question is
initialized. To make the compiler happy, initialize the variable when you
declare it, even if the variable will be given another value before it is used for
anything. In such cases, you cannot argue with the compiler. ■

RECAP Assignment Statements Involving Primitive Types

An assignment statement that has a variable of a primitive type on
the left side of the equal sign causes the following action: First, the
expression on the right side of the equal sign is evaluated, and then the
variable on the left side of the equal sign is set to this value.

SYNTAX

Variable = Expression;

EXAMPLE

score = goals – errors;
interest = rate * balance;
number = number + 5;

You can initialize
a variable when
you declare it

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M02_SAVI7472_08_GE_C02.indd Page 95 29/05/18 7:04 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100/Global%20crx.

Programming Tips
Give students helpful advice about
programming in Java.

FAQs
Provide students answers to frequently
asked questions within the context of
the chapter.

64 CHAPTER 1 / Introduction to Computers and Java

will not give you any error messages. For this reason, logic errors are the
hardest kind of error to locate.

GOTCHA Coping with “Gotchas”

Any programming language has details that can trip you up in ways that are
surprising or hard to deal with. These sorts of problems are often called pitfalls,
but a more colorful term is gotchas. A gotcha is like a trap waiting to catch you.
When you get caught in the trap, the trap has “got you” or, as it is more
commonly pronounced, “gotcha.”

In this book, we have “Gotcha” sections like this one that warn you about
many of the most common pitfalls and tell you how to avoid them or cope
with them. ■

GOTCHA Hidden Errors

Just because your program compiles and runs without any errors and even
produces reasonable-looking output does not mean that your program is correct.
You should always run your program with some test data that gives predictable
output. To do this, choose some data for which you can compute the correct
results, either by using pencil and paper, by looking up the answer, or by some
other means. Even this testing does not guarantee that your program is correct, but
the more testing you do, the more confidence you can have in your program. ■

SELF-TEST QUESTIONS

29. What is a syntax error?

30. What is a logic error?

31. What kinds of errors are likely to produce error messages that will alert
you to the fact that your program contains an error?

32. Suppose you write a program that is supposed to compute the day of the
week (Sunday, Monday, and so forth) on which a given date (like December
1, 2014) will fall. Now suppose that you forget to account for leap years.
Your program will then contain an error. What kind of program error is it?

Software Reuse

When you first start to write programs, you can easily get the impression that
you must create each program entirely from scratch. However, typical software
is not produced this way. Most programs contain some components that

Don’t let a gotcha
get you

VideoNote
Recognizing a hidden error

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M01_SAVI7472_08_GE_C01.indd Page 64 24/05/18 8:28 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100

Gotchas
Identify potential mistakes in
programming that students might
make and should avoid.

 1.1 Computer Basics 41

Recall that main memory holds the current program and much of its data.
Auxiliary memory is used to hold data in a more or less permanent form.
Auxiliary memory is also divided into bytes, but these bytes are grouped into
much larger units known as files. A file can contain almost any sort of data,
such as a program, an essay, a list of numbers, or a picture, each in an encoded
form. For example, when you write a Java program, you will store the program
in a file that will typically reside in some kind of disk storage. When you use
the program, the contents of the program file are copied from auxiliary
memory to main memory.

You name each file and can organize groups of files into directories, or
folders. Folder and directory are two names for the same thing. Some computer
systems use one name, and some use the other.

FAQ1 Why just 0s and 1s?

Computers use 0s and 1s because it is easy to make an electrical device
that has only two stable states. However, when you are programming,
you normally need not be concerned about the encoding of data as 0s
and 1s. You can program as if the computer directly stored numbers,
letters, or strings of characters in memory.

There is nothing special about calling the states zero and one. We
could just as well use any two names, such as A and B or true and false.
The important thing is that the underlying physical device has two stable
states, such as on and off or high voltage and low voltage. Calling these
two states zero and one is simply a convention, but it’s one that is
almost universally followed.

1 FAQ stands for “frequently asked question.”

RECAP Bytes and Memory Locations

A computer’s main memory is divided into numbered units called bytes.
The number of a byte is called its address. Each byte can hold eight
binary digits, or bits, each of which is either 0 or 1. To store a piece of
data that is too large to fit into a single byte, the computer uses several
adjacent bytes. These adjacent bytes are thought of as a single, larger
memory location whose address is the address of the first of the adjacent
bytes.

A file is a group
of bytes stored in
auxiliary memory

A directory, or
folder, contains
groups of files

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M01_SAVI7472_08_GE_C01.indd Page 41 24/05/18 8:28 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100

 features of tHIs teXt 21

Case Studies
Take students from problem statement
to algorithm development to Java code.

380 CHAPTER 5 / Defining Classes and Methods

means “if s1 is extinct.” Beginning the name of a boolean-valued method with
a word such as is or has clarifies the meaning of your program. Not only will
others benefit from this naming convention, you likely will make fewer errors
while writing the program. ■

SELF-TEST QUESTIONS

24. What is a reference type? Are class types reference types? Are primitive
types, such as int, reference types?

25. When comparing two quantities of a class type to see whether they are
“equal,” should you use == or the method equals?

26. When comparing two quantities of type int to see whether they are
“equal,” should you use == or the method equals ?

27. Write a method definition for a method called isGrowthRateLargerThan
that could be added to the class Species in Listing 5.19. This method has
one argument of type Species. The method returns true if the receiving
object has a larger growth rate than the growth rate of the argument;
otherwise, it returns false.

CASE STUDY Unit Testing
So far we’ve tested our programs by running them, typing in some input, and
visually checking the results to see if the output is what we expected. This is
fine for small programs but is generally insufficient for large programs. In a
large program there are usually so many combinations of interacting inputs
that it would take too much time to manually verify the correct result for all
inputs. Additionally, it is possible that code changes result in unintended side
effects. For example, a fix for one error might introduce a different error. One
way to attack this problem is to write unit tests. Unit testing is a methodology
in which the programmer tests the correctness of individual units of code. A
unit is often a method but it could be a class or other group of code.

The collection of unit tests becomes the test suite. Each test is generally
automated so that human input is not required. Automation is important
because it is desirable to have tests that run often and quickly. This makes it
possible to run the tests repeatedly, perhaps once a day or every time code is
changed, to make sure that everything is still working. The process of running
tests repeatedly is called regression testing.

Let’s start with a simple test case for the Species class in Listing 5.19. Our
first test might be to verify that the name, initial population, and growth rate
is correctly set in the setSpecies method. We can accomplish this by creating

Unit testing
verifies if
individual units of
code are working
correctly

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M05_SAVI7472_08_GE_C05.indd Page 380 25/05/18 7:50 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100

VideoNotes
Step-by-step video solutions to
programming examples and homework
exercises.

110 CHAPTER 2 / Basic Computation

the precedence rules shown in Figure 2.2.3 Operators that are higher on the
list are said to have higher precedence. When the computer is deciding which
of two operations to perform first and the order is not dictated by parentheses,
it begins with the operation having higher precedence and then performs the
one having lower precedence. Some operators have equal precedence, in
which case the order of operations is determined by where the operators
appear in the expression. Binary operators of equal precedence are performed
in left-to-right order. Unary operators of equal precedence are performed in
right-to-left order.

These precedence rules are similar to the rules used in algebra. Except for
some very standard cases, it is best to include the parentheses, even if the
intended order of operations is the one indicated by the precedence rules,
because the parentheses can make the expression clearer to a person reading
the program code. Too many unnecessary parentheses can have the opposite
effect, however. One standard case in which it is normal to omit parentheses is
a multiplication within an addition. Thus,

balance = balance + (interestRate * balance);

would usually be written

balance = balance + interestRate * balance;

Both forms are acceptable, and the two forms have the same meaning.
Figure 2.3 shows some examples of how to write arithmetic expressions in

Java and indicates in color some of the parentheses that you can normally omit.

Specialized Assignment Operators

You can precede the simple assignment operator (=) with an arithmetic
operator, such as +, to produce a kind of special-purpose assignment operator.

Highest Precedence

First: the unary operators +, -, !, ++, and --

Second: the binary arithmetic operators *, /, and %

Third: the binary arithmetic operators + and

Lowest Precedence

FIGURE 2.2 Precedence Rules

3 Figure 2.2 shows all the operators we will use in this chapter. More precedence rules
will be given in Chapter 3.

Precedence rules
and parentheses
determine the
order of
operations

VideoNote
Writing arithmetic
expressions and statements

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M02_SAVI7472_08_GE_C02.indd Page 110 29/05/18 7:04 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100/Global%20crx.

Listings
Show students complete programs with
sample output.

 1.4 Graphics Supplement 67

Due to the historical progression from AWT to Swing to JavaFX, you may
find it helpful to learn a bit about AWT and Swing. Sometimes you will see
references to the older toolkits in the context of a newer toolkit. Swing is
covered in the online chapter.

A Sample JavaFX Application

Listing 1.2 contains a JavaFX application that draws a happy face. Let’s examine
the code by going through it section by section.

import javafx.application.Application;
import javafx.scene.canvas.Canvas;
import javafx.scene.Scene;
import javafx.scene.Group;
import javafx.stage.Stage;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.shape.ArcType;

public class HappyFace extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 @Override
 public void start(Stage primaryStage) throws Exception
 {
 Group root = new Group();
 Scene scene = new Scene(root);
 Canvas canvas = new Canvas(400, 300);
 GraphicsContext gc = canvas.getGraphicsContext2D();
 gc.strokeOval(100, 50, 200, 200);
 gc.fillOval(155, 100, 10, 20);
 gc.fillOval(230, 100, 10, 20);
 gc.strokeArc(150, 160, 100, 50, 180, 180, ArcType.OPEN);

 root.getChildren().add(canvas);
 primaryStage.setTitle("HappyFace in JavaFX");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

LISTING 1.2 Drawing a Happy Face

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M01_SAVI7472_08_GE_C01.indd Page 67 24/05/18 8:28 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100

22 features of tHIs teXt

Programming Examples
Provide more examples of Java
programs that solve specific problems.

Self-Test Questions
Provide students with the opportunity
to practice skills learned in the chapter.
Answers at the end of each chapter
give immediate feedback.

Asides
Give short commentary on relevant
topics.

 5.1 Class and Method Definitions 335

applies to void methods as well: void methods can have formal parameters,
which are handled in exactly the same way as we just described for methods
that return a value.

It is possible, even common, to have more than one formal parameter in a
method definition. In that case, each formal parameter is listed in the method
heading, and each parameter is preceded by a data type. For example, the
following might be the heading of a method definition:

public void doStuff(int n1, int n2, double cost, char code)

Even if more than one parameter has the same
type, each parameter must be preceded by a type
name.

The number of arguments given in a method
invocation must be exactly the same as the number
of formal parameters in the heading of the method
definition. For example, the following might be
an invocation of our hypothetical method
doStuff:

anObject.doStuff(42, 100, 9.99, Z);

As suggested by this example, the correspondence
is one of order and type. The first argument in the
method call is plugged in for the first parameter in
the method definition heading, the second
argument in the method call is plugged in for the
second parameter in the heading of the method
definition, and so forth. Each argument must
match its corresponding parameter in data type,
except for the automatic type conversions that we discussed earlier.

One word of warning: Parameters of a class type behave differently from
parameters of a primitive type. We will discuss parameters of a class type later
in this chapter.

parameter of a primitive type—such as int, double, or char—is a local
variable.

When a method is invoked, each parameter is initialized to the value
of the corresponding argument in the method invocation. This type of
substitution is known as the call-by-value parameter mechanism. The
argument in a method invocation can be a literal constant, such as 2 or ‘A';
a variable; or any expression that yields a value of the appropriate type.

Note that if you use a variable of a primitive type as an argument in a
method invocation, the method invocation cannot change the value of
this argument variable.

ASIDE Use of the Terms Parameter and
Argument

Our use of the terms parameter and
argument is consistent with common usage.
We use parameter to describe the definition
of the data type and variable inside the
header of a method and argument to
describe items passed into a method when it
is invoked. However, people often use these
terms interchangeably. Some people use the
term parameter both for what we call a
formal parameter and for what we call an
argument. Other people use the term
argument both for what we call a formal
parameter and for what we call an
argument. When you see the term parameter
or argument in other books, you must figure
out its exact meaning from the context.

Several
parameters are
possible in a
method

Arguments must
match parameters
in number, order,
and type

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M05_SAVI7472_08_GE_C05.indd Page 335 25/05/18 7:50 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100

 4.1 Java Loop Statements 253

Nested Loops

4. Revise the following code so that it uses a while loop instead of a
do-while loop:

Scanner keyboard = new Scanner(System.in);
int number;
do
{
 System.out.println("Enter a whole number:”);
 number = keyboard.nextInt();
 System.out.println("You entered " + number);
} while (number > 0);
System.out.println("number after loop = " + number);

5. What output is produced by the following code?

int count = 0;
while (count < 5)
{
 System.out.println(count);
 count−−;
}
System.out.println("count after loop = " + count);

6. Imagine a program that reads the population of a city using the following
statements:

System.out.print("Enter the population of the city: ");
int population = keyboard.nextInt();

Write a while loop after these statements that ensures that population is
positive. If the user enters a population that is either negative or zero, ask
the user to enter a nonnegative value.

 PROGRAMMING EXAMPLE

The body of a loop can contain any sort of statements. In particular, you can
have a loop statement within the body of a larger loop statement. For example,
the program in Listing 4.4 uses a while loop to compute the average of a list
of nonnegative scores. The program asks the user to enter all the scores
followed by a negative sentinel value to mark the end of the data. This while
loop is placed inside a do-while loop so that the user can repeat the entire
process for another exam, and another, until the user wishes to end the
program.

The body of one
loop can contain
another loop

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M04_SAVI7472_08_GE_C04.indd Page 253 25/05/18 7:25 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100

 5.3 Objects and References 389

SELF-TEST QUESTIONS

28. Given the class Species as defined in Listing 5.19, why does the following
program cause an error message?

 public class SpeciesEqualsDemo
 {
 public static void main(String[] args)
 {
 Species s1, s2; s1.
 setSpecies("Klingon ox", 10, 15);
 s2.setSpecies("Klingon ox", 10, 15);
 if (s1 == s2)
 System.out.println("Match with ==.");
 else
 System.out.println("Do Not match with ==.")
 }
}

29. After correcting the program in the previous question, what output does
the program produce?

30. What is the biggest difference between a parameter of a primitive type and
a parameter of a class type?

31. Given the class Species, as defined in Listing 5.19, and the class

public class ExerciseClass
{
 public void mystery(Species s, int m)
 {
 s.setSpecies("Klingon ox", 10, 15);
 m = 42;
 }
}

REMEMBER Differences Between Primitive-Type and
Class-Type Parameters

A method cannot change the value of an argument of a primitive type
that is passed to it. In addition, a method cannot replace an object passed
to it as an argument with another object. On the other hand, a method
can change the values of the instance variables of an argument of a class
type.

VideoNote
Exploring parameters of
class types

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M05_SAVI7472_08_GE_C05.indd Page 389 25/05/18 7:50 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100

23

Brief Contents

Chapter 1 Introduction to Computers and Java 37

Chapter 2 Basic Computation 85

Chapter 3 Flow of Control: Branching 175

Chapter 4 Flow of Control: Loops 237

Chapter 5 Defining Classes and Methods 305

Chapter 6 More About Objects and Methods 419

Chapter 7 Arrays 513

Chapter 8 Inheritance, Polymorphism, and Interfaces 621

Chapter 9 Exception Handling 709

Chapter 10 Streams, File I/O, and Networking 785

Chapter 11 Recursion 867

Chapter 12 Dynamic Data Structures and Generics 919

Appendices
 1 Getting Java 997

 2 Running Applets 998

24 BrIef contents

 3 Protected and Package Modifiers 1000

 4 The DecimalFormat Class 1001

 5 Javadoc 1005

 6 Differences Between C++ and Java 1008

 7 Unicode Character Codes 1012

 8 Introduction to Java 8 Functional Programming 1013

 9 The Iterator Interface 1017

10 Cloning 1019

11 Java Reserved Keywords 1023

Credits 1024

Index 1027

The following chapters, along with an index to their contents, are on the
book’s Website:

Chapter 13 Window Interfaces Using Swing

Chapter 14 Applets and HTML

Chapter 15 More Swing

25

Contents

Chapter 1 Introduction to Computers and Java 37

1.1 COMPUTER BASICS 38

Hardware and Memory 39

Programs 42

Programming Languages, Compilers, and Interpreters 43

Java Bytecode 45

Class Loader 47

1.2 A SIP OF JAVA 48

History of the Java Language 48

Applications and Applets 49

A First Java Application Program 50

Writing, Compiling, and Running a Java Program 55

1.3 PROGRAMMING BASICS 57

Object-Oriented Programming 57

Algorithms 61

Testing and Debugging 63

Software Reuse 64

1.4 GRAPHICS SUPPLEMENT 66

A Sample JavaFX Application 67

Size and Position of Figures 70

Drawing Ovals and Circles 71

Drawing Arcs 73

Chapter 2 Basic Computation 85

2.1 VARIABLES AND EXPRESSIONS 86

Variables 87

Data Types 89

26 contents

Java Identifiers 91

Assignment Statements 93

Simple Input 96

Simple Screen Output 98

Constants 98

Named Constants 100

Assignment Compatibilities 101

Type Casting 103

Arithmetic Operators 106

Parentheses and Precedence Rules 109

Specialized Assignment Operators 110

Case Study: Vending Machine Change 112

Increment and Decrement Operators 117

More About the Increment and Decrement Operators 118

2.2 THE CLASS String 119

String Constants and Variables 119

Concatenation of Strings 120

String Methods 121

String Processing 123

Escape Characters 126

The Unicode Character Set 127

2.3 KEYBOARD AND SCREEN I/O 129

Screen Output 129

Keyboard Input 132

Other Input Delimiters (Optional) 137

Formatted Output with printf (Optional) 139

2.4 DOCUMENTATION AND STYLE 141

Meaningful Variable Names 141

Comments 142

Indentation 145

Using Named Constants 145

2.5 GRAPHICS SUPPLEMENT 147

Style Rules Applied to a JavaFX Application 148

Introducing the Class JOptionPane 150

Reading Input as Other Numeric Types 159

Programming Example: Change-Making Program

 with Windowing I/O 160

 contents 27

Chapter 3 Flow of Control: Branching 175

3.1 THE if-else STATEMENT 176

The Basic if-else Statement 177

Boolean Expressions 184

Comparing Strings 189

Nested if-else Statements 194

Multibranch if-else Statements 196

Programming Example: Assigning Letter Grades 198

Case Study: Body Mass Index 201

The Conditional Operator (Optional) 204

The exit Method 204

3.2 THE TYPE boolean 205

Boolean Variables 206

Precedence Rules 207

Input and Output of Boolean Values 210

3.3 THE switch STATEMENT 212

Enumerations 218

3.4 GRAPHICS SUPPLEMENT 219

Specifying a Drawing Color 220

A Dialog Box for a Yes-or-No Question 224

Chapter 4 Flow of Control: Loops 237

4.1 JAVA LOOP STATEMENTS 238

The while Statement 239

The do-while Statement 242

Programming Example: Bug Infestation 247

Programming Example: Nested Loops 253

The for Statement 255

Declaring Variables Within a for Statement 261

Using a Comma in a for Statement (Optional) 262

The for-each Statement 264

4.2 PROGRAMMING WITH LOOPS 264

The Loop Body 265

Initializing Statements 266

Controlling the Number of Loop Iterations 267

Case Study: Using a Boolean Variable to End a Loop 269

Programming Example: Spending Spree 271

The break Statement and continue Statement in Loops

 (Optional) 274

Loop Bugs 277

Tracing Variables 279

Assertion Checks 281

4.3 GRAPHICS SUPPLEMENT 283

Programming Example: A Multiface JavaFX Application 283

Drawing Text 288

Chapter 5 Defining Classes and Methods 305

5.1 CLASS AND METHOD DEFINITIONS 307

Class Files and Separate Compilation 309

Programming Example: Implementing a Dog Class 309

Instance Variables 310

Methods 313

Defining void Methods 316

Defining Methods That Return a Value 317

Programming Example: First Try at Implementing a Species Class 322

The Keyword this 326

Local Variables 328

Blocks 330

Parameters of a Primitive Type 331

5.2 INFORMATION HIDING AND ENCAPSULATION 337

Information Hiding 338

Precondition and Postcondition Comments 338

The public and private Modifiers 340

Programming Example: A Demonstration of Why Instance

 Variables Should Be Private 343

Programming Example: Another Implementation of a Class

 of Rectangles 344

Accessor Methods and Mutator Methods 346

Programming Example: A Purchase Class 350

Methods Calling Methods 354

Encapsulation 360

Automatic Documentation with javadoc 363

UML Class Diagrams 364

28 contents

5.3 OBJECTS AND REFERENCES 365

Variables of a Class Type 366

Defining an equals Method for a Class 371

Programming Example: A Species Class 375

Boolean-Valued Methods 378

Case Study: Unit Testing 380

Parameters of a Class Type 382

Programming Example: Class-Type Parameters Versus

 Primitive-Type Parameters 386

5.4 GRAPHICS SUPPLEMENT 390

The GraphicsContext Class 390

Programming Example: Multiple Faces, but with a Helping

 Method 394

Adding Labels to a JavaFX Application 398

Chapter 6 More About Objects and Methods 419

6.1 CONSTRUCTORS 421

Defining Constructors 421

Calling Methods from Constructors 430

Calling a Constructor from Other Constructors (Optional) 433

6.2 STATIC VARIABLES AND STATIC METHODS 435

Static Variables 435

Static Methods 436

Dividing the Task of a main Method into Subtasks 443

Adding a main Method to a Class 444

The Math Class 446

Wrapper Classes 449

6.3 WRITING METHODS 455

Case Study: Formatting Output 455

Decomposition 461

Addressing Compiler Concerns 462

Testing Methods 464

6.4 OVERLOADING 466

Overloading Basics 466

Overloading and Automatic Type Conversion 469

Overloading and the Return Type 472

Programming Example: A Class for Money 474

 contents 29

6.5 INFORMATION HIDING REVISITED 481

Privacy Leaks 481

6.6 ENUMERATION AS A CLASS 485

6.7 PACKAGES 487

Packages and Importing 488

Package Names and Directories 489

Name Clashes 492

6.8 GRAPHICS SUPPLEMENT 493

Adding Buttons 493

Adding Icons 493

Chapter 7 Arrays 513

7.1 ARRAY BASICS 515

Creating and Accessing Arrays 516

Array Details 519

The Instance Variable length 522

More About Array Indices 525

Initializing Arrays 528

7.2 ARRAYS IN CLASSES AND METHODS 530

Case Study: Sales Report 530

Indexed Variables as Method Arguments 538

Entire Arrays as Arguments to a Method 541

Arguments for the Method main 542

Array Assignment and Equality 543

Methods That Return Arrays 546

7.3 PROGRAMMING WITH ARRAYS AND CLASSES 550

Programming Example: A Specialized List Class 550

Partially Filled Arrays 558

7.4 SORTING AND SEARCHING ARRAYS 560

Selection Sort 560

Other Sorting Algorithms 564

Searching an Array 566

7.5 MULTIDIMENSIONAL ARRAYS 567

Multidimensional-Array Basics 568

Multidimensional-Array Parameters and Returned Values 571

30 contents

Java’s Representation of Multidimensional Arrays 574

Ragged Arrays (Optional) 575

Programming Example: Employee Time Records 577

7.6 GRAPHICS SUPPLEMENT 583

Layout Panes 583

Text Areas, Text Fields and Combining Layouts 591

Drawing Polygons 596

Chapter 8 Inheritance, Polymorphism, and Interfaces 621

8.1 INHERITANCE BASICS 622

Derived Classes 624

Overriding Method Definitions 628

Overriding Versus Overloading 629

The final Modifier 629

Private Instance Variables and Private Methods of a Base

 Class 630

UML Inheritance Diagrams 632

8.2 PROGRAMMING WITH INHERITANCE 635

Constructors in Derived Classes 635

The this Method—Again 637

Calling an Overridden Method 637

Programming Example: A Derived Class of a Derived

 Class 638

Another Way to Define the equals Method in

 Undergraduate 643

Type Compatibility 643

The Class Object 648

A Better equals Method 650

8.3 POLYMORPHISM 652

Dynamic Binding and Inheritance 652

Dynamic Binding with toString 655

8.4 INTERFACES AND ABSTRACT CLASSES 657

Class Interfaces 657

Java Interfaces 658

Implementing an Interface 659

 contents 31

An Interface as a Type 661

Extending an Interface 664

Case Study: Character Graphics 665

Case Study: The Comparable Interface 678

Abstract Classes 682

8.5 GRAPHICS SUPPLEMENT 684

Event-Driven Programming 685

Event Handling in a Separate Class 686

Event Handling in the Main GUI Application Class 689

Event Handling in an Anonymous Inner Class 691

Programming Example: Adding Numbers 694

Chapter 9 Exception Handling 709

9.1 BASIC EXCEPTION HANDLING 710

Exceptions in Java 711

Predefined Exception Classes 721

9.2 DEFINING YOUR OWN EXCEPTION CLASSES 723

9.3 MORE ABOUT EXCEPTION CLASSES 733

Declaring Exceptions (Passing the Buck) 733

Kinds of Exceptions 736

Errors 738

Multiple Throws and Catches 739

The finally Block 745

Rethrowing an Exception (Optional) 746

Case Study: A Line-Oriented Calculator 747

9.4 GRAPHICS SUPPLEMENT 759

Additional User Interface Controls and Shapes 759

Images and Shapes 763

Handling Mouse Events 765

The Timeline Class 769

Chapter 10 Streams, File I/O, and Networking 785

10.1 AN OVERVIEW OF STREAMS AND FILE I/O 787

The Concept of a Stream 787

Why Use Files for I/O? 788

Text Files and Binary Files 788

32 contents

10.2 TEXT-FILE I/O 790

Creating a Text File 790

Appending to a Text File 796

Reading from a Text File 798

10.3 TECHNIQUES FOR ANY FILE 801

The Class File 801

Programming Example: Reading a File Name from the

 Keyboard 801

Using Path Names 803

Methods of the Class File 804

Defining a Method to Open a Stream 806

Case Study: Processing a Comma-Separated Values File 808

10.4 BASIC BINARY-FILE I/O 811

Creating a Binary File 811

Writing Primitive Values to a Binary File 813

Writing Strings to a Binary File 816

Some Details About writeUTF 817

Reading from a Binary File 818

The Class EOFException 824

Programming Example: Processing a File of Binary Data 826

10.5 BINARY-FILE I/O WITH OBJECTS AND ARRAYS 831

Binary-File I/O with Objects of a Class 831

Some Details of Serialization 835

Array Objects in Binary Files 836

10.6 NETWORK COMMUNICATION WITH STREAMS 839

10.7 GRAPHICS SUPPLEMENT 845

Programming Example: A JavaFX GUI for Manipulating

 Files 845

Chapter 11 Recursion 867

11.1 THE BASICS OF RECURSION 868

Case Study: Digits to Words 871

How Recursion Works 876

Infinite Recursion 880

Recursive Methods Versus Iterative Methods 882

Recursive Methods That Return a Value 884

 contents 33

11.2 PROGRAMMING WITH RECURSION 888

Programming Example: Insisting That User Input Be Correct 888

Case Study: Binary Search 890

Programming Example: Merge Sort—A Recursive Sorting

 Method 898

11.3 GRAPHICS SUPPLEMENT 902

Lambda Functions and Event Handlers 902

Chapter 12 Dynamic Data Structures and Generics 919

12.1 ARRAY-BASED DATA STRUCTURES 921

The Class ArrayList 922

Creating an Instance of ArrayList 922

Using the Methods of ArrayList 924

Programming Example: A To-Do List 928

Parameterized Classes and Generic Data Types 931

12.2 THE JAVA COLLECTIONS FRAMEWORK 931

The Collection Interface 931

The Class HashSet 932

The Map Interface 934

The Class HashMap 934

12.3 LINKED DATA STRUCTURES 937

The Class LinkedList 937

Linked Lists 938

Implementing the Operations of a Linked List 941

A Privacy Leak 948

Inner Classes 949

Node Inner Classes 950

Iterators 950

The Java Iterator Interface 962

Exception Handling with Linked Lists 962

Variations on a Linked List 964

Other Linked Data Structures 966

12.4 GENERICS 967

The Basics 967

Programming Example: A Generic Linked List 970

34 contents

12.5 GRAPHICS SUPPLEMENT 975

Building JavaFX Applications with the Scene Builder 975

Where to Go from Here 981

APPENDICES

1 Getting Java 997

2 Running Applets 998

3 Protected and Package Modifiers 1000

4 The DecimalFormat Class 1001

Other Pattern Symbols 1002

5 Javadoc 1005

Commenting Classes for Use with javadoc 1005

Running javadoc 1006

6 Differences Between C++ and Java 1008

Primitive Types 1008

Strings 1008

Flow of Control 1008

Testing for Equality 1009

main Method (Function) and Other Methods 1009

Files and Including Files 1009

Class and Method (Function) Definitions 1010

No Pointer Types in Java 1010

Method (Function) Parameters 1010

Arrays 1010

Garbage Collection 1011

Other Comparisons 1011

7 Unicode Character Codes 1012

8 Introduction to Java 8 Functional Programming 1013

9 The Iterator Interface 1017

10 Cloning 1019

11 Java Reserved Keywords 1023

CREDITS 1024

INDEX 1027

 contents 35

This page intentionally left blank

Introduction to
Computers and Java

1.1 COMPUTER BASICS 38
Hardware and Memory 39
Programs 42
Programming Languages, Compilers, and

Interpreters 43
Java Bytecode 45
Class Loader 47

1.2 A SIP OF JAVA 48
History of the Java Language 48
Applications and Applets 49
A First Java Application Program 50
Writing, Compiling, and Running a Java

Program 55

1.3 PROGRAMMING BASICS 57
Object-Oriented Programming 57
Algorithms 61
Testing and Debugging 63
Software Reuse 64

1.4 GRAPHICS SUPPLEMENT 66
A Sample JavaFX Application 67
Size and Position of Figures 70
Drawing Ovals and Circles 71
Drawing Arcs 73

1

Chapter Summary 75
Practice Programs 78

Programming Projects 80
Answers to Self-Test Questions 80

It is by no means hopeless to expect to make a machine for really very
difficult mathematical problems. But you would have to proceed step-by-step.
I think electricity would be the best thing to rely on.

—CHARLES SANDERS PEIRCE (1839–1914)

INTRODUCTION

This chapter gives you a brief overview of computer hardware and software. Much
of this introductory material applies to programming in any language, not just to
programming in Java. Our discussion of software will include a description of a
methodology for designing programs known as object-oriented programming.
Section 1.2 introduces the Java language and explains a sample Java program.

Section 1.4 is the first of a number of graphics supplements that end each
of the first ten chapters and provide an introduction to the graphics capabilities
of the Java language. These graphics supplements are interdependent, and
each one uses the Java topics presented in its chapter.

OBJECTIVES

After studying this chapter, you should be able to

• Give a brief overview of computer hardware and software
• Give an overview of the Java programming language
• Describe the basic techniques of program design in general and object-

oriented programming in particular
• Describe JavaFX and some graphics basics

PREREQUISITES

This first chapter does not assume that you have had any previous programming
experience, but it does assume that you have access to a computer. To get the
full value from the chapter, and from the rest of this book, you should have a
computer that has the Java language installed, so that you can try out what you
are learning. Appendix 1 describes how to obtain and install a free copy of the
Java language for your computer.

1.1 COMPUTER BASICS

The Analytical Engine has no pretensions whatever to originate anything. It can
do whatever we know how to order it to perform. It can follow analysis; but it
has no power of anticipating any analytical relations or truths. Its province is to
assist us in making available what we are already acquainted with.

—ADA AUGUSTA, Countess of Lovelace (1815–1852)

38

 1.1 Computer Basics 39

Computer systems consist of hardware and software. The hardware is the
physical machine. A set of instructions for the computer to carry out is called a
program. All the different kinds of programs used to give instructions to the
computer are collectively referred to as software. In this book, we will discuss
software, but to understand software, it helps to know a few basic things about
computer hardware.

Hardware and Memory

Most computers available today have the same basic components, configured
in basically the same way. They all have input devices, such as a keyboard and
a mouse. They all have output devices, such as a display screen and a printer.
They also have several other basic components, usually housed in some sort of
cabinet, where they are not so obvious. These other components store data
and perform the actual computing.

The CPU, or central processing unit, or simply the processor, is the
device inside your computer that follows a program’s instructions. Currently,
one of the better-known processors is the Intel®Core™i7 processor. The
processor can carry out only very simple instructions, such as moving numbers
or other data from one place in memory to another and performing some
basic arithmetic operations like addition and subtraction. The power of a
computer comes from its speed and the intricacies of its programs. The basic
design of the hardware is conceptually simple.

A computer’s memory holds data for the computer to process, and it
holds the result of the computer’s intermediate calculations. Memory exists in
two basic forms, known as main memory and auxiliary memory. Main
memory holds the current program and much of the data that the program is
manipulating. You most need to be aware of the nature of the main memory
when you are writing programs. The information stored in main memory
typically is volatile, that is, it disappears when you shut down your computer.
In contrast, the data in auxiliary memory, or secondary memory, exists even
when the computer’s power is off. All of the various kinds of disks—including
hard disk drives, flash drives, compact discs (CDs), and digital video discs
(DVDs) are auxiliary memory.

To make this more concrete, let’s look at an example. You might have
heard a description of a personal computer (PC) as having, say, 1 gigabyte of
RAM and a 200-gigabyte hard drive. RAM—short for random access
memory—is the main memory, and the hard drive is the principal—but not
the only—form of auxiliary memory. A byte is a quantity of memory. So
1 gigabyte of RAM is approximately 1 billion bytes of memory, and a
200-gigabyte hard drive has approximately 200 billion bytes of memory. What
exactly is a byte? Read on.

The computer’s main memory consists of a long list of numbered bytes.
The number of a byte is called its address. A byte is the smallest addressable
unit of memory. A piece of data, such as a number or a keyboard character, can

Hardware and
software make
up a computer
system

The CPU, or
central processing
unit, or processor,
performs the
instructions in a
program

Main memory is
volatile; auxiliary
memory is not

40 CHAPTER 1 / Introduction to Computers and Java

be stored in one of these bytes. When the computer needs to recover the data
later, it uses the address of the byte to find the data item.

A byte, by convention, contains eight digits, each of which is either 0 or 1.
Actually, any two values will do, but the two values are typically written as 0
and 1. Each of these digits is called a binary digit or, more typically, a bit. A
byte, then, contains eight bits of memory. Both main memory and auxiliary
memory are measured in bytes.

Data of various kinds, such as numbers, letters, and strings of characters, is
encoded as a series of 0s and 1s and placed in the computer’s memory. As it
turns out, one byte is just large enough to store a single keyboard character.
This is one of the reasons that a computer’s memory is divided into these
eight-bit bytes instead of into pieces of some other size. However, storing
either a string of characters or a large number requires more than a single byte.
When the computer needs to store a piece of data that cannot fit into a single
byte, it uses several adjacent bytes. These adjacent bytes are then considered to
be a single, larger memory location, and the address of the first byte is used as
the address of the entire memory location. Figure 1.1 shows how a typical
computer’s main memory might be divided into memory locations. The
addresses of these larger locations are not fixed by the hardware but depend
on the program using the memory.

Groups of
adjacent bytes
can serve as a
single memory
location

2-byte memory location at address 3021

3-byte memory location at address 3024

2-byte memory location at address 3027

1-byte memory location at address 3023

11110000

11001100

00110001

11100001

10000001

10111100

01111111

11001110

10101010

01100011

10100010

3021

3022

3025

3026

3030

3031

3029

3024

3023

3027

3028

Bytes

Byte addresses

FIGURE 1.1 Main Memory

Main memory
consists of
addressable
eight-bit bytes

 1.1 Computer Basics 41

Recall that main memory holds the current program and much of its data.
Auxiliary memory is used to hold data in a more or less permanent form.
Auxiliary memory is also divided into bytes, but these bytes are grouped into
much larger units known as files. A file can contain almost any sort of data,
such as a program, an essay, a list of numbers, or a picture, each in an encoded
form. For example, when you write a Java program, you will store the program
in a file that will typically reside in some kind of disk storage. When you use
the program, the contents of the program file are copied from auxiliary
memory to main memory.

You name each file and can organize groups of files into directories, or
folders. Folder and directory are two names for the same thing. Some computer
systems use one name, and some use the other.

FAQ1 Why just 0s and 1s?

Computers use 0s and 1s because it is easy to make an electrical device
that has only two stable states. However, when you are programming,
you normally need not be concerned about the encoding of data as 0s
and 1s. You can program as if the computer directly stored numbers,
letters, or strings of characters in memory.

There is nothing special about calling the states zero and one. We
could just as well use any two names, such as A and B or true and false.
The important thing is that the underlying physical device has two stable
states, such as on and off or high voltage and low voltage. Calling these
two states zero and one is simply a convention, but it’s one that is
almost universally followed.

1 FAQ stands for “frequently asked question.”

RECAP Bytes and Memory Locations

A computer’s main memory is divided into numbered units called bytes.
The number of a byte is called its address. Each byte can hold eight
binary digits, or bits, each of which is either 0 or 1. To store a piece of
data that is too large to fit into a single byte, the computer uses several
adjacent bytes. These adjacent bytes are thought of as a single, larger
memory location whose address is the address of the first of the adjacent
bytes.

A file is a group
of bytes stored in
auxiliary memory

A directory, or
folder, contains
groups of files

42 CHAPTER 1 / Introduction to Computers and Java

Programs

You probably have some idea of what a program is. You use programs all the
time. For example, text editors and word processors are programs. As we
mentioned earlier, a program is simply a set of instructions for a computer to
follow. When you give the computer a program and some data and tell the
computer to follow the instructions in the program, you are running, or
executing, the program on the data.

Figure 1.2 shows two ways to view the running of a program. To see the
first way, ignore the dashed lines and blue shading that form a box. What’s left
is what really happens when you run a program. In this view, the computer
has two kinds of input. The program is one kind of input; it contains the
instructions that the computer will follow. The other kind of input is the data
for the program. It is the information that the computer program will process.
For example, if the program is a spelling-check program, the data would be the
text that needs to be checked. As far as the computer is concerned, both the
data and the program itself are input. The output is the result—or results—
produced when the computer follows the program’s instructions. If the
program checks the spelling of some text, the output might be a list of words
that are misspelled.

This first view of running a program is what really happens, but it is not
always the way we think about running a program. Another way is to think of
the data as the input to the program. In this second view, the computer and
the program are considered to be one unit. Figure 1.2 illustrates this view by
surrounding the combined program–computer unit with a dashed box and
blue shading. When we take this view, we think of the data as input to the
program and the results as output from the program. Although the computer
is understood to be there, it is presumed just to be something that assists the
program. People who write programs—that is, programmers—find this
second view to be more useful when they design a program.

Your computer has more programs than you might think. Much of what
you consider to be “the computer” is actually a program—that is, software—
rather than hardware. When you first turn on a computer, you are already

Output

Program

Computer
Data (input for the

program)

FIGURE 1.2 Running a Program

A program is a
set of computer
instructions

 1.1 Computer Basics 43

running and interacting with a program. That program is called the operating
system. The operating system is a kind of supervisory program that oversees
the entire operation of the computer. If you want to run a program, you tell
the operating system what you want to do. The operating system then retrieves
and starts the program. The program you run might be a text editor, a browser
to surf the World Wide Web, or some program that you wrote using the Java
language. You might tell the operating system to run the program by using a
mouse to click an icon, by choosing a menu item, or by typing in a simple
command. Thus, what you probably think of as “the computer” is really the
operating system. Some common operating systems are Microsoft Windows,
Apple’s (Macintosh) Mac OS, Linux, and UNIX.

FAQ What exactly is software?

The word software simply means programs. Thus, a software company
is a company that produces programs. The software on your computer is
just the collection of programs on your computer.

Programming Languages, Compilers,
and Interpreters

Most modern programming languages are designed to be relatively easy for
people to understand and use. Such languages are called high-level languages.
Java is a high-level language. Most other familiar programming languages,
such as Visual Basic, C++, C#, COBOL, Python, and Ruby, are also high-level
languages. Unfortunately, computer hardware does not understand high-level
languages. Before a program written in a high-level language can be run, it
must be translated into a language that the computer can understand.

The language that the computer can directly understand is called machine
language. Assembly language is a symbolic form of machine language that is
easier for people to read. So assembly language is almost the same thing as
machine language, but it needs some minor additional translation before it
can run on the computer. Such languages are called low-level languages.

The translation of a program from a high-level language, like Java, to a low-
level language is performed entirely or in part by another program. For some
high-level languages, this translation is done as a separate step by a program
known as a compiler. So before you run a program written in a high-level
language, you must first run the compiler on the program. When you do this,
you are said to compile the program. After this step, you can run the resulting
machine-language program as often as you like without compiling it again.

The terminology here can get a bit confusing, because both the input to
the compiler program and the output from the compiler program are

An operating
system is a
program that
supervises a
computer’s
operation

Java is a high-
level language

Computers
execute a low-
level language
called machine
language

Compile once,
execute often

44 CHAPTER 1 / Introduction to Computers and Java

programs. Everything in sight is a program of some kind or other. To help
avoid confusion, we call the input program, which in our case will be a Java
program, the source program, or source code. The machine-language
program that the compiler produces is often called the object program, or
object code. The word code here just means a program or a part of a
program.

RECAP Compiler

A compiler is a program that translates a program written in a high-level
language, such as Java, into a program in a simpler language that the
computer can more or less directly understand.

RECAP Interpreter

An interpreter is a program that alternates the translation and execution
of statements in a program written in a high-level language.

Some high-level languages are translated not by compilers but rather by
another kind of program called an interpreter. Like a compiler, an interpreter
translates program statements from a high-level language to a low-level
language. But unlike a compiler, an interpreter executes a portion of code
right after translating it, rather than translating the entire program at once.
Using an interpreter means that when you run a program, translation
alternates with execution. Moreover, translation is done each time you run
the program. Recall that compilation is done once, and the resulting object
program can be run over and over again without engaging the compiler
again. This implies that a compiled program generally runs faster than an
interpreted one.

One disadvantage of the processes we just described for translating
programs written in most high-level programming languages is that you need
a different compiler or interpreter for each type of language or computer
system. If you want to run your source program on three different types of
computer systems, you need to use three different compilers or interpreters.
Moreover, if a manufacturer produces an entirely new type of computer
system, a team of programmers must write a new compiler or interpreter for
that computer system. This is a problem, because these compilers and
interpreters are large programs that are expensive and time-consuming to
write. Despite this cost, many high-level-language compilers and interpreters
work this way. Java, however, uses a slightly different and much more versatile

Compilers
translate source
code into object
code

Interpreters
translate and
execute portions
of code at a time

 1.1 Computer Basics 45

approach that combines a compiler and an interpreter. We describe Java’s
approach next.

Java Bytecode

The Java compiler does not translate your program into the machine language
for your particular computer. Instead, it translates your Java program into a
language called bytecode. Bytecode is not the machine language for any
particular computer. Instead, bytecode is a machine language for a hypothetical
computer known as a virtual machine. A virtual machine is not exactly like any
particular computer, but is similar to all typical computers. Translating a program
written in bytecode into a machine-language program for an actual computer is
quite easy. The program that does this translation is a kind of interpreter called
the Java Virtual Machine, or JVM. The JVM translates and runs the Java bytecode.

To run your Java program on your computer, you proceed as follows: First,
you use the compiler to translate your Java program into bytecode. Then you
use the particular JVM for your computer system to translate each bytecode
instruction into machine language and to run the machine-language
instructions. The whole process is shown in Figure 1.3.

Modern implementations of the JVM use a Just-in-Time (JIT), compiler. The
JIT compiler reads the bytecode in chunks and compiles entire chunks to native
machine language instructions as needed. The compiled machine language
instructions are remembered for future use so a chunk needs to be compiled
only once. This model generally runs programs faster than the interpreter model,
which repeatedly translates the next bytecode instruction to machine code.

It sounds as though Java bytecode just adds an extra step to the process.
Why not write compilers that translate directly from Java to the machine
language for your particular computer system? That could be done, and it is
what is done for many other programming languages. Moreover, that
technique would produce machine-language programs that typically run
faster. However, Java bytecode gives Java one important advantage, namely,
portability. After you compile your Java program into bytecode, you can run
that bytecode on any computer. When you run your program on another
computer, you do not need to recompile it. This means that you can send your
bytecode over the Internet to another computer and have it run easily on that
computer regardless of the computer’s operating system. That is one of the
reasons Java is good for Internet applications.

Portability has other advantages as well. When a manufacturer produces a
new type of computer system, the creators of Java do not have to design a new
Java compiler. One Java compiler works on every computer. Of course, every
type of computer must have its own bytecode interpreter—the JVM—that
translates bytecode instructions into machine-language instructions for that
particular computer, but these interpreters are simple programs compared to a
compiler. Thus, Java can be added to a new computer system very quickly and
very economically.

A compiler
translates Java
code into
bytecode

The JVM is an
interpreter that
translates and
executes
bytecode

Java bytecode
runs on any
computer that
has a JVM

46 CHAPTER 1 / Introduction to Computers and Java

Java program

Java compiler

Bytecode
program

Machine-language
instructions

Bytecode interpreter (JVM)

Computer execution
of machine-language instructions

Data for
Java program

Output of
Java program

FIGURE 1.3 Compiling and Running a Java Program

RECAP Bytecode

The Java compiler translates your Java program into a language called
bytecode. This bytecode is not the machine language for any particular
computer, but it is similar to the machine language of most common
computers. Bytecode is easily translated into the machine language of
a given computer. Each type of computer will have its own translator—
called an interpreter—that translates from bytecode instructions to
machine-language instructions for that computer.

 1.1 Computer Basics 47

Class Loader

A Java program is seldom written as one piece of code all in one file. Instead,
it typically consists of different pieces, known as classes. We will talk about
classes in detail later, but thinking of them as pieces of code is sufficient for
now. These classes are often written by different people, and each class is
compiled separately. Thus, each class is translated into a different piece of
bytecode. To run your program, the bytecode for these various classes must be
connected together. The connecting is done by a program known as the class
loader. This connecting is typically done automatically, so you normally need
not be concerned with it. In other programming languages, the program
corresponding to the Java class loader is called a linker.

SELF-TEST QUESTIONS

Answers to the self-test questions appear at the end of each chapter.

1. What are the two kinds of memory in a computer?

2. What is software?

3. What data would you give to a program that computes the sum of two
numbers?

Knowing about Java bytecode is important, but in the day-to-day business
of programming, you will not even be aware that it exists. You normally will
give two commands, one to compile your Java program into bytecode and one
to run your program. The run command tells the bytecode interpreter to
execute the bytecode. This run command might be called “run” or something
else, but it is unlikely to be called “interpret.” You will come to think of the
run command as running whatever the compiler produces, and you will not
even think about the translation of bytecode to machine language.

FAQ Why is it called bytecode?

Programs in low-level languages, such as bytecode and machine-language
code, consist of instructions, each of which can be stored in a few bytes
of memory. Typically, one byte of each instruction contains the operation
code, or opcode, which specifies the operation to be performed. The
notion of a one-byte opcode gave rise to the term bytecode.

For now, think of
a class as a piece
of code

48 CHAPTER 1 / Introduction to Computers and Java

4. What data would you give to a program that computes the average of all
the quizzes you have taken in a course?

5. What is the difference between a program written in a high-level language,
a program in machine language, and a program expressed in Java
bytecode?

6. Is Java a high-level language or a low-level language?

7. Is Java bytecode a high-level language or a low-level language?

8. What is a compiler?

9. What is a source program?

10. What do you call a program that translates Java bytecode into machine-
language instructions?

1.2 A SIP OF JAVA

“New Amsterdam, madame,” replied the Prince, “and after that the Sunda
Islands and beautiful Java with its sun and palm trees.”

—HENRY DE VERE STACPOOLE, The Beach of Dreams

In this section, we describe some of the characteristics of the Java language and
examine a simple Java program. This introduction is simply an overview and a
presentation of some terminology. We will begin to explore the details of Java
in the next chapter.

History of the Java Language

Java is widely viewed as a programming language for Internet applications.
However, this book, and many other people, views Java as a general-purpose
programming language that can be used without any reference to the Internet.
At its birth, Java was neither of these things, but it eventually evolved into
both.

The history of Java goes back to 1991, when James Gosling and his team at
Sun Microsystems began designing the first version of a new programming
language that would become Java—though it was not yet called that. This new
language was intended for programming home appliances, like toasters and
TVs. That sounds like a humble engineering task, but in fact it’s a very
challenging one. Home appliances are controlled by a wide variety of computer
processors (chips). The language that Gosling and his team were designing
had to work on all of these different processors. Moreover, a home appliance
is typically an inexpensive item, so no manufacturer would be willing to invest

 1.2 A Sip of Java 49

large amounts of time and money into developing complicated compilers to
translate the appliance-language programs into a language the processor could
understand. To solve these challenges, the designers wrote one piece of
software that would translate an appliance-language program into a program
in an intermediate language that would be the same for all appliances and
their processors. Then a small, easy-to-write and hence inexpensive program
would translate the intermediate language into the machine language for a
particular appliance or computer. The intermediate language was called
bytecode. The plan for programming appliances using this first version of Java
never caught on with appliance manufacturers, but that was not the end of the
story.

In 1994, Gosling realized that his language—now called Java—would
be ideal for developing a Web browser that could run programs over the
Internet. The Web browser was produced by Patrick Naughton and Jonathan
Payne at Sun Microsystems. Originally called WebRunner and then HotJava,
this browser is no longer supported. But that was the start of Java’s
connection to the Internet. In the fall of 1995, Netscape Communications
Corporation decided to make the next release of its Web browser capable of
running Java programs. Other companies associated with the Internet
followed suit and have developed software that accommodates Java
programs.

FAQ Why is the language named Java?

The question of how Java got its name does not have a very interesting
answer. The current custom is to name programming languages in pretty
much the same way that parents name their children. The creator of the
programming language simply chooses any name that sounds good to
her or him. The original name of the Java language was Oak. Later the
creators realized that there already was a computer language named
Oak, so they needed another name, and Java was chosen. One hears
conflicting explanations of the origin of the name Java. One traditional,
and perhaps believable, story is that the name was thought of during a
long and tedious meeting while the participants drank coffee, and the
rest, as they say, is history.

Applications and Applets

This book focuses on Java applications. An application is just a regular
program. Another kind of program is a Java applet. An applet sounds as
though it would be a little apple, but the name is meant to convey the idea of

Applications are
regular programs

50 CHAPTER 1 / Introduction to Computers and Java

a little application. Applets and applications are almost identical. The
difference is that an application is meant to be run on your computer, like
any other program, whereas an applet is meant to be sent to another location
on the Internet and run there from a web browser. Oracle is transitioning
away from Java applets in favor of technologies such as JavaScript and
HTML5. As a result we will only cover applets in Chapter 14, which is
available online.

A First Java Application Program

Our first Java program is shown in Listing 1.1. Below the program, we show
a sample of the screen output that might be produced when a person runs
and interacts with the program. The person who interacts with a program is
called the user. The text typed in by the user is shown in color. If you run
this program—and you should do so—both the text displayed by the
program and the text you type will appear in the same color on your
computer screen.

The user might or might not be the programmer, that is, the person who
wrote the program. As a student, you often are both the programmer and the
user, but in a real-world setting, the programmer and user are generally
different people. This book is teaching you to be the programmer. One of the
first things you need to learn is that you cannot expect the users of your
program to know what you want them to do. For that reason, your program
must give the user understandable instructions, as we have done in the sample
program.

At this point, we just want to give you a feel for the Java language by
providing a brief, informal description of the sample program shown in
Listing 1.1. Do not worry if some of the details of the program are not completely
clear on this first reading. This is just a preview of things to come. In Chapter 2,
we will explain the details of the Java features used in the program.

The first line

import java.util.Scanner;

tells the compiler that this program uses the class Scanner. Recall that for
now, we can think of a class as a piece of software that we can use in a
program. This class is defined in the package java.util, which is short for
“Java utility.” A package is a library of classes that have already been defined
for you.

The remaining lines define the class FirstProgram, extending from the
first open brace ({) to the last close brace (}):

public class FirstProgram
{
 . . .
}

Applets run
within a Web
browser

A user runs and
interacts with a
program

A package is a
library of classes

 1.2 A Sip of Java 51

import java.util.Scanner;

public class FirstProgram
{

 public static void main(String[] args)
 {
 System.out.println("Hello out there.");
 System.out.println("I will add two numbers for you.");
 System.out.println("Enter two whole numbers on a line:");

 int n1, n2;

 Scanner keyboard = new Scanner(System.in);

 n1 = keyboard.nextInt();
 n2 = keyboard.nextInt();

 System.out.print1n("The sum of those two numbers is");
 System.out.print1n(n1 + n2);
 }
}

Sample Screen Output

LISTING 1.1 A Sample Java Program

Name of the class—your choice. “This program
should be in a file named FirstProgram.java”

Gets the Scanner class from the
package (library) java.util

Sends output to screen

Says that n1 and n2 are variables
that hold integers (whole numbers)

Readies the program
for keyboard input

Reads one whole number
from the keyboard

Hello out there.
I will add two numbers for you.
Enter two whole numbers on a line:
12 30
The sum of those two numbers is
42

Within these braces are typically one or more parts called methods. Every
Java application has a method called main, and often other methods. The
definition of the method main extends from another open brace to another
close brace:

public static void main(String[] args)
{
 . . .
}

A class contains
methods

Every application
has a main
method

52 CHAPTER 1 / Introduction to Computers and Java

The words public static void will have to remain a mystery for now, but
they are required. Chapters 5 and 6 will explain these details.

Any statements, or instructions, within a method define a task and make
up the body of the method. The first three statements in our main method’s
body are the first actions this program performs:

System.out.println("Hello out there.");
System.out.println("I will add two numbers for you.");
System.out.println("Enter two whole numbers on a line:");

Each of these statements begins with System.out.println and causes the
quoted characters given within the parentheses to be displayed on the screen
on their own line. For example,

System.out.println("Hello out there.");

causes the line

Hello out there.

to be written to the screen.
For now, you can consider System.out.println to be a funny way of

saying “Display what is shown in parentheses.” However, we can tell you a
little about what is going on here and introduce some terminology. Java
programs use things called software objects or, more simply, objects to
perform actions. The actions are defined by methods. System.out is an object
used to send output to the screen; println is the method that performs this
action for the object System.out. That is, println sends what is within its
parentheses to the screen. The item or items inside the parentheses are called
arguments and provide the information the method needs to carry out its
action. In each of these first three statements, the argument for the method
println is a string of characters between quotes. This argument is what
println writes to the screen.

An object performs an action when you invoke, or call, one of its methods.
In a Java program, you write such a method call, or method invocation, by
writing the name of the object, followed by a period—called a dot in computer
jargon—followed by the method name and some parentheses that might or
might not contain arguments.

The next line of the program in Listing 1.1,

int n1, n2;

says that n1 and n2 are the names of variables. A variable is something that can
store a piece of data. The int says that the data must be an integer, that is, a
whole number; int is an example of a data type. A data type specifies a set of
possible values and the operations defined for those values. The values of a
particular data type are stored in memory in the same format.

Objects perform
actions when you
call its methods

Variables store
data

A data type
specifies a set of
values and their
operations

 1.2 A Sip of Java 53

The next line

Scanner keyboard = new Scanner(System.in);

enables the program to accept, or read, data that a user enters at the keyboard.
We will explain this line in detail in Chapter 2.2

Next, the line

n1 = keyboard.nextInt();

reads a number that is typed at the keyboard and then stores this number in
the variable n1. The next line is almost the same except that it reads another
number typed at the keyboard and stores this second number in the variable
n2. Thus, if the user enters the numbers 12 and 30, as shown in the sample
output, the variable n1 will contain the number 12, and the variable n2 will
contain the number 30.

Finally, the statements

System.out.println("The sum of those two numbers is");
System.out.println(n1 + n2);

display an explanatory phrase and the sum of the numbers stored in the
variables n1 and n2. Note that the second line contains the expression n1 + n2
rather than a string of characters in quotes. This expression computes the sum
of the numbers stored in the variables n1 and n2. When an output statement
like this contains a number or an expression whose value is a number, the
number is displayed on the screen. So in the sample output shown in Listing
1.1, these two statements produce the lines

The sum of those two numbers is
42

Notice that each invocation of println displays a separate line of output.
The only thing left to explain in this first program are the semicolons at

the end of certain lines. The semicolon acts as ending punctuation, like a
period in an English sentence. A semicolon ends an instruction to the
computer.

Of course, Java has precise rules for how you write each part of a program.
These rules form the grammar for the Java language, just as the rules for the
English language make up its grammar. However, Java’s rules are more precise.
The grammatical rules for any language, be it a programming language or a
natural language, are called the syntax of the language.

2 As you will see in the next chapter, you can use some other name in place of key-
board, but that need not concern us now. Anyway, keyboard is a good word to use
here.

A program gets,
or reads, data
from a user

Syntax is the set
of grammatical
rules for a
language

54 CHAPTER 1 / Introduction to Computers and Java

RECAP Invoking (Calling) a Method

A Java program uses objects to perform actions that are defined by
methods. An object performs an action when you invoke, or call, one of
its methods. You indicate this in a program by writing the object name,
followed by a period—called a dot—then the method name, and finally
a pair of parentheses that can contain arguments. The arguments are
information for the method.

EXAMPLES:

System.out.println("Hello out there.");
n1 = keyboard.nextInt();

In the first example, System.out is the object, println is the method,
and "Hello out there." is the argument. When a method requires
more than one argument, you separate the arguments with commas. A
method invocation is typically followed by a semicolon.

In the second example, keyboard is the object and nextInt is the
method. This method has no arguments, but the parentheses are
required nonetheless.

FAQ Why do we need an import for input but not for output?

The program in Listing 1.1 needs the line

import java.util.Scanner;

to enable keyboard input, such as the following:

n1 = keyboard.nextInt();

Why don’t we need a similar import to enable screen output such as

System.out.println("Hello out there.");

The answer is rather dull. The package that includes definitions and code
for screen output is imported automatically into a Java program.

 1.2 A Sip of Java 55

SELF-TEST QUESTIONS

11. What would the following statement, when used in a Java program,
display on the screen?

System.out.println("Java is great!");

12. Write a statement or statements that can be used in a Java program to
display the following on the screen:

Java for one.
Java for all.

13. Suppose that mary is an object that has the method increaseAge. This
method takes one argument, an integer. Write an invocation of the method
increaseAge by the object mary, using the argument 5.

14. What is the meaning of the following line in the program in Listing 1.1?

n1 = keyboard.nextInt();

15. Write a complete Java program that uses System.out.println to display
the following to the screen when the program is run:

Hello World!

Your program does nothing else. Note that you do not need to fully
understand all the details of the program in order to write it. You can
simply follow the model of the program in Listing 1.1. (You do want to
understand all the details eventually, but that may take a few more
chapters.)

Writing, Compiling, and Running a Java Program

A Java program is divided into smaller parts called classes. Each program can
consist of any number of class definitions. Although we wrote only one class—
FirstProgram—for the program in Listing 1.1, in fact, the program uses two
other classes: System and Scanner. However, these two classes are provided for
you by Java.

You can write a Java class by using a simple text editor. For example, you
could use Notepad in a Windows environment or TextEdit on a Macintosh
system. Normally, each class definition you write is in a separate file. Moreover,
the name of that file must be the name of the class, with .java added to the
end. For example, the class FirstProgram must be in a file named
FirstProgram.java.

Before you can run a Java program, you must translate its classes into a
language that the computer can understand. As you saw earlier in this chapter,

Writing a Java
program

Each class is in a
file whose name
ends in .java

56 CHAPTER 1 / Introduction to Computers and Java

this translation process is called compiling. As a rule, you do not need to
compile classes like Scanner that are provided for you as part of Java. You
normally need compile only the classes that you yourself write.

To compile a Java class using the free Java system distributed by Oracle®,
you use the command javac followed by the name of the file containing
the class. For example, to compile a class named MyClass that is in a file
named MyClass.java, you give the following command to the operating
system:

javac MyClass.java

Thus, to compile the class in Listing 1.1, you would give the following
command:

javac FirstProgram.java

When you compile a Java class, the translated version of the class—its
bytecode—is placed in a file whose name is the name of the class followed by
.class. So when you compile a class named MyClass in the file MyClass.
java, the resulting bytecode is stored in a file named MyClass .class. When
you compile the file named FirstProgram.java, the resulting bytecode is
stored in a file named FirstProgram.class.

Although a Java program can involve any number of classes, you run only
the class that you think of as the program. This class will contain a main
method beginning with words identical to or very similar to

public static void main(String[] args)

These words will likely, but not always, be someplace near the beginning of
the file. The critical words to look for are public static void main. The
remaining portion of the line might use somewhat different wording.

You run a Java program by giving the command java, followed by the
name of the class you think of as the program. For example, to run the program
in Listing 1.1, you would give the following one-line command:

java FirstProgram

Note that you write the class name, such as FirstProgram, not the name of the
file containing the class or its bytecode. That is, you omit any .java or .class
ending. When you run a Java program, you are actually running the Java
bytecode interpreter on the compiled version of your program.

The easiest way to write, compile, and run a Java program is to use an
integrated development environment, or IDE. An IDE combines a text editor
with menu commands for compiling and running a Java program. IDEs such
as BlueJ, Eclipse, and NetBeans are free and available for Windows, Mac OS,
and other systems. Appendix 1 provides links to these IDEs and other resources
for writing Java programs.

Compiling a Java
program

Use the command
javac to compile

Bytecode is in a
file whose name
ends in .class

VideoNote
Compiling a Java program

Use the command
java to execute

 1.3 Programming Basics 57

SELF-TEST QUESTIONS

16. Suppose you define a class named YourClass in a file. What name should
the file have?

17. Suppose you compile the class YourClass. What will be the name of the
file containing the resulting bytecode?

1.3 PROGRAMMING BASICS

’The time has come,’ the Walrus said,
’To talk of many things:
Of shoes–and ships–and sealing wax–
Of cabbages–and kings . . . ’

—LEWIS CARROLL, Through the Looking-Glass

Programming is a creative process. We cannot tell you exactly how to write a
program to do whatever task you might want it to perform. However, we can
give you some techniques that experienced programmers have found to be
extremely helpful. In this section, we discuss some basics of these techniques.
They apply to programming in almost any programming language and are not
particular to Java.

Object-Oriented Programming

Java is an object-oriented programming language, abbreviated OOP. What is
OOP? The world around us is made up of objects, such as people, automobiles,
buildings, trees, shoes, ships, sealing wax, cabbages, and kings. Each of these
objects has the ability to perform certain actions, and each action can affect
some of the other objects in the world. OOP is a programming methodology
that views a program as similarly consisting of objects that can act alone or

FAQ I tried to run the sample program in Listing 1.1. After I
typed two numbers on a line, nothing happened. Why?

When you type a line of data at the keyboard for a program to read, you
will see the characters you type, but the Java program does not actually
read your data until you press the Enter (Return) key. Always press the
Enter key when you have finished typing a line of input data at the
keyboard.

Software objects
act and interact

58 CHAPTER 1 / Introduction to Computers and Java

interact with one another. An object in a program—that is, a software object—
might represent a real-world object, or it might be an abstraction.

For example, consider a program that simulates a highway interchange so
that traffic flow can be analyzed. The program would have an object to
represent each automobile that enters the interchange, and perhaps other
objects to simulate each lane of the highway, the traffic lights, and so on. The
interactions among these objects can lead to a conclusion about the design of
the interchange.

Object-oriented programming comes with its own terminology. An object
has characteristics, or attributes. For example, an automobile object might
have attributes such as its name, its current speed, and its fuel level. The values
of an object’s attributes give the object a state. The actions that an object can
take are called behaviors. As we saw earlier, each behavior is defined by a
piece of Java code called a method.

Objects of the same kind are said to have the same data type and belong to
the same class. A class defines a kind of object; it is a blueprint for creating
objects. The data type of an object is the name of its class. For example, in a
highway simulation program, all the simulated automobiles might belong to
the same class—probably called Automobile—and so their data type is
Automobile.

All objects of a class have the same attributes and behaviors. Thus, in a
simulation program, all automobiles have the same behaviors, such as moving
forward and moving backward. This does not mean that all simulated
automobiles are identical. Although they have the same attributes, they can
have different states. That is, a particular attribute can have different values
among the automobiles. So we might have three automobiles having different
makes and traveling at different speeds. All this will become clearer when we
begin to write Java classes.

As you will see, this same object-oriented methodology can be applied to
any sort of computer program and is not limited to simulation programs.
Object-oriented programming is not new, but its use in applications outside of
simulation programs did not become popular until the early 1990s.

RECAP Objects, Methods, and Classes

An object is a program construction that has data—called attributes—
associated with it and that can perform certain actions known as
behaviors. A class defines a type or kind of object. It is a blueprint for
defining the objects. All objects of the same class have the same kinds
of data and the same behaviors. When the program is run, each object
can act alone or interact with other objects to accomplish the program’s
purpose. The actions performed by objects are defined by methods.

The values of an
object’s attributes
define its state

A class is a
blueprint for
objects

 1.3 Programming Basics 59

Object-oriented programming uses classes and objects, but it does not use
them in just any old way. There are certain design principles that must be
followed. The following are three of the main design principles of object-
oriented programming:

Encapsulation
Polymorphism
Inheritance

Encapsulation sounds as though it means putting things into a capsule
or, to say it another way, packaging things up. This intuition is basically
correct. The most important part of encapsulation, however, is not simply that
things are put into a capsule, but that only part of what is in the capsule is
visible. When you produce a piece of software, you should describe it in a way
that tells other programmers how to use it, but that omits all the details of
how the software works. Note that encapsulation hides the fine detail of what
is inside the “capsule.” For this reason, encapsulation is often called
information hiding.

The principles of encapsulation apply to programming in general, not just
to object-oriented programming. But object-oriented languages enable a
programmer not only to realize these principles but also to enforce them.
Chapter 5 will develop the concept of encapsulation further.

Polymorphism comes from a Greek word meaning “many forms.” The
basic idea of polymorphism is that it allows the same program instruction to
mean different things in different contexts. Polymorphism commonly occurs
in English, and its use in a programming language makes the programming

FAQ What if I know some other programming language?

If Java is your first programming language, you can skip the answer
to this question. If you know some other programming language, the
discussion here may help you to understand objects in terms of things
you already know about. If that other programming language is object
oriented, such as C++, C#, Python, or Ruby, you have a good idea of
what objects, methods, and classes are. They are basically the same
in all object-oriented programming languages, although some other
languages might use another term to mean the same thing as method.
If your familiarity is with an older programming language that does not
use objects and classes, you can think of objects in terms of other, older
programming constructs. For example, if you know about variables and
functions or procedures, you can think of an object as a variable that has
multiple pieces of data and its own functions or procedures. Methods are
really the same thing as what are called functions or procedures in older
programming languages.

OOP design
principles

Encapsulation
packages and
hides detail

60 CHAPTER 1 / Introduction to Computers and Java

language more like a human language. For example, the English instruction
“Go play your favorite sport” means different things to different people. To one
person, it means to play baseball. To another person, it means to play soccer.

Polymorphism also occurs in everyday tasks.3 Imagine a person who
whistles for her pets to come to dinner. Her dog runs, her bird flies, and her
fish swim to the top of their tank. They all respond in their own way. The
come-to-dinner whistle doesn’t tell the animals how to come to dinner, just to
come. Likewise when you press the “on” button on your laptop, your iPod, or
your toothbrush, each of them responds appropriately. In a programming
language such as Java, polymorphism means that one method name, used as
an instruction, can cause different actions, depending on the kinds of objects
that perform the action. For example, a method named showOutput might
display the data in an object. But the number of data items it displays and
their format depend on the kind of object that carries out the action. We will
explain polymorphism more fully in Chapter 8.

Inheritance is a way of organizing classes. You can define common
attributes and behaviors once and have them apply to a whole collection of
classes. By defining a general class, you can use inheritance later to define
specialized classes that add to or revise the details of the general class.

An example of such a collection of classes is shown in Figure 1.4. At each
level, the classifications become more specialized. The class Vehicle has certain
properties, like possessing wheels. The classes Automobile, Motorcycle, and Bus
“inherit” the property of having wheels, but add more properties or restrictions.
For example, an Automobile object has four wheels, a Motorcycle object has
two wheels, and a Bus object has at least four wheels. Inheritance enables the
programmer to avoid the repetition of programming instructions for each class.
For example, everything that is true of every object of type Vehicle, such as “has
wheels,” is described only once, and it is inherited by the classes Automobile,
Motorcycle, and Bus. Without inheritance, each of the classes Automobile,
Motorcycle, Bus, SchoolBus, LuxuryBus, and so forth would have to repeat
descriptions such as “has wheels.” Chapter 8 will explain inheritance more fully.

3 The examples here are based on those by Carl Alphonce in “Pedagogy and Practice of
Design Patterns and Objects First: A One-Act Play.” ACM SIGPLAN Notices 39, 5
(May 2004), 7–14.

RECAP Object-Oriented Programming

Object-oriented programming, or OOP, is a programming methodology
that defines objects whose behaviors and interactions accomplish a given
task. OOP follows the design principles of encapsulation, polymorphism,
and inheritance.

Polymorphism
enables objects
to behave
appropriately

Inheritance
organizes related
classes

 1.3 Programming Basics 61

Algorithms

Objects have behaviors that are defined by methods. You as a programmer
need to design these methods by giving instructions for carrying out the
actions. The hardest part of designing a method is not figuring out how to
express your solution in a programming language. The hardest part is coming
up with a plan or strategy for carrying out the action. This strategy is often
expressed as something called an algorithm.

An algorithm is a set of directions for solving a problem. To qualify as an
algorithm, the directions must be expressed so completely and so precisely
that somebody can follow them without having to fill in any details or make
any decisions that are not fully specified in the instructions. An algorithm can
be written in English, a programming language such as Java, or in pseudocode,
which is a combination of English and a programming language.

An example may help to clarify the notion of an algorithm. Our first sample
algorithm finds the total cost of a list of items. For example, the list of items might
be a shopping list that includes the price of each item. The algorithm would then
compute the total cost of all the items on the list. The algorithm is as follows:

Algorithm to compute the total cost of a list of items

1. Write the number 0 on the blackboard.

2. Do the following for each item on the list:

• Add the cost of the item to the number on the blackboard.
• Replace the old number on the blackboard with the result of this addition.

3. Announce that the answer is the number written on the blackboard.

Vehicle

Automobile Motorcycle Bus

LuxuryBusSchoolBusSportsCarFamilyCar

FIGURE 1.4 An Inheritance Hierarchy

An algorithm is
like a recipe

Algorithms are
often written in
pseudocode

VideoNote
Writing an algorithm

62 CHAPTER 1 / Introduction to Computers and Java

Most algorithms need to store some intermediate results. This algorithm
uses a blackboard to store intermediate results. If the algorithm is written in
the Java language and run on a computer, intermediate results are stored in the
computer’s memory.

SELF-TEST QUESTIONS

18. What is a method?

19. What is the relationship between classes and objects?

20. Do all objects of the same class have the same methods?

21. What is encapsulation?

22. What is information hiding?

23. What is polymorphism?

24. What is inheritance?

25. What is an algorithm?

26. What is pseudocode?

27. What attributes would you want for an object that represents a song?

28. Write an algorithm that counts the number of values that are odd in a list
of integers.

RECAP Algorithm

An algorithm is a set of directions for solving a problem. To qualify as an
algorithm, the directions must be expressed completely and precisely.

RECAP Pseudocode

Pseudocode is a mixture of English and Java. When using pseudocode,
you simply write each part of the algorithm in whatever language is
easiest for you. If a part is easier to express in English, you use English.
If another part is easier to express in Java, you use Java.

 1.3 Programming Basics 63

Testing and Debugging

The best way to write a correct program is to carefully design the necessary
objects and the algorithms for the objects’ methods. Then you carefully
translate everything into a programming language such as Java. In other words,
the best way to eliminate errors is to avoid them in the first place. However, no
matter how carefully you proceed, your program might still contain some
errors. When you finish writing a program, you should test it to see whether it
performs correctly and then fix any errors you find.

A mistake in a program is called a bug. For this reason, the process of
eliminating mistakes in your program is called debugging. There are three
commonly recognized kinds of bugs or errors: syntax errors, run-time errors,
and logic errors. Let’s consider them in that order.

A syntax error is a grammatical mistake in your program. You must follow
very strict grammatical rules when you write a program. Violating one of these
rules—for example, omitting a required punctuation mark—is a syntax error.
The compiler will detect syntax errors and provide an error message indicating
what it thinks the error is. If the compiler says you have a syntax error, you
probably do. However, the compiler is only guessing at what the error is, so it
could be incorrect in its diagnosis of the problem.

RECAP Syntax

The syntax of a programming language is the set of grammatical rules for
the language—that is, the rules for the correct way to write a program or
part of a program. The compiler will detect syntax errors in your program
and provide its best guess as to what is wrong.

An error that is detected when your program is run is called a run-time
error. Such an error will produce an error message. For example, you might
accidentally try to divide a number by zero. The error message might not be
easy to understand, but at least you will know that something is wrong.
Sometimes the error message can even tell you exactly what the problem is.

If the underlying algorithm for your program contains a mistake, or if you
write something in Java that is syntactically correct but logically wrong, your
program could compile and run without any error message. You will have
written a valid Java program, but you will not have written the program you
wanted. The program will run and produce output, but the output will be
incorrect. In this case, your program contains a logic error. For example, if you
were to mistakenly use a plus sign instead of a minus sign, you would make a
logic error. You could compile and run your program with no error messages,
but the program would give the wrong output. Sometimes a logic error will
lead to a run-time error that produces an error message. But often a logic error

Syntax errors are
grammatical
mistakes

Run-time errors
occur during
execution

Logic errors are
conceptual
mistakes in the
program or
algorithm

64 CHAPTER 1 / Introduction to Computers and Java

will not give you any error messages. For this reason, logic errors are the
hardest kind of error to locate.

GOTCHA Coping with “Gotchas”

Any programming language has details that can trip you up in ways that are
surprising or hard to deal with. These sorts of problems are often called pitfalls,
but a more colorful term is gotchas. A gotcha is like a trap waiting to catch you.
When you get caught in the trap, the trap has “got you” or, as it is more
commonly pronounced, “gotcha.”

In this book, we have “Gotcha” sections like this one that warn you about
many of the most common pitfalls and tell you how to avoid them or cope
with them. ■

GOTCHA Hidden Errors

Just because your program compiles and runs without any errors and even
produces reasonable-looking output does not mean that your program is correct.
You should always run your program with some test data that gives predictable
output. To do this, choose some data for which you can compute the correct
results, either by using pencil and paper, by looking up the answer, or by some
other means. Even this testing does not guarantee that your program is correct, but
the more testing you do, the more confidence you can have in your program. ■

SELF-TEST QUESTIONS

29. What is a syntax error?

30. What is a logic error?

31. What kinds of errors are likely to produce error messages that will alert
you to the fact that your program contains an error?

32. Suppose you write a program that is supposed to compute the day of the
week (Sunday, Monday, and so forth) on which a given date (like December
1, 2014) will fall. Now suppose that you forget to account for leap years.
Your program will then contain an error. What kind of program error is it?

Software Reuse

When you first start to write programs, you can easily get the impression that
you must create each program entirely from scratch. However, typical software
is not produced this way. Most programs contain some components that

Don’t let a gotcha
get you

VideoNote
Recognizing a hidden error

 1.3 Programming Basics 65

already exist. Using such components saves time and money. Furthermore,
existing components have probably been used many times, so they likely are
better tested and more reliable than newly created software.

For example, a highway simulation program might include a new highway
object to model a new highway design but would probably model automobiles
by using an automobile class that was already designed for some other
program. To ensure that the classes you use in your programs are easily
reusable, you must design them to be reusable. You must specify exactly how
objects of that class interact with other objects. This is the principle of
encapsulation that we mentioned earlier. But encapsulation is not the only
principle you must follow. You must also design your class so that the objects
are general and not specific to one particular program. For example, if your
program requires that all simulated automobiles move only forward, you
should still include a reverse in your automobile class, because some other
simulation may require automobiles to back up. We will return to the topic of
reusability after we learn more details about the Java language and have some
examples to work with.

Besides reusing your own classes, you can and will use classes that Java
provides. For example, we have already used the standard classes Scanner
AND System to perform input and output. Java comes with a collection of
many classes known as the Java Class Library, sometimes called the Java
Application Programming Interface, or API. The classes in this collection are
organized into packages. As you saw earlier, the class Scanner, for example, is
in the package java.util. From time to time we will mention or use classes
within the Java Class Library. You should become familiar with the
documentation provided for the Java Class Library on the Oracle® Web site. At
this writing, the link to this documentation is https://docs.oracle.com/
javase/8/docs/api/java/util/Scanner.html. Figure 1.5 gives an example of this
documentation.

Description of
the class
Scanner

Class names
(we clicked
on Scanner)

Package names

FIGURE 1.5 The Documentation for the Class Scanner

Java provides a
library of classes
for you

https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html
https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html

66 CHAPTER 1 / Introduction to Computers and Java

1.4 GRAPHICS SUPPLEMENT

Have a nice day.

—COMMON FAREWELL

Each of Chapters 1 through 10 has a graphics section like this one
that describes how to write programs that include various kinds of
graphics displays. We typically will display the graphics inside a JavaFX
application.

Since some people prefer to delay coverage of graphics until after a
programmer, such as yourself, has mastered the more elementary material,
you may skip these supplements without affecting your understanding of the
rest of the book. In order to cover graphics this early, we will have to resort to
some “magic formulas”—that is, code that we will tell you how to use but not
fully explain until later in the book. These graphics supplements do build on
each other. If you want to cover the graphics supplement in one chapter, you
will need to first read all or most of the graphics supplements in previous
chapters.

The material on graphics presented here uses classes, objects, and methods.
You know that objects are entities that store data and can take actions. In this
section, we will use objects only for taking actions, and we will use only one
kind of object. Our objects will have various methods that can draw figures—
such as ovals—inside a display.

The methods used to display graphics and graphical user interfaces
(GUI) in Java have gone through several evolutions since Java’s introduction
in 1996. The first toolkit to display GUIs in Java was the Abstract Window
Toolkit, or AWT. AWT was implemented using platform-specific code. The
successor to AWT is Swing. Swing is written in Java, which provides
platform independence. Swing is complementary to AWT rather than a
replacement. A typical Java program written using Swing would incorporate
libraries from both AWT and Swing. While there are still many Java
programs written today using Swing, the most recent graphics toolkit for
Java is JavaFX.

JavaFX is a set of packages that allow Java programmers to create rich
graphics and media applications. Potential applications include GUI
interfaces, 2D and 3D games, animations, visual effects, touch-enabled
applications, and multimedia applications. At the time of this writing,
JavaFX 8 is the latest version. JavaFX has several advantages over other
graphical libraries, including hardware-accelerated graphics and a high-
performance media engine. At some point, JavaFX will replace Swing as the
standard library for creating graphical interfaces. However, both JavaFX
and Swing are expected to be included in Java distributions for the
foreseeable future.

 1.4 Graphics Supplement 67

Due to the historical progression from AWT to Swing to JavaFX, you may
find it helpful to learn a bit about AWT and Swing. Sometimes you will see
references to the older toolkits in the context of a newer toolkit. Swing is
covered in the online chapter.

A Sample JavaFX Application

Listing 1.2 contains a JavaFX application that draws a happy face. Let’s examine
the code by going through it section by section.

import javafx.application.Application;
import javafx.scene.canvas.Canvas;
import javafx.scene.Scene;
import javafx.scene.Group;
import javafx.stage.Stage;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.shape.ArcType;

public class HappyFace extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 @Override
 public void start(Stage primaryStage) throws Exception
 {
 Group root = new Group();
 Scene scene = new Scene(root);
 Canvas canvas = new Canvas(400, 300);
 GraphicsContext gc = canvas.getGraphicsContext2D();
 gc.strokeOval(100, 50, 200, 200);
 gc.fillOval(155, 100, 10, 20);
 gc.fillOval(230, 100, 10, 20);
 gc.strokeArc(150, 160, 100, 50, 180, 180, ArcType.OPEN);

 root.getChildren().add(canvas);
 primaryStage.setTitle("HappyFace in JavaFX");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

LISTING 1.2 Drawing a Happy Face

68 CHAPTER 1 / Introduction to Computers and Java

Program Output

The section
import javafx.application.Application;
import javafx.scene.canvas.Canvas;
import javafx.scene.Scene;
import javafx.scene.Group;
import javafx.stage.Stage;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.shape.ArcType;

says that the application uses a number of library packages in the JavaFX
library. They include classes for Application, Canvas, Scene, Group, Stage,
GraphicsContext, and ArcType. These are all components of JavaFX that will
be described in more detail later in the book.

The line
public class HappyFace extends Application

begins the class definition for the program. It is named HappyFace. The words
extends Application indicate that we are defining a JavaFX application, as
opposed to some other kind of class. Although you need not worry about
further details yet, we are using inheritance to create the class HappyFace based
upon an existing class Application.

The application contains two methods—main and start. The main
method is where a Java program normally begins.

public static void main(String[] args)
{
 launch(args);
}

 1.4 Graphics Supplement 69

In the sample program shown in Listing 1.1, most of our program code
was entered in the main method. This is how we will write most of our Java
programs. However, a JavaFX application is different. A JavaFX program begins
execution in the start method. The main method is ignored in a correctly
deployed JavaFX application. However, it is common to include main and a
call to launch as a fallback, which will end up launching the JavaFX program
and the start method.

For a JavaFX application, programs begin in the start method.

@Override
public void start(Stage primaryStage) throws Exception

For now, you can ignore the @Override and the throws Exception code. What
you do need to know is that this method is invoked automatically when the
JavaFX application is run. JavaFX uses the metaphor of a stage and scenes, just
like the stage and scene of a theater.

The next four lines set up a canvas on a scene for you to draw simple
graphics.

Group root = new Group();
Scene scene = new Scene(root);

Canvas canvas = new Canvas(400, 300);
GraphicsContext gc = canvas.getGraphicsContext2D();

At this point, we can now use drawing operations on the canvas. The
method invocation

gc.strokeOval(100, 50, 200, 200);

draws the big circle that forms the outline of the face. The first two numbers
tell where on the screen the circle is drawn. The method strokeOval, as you
may have guessed, draws ovals. The last two numbers give the width and
height of the oval. To obtain a circle, you make the width and height the same
size, as we have done here. The units for these numbers are called pixels, and
we will describe them shortly.

The two method invocations

gc.fillOval(155, 100, 10, 20);
gc.fillOval(230, 100, 10, 20);

draw the two eyes. The eyes are “real” ovals that are taller than they are wide.
Also notice that the method is called fillOval, not strokeOval, which means
it draws an oval that is filled in.

The next invocation

gc.strokeArc(150, 160, 100, 50, 180, 180, ArcType.OPEN);

draws the mouth. We will explain the meaning of all these arguments in the
next section.

A JavaFX
application
begins in the start
method

70 CHAPTER 1 / Introduction to Computers and Java

Finally, the block

root.getChildren().add(canvas);
primaryStage.setTitle("HappyFace in JavaFX");
primaryStage.setScene(scene);
primaryStage.show();

sets a title for the window and does some bookkeeping to set the stage and
display the window.

Size and Position of Figures

All measurements within a screen display are given not in inches or
centimeters but in pixels. A pixel—short for picture element—is the smallest
length your screen is capable of showing. A pixel is not an absolute unit of
length like an inch or a centimeter. The size of a pixel can be different on
different screens, but it will always be a small unit. You can think of your
computer screen as being covered by small squares, each of which can be any
color. You cannot show anything smaller than one of these squares. A pixel
is one of these squares, but when used as measure of length, a pixel is the
length of the side of one of these squares.4 If you have shopped for a digital
camera, you have undoubtedly heard the term pixel or megapixel. The
meaning of the word pixel when used in Java applets is the same as its
meaning when describing pictures from a digital camera. A megapixel is just
a million pixels.

Figure 1.6 shows the coordinate system used to position figures inside of
an applet or other kind of Java window-like display. Think of the large rectangle
as outlining the drawing area that is displayed on the screen. The coordinate
system assigns two numbers to each point inside the rectangle. The numbers
are known as the x-coordinate and the y-coordinate of the point. The
x-coordinate is the number of pixels from the left edge of the rectangle to
the point. The y-coordinate is the number of pixels from the top edge of the
rectangle to the point. The coordinates are usually written within parentheses
and separated by a comma, with the x-coordinate first. So the point marked
with a blue dot in Figure 1.6 has the coordinates (100, 50); 100 is the
x-coordinate and 50 is the y-coordinate.

Each coordinate in this system is greater than or equal to zero. The
x-coordinate gets larger as you go to the right from point (0, 0). The
y-coordinate gets larger as you go down from point (0, 0). If you have
studied x- and y-coordinates in a math class, these are the same, with one
change. In other coordinate systems, the y-coordinates increase as they go up
from point (0, 0).

4 Strictly speaking, a pixel need not be a square but could be rectangular. However, we
do not need to go into such fine detail here.

A coordinate
system positions
points on the
screen

A pixel is the
smallest length
shown on a
screen

 1.4 Graphics Supplement 71

You position a rectangle in this graphical coordinate system at coordinates
(x, y) by placing its upper left corner at the point (x, y). For example, the
rectangle given by the dashed blue lines in Figure 1.7 is positioned at point
(100, 50), which is marked with a black X. You position a figure that is not a
rectangle at point (x, y) by first enclosing it in an imaginary rectangle that is as
small as possible but still contains the figure and then by placing the upper left
corner of this enclosing rectangle at (x, y). For example, in Figure 1.7 the oval
is also positioned at point (100, 50). If the applet contains only an oval and
no rectangle, only the oval shows on the screen. But an imaginary rectangle is
still used to position the oval.

Drawing Ovals and Circles

The oval in Figure 1.7 is drawn by the Java statement

gc.strokeOval(100, 50, 90, 50);

The first two numbers are the x- and y-coordinates of the upper left corner of
the imaginary rectangle that encloses the oval. That is, these two numbers are
the coordinates of the position of the figure drawn by this statement. The next
two numbers give the width and height of the rectangle containing the oval
(and thus the width and height of the oval itself). If the width and height are
equal, you get a circle.

Now let’s return to the statements in the body of the method paint:

gc.strokeOval(100, 50, 200, 200);
gc.fillOval(155, 100, 10, 20);
gc.fillOval(230, 100, 10, 20);

(0, 0)

(100, 50)

Positive y direction

Positive x direction

100 pixels

50
 p

ix
el

s

FIGURE 1.6 Screen Coordinate System

StrokeOval and
fillOval draw
ovals or circles

72 CHAPTER 1 / Introduction to Computers and Java

In each case, the first two numbers are the x- and y-coordinates of the upper
left corner of an imaginary rectangle that encloses the figure being drawn. The
first statement draws the outline of the face at position (100, 50). Since the
width and height—as given by the last two arguments—have the same value,
200, we get a circle whose diameter is 200. The next two statements draw
filled ovals for the eyes positioned at the points (155, 100) and (230, 100).
The eyes are each 10 pixels wide and 20 pixels high. The results are shown in
Listing 1.2.

(0, 0)

(100, 50)

100 pixels

50
 p

ix
el

s

50
 p

ix
el

s

90 pixels

Oval object
drawn

FIGURE 1.7 The Oval Drawn by gc.strokeOval (100, 50,
90, 50)

RECAP The Methods StrokeOval and fillOval

SYNTAX

gc.strokeOval(x, y, Width, Height);

gc.fillOval(x, y, Width, Height);

The method strokeOval draws the outline of an oval that is Width pixels
wide and Height pixels high. The oval is placed so that the upper left
corner of a tightly enclosing rectangle is at the point (x, y).

The method fillOval draws the same oval as strokeOval but fills it in.

 1.4 Graphics Supplement 73

Drawing Arcs

Arcs, such as the smile on the happy face in Listing 1.2, are specified as a
portion of an oval. For example, the following statement from Listing 1.2
draws the smile on the happy face:

gc.strokeArc(150, 160, 100, 50, 180, 180, ArcType.OPEN);

The first two arguments give the position of an invisible rectangle. The upper
left corner of this rectangle is at the point (150, 160). The next two arguments
specify the size of the rectangle; it has width 100 and height 50. Inside this
invisible rectangle, imagine an invisible oval with the same width and height
as the invisible rectangle. The next two arguments specify the portion of this
invisible oval that is made visible. In this example, the bottom half of the oval
is visible and forms the smile. Let’s examine these next two arguments more
closely.

The fifth argument of strokeArc specifies a start angle in degrees. The last
argument specifies how many degrees of the oval’s arc will be made visible.
The rightmost end of the oval’s horizontal equator is at zero degrees. As you
move along the oval’s edge in a counterclockwise direction, the degrees increase
in value. For example, Figure 1.8a shows a start angle of 0 degrees; we measure
90 degrees along the oval in a counterclockwise direction, making one quarter
of the oval visible. Conversely, as you move along the oval in a clockwise
direction, the degrees decrease in value. For example, in Figure 1.8b, we start at
0 and move −90 degrees in a clockwise direction, making a different quarter of
the oval visible. If the last argument is 360, you move counterclockwise
through 360 degrees, making the entire oval visible, as Figure 1.8c shows.

RECAP strokeArc

SYNTAX

gc.strokeArc(x, y, Width, Height, StartAngle, ArcAngle,
ArcType);

Draws an arc that is part of an oval placed so the upper left corner
of a tightly enclosing rectangle is at the point (x, y). The oval’s width
and height are Width and Height, both in pixels. The portion of the
arc drawn is given by StartAngle and ArcAngle, both given in degrees.
The rightmost end of the oval’s horizontal equator is at 0 degrees. You
measure positive angles in a counterclockwise direction and negative
angles in a clockwise direction. Beginning at StartAngle, you measure
ArcAngle degrees along the oval to form the arc. ArcType can be
ArcType.OPEN, ArcType.CHORD, or ArcType ROUND. Figure 1.8 gives
some examples of arcs.

drawArc draws
part of an oval

74 CHAPTER 1 / Introduction to Computers and Java

Sweep through 180 degrees

Sweep through 90 degrees
Height

Width

gc.strokeArc(x, y, width, height, 0, 90, ArcType.OPEN);

gc.strokeArc(x, y, width, height, 0, -90, ArcType.OPEN);

gc.strokeArc(x, y, width, height, 0, 360, ArcType.OPEN);

gc.strokeArc(x, y, width, height, 180, 180, ArcType.OPEN);

(x, y)
(a)

(b)

(c)

(d)

Sweep through -90 degrees

Sweep through 360 degrees

Start at
0 degrees

Start at
0 degrees

Start at
180 degrees

Start at
0 degrees

FIGURE 1.8 Specifying an Arc

 1.4 Graphics Supplement 75

Finally, Figure 1.8d illustrates an arc that begins at 180 degrees, so it starts
on the left end of the invisible oval. The sixth argument is also 180, so the arc
is made visible through 180 degrees in the counterclockwise direction, or
halfway around the oval. Finally, the last argument specifies the type of arc.
Use ArcType.OPEN to leave an open arc that is not connected. Use ArcType.
CHORD to close the arc by drawing a line segment from the start to the end. Use
ArcType.ROUND to close the arc by drawing line segments from the start to the
center to the end of the segment. The smile on the happy face in Listing 1.2
uses ArcType.OPEN.

SELF-TEST QUESTIONS

33. How would you change the JavaFX application in Listing 1.2 so that the
eyes are circles instead of ovals?

34. How would you change the program in Listing 1.2 so that the face frowns?
(Hint: Turn the smile upside down by changing the arguments in the call
to the method strokeArc.)

CHAPTER SUMMARY
■■ A computer’s main memory holds the program that is currently executing,

and it also holds many of the data items that the program is manipulating.
A computer’s main memory is divided into a series of numbered locations
called bytes. This memory is volatile: The data it holds disappears when the
computer’s power is off.

FAQ What is Graphics Context gc?

The identifier gc names an object that does the drawing. Note that gc
is a “dummy variable” that stands for an object that Java supplies to do
the drawing. You need not use the identifier gc, but you do need to be
consistent. If you change one occurrence of gc to, say, pen, you must
change all occurrences of gc to pen. Thus, the method start shown in
Listing 1.2 could be written as follows:

GraphicsContext pen = canvas.getGraphicsContext2D();
pen.strokeOval(100, 50, 200, 200);
pen.fillOval(155, 100, 10, 20);
pen.fillOval(230, 100, 10, 20);
pen.strokeArc(150, 160, 100, 50, 180, 180, ArcType.OPEN);

This definition and the one given in Listing 1.2 are equivalent.

VideoNote
Another JavaFX example

76 CHAPTER 1 / Introduction to Computers and Java

■■ A computer’s auxiliary memory is used to hold data in a more or less
permanent way. Its data remains even when the computer’s power is off.
Hard disk drives, flash drives, CDs, and DVDs are examples of auxiliary
memory.

■■ A compiler is a program that translates a program written in a high-level
language like Java into a program written in a low-level language. An
interpreter is a program that performs a similar translation, but unlike a
compiler, an interpreter executes a portion of code right after translating it,
rather than translating the entire program at once.

■■ The Java compiler translates your Java program into a program in the
bytecode language. When you give the command to run your Java
program, this bytecode program is both translated into machine-language
instructions and executed by an interpreter called the Java Virtual
Machine.

■■ An object is a program construct that performs certain actions. These
actions, or behaviors, are defined by the object’s methods. The characteristics,
or attributes, of an object are determined by its data, and the values of these
attributes give the object a state.

■■ Object-oriented programming is a methodology that views a program as
consisting of objects that can act alone or interact with one another. A
software object might represent a real-world object, or it might be an
abstraction.

■■ Three of the main principles of object-oriented programming are
encapsulation, polymorphism, and inheritance.

■■ A class is a blueprint for the attributes and behaviors of a group of objects.
The class defines the type of these objects. All objects of the same class have
the same methods.

■■ In a Java program, a method invocation is written as the object name,
followed by a period (called a dot), the method name, and, finally, the
arguments in parentheses.

■■ An algorithm is a set of directions for solving a problem. To qualify as
an algorithm, the directions must be expressed so completely and
precisely that somebody could follow them without having to fill in any
details or make any decisions that are not fully specified in the
directions.

■■ Pseudocode is a combination of English and a programming language. It is
used to write an algorithm’s directions.

■■ The syntax of a programming language is the set of grammatical rules for
the language. These rules dictate whether a statement in the language is
correct. The compiler will detect errors in a program’s syntax.

 1.4 Graphics Supplement 77

■■ You can write JavaFX applications that display pictures on the computer
screen.

■■ The method strokeOval draws the outline of an oval. The method fillOval
draws the same oval as strokeOval but fills it in. The method strokeArc
draws an arc that is part of an oval.

Exercises

1. How does the programmer’s view of executing a program differ from the
computer’s?

2. When you turn a computer on, what kind of program do you interact with
first? What is it called?

3. Two programs, X and Y, are translated using an interpreter and a compiler,
respectively. Which program will run faster and why?

4. How does a source program differ from an object program in Java?

5. How does a class loader differ from a linker?

6. Write a statement or statements that can be used in a Java program to
display the following on the screen:

 Welcome
 To
 Java

7. What would the following statements, when used in a Java program,
display on the screen?

int a = 10;
int a2 = 100;
System.out.println(a2);
System.out.println (" is square of ");
System.out.println(a);

8. Write statements that can be used in a Java program to read two numbers,
as entered at the keyboard, and display their difference on the screen.

9. Given a person’s year of birth, the Election Wizard can compute the year
in which they will be eligible to vote (assuming the eligibility age to be 18
years). Write statements that can be used in a Java program to perform this
computation for the Election Wizard.

10. Write statements that can be used in a Java program to read two integers and
display the number of integers that lie between them, including the integers
themselves. For example, four integers are between 3 and 6: 3, 4, 5, and 6.

11. A memory address starts with 2313. Each subsequent value uses three
bytes as location. For instance, the second value takes memory

78 CHAPTER 1 / Introduction to Computers and Java

addresses 2316, 2317, and 2318. What memory addresses will be taken
by:

a. 5th value? b. 10th value? c. 13th value?

12. Find the documentation for the Java Class Library on the Oracle® Web site.
(At this writing, the link to this documentation is https://docs.oracle.com/
javase/8/docs/api/.) Then find the description for the class Scanner. How
many methods are described in the section entitled “Method Summary”?

13. Self-Test Question 27 asked you to think of some attributes for a song
object. What attributes would you want for an object that represents a play
list containing many songs?

14. What behaviors might a song have? What behaviors might a play list have?
Contrast the difference in behavior between the two kinds of objects.

15. What attributes and behaviors would an object representing a mobile sim
card have?

16. Suppose that you have a number x that is greater than 1. Write an algorithm
that computes the largest integer k such that 2k is less than or equal to x.

17. Write an algorithm that finds the minimum value in a list of values.

18. Write statements that can be used in a JavaFX application to draw a dart
board showing concentric circular rings and a bull’s eye. (The bull’s eye
should be a filled circle.)

19. Find the documentation for the class Graphics Context in the JavaFX Class
Library. (See Exercise 12.) Learn how to use the method strokeRect. Then
write statements that can be used in a JavaFX application to draw a square
containing a circle. The circle’s diameter and the square’s side should be
equal in size.

20. Write statements that can be used in a JavaFX application to draw the
outline of a crescent moon.

PRACTICE PROGRAMS

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

1. Obtain a copy of the Java program shown in Listing 1.1 from the Web at
the location given in the preface. Name the file FirstProgram.java.

Graphics

Graphics

Graphics

https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/8/docs/api/

 1.4 Graphics Supplement 79

Compile the program so that you receive no compiler error messages.
Then run the program.

2. Modify the Java program described in Practice Program 1 so that it adds
three numbers instead of two. Compile the program so that you receive
no compiler error messages. Then run the program.

3. The following program has syntax errors that prevent the program from
compiling. Find and fix the errors.

import java.util.Scanner;
public class SyntaxErrorRev
{
 public static void main(String[] args)
 {
 System.out.println("Enter the length and width of rectangle");
 System.out.println(-to calculate its area);
 Scanner keyboard = Scanner(System.in);
 int l = keyboard.nextInt();
 int w = keyboard.nextInt();
 area = l * w;
 System.out.println("The area of the rectangle is " area);
 }
}

4. The following program will compile but it has run-time errors. Find and
fix the errors.

import java.util.Scanner;
public class SemanticErrorRev
{
 public static void main(String[] args)
 {
 int subject1, subject2, subject3, subject4;
 System.out.println("Enter the marks in four subjects as

whole numbers ");
 System.out.println(" so as to compute the sum and the

average of the student ");
 Scanner keyboard = new Scanner(System.in);
 subject1 = keyboard.nextInt();
 subject2 = keyboard.nextInt();
 subject3 = keyboard.nextInt();
 subject4 = keyboard.nextInt();
 int sum = subject1 + subject2 + subject3 + subject4;
 System.out.println("The total marks in four subjects are "

+ sum);
 int avg = subject1 + subject2 + subject3 + subject4;
 System.out.println("The average marks of the student is

" + avg);
 }
}

80 CHAPTER 1 / Introduction to Computers and Java

PROGRAMMING PROJECTS

Programming Projects require more problem-solving than Practice Programs and can
usually be solved many different ways. Visit www.myprogramminglab.com to complete
many of these Programming Projects online and get instant feedback.

1. Write a Java program that displays the following picture. (Hint: Write a
sequence of println statements that display lines of asterisks and blanks.)

2. Write a complete program for the problem described in Exercise 9.

3. Write a complete program for the problem described in Exercise 10.

4. Write a JavaFX application similar to the one in Listing 1.2 that displays a
picture of a snowman. (Hint: Draw three circles, one above the other.
Make the circles progressively smaller from bottom to top. Make the top
circle a happy face.)

5. Write a JavaFX application for the problem described in Exercise 18.

6. Write a JavaFX application that displays the following pattern:

Answers to Self-Test Questions

1. Main memory and auxiliary memory.

2. Software is just another name for programs.

VideoNote
Writing an algorithm for
Project 3

Graphics

Graphics

Graphics

http://www.myprogramminglab.com

 1.4 Graphics Supplement 81

3. The two numbers to be added.

4. All the grades on all the quizzes you have taken in the course.

5. A high-level-language program is written in a form that is easy for a human
being to write and read. A machine-language program is written in a form
the computer can execute directly. A high-level-language program must be
translated into a machine-language program before the computer can
execute it. Java bytecode is a low-level language that is similar to the
machine language of most common computers. It is relatively easy to
translate a program expressed in Java bytecode into the machine language
of almost any computer.

6. Java is a high-level language.

7. Java bytecode is a low-level language.

8. A compiler translates a high-level-language program into a low-level-
language program such as a machine-language program or a Java bytecode
program. When you compile a Java program, the compiler translates your
Java program into a program expressed in Java bytecode.

9. A source program is the high-level-language program that is input to a
compiler.

10. The Java Virtual Machine is a program that translates Java bytecode
instructions into machine-language instructions. The JVM is a kind of
interpreter.

11. Java is great!

12. System.out.println("Java for one.");

System.out.println("Java for all.");

13. mary.increaseAge(5);

14. The statement reads a whole number typed in at the keyboard and stores
it in the variable nl.

15. public class Question15
{
 public static void main(String[] args)
 {
 System.out.println("Hello World!");
 }
}

Some details, such as identifier names, may be different in your program.
Be sure you compile and run your program.

16. The file containing the class YourClass should be named YourClass.
java.

82 CHAPTER 1 / Introduction to Computers and Java

17. YourClass.class.

18. A method defines an action that an object is capable of performing.

19. A class is a blueprint for creating objects. All objects in the same class have
the same kind of data and the same methods.

20. Yes, all objects of the same class have the same methods.

21. Encapsulation is the process of hiding all the details of an object that are
unnecessary to using the object. Put another way, encapsulation is the
process of describing a class or object by giving only enough information
to allow a programmer to use the class or object.

22. Information hiding is another term for encapsulation.

23. In a programming language, such as Java, polymorphism means that one
method name, used as an instruction, can cause different actions,
depending on the kind of object performing the action.

24. Inheritance is a way of organizing classes. You can define a general class
having common attributes and behaviors, and then use inheritance to
define specialized classes that add to or revise the details of the general
class.

25. An algorithm is a set of directions for solving a problem. To qualify as
an algorithm, the directions must be expressed so completely and
precisely that somebody could follow them without having to fill in any
details or make any decisions that are not fully specified in the
directions.

26. Pseudocode is a mixture of English and Java that you can use to write the
steps of an algorithm.

27. A song object could have the following attributes: title, composer, date,
performer, album title.

28. Algorithm to count the odd integers in a list of integers:

1. Write the number 0 on the blackboard.

2. Do the following for each odd integer on the list:

• Add 1 to the number on the blackboard.

 • Replace the old number on the blackboard with the result of this
addition.

3. Announce that the answer is the number written on the blackboard.

29. A syntax error is a grammatical mistake in a program. When you write a
program, you must adhere to very strict grammatical rules. If you violate
one of these rules by omitting a required punctuation mark, for example,
you make a syntax error.

 1.4 Graphics Supplement 83

30. A logic error is a conceptual error in a program or its algorithm. If your
program runs and gives output, but the output is incorrect, you have a
logic error.

31. Syntax errors and run-time errors.

32. A logic error.

33. Change the following lines

gc.fillOval(155, 100, 10, 20);
gc.fillOval(230, 100, 10, 20);

to

gc.fillOval(155, 100, 10, 10);
gc.fillOval(230, 100, 10, 10);

The last two numbers on each line are changed from 10, 20 to 10, 10. You
could also use some other number, such as 20, and write 20, 20 in place of
10, 10.

34. Change the following line

gc.strokeArc(150, 160, 100, 50, 180, 180, ArcType.OPEN);

to

gc.strokeArc(150, 160, 100, 50, 180, 2180, ArcType.OPEN);

The last number is changed from positive to negative. Other correct
answers are possible. For example, the following is also acceptable:

gc.strokeArc(150, 160, 100, 50, 0, 180, ArcType.OPEN);

You could also change the first number 150 to a larger number in either of
the above statements. Other correct answers are similar to what we have
already described.

This page intentionally left blank

Basic
Computation

2.1 VARIABLES AND EXPRESSIONS 86
Variables 87
Data Types 89
Java Identifiers 91
Assignment Statements 93
Simple Input 96
Simple Screen Output 98
Constants 98
Named Constants 100
Assignment Compatibilities 101
Type Casting 103
Arithmetic Operators 106
Parentheses and Precedence Rules 109
Specialized Assignment Operators 110
Case Study: Vending Machine Change 112
Increment and Decrement Operators 117
More About the Increment and Decrement

Operators 118

2.2 THE CLASS String 119
String Constants and Variables 119
Concatenation of Strings 120
String Methods 121
String Processing 123

Escape Characters 126
The Unicode Character Set 127

2.3 KEYBOARD AND SCREEN I/O 129
Screen Output 129
Keyboard Input 132
Other Input Delimiters (Optional) 137
Formatted Output with printf (Optional) 139

2.4 DOCUMENTATION AND STYLE 141
Meaningful Variable Names 141
Comments 142
Indentation 145
Using Named Constants 145

2.5 GRAPHICS SUPPLEMENT 147
Style Rules Applied to a JavaFX Application 148
Introducing the Class JOptionPane 150
Reading Input as Other Numeric Types 159
Programming Example: Change-Making Program

with Windowing I/O 160

2

Chapter Summary 162
Practice Programs 166

Programming Projects 167
Answers to Self-Test Questions 170

In this chapter, we explain enough about the Java language to allow you to
write simple Java programs. You do not need any programming experience to
understand this chapter. If you are already familiar with some other
programming language, such as Visual Basic, C, C++, or C#, much that is in
Section 2.1 will already be familiar to you. However, even if you know the
concepts, you should learn the Java way of expressing them.

OBJECTIVES

After studying this chapter, you should be able to

• Describe the Java data types that are used for simple data like numbers and
characters

• Write Java statements to declare variables and define named constants
• Write assignment statements and expressions containing variables and

constants
• Define strings of characters and perform simple string processing
• Write Java statements that accomplish keyboard input and screen output
• Adhere to stylistic guidelines and conventions
• Write meaningful comments within a program
• Use the class JOptionPane to perform window-based input and output

PREREQUISITES

If you have not read Chapter 1, you should read at least the section of Chapter 1
entitled “A First Java Application Program” to familiarize yourself with the
notions of class, object, and method. Also, material from the graphics
supplement in Chapter 1 is used in the section “Style Rules Applied to a
Graphics Applet” in the graphics supplement of this chapter.

2.1 VARIABLES AND EXPRESSIONS

In this section, we explain how simple variables and arithmetic expressions are
used in Java programs. Some of the terms used here were introduced in
Chapter 1. We will, however, review them again.

86

Beauty without expression tires.

—RALPH WALDO EMERSON, The Conduct of Life, (1876)

 2.1 Variables and Expressions 87

Variables

Variables in a program are used to store data such as numbers and letters.
They can be thought of as containers of a sort. The number, letter, or other
data item in a variable is called its value. This value can be changed, so
that at one time the variable contains, say, 6, and at another time, after the
program has run for a while, the variable contains a different value, such
as 4.

For example, the program in Listing 2.1 uses the variables numberOfBaskets,
eggsPerBasket, and totalEggs. When this program is run, the statement

eggsPerBasket = 6;

sets the value of eggsPerBasket to 6.
In Java, variables are implemented as memory locations, which we

described in Chapter 1. Each variable is assigned one memory location. When
the variable is given a value, the value is encoded as a string of 0s and 1s and is
placed in the variable’s memory location.

Variables
represent
memory locations

LISTING 2.1 A Simple Java Program

public class EggBasket
{
 public static void main(String[] args)
 {
 int numberOfBaskets, eggsPerBasket, totalEggs;

 numberOfBaskets = 10;
 eggsPerBasket = 6;

 totalEggs = numberOfBaskets * eggsPerBasket;

 System.out.println("If you have");
 System.out.println(eggsPerBasket + " eggs per basket and");
 System.out.println(numberOfBaskets + " baskets, then");
 System.out.println("the total number of eggs is " + totalEggs);
 }
}

Sample Screen Output

If you have
6 eggs per basket and
10 baskets, then
the total number of eggs is 60

Variable
declarations

Assignment statement

A variable is
a program
component
used to store or
represent data

88 CHAPTER 2 / Basic Computation

You should choose variable names that are helpful. The names should
suggest the variables’ use or indicate the kind of data they will hold. For
example, if you use a variable to count something, you might name it count. If
the variable is used to hold the speed of an automobile, you might call the
variable speed. You should almost never use single-letter variable names like x
and y. Somebody reading the statement

x = y + z;

would have no idea of what the program is really adding. The names of
variables must also follow certain spelling rules, which we will detail later in
the section “Java Identifiers.”

Before you can use a variable in your program, you must state some basic
information about each one. The compiler—and so ultimately the computer—
needs to know the name of the variable, how much computer memory to
reserve for the variable, and how the data item in the variable is to be coded
as strings of 0s and 1s. You give this information in a variable declaration.
Every variable in a Java program must be declared before it is used for the first
time.

A variable declaration tells the computer what type of data the variable
will hold. That is, you declare the variable’s data type. Since different types of
data are stored in the computer’s memory in different ways, the computer
must know the type of a variable so it knows how to store and retrieve the
value of the variable from the computer’s memory. For example, the following
line from Listing 2.1 declares numberOfBaskets, eggsPerBasket, and
totalEggs to be variables of data type int:

int numberOfBaskets, eggsPerBasket, totalEggs;

A variable declaration consists of a type name, followed by a list of variable
names separated by commas. The declaration ends with a semicolon. All the
variables named in the list are declared to have the same data type, as given at
the start of the declaration.

If the data type is int, the variable can hold whole numbers, such as 42,
−99, 0, and 2001. A whole number is called an integer. The word int is an
abbreviation of integer. If the type is double, the variable can hold numbers
having a decimal point and a fractional part after the decimal point. If the type
is char, the variables can hold any one character that appears on the computer
keyboard.

Every variable in a Java program must be declared before the variable can
be used. Normally, a variable is declared either just before it is used or at the
start of a section of your program that is enclosed in braces {}. In the simple
programs we have seen so far, this means that variables are declared either just
before they are used or right after the lines

public static void main(String[] args)
{

Choose
meaningful
variable names

Declare variables
before using
them

 2.1 Variables and Expressions 89

Data Types

As you have learned, a data type specifies a set of values and their operations.
In fact, the values have a particular data type because they are stored in memory
in the same format and have the same operations defined for them.

RECAP Variable Declarations

In a Java program, you must declare a variable before it can be used.
A variable declaration has the following form:

SYNTAX

Type Variable_1, Variable_2, . . .;

EXAMPLES

int styleNumber, numberOfChecks, numberOfDeposits;
double amount, interestRate;
char answer;

REMEMBER Syntactic Variables

When you see something in this book like Type, Variable_1, or Variable_2
used to describe Java syntax, these words do not literally appear in your
Java code. They are syntactic variables, which are a kind of blank that you
fill in with something from the category that they describe. For example,
Type can be replaced by int, double, char, or any other type name.
Variable_1 and Variable_2 can each be replaced by any variable name.

Java has two main kinds of data types: class types and primitive types. As
the name implies, a class type is a data type for objects of a class. Since a class
is like a blueprint for objects, the class specifies how the values of its type are
stored and defines the possible operations on them. As we implied in the
previous chapter, a class type has the same name as the class. For example,
quoted strings such as "Java is fun" are values of the class type String,
which is discussed later in this chapter.

Variables of a primitive type are simpler than objects (values of a class
type), which have both data and methods. A value of a primitive type is an
indecomposable value, such as a single number or a single letter. The types
int, double, and char are examples of primitive types.

A data type
specifies a set of
values and
operations

Class types and
primitive types

90 CHAPTER 2 / Basic Computation

Figure 2.1 lists all of Java’s primitive types. Four types are for integers,
namely, byte, short, int, and long. The only differences among the various
integer types are the range of integers they represent and the amount of
computer memory they use. If you cannot decide which integer type to use,
use the type int.

A number having a fractional part—such as the numbers 9.99, 3.14159,
−5.63, and 5.0—is called a floating-point number. Notice that 5.0 is a
floating-point number, not an integer. If a number has a fractional part, even
if the fractional part is zero, it is a floating-point number. As shown in Figure
2.1, Java has two data types for floating-point numbers, float and double. For
example, the following code declares two variables, one of type float and one
of type double:

float cost;
double capacity;

As with integer types, the differences between float and double involve the
range of their values and their storage requirements. If you cannot decide
between the types float and double, use double.

The primitive type char is used for single characters, such as letters, digits,
or punctuation. For example, the following declares the variable symbol to be
of type char, stores the character for uppercase A in symbol, and then displays
A on the screen:

char symbol;
symbol = 'A';
System.out.println(symbol);

Type Name Kind of Value Memory Used Range of Values

byte Integer 1 byte 128 to 127

short Integer 2 bytes 32,768 to 32,767

int Integer 4 bytes 2,147,483,648 to 2,147,483,647

long Integer 8 bytes 9,223,372,036,854,775,808 to
 9,223,372,036,854,775,807

�oat Floating-point 4 bytes ±3.40282347×10+38
−45

 to
±1.40239846× 10

double Floating-point 8 bytes ±1.79769313486231570×10+308
−324

to
±4.94065645841246544×10

char Single character
(Unicode)

2 bytes All Unicode values from 0 to 65,535

boolean 1 or more bytes True or false

FIGURE 2.1 Primitive Types

A floating-point
number has a
fractional part

 2.1 Variables and Expressions 91

In a Java program, we enclose a single character in single quotes, as in 'A'.
Note that there is only one symbol for a single quote. The same quote symbol
is used on both sides of the character. Finally, remember that uppercase letters
and lowercase letters are different characters. For example, 'a' and 'A' are two
different characters.

The last primitive type we have to discuss is the type boolean. This data
type has two values, true and false. We could, for example, use a variable of
type boolean to store the answer to a true/false question such as “Is eggCount
less than 12?” We will have more to say about the data type boolean in the
next chapter. Although a boolean requires only 1 bit of storage, in practice 1 or
more bytes is used, depending upon the context. This is because the CPU is
designed to read 1 or more bytes at a time, so it is actually more time consuming
to access an individual bit.

All primitive type names in Java begin with a lowercase letter. In the next
section, you will learn about a convention in which class type names—that is,
the names of classes—begin with an uppercase letter.

Although you declare variables for class types and primitive types in the
same way, these two kinds of variables store their values using different
mechanisms. Chapter 5 will explain class type variables in more detail. In this
chapter and the next two, we will concentrate on primitive types. We will
occasionally use variables of a class type before Chapter 5, but only in contexts
where they behave pretty much the same as variables of a primitive type.

Java Identifiers

The technical term for a name in a programming language, such as the name
of a variable, is an identifier. In Java, an identifier (a name) can contain only
letters, digits 0 through 9, and the underscore character (_). The first character
in an identifier cannot be a digit.1 In particular, no name can contain a space
or any other character such as a dot (period) or an asterisk (*). There is no
limit to the length of an identifier. Well, in practice, there is a limit, but Java
has no official limit and will accept even absurdly long names. Java is case
sensitive. That is, uppercase and lowercase letters are considered to be different
characters. For example, Java considers mystuff, myStuff, and MyStuff to be
three different identifiers, and you could have three different variables with
these three names. Of course, writing variable names that differ only in their
capitalization is a poor programming practice, but the Java compiler would
happily accept them. Within these constraints, you can use any name you
want for a variable, a class, or any other item you define in a Java program. But
there are some style guidelines for choosing names.

1 Java does allow the dollar sign ($) to appear in an identifier, treating it as a letter. But
such identifiers have a special meaning. It is intended to identify code generated by a
machine, so you should not use the $ symbol in your identifiers.

Single quotes
enclose a
character

Java is case
sensitive

92 CHAPTER 2 / Basic Computation

Our somewhat peculiar use of uppercase and lowercase letters, such as
numberOfBaskets, deserves some explanation. It would be perfectly legal to
use NumberOfBaskets or number_of_baskets instead of numberOfBaskets, but
these other names would violate some well-established conventions about
how you should use uppercase and lowercase letters. Under these conventions,
we write the names of variables using only letters and digits. We “punctuate”
multiword names by using uppercase letters—since we cannot use spaces. The
following are all legal names that follow these conventions:

inputStream YourClass CarWash hotCar theTimeOfDay

Notice that some of these legal names start with an uppercase letter and others,
such as hotCar, start with a lowercase letter. We will always follow the
convention that the names of classes start with an uppercase letter, and the
names of variables and methods start with a lowercase letter.

The following identifiers are all illegal in Java, and the compiler will
complain if you use any of them:

prenhall.com go-team Five* 7eleven

The first three contain illegal characters, either a dot, a hyphen, or an asterisk.
The last name is illegal because it starts with a digit.

Some words in a Java program, such as the primitive types and the word
if, are called keywords or reserved words. They have a special predefined
meaning in the Java language and cannot be used as the names of variables,
classes, or methods, or for anything other than their intended meaning. All
Java keywords are entirely in lowercase. A full list of these keywords appears in
Appendix 11, which is online, and you will learn them as we go along. The
program listings in this book show keywords, such as public, class, static,
and void, in a special color. The text editors within an IDE often identify
keywords in a similar manner.

Some other words, such as main and println, have a predefined meaning
but are not keywords. That means you can change their meaning, but it is a
bad idea to do so, because it could easily confuse you or somebody else
reading your program.

RECAP Identifiers (Names)

The name of something in a Java program, such as a variable, class, or
method, is called an identifier. It must not start with a digit and may
contain only letters, digits 0 through 9, and the underscore character
(_). Uppercase and lowercase letters are considered to be different
characters. (The symbol $ is also allowed, but it is reserved for special
purposes, and so you should not use $ in a Java name.)

Legal identifiers

Illegal identifiers

Java keywords
have special
meanings

 2.1 Variables and Expressions 93

Although it is not required by the Java language, the common practice,
and the one followed in this book, is to start the names of classes with
uppercase letters and to start the names of variables and methods with
lowercase letters. These names are usually spelled using only letters and digits.

FAQ Why should I follow naming conventions? And who sets
the rules?

By following naming conventions, you can make your programs easier
to read and to understand. Typically, your supervisor or instructor
determines the conventions that you should follow when writing Java
programs. However, the naming conventions that we just gave are
almost universal among Java programmers. We will mention stylistic
conventions for other aspects of a Java program as we go forward. Sun
Microsystems provides its own conventions on its Web site. While the
company suggests that all Java programmers follow these conventions,
not everyone does.

Assignment Statements

The most straightforward way to give a variable a value or to change its value
is to use an assignment statement. For example, if answer is a variable of type
int and you want to give it the value 42, you could use the following
assignment statement:

answer = 42;

The equal sign, =, is called the assignment operator when it is used in an
assignment statement. It does not mean what the equal sign means in other
contexts. The assignment statement is an order telling the computer to change
the value stored in the variable on the left side of the assignment operator to
the value of the expression on the right side. Thus, an assignment statement
always consists of a single variable followed by the assignment operator (the
equal sign) followed by an expression. The assignment statement ends with a
semicolon. So assignment statements take the form

Variable = Expression;

GOTCHA Java Is Case Sensitive

Do not forget that Java is case sensitive. If you use an identifier, like myNumber,
and then in another part of your program you use the spelling MyNumber, Java
will not recognize them as being the same identifier. To be seen as the same
identifier, they must use exactly the same capitalization. ■

An assignment
statement gives a
value to a
variable

94 CHAPTER 2 / Basic Computation

The expression can be another variable, a number, or a more complicated
expression made up by using arithmetic operators, such as + and −, to
combine variables and numbers. For example, the following are all examples
of assignment statements:

amount = 3.99;
firstInitial = 'B';
score = numberOfCards + handicap;
eggsPerBasket = eggsPerBasket − 2;

All the names, such as amount, score, and numberOfCards, are variables. We
are assuming that the variable amount is of type double, firstInitial is of
type char, and the rest of the variables are of type int.

When an assignment statement is executed, the computer first
evaluates the expression on the right side of the assignment operator (=)
to get the value of the expression. It then uses that value to set the value
of the variable on the left side of the assignment operator. You can think
of the assignment operator as saying, “Make the value of the variable
equal to what follows.”

For example, if the variable numberOfCards has the value 7 and handicap
has the value 2, the following assigns 9 as the value of the variable score:

score = numberOfCards + handicap;

In the program in Listing 2.1, the statement

totalEggs = numberOfBaskets * eggsPerBasket;

is another example of an assignment statement. It tells the computer to set the
value of totalEggs equal to the number in the variable numberOfBaskets
multiplied by the number in the variable eggsPerBasket. The asterisk character
(*) is the symbol used for multiplication in Java.

Note that a variable can meaningfully occur on both sides of the
assignment operator and can do so in ways that might at first seem a little
strange. For example, consider

count = count + 10;

This does not mean that the value of count is equal to the value of count plus
10, which, of course, is impossible. Rather, the statement tells the computer to
add 10 to the old value of count and then make that the new value of count. In
effect, the statement will increase the value of count by 10. Remember that
when an assignment statement is executed, the computer first evaluates the
expression on the right side of the assignment operator and then makes that
result the new value of the variable on the left side of the assignment operator.
As another example, the following assignment statement will decrease the
value of eggsPerBasket by 2:

eggsPerBasket = eggsPerBasket − 2;

* means multiply

The same variable
can occur on both
sides of the =

 2.1 Variables and Expressions 95

■ PROGRAMMING TIP Initialize Variables

A variable that has been declared, but that has not yet been given a value by an
assignment statement (or in some other way), is said to be uninitialized. If
the variable is a variable of a class type, it literally has no value. If the variable
has a primitive type, it likely has some default value. However, your program
will be clearer if you explicitly give the variable a value, even if you are simply
reassigning the default value. (The exact details on default values have been
known to change and should not be counted on.)

One easy way to ensure that you do not have an uninitialized variable is to
initialize it within the declaration. Simply combine the declaration and an
assignment statement, as in the following examples:

int count = 0;
double taxRate = 0.075;
char grade = 'A';
int balance = 1000, newBalance;

Note that you can initialize some variables and not initialize others in a
declaration.

Sometimes the compiler may complain that you have failed to initialize a
variable. In most cases, that will indeed be true. Occasionally, though, the
compiler is mistaken in giving this advice. However, the compiler will not
compile your program until you convince it that the variable in question is
initialized. To make the compiler happy, initialize the variable when you
declare it, even if the variable will be given another value before it is used for
anything. In such cases, you cannot argue with the compiler. ■

RECAP Assignment Statements Involving Primitive Types

An assignment statement that has a variable of a primitive type on
the left side of the equal sign causes the following action: First, the
expression on the right side of the equal sign is evaluated, and then the
variable on the left side of the equal sign is set to this value.

SYNTAX

Variable = Expression;

EXAMPLE

score = goals – errors;
interest = rate * balance;
number = number + 5;

You can initialize
a variable when
you declare it

96 CHAPTER 2 / Basic Computation

Simple Input

In Listing 2.1, we set the values of the variables eggsPerBasket and
numberOfBaskets to specific numbers. It would make more sense to obtain the
values needed for the computation from the user, so that the program could be
run again with different numbers. Listing 2.2 shows a revision of the program
in Listing 2.1 that asks the user to enter numbers as input at the keyboard.

We use the class Scanner, which Java supplies, to accept keyboard input.
Our program must import the definition of the Scanner class from the package
java.util. Thus, we begin the program with the following statement:

import java.util.Scanner;

The following line sets things up so that data can be entered from the keyboard:

Scanner keyboard = new Scanner(System.in);

This line must appear before the first statement that takes input from the
keyboard. That statement in our example is

eggsPerBasket = keyboard.nextInt();

This assignment statement gives a value to the variable eggsPerBasket. The
expression on the right side of the equal sign, namely

keyboard.nextInt()

reads one int value from the keyboard. The assignment statement makes this
int value the value of the variable eggsPerBasket, replacing any value that the
variable might have had. When entering numbers at the keyboard, the user
must either separate multiple numbers with one or more spaces or place each
number on its own line. Section 2.3 will explain such keyboard input in detail.

RECAP Combining a Variable Declaration and an Assignment

You can combine the declaration of a variable with an assignment
statement that gives the variable a value.

SYNTAX

Type Variable_1 = Expression_1, Variable_2 = Expression_2,

. . .;

EXAMPLES

int numberSeen = 0, increment = 5;
double height = 12.34, prize = 7.3 + increment;
char answer = 'y';

Use the standard
class Scanner to
accept keyboard
input

 2.1 Variables and Expressions 97

LISTING 2.2 A Program with Keyboard Input

import java.util.Scanner;

public class EggBasket2
{
 public static void main(String[] args)
 {
 int numberOfBaskets, eggsPerBasket, totalEggs;

 Scanner keyboard = new Scanner(System.in);
 System.out.println("Enter the number of eggs in each basket:");
 eggsPerBasket = keyboard.nextInt();
 System.out.println("Enter the number of baskets:");
 numberOfBaskets = keyboard.nextInt();

 totalEggs = numberOfBaskets * eggsPerBasket;

 System.out.println("If you have");
 System.out.println(eggsPerBasket + " eggs per basket and");
 System.out.println(numberOfBaskets + " baskets, then");
 System.out.println("the total number of eggs is " + totalEggs);

 System.out.println("Now we take two eggs out of each basket.");

 eggsPerBasket = eggsPerBasket − 2;
 totalEggs = numberOfBaskets * eggsPerBasket;

 System.out.println("You now have");
 System.out.println(eggsPerBasket + " eggs per basket and");
 System.out.println(numberOfBaskets + " baskets.");
 System.out.println("The new total number of eggs is " + totalEggs);
 }
}

Sample Screen Output

Gets the Scanner class from the
package (library) java.util

Sets up things so the program
can accept keyboard input

Reads one whole number
from the keyboard

Enter the number of eggs in each basket:
6
Enter the number of baskets:
10
If you have
6 eggs per basket and
10 baskets, then
the total number of eggs is 60
Now we take two eggs out of each basket.
You now have
4 eggs per basket and
10 baskets.
The new total number of eggs is 40

98 CHAPTER 2 / Basic Computation

Simple Screen Output

Now we will give you a brief overview of screen output—just enough to allow
you to write and understand programs like the one in Listing 2.2. System is a
class that is part of the Java language, and out is a special object within that
class. The object out has println as one of its methods. It may seem strange to
write System.out.println to call a method, but that need not concern you at
this point. Chapter 6 will provide some details about this notation.

So

System.out.println(eggsPerBasket + "eggs per basket.");

displays the value of the variable eggsPerBasket followed by the phrase eggs
per basket. Notice that the 1 symbol does not indicate arithmetic here. It
denotes another kind of “and.” You can read the preceding Java statement as
an instruction to display the value of the variable eggsPerBasket and then to
display the string "eggs per basket."

Section 2.3 will continue the discussion of screen output.

Constants

A variable can have its value changed. That is why it is called a variable: Its value
varies. A number like 2 cannot change. It is always 2. It is never 3. In Java, terms
like 2 or 3.7 are called constants, or literals, because their values do not change.

Constants need not be numbers. For example, 'A', 'B', and '$' are three
constants of type char. Their values cannot change, but they can be used in an
assignment statement to change the value of a variable of type char. For
example, the statement

firstInitial = 'B';

changes the value of the char variable firstInitial to 'B'.
There is essentially only one way to write a constant of type char, namely,

by placing the character between single quotes. On the other hand, some of
the rules for writing numeric constants are more involved. Constants of integer
types are written the way you would expect them to be written, such as 2, 3, 0,
−3, or 752. An integer constant can be prefaced with a plus sign or a minus
sign, as in 112 and 272. Numeric constants cannot contain commas. The
number 1,000 is not correct in Java. Integer constants cannot contain a decimal
point. A number with a decimal point is a floating-point number.

Floating-point constant numbers may be written in either of two forms.
The simple form is like the everyday way of writing numbers with digits after
the decimal point. For example, 2.5 is a floating-point constant. The other,
slightly more complicated form is similar to a notation commonly used in
mathematics and the physical sciences, scientific notation. For instance,
consider the number 865000000.0. This number can be expressed more
clearly in the following scientific notation:

8.65 × 10^8

A constant does
not change in
value

Java’s e notation
is like scientific
notation

 2.1 Variables and Expressions 99

Java has a similar notation, frequently called either e notation or floating-point
notation. Because keyboards have no way of writing exponents, the 10 is
omitted and both the multiplication sign and the 10 are replaced by the letter e.
So in Java, 8.65 3 108 is written as 8.65e8. The e stands for exponent, since it is
followed by a number that is thought of as an exponent of 10. This form and the
less convenient form 865000000.0 are equivalent in a Java program. Similarly,
the number 4.83 3 10−4, which is equal to 0.000483, could be written in Java as
either 0.000483 or 4.83e24. Note that you also could write this number as
0.483e23 or 48.3e25. Java does not restrict the position of the decimal point.

The number before the e may contain a decimal point, although it doesn’t
have to. The number after the e cannot contain a decimal point. Because
multiplying by 10 is the same as moving the decimal point in a number, you
can think of a positive number after the e as telling you to move the decimal
point that many digits to the right. If the number after the e is negative, you
move the decimal point that many digits to the left. For example, 2.48e4 is the
same number as 24800.0, and 2.48e-2 is the same number as 0.0248.

VideoNote
Another sample program

FAQ What is “floating” in a floating-point number?

Floating-point numbers got their name because, with the e notation
we just described, the decimal point can be made to “float” to a new
location by adjusting the exponent. You can make the decimal point in
0.000483 float to after the 4 by expressing this number as the equivalent
expression 4.83e24. Computer language implementers use this trick
to store each floating-point number as a number with exactly one digit
before the decimal point (and some suitable exponent). Because the
implementation always floats the decimal point in these numbers, they
are called floating-point numbers. Actually, the numbers are stored
in another base, such as 2 or 16, rather than as the decimal (base 10)
numbers we used in our example, but the principle is the same.

FAQ Is there an actual difference between the constants 5 and
5.0?

The numbers 5 and 5.0 are conceptually the same number. But Java
considers them to be different. Thus, 5 is an integer constant of type
int, but 5.0 is a floating-point constant of type double. The number 5.0
contains a fractional part, even though the fraction is 0. Although you
might see the numbers 5 and 5.0 as having the same value, Java stores
them differently. Both integers and floating-point numbers contain a
finite number of digits when stored in a computer, but only integers
are considered exact quantities. Because floating-point numbers have a
fractional portion, they are seen as approximations.

100 CHAPTER 2 / Basic Computation

GOTCHA Imprecision in Floating-Point Numbers

Floating-point numbers are stored with a limited amount of precision and so
are, for all practical purposes, only approximate quantities. For example, the
fraction one third is equal to

0.3333333 . . .

where the three dots indicate that the 3s go on forever. The computer stores
numbers in a format somewhat like the decimal representation on the
previously displayed line, but it has room for only a limited number of digits.
If it can store only ten digits after the decimal, then one third is stored as

0.3333333333 (and no more 3s)

This number is slightly smaller than one third and so is only approximately
equal to one third. In reality, the computer stores numbers in binary notation,
rather than in base 10, but the principles are the same and the same sorts of
things happen.

Not all floating-point numbers lose accuracy when they are stored in the
computer. Integral values like 29.0 can be stored exactly in floating-point
notation, and so can some fractions like one half. Even so, we usually will not
know whether a floating-point number is exact or an approximation. When in
doubt, assume that floating-point numbers are stored as approximate
quantities. ■

Named Constants

Java provides a mechanism that allows you to define a variable, initialize it,
and moreover fix the variable’s value so that it cannot be changed. The syntax is

public static final Type Variable = Constant;

For example, we can give the name PI to the constant 3.14159 as follows:

public static final double PI = 3.14159;

You can simply take this as a long, peculiarly worded way of giving a name
(like PI) to a constant (like 3.14159), but we can explain most of what is on
this line. The part

double PI = 3.14159;

simply declares PI as a variable and initializes it to 3.14159. The words that
precede this modify the variable PI in various ways. The word public says that
there are no restrictions on where you can use the name PI. The word static
will have to wait until Chapter 6 for an explanation; for now, just be sure to
include it. The word final means that the value 3.14159 is the final value
assigned to PI or, to phrase it another way, that the program is not allowed to
change the value of PI.

Name important
constants

 2.1 Variables and Expressions 101

The convention for naming constants is to use all uppercase letters, with
an underscore symbol (_) between words. For example, in a calendar program,
you might define the following constant:

public static final int DAYS_PER_WEEK = 7;

Although this convention is not required by the definition of the Java language,
most programmers adhere to it. Your programs will be easier to read if you can
readily identify variables, constants, and so forth.

RECAP Named Constants

To define a name for a constant, write the keywords public static
final in front of a variable declaration that includes the constant as the
initializing value. Place this declaration within the class definition but
outside of any method definitions, including the main method.

SYNTAX

public static finalType Variable = Constant;

EXAMPLES

public static final int MAX_STRIKES = 3;
public static final double MORTGAGE_INTEREST_RATE = 6.99;
public static final String MOTTO =

 "The customer is right!";
public static final char SCALE = 'K';

Although it is not required, most programmers spell named constants
using all uppercase letters, with an underscore to separate words.

Assignment Compatibilities

As the saying goes, “You can’t put a square peg in a round hole,” and you can’t
put a double value like 3.5 in a variable of type int. You cannot even put the
double value 3.0 in a variable of type int. You cannot store a value of one type
in a variable of another type unless the value is somehow converted to match
the type of the variable. However, when dealing with numbers, this conversion
will sometimes—but not always—be performed automatically for you. The
conversion will always be done when you assign a value of an integer type to a
variable of a floating-point type, such as

double doubleVariable = 7;

102 CHAPTER 2 / Basic Computation

Slightly more subtle assignments, such as the following, also perform the
conversion automatically:

int intVariable = 7;
double doubleVariable = intVariable;

More generally, you can assign a value of any type in the following list to a
variable of any type that appears further down in the list:

byte S short S int S long S float S double

For example, you can assign a value of type long to a variable of type float or
to a variable of type double (or, of course, to a variable of type long), but you
cannot assign a value of type long to a variable of type byte, short, or int.
Note that this is not an arbitrary ordering of the types. As you move down the
list from left to right, the types become more precise, either because they allow
larger values or because they allow decimal points in the numbers. Thus, you
can store a value into a variable whose type allows more precision than the
type of the value allows.

In addition, you can assign a value of type char to a variable of type int or
to any of the numeric types that follow int in our list of types. This particular
assignment compatibility will be important when we discuss keyboard input.
However, we do not advise assigning a value of type char to a variable of type
int except in certain special cases.2

If you want to assign a value of type double to a variable of type int, you
must change the type of the value using a type cast, as we explain in the next
section.

2 Readers who have used certain other languages, such as C or C++, may be surprised to
learn that you cannot assign a value of type char to a variable of type byte. This is
because Java reserves two bytes of memory for each value of type char but naturally
reserves only one byte of memory for values of type byte.

RECAP Assignment Compatibilities

You can assign a value of any type on the following list to a variable of
any type that appears further down on the list:

byte S short S int S long S float S double

In particular, note that you can assign a value of any integer type to a
variable of any floating-point type.

It is also legal to assign a value of type char to a variable of type int
or to any of the numeric types that follow int in our list of types.

A value can be
assigned to a
variable whose
type allows more
precision

 2.1 Variables and Expressions 103

Type Casting

The title of this section has nothing to do with the Hollywood notion of
typecasting. In fact, it is almost the opposite. In Java—and in most programming
languages—a type cast changes the data type of a value from its normal type to
some other type. For example, changing the type of the value 2.0 from double
to int involves a type cast. The previous section described when you can assign
a value of one type to a variable of another type and have the type conversion
occur automatically. In all other cases, if you want to assign a value of one type
to a variable of another type, you must perform a type cast. Let’s see how this
is done in Java.

Suppose you have the following:

double distance = 9.0;
int points = distance;

As the note indicates, the last statement is illegal in Java. You cannot assign a
value of type double to a variable of type int, even if the value of type double
happens to have all zeros after the decimal point and so is conceptually a
whole number.

In order to assign a value of type double to a value of type int, you must
place (int) in front of the value or the variable holding the value. For example,
you can replace the preceding illegal assignment with the following and get a
legal assignment:

int points = (int)distance;

The expression (int)distance is called a type cast. Neither distance
nor the value stored in distance is changed in any way. But the value stored
in points is the “int version” of the value stored in distance. If the value
of distance is 25.36, the value of (int)distance is 25. So points contains
25, but the value of distance is still 25.36. If the value of distance is 9.0,
the value assigned to points is 9, and the value of distance remains
unchanged.

An expression like (int) 25.36 or (int)distance is an expression that
produces an int value. A type cast does not change the value of the source
variable. The situation is analogous to computing the number of (whole)
dollars you have in an amount of money. If you have $25.36, the number of
dollars you have is 25. The $25.36 has not changed; it has merely been used to
produce the whole number 25.

For example, consider the following code:

double dinnerBill = 25.36;
int dinnerBillPlusTip = (int)dinnerBill + 5;
System.out.println("The value of dinnerBillPlusTip is " +
 dinnerBillPlusTip);

This assignment is illegal.

This assignment is legal.

A type cast
changes the data
type of a value

104 CHAPTER 2 / Basic Computation

The expression (int)dinnerBill produces the value 25, so the output of this
code would be

The value of dinnerBillPlusTip is 30

But the variable dinnerBill still contains the value 25.36.
Be sure to note that when you type cast from a double to an int—or from

any floating-point type to any integer type—the amount is not rounded. The
part after the decimal point is simply discarded. This is known as truncating.
For example, the following statements

double dinnerBill = 26.99;
int numberOfDollars = (int)dinnerBill;

set numberOfDollars to 26, not 27. The result is not rounded.
As we mentioned previously, when you assign an integer value to a

variable of a floating-point type—double, for example—the integer is
automatically type cast to the type of the variable. For example, the assignment
statement

double point = 7;

is equivalent to

double point = (double)7;

The type cast (double) is implicit in the first version of the assignment. The
second version, however, is legal.

RECAP Type Casting

In many situations, you cannot store a value of one type in a variable
of another type unless you use a type cast that converts the value to an
equivalent value of the target type.

SYNTAX

(Type_Name)Expression

EXAMPLES

double guess = 7.8;
int answer = (int)guess;

The value stored in answer will be 7. Note that the value is truncated, not
rounded. Note also that the variable guess is not changed in any way;
it still contains 7.8. The last assignment statement affects only the value
stored in answer.

Truncation
discards the
fractional part

