GLOBAL EDITION

Chemistry
 An Introduction to General, Organic, and Biological Chemistry

THIRTEENTH EDITION
Timberlake

P Pearson

CHEMISTRY

An Introduction to General, Organic, and Biological Chemistry

CHEMISTRY

An Introduction to General, Organic, and Biological Chemistry

Thirteenth Edition

Global Edition

Karen Timberlake
Contributions by MaryKay Orgill, Ph.D. Professor of Chemistry, University of Nevada, Las Vegas

Courseware Portfolio Manager: Scott Dustan
Director, Courseware Portfolio Management: Jeanne Zalesky
Assistant Acquisitions Editor, Global Edition: Aditee Agarwal
Assistant Project Editors, Global Edition: Aurko Mitra, Aman Kumar
Manager, Media Production, Global Edition: Vikram Kumar
Senior Manufacturing Controller, Global Edition: Kay Holman
Content Producer: Lizette Faraji
Managing Producer: Kristen Flathman
Courseware Analyst: Coleen Morrison
Courseware Director, Content Development: Jennifer Hart
Courseware Editorial Assistant: Fran Falk
Rich Media Content Producer: Jenny Moryan

Full Service Vendor: SPi Global
Full Service Project Manager: Karen Berry/Christian Arsenault
Copyeditor: Laura Patchkofsky
Design Manager: Mark Ong
Cover Designer: Lumina Datamatics, Inc.
Interior Designer: Tamara Newnam
Photo and Illustration Support: Stephanie Marquez, Imagineering Art
Rights and Permissions Project Manager: Kathleen Zander
Rights and Permissions Management: Ben Ferrini
Manufacturing Buyer: Maura Zaldivar-Garcia
Marketing Manager: Elizabeth Ellsworth Bell
Cover Image Credit: © nikkytok/Shutterstock

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on p. 695.

Pearson Education Limited
KAO Two
KAO Park
Harlow
CM17 9NA
United Kingdom
and Associated Companies throughout the world
Visit us on the World Wide Web at: www.pearsonglobaleditions.com
© Pearson Education Limited 2019
The rights of Karen Timberlake to be identified as the author of this work have been asserted by her in accordance with the Copyright, Designs and Patents Act 1988.
Authorized adaptation from the United States edition, entitled Chemistry: An Introduction to General, Organic, and Biological Chemistry, 13th Edition, ISBN 978-0-134-42135-3 by Karen Timberlake, published by Pearson Education © 2018.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

ISBN 10: 1-292-22886-5
ISBN 13: 978-1-292-22886-0
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
10987654321
Print edition typeset in 10/12pt Times LT Pro by SPi Global
Printed and bound by Vivar in Malaysia

Brief Contents

1 Chemistry in Our Lives 31
2 Chemistry and Measurements 55
3 Matter and Energy 90
4 Atoms and Elements 128
5 Nuclear Chemistry 166
6 Ionic and Molecular Compounds 198
7 Chemical Quantities and Reactions 246
8 Gases 289
9 Solutions 315
10 Acids and Bases and Equilibrium 354
11 Introduction to Organic Chemistry: Hydrocarbons 393
12 Alcohols, Thiols, Ethers, Aldehydes, and Ketones 428
13 Carbohydrates 462
14 Carboxylic Acids, Esters, Amines, and Amides 500
15 Lipids 539
16 Amino Acids, Proteins, and Enzymes 578
17 Nucleic Acids and Protein Synthesis 614
18 Metabolic Pathways and ATP Production 649

Table of Contents

1Chemistry inOur Lives ${ }_{31}$

CAREER Forensic Scientist 31
CLINICAL UPDATE Forensic Evidence Helps Solve the Crime 31
1.1 Chemistry and Chemicals 32
1.2 Scientific Method: Thinking Like a Scientist 33
CHEMISTRY LINK TO HEALTH
Early Chemist: Paracelsus 34
1.3 Studying and Learning Chemistry 35
1.4 Key Math Skills for Chemistry 39
1.5 Writing Numbers in Scientific Notation 46
CLINICAL UPDATE
Forensic Evidence Helps Solve the Crime 49
Concept Map 50
Chapter Review 50
Key Terms 51
Key Math Skills 51
Understanding the Concepts 52
Additional Practice Problems 53
Challenge Problems 53
Answers 54
2
Chemistry and Measurements55

CAREER Registered Nurse 55
CLINICAL UPDATE Greg's Visit with His Doctor 55
2.1 Units of Measurement 56
2.2 Measured Numbers and Significant Figures 59
2.3 Significant Figures in Calculations 61
2.4 Prefixes and Equalities 65
2.5 Writing Conversion Factors 69
2.6 Problem Solving Using Unit Conversion 72
2.7 Density 76
CHEMISTRY LINK TO HEALTH
Bone Density 79
CLINICAL UPDATE
Greg's Visit with His Doctor 82
Concept Map 82
Chapter Review 82
Key Terms 83
Key Math Skill 84
Core Chemistry Skills 84
Understanding the Concepts 85
Additional Practice Problems 86
Challenge Problems 87
Answers 88
3
Matter and Energy
90
CAREER Dietitian 90
CLINICAL UPDATE A Diet and Exercise Program 90
3.1 Classification of Matter 91
CHEMISTRY LINK TO HEALTHBreathing Mixtures 93
3.2 States and Properties of Matter 94
3.3 Temperature 97
CHEMISTRY LINK TO HEALTH
Variation in Body Temperature 101
3.4 Energy 101
CHEMISTRY LINK TO THE ENVIRONMENT
Carbon Dioxide and Climate Change 103
3.5 Energy and Nutrition 104
CHEMISTRY LINK TO HEALTH
Losing and Gaining Weight 106
3.6 Specific Heat 107
3.7 Changes of State 110
CHEMISTRY LINK TO HEALTH
Steam Burns 116
CLINICAL UPDATE
A Diet and Exercise Program 117
Concept Map 118
Chapter Review 118
Key Terms 119
Core Chemistry Skills 120
Understanding the Concepts 121
Additional Practice Problems 122
Challenge Problems 124
Answers 124
COMBINING IDEAS from Chapters 1 to 3 126
4
Atoms and Elements 128

CAREER Farmer 128
CLINICAL UPDATE Improving Crop Production 128
4.1 Elements and Symbols 129
CHEMISTRY LINK TO HEALTH
Toxicity of Mercury 130
4.2 The Periodic Table 131
CHEMISTRY LINK TO HEALTH
Elements Essential to Health 134
4.3 The Atom 136
4.4 Atomic Number and Mass Number 139
CHEMISTRY LINK TO THE ENVIRONMENT
Many Forms of Carbon 141
4.5 Isotopes and Atomic Mass 142
4.6 Electron Energy Levels 145
CHEMISTRY LINK TO HEALTH
Biological Reactions to UV Light 149
4.7 Trends in Periodic Properties 150
CLINICAL UPDATE
Improving Crop Production 157
Concept Map 158
Chapter Review 158
Key Terms 159
Core Chemistry Skills 160
Understanding the Concepts 161
Additional Practice Problems 162
Challenge Problems 163
Answers 163
5NuclearChemistry166

CAREER Radiation Technologist 166
CLINICAL UPDATE Cardiac Imaging Using a Radioisotope 166
5.1 Natural Radioactivity 167
5.2 Nuclear Reactions 170
CHEMISTRY LINK TO HEALTH
Radon in Our Homes 172
5.3 Radiation Measurement 177
CHEMISTRY LINK TO HEALTH
Radiation and Food 178
5.4 Half-Life of a Radioisotope 180
CHEMISTRY LINK TO THE ENVIRONMENTDating Ancient Objects182
5.5 Medical Applications Using Radioactivity 184
CHEMISTRY LINK TO HEALTH
Brachytherapy 187
5.6 Nuclear Fission and Fusion 188
CHEMISTRY LINK TO THE ENVIRONMENT
Nuclear Power Plants 191
CLINICAL UPDATE
Cardiac Imaging Using a Radioisotope 191
Concept Map 192
Chapter Review 192
Key Terms 193
Core Chemistry Skills 193
Understanding the Concepts 194
Additional Practice Problems 195
Challenge Problems 195
Answers 196
6
Ionic and Molecular Compounds 198
CAREER Pharmacy Technician 198
CLINICAL UPDATE Compounds at the Pharmacy 198
6.1 Ions: Transfer of Electrons 199
CHEMISTRY LINK TO HEALTH
Some Important lons in the Body 202
6.2 Ionic Compounds 204
6.3 Naming and Writing lonic Formulas 206
6.4 Polyatomic Ions 211
6.5 Molecular Compounds: Sharing Electrons 215
6.6 Lewis Structures for Molecules 219
6.7 Electronegativity and Bond Polarity 223
6.8 Shapes of Molecules 226
6.9 Polarity of Molecules and Intermolecular Forces 229
CLINICAL UPDATE
Compounds at the Pharmacy 233
Concept Map 234
Chapter Review 234
Key Terms 235
Core Chemistry Skills 236
Understanding the Concepts 238
Additional Practice Problems 239
Challenge Problems 240
Answers 241
COMBINING IDEAS from Chapters 4 to 6 244
7
Chemical Quantities and Reactions 246

CAREER Exercise Physiologist 246
CLINICAL UPDATE Improving Natalie's Overall Fitness 246
7.1 The Mole 247
7.2 Molar Mass 251
7.3 Calculations Using Molar Mass 253
7.4 Equations for Chemical Reactions 256
7.5 Types of Chemical Reactions 263
CHEMISTRY LINK TO HEALTH
Incomplete Combustion: Toxicity of Carbon
Monoxide 267
7.6 Oxidation-Reduction Reactions 268
7.7 Mole Relationships in Chemical Equations 271
7.8 Mass Calculations for Chemical Reactions 274
7.9 Energy in Chemical Reactions 276
CHEMISTRY LINK TO HEALTH
Cold Packs and Hot Packs 277
CLINICAL UPDATE
Improving Natalie's Overall Fitness 279
Concept Map 280
Chapter Review 280
Key Terms 281
Core Chemistry Skills 282
Understanding the Concepts 283
Additional Practice Problems 285
Challenge Problems 286
Answers 287
8
Gases289
CAREER Respiratory Therapist 289
CLINICAL UPDATE Exercise-Induced Asthma 289
8.1 Properties of Gases 290
CHEMISTRY LINK TO HEALTH
Measuring Blood Pressure 292
8.2 Pressure and Volume (Boyle's Law) 295
CHEMISTRY LINK TO HEALTH
Pressure-Volume Relationship in Breathing 296
8.3 Temperature and Volume (Charles's Law) 298
8.4 Temperature and Pressure (Gay-Lussac's Law) 300
8.5 The Combined Gas Law 302
8.6 Volume and Moles (Avogadro's Law) 303
8.7 Partial Pressures (Dalton's Law) 306
CHEMISTRY LINK TO HEALTH
Hyperbaric Chambers 308
CLINICAL UPDATE
Exercise-Induced Asthma 309
Concept Map 309
Chapter Review 310
Key Terms 310
Core Chemistry Skills 311
Understanding the Concepts 311
Additional Practice Problems 312
Challenge Problems 313
Answers 313
9
Solutions 315
CAREER Dialysis Nurse 315
CLINICAL UPDATE Using Dialysis for Renal Failure 315
9.1 Solutions 316
CHEMISTRY LINK TO HEALTH
Water in the Body 318
9.2 Electrolytes and Nonelectrolytes 320
CHEMISTRY LINK TO HEALTH
Electrolytes in Body Fluids 322
9.3 Solubility 324
CHEMISTRY LINK TO HEALTHGout and Kidney Stones: A Problem of Saturationin Body Fluids 325
9.4 Solution Concentrations 328
9.5 Dilution of Solutions 336
9.6 Properties of Solutions 339
CHEMISTRY LINK TO HEALTHDialysis by the Kidneys and the Artificial
Kidney 342
CLINICAL UPDATEUsing Dialysis for Renal Failure344
Concept Map 344
Chapter Review 344
Key Terms 345
Core Chemistry Skills 346
Understanding the Concepts 346
Additional Practice Problems 347
Challenge Problems 348
Answers 349
COMBINING IDEAS from Chapters 7 to 9 351
10
Acids and Bases and Equilibrium 354
CAREER Clinical Laboratory Technician 354
CLINICAL UPDATE Acid Reflux Disease 354
10.1 Acids and Bases 355
10.2 Brønsted-Lowry Acids and Bases 357
10.3 Strengths of Acids and Bases 360
10.4 Acid-Base Equilibrium 363
CHEMISTRY LINK TO HEALTH
Oxygen-Hemoglobin Equilibrium and Hypoxia 366
10.5 Dissociation of Water 368
10.6 The pH Scale 370
CHEMISTRY LINK TO HEALTH
Stomach Acid, HCl 375
10.7 Reactions of Acids and Bases 376
CHEMISTRY LINK TO HEALTH
Antacids 379
10.8 Buffers 380
CHEMISTRY LINK TO HEALTH
Buffers in the Blood Plasma 382
CLINICAL UPDATE
Acid Reflux Disease 384
Concept Map 385
Chapter Review 385
Key Terms 387
Key Math Skills 387
Core Chemistry Skills 387
Understanding the Concepts 388
Additional Practice Problems 389
Challenge Problems 390
Answers 391

11
Introduction to Organic Chemistry: Hydrocarbons 393
CAREER Firefighter/Emergency Medical Technician 393
CLINICAL UPDATE Diane's Treatment in the Burn Unit 393
11.1 Organic Compounds 394
11.2 Alkanes 396
11.3 Alkanes with Substituents 400
11.4 Properties of Alkanes 405
11.5 Alkenes and Alkynes 406
11.6 Cis-Trans Isomers 409
CHEMISTRY LINK TO THE ENVIRONMENT
Pheromones in Insect Communication 411
CHEMISTRY LINK TO HEALTH
Cis-Trans Isomers for Night Vision 412
11.7 Addition Reactions for Alkenes 412
CHEMISTRY LINK TO HEALTH
Hydrogenation of Unsaturated Fats 413
11.8 Aromatic Compounds 415
CHEMISTRY LINK TO HEALTH
Some Common Aromatic Compounds 417
CHEMISTRY LINK TO HEALTH
Polycyclic Aromatic Hydrocarbons (PAHs) 418
CLINICAL UPDATE
Diane's Treatment in the Burn Unit 419
Concept Map 419
Chapter Review 420
Summary of Naming 421
Summary of Reactions 421
Key Terms 421
Core Chemistry Skills 422
Understanding the Concepts 422
Additional Practice Problems 423
Challenge Problems 424
Answers 425
12
Alcohols, Thiols,Ethers, Aldehydes,and Ketones ${ }_{428}$
CAREER Dermatology Nurse 428
CLINICAL UPDATE Diana's Skin Protection Plan 428
12.1 Alcohols, Phenols, Thiols, and Ethers 429
CHEMISTRY LINK TO HEALTH
Some Important Alcohols and Phenols 432
CHEMISTRY LINK TO HEALTH
Ethers as Anesthetics 434
12.2 Properties of Alcohols 435
CHEMISTRY LINK TO HEALTH
Hand Sanitizers 437
12.3 Aldehydes and Ketones 438
CHEMISTRY LINK TO HEALTH
Some Important Aldehydes and Ketones 442
12.4 Reactions of Alcohols, Thiols, Aldehydes, and Ketones 444
CHEMISTRY LINK TO HEALTH
Oxidation of Alcohol in the Body 447
CLINICAL UPDATE
Diana's Skin Protection Plan 451
Concept Map 451
Chapter Review 452
Summary of Naming 453
Summary of Reactions 453
Key Terms 453
Core Chemistry Skills 454
Understanding the Concepts 454
Additional Practice Problems 455
Challenge Problems 457
Answers 457
COMBINING IDEAS from Chapters 10 to 12460
13
Carbohydrates 462

CAREER Diabetes Nurse 462
CLINICAL UPDATE Kate's Program for Type 2 Diabetes 462
13.1 Carbohydrates 463
13.2 Chiral Molecules 466
CHEMISTRY LINK TO HEALTH
Enantiomers in Biological Systems 471
13.3 Fischer Projections of Monosaccharides 473
CHEMISTRY LINK TO HEALTH
Hyperglycemia and Hypoglycemia 475
13.4 Haworth Structures of Monosaccharides 476
13.5 Chemical Properties of Monosaccharides 480
CHEMISTRY LINK TO HEALTH
Testing for Glucose 482
13.6 Disaccharides 483
CHEMISTRY LINK TO HEALTH
How Sweet Is My Sweetener? 485
CHEMISTRY LINK TO HEALTH
Blood Types and Carbohydrates 486
13.7 Polysaccharides 489
CLINICAL UPDATE
Kate's Program for Type 2 Diabetes 491
Concept Map 492
Chapter Review 492
Summary of Carbohydrates 493
Summary of Reactions 494
Key Terms 494
Core Chemistry Skills 495
Understanding the Concepts 495
Additional Practice Problems 496
Challenge Problems 497
Answers 498
14
Carboxylic Acids, Esters, Amines, and Amides 500
CAREER Environmental Health Practitioner 500
CLINICAL UPDATE Testing Soil and Water Samples for Chemicals 500
14.1 Carboxylic Acids 501
14.2 Properties of Carboxylic Acids 503
CHEMISTRY LINK TO HEALTH
Carboxylic Acids in Metabolism 506
14.3 Esters 507
CHEMISTRY LINK TO HEALTH
Salicylic Acid from a Willow Tree 509
CHEMISTRY LINK TO THE ENVIRONMENT
Plastics 510
14.4 Hydrolysis of Esters 512
14.5 Amines 514
CHEMISTRY LINK TO HEALTH
Amines in Health and Medicine 516
CHEMISTRY LINK TO THE ENVIRONMENT
Alkaloids: Amines in Plants 520
14.6 Amides 521
CHEMISTRY LINK TO HEALTH
Amides in Health and Medicine 524
CLINICAL UPDATE
Testing Soil and Water Samples for Chemicals 527
Concept Map 528
Chapter Review 528
Summary of Naming 529
Summary of Reactions 529
Key Terms 531
Core Chemistry Skills 531
Understanding the Concepts 531
Additional Practice Problems 532
Challenge Problems 534
Answers 535
15
Lipids 539

CAREER Clinical Lipid Specialist 539
CLINICAL UPDATE Rebecca's Program to Lower Cholesterol 539
15.1 Lipids 540
15.2 Fatty Acids 541
CHEMISTRY LINK TO HEALTH
Omega-3 Fatty Acids in Fish Oils 545
15.3 Waxes and Triacylglycerols 547
15.4 Chemical Properties of Triacylglycerols 551
CHEMISTRY LINK TO HEALTHConverting Unsaturated Fats to SaturatedFats: Hydrogenation 552
15.5 Phospholipids 555
CHEMISTRY LINK TO HEALTH
Infant Respiratory Distress Syndrome (IRDS) 559
15.6 Steroids: Cholesterol, Bile Salts, and Steroid Hormones 560
CHEMISTRY LINK TO HEALTH
Anabolic Steroids 564
15.7 Cell Membranes 566
CLINICAL UPDATE
Rebecca's Program to Lower Cholesterol 568
Concept Map 569
Chapter Review 569
Summary of Reactions 570
Key Terms 570
Core Chemistry Skills 571
Understanding the Concepts 571
Additional Practice Problems 572
Challenge Problems 572
Answers 573
COMBINING IDEAS from Chapters 13 to 15 576
16
Amino Acids, Proteins, and Enzymes578

CAREER Physician Assistant 578
CLINICAL UPDATE Jeremy's Diagnosis and Treatment for Sickle-Cell Anemia 578
16.1 Proteins and Amino Acids 579
16.2 Proteins: Primary Structure 583
CHEMISTRY LINK TO HEALTH
Essential Amino Acids and CompleteProteins 585
CHEMISTRY LINK TO HEALTH
Polypeptides in the Body 587
16.3 Proteins: Secondary, Tertiary, and Quaternary Structures 588
CHEMISTRY LINK TO HEALTH
Protein Secondary Structures andAlzheimer's Disease 590
CHEMISTRY LINK TO HEALTH
Sickle-Cell Anemia 595
16.4 Enzymes 596
CHEMISTRY LINK TO HEALTH
Isoenzymes as Diagnostic Tools 599
16.5 Factors Affecting Enzyme Activity 601
CLINICAL UPDATE
Jeremy's Diagnosis and Treatment for Sickle-Cell Anemia 606
Concept Map 607
Chapter Review 607
Key Terms 608
Core Chemistry Skills 609
Understanding the Concepts 609
Additional Practice Problems 610
Challenge Problems 611
Understanding Protein Structures 611
Answers 611
17Nucleic Acidsand ProteinSynthesis614
Nucleic Acids and Protein Synthesis 614
CAREER Histology Technician 614 4
CLINICAL UPDATE Ellen's Medical Treatment Following Breast Cancer Surgery 614
17.1 Components of Nucleic Acids 615
17.2 Primary Structure of Nucleic Acids 618
17.3 DNA Double Helix and Replication 620
17.4 RNA and Transcription 623
17.5 The Genetic Code and Protein Synthesis 626
CHEMISTRY LINK TO HEALTH
Many Antibiotics Inhibit Protein Synthesis 629
17.6 Genetic Mutations 630
17.7 Recombinant DNA 635
17.8 Viruses 637
CHEMISTRY LINK TO HEALTH
Cancer 640
CLINICAL UPDATE
Ellen's Medical Treatment Following Breast
Cancer Surgery 641
Concept Map 642
Chapter Review 642
Key Terms 643
Core Chemistry Skills 644
Understanding the Concepts 644
Additional Practice Problems 645
Challenge Problems 646
Answers 646
18
Metabolic
Pathways and ATP Production 649
CAREER Public Health Nurse (PHN) 649
CLINICAL UPDATE Treatment of Luke's Hepatitis C 649
18.1 Metabolism and ATP Energy 650
18.2 Digestion of Foods 653

Applications and Activities

KEY MATH SKILLS
Identifying Place Values 40
Using Positive and Negative Numbers in Calculations 41
Calculating Percentages 42
Solving Equations 43
Interpreting Graphs 44
Writing Numbers in Scientific Notation 47
Rounding Off 62
Calculating pH from $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ 372
Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from pH 374
CORE CHEMISTRY SKILLS
Counting Significant Figures 59
Using Significant Figures in Calculations 62
Using Prefixes 66
Writing Conversion Factors from Equalities 69
Using Conversion Factors 73
Using Density as a Conversion Factor 79
Identifying Physical and Chemical Changes 96
Converting between Temperature Scales 97
Using Energy Units 102
Using the Heat Equation 108
Calculating Heat for Change of State 111
Counting Protons and Neutrons 139
Writing Atomic Symbols for Isotopes 142
Writing Electron Arrangements 147
Identifying Trends in Periodic Properties 150
Drawing Lewis Symbols 152
Writing Nuclear Equations 170
Using Half-Lives 181
Writing Positive and Negative lons 200
Writing lonic Formulas 205
Naming lonic Compounds 206
Writing the Names and Formulas for Molecular Compounds 216
Drawing Lewis Structures 220
Using Electronegativity 223
Predicting Shape 226
Identifying Polarity of Molecules and Intermolecular Forces 229
Converting Particles to Moles 247
Calculating Molar Mass 252
Using Molar Mass as a Conversion Factor 253
Balancing a Chemical Equation 259
Classifying Types of Chemical Reactions 263
Identifying Oxidized and Reduced Substances 269
Using Mole-Mole Factors 272
Converting Grams to Grams 274
Using the Gas Laws 296
Calculating Partial Pressure 306
Using Solubility Rules 327
Calculating Concentration 329
Using Concentration as a Conversion Factor 330
Identifying Conjugate Acid-Base Pairs 358
Using Le Châtelier's Principle 365
Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in Solutions 369
Writing Equations for Reactions of Acids and Bases 376
Calculating Molarity or Volume of an Acid or Base in a Titration 378
Naming and Drawing Alkanes 397
Writing Equations for Hydrogenation and
Hydration 412
Identifying Functional Groups 429
Naming Alcohols and Phenols 429
Naming Aldehydes and Ketones 439
Writing Equations for the Dehydration of Alcohols 444
Writing Equations for the Oxidation of Alcohols 445
Identifying Chiral Molecules 467
Identifying D and L Fischer Projections for Carbohydrates 473
Drawing Haworth Structures 476
Naming Carboxylic Acids 501
Hydrolyzing Esters 512
Forming Amides 522
Identifying Fatty Acids 541
Drawing Structures for Triacylglycerols 548
Drawing the Products for the Hydrogenation, Hydrolysis,and Saponification of a Triacylglycerol 552
Identifying the Steroid Nucleus 560
Drawing the Structure for an Amino Acid atPhysiological pH 582
Identifying the Primary, Secondary, Tertiary, andQuaternary Structures of Proteins 588
Describing Enzyme Action 599
Writing the Complementary DNA Strand 622
Writing the mRNA Segment for a DNA Template 626
Writing the Amino Acid for an mRNA Codon 627
Identifying the Compounds in Glycolysis 660
Describing the Reactions in the Citric Acid Cycle 667
Calculating the ATP Produced from Glucose 672
Calculating the ATP from Fatty Acid Oxidation
(β Oxidation) 678
Interactive Videos
Solving Equations 44
Conversion Factors 73
Chemical vs. Physical Changes 96
Rutherford's Gold-Foil Experiment 137
Writing Equations for an Isotope Produced by Bombardment 175
Half-Lives 181
Problem 7.65 275
Kinetic Molecular Theory 290
Solutions 335
Titration of an Acid 379
Naming Alkanes 402
Addition to an Asymmetric Bond 414
Oxidation of Alcohols 446
Chirality 466
Study Check 14.7 514
Membrane Structure 566
Different Levels of Protein Structure 593
Protein Synthesis 628

About the Author

KAREN TIMBERLAKE is Professor Emerita of chemistry at Los Angeles Valley College, where she taught chemistry for allied health and preparatory chemistry for 36 years. She received her bachelor's degree in chemistry from the University of Washington and her master's degree in biochemistry from the University of California at Los Angeles.
Professor Timberlake has been writing chemistry textbooks for 40 years. During that time, her name has become associated with the strategic use of pedagogical tools that promote student success in chemistry and the application of chemistry to real-life situations. More than one million students have learned chemistry using texts, laboratory manuals, and study guides written by Karen Timberlake. In addition to An Introduction to General, Organic and Biological Chemistry, thirteenth edition, she is also the author of General, Organic, and Biological Chemistry, fifth edition, with the accompanying Study Guide and Selected Solutions Manual, Laboratory Manual and Essentials Laboratory Manual, and Basic Chemistry, fifth edition, with the accompanying Study Guide and Selected Solutions Manual.

Professor Timberlake belongs to numerous scientific and educational organizations including the American Chemical Society (ACS) and the National Science Teachers Association (NSTA). She has been the Western Regional Winner of the Excellence in College Chemistry Teaching Award given by the Chemical Manufacturers Association. She received the McGuffey Award in Physical Sciences from the Textbook Authors Association for her textbook

Chemistry: An Introduction to General, Organic, and Biological Chemistry, eighth edition, which has demonstrated her excellence over time. She received the "Texty" Textbook Excellence Award from the Textbook Authors Association for the first edition of Basic Chemistry. She has participated in education grants for science teaching including the Los Angeles Collaborative for Teaching Excellence (LACTE) and a Title III grant at her college. She speaks at conferences and educational meetings on the use of student-centered teaching methods in chemistry to promote the learning success of students.

When Professor Timberlake is not writing textbooks, she and her husband relax by playing tennis, ballroom dancing, traveling, trying new restaurants, cooking, and taking care of their grandchildren, Daniel and Emily.

DEDICATION

I dedicate this book to

- My husband, Bill, for his patience, loving support, and preparation of late meals
- My son, John, daughter-in-law, Cindy, grandson, Daniel, and granddaughter, Emily, for the precious things in life
- The wonderful students over many years whose hard work and commitment always motivated me and put purpose in my writing

FAVORITE QUOTES

The whole art of teaching is only the art of awakening the natural curiosity of young minds.
-Anatole France
One must learn by doing the thing; though you think you know it, you have no certainty until you try. —Sophocles
Discovery consists of seeing what everybody has seen and thinking what nobody has thought.
—Albert Szent-Gyorgyi
I never teach my pupils; I only attempt to provide the conditions in which they can learn.
—Albert Einstein

Preface

Welcome to the thirteenth edition of An Introduction to General, Organic, and Biological Chemistry. This chemistry text was written and designed to help you prepare for a career in a health-related profession, such as nursing, dietetics, respiratory therapy, and environmental and agricultural science. This text assumes no prior knowledge of chemistry. My main objective in writing this text is to make the study of chemistry an engaging and positive experience for you by relating the structure and behavior of matter to its role in health and the environment. This new edition introduces more problem-solving strategies, more problem-solving guides, new Analyze the Problem with Connect features, new Try It First and Engage features, conceptual and challenge problems, and new sets of combined problems.

It is my goal to help you become a critical thinker by understanding scientific concepts that will form a basis for making important decisions about issues concerning health and the environment. Thus, I have utilized materials that

- help you to learn and enjoy chemistry
- relate chemistry to careers that interest you
- develop problem-solving skills that lead to your success in chemistry
- promote learning and success in chemistry

New for the Thirteenth Edition

New and updated features have been added throughout this thirteenth edition, including the following:

- NEW AND UPDATED! Chapter Openers provide engaging clinical stories in the health profession and introduce the chemical concepts in each chapter.
- NEW! Clinical Updates added at the end of each chapter continue the story of the chapter opener and describe the follow-up treatment.
- NEW! Engage feature in the margin asks students to think about the paragraph they are reading and to test their understanding by answering the Engage question, which is related to the topic.
- NEW! Try It First precedes the solution section of each Sample Problem to encourage the student to work on the problem before reading the given solution.
- NEW! Connect feature added to Analyze the Problem boxes indicates the relationships between Given and Need.
- NEW! Clinical Applications added to Practice Problems show the relevance between the chemistry content and medicine and health.
- NEW! Strategies for Learning Chemistry are added that utilize successful ways to study and learn chemistry.
- NEW! TEST feature added in the margin encourages students to solve related Practice Problems to practice retrieval of content for exams.
- NEW! Interactive Videos give students the experience of step-by-step problem solving for problems from the text.
- NEW! Review topics placed in the margin at the beginning of a section list the Key Math Skills and Core Chemistry Skills from the previous chapters, which provide the foundation for learning new chemistry principles in the current chapter.
- UPDATED! Solution Guides are now included in selected Sample Problems.
- UPDATED! Key Math Skills review basic math relevant to the chemistry the students are learning throughout the text. A Key Math Skill Review at the end of each chapter summarizes and gives additional examples.
- UPDATED! Core Chemistry Skills identify the key chemical principles in each chapter that are required for successfully learning chemistry. A Core Chemistry Skill Review at the end of each chapter helps reinforce the material and gives additional examples.
- UPDATED! Analyze the Problem features included in the solutions of the Sample Problems strengthen critical-thinking skills and illustrate the breakdown of a word problem into the components required to solve it.
- UPDATED! Practice Problems, Sample Problems, and art demonstrate the connection between the chemistry being discussed and how these skills will be needed in professional experience.
- UPDATED! Combining Ideas features offer sets of integrated problems that test students' understanding and develop critical thinking by integrating topics from two or more previous chapters.

Chapter Organization of the Thirteenth Edition

In each textbook I write, I consider it essential to relate every chemical concept to real-life issues. Because a chemistry course may be taught in different time frames, it may be difficult to cover all the chapters in this text. However, each chapter is a complete package, which allows some chapters to be skipped or the order of presentation to be changed.

Chapter 1, Chemistry in Our Lives, discusses the Scientific Method in everyday terms, guides students in developing a study plan for learning chemistry, with a section of Key Math

Skills that reviews the basic math, including scientific notation, needed in chemistry calculations.

- The Chapter Opener tells the story of a murder and features the work and career of forensic scientists.
- A new Clinical Update feature describes the forensic evidence that helps to solve the murder and includes Clinical Applications.
- "Scientific Method: Thinking Like a Scientist" is expanded to include law and theory.
- Writing Numbers in Scientific Notation is now a new Section.
- An updated Section titled Studying and Learning Chemistry expands the discussion of strategies that improve learning and understanding of content.
- Key Math Skills are: Identifying Place Values, Using Positive and Negative Numbers in Calculations, Calculating Percentages, Solving Equations, Interpreting Graphs, and Writing Numbers in Scientific Notation.

Chapter 2, Chemistry and Measurements, looks at measurement and emphasizes the need to understand numerical relationships of the metric system. Significant figures are discussed in the determination of final answers. Prefixes from the metric system are used to write equalities and conversion factors for problem-solving strategies. Density is discussed and used as a conversion factor.

- The Chapter Opener tells the story of a patient with high blood pressure and features the work and career of a registered nurse.
- A new Clinical Update describes the patient's status and follow-up visit with his doctor.
- New photos, including an endoscope, propranolol tablets, cough syrup, people exercising, a urine dipstick, and a pint of blood, are added to improve visual introduction to clinical applications of chemistry. Previous art is updated to improve clarity.
- Sample Problems relate problem solving to healthrelated topics such as the measurements of blood volume, omega-3 fatty acids, radiological imaging, body fat, cholesterol, and medication orders.
- New Clinical Applications feature questions about measurements, daily values for minerals and vitamins, equalities and conversion factors for medications.
- New material illustrates how to count significant figures in equalities and in conversion factors used in a problem setup.
- A new Key Math Skill, Rounding Off, has been added.
- Core Chemistry Skills are: Counting Significant Figures, Using Significant Figures in Calculations, Using Prefixes, Writing Conversion Factors from Equalities, Using Conversion Factors, and Using Density as a Conversion Factor.

Chapter 3, Matter and Energy, classifies matter and states of matter, describes temperature measurement, and discusses energy, specific heat, energy in nutrition, and changes of state. Physical and chemical properties and physical and chemical changes are discussed.

- The chapter opener describes diet and exercise for an overweight adolescent at risk for type 2 diabetes and features the work and career of a dietitian.
- A new Clinical Update describes the new diet prepared with a dietitian for weight loss.
- Practice Problems and Sample Problems include high temperatures used in cancer treatment, the energy produced by a high-energy shock output of a defibrillator, body temperature lowering using a cooling cap, ice bag therapy for muscle injury, and energy values for food.
- Core Chemistry Skills are: Identifying Physical and Chemical Changes, Converting between Temperature Scales, Using Energy Units, Using the Heat Equation, and Calculating Heat for Change of State.
- The interchapter problem set, Combining Ideas from Chapters 1 to 3, completes the chapter.

Chapter 4, Atoms and Elements, introduces elements and atoms and the periodic table. The names and symbols for the newest elements 113 , Nihonium, Nh, 115, Moscovium, Mc, 117, Tennessine, Ts, and 118, Oganesson, Og, are added to the periodic table. Electron arrangements are written for atoms and the trends in periodic properties are described. Atomic numbers and mass numbers are determined for isotopes. The most abundant isotope of an element is determined by its atomic mass.

- The Chapter Opener and Follow Up feature the work and career of a farmer.
- A new Clinical Update describes the improvement in crop production by the farmer.
- Atomic number and mass number are used to calculate the number of protons and neutrons in an atom.
- The number of protons and neutrons are used to calculate the mass number and to write the atomic symbol for an isotope.
- The trends in periodic properties are described for valence electrons, atomic size, ionization energy, and metallic character.
- Core Chemistry Skills are: Counting Protons and Neutrons, Writing Atomic Symbols for Isotopes, Writing Electron Arrangements, Identifying Trends in Periodic Properties, and Drawing Lewis Symbols.

Chapter 5, Nuclear Chemistry, looks at the types of radiation emitted from the nuclei of radioactive atoms. Nuclear equations are written and balanced for both naturally occurring radioactivity and artificially produced radioactivity. The halflives of radioisotopes are discussed, and the amount of time for a sample to decay is calculated. Radioisotopes important in the
field of nuclear medicine are described. Fission and fusion and their role in energy production are discussed.

- The new chapter opener describes a patient with possible coronary heart disease who undergoes a nuclear stress test and features the work and career of a radiation technologist.
- A new Clinical Update discusses the results of cardiac imaging using the radioisotope $\mathrm{Tl}-201$.
- Sample Problems and Practice Problems use nursing and medical examples, including phosphorus-32 for the treatment of leukemia, titanium seeds containing a radioactive isotope implanted in the body to treat cancer, yttrium injections for arthritis pain, and millicuries in a dose of phosphorus-32.
- Core Chemistry Skills are: Writing Nuclear Equations and Using Half-Lives.

Chapter 6, Ionic and Molecular Compounds, describes

 the formation of ionic and covalent bonds. Chemical formulas are written, and ionic compounds-including those with polyatomic ions-and molecular compounds are named.- The chapter opener describes aspirin as a molecular compound and features the work and career of a pharmacy technician.
- A new Clinical Update describes several types of compounds at a pharmacy and includes Clinical Applications.
- Section 6.6 is now titled "Lewis Structures for Molecules," 6.7 is "Electronegativity and Bond Polarity," 6.8 is "Shapes of Molecules," and 6.9 is "Polarity of Molecules and Intermolecular Forces."
- The term Lewis structure has replaced the term electrondot formula.
- Updated material on polyatomic ions compares the names of ate ions and ite ions, the charge of carbonate and hydrogen carbonate, and the formulas and charges of halogen polyatomic ions with oxygen.
- A new art comparing the particles and bonding of ionic compounds and molecular compounds has been added.
- A new flowchart for naming chemical compounds in Section 6.5 shows naming patterns for ionic and molecular compounds.
- Core Chemistry Skills are: Writing Positive and Negative Ions, Writing Ionic Formulas, Naming Ionic Compounds, Writing the Names and Formulas for Molecular Compounds, Drawing Lewis Structures, Using Electronegativity, Predicting Shape, and Identifying Polarity of Molecules and Intermolecular Forces.
- The interchapter problem set, Combining Ideas from Chapters 4 to 6 , completes the chapter.

Chapter 7, Chemical Quantities and Reactions, discusses Avogadro's number, the mole, and molar masses of compounds, which are used in calculations to determine the mass or number
of particles in a given quantity of an element or a substance. Students learn to balance chemical equations and to recognize the types of chemical reactions: combination, decomposition, single replacement, double replacement, and combustion. Chapter discussion includes Oxidation-Reduction Reactions using real-life examples, including biological reactions, Mole Relationships in Chemical Equations, Mass Calculations for Chemical Reactions, and Energy in Chemical Reactions, which discusses activation energy and energy changes in exothermic and endothermic reactions.

- The chapter opener describes the symptoms of pulmonary emphysema and discusses the career of an exercise physiologist.
- A new Clinical Update explains the treatment for interstitial lung disease.
- Sample Problems and Challenge Problems use nursing and medical examples.
- New expanded art shows visible evidence of a chemical reaction.
- Core Chemistry Skills are: Converting Particles to Moles, Calculating Molar Mass, Using Molar Mass as a Conversion Factor, Balancing a Chemical Equation, Classifying Types of Chemical Reactions, Identifying Oxidized and Reduced Substances, Using Mole-Mole Factors, and Converting Grams to Grams.

Chapter 8, Gases, discusses the properties of gases and calculates changes in gases using the gas laws: Boyle's, Charles's, Gay-Lussac's, Avogadro's, and Dalton's. Problem-solving strategies enhance the discussion and calculations with gas laws.

- The chapter opener features the work and career of a respiratory therapist.
- New Clinical Update describes exercise to prevent exercise-induced asthma. Clinical Applications are related to lung volume and gas laws.
- Sample Problems and Challenge Problems use nursing and medical examples, including, calculating the volume of oxygen gas delivered through a face mask during oxygen therapy, preparing a heliox breathing mixture for a scuba diver, and home oxygen tanks.
- Core Chemistry Skills are: Using the Gas Laws and Calculating Partial Pressure.

Chapter 9, Solutions, describes solutions, electrolytes, saturation and solubility, insoluble salts, concentrations, and osmosis. The concentrations of solutions are used to determine volume or mass of solute. The volumes and molarities of solutions are used in calculations of dilutions and titrations. Properties of solutions, osmosis in the body, and dialysis are discussed.

- The chapter opener describes a patient with kidney failure and dialysis treatment and features the work and career of a dialysis nurse.
- A new Clinical Update explains dialysis treatment and electrolyte levels in dialysate fluid.
- Art updates include gout and intravenous solutions.
- Table 9.6 on electrolytes in intravenous solutions is expanded.
- Core Chemistry Skills are: Using Solubility Rules, Calculating Concentration, and Using Concentration as a Conversion Factor.
- The interchapter problem set, Combining Ideas from Chapters 7 to 9 , completes the chapter.

Chapter 10, Acids and Bases and Equilibrium, discusses acids and bases and conjugate acid-base pairs. The dissociation of strong and weak acids and bases is related to their strengths as acids or bases. The dissociation of water leads to the water dissociation expression, K_{w}, the pH scale, and the calculation of pH . The reactions of acids and bases with metals, carbonates, and bicarbonates are discussed. Chemical equations for acids in reactions are balanced and titration of an acid is illustrated. Buffers are discussed along with their role in the blood.

- The chapter opener describes an accident victim with respiratory acidosis and the work and career of a clinical laboratory technician.
- A Clinical Update discusses the symptoms and treatment for acid reflux disease.
- The section "Acid-Base Equilibrium" includes Le Châtelier's principle.
- Clinical Applications include calculating $\left[\mathrm{OH}^{-}\right]$or $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] of body fluids, foods, blood plasma, and the pH of body fluids.
- Key Math Skills are: Calculating pH from $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from pH .
- New Core Chemistry Skills are: Identifying Conjugate Acid-Base Pairs, Using Le Chatelier's Principle, Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in Solutions, Writing Equations for Reactions of Acids and Bases, and Calculating Molarity or Volume of an Acid or Base in a Titration.

Chapter 11, Introduction to Organic Chemistry: Hydro-

 carbons, compares inorganic and organic compounds, and describes the structures and naming of alkanes, alkenes including cis-trans isomers, alkynes, and aromatic compounds.- The chapter opener describes a fire victim and the search for traces of accelerants and fuel at the arson scene and features the work and career of a firefighter/emergency medical technician.
- A new Clinical Update describes the treatment of burns in the hospital and the types of fuels identified in the fire.
- Wedge-dash models have been added to the representations of methane and ethane.
- Line-angle formulas are now included in Table 11.2 IUPAC Names and Formulas of the First Ten Alkanes.
- Core Chemistry Skills are: Naming and Drawing Alkanes and Writing Equations for Hydrogenation and Hydration.

Chapter 12, Alcohols, Thiols, Ethers, Aldehydes, and Ketones, describes the functional groups and names of alcohols, thiols, ethers, aldehydes, and ketones. The solubility of alcohols, phenols, aldehydes, and ketones in water is discussed.

- A new chapter opener describes the risk factors for melanoma and discusses work and career of a dermatology nurse.
- A new Clinical Update discusses melanoma, skin protection, and functional groups of sunscreens.
- A table Solubility of Selected Aldehydes and Ketones has been updated.
- New material on antiseptics is added.
- The oxidation of methanol in the body is included in the Chemistry Link to Health "Oxidation of Alcohol in the Body."
- Core Chemistry Skills are: Identifying Functional Groups, Naming Alcohols and Phenols, Naming Aldehydes and Ketones, Writing Equations for the Dehydration of Alcohols, and Writing Equations for the Oxidation of Alcohols.
- The interchapter problem set, Combining Ideas from Chapters 10 to 12, completes the chapter.

Chapter 13, Carbohydrates, describes the carbohydrate molecules monosaccharides, disaccharides, and polysaccharides and their formation by photosynthesis. Monosaccharides are classified as aldo or keto pentoses or hexoses. Chiral molecules are discussed along with Fischer projections and D and L notations. Chiral objects are modeled using gumdrops and toothpicks. Carbohydrates used as sweeteners are described and carbohydrates used in blood typing are discussed. The formation of glycosidic bonds in disaccharides and polysaccharides is described.

- A chapter opener describes a diabetes patient and her diet and features the work and career of a diabetes nurse.
- A new Clinical Update describes a diet to lower blood glucose.
- Chiral molecules are discussed and Fischer projections are drawn.
- A new Sample Problem identifies chiral carbons in glycerol and ibuprofen.
- New art shows that insulin needed for the metabolism of glucose is produced in the pancreas.
- Examples of chiral molecules in nature are included to Chemistry Link to Health, "Enantiomers in Biological Systems."
- New Clinical Applications include psicose in foods, lyxose in bacterial glycolipids, xylose in absorption tests, and tagatose in fruit.
- New art shows the rotation of groups on carbon 5 for the Haworth structures of glucose and galactose.
- Drawing Haworth Structures is updated.
- The Chemistry Link to Health "Blood Types and Carbohydrates" has updated structures of the saccharides that determine each blood type.
- Core Chemistry Skills are: Identifying Chiral Molecules, Identifying D and L Fischer Projections, and Drawing Haworth Structures.

Chapter 14, Carboxylic Acids, Esters, Amines, and Amides, discusses the functional groups and naming of carboxylic acids, esters, amines, and amides. Chemical reactions include esterification, amidation, and acid and base hydrolysis of esters and amides.

- A chapter opener describes pesticides and pharmaceuticals used on a ranch and discusses the career of an environmental health practitioner.
- A new Clinical Update describes an insecticide used to spray animals.
- Line-angle structures for carboxylic acids are added to Table 14.1.
- Core Chemistry Skills are: Naming Carboxylic Acids, Hydrolyzing Esters, and Forming Amides.

Chapter 15, Lipids, discusses fatty acids and the formation of ester bonds in triacylglycerols and glycerophospholipids. Chemical properties of fatty acids and their melting points along with the hydrogenation of unsaturated triacylglycerols are discussed. Steroids, such as cholesterol and bile salts, are described. Chemistry Links to Health include "Converting Unsaturated Fats to Saturated Fats: Hydrogenation." The role of phospholipids in the lipid bilayer of cell membranes is discussed as well as the lipids that function as steroid hormones.

- A new chapter opener describes a patient with symptoms of familial hypercholesterolemia and features the work and career of a clinical lipid specialist.
- A new Clinical Update describes a program to lower cholesterol.
- New notation for number of carbon atoms and double bonds in a fatty acid is added.
- New art of unsaturated fatty acids with cis and trans double bonds is added.
- New art of normal and damaged myelin sheath shows deterioration in multiple sclerosis.
- New art of the gallbladder and the bile duct where gallstones pass causing obstruction and pain.
- Core Chemistry Skills are: Identifying Fatty Acids, Drawing Structures for Triacylglycerols, Drawing the Products for the Hydrogenation, Hydrolysis, and Saponification of a Triacylglycerol, and Identifying the Steroid Nucleus.
- The interchapter problem set, Combining Ideas from Chapters 13 to 15 , completes the chapter.

Chapter 16, Amino Acids, Proteins, and Enzymes, discusses amino acids, formation of peptide bonds and proteins, structural levels of proteins, enzymes, and enzyme action. The structures of amino acids are drawn at physiological pH . Enzymes are discussed as biological catalysts, along with the impact of inhibitors and denaturation on enzyme action.

- A new chapter opener discusses the symptoms of sicklecell anemia in a child, the mutation in amino acids that causes the crescent shape of abnormal red blood cells, and the career of a physician assistant.
- The use of electrophoresis to diagnose sickle-cell anemia was added to Chemistry Link to Health "Sickle-Cell Anemia."
- Abbreviations for amino acid names use three letters as well as one letter.
- New ribbon models of beta-amyloid proteins in normal brain and an Alzheimer's brain are added to Chemistry Link to Health "Protein Secondary Structures and Alzheimer's Disease".
- Diagrams illustrate enzyme action and the effect of competitive and noncompetitive inhibitors on enzyme structure.
- Core Chemistry Skills are: Drawing the Structure for an Amino Acid at Physiological pH, Identifying the Primary, Secondary, Tertiary, and Quaternary Structures of Proteins, and Describing Enzyme Action.

Chapter 17, Nucleic Acids and Protein Synthesis, describes the nucleic acids and their importance as biomolecules that store and direct information for the synthesis of cellular components. The role of complementary base pairing is discussed in both DNA replication and the formation of mRNA during protein synthesis. The role of RNA is discussed in the relationship of the genetic code to the sequence of amino acids in a protein. Mutations describe ways in which the nucleotide sequences are altered in genetic diseases.

- A new chapter opener describes a patient's diagnosis and treatment of breast cancer and discusses the work and career of a histology technician.
- A new Clinical Update describes estrogen-positive tumors, the impact of the altered genes BRCA1 and BRCA2 on the estrogen receptor, and medications to suppress tumor growth.
- A new Section discusses recombinant DNA, polymerase chain reaction, and DNA fingerprinting.
- New art illustrates point mutation, deletion mutation, and insertion mutation.
- Core Chemistry Skills are: Writing the Complementary DNA Strand, Writing the mRNA Segment for a DNA Template, and Writing the Amino Acid for an mRNA Codon.

Chapter 18, Metabolic Pathways and ATP Production, describes the metabolic pathways of biomolecules from the digestion of foodstuffs to the synthesis of ATP. The stages of
catabolism and the digestion of carbohydrates along with the coenzymes required in metabolic pathways are described. The breakdown of glucose to pyruvate is described using glycolysis, which is followed by the decarboxylation of pyruvate to acetyl CoA and the entry of acetyl CoA into the citric acid cycle. Electron transport, oxidative phosphorylation, and the synthesis of ATP is described. The oxidation of lipids and the degradation of amino acids are also discussed.

- A new chapter opener describes elevated levels of liver enzymes for a patient with chromic hepatitis C infection and discusses the career of a public health nurse.
- A new Clinical Update describes interferon and ribavirin therapy for hepatitis C .

Acknowledgments

The preparation of a new text is a continuous effort of many people. I am thankful for the support, encouragement, and dedication of many people who put in hours of tireless effort to produce a high-quality book that provides an outstanding learning package. I am thankful for the outstanding contributions of Professor MaryKay Orgill whose updates and clarifications enhanced the content of the biochemistry chapters 16 to 18 . The editorial team at Pearson has done an exceptional job. I want to thank Jeanne Zalesky, Director, Courseware Portfolio Management, and Scott Dustan, Courseware Portfolio Manager, who supported our vision of this thirteenth edition.

I appreciate all the wonderful work of Lizette Faraji, Content Producer, who skillfully brought together reviews, art, web site materials, and all the things it takes to prepare a book for production. I appreciate the work of Karen Berry and Christian Arsenault at SPi Global, who brilliantly coordinated all phases of the manuscript to the final pages of a beautiful book. Thanks to Mark Quirie, manuscript and accuracy reviewer, and Laura Patchkofsky and Linda Smith, who precisely analyzed and edited the initial and final manuscripts and pages to make sure the words and problems were correct to help students learn chemistry. Their keen eyes and thoughtful comments were extremely helpful in the development of this text.

I am especially proud of the art program in this text, which lends beauty and understanding to chemistry. I would like to

- Updated art for glycolysis, the citric acid cycle, and electron transport is added.
- The values of ATP produced from the metabolism of glucose, fatty acids, and amino acids is calculated using the updated values of 2.5 ATP for NADH and 1.5 ATP for FADH_{2}.
- Core Chemistry Skills are: Identifying the Compounds in Glycolysis, Describing the Reactions in the Citric Acid Cycle, Calculating the ATP Produced from Glucose, and Calculating the ATP from Fatty Acid Oxidation (β Oxidation).
- The interchapter problem set, Combining Ideas from Chapters 16 to 18, completes the chapter.
thank Wynne Au Yeung and Stephanie Marquez, art specialists; Mark Ong and Tamara Newnam, interior and cover designers, whose creative ideas provided the outstanding design for the cover and pages of the book. Eric Shrader, photo researcher, was outstanding in researching and selecting vivid photos for the text so that students can see the beauty of chemistry. Thanks also to Bio-Rad Laboratories for their courtesy and use of KnowItAll ChemWindows, drawing software that helped us produce chemical structures for the manuscript. The macro-to-micro illustrations designed by Production Solutions and Precision Graphics give students visual impressions of the atomic and molecular organization of everyday things and are a fantastic learning tool. I also appreciate all the hard work in the field put in by the marketing team and Elizabeth Ellsworth, marketing manager.

I am extremely grateful to an incredible group of peers for their careful assessment of all the new ideas for the text; for their suggested additions, corrections, changes, and deletions; and for providing an incredible amount of feedback about improvements for the book. I admire and appreciate every one of you.

If you would like to share your experience with chemistry, or have questions and comments about this text, I would appreciate hearing from you.

Karen Timberlake
Email: khemist@aol.com

Acknowledgments for the Global Edition

Pearson would like to acknowledge and thank Chitralekha Sidana for contributing to the Global Edition, and Karishma Kochar, Dr. S. Nehru, University of Madras, and Antoine

Trzcinski, the University of Southern Queensland, for reviewing the Global Edition.

Instructor and Student Supplements

Chemistry: An Introduction to General, Organic, and Biological Chemistry, thirteenth edition, provides an integrated teaching and learning package of support material for both students and professors.

Name of Supplement	Available in Print	Available Online	Instructor or Student Supplement	Description
Mastering ${ }^{\text {TM }}$ Chemistry (www.masteringchemistry .com)		\checkmark	Supplement for Students and Instructors	This product includes all of the resources of Mastering ${ }^{\text {TM }}$ Chemistry. Mastering ${ }^{\text {TM }}$ Chemistry from Pearson is the leading online homework, tutorial, and assessment system, designed to improve results by engaging students with powerful content. Instructors ensure students arrive ready to learn by assigning educationally effective content and encourage critical thinking and retention with in-class resources such as Learning Catalytics ${ }^{\mathrm{TM}}$. Students can further master concepts through traditional and adaptive homework assignments that provide hints and answer specific feedback. The Mastering ${ }^{\text {TM }}$ gradebook records scores for all assignments in one place, while diagnostic tools give instructors access to rich data to assess student understanding and misconceptions. http://www .masteringchemistry.com.
Pearson eText		\checkmark	Supplement for Students	The thirteenth edition of Chemistry: An Introduction to General, Organic, and Biological Chemistry features a Pearson eText within Mastering. In conjunction with Mastering assessment capabilities, new Interactive Videos and 3D animations will improve student engagement and knowledge retention. Each chapter contains a balance of interactive animations, videos, sample calculations, and self-assessments / quizzes. Icons in the margins throughout the text signify that there is a new Interactive Video or animation located within Mastering ${ }^{\text {TM }}$ Chemistry for Chemistry: An Introduction to General, Organic, and Biological Chemistry, thirteenth edition.
Laboratory Manual by Karen Timberlake (9780321811851)	\checkmark		Supplement for Students	This best-selling lab manual coordinates 35 experiments with the topics in Chemistry: An Introduction to General, Organic, and Biological Chemistry, thirteenth edition, uses laboratory investigations to explore chemical concepts, develop skills of manipulating equipment, reporting data, solving problems, making calculations, and drawing conclusions.
Instructor's Solutions Manual		\checkmark	Supplement for Instructors	Prepared by Mark Quirie, the Instructor's Solutions Manual highlights chapter topics, and includes answers and solutions for all Practice Problems in the text.
Instructor Resource Materials-Download Only		\checkmark	Supplement for Instructors	Includes all the art, photos, and tables from the book in JPEG format for use in classroom projection or when creating study materials and tests. In addition, the instructors can access modifiable PowerPoint ${ }^{\mathrm{TM}}$ lecture outlines. Also visit the Pearson Education catalog page for Timberlake's Chemistry: An Introduction to General, Organic, Biological Chemistry, thirteenth edition, at www.pearsonglobaleditions .com/timberlake to download available instructor supplements.
TestGen Test BankDownload Only		\checkmark	Supplement for Instructors	Prepared by William Timberlake, this resource includes more than 1600 questions in multiple-choice, matching, true/false, and short-answer format.
Online Instructor Manual for Laboratory Manual		\checkmark	Supplement for Instructors	This manual contains answers to report sheet pages for the Laboratory Manual and a list of the materials needed for each experiment with amounts given for 20 students working in pairs, available for download at www.pearsonglobaleditions .com/timberlake.

Career Focus Engages Students

Best-selling author Karen Timberlake connects chemistry to real-world and career applications like no one else. The 13th edition of Chemistry: An Introduction to General, Organic, and Biological Chemistry engages students by helping them to see the connections between chemistry, the world around them, and future careers.

3

Matter and Energy

CHARLES is 13 Yeans OLD AND OVEWWEIGNT: His dectar is woriked that Oheles is at riak for spe2 diaketer med asitus hia metber to mate m sppoikiment nith a devion. Davish, a devisus, explens to them then chooing the dpreprete hech in inportent to livg.:
 dabever.

Daniel alve explains that faed contains pelential er tored energy and difleven foeds certain diflenent amounty of petential energy. For intuasce caboh dotes contin
 He then expleins than dintshigh is fre requip move exprobe
no bern the fres, as they pontain mone energ. When Deviel boess at Chalerínsivial dally det, he calidates that
 Ansodiasion recommends 1000 had for bops 9 so 13 man of age. Duniel enourages Chales and his mether to inclode mbole graiss fatt, and regresties in ther det instesd of fowds high in lee. They aloe drowes food labell and the fect that smaller sening siass of healty foeds we necensery to lose neight. Deviel thibe recommends that Olvles exerises at levet 60 minses every dey. Bolowe leving. Olabes and his mother mahe an appointinest for the lilloning weet to look nt a neight iom plan.

CAREER Dietitian
Devikiss specilier in helping indvidab lous about good matrien avd the need for a hivevod diat. Tha mquiss flem lo undertend Biodremical procesoes, the importance of veamins and food labels, as well as the diferences betemen cablelychates, fats, and preteins in terms of their energy Nilue and how they an meraboliud. Divitian wohk in a varwty of anvicnments, inclading hospitulk. naring homes, schoel caleterian, and puble houlth clinics. in these roles itry conte specioliced detes ior individals dagnosed with a speofic divase or coase mad plans for those in a coning home.

Chapter Openers emphasize clinical connections by showing students relevant, engaging, topical examples of how health professionals use chemistry everyday. Clinical Updates at the end of each chapter relate the chemistry the student learns in the chapter to expand the clinical content in the Chapter Opener and include clinical applications.

Chemistry Links to Health, woven throughout each chapter, apply chemical concepts to topics in health and medicine such as weight loss and weight gain, alcohol abuse, blood buffers, and kidney dialysis, illustrating the importance of understanding chemistry in real-life situations.

\&ChEMISTRY LINK TO HEALTH
Breathing Mixtures

 dives differ focester alr we treste dipnding ese the depeh of the dive. Nitros ta a mituinc of ouyper ind nitroges, fut with mexe cuypen pas
 wihh les eitroyen gas docreanes the rid of nimogen mivcesib asworiatod with beuthing weputr air while diving. Helias watiles angyen and belime. mtich is oplcitly med for diving to moxe than seef
 Howeve, atdive dipthy ower 300 it. helium is awosiund vith severe ihaling und a doop in hody tenperatire.

A lresthing mixtese exed for dives ower tan it is trimik, which

niwopes lowens the protice of thaking that comes with levating high lowek of hefiom. Helor and rimix we eved oty by pesfosical, milier), er other Nigtly trainol divers.

In bowpalk, berliox may he exed os a weitrwen fir repleway divenders and laes consinction is adilts and moms. tive infants. Meliox is lew denee than aik, shish moderes the sfliun of treath ing and halps diutilete the axypor pas sothe tiveec.

Builds Students' Critical-Thinking and Problem-Solving Skills

Abstract

One of Karen Timberlake's goals is to help students to become critical thinkers. Colorcoded tips found throughout each chapter are designed to provide guidance and to encourage students to really think about what they are reading, helping to develop important critical-thinking skills.

3.3 Temperature

LEARNING GOAL Given a temperature, calculate the corresponding temperature on another scale.

Temperatures in science are measured and reponed in Celshas ('C) units. On the Celvius scale, the reference points are the freezing point of water, defined as $0^{\circ} \mathbf{C}$, and the boiling point, $100^{*} \mathrm{C}$. In the United States, everyday temperatures are commonly neported in Fahrenheir (FF) units. On the Fahrenheit scale, water freezes at $32^{\circ} \mathrm{F}$ and boils at $212^{\circ} \mathrm{F}$, A typical room temperature of $22^{\circ} \mathrm{C}$ would be the sarne as $72{ }^{\circ} \mathrm{F}$. Nornal hunnan body temperature is $37.0^{\circ} \mathrm{C}$, which is the same temporature as $98.6^{\circ} \mathrm{F}$.

On the Celsius and Fahrenheit temperature scales, the temperature difference between frecring and boiling is divided into smaller units callod degress. On the Celvies scale, there are 100 degrees Celsius between the freering and boiling points of water, whereas the Fahrenheit scale has 180 degrees Fahrenheit between the freering and boiling points of water. That makes a degree Celsius atmost twice the size of a degree Fahrenheit: $1^{\circ} \mathrm{C}=1.8^{\mathrm{F}} \mathrm{F}$ (see noune 3.4).

180 degrees Fahrenheit $=100$ degrees Celvius

$$
\frac{180 \text { degrees Falmenheit }}{100 \text { degrees Celsias }}=\frac{18^{\circ} \mathrm{F}}{1^{\circ} \mathrm{C}}
$$

We can write a tenperature equation that relates a Fahrenheit temperature and its corresponding Celsius temperature.

$$
\begin{aligned}
& \text { Clener Alpos }
\end{aligned}
$$

In the equation, the Celsius temperature is multiplied by 1.8 to change ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$; then 32 is added to adjust the freezing point from $0^{\circ} \mathrm{C}$ to the Fihrenheit freering point, $32^{\circ} \mathrm{F}$. The values, 1.8 and 32 , used in the temperature equation are exact nambers and are mot used to determine significant figures in the answer.

Te coment from degrees Fahrenheit to degrees Celsius, the temperature equation is rearranged to solve for $\mathcal{T}_{\text {C }}$. Fint, we subtract 32 from beth sides since we must apply the same eperation to both sides of the equation.

$$
\begin{aligned}
& T_{\mathrm{F}}-32=1.8\left(T_{\mathrm{C}}\right)+32-32 \\
& T_{\mathrm{H}}-32=1.8\left(T_{\mathrm{C}}\right)
\end{aligned}
$$

NEW!

lists the core chemistry skills and key math skills from previous chapters which provide the foundation for learning the new chemistry principles in the current chapter.

NEW!

asks students to think about the paragraph they are reading and immediately test their understanding by answering the Engage question, which is related to the topic. Students connect new concepts to prior knowledge to increase retrieval of content.

UPDATED!

Converting between Temperature Scales
found throughout the chapter identify the fundamental chemistry concepts that students need to understand in the current chapter.

Four NEW problem solving features enhance Karen Timberlake's unmatched problem-solving strategies and help students deepen their understanding of content while improving their problem-solving skills.

NEW!

precedes the Solution section of each Sample Problem to encourage the student to work on the problem before reading the given solution.

NEW!

added to Analyze the Problem boxes indicates the relationships between Given and Need.

NEW!

provides STEPS for successful Problem Solving within the Sample Problem.

SAMPLE PROBLLM 3.7 Using Specific Heat

TRY II FIRST

Dering surgery or when a patient has suffered a cardiac arrest or stroke, lowering the body temperature will wedvee the amount of oxygea aveded by the body. Some methods used to lower body temperature inclade cooled saline selation, cool water blankets, or cooling caps mone on the head. How nany kilogoules ane lost when the body temperature of a surgery paticnt with a blood volume of 5500 mL . is coolod from $38.5^{\circ} \mathrm{C}$ to $33.2^{\circ} \mathrm{C}$? (Assume that the specific heat and density of bloed are the same as for watec.)

sotumow cuibe

STEP1 State the given and needed quantities.

	Given	Noed	Connect
ANACRE TPE POCELEM	$\begin{aligned} & \$ 500 \mathrm{~mL} \text { of blood } \\ & =\$ 500 \mathrm{~g} \text { of blood, } \\ & \text { copoled from } 38.5^{\circ} \mathrm{C} \text { to } 33.2^{\circ} \mathrm{C} \end{aligned}$	kilojoules semoved	heat equation, speofic heat of water

STEP 2 Calculate the temperature change (ΔT). $\Delta T=38.5^{\circ} \mathrm{C}-33.2{ }^{\circ} \mathrm{C}=5.3^{\circ} \mathrm{C}$
STEF3 Write the heat equation and needed comversion factors.

Heat	m \times	ΔT	\times	s\#	
$S H_{\text {sater }}=$	$\frac{4.184 J}{g^{4} \mathrm{C}}$		$1 \mathrm{SJ}=1000 \mathrm{~J}$		
4.184)	${ }^{17} \mathrm{C}$		1000 J		14
$8^{\circ} \mathrm{C}$	4.184.		1 J		1000 J

STEPA
Substitute in the given values and calculate the heat, making sure units cancel.

STuDy Check 2 ?

Sone cooking pans have a layer of copper on the bottom. How many kilojoules are neoded to nise the sempenitire of 125 g of copper from $22^{\circ} \mathrm{C}$ to $325^{\circ} \mathrm{C}$ (see Table 3.11)?

ANSWER
14.6 kJ

A cooling cap lowess the body temperative to reduce the oxyen requised by the tinues.

The copper on a pan condacts hest ropidy to the food in the pan.

Try Practice Problems 3.39 to 3.42

Continuous Learning Before, During, and After Class

BEFor E CLASS

Chemistry Primer

NEW! Chemistry Primer is a series of tutorials focused on remediating students taking their first college chemistry course. Topics include math in the context of chemistry, chemical skills and literacy, as well as some basics of balancing chemical equations, mole-mole factors, and mass-mass calculations-all of which were chosen based on extensive surveys of chemistry professors across the country.

The main body of each item in the primer offers diagnostic questions designed to help students recognize that they need help. If they struggle, the primer offers extensive formative help in the hint structure via wrong answer feedback, instructional videos, and step-wise worked examples that provide scaffolding to build up students' understanding as needed. The primer is offered as a pre-built assignment that is automatically generated with all chemistry courses.

with Mastering ${ }^{\text {TM }}$ Chemistry

During C LASS

Learning Catalytics

Learning Catalytics generates class discussion, guides your lecture, and promotes peer-to-peer learning with real-time analytics. Mastering ${ }^{\text {TM }}$ Chemistry with eText now provides Learning Catalytics—an interactive student response tool that uses students' smartphones, tablets, or laptops to engage them in more sophisticated tasks and thinking. Instructors can:

- NEW! Upload a full PowerPoint ${ }^{\circledR}$ deck for easy creation of slide questions.
- Help students develop critical thinking skills.
- Monitor responses to find out where students are struggling
- Rely on real-time data to adjust teaching strategies.
- Automatically group students for discussion, teamwork, and peer-to-peer learning.

Mastering ${ }^{\text {TM }}$ Chemistry

AFTEr C LASS

NEW! Interactive Videos clarify and reinforce important concepts such as solving equations, conversion factors, solutions, and more. Sample Calculations now correspond to a key concept/ topic in most chapters, giving students an opportunity to reinforce what they just learned by showing how chemistry works in real life and introducing a bit of humor into chemical problem solving and demonstrations.

Mastering ${ }^{\text {TM }}$ Chemistry offers a wide variety of problems, ranging from multi-step tutorials with extensive hints and feedback to multiple-choice End-of-Chapter Problems and Test Bank questions.

Wrong-answer feedback supports students moving from Tutorial Problems to End-of-Chapter Problems.

Pearson eText

Pearson eText

- Seamlessly integrated videos and activities allow students to watch and practice key concepts within the eText learning experience.
- Study Check Questions allow students to interact in Pearson eText with the questions which follow each Sample Problem. With one click, these activities are brought to life, allowing students to study on their own and test their understanding in real-time. These interactives help students extinguish misconceptions and enhance their problem-solving skills.

This page intentionally left blank

Chemistry in Our Lives

A CALL CAME IN TO 911 FROM A MAN WHO

arrived home from work to find his wife lying on the floor of their home. When the police arrived, they prounouced the woman dead. The victim's body was lying on the floor of the living room. There was no blood at the scene, but the police did find a glass on the side table that contained a small amount of liquid. In an adjacent laundry room, the police found a half-empty bottle of antifreeze, which contains the toxic compound ethylene glycol. The bottle, glass, and liquid were bagged and sent to the forensic laboratory.

In another 911 call, a man was found lying on the grass outside his home. Blood was present on his body, and some bullet casings were found on the grass. Inside
the victim's home, a weapon was recovered. The bullet casings and the weapon were bagged and sent to the forensic laboratory.

Sarah and Mark, forensic scientists, use scientific procedures and chemical tests to examine the evidence from law enforcement agencies. Sarah analyzes blood, stomach contents, and the unknown liquid from the first victim's home. She will look for the presence of drugs, poisons, and alcohol. Her lab partner, Mark, analyzes the fingerprints on the glass. He will also match the characteristics of the bullet casings to the weapon that was found at the second crime scene.

CAREER Forensic Scientist

Most forensic scientists work in crime laboratories that are part of city or county legal systems where they analyze bodily fluids and tissue samples collected by crime scene investigators. In analyzing these samples, forensic scientists identify the presence or absence of specific chemicals within the body to help solve the criminal case. Some of the chemicals they look for include alcohol, illegal or prescription drugs, poisons, arson debris, metals, and various gases such as carbon monoxide. In order to identify these substances, a variety of chemical instruments and highly specific methodologies are used. Forensic scientists analyze samples from criminal suspects, athletes, and potential employees. They also work on cases involving environmental contamination and animal samples for wildlife crimes. Forensic scientists usually have a bachelor's degree that includes courses in math, chemistry, and biology.

CLINICAL UPDATE Forensic Evidence Helps Solve the Crime

In the forensic laboratory, Sarah analyzes the victim's stomach contents and blood for toxic compounds. You can view the results of the tests on the forensic evidence in the CLINICAL UPDATE Forensic Evidence Helps Solve the Crime, page 49, and determine if the victim ingested a toxic level of ethylene glycol (antifreeze).

LOOKING AHEAD

1.1 Chemistry and Chemicals
1.2 Scientific Method: Thinking Like a Scientist
1.3 Studying and Learning Chemistry
1.4 Key Math Skills for Chemistry
1.5 Writing Numbers in Scientific Notation

In the blood, hemoglobin transports oxygen to the tissues and carbon dioxide to the lungs.

Antacid tablets undergo a chemical reaction when dropped into water.

ENGAGE

Why is water a chemical?

Toothpaste is a combination of many chemicals

TEST

Try Practice Problems 1.1 to 1.6

1.1 Chemistry and Chemicals

LEARNING GOAL Define the term chemistry and identify substances as chemicals.
Now that you are in a chemistry class, you may be wondering what you will be learning. What questions in science have you been curious about? Perhaps you are interested in what hemoglobin does in the blood or how aspirin relieves a headache. Just like you, chemists are curious about the world we live in.

What does hemoglobin do in the body? Hemoglobin consists of four polypeptide chains, each containing a heme group with an iron atom that binds to oxygen $\left(\mathrm{O}_{2}\right)$ in the lungs. From the lungs, hemoglobin transports oxygen to the tissues of the body where it is used to provide energy. Once the oxygen is released, hemoglobin binds to carbon dioxide $\left(\mathrm{CO}_{2}\right)$ for transport to the lungs where it is released.

Why does aspirin relieve a headache? When a part of the body is injured, substances called prostaglandins are produced, which cause inflammation and pain. Aspirin acts to block the production of prostaglandins, reducing inflammation and pain. Chemists in the medical field develop new treatments for diabetes, genetic defects, cancer, AIDS, and other diseases. For the chemist in the forensic laboratory, the nurse in the dialysis unit, the dietitian, the chemical engineer, or the agricultural scientist, chemistry plays a central role in understanding problems and assessing possible solutions.

Chemistry

Chemistry is the study of the composition, structure, properties, and reactions of matter. Matter is another word for all the substances that make up our world. Perhaps you imagine that chemistry takes place only in a laboratory where a chemist is working in a white coat and goggles. Actually, chemistry happens all around you every day and has an impact on everything you use and do. You are doing chemistry when you cook food, add bleach to your laundry, or start your car. A chemical reaction has taken place when silver tarnishes or an antacid tablet fizzes when dropped into water. Plants grow because chemical reactions convert carbon dioxide, water, and energy to carbohydrates. Chemical reactions take place when you digest food and break it down into substances that you need for energy and health.

Chemicals

A chemical is a substance that always has the same composition and properties wherever it is found. All the things you see around you are composed of one or more chemicals. Chemical processes take place in chemistry laboratories, manufacturing plants, and pharmaceutical labs as well as every day in nature and in our bodies. Often the terms chemical and substance are used interchangeably to describe a specific type of matter.

Every day, you use products containing substances that were developed and prepared by chemists. Soaps and shampoos contain chemicals that remove oils on your skin and scalp. In cosmetics and lotions, chemicals are used to moisturize, prevent deterioration of the product, fight bacteria, and thicken the product. Perhaps you wear a ring or watch made of gold, silver, or platinum. Your breakfast cereal is probably fortified with iron, calcium, and phosphorus, whereas the milk you drink is enriched with vitamins A and D. When you brush your teeth, the substances in toothpaste clean your teeth, prevent plaque formation, and stop tooth decay. Some of the chemicals used to make toothpaste are listed in TABLE 1.1.
table 1.1 Chemicals Commonly Used in Toothpaste

Chemical	Function
Calcium carbonate	Used as an abrasive to remove plaque
Sorbitol	Prevents loss of water and hardening of toothpaste
Sodium lauryl sulfate	Used to loosen plaque
Titanium dioxide	Makes toothpaste white and opaque
Sodium fluorophosphate	Prevents formation of cavities by strengthening tooth enamel with fluoride
Methyl salicylate	Gives toothpaste a pleasant wintergreen flavor

PRACTICE PROBLEMS

1.1 Chemistry and Chemicals

LEARNING GOAL Define the term chemistry and identify substances as chemicals.

In every chapter, odd-numbered exercises in the Practice Problems are paired with even-numbered exercises. The answers for the magenta, odd-numbered Practice Problems are given at the end of each chapter.
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
1.2 Ask two of your friends (not in this class) to define the terms in problem 1.1. Do their answers agree with the definitions you provided?

Clinical Applications

1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
1.4 Obtain a box of breakfast cereal and read the list of ingredients. What are four chemicals from the list?
1.5 Read the labels on some items found in your medicine cabinet. What are the names of some chemicals contained in those items?
1.6 Name the key components of each of the following:
a. vinegar
b. alcohol disinfectant pads

1.2 Scientific Method: Thinking Like a Scientist

LEARNING GOAL Describe the activities that are part of the scientific method.
When you were very young, you explored the things around you by touching and tasting. As you grew, you asked questions about the world in which you live. What is lightning? Where does a rainbow come from? Why is the sky blue? As an adult, you may have wondered how antibiotics work or why vitamins are important to your health. Every day, you ask questions and seek answers to organize and make sense of the world around you.

When the late Nobel Laureate Linus Pauling described his student life in Oregon, he recalled that he read many books on chemistry, mineralogy, and physics. "I mulled over the properties of materials: why are some substances colored and others not, why are some minerals or inorganic compounds hard and others soft?" He said, "I was building up this tremendous background of empirical knowledge and at the same time asking a great number of questions." Linus Pauling won two Nobel Prizes: the first, in 1954, was in chemistry for his work on the nature of chemical bonds and the determination of the structures of complex substances; the second, in 1962, was the Peace Prize.

The Scientific Method

The process of trying to understand nature is unique to each scientist. However, the scientific method is a process that scientists use to make observations in nature, gather data, and explain natural phenomena.

1. Observations The first step in the scientific method is to make observations about nature and ask questions about what you observe. When an observation always seems to be true, it may be stated as a law that predicts that behavior and is often measurable. However, a law does not explain that observation. For example, we can use the Law of Gravity to predict that if we drop our chemistry book it would fall on the table or the floor but this law does not explain why our book falls.
2. Hypothesis A scientist forms a hypothesis, which gives a possible explanation of an observation or a law. The hypothesis must be stated in such a way that it can be tested by experiments.
3. Experiments To determine if a hypothesis is true or false, experiments are done to find a relationship between the hypothesis and the observations. The results of the experiments may confirm the hypothesis. However, if the experiments do not confirm the hypothesis, it is modified or discarded. Then new experiments will be designed to test the hypothesis.
4. Conclusion/Theory When the results of the experiments are analyzed, a conclusion is made as to whether the hypothesis is true or false. When experiments give consistent results, the hypothesis may be stated to be true. Even then, the hypothesis continues

Linus Pauling won the Nobel Prize in Chemistry in 1954.

The scientific method develops a conclusion or theory about nature using observations, hypotheses, and experiments.
to be tested and, based on new experimental results, may need to be modified or replaced. If many additional experiments by a group of scientists continue to support the hypothesis, it may become a scientific theory, which gives an explanation for the initial observations.

员CHEMISTRY LINK TO HEALTH Early Chemist: Paracelsus

For many centuries, chemistry has been the study of changes in matter. From the time of the ancient Greeks to the sixteenth century, alchemists described matter in terms of four components of nature: earth, air, fire, and water. By the eighth century, alchemists believed that they could change metals such as copper and lead into gold and silver. Although these efforts failed, the alchemists provided information on the chemical reactions involved in the extraction of metals from ores. The alchemists also designed some of the first laboratory equipment and developed early laboratory procedures. These early efforts were some of the first observations and experiments using the scientific method.

Paracelsus (1493-1541) was a physician and an alchemist who thought that alchemy should be about preparing new medicines. Using observation and experimentation, he proposed that a healthy body was regulated by a series of chemical processes that could be unbalanced by certain chemical compounds and rebalanced by using minerals and
medicines. For example, he determined that inhaled dust caused lung disease in miners. He also thought that goiter was a problem caused by contaminated water, and he
 treated syphilis with compounds of mercury. His opinion of medicines was that the right dose makes the difference between a poison and a cure. Paracelsus changed alchemy in ways that helped establish modern medicine and chemistry.

Swiss physician and alchemist Paracelsus (1493-1541) believed that chemicals and minerals could be used as medicines.

Through observation you may think that you are allergic to cats.

ENGAGE

Why would the following statement "Today I placed two tomato seedlings in the garden, and two more in a closet. I will give all the plants the same amount of water and fertilizer." be considered an experiment?

Nurses make observations in the hospital.

Using the Scientific Method in Everyday Life

You may be surprised to realize that you use the scientific method in your everyday life. Suppose you visit a friend in her home. Soon after you arrive, your eyes start to itch and you begin to sneeze. Then you observe that your friend has a new cat. Perhaps you form the hypothesis that you are allergic to cats. To test your hypothesis, you leave your friend's home. If the sneezing stops, perhaps your hypothesis is correct. You test your hypothesis further by visiting another friend who also has a cat. If you start to sneeze again, your experimental results support your hypothesis and you come to the conclusion that you are allergic to cats. However, if you continue sneezing after you leave your friend's home, your hypothesis is not supported. Now you need to form a new hypothesis, which could be that you have a cold.

SAMPLE PROBLEM 1.1 Scientific Method

TRY IT FIRST

Identify each of the following as an observation, a hypothesis, an experiment, or a conclusion:
a. During an assessment in the emergency room, a nurse writes that the patient has a resting pulse of 30 beats $/ \mathrm{min}$.
b. Repeated studies show that lowering sodium in the diet leads to a decrease in blood pressure.
c. A nurse thinks that an incision from a recent surgery that is red and swollen is infected.

SOLUTION

a. observation
b. conclusion
c. hypothesis

STUDY CHECK 1.1
Identify each of the following as an observation, a hypothesis, an experiment, or a conclusion:
a. Drinking coffee at night keeps me awake.
b. I will try drinking coffee only in the morning.
c. If I stop drinking coffee in the afternoon, I will be able to sleep at night.

ANSWER

a. observation
b. experiment
c. hypothesis

PRACTICE PROBLEMS

1.2 Scientific Method: Thinking Like a Scientist

LEARNING GOAL Describe the activities that are part of the scientific method.
1.7 Identify each activity, a to f, as an observation, a hypothesis, an experiment, or a conclusion.
At a popular restaurant, where Chang is the head chef, the following occurred:
a. Chang determined that sales of the house salad had dropped.

Customers rated the sesame seed dressing as the best.
b. Chang decided that the house salad needed a new dressing.
c. In a taste test, Chang prepared four bowls of lettuce, each with a new dressing: sesame seed, olive oil and balsamic vinegar, creamy Italian, and blue cheese.
d. Tasters rated the sesame seed salad dressing as the favorite.
e. After two weeks, Chang noted that the orders for the house salad with the new sesame seed dressing had doubled.
f. Chang decided that the sesame seed dressing improved the sales of the house salad because the sesame seed dressing enhanced the taste.
1.8 Identify each activity, a to \mathbf{f}, as an observation, a hypothesis, an experiment, or a conclusion.
Lucia wants to develop a process for dyeing shirts so that the color will not fade when the shirt is washed. She proceeds with the following activities:
a. Lucia notices that the dye in a design fades when the shirt is washed.
b. Lucia decides that the dye needs something to help it combine with the fabric.
c. She places a spot of dye on each of four shirts and then places each one separately in water, salt water, vinegar, and baking soda and water.
d. After one hour, all the shirts are removed and washed with a detergent.
e. Lucia notices that the dye has faded on the shirts in water, salt water, and baking soda, whereas the dye did not fade on the shirt soaked in vinegar.
f. Lucia thinks that the vinegar binds with the dye so it does not fade when the shirt is washed.

Clinical Applications

1.9 Identify each of the following as an observation, a hypothesis, an experiment, or a conclusion:
a. One hour after drinking a glass of regular milk, Jim experienced stomach cramps.
b. Jim thinks he may be lactose intolerant.
c. Jim drinks a glass of lactose-free milk and does not have any stomach cramps.
d. Jim drinks a glass of regular milk to which he has added lactase, an enzyme that breaks down lactose, and has no stomach cramps.
1.10 Identify each of the following as an observation, a hypothesis, an experiment, or a conclusion:
a. Sally thinks she may be allergic to shrimp.
b. Yesterday, one hour after Sally ate a shrimp salad, she broke out in hives.
c. Today, Sally had some soup that contained shrimp, but she did not break out in hives.
d. Sally realizes that she does not have an allergy to shrimp.

1.3 Studying and Learning Chemistry

LEARNING GOAL Identify strategies that are effective for learning. Develop a study plan for learning chemistry.

Here you are taking chemistry, perhaps for the first time. Whatever your reasons for choosing to study chemistry, you can look forward to learning many new and exciting ideas.

Strategies to Improve Learning and Understanding

Success in chemistry utilizes good study habits, connecting new information with your knowledge base, rechecking what you have learned and what you have forgotten, and retrieving what you have learned for an exam. Let's take a look at ways that can help you
study and learn chemistry. Suppose you were asked to indicate if you think each of the following common study habits is helpful or not helpful:

Helpful Not helpful

Highlighting
Underlining
Reading the chapter many times
Memorizing the key words
Testing practice
Cramming
Studying different ideas at the same time
Retesting a few days later
Learning something requires us to place new information in our long-term memory, which allows us to remember those ideas for an exam, a process called retrieval. Thus, our evaluation of study habits depends on their value in helping us to recall knowledge. The study habits that are not very helpful in retrieval include highlighting, underlining, reading the chapter many times, memorizing key words, and cramming. If we want to recall new information, we need to connect it with prior knowledge that we can retrieve. This can be accomplished by developing study habits that involve a lot of practice testing ourselves on how to retrieve new information. We can determine how much we have learned by going back a few days later and retesting. Another useful learning strategy is to study different ideas at the same time, which allows us to connect those ideas and how to differentiate them. Although these study habits may take more time and seem more difficult, they help us find the gaps in our knowledge and connect new information with what we already know. In the long run, you retain and retrieve more information, making your study for exams less stressful.

Tips for Using New Study Habits for Successful Learning

1. Do not keep rereading text or notes. Reading the same material over and over will make that material seem familiar but does not mean that you have learned it. You need to test yourself to find out what you do and do not know.
2. Ask yourself questions as you read. Asking yourself questions as you read requires you to interact continually with new material. For example, you might ask yourself how the new material is related to previous material, which helps you make connections. By linking new material with long-term knowledge, you make pathways for retrieving new material.
3. Self-test by giving yourself quizzes. Using problems in the text or sample exams, practice taking tests frequently.
4. Study at a regular pace rather than cramming. Once you have tested yourself, go back in a few days and practice testing and retrieving information again. We do not recall all the information when we first read it. By frequent quizzing and retesting, we identify what we still need to learn. Sleep is also important for strengthening the associations between newly learned information. Lack of sleep may interfere with retrieval of information as well. So staying up all night to cram for your chemistry exam is not a good idea. Success in chemistry is a combined effort to learn new information and then to retrieve that information when you need it for an exam.
5. Study different topics in a chapter and relate the new concepts to concepts you know. We learn material more efficiently by relating it to information we already know. By increasing connections between concepts, we can retrieve information when we need it.

ENGAGE

Why is self-testing helpful for learning new concepts?

Helpful

Testing practice
Studying different ideas at the same time
Retesting a few days later
Not helpful
Highlighting
Underlining
Reading the chapter many times
Memorizing the key words
Cramming

SAMPLE PROBLEM 1.2 Strategies for Learning Chemistry

TRY IT FIRST

Predict which student will obtain the best exam score.
a. A student who reads the chapter four times.
b. A student who reads the chapter two times and works all the problems at the end of each Section.
c. A student who reads the chapter the night before the exam.

SOLUTION

b. A student who reads the chapter two times and works all the problems at the end of each Section has interacted with the content in the chapter using self-testing to make connections between concepts and practicing retrieving information learned previously.

STUDY CHECK 1.2

What is another way that student \mathbf{b} in Sample Problem 1.2 could improve his or her retrieval of information?

ANSWER

Student bin Sample Problem 1.2 could also wait two or three days and practice working the problems in each Section again to determine how much he or she has learned. Retesting strengthens connections between new and previously learned information for longer lasting memory and more efficient retrieval.

Features in This Text That Help You Study and Learn Chemistry

This text has been designed with study features to complement your individual learning style. On the inside of the front cover is a periodic table of the elements. On the inside of the back cover are tables that summarize useful information needed throughout your study of chemistry. Each chapter begins with Looking Ahead, which outlines the topics in the chapter. Key Terms are bolded when they first appear in the text, and are summarized at the end of each chapter. They are also listed and defined in the comprehensive Glossary and Index, which appears at the end of the text. Key Math Skills and Core Chemistry Skills that are critical to learning chemistry are indicated by icons in the margin, and summarized at the end of each chapter.

Before you begin reading, obtain an overview of a chapter by reviewing the topics in Looking Ahead. As you prepare to read a Section of the chapter, look at the Section title and turn it into a question. Asking yourself questions about new topics builds new connections to material you have already learned. For example, for Section 1.1, "Chemistry and Chemicals," you could ask, "What is chemistry?" or "What are chemicals?" At the beginning of each Section, a Learning Goal states what you need to understand and a Review box lists the Key Math Skills and Core Chemistry Skills from previous chapters that relate to new material in the chapter. As you read the text, you will see Engage features in the margin, which remind you to pause your reading and test yourself with a question related to the material.

Several Sample Problems are included in each Chapter. The Try It First feature reminds you to work the problem before you look at the Solution. The Analyze the Problem feature includes Given, the information you have; Need, what you have to accomplish; and Connect, how you proceed. It is helpful to try to work a problem first because it helps you link what you know to what you need to learn. This process will help you develop successful problem-solving techniques. Many Sample Problems include a Solution Guide that shows the steps you can use for problem solving. Work the associated Study Check and compare your answer to the one provided.

At the end of each chapter Section, you will find a set of Practice Problems that allows you to apply problem solving immediately to the new concepts. Throughout each

KEY MATH SKILL

CORE CHEMISTRY SKILL

REVIEW

ENGAGE
What is the purpose of an Engage question?

ANALYZE	Given	Need	Connect
THE	165 lb	kilograms	conversion factor

Illustrating the atoms of aluminum in aluminum foil is an example of macro-to-micro art.

INTERACTIVE VIDEO

Studying in a group can be beneficial to learning.

Section, Test suggestions remind you to solve the indicated Practice Problems as you study. The Clinical Applications in the Practice Problems relate the content to health and medicine. The problems are paired, which means that each of the odd-numbered problems is matched to the following even-numbered problem. At the end of each chapter, the answers to all the odd-numbered problems are provided. If the answers match yours, you most likely understand the topic; if not, you need to study the Section again.

Throughout each chapter, boxes titled Chemistry Link to Health and Chemistry Link to the Environment help you relate the chemical concepts you are learning to real-life situations. Many of the figures and diagrams use macro-to-micro illustrations to depict the atomic level of organization of ordinary objects, such as the atoms in aluminum foil. These visual models illustrate the concepts described in the text and allow you to "see" the world in a microscopic way. Interactive Video suggestions illustrate content as well as problem solving.

At the end of each chapter, you will find several study aids that complete the chapter. Chapter Reviews provide a summary in easy-to-read bullet points and Concept Maps visually show the connections between important topics. Understanding the Concepts are problems that use art and models to help you visualize concepts and connect them to your background knowledge. Additional Practice Problems and Challenge Problems provide additional exercises to test your understanding of the topics in the chapter. Answers to all of the odd-numbered problems complete the chapter allowing you to compare your answers to the ones provided.

After some chapters, problem sets called Combining Ideas test your ability to solve problems containing material from more than one chapter.

Many students find that studying with a group can be beneficial to learning. In a group, students motivate each other to study, fill in gaps, and correct misunderstandings by teaching and learning together. Studying alone does not allow the process of peer correction. In a group, you can cover the ideas more thoroughly as you discuss the reading and problem solve with other students.

Making a Study Plan

As you embark on your journey into the world of chemistry, think about your approach to studying and learning chemistry. You might consider some of the ideas in the following list. Check those ideas that will help you successfully learn chemistry. Commit to them now. Your success depends on you.

My study plan for learning chemistry will include the following:

\qquad reading the chapter before class
going to class
reviewing the Learning Goals
keeping a problem notebook
reading the text working the Test problems as I read each Section answering the Engage questions
trying to work the Sample Problem before looking at the Solution working the Practice Problems at the end of each Section and checking answers
studying different topics at the same time
organizing a study group
seeing the professor during office hours
_ reviewing Key Math Skills and Core Chemistry Skills
attending review sessions
studying as often as I can

SAMPLE PROBLEM 1.3 A Study Plan for Learning Chemistry

TRY IT FIRST

Which of the following activities should you include in your study plan for learning chemistry successfully?
a. reading the chapter over and over until you think you understand it
b. going to the professor's office hours
c. self-testing during and after reading each Section
d. waiting to study until the night before the exam
e. trying to work the Sample Problem before looking at the Solution
f. retesting on new information a few days later

SOLUTION

Your success in chemistry can be improved by:
b. going to the professor's office hours
c. self-testing during and after reading each Section
e. trying to work the Sample Problem before looking at the Solution
f. retesting on new information a few days later

STUDY CHECK 1.3

Which of the following will help you learn chemistry?
a. skipping review sessions
b. working problems as you read a Section
c. staying up all night before an exam
d. reading the assignment before class

ANSWER
b and d

PRACTICE PROBLEMS

1.3 Studying and Learning Chemistry

LEARNING GOAL Identify strategies that are effective for learning. Develop a study plan for learning chemistry.
1.11 What are four things you can do to help yourself to succeed in chemistry?
1.12 What are three safety precautions you can take while working in the laboratory?
1.13 A student in your class asks you for advice on learning chemistry. In what order would you give the bits of advice mentioned below:
a. Work on the Q\&A for each section and check the answers at the end.
b. Read the chapter before the class lecture.
c. Be an active learner during the class lecture.
d. Review key core chemistry skills.
1.14 A student in your class asks you for advice on learning chemistry. Which of the following might you suggest?
a. studying different topics at the same time
b. not reading the text; it's never on the test
c. attending review sessions
d. working the problems again after a few days
e. keeping a problem notebook

1.4 Key Math Skills for Chemistry

LEARNING GOAL Review math concepts used in chemistry: place values, positive and negative numbers, percentages, solving equations, and interpreting graphs.

During your study of chemistry, you will work many problems that involve numbers. You will need various math skills and operations. We will review some of the key math skills that are particularly important for chemistry. As we move through the chapters, we will also reference the key math skills as they apply.

KEY MATH SKILL

ENGAGE

In the number 8.034, how do you know the 0 is in the tenths place?

TEST

Try Practice Problems 1.15 and 1.16

Identifying Place Values

For any number, we can identify the place value for each of the digits in that number. These place values have names such as the ones place (first place to the left of the decimal point) or the tens place (second place to the left of the decimal point). A premature baby has a mass of 2518 g . We can indicate the place values for the number 2518 as follows:

Digit	Place Value
2	thousands
5	hundreds
1	tens
8	ones

We also identify place values such as the tenths place (first place to the right of the decimal point) and the hundredths place (second place to the right of the decimal point). A silver coin has a mass of 6.407 g . We can indicate the place values for the number 6.407 as follows:

Digit	Place Value
6	ones
4	tenths
0	hundredths
7	thousandths

Note that place values ending with the suffix ths refer to the decimal places to the right of the decimal point.

SAMPLE PROBLEM 1.4 Identifying Place Values

TRY IT FIRST

A bullet found at a crime scene has a mass of 15.24 g . What are the place values for each of the digits in the mass of the bullet?

SOLUTION

Digit	Place Value
1	tens
5	ones
2	tenths
4	hundredths

STUDY CHECK 1.4

A bullet found at a crime scene contains 0.925 g of lead. What are the place values for each of the digits in the mass of the lead?

ANSWER

Digit	Place Value
9	tenths
2	hundredths
5	thousandths

Using Positive and Negative Numbers in Calculations

A positive number is any number that is greater than zero and has a positive sign $(+)$. Often the positive sign is understood and not written in front of the number. For example, the number +8 can also be written as 8 . A negative number is any number that is less than zero and is written with a negative sign $(-)$. For example, a negative eight is written as -8 .

Multiplication and Division of Positive and Negative Numbers

When two positive numbers or two negative numbers are multiplied, the answer is positive (+).

$$
\begin{array}{r}
2 \times 3=+6 \\
(-2) \times(-3)=+6
\end{array}
$$

When a positive number and a negative number are multiplied, the answer is negative $(-)$.

$$
\begin{aligned}
& 2 \times(-3)=-6 \\
& (-2) \times 3=-6
\end{aligned}
$$

The rules for the division of positive and negative numbers are the same as the rules for multiplication. When two positive numbers or two negative numbers are divided, the answer is positive $(+)$.

$$
\frac{6}{3}=2 \quad \frac{-6}{-3}=2
$$

When a positive number and a negative number are divided, the answer is negative $(-)$.

$$
\frac{-6}{3}=-2 \quad \frac{6}{-3}=-2
$$

Addition of Positive and Negative Numbers

When positive numbers are added, the sign of the answer is positive.

$$
3+4=7 \quad \text { The }+\operatorname{sign}(+7) \text { is understood. }
$$

When negative numbers are added, the sign of the answer is negative.

$$
(-3)+(-4)=-7
$$

When a positive number and a negative number are added, the smaller number is subtracted from the larger number, and the result has the same sign as the larger number.

$$
12+(-15)=-3
$$

Subtraction of Positive and Negative Numbers

When two numbers are subtracted, change the sign of the number to be subtracted and follow the rules for addition shown above.

$$
\begin{aligned}
& 12-(+5)=12-5=7 \\
& 12-(-5)=12+5=17 \\
& -12-(-5)=-12+5=-7 \\
& -12-(+5)=-12-5=-17
\end{aligned}
$$

Calculator Operations

On your calculator, there are four keys that are used for basic mathematical operations. The change sign $+/-$ key is used to change the sign of a number.

To practice these basic calculations on the calculator, work through the problem going from the left to the right doing the operations in the order they occur. If your calculator has a change sign $+/-$ key, a negative number is entered by pressing the number and then pressing the change sign $+/-$ key. At the end, press the equals \Rightarrow key or ANS or ENTER.

KEY MATH SKILL

Calculating Percentages

ENGAGE

Why is the value of 100% used in the calculation of a percentage?

A bullet casing at a crime scene is marked as evidence.

Addition and Subtraction

Example 1:	$15-8+2=$
Solution:	$15 \Theta 8 \oplus 2 \circledast 9$
Example 2:	$4+(-10)-5=$
Solution:	$4 \oplus 10++/-\Xi 5 \Theta-11$

Multiplication and Division
Example 3: $\quad 2 \times(-3)=$
Solution: $\quad 2 \otimes 3+/-\equiv-6$
Example 4: $\quad \frac{8 \times 3}{4}=$
Solution: $\quad 8 \boxtimes 3 \bigoplus 4 \bigoplus 6$

Calculating Percentages

To determine a percentage, divide the parts by the total (whole) and multiply by 100%. For example, if an aspirin tablet contains 325 mg of aspirin (active ingredient) and the tablet has a mass of 545 mg , what is the percentage of aspirin in the tablet?

$$
\frac{325 \mathrm{mg} \text { aspirin }}{545 \mathrm{mg} \text { tablet }} \times 100 \%=59.6 \% \text { aspirin }
$$

When a value is described as a percentage (\%), it represents the number of parts of an item in 100 of those items. If the percentage of red balls is 5 , it means there are 5 red balls in every 100 balls. If the percentage of green balls is 50 , there are 50 green balls in every 100 balls.

$$
5 \% \text { red balls }=\frac{5 \text { red balls }}{100 \text { balls }} \quad 50 \% \text { green balls }=\frac{50 \text { green balls }}{100 \text { balls }}
$$

SAMPLE PROBLEM 1.5 Calculating a Percentage

TRY IT FIRST

A bullet found at a crime scene may be used as evidence in a trial if the percentage of metals is a match to the composition of metals in a bullet from the suspect's ammunition. If a bullet found at a crime scene contains 13.9 g of lead, 0.3 g of tin, and 0.9 g of antimony, what is the percentage of each metal in the bullet? Express your answers to the ones place.

SOLUTION

Total mass $=13.9 \mathrm{~g}+0.3 \mathrm{~g}+0.9 \mathrm{~g}=15.1 \mathrm{~g}$

Percentage of lead
$\frac{13.9 \mathrm{~g}}{15.1 \mathrm{~g}} \times 100 \%=92 \%$ lead
Percentage of tin

$$
\frac{0.3 \mathrm{~g}}{15.1 \mathrm{~g}} \times 100 \%=2 \% \mathrm{tin}
$$

Percentage of antimony
$\frac{0.9 \mathrm{~g}}{15.1 \mathrm{~g}} \times 100 \%=6 \%$ antimony

STUDY CHECK 1.5

A bullet seized from the suspect's ammunition has a composition of lead 11.6 g , tin 0.5 g , and antimony 0.4 g .
a. What is the percentage of each metal in the bullet? Express your answers to the ones place.
b. Could the bullet removed from the suspect's ammunition be considered as evidence that the suspect was at the crime scene mentioned in Sample Problem 1.5?

ANSWER

a. The bullet from the suspect's ammunition is lead 93%, tin 4%, and antimony 3%.
b. The composition of this bullet does not match the bullet from the crime scene and cannot be used as evidence.

Solving Equations

In chemistry, we use equations that express the relationship between certain variables. Let's look at how we would solve for x in the following equation:

$$
2 x+8=14
$$

Our overall goal is to rearrange the items in the equation to obtain x on one side.

1. Place all like terms on one side. The numbers 8 and 14 are like terms. To remove the 8 from the left side of the equation, we subtract 8 . To keep a balance, we need to subtract 8 from the 14 on the other side.

$$
\begin{aligned}
2 x+8-8 & =14-8 \\
2 x & =6
\end{aligned}
$$

2. Isolate the variable you need to solve for. In this problem, we obtain x by dividing both sides of the equation by 2 . The value of x is the result when 6 is divided by 2 .

$$
\begin{aligned}
\frac{z x}{z} & =\frac{6}{2} \\
x & =3
\end{aligned}
$$

3. Check your answer. Check your answer by substituting your value for x back into the original equation.

$$
\begin{aligned}
2(3)+8 & =14 \\
6+8 & =14 \\
14 & =14 \quad \text { Your answer } x=3 \text { is correct. }
\end{aligned}
$$

Summary: To solve an equation for a particular variable, be sure you perform the same mathematical operations on both sides of the equation.

If you eliminate a symbol or number by subtracting, you need to subtract that same symbol or number on the opposite side.
If you eliminate a symbol or number by adding, you need to add that same symbol or number on the opposite side.
If you cancel a symbol or number by dividing, you need to divide both sides by that same symbol or number.
If you cancel a symbol or number by multiplying, you need to multiply both sides by that same symbol or number.

When we work with temperature, we may need to convert between degrees Celsius and degrees Fahrenheit using the following equation:

$$
T_{\mathrm{F}}=1.8\left(T_{\mathrm{C}}\right)+32
$$

KEY MATH SKILL
Solving Equations

ENGAGE
Why is the number 8 subtracted from both sides of this equation?

A plastic strip thermometer changes color to indicate body temperature.

INTERACTIVE VIDEO

Solving Equations

ENGAGE

Why is the numerator divided by P_{2} on both sides of the equation?

TEST

Try Practice Problems 1.21
and 1.22

KEY MATH SKILL
Interpreting Graphs

To obtain the equation for converting degrees Fahrenheit to degrees Celsius, we subtract 32 from both sides.

$$
\begin{aligned}
& T_{\mathrm{F}}=1.8\left(T_{\mathrm{C}}\right)+32 \\
& T_{\mathrm{F}}-32=1.8\left(T_{\mathrm{C}}\right)+32-32 \\
& T_{\mathrm{F}}-32=1.8\left(T_{\mathrm{C}}\right)
\end{aligned}
$$

To obtain T_{C} by itself, we divide both sides by 1.8.

$$
\frac{T_{\mathrm{F}}-32}{1.8}=\frac{1.8\left(T_{\mathrm{C}}\right)}{1.8}=T_{\mathrm{C}}
$$

SAMPLE PROBLEM 1.6 Solving Equations

TRY IT FIRST

Solve the following equation for V_{2} :
$P_{1} V_{1}=P_{2} V_{2}$

SOLUTION

$P_{1} V_{1}=P_{2} V_{2}$
To solve for V_{2}, divide both sides by the symbol P_{2}.
$\frac{P_{1} V_{1}}{P_{2}}=\frac{P_{2} V_{2}}{P_{2}}$

$$
V_{2}=\frac{P_{1} V_{1}}{P_{2}}
$$

STUDY CHECK 1.6

Solve the following equation for m :

$$
\text { heat }=m \times \Delta T \times S H
$$

ANSWER

$m=\frac{\text { heat }}{\Delta T \times S H}$

Interpreting Graphs

A graph represents the relationship between two variables. These quantities are plotted along two perpendicular axes, which are the x axis (horizontal) and y axis (vertical).

Example

In the graph Volume of a Balloon Versus Temperature, the volume of a gas in a balloon is plotted against its temperature.

Title

Look at the title. What does it tell us about the graph? The title indicates that the volume of a balloon was measured at different temperatures.

Vertical Axis

Look at the label and the numbers on the vertical (y) axis. The label indicates that the volume of the balloon was measured in liters (L). The numbers, which are chosen to include the low and high measurements of the volume of the gas, are evenly spaced from 22.0 L to 30.0 L .

Horizontal Axis

The label on the horizontal (x) axis indicates that the temperature of the balloon was measured in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$. The numbers are measurements of the Celsius temperature, which are evenly spaced from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.

Points on the Graph

Each point on the graph represents a volume in liters that was measured at a specific temperature. When these points are connected, a line is obtained.

Interpreting the Graph

From the graph, we see that the volume of the gas increases as the temperature of the gas increases. This is called a direct relationship. Now we use the graph to determine the volume at various temperatures. For example, suppose we want to know the volume of the gas at $50^{\circ} \mathrm{C}$. We would start by finding $50^{\circ} \mathrm{C}$ on the x axis and then drawing a line up to the plotted line. From there, we would draw a horizontal line that intersects the y axis and read the volume value where the line crosses the y axis as shown on the graph above.

SAMPLE PROBLEM 1.7 Interpreting a Graph

TRY IT FIRST

A nurse administers Tylenol to lower a child's fever. The graph shows the body temperature of the child plotted against time.
a. What is measured on the vertical axis?
b. What is the range of values on the vertical axis?
c. What is measured on the horizontal axis?
d. What is the range of values on the horizontal axis?

SOLUTION

a. body temperature, in degrees Celsius
b. $37.0^{\circ} \mathrm{C}$ to $39.4^{\circ} \mathrm{C}$
c. time, in minutes, after Tylenol was given
d. 0 min to 30 min

STUDY CHECK 1.7

a. Using the graph in Sample Problem 1.7, what was the child's temperature 15 min after Tylenol was given?
b. How many minutes elapsed before the temperature decreased to $38.0^{\circ} \mathrm{C}$?

ANSWER
a. $37.6^{\circ} \mathrm{C}$
b. 8 min

TEST

Try Practice Problems 1.23 and 1.24

PRACTICE PROBLEMS

1.4 Key Math Skills for Chemistry

LEARNING GOAL Review math concepts used in chemistry: place values, positive and negative numbers, percentages, solving equations, and interpreting graphs.
1.15 What is the place value for the bold digit?
a. 7.0984
b. 26.2860
c. 85.5258
1.16 What is the place value for the bold digit?
a. 97.5689
b. 375.88
c. 46.1000
1.17 Evaluate each of the following
a. $20-(-10)=$
b. $-6+(-38)=$
c. $2 \times(-7)+14=$
1.18 Evaluate each of the following
a. $-17-(-12)=$
b. $19+(-86)=$
c. $\frac{-78}{6}=$

Clinical Applications

1.19 a. A cargo comprises 80 kg of wheat and 20 kg of cotton. What is the percentage of cotton by weight in the cargo?
b. A ship contains 400 tons of wheat and 100 tons of cotton. What is the percentage of wheat by weight on the ship?
c. Which contains a higher percentage of wheat?
1.20 a. At a local hospital, 35 babies were born. If 22 were boys, what percentage of the newborns were boys? Express your answer to the ones place.
b. An alloy contains 67 g of pure gold and 35 g of pure zinc. What is the percentage of zinc in the alloy? Express your answer to the ones place.
c. A collection of coins contains 15 pennies, 14 dimes, and 6 quarters. What is the percentage of pennies in the collection? Express your answer to the ones place.
1.21 Solve each of the following for ' a ':
a. $5 a+10=60$
b. $\frac{a}{8}=6$
1.22 Solve each of the following for b :
a. $2 b+7=b+10$
b. $3 b-4=24-b$

Use the following graph for problems 1.23 and 1.24:

Time for Cooling of Tea Versus Temperature

1.23 a. What does the title indicate about the graph?
b. What is measured on the vertical axis?
c. What is the range of values on the vertical axis?
d. Does the temperature increase or decrease with an increase in time?
1.24 a. What is measured on the horizontal axis?
b. What is the range of values on the horizontal axis?
c. What is the temperature of tea after 20 min ?
d. How many minutes did it take for the tea to reach a temperature below $30^{\circ} \mathrm{C}$?

1.5 Writing Numbers in Scientific Notation

LEARNING GOAL Write a number in scientific notation.
In chemistry, we often work with numbers that are very large and very small. We might measure something as tiny as the width of a human hair, which is about 0.000008 m . Or perhaps we want to count the number of hairs on the average human scalp, which is about 100000 hairs. In this text, we add spaces between sets of three digits when it helps make the places easier to count. However, we will see that it is more convenient to write large and small numbers in scientific notation.

A number written in scientific notation has two parts: a coefficient and a power of 10. For example, the number 2400 is written in scientific notation as 2.4×10^{3}. The coefficient, 2.4,

Humans have an average of 1×10^{5} hairs on their scalps. Each hair is about $8 \times 10^{-6} \mathrm{~m}$ wide.
is obtained by moving the decimal point to the left to give a number that is at least 1 but less than 10 . Because we moved the decimal point three places to the left, the power of 10 is a positive 3 , which is written as 10^{3}. When a number greater than 1 is converted to scientific notation, the power of 10 is positive.

Standard Number Scientific Notation

$$
\underbrace{2400}_{\leftarrow 3 \text { places }}=\underbrace{2.4}_{\text {Coefficient }} \times \underset{\substack{\text { Power } \\ \text { of } 10}}{10^{3}}
$$

In another example, 0.00086 is written in scientific notation as 8.6×10^{-4}. The coefficient, 8.6 , is obtained by moving the decimal point to the right. Because the decimal point is moved four places to the right, the power of 10 is a negative 4 , written as 10^{-4}. When a number less than 1 is written in scientific notation, the power of 10 is negative.

Standard Number Scientific Notation

$$
\underbrace{0.00086}_{4 \text { places } \rightarrow}=\underbrace{8.6}_{\text {Coefficient }} \times \underset{\begin{array}{c}
\text { Power } \\
\text { of } 10
\end{array}}{10^{-4}}
$$

TABLE 1.2 gives some examples of numbers written as positive and negative powers of 10 . The powers of 10 are a way of keeping track of the decimal point in the number. TABLE 1.3 gives several examples of writing measurements in scientific notation.
table 1.2 Some Powers of 10

Standard Number	Multiples of 10	Scientific Notation	
10000	$10 \times 10 \times 10 \times 10$	1×10^{4}	Some positive powers of 10 1000
$10 \times 10 \times 10$	1×10^{3}		
100	10×10	1×10^{2}	1×10^{1}
10	10	1×10^{0}	
1	0	1×10^{-1}	Some negative powers of 10
0.1	$\frac{1}{10}$	1×10^{-2}	
0.01	$\frac{1}{10} \times \frac{1}{10}=\frac{1}{100} \times \frac{1}{10}=\frac{1}{1000}$	1×10^{-3}	
0.001	$\frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10}=\frac{1}{10} 000$	1×10^{-4}	
0.0001			

Standard Number Scientific Notation	
0.000008 m	$8 \times 10^{-6} \mathrm{~m}$
100000 hairs	1×10^{5} hairs

KEY MATH SKILL

Writing Numbers in Scientific Notation

ENGAGE

Why is 530000 written as 5.3×10^{5} in scientific notation?

ENGAGE
Why is 0.000053 written as 5.3×10^{-5} in scientific notation?

A chickenpox virus has a diameter of $3 \times 10^{-7} \mathrm{~m}$.
tAble 1.3 Some Measurements Written as Standard Numbers and in Scientific Notation

Measured Quantity	Standard Number	Scientific Notation
Volume of gasoline used in the United States each year	550000000000 L	$5.5 \times 10^{11} \mathrm{~L}$
Diameter of Earth	12800000 m	$1.28 \times 10^{7} \mathrm{~m}$
Average volume of blood pumped in 1 day	8500 L	$8.5 \times 10^{3} \mathrm{~L}$
Time for light to travel from the Sun to Earth	500 s	$5 \times 10^{2} \mathrm{~s}$
Mass of a typical human	68 kg	$6.8 \times 10^{1} \mathrm{~kg}$
Mass of stirrup bone in ear	0.003 g	$3 \times 10^{-3} \mathrm{~g}$
Diameter of a chickenpox (Varicella zoster) virus	0.0000003 m	$3 \times 10^{-7} \mathrm{~m}$
Mass of bacterium (mycoplasma)	0.0000000000000000001 kg	$1 \times 10^{-19} \mathrm{~kg}$

SAMPLE PROBLEM 1.8 Writing a Number in Scientific Notation

TRY IT FIRST

Write each of the following in scientific notation:
a. 3500
b. 0.000016

SOLUTION GUIDE

ANALYZE THE PROBLEM	Given	Need	Connect
standard number	scientific notation	coefficient is at least 1 but less than 10	

a. 3500

STEP 1 Move the decimal point to obtain a coefficient that is at least 1 but less than 10. For a number greater than 1 , the decimal point is moved to the left three places to give a coefficient of 3.5 .

STEP 2 Express the number of places moved as a power of 10. Moving the decimal point three places to the left gives a power of 3 , written as 10^{3}.
STEP 3 Write the product of the coefficient multiplied by the power of 10. 3.5×10^{3}
b. 0.000016

STEP 1 Move the decimal point to obtain a coefficient that is at least 1 but less than 10. For a number less than 1 , the decimal point is moved to the right five places to give a coefficient of 1.6.

STEP 2 Express the number of places moved as a power of 10. Moving the decimal point five places to the right gives a power of negative 5 , written as 10^{-5}.

STEP 3 Write the product of the coefficient multiplied by the power of 10. 1.6×10^{-5}

STUDY CHECK 1.8

Write each of the following in scientific notation:
a. 425000
b. 0.00000086

ANSWER

a. 4.25×10^{5}
b. 8.6×10^{-7}

Scientific Notation and Calculators

You can enter a number in scientific notation on many calculators using the EE or EXP key. After you enter the coefficient, press the EE or EXP key and enter the power 10. To enter a negative power of 10 , press the $+/-$ key or the - key, depending on your calculator.

Number to Enter	Procedure		Calculator Display			
4×10^{6}	4 EE or EXP 6		405	or 4^{05}	or	4506
2.5×10^{-4}	2.5 EE or EXP +/-	4	$2.5-04$ or	or 2.55^{-04}	or	$2.55-04$

When a calculator answer appears in scientific notation, the coefficient is shown as a number that is at least 1 but less than 10 , followed by a space or E and the power of 10 . To express this display in scientific notation, write the coefficient value, write $\times 10$, and use the power of 10 as an exponent.

Calculator Display		Expressed in Scientific Notation
7.5204 or 7.52^{04} or 7.52504	7.52×10^{4}	
$5.8-02$ or 5.8^{-02} or $5.85-02$	5.8×10^{-2}	

On many calculators, a number is converted into scientific notation using the appropriate keys. For example, the number 0.00052 is entered, followed by pressing the $2^{\text {nd }}$ or $3^{\text {rd }}$ function key and the SCI key. The scientific notation appears in the calculator display as a coefficient and the power of 10 .

PRACTICE PROBLEMS

1.5 Writing Numbers in Scientific Notation

LEARNING GOAL Write a number in scientific notation.
1.25 Write each of the following in scientific notation:
a. 67000
b. 520
c. 0.0000081
d. 0.00027
e. 0.0094
f. 490000
1.26 Write each of the following in scientific notation:
a. 180000000
b. 0.00006
c. 750
d. 0.15
e. 0.024
f. 1500
1.27 Which number in each of the following pairs is larger?
a. 6.1×10^{4} or 4.2×10^{2}
b. 3.7×10^{-6} or 5.8×10^{-3}
c. 7×10^{-8} or 7×10^{8}
d. 0.00069 or 8.3×10^{-1}
1.28 Which number in each of the following pairs is smaller?
a. 0.9×10^{-3} or 5.5×10^{-9}
b. 1250 or 3.4×10^{2}
c. 0.5×10^{3} or 5.0×10^{2}
d. 2.50×10^{2} or 4×10^{5}

CLINICAL UPDATE Forensic Evidence Helps Solve the Crime

Using a variety of laboratory tests, Sarah finds ethylene glycol in the victim's blood. The quantitative tests indicate that the victim had ingested 125 g of ethylene glycol.

Sarah determines that the liquid in a glass found at the crime scene was ethylene glycol that had been added to an alcoholic beverage. Ethylene glycol is a clear, sweet-tasting, thick liquid that is odorless and mixes with water. It is easy to obtain since it is used as antifreeze in automobiles and in brake fluid. Because the initial symptoms of ethylene glycol poisoning are similar to being intoxicated, the victim is often unaware of its presence.

If ingestion of ethylene glycol occurs, it can cause depression of the central nervous system, cardiovascular damage, and kidney failure. If discovered quickly, hemodialysis may be used to remove ethylene glycol from the blood. A toxic amount of ethylene glycol is 1.5 g of ethylene glycol/ kg of body mass. Thus, 75 g could be fatal for a $50-\mathrm{kg}$ (110-lb) person.

Mark determines that fingerprints on the glass containing the ethylene glycol were those of the victim's husband. This evidence along with the container of antifreeze found in the home led to the arrest and conviction of the husband for poisoning his wife.

Clinical Applications

1.29 A container was found in the home of the victim that contained 120 g of ethylene glycol in 450 g of liquid. What was the percentage of ethylene glycol? Express your answer to the ones place.
1.30 If the toxic quantity is 1.5 g of ethylene glycol per 1000 g of body mass, what percentage of ethylene glycol is fatal?

CONCEPT MAP

CHEMISTRY IN OUR LIVES

CHAPTER REVIEW

1.1 Chemistry and Chemicals

LEARNING GOAL Define the term chemistry and identify substances as chemicals.

- Chemistry is the study of the composition, structure, properties, and reactions of matter.
- A chemical is any substance that always has the same composition and properties wherever it is found.

1.2 Scientific Method: Thinking Like a Scientist

LEARNING GOAL Describe the activities that are part of the scientific method.

- The scientific method is a process of explaining natural phenomena beginning with making observations, forming a hypothesis, and performing experiments.
- After repeated successful experiments, a hypothesis may become a theory.

1.3 Studying and Learning Chemistry

LEARNING GOAL Identify strategies that are effective for learning. Develop a study plan for learning chemistry.

- A plan for learning chemistry utilizes
 the features in the text that help develop a successful approach to learning chemistry.
- By using the Learning Goals, Reviews, Analyze the Problems, and Try It First in the chapter and working the Sample Problems, Study Checks, and the Practice Problems at the end of each Section, you can successfully learn the concepts of chemistry.

1.4 Key Math Skills for Chemistry

LEARNING GOAL Review math concepts used in chemistry: place values, positive and negative numbers, percentages, solving equations, and interpreting graphs.

- Solving chemistry problems involves a number of math skills: identifying place values, using positive and negative numbers, calculating percentages, solving equations, and interpreting graphs.

1.5 Writing Numbers in Scientific Notation

LEARNING GOAL Write a number in scientific notation.

- A number written in scientific notation has two parts, a coefficient and a power of 10 .
- When a number greater than 1 is con-
 verted to scientific notation, the power of 10 is positive.
- When a number less than 1 is written in scientific notation, the power of 10 is negative.

KEY TERMS

chemical A substance that has the same composition and properties wherever it is found.
chemistry The study of the composition, structure, properties, and reactions of matter.
conclusion An explanation of an observation that has been validated by repeated experiments that support a hypothesis.
experiment A procedure that tests the validity of a hypothesis.
hypothesis An unverified explanation of a natural phenomenon.
observation Information determined by noting and recording a natural phenomenon.
scientific method The process of making observations, proposing a hypothesis, and testing the hypothesis; after repeated experiments validate the hypothesis, it may become a theory.
scientific notation A form of writing large and small numbers using a coefficient that is at least 1 but less than 10 , followed by a power of 10 .
theory An explanation for an observation supported by additional experiments that confirm the hypothesis.

KEY MATH SKILLS

The chapter Section containing each Key Math Skill is shown in parentheses at the end of each heading.

Identifying Place Values (1.4)

- The place value identifies the numerical value of each digit in a number.

Example: Identify the place value for each of the digits in the number 456.78.

Answer: | | Digit | Place Value |
| :--- | :--- | :--- |
| 4 | hundreds | |
| 5 | tens | |
| 6 | ones | |
| 7 | tenths | |
| 8 | hundredths | |

Using Positive and Negative Numbers in Calculations (1.4)

- A positive number is any number that is greater than zero and has a positive sign $(+)$. A negative number is any number that is less than zero and is written with a negative sign $(-)$.
- When two positive numbers are added, multiplied, or divided, the answer is positive.
- When two negative numbers are multiplied or divided, the answer is positive. When two negative numbers are added, the answer is negative.
- When a positive and a negative number are multiplied or divided, the answer is negative.
- When a positive and a negative number are added, the smaller number is subtracted from the larger number and the result has the same sign as the larger number.
- When two numbers are subtracted, change the sign of the number to be subtracted then follow the rules for addition.

Example: Evaluate each of the following:
a. $-8-14=$ \qquad
b. $6 \times(-3)=$ \qquad
b. -18

Answer: a. -22

Calculating Percentages (1.4)

- A percentage is the part divided by the total (whole) multiplied by 100%.

Example: A drawer contains 6 white socks and 18 black socks. What is the percentage of white socks?
Answer: $\frac{6 \text { white socks }}{24 \text { total socks }} \times 100 \%=25 \%$ white socks

Solving Equations (1.4)

An equation in chemistry often contains an unknown. To rearrange an equation to obtain the unknown factor by itself, you keep it balanced by performing matching mathematical operations on both sides of the equation.

- If you eliminate a number or symbol by subtracting, subtract that same number or symbol on the opposite side.
- If you eliminate a number or symbol by adding, add that same number or symbol on the opposite side.
- If you cancel a number or symbol by dividing, divide both sides by that same number or symbol.
- If you cancel a number or symbol by multiplying, multiply both sides by that same number or symbol.

Example: Solve the equation for $a: \quad 3 a-8=28$
Answer: Add 8 to both sides

$$
\begin{aligned}
3 a-8+8 & =28+8 \\
3 a & =36 \\
\frac{\not a \mathrm{a}}{\ngtr} & =\frac{36}{3} \\
a & =12 \\
3(12)-8 & =28 \\
36-8 & =28 \\
28 & =28
\end{aligned}
$$

Check:

Your answer $a=12$ is correct.

Interpreting Graphs (1.4)

- A graph represents the relationship between two variables.
- The quantities are plotted along two perpendicular axes, which are the x axis (horizontal) and y axis (vertical).
- The title indicates the components of the x and y axes.
- Numbers on the x and y axes show the range of values of the variables.
- The graph shows the relationship between the component on the y axis and that on the x axis.

Example: Solubility of Sugar in Water Versus Temperature

a. Does the amount of sugar that dissolves in 100 mL of water increase or decrease when the temperature increases?
b. How many grams of sugar dissolve in 100 mL of water at $70^{\circ} \mathrm{C}$?
c. At what temperature $\left({ }^{\circ} \mathrm{C}\right)$ will 275 g of sugar dissolve in 100 mL of water?
Answer: a. increase
b. 320 g
c. $55^{\circ} \mathrm{C}$

Writing Numbers in Scientific Notation (1.5)

- A number written in scientific notation consists of a coefficient and a power of 10 .
A number is written in scientific notation by:
- Moving the decimal point to obtain a coefficient that is at least 1 but less than 10 .
- Expressing the number of places moved as a power of 10 . The power of 10 is positive if the decimal point is moved to the left, negative if the decimal point is moved to the right.

Example: Write the number 28000 in scientific notation.
Answer: Moving the decimal point four places to the left gives a coefficient of 2.8 and a positive power of $10,10^{4}$. The number 28000 written in scientific notation is 2.8×10^{4}.

UNDERSTANDING THE CONCEPTS

The chapter Sections to review are shown in parentheses at the end of each problem.
1.31 A "chemical-free" shampoo includes the following ingredients: water, cocamide, glycerin, and citric acid. Is the shampoo truly "chemical-free"? (1.1)
1.32 A "chemical-free" sunscreen includes the following ingredients: titanium dioxide, vitamin E, and vitamin C. Is the sunscreen truly "chemical-free"? (1.1)
1.33 According to Sherlock Holmes, "One must follow the rules of scientific inquiry, gathering, observing, and testing data, then formulating, modifying, and rejecting hypotheses, until only one remains." Did Holmes use the scientific method? Why or why not? (1.2)
1.34 In A Scandal in Bohemia, Sherlock Holmes receives a mysterious note. He states, "I have no data yet. It is a capital mistake to theorize before one has
 data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts." What do you think Holmes meant? (1.2)

Sherlock Holmes is a fictional detective in novels written by Arthur Conan Doyle.
1.35 Classify each of the following statements as an observation (O) or a hypothesis (H)
a. At boiling point, water is converted into steam.
b. If temperature is related to metabolic activity in animals, decreasing the ambient temperature will result in decrease in metabolism.
c. Tomato plant grows well when exposed to more sunlight.
1.36 Classify each of the following statements as an observation (O) or a hypothesis (H): (1.2)
a. Analysis of a sample of 100 toys indicated that 5% contained lead.
b. Reduced CO_{2} emission can help reduce global warming.
c. A child with fever higher than $40^{\circ} \mathrm{C}$ is likely to suffer damage to brain function.

Clinical Applications

1.37 For each of the following, indicate if the answer has a positive or negative sign: (1.4)
a. Three negative numbers are added.
b. Two negative numbers are multiplied, and then divided by a positive number.
1.38 For each of the following, indicate if the answer has a positive or negative sign: (1.4)
a. A negative number is divided by a positive number.
b. Two negative numbers are added.

ADDITIONAL PRACTICE PROBLEMS

1.39 Select the correct phrase(s) to complete the following statement: If experimental results do not support your hypothesis, you should: (1.2)
a. pretend that the experimental results support your hypothesis
b. modify your hypothesis
c. do more experiments
1.40 Select the correct phrase(s) to complete the following statement: A hypothesis is confirmed when: (1.2)
a. one experiment proves the hypothesis
b. many experiments validate the hypothesis
c. you think your hypothesis is correct
1.41 Select the correct phrases to complete the following statement: If experimental results do not support your hypothesis, you should... (1.2)
a. try to verify the experimental parameters again and see if there is any error
b. discuss with your classmate and see if there is something wrong
c. consult with your professor
d. do more experiments
1.42 Which of the following will help you develop a successful study plan? (1.3)
a. studying all night before the exam
b. forming a study group and discussing the problems together
c. working problems in a notebook for easy reference
d. highlighting important ideas in the text
1.43 What should you do if your study group is unable to settle an argument in chemistry? (1.3)
a. simply insist your own opinion further
b. search for an answer on the web
c. go through the textbook again
d. do experiments on your own
e. consult with the course coordinator
1.44 Evaluate each of the following: (1.4)
a. $-95-(-11)=$ \qquad b. $\frac{152}{-19}=$ \qquad
1.45 Evaluate each of the following
a. $6 \times(-9)$
b. $+7+(-81)$
c. $\frac{-120}{-40}$
1.46 Evaluate each of the following:
a. $-67-(-8)$
b. $\frac{135}{-15}$
c. 6-39
1.47 Write each of the following in scientific notation: (1.5)
a. 120000
b. 0.00000034
c. 0.066
d. 2700
1.48 Write each of the following in scientific notation: (1.5)
a. 0.0042
b. 310
c. 890000000
d. 0.000000056

Clinical Applications

1.49 Use scientific notation to express each of the following numbers: (1.5)
a. 1200000
b. 0.00000044
c. 0.066
c. 1000000
1.50 Express each of the following numbers in scientific notation: (1.4)
a. 0.0064 .
b. 290000 .
c. 650000000 .
d. 0.0000000042 .

CHALLENGE PROBLEMS

The following problems are related to the topics in this chapter. However, they do not all follow the chapter order, and they require you to combine concepts and skills from several Sections. These problems will help you increase your critical thinking skills and prepare for your next exam.
1.51 Classify each of the following as an observation, a hypothesis, an experiment, or a conclusion: (1.2)
a. The bicycle tire is flat.
b. If I add air to the bicycle tire, it will expand to the proper size.
c. When I added air to the bicycle tire, it was still flat.
d. The bicycle tire has a leak in it.
1.52 Classify each of the following as an observation, a hypothesis, an experiment, or a conclusion: (1.2)
a. A big \log in the fire does not burn well.
b. If I chop the log into smaller wood pieces, it will burn better.
c. The small wood pieces burn brighter and make a hotter fire.
d. The small wood pieces are used up faster than burning the big log.
1.53 Solve each of the following for a : (1.4)
a. $4 a-5=35$
b. $\frac{3 a}{6}=-18$
1.54 Solve each of the following for $z:$ (1.4)
a. $7 z-(-11)=39$
b. $-8 z \times 5=-80$

Use the following graph for problems 1.55 and 1.56 :

1.55 a. What does the title indicate about the graph? (1.4)
b. What is measured on the vertical axis?
c. What is the range of values on the vertical axis?
d. Does the solubility of carbon dioxide increase or decrease with an increase in temperature?
1.56 a. What is measured on the horizontal axis? (1.4)
b. What is the range of values on the horizontal axis?
c. What is the solubility of carbon dioxide in water at $25^{\circ} \mathrm{C}$?
d. At what temperature does carbon dioxide have a solubility of $0.20 \mathrm{~g} / 100 \mathrm{~g}$ water?

ANSWERS

Answers to Selected Practice Problems

1.1 a. Chemistry is the study of the composition, structure, properties, and reactions of matter.
b. A chemical is a substance that has the same composition and properties wherever it is found.
1.3 Many chemicals are listed on a vitamin bottle such as vitamin A, vitamin B_{3}, vitamin B_{12}, vitamin C, and folic acid.
1.5 Typical items found in a medicine cabinet and some of the chemicals they contain are as follows:
Antacid tablets: calcium carbonate, cellulose, starch, stearic acid, silicon dioxide
Mouthwash: water, alcohol, thymol, glycerol, sodium benzoate, benzoic acid

Cough suppressant: menthol, beta-carotene, sucrose, glucose
1.7 a. observation
b. hypothesis
c. experiment
d. observation
e. observation
f. conclusion
1.9 a. observation
b. hypothesis
c. experiment
d. experiment
1.11 There are several things you can do that will help you successfully learn chemistry: forming a study group, retesting, doing Try It First before reading the Solution, checking Review, working Sample Problems and Study Checks, working Practice Problems and checking Answers, reading the assignment ahead of class, and keeping a problem notebook.
1.13 b., c., d., a.
1.15
a. hundredths.
b. ones
c. tens.
1.17
a. 30
b. -44
c. 0
1.19
a. 20% cotton b. 80% wheat
c. Both have the same percentage of wheat.
1.21 a. $a=10$
b. $a=48$
1.23 a. The graph shows the relationship between the temperature of a cup of tea and time.
b. temperature, in ${ }^{\circ} \mathrm{C}$
c. $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
d. decrease
1.25 a. 6.7×10^{4}
b. 5.2×10^{2}.
c. 8.1×10^{-6}.
d. 2.7×10^{-4}.
e. 9.4×10^{-3}
f. 4.9×10^{5}.
1.27
a. 6.1×10^{4}
b. 5.8×10^{-3}
c. 7×10^{8}
d. 8.3×10^{-1}
1.29 27\% ethylene glycol
1.31 No. All of the ingredients are chemicals.
1.33 Yes. Sherlock's investigation includes making observations (gathering data), formulating a hypothesis, testing the hypothesis, and modifying it until one of the hypotheses is validated.
1.35 a. O
b. H
c. O
1.37 a. negative
b. positive
1.39 b and c
1.41 a, d
$1.43 \mathbf{c}$ and \mathbf{e}.
1.45 a. -54
b. -74
c. +3
1.47 a. 1.2×10^{5}
b. 3.4×10^{-7}
c. 6.6×10^{-2}
d. 2.7×10^{3}
1.49 a. 1.2×10^{6}.
b. 4.4×10^{-7}.
c. 6.6×10^{-2}.
d. 1.0×10^{6}.
1.51 a. observation
b. hypothesis
c. experiment
d. conclusion
1.53 a. 10
b. -36
1.55 a. The graph shows the relationship between the solubility of carbon dioxide in water and temperature.
b. solubility of carbon dioxide ($\mathrm{g} \mathrm{CO}_{2} / 100 \mathrm{~g}$ water)
c. 0 to 0.35 g of $\mathrm{CO}_{2} / 100 \mathrm{~g}$ of water
d. decrease

Chemistry and Measurements

DURING THE PAST FEW MONTHS, GREG

experienced an increased number of headaches, dizzy spells, and nausea. He goes to his doctor's office where Sandra, the registered nurse, completes the initial part of his exam by recording several measurements: weight 74.5 kg , height 171 cm , temperature $37.2^{\circ} \mathrm{C}$, and blood pressure $155 / 95$. Normal blood pressure is $120 / 80$ or lower.

When Greg sees his doctor, he is diagnosed with high blood pressure (hypertension). The doctor prescribes 80 mg
of Inderal (propranolol), which is available in $40 .-\mathrm{mg}$ tablets. Inderal is a beta blocker, which relaxes the muscles of the heart. It is used to treat hypertension, angina (chest pain), arrhythmia, and migraine headaches.

Two weeks later, Greg visits his doctor again, who determines that Greg's blood pressure is now 152/90. The doctor increases the dosage of Inderal to 160 mg . The registered nurse, Sandra, informs Greg that he needs to increase his daily dosage from two tablets to four tablets.

CAREER Registered Nurse

In addition to assisting physicians, registered nurses work to promote patient health and prevent and treat disease. They provide patient care and help patients cope with illness. They take measurements such as a patient's weight, height, temperature, and blood pressure; make conversions; and calculate drug dosage rates. Registered nurses also maintain detailed medical records of patient symptoms and prescribed medications.

CLINICAL UPDATE Greg's Visit with His Doctor

A few weeks later, Greg complained to his doctor that he was feeling tired. He had a blood test to determine if his iron level was low. You can see the results of Greg's blood serum iron level in the CLINICAL UPDATE Greg's Visit with His Doctor, page 82, and determine if Greg should be given an iron supplement.

LOOKING AHEAD

2.1 Units of Measurement

2.2 Measured Numbers and Significant Figures
2.3 Significant Figures in Calculations
2.4 Prefixes and Equalities
2.5 Writing Conversion Factors
2.6 Problem Solving Using Unit Conversion
2.7 Density

Your weight on a bathroom scale is a measurement.

FIGURE 2.1 In the metric system, volume is based on the liter.
Q How many milliliters are in 1 quart?

2.1 Units of Measurement

LEARNING GOAL Write the names and abbreviations for the metric or SI units used in measurements of volume, length, mass, temperature, and time.

Think about your day. You probably took some measurements. Perhaps you checked your weight by stepping on a bathroom scale. If you made rice for dinner, you added two cups of water to one cup of rice. If you did not feel well, you may have taken your temperature. Whenever you take a measurement, you use a measuring device such as a scale, a measuring cup, or a thermometer.

Scientists and health professionals throughout the world use the metric system of measurement. It is also the common measuring system in all but a few countries in the world. The International System of Units (SI), or Système International, is the official system of measurement throughout the world except for the United States. In chemistry, we use metric units and SI units for volume, length, mass, temperature, and time, as listed in TABLE 2.1.
table 2.1 Units of Measurement and Their Abbreviations

Measurement	Metric	SI
Volume	liter (L)	cubic meter $\left(\mathrm{m}^{3}\right)$
Length	meter (m)	meter (m)
Mass	gram (g)	kilogram (kg)
Temperature	degree Celsius $\left({ }^{\circ} \mathrm{C}\right)$	kelvin (K)
Time	second (s)	second (s)

Suppose you walked 1.3 mi to campus today, carrying a backpack that weighs 26 lb . The temperature was $72^{\circ} \mathrm{F}$. Perhaps you weigh 128 lb and your height is 65 in . These measurements and units may seem familiar to you because they are stated in the U.S. system of measurement. However, in chemistry, we use the metric system in making our measurements. Using the metric system, you walked 2.1 km to campus, carrying a backpack that has a mass of 12 kg , when the temperature was $22^{\circ} \mathrm{C}$. You have a mass of 58.0 kg and a height of 1.7 m .

There are many measurements in everyday life.

Volume

Volume (\boldsymbol{V}) is the amount of space a substance occupies. The metric unit for volume is the liter (\mathbf{L}), which is slightly larger than a quart (qt). In a laboratory or a hospital, chemists work with metric units of volume that are smaller and more convenient, such as the milliliter $(\mathbf{m L})$. There are 1000 mL in 1 L . (See FIGURE 2.1.) Some relationships between units for volume are

$$
1 \mathrm{~L}=1000 \mathrm{~mL} \quad 1 \mathrm{~L}=1.06 \mathrm{qt} \quad 946 \mathrm{~mL}=1 \mathrm{qt}
$$

Length

The metric and SI unit of length is the meter (m). The centimeter (cm), a smaller unit of length, is commonly used in chemistry and is about equal to the width of your little finger (see FIGURE 2.2). Some relationships between units for length are

$$
1 \mathrm{~m}=100 \mathrm{~cm} \quad 1 \mathrm{~m}=39.4 \mathrm{in} . \quad 1 \mathrm{~m}=1.09 \mathrm{yd} \quad 2.54 \mathrm{~cm}=1 \mathrm{in} .
$$

Mass

The mass of an object is a measure of the quantity of material it contains. The SI unit of mass, the kilogram ($\mathbf{k g}$), is used for larger masses such as body mass. In the metric system, the unit for mass is the $\operatorname{gram}(\mathbf{g})$, which is used for smaller masses. There are 1000 g in 1 kg . One pound (lb) is equal to 454 g . Some relationships between units for mass are

$$
1 \mathrm{~kg}=1000 \mathrm{~g} \quad 1 \mathrm{~kg}=2.20 \mathrm{lb} \quad 454 \mathrm{~g}=1 \mathrm{lb}
$$

You may be more familiar with the term weight than with mass. Weight is a measure of the gravitational pull on an object. On Earth, an astronaut with a mass of 75.0 kg has a weight of 165 lb . On the Moon where the gravitational pull is one-sixth that of Earth, the astronaut has a weight of 27.5 lb . However, the mass of the astronaut is the same as on Earth, 75.0 kg . Scientists measure mass rather than weight because mass does not depend on gravity.

In a chemistry laboratory, an electronic balance is used to measure the mass in grams of a substance (see FIGURE 2.3).

Temperature

Temperature tells us how hot something is, how cold it is outside, or helps us determine if we have a fever (see FIGURE 2.4). In the metric system, temperature is measured using Celsius temperature. On the Celsius $\left({ }^{\circ} \mathbf{C}\right)$ temperature scale, water freezes at $0^{\circ} \mathrm{C}$ and boils at $100^{\circ} \mathrm{C}$, whereas on the Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$ scale, water freezes at $32{ }^{\circ} \mathrm{F}$ and boils at $212{ }^{\circ} \mathrm{F}$. In the SI system, temperature is measured using the Kelvin (K) temperature scale on which the lowest possible temperature is 0 K . A unit on the Kelvin scale is called a kelvin (K) and is not written with a degree sign.

Time

We typically measure time in units such as years (yr), days, hours (h), minutes (min), or seconds (s). Of these, the SI and metric unit of time is the second (s). The standard now used to determine a second is an atomic clock. Some relationships between units for time are

$$
1 \text { day }=24 \mathrm{~h} \quad 1 \mathrm{~h}=60 \mathrm{~min} \quad 1 \mathrm{~min}=60 \mathrm{~s}
$$

FIGURE 2.2 Length in the metric (SI) system is based on the meter, which is slightly longer than a yard.
Q How many centimeters are in a length of 1 inch?

FIGURE 2.3 On an electronic balance, the digital readout gives the mass of a nickel, which is 5.01 g .
(. What is the mass of 10 nickels?

FIGURE 2.4 A thermometer is used to determine temperature.
Q What kinds of temperature readings have you made today?

A stopwatch is used to measure the time of a race.

TEST

Try Practice Problems 2.1 to 2.8

SAMPLE PROBLEM 2.1 Units of Measurement

TRY IT FIRST

On a typical day, a nurse encounters several situations involving measurement. State the name and type of measurement indicated by the units in each of the following:
a. A patient has a temperature of $38.5^{\circ} \mathrm{C}$.
b. A physician orders 1.5 g of cefuroxime for injection.
c. A physician orders 1 L of a sodium chloride solution to be given intravenously.
d. A medication is to be given to a patient every 4 h .

SOLUTION

a. A degree Celsius is a unit of temperature.
b. A gram is a unit of mass.
c. A liter is a unit of volume.
d. An hour is a unit of time.

STUDY CHECK 2.1

State the name and type of measurement indicated by an infant that is 32.5 cm long.

ANSWER

A centimeter is a unit of length.

PRACTICE PROBLEMS

2.1 Units of Measurement

LEARNING GOAL Write the names and abbreviations for the metric or SI units used in measurements of volume, length, mass, temperature, and time.
2.1 Write the abbreviation for each of the following:
a. gram
b. degree Celsius
c. liter
d. pound
e. second
2.2 Write the abbreviation for each of the following:
a. kilogram
b. kelvin
c. quart
d. meter
e. centimeter
2.3 State the type of measurement in each of the following statements:
a. I put 12 L of gasoline in my gas tank.
b. My friend is 170 cm tall.
c. Earth is 385000 km away from the Moon.
d. The horse won the race by 1.2 s .
2.4 State the type of measurement in each of the following statements:
a. I rode my bicycle 15 km today.
b. My dog weighs 12 kg .
c. It is hot today. It is $30^{\circ} \mathrm{C}$.
d. I added 2 L of water to my fish tank.
2.5 State the name of the unit and their use of measurement for each of the following quantities.
a. 3.4 cm
b. 500 mg
c. 2.0 L
d. 60 s
e. 300 K
2.6 Arrange the following in descending order:
a. 10 cm
d. 1 km
b. 1 m
c. 100 mm
a. 10 cm
b. 1
-

Clinical Applications

2.7 On a typical day, medical personnel may encounter several situations involving measurement. State the name and type of measurement indicated by the units in each of the following:
a. The clotting time for a blood sample is 12 s .
b. A premature baby weighs 2.0 kg .
c. An antacid tablet contains 1.0 g of calcium carbonate.
d. An infant has a temperature of $39.2^{\circ} \mathrm{C}$.
2.8 On a typical day, medical personnel may encounter several situations involving measurement. State the name and type of measurement indicated by the units in each of the following:
a. During open-heart surgery, the temperature of a patient is lowered to $29^{\circ} \mathrm{C}$.
b. The circulation time of a red blood cell through the body is 20 s .
c. A patient with a persistent cough is given $10 . \mathrm{mL}$ of cough syrup.
d. The amount of iron in the red blood cells of the body is 2.5 g .

2.2 Measured Numbers and Significant Figures

LEARNING GOAL Identify a number as measured or exact; determine the number of significant figures in a measured number.

When you make a measurement, you use some type of measuring device. For example, you may use a meterstick to measure your height, a scale to check your weight, or a thermometer to take your temperature.

Measured Numbers

Measured numbers are the numbers you obtain when you measure a quantity such as your height, weight, or temperature. Suppose you are going to measure the lengths of the objects in FIGURE 2.5. To report the length of the object, you observe the numerical values of the marked lines at the end of the object. Then you can estimate by visually dividing the space between the marked lines. This estimated value is the final digit in a measured number.

For example, in Figure 2.5a, the end of the object is between the marks of 4 cm and 5 cm , which means that the length is more than 4 cm but less than 5 cm . If you estimate that the end of the object is halfway between 4 cm and 5 cm , you would report its length as 4.5 cm . Another student might report the length of the same object as 4.4 cm because people do not estimate in the same way.

The metric ruler shown in Figure 2.5 b is marked at every 0.1 cm . Now you can determine that the end of the object is between 4.5 cm and 4.6 cm . Perhaps you report its length as 4.55 cm , whereas another student reports its length as 4.56 cm . Both results are acceptable.

In Figure 2.5c, the end of the object appears to line up with the 3-cm mark. Because the end of the object is on the $3-\mathrm{cm}$ mark, the estimated digit is 0 , which means the measurement is reported as 3.0 cm .

Significant Figures

In a measured number, the significant figures (SFs) are all the digits including the estimated digit. Nonzero numbers are always counted as significant figures. However, a zero may or may not be a significant figure depending on its position in a number. TABLE $\mathbf{2 . 2}$ gives the rules and examples of counting significant figures.
table 2.2 Significant Figures in Measured Numbers

Rule	Measured Number	Number of Significant Figures
1. A number is a significant figure if it is		
a. not a zero	4.5 g	2
	122.35 m	5
b. a zero between nonzero digits	$205^{\circ} \mathrm{C}$	3
	5.008 kg	4
c. a zero at the end of a decimal number	$50 . \mathrm{L}$	2
	16.00 mL	4
	$4.8 \times 10^{5} \mathrm{~m}$	2
d. in the coefficient of a number written	$5.70 \times 10^{-3} \mathrm{~g}$	3
\quad in scientific notation		
2. A zero is not significant if it is	0.0004 s	1
a. at the beginning of a decimal number	0.075 cm	2
	850000 m	2
b. used as a placeholder in a large number	1250000 g	3
\quad		

(a)

(b)

(c)

FIGURE 2.5 The lengths of the rectangular objects are measured as (a) 4.5 cm and (b) 4.55 cm .
(a) Why is the length of the object in (c) reported as 3.0 cm not 3 cm ?

CORE CHEMISTRY SKILL
Counting Significant Figures

TEST
Try Practice Problems 2.9 to 2.12

ENGAGE

Why is the zero in the coefficient of $3.20 \times 10^{4} \mathrm{~cm}$ a significant figure?

TEST

Try Practice Problems 2.13 to 2.16

The number of baseballs is counted, which means 2 is an exact number.

TEST

Try Practice Problems 2.17 to 2.22

Significant Zeros and Scientific Notation

In this text, we will place a decimal point after a significant zero at the end of a number. For example, if a measurement is written as $500 . \mathrm{g}$, the decimal point after the second zero indicates that both zeros are significant. To show this more clearly, we can write it as $5.00 \times 10^{2} \mathrm{~g}$. When the first zero in the measurement 300 m is a significant zero, but the second zero is not, the measurement is written as $3.0 \times 10^{2} \mathrm{~m}$. We will assume that all zeros at the end of large standard numbers without a decimal point are not significant. Therefore, we write 400000 g as $4 \times 10^{5} \mathrm{~g}$, which has only one significant figure.

Exact Numbers

Exact numbers are those numbers obtained by counting items or using a definition that compares two units in the same measuring system. Suppose a friend asks you how many classes you are taking. You would answer by counting the number of classes in your schedule. Suppose you are asked to state the number of seconds in one minute. Without using any measuring device, you would give the definition: There are 60 s in 1 min . Exact numbers are not measured, do not have a limited number of significant figures, and do not affect the number of significant figures in a calculated answer. For more examples of exact numbers, see TABLE 2.3.
table 2.3 Examples of Some Exact Numbers

Counted Numbers	Defined Equalities	
Items	Metric System	U.S. System
8 doughnuts	$1 \mathrm{~L}=1000 \mathrm{~mL}$	$1 \mathrm{ft}=12 \mathrm{in}$.
2 baseballs	$1 \mathrm{~m}=100 \mathrm{~cm}$	$1 \mathrm{qt}=4 \mathrm{cups}$
5 capsules	$1 \mathrm{~kg}=1000 \mathrm{~g}$	$1 \mathrm{lb}=16 \mathrm{oz}$

For example, a mass of 42.2 g and a length of $5.0 \times 10^{-3} \mathrm{~cm}$ are measured numbers because they are obtained using measuring tools. There are three SFs in 42.2 g because all nonzero digits are always significant. There are two SFs in $5.0 \times 10^{-3} \mathrm{~cm}$ because all the digits in the coefficient of a number written in scientific notation are significant. However, a quantity of three eggs is an exact number that is obtained by counting. In the equality $1 \mathrm{~kg}=1000 \mathrm{~g}$, the masses of 1 kg and 1000 g are both exact numbers because this equality is a definition in the metric system.

SAMPLE PROBLEM 2.2 Measured and Exact Numbers

TRY IT FIRST

Identify each of the following numbers as measured or exact and give the number of significant figures (SFs) in each of the measured numbers:
a. 0.170 L
b. 4 knives
c. $6.3 \times 10^{-6} \mathrm{~s}$
d. $1 \mathrm{~m}=100 \mathrm{~cm}$

SOLUTION

a. measured; three SFs
b. exact
c. measured; two SFs
d. exact

STUDY CHECK 2.2

Identify each of the following numbers as measured or exact and give the number of significant figures (SFs) in each of the measured numbers:
a. 0.02080 kg
b. $5.06 \times 10^{4} \mathrm{~h}$
c. 4 chemistry books

ANSWER

a. measured; four SFs
b. measured; three SFs
c. exact

PRACTICE PROBLEMS

2.2 Measured Numbers and Significant Figures

LEARNING GOAL Identify a number as measured or exact; determine the number of significant figures in a measured number.
2.9 How many significant figures are there in each of the following?
a. 28.003 g
b. 0.000057 m
c. 890000000 km
d. $4.50 \times 10^{6} \mathrm{~kg}$
e. 0.7005 L
f. $19.0^{\circ} \mathrm{C}$
2.10 How many significant figures are in each of the following?
a. 3.1416 m
b. 59600700 g
c. 300 . K
d. $120.5^{\circ} \mathrm{C}$
e. 10.102 g
2.11 In which of the following pairs do both numbers contain the same number of significant figures?
a. 51.00 kg and 510000 kg
b. 0.825 m and 0.00825 m
c. 0.000073 s and $7.30 \times 10^{4} \mathrm{~s}$
d. 480.0 L and 0.0480 L
2.12 In which of the following pairs do both numbers contain the same number of significant figures?
a. 0.00575 g and $5.75 \times 10^{-3} \mathrm{~g}$
b. 405 K and 405.0 K
c. 150000 s and $1.50 \times 10^{4} \mathrm{~s}$
d. $3.8 \times 10^{-2} \mathrm{~L}$ and $3.0 \times 10^{5} \mathrm{~L}$
2.13 Indicate if the zeros are significant in each of the following measurements.
a. 1.008 m
b. 3000 L
c. 28700 cm
d. 5.6×10^{-5}
e. 9670000 g
2.14 Indicate if the zeros are significant in each of the following measurements:
a. $20.05^{\circ} \mathrm{C}$
b. 5.00 m
c. 0.00002 g
d. 120000 yr
e. $8.05 \times 10^{2} \mathrm{~L}$
2.15 Write each of the following in scientific notation with two significant figures:
a. 8537 L
b. 31000 g
c. 160000 m
d. 0.000120 cm
2.16 Write each of the following in scientific notation with two significant figures:
a. 5100000 g
b. 26000 s
c. 40000 m
d. 0.000820 kg
2.17 Identify the numbers in each of the following statements as measured or exact:
a. My chemistry book weighs 8 lb .
b. There are 12 red roses in this bouquet.
c. In metric system, 1 m is equal to 100 cm .
d. There are 20 types of cakes in this bakery.
2.18 Identify the numbers in each of the following statements as measured or exact:
a. There are 31 students in the laboratory.
b. The oldest known flower lived $1.20 \times 10^{8} \mathrm{yr}$ ago.
c. The largest gem ever found, an aquamarine, has a mass of 104 kg .
d. A laboratory test shows a blood cholesterol level of $184 \mathrm{mg} / \mathrm{dL}$.
2.19 Identify the measured number(s), if any, in each of the following pairs of numbers:
a. 3 hamburgers and 6 oz of hamburger
b. 1 table and 4 chairs
c. 0.75 lb of grapes and 350 g of butter
d. $60 \mathrm{~s}=1 \mathrm{~min}$
2.20 Identify the exact number(s), if any, in each of the following statements:
a. Density of water is $1 \mathrm{~g} / \mathrm{mL}$.
b. 1 g of water is equal to $1 \mathrm{~cm}^{3}$
c. 1 g of water can fill the container.
d. 1 qt of milk contains 700 mL water.

Clinical Applications

2.21 Identify each of the following as measured or exact and give the number of significant figures (SFs) in each measured number:
a. The mass of a neonate is 1.607 kg .
b. The Daily Value (DV) for iodine for an infant is 130 mcg .
c. There are 4.02×10^{6} red blood cells in a blood sample.
d. In November, 23 babies were born in a hospital.
2.22 Identify each of the following as measured or exact and give the number of significant figures (SFs) in each measured number:
a. An adult with the flu has a temperature of $103.5^{\circ} \mathrm{F}$.
b. A blister (push-through) pack of prednisone contains 21 tablets.
c. The time for a nerve impulse to travel from the feet to the brain is 0.46 s .
d. A brain contains 1.20×10^{10} neurons.

2.3 Significant Figures in Calculations

LEARNING GOAL Adjust calculated answers to give the correct number of significant figures.

In the sciences, we measure many things: the length of a bacterium, the volume of a gas sample, the temperature of a reaction mixture, or the mass of iron in a sample. The number of significant figures in measured numbers determines the number of significant figures in the calculated answer.

Using a calculator will help you perform calculations faster. However, calculators cannot think for you. It is up to you to enter the numbers correctly, press the correct function keys, and give the answer with the correct number of significant figures.

KEY MATH SKILL
Rounding Off

A technician uses a calculator in the laboratory.

ENGAGE

Why is 10.07208 rounded off to three significant figures equal to 10.1 ?

TEST

Try Practice Problems 2.23 to 2.26

CORE CHEMISTRY SKILL

Using Significant Figures in Calculations

Rounding Off

Suppose you decide to buy carpeting for a room that has a length of 5.52 m and a width of 3.58 m . To determine how much carpeting you need, you would calculate the area of the room by multiplying 5.52 times 3.58 on your calculator. The calculator shows the number 19.7616 in its display. Because each of the original measurements has only three significant figures, the calculator display (19.7616) is rounded off to three significant figures, 19.8.

Therefore, you can order carpeting that will cover an area of $19.8 \mathrm{~m}^{2}$.
Each time you use a calculator, it is important to look at the original measurements and determine the number of significant figures that can be used for the answer. You can use the following rules to round off the numbers shown in a calculator display.

Rules for Rounding Off

1. If the first digit to be dropped is 4 or less, then it and all following digits are simply dropped from the number.
2. If the first digit to be dropped is 5 or greater, then the last retained digit of the number is increased by 1 .

Number to Round Off	Three Significant Figures	Two Significant Figures
8.4234	8.42 (drop 34)	8.4 (drop 234)
14.780	14.8 (drop 80, increase the last retained digit by 1)	15 (drop 780, increase the last retained digit by 1$)$
3256	3260^{*} (drop 6, increase the last retained digit by 1, add 0$)\left(3.26 \times 10^{3}\right)$	$3300^{*}($ drop 56, increase the last retained digit by 1, add 00$)\left(3.3 \times 10^{3}\right)$

*The value of a large number is retained by using placeholder zeros to replace dropped digits.

SAMPLE PROBLEM 2.3 Rounding Off

TRY IT FIRST

Round off each of the following numbers to three significant figures:
a. 35.7823 m
b. 0.0026217 L
c. $3.8268 \times 10^{3} \mathrm{~g}$

SOLUTION

a. 35.8 m
b. 0.00262 L
c. $3.83 \times 10^{3} \mathrm{~g}$

STUDY CHECK 2.3

Round off each of the numbers in Sample Problem 2.3 to two significant figures.

ANSWER

a. 36 m
b. 0.0026 L
c. $3.8 \times 10^{3} \mathrm{~g}$

Multiplication and Division with Measured Numbers

In multiplication or division, the final answer is written so that it has the same number of significant figures (SFs) as the measurement with the fewest SFs. An example of rounding off a calculator display follows:

Perform the following operations with measured numbers:

$$
\frac{2.8 \times 67.40}{34.8}=
$$

When the problem has multiple steps, the numbers in the numerator are multiplied and then divided by each of the numbers in the denominator.

Because the calculator display has more digits than the significant figures in the measured numbers allow, we need to round it off. Using the measured number that has the smallest number (two) of significant figures, 2.8, we round off the calculator display to an answer with two SFs.

Adding Significant Zeros

Sometimes, a calculator display gives a small whole number. For example, suppose the calculator display is 4 , but you used measurements that have three significant numbers. Then two significant zeros are added to give 4.00 as the correct answer.

$$
\begin{aligned}
& \begin{array}{l}
\text { Three SFs } \\
\frac{8.00}{2.00}
\end{array}=\quad 4 .= \\
& \begin{array}{c}
\text { Calculator } \\
\text { Three SFs }
\end{array}
\end{aligned} \begin{aligned}
& \text { Final answer, two zeros } \\
& \text { added to give three SFs }
\end{aligned}
$$

SAMPLE PROBLEM 2.4 Significant Figures in Multiplication and Division

TRY IT FIRST

Perform the following calculations with measured numbers. Write each answer with the correct number of significant figures.
a. 56.8×0.37
b. $\frac{(2.075)(0.585)}{(8.42)(0.0245)}$
c. $\frac{25.0}{5.00}$

SOLUTION GUIDE

	Given	Need	Connect
ANALYZE THE	multiplication	answer with SFs	rules for rounding off,
	and division		adding zeros

STEP 1 Determine the number of significant figures in each measured number.
Three SFs Two SFs
Four SFs Three SFs
Three SFs
a. 56.8×0.37
b. $\frac{(2.075)(0.585)}{(8.42)(0.0245)}$
c. $\frac{25.0}{5.00}$
Three SFs

STEP 2 Perform the indicated calculation.

a.
27.076
Calculator display
b.
5.884313345
Calculator
display
c.

STEP 3 Round off (or add zeros) to give the same number of significant figures as the measurement having the fewest significant figures.
a. 21
b. 5.88
c. 5.00

STUDY CHECK 2.4

Perform the following calculations with measured numbers and give the answers with the correct number of significant figures:
a. 45.26×0.01088
b. $2.6 \div 324$
c. $\frac{4.0 \times 8.00}{16}$

ENGAGE

Why is the answer for the multiplication of 0.3×52.6 written with one significant figure?

A calculator is helpful in working problems and doing calculations faster.

ANSWER

a. 0.4924
b. 0.0080 or 8.0×10^{-3}
c. 2.0

ENGAGE

Why is the answer for the addition of 55.2 and 2.506 written with one decimal place?

TEST

Try Practice Problems 2.29 and 2.30

Addition and Subtraction with Measured Numbers

In addition or subtraction, the final answer is written so that it has the same number of decimal places as the measurement having the fewest decimal places.
2.045 Thousandths place

```
\dagger 34.1 Tenths place
36.145 Calculator display
36.1 Answer, rounded off to the tenths place
```

When numbers are added or subtracted to give an answer ending in zero, the zero does not appear after the decimal point in the calculator display. For example, $14.5 \mathrm{~g}-2.5 \mathrm{~g}=12.0 \mathrm{~g}$. However, if you do the subtraction on your calculator, the display shows 12. To write the correct answer, a significant zero is written after the decimal point.

SAMPLE PROBLEM 2.5 Decimal Places in Addition and Subtraction

TRY IT FIRST

Perform the following calculations and give each answer with the correct number of decimal places:
a. $104.45 \mathrm{~mL}+0.838 \mathrm{~mL}+46 \mathrm{~mL}$
b. $153.247 \mathrm{~g}-14.82 \mathrm{~g}$

SOLUTION GUIDE

ANALYZE THE	Given	Need	Connect
PROBLEM	addition and subtraction	correct number of decimal places	rules for rounding off

STEP 1 Determine the number of decimal places in each measured number.
a. $\quad 104.45 \mathrm{~mL}$ Hundredths place
0.838 mL
Thousandths place
b. $\quad 153.247 \mathrm{~g}$ Thousandths place

- 14.82 g Hundredths place
$+46 \mathrm{~mL}$

Ones place

STEP 2 Perform the indicated calculation.
a.
151.288
Calculator
display
b.
Calculator
display

STEP 3 Round off the answer to give the same number of decimal places as the measurement having the fewest decimal places.
a. 151 mL
b. 138.43 g

STUDY CHECK 2.5

Perform the following calculations and give each answer with the correct number of decimal places:
a. $82.45 \mathrm{mg}+1.245 \mathrm{mg}+0.00056 \mathrm{mg}$
b. $4.259 \mathrm{~L}-3.8 \mathrm{~L}$

ANSWER

a. 83.70 mg
b. 0.5 L

PRACTICE PROBLEMS

2.3 Significant Figures in Calculations

LEARNING GOAL Adjust calculated answers to give the correct number of significant figures.
2.23 Round off each of the following calculator answers to three significant figures:
a. 1.854 kg
b. 88.2038 L
c. 0.004738265 cm
d. 8807 m
e. $1.832 \times 10^{5} \mathrm{~s}$
2.24 Round off each of the calculator answers in problem 2.23 to two significant figures.
2.25 Round off or add zeros to each of the following to three significant figures:
a. 56.855 m
b. 0.002282 g
c. 11527 s
d. 8.1 L
2.26 Round off or add zeros to each of the following to two significant figures:
a. 3.2805 m
b. $1.855 \times 10^{2} \mathrm{~g}$
c. 0.002341 mL
d. 2 L
2.27 Perform each of the following calculations, and give an answer with the correct number of significant figures:
a. 45.7×0.034
b. 0.00278×5
c. $\frac{34.56}{1.25}$
d. $\frac{(0.2465)(25)}{1.78}$
e. $\left(2.8 \times 10^{4}\right)\left(5.05 \times 10^{-6}\right)$
f. $\frac{\left(3.45 \times 10^{-2}\right)\left(1.8 \times 10^{5}\right)}{\left(8 \times 10^{3}\right)}$
2.28 Perform each of the following calculations, and give an answer with the correct number of significant figures:
a. 400×185
b. $\frac{2.40}{(4)(125)}$
c. $0.825 \times 3.6 \times 5.1$
d. $\frac{(3.5)(0.261)}{(8.24)(20.0)}$
e. $\frac{\left(5 \times 10^{-5}\right)\left(1.05 \times 10^{4}\right)}{\left(8.24 \times 10^{-8}\right)}$
f. $\frac{\left(4.25 \times 10^{2}\right)\left(2.56 \times 10^{-3}\right)}{\left(2.245 \times 10^{-3}\right)(56.5)}$
2.29 Perform each of the following calculations, and give an answer with the correct number of decimal places:
a. $45.48 \mathrm{~cm}+8.057 \mathrm{~cm}$
b. $23.45 \mathrm{~g}+104.1 \mathrm{~g}+0.025 \mathrm{~g}$
c. $145.675 \mathrm{~mL}-24.2 \mathrm{~mL}$
d. $1.08 \mathrm{~L}-0.585 \mathrm{~L}$
2.30 Perform each of the following calculations, and give an answer with the correct number of decimal places:
a. $236.02 \div 108.01$
b. 56.8×300
c. $28.7 \div 7$

2.4 Prefixes and Equalities

LEARNING GOAL Use the numerical values of prefixes to write a metric equality.
The special feature of the metric system is that a prefix can be placed in front of any unit to increase or decrease its size by some factor of 10 . For example, the prefixes milli and micro are used to make the smaller units, milligram (mg) and microgram $(\mu \mathrm{g})$.

The U.S. Food and Drug Administration has determined the Daily Values (DV) for nutrients for adults and children age 4 or older. Examples of these recommended Daily Values, some of which use prefixes, are listed in TABLE 2.4.

The prefix centi is like cents in a dollar. One cent would be a "centidollar" or 0.01 of a dollar. That also means that one dollar is the same as 100 cents. The prefix deci is like dimes in a dollar. One dime would be a "decidollar" or 0.1 of a dollar. That also means that one dollar is the same as 10 dimes. TABLE 2.5 lists some of the metric prefixes, their symbols, and their numerical values.

The relationship of a prefix to a unit can be expressed by replacing the prefix with its numerical value. For example, when the prefix kilo in kilometer is replaced with its value of 1000, we find that a kilometer is equal to 1000 m . Other examples follow:

$$
\begin{aligned}
1 \text { kilometer }(1 \mathrm{~km}) & =\mathbf{1 0 0 0} \text { meters }\left(1000 \mathrm{~m}=10^{3} \mathrm{~m}\right) \\
1 \text { kiloliter }(1 \mathrm{~kL}) & =\mathbf{1 0 0 0} \text { liters }\left(1000 \mathrm{~L}=10^{3} \mathrm{~L}\right) \\
1 \text { kilogram }(1 \mathrm{~kg}) & =\mathbf{1 0 0 0} \text { grams }\left(1000 \mathrm{~g}=10^{3} \mathrm{~g}\right)
\end{aligned}
$$

REVIEW

Writing Numbers in Scientific Notation (1.5)

TABLE 2.4 Daily Values for Selected Nutrients

Nutrient	Amount Recommended
Calcium	1.0 g
Copper	2 mg
Iodine	$150 \mu \mathrm{~g}(150 \mathrm{mcg})$
Iron	18 mg
Magnesium	400 mg
Niacin	20 mg
Phosphorus	800 mg
Potassium	3.5 g
Selenium	$70 . \mu \mathrm{g}(70 . \mathrm{mcg})$
Sodium	2.4 g
Zinc	15 mg

CORE CHEMISTRY SKILL

Using Prefixes

ENGAGE

Why is $60 . \mathrm{mg}$ of vitamin C the same as 0.060 g of vitamin C?

An endoscope has a video camera with a width of 1 mm attached to the end of a thin cable.

Using a retinal camera, an ophthalmologist photographs the retina of an eye.
tABLE 2.5 Metric and SI Prefixes

Prefix	Symbol	Numerical Value	Scientific Notation	Equality
Prefixes That Increase the Size of the Unit				
tera	T	1000000000000	10^{12}	$\begin{aligned} & 1 \mathrm{Ts}=1 \times 10^{12} \mathrm{~s} \\ & 1 \mathrm{~s}=1 \times 10^{-12} \mathrm{Ts} \end{aligned}$
giga	G	1000000000	10^{9}	$\begin{aligned} & 1 \mathrm{Gm}=1 \times 10^{9} \mathrm{~m} \\ & 1 \mathrm{~m}=1 \times 10^{-9} \mathrm{Gm} \end{aligned}$
mega	M	1000000	10^{6}	$\begin{aligned} & 1 \mathrm{Mg}=1 \times 10^{6} \mathrm{~g} \\ & 1 \mathrm{~g}=1 \times 10^{-6} \mathrm{Mg} \end{aligned}$
kilo	k	1000	10^{3}	$\begin{aligned} & 1 \mathrm{~km}=1 \times 10^{3} \mathrm{~m} \\ & 1 \mathrm{~m}=1 \times 10^{-3} \mathrm{~km} \end{aligned}$
Prefixes That Decrease the Size of the Unit				
deci	d	0.1	10^{-1}	$\begin{aligned} & 1 \mathrm{dL}=1 \times 10^{-1} \mathrm{~L} \\ & 1 \mathrm{~L}=10 \mathrm{dL} \end{aligned}$
centi	c	0.01	10^{-2}	$\begin{aligned} & 1 \mathrm{~cm}=1 \times 10^{-2} \mathrm{~m} \\ & 1 \mathrm{~m}=100 \mathrm{~cm} \end{aligned}$
milli	m	0.001	10^{-3}	$\begin{aligned} & 1 \mathrm{~ms}=1 \times 10^{-3} \mathrm{~s} \\ & 1 \mathrm{~s}=1 \times 10^{3} \mathrm{~ms} \end{aligned}$
micro	μ^{*}	0.000001	10^{-6}	$\begin{aligned} & 1 \mu \mathrm{~g}=1 \times 10^{-6} \mathrm{~g} \\ & 1 \mathrm{~g}=1 \times 10^{6} \mu \mathrm{~g} \end{aligned}$
nano	n	0.000000001	10^{-9}	$\begin{aligned} & 1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m} \\ & 1 \mathrm{~m}=1 \times 10^{9} \mathrm{~nm} \end{aligned}$
pico	p	0.000000000001	10^{-12}	$\begin{aligned} & 1 \mathrm{ps}=1 \times 10^{-12} \mathrm{~s} \\ & 1 \mathrm{~s}=1 \times 10^{12} \mathrm{ps} \end{aligned}$

*In medicine, the abbreviation mc for the prefix micro is used because the symbol μ may be misread, which could result in a medication error. Thus, $1 \mu \mathrm{~g}$ would be written as 1 mcg .

SAMPLE PROBLEM 2.6 Prefixes and Equalities

TRY IT FIRST

An endoscopic camera has a width of 1 mm . Complete each of the following equalities involving millimeters:
a. $1 \mathrm{~m}=\ldots \mathrm{mm}$
b. $1 \mathrm{~cm}=$ \qquad mm

SOLUTION

a. $1 \mathrm{~m}=1000 \mathrm{~mm}$
b. $1 \mathrm{~cm}=10 \mathrm{~mm}$

STUDY CHECK 2.6

What is the relationship between millimeters and micrometers?

ANSWER

$1 \mathrm{~mm}=1000 \mu \mathrm{~m}(\mathrm{mcm})$

Measuring Length

An ophthalmologist may measure the diameter of the retina of an eye in centimeters (cm), whereas a surgeon may need to know the length of a nerve in millimeters (mm). When the prefix centi is used with the unit meter, it becomes centimeter, a length that is one-hundredth of a meter $(0.01 \mathrm{~m})$. When the prefix milli is used with the unit meter, it becomes millimeter, a length that is one-thousandth of a meter $(0.001 \mathrm{~m})$. There are 100 cm and 1000 mm in a meter.

If we compare the lengths of a millimeter and a centimeter, we find that 1 mm is 0.1 cm ; there are 10 mm in 1 cm . These comparisons are examples of equalities, which show the
relationship between two units that measure the same quantity. Examples of equalities between different metric units of length follow:

$$
\begin{aligned}
& 1 \mathrm{~m}=100 \mathrm{~cm}=1 \times 10^{2} \mathrm{~cm} \\
& 1 \mathrm{~m}=1000 \mathrm{~mm}=1 \times 10^{3} \mathrm{~mm} \\
& 1 \mathrm{~cm}=10 \mathrm{~mm}=1 \times 10^{1} \mathrm{~mm}
\end{aligned}
$$

Some metric units for length are compared in FIGURE 2.6.

First quantity		
$\underset{\text { Number }}{\uparrow}+\underset{\text { unit }}{\text { m }}$	Second quantity	
Number + unit		

This example of an equality shows the relationship between meters and centimeters.

FIGURE 2.6 The metric length of 1 m is the same length as $10 \mathrm{dm}, 100 \mathrm{~cm}$, or 1000 mm .
(0. How many millimeters (mm) are in 1 centimeter (cm) ?

Measuring Volume

Volumes of 1 L or smaller are common in the health sciences. When a liter is divided into 10 equal portions, each portion is a deciliter (dL). There are 10 dL in 1 L . Laboratory results for bloodwork are often reported in mass per deciliter. TABLE 2.6 lists normal laboratory test values for some substances in the blood.
tABLE 2.6 Some Normal Laboratory Test Values

TEST
Try Practice Problems 2.31 to 2.38

FIGURE 2.7 A plastic intravenous fluid container contains 1000 mL .
(2) How many liters of solution are in the intravenous fluid container?

When you see 1 cm , you are reading about length; when you see $1 \mathrm{~cm}^{3}$ or 1 cc or 1 mL , you are reading about volume. A comparison of units of volume is illustrated in FIGURE 2.8.

FIGURE 2.8 A cube measuring 10 cm on each side has a volume of $1000 \mathrm{~cm}^{3}$, or 1 L ; a cube measuring 1 cm on each side has a volume of $1 \mathrm{~cm}^{3}$ (cc) or 1 mL .
(Q) What is the relationship between a milliliter (mL) and a cubic centimeter $\left(\mathrm{cm}^{3}\right)$?

Measuring Mass

When you go to the doctor for a physical examination, your mass is recorded in kilograms, whereas the results of your laboratory tests are reported in grams, milligrams (mg), or micrograms ($\mu \mathrm{g}$ or mcg). A kilogram is equal to 1000 g . One gram represents the same mass as 1000 mg , and one mg equals $1000 \mu \mathrm{~g}$ (or 1000 mcg). Examples of equalities between different metric units of mass follow:

TEST

Try Practice Problems 2.39 to 2.42

$$
\begin{array}{ll}
1 \mathrm{~kg}=1000 \mathrm{~g} & =1 \times 10^{3} \mathrm{~g} \\
1 \mathrm{~g}=1000 \mathrm{mg} & =1 \times 10^{3} \mathrm{mg} \\
1 \mathrm{mg}=1000 \mu \mathrm{~g}(\mathrm{mcg}) & =1 \times 10^{3} \mu \mathrm{~g}(\mathrm{mcg})
\end{array}
$$

PRACTICE PROBLEMS

2.4 Prefixes and Equalities

LEARNING GOAL Use the numerical values of prefixes to write a metric equality.
2.31 Write the abbreviation for each of the following units:
a. milligram
b. deciliter
c. kilometer
d. picogram
2.32 Write the abbreviation for each of the following units:
a. gigagram
b. megameter
c. microliter
d. nanosecond
2.33 Write the complete name for each of the following units:
a. ps
b. cm
c. nm
d. mL
2.34 Write the complete name for each of the following units:
a. dL
b. Ts
c. mcg
d. pm
2.35 Write the numerical value for each of the following prefixes:
a. centi
b. tera
c. milli
d. deci
2.36 Write the numerical value for each of the following prefixes:
a. giga
b. micro
c. mega
d. nano
2.37 Use a prefix to write the name for each of the following:
a. 0.1 g
b. $10^{-6} \mathrm{~g}$
c. 1000 g
d. 0.01 g
2.38 Use a prefix to write the name for each of the following:
a. $10^{9} \mathrm{~m}$
b. $10^{6} \mathrm{~m}$
c. 0.001 m
d. $10^{-12} \mathrm{~m}$
2.39 Complete each of the following metric relationships.
a. $1 \mathrm{~s}=$ \qquad Ts
b. $1 \mathrm{pm}=$ \qquad m
c. $1 \mathrm{~cm}=$ \qquad m
d. $1 \mathrm{~m}=$ \qquad Gm
2.40 Complete each of the following metric relationships:
a. $1 \mathrm{Mg}=$ \qquad -g
b. $1 \mathrm{~mL}=$ \qquad $\mu \mathrm{L}$
d. $1 \mathrm{~g}=$
c. $1 \mathrm{~g}=$ \qquad kg \qquad mg
2.41 For each of the following pairs, which has the larger amount?
a. 1000 g or 0.1 kg
b. 0.5 dL or 60 mL
c. 1000 nm or $10 \mu \mathrm{~m}$
d. 2 dm or 0.2 m
2.42 For each of the following pairs, which is the smaller unit?
a. mg or g
b. centimeter or nanometer
c. millimeter or micrometer
d. mL or dL
e. centigram or megagram

2.5 Writing Conversion Factors

LEARNING GOAL Write a conversion factor for two units that describe the same quantity.

Many problems in chemistry and the health sciences require you to change from one unit to another unit. Suppose you worked 2.0 h on your homework, and someone asked you how many minutes that was. You would answer 120 min . You must have multiplied $2.0 \mathrm{~h} \times 60 \mathrm{~min} / \mathrm{h}$ because you knew the equality $(1 \mathrm{~h}=60 \mathrm{~min})$ that related the two units. When you expressed 2.0 h as 120 min , you did not change the amount of time you spent studying. You changed only the unit of measurement used to express the time. Any equality can be written as fractions called conversion factors with one of the quantities in the numerator and the other quantity in the denominator. Two conversion factors are always possible from any equality. Be sure to include the units when you write the conversion factors.

Two Conversion Factors for the Equality: $1 \mathrm{~h}=\mathbf{6 0} \mathbf{~ m i n}$

$\frac{\text { Numerator }}{\text { Denominator }} \longrightarrow \frac{60 \mathrm{~min}}{1 \mathrm{~h}}$ and $\frac{1 \mathrm{~h}}{60 \mathrm{~min}}$

These factors are read as " 60 minutes per 1 hour" and " 1 hour per 60 minutes." The term per means "divide." Some common relationships are given in TABLE 2.7.
table 2.7 Some Common Equalities

Quantity	Metric (SI)	U.S.	Metric-U.S.
Length	$1 \mathrm{~km}=1000 \mathrm{~m}$	$1 \mathrm{ft}=12 \mathrm{in}$.	$2.54 \mathrm{~cm}=1 \mathrm{in}$. (exact)
	$1 \mathrm{~m}=1000 \mathrm{~mm}$	$1 \mathrm{yd}=3 \mathrm{ft}$	$1 \mathrm{~m}=39.4 \mathrm{in}$.
	$1 \mathrm{~cm}=10 \mathrm{~mm}$	$1 \mathrm{mi}=5280 \mathrm{ft}$	$1 \mathrm{~km}=0.621 \mathrm{mi}$
Volume	$1 \mathrm{~L}=1000 \mathrm{~mL}$	$1 \mathrm{qt}=4 \mathrm{cups}$	$946 \mathrm{~mL}=1 \mathrm{qt}$
	$1 \mathrm{dL}=100 \mathrm{~mL}$	$1 \mathrm{qt}=2 \mathrm{pt}$	$1 \mathrm{~L}=1.06 \mathrm{qt}$
	$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$	$1 \mathrm{gal}=4 \mathrm{qt}$	$473 \mathrm{~mL}=1 \mathrm{pt}$
	$1 \mathrm{~mL}=1 \mathrm{cc}^{*}$		$5 \mathrm{~mL}=1 \mathrm{t}(\mathrm{tsp})^{*}$
			$15 \mathrm{~mL}=1 \mathrm{~T}$ (tbsp)*
Mass	$1 \mathrm{~kg}=1000 \mathrm{~g}$	$1 \mathrm{lb}=16 \mathrm{oz}$	$1 \mathrm{~kg}=2.20 \mathrm{lb}$
	$1 \mathrm{~g}=1000 \mathrm{mg}$		$454 \mathrm{~g}=1 \mathrm{lb}$
	$1 \mathrm{mg}=1000 \mathrm{mcg} *$		
Time	$1 \mathrm{~h}=60 \mathrm{~min}$	$1 \mathrm{~h}=60 \mathrm{~min}$	
	$1 \mathrm{~min}=60 \mathrm{~s}$	$1 \mathrm{~min}=60 \mathrm{~s}$	

*Used in medicine.

The numbers in any equality between two metric units or between two U.S. system units are definitions. Because numbers in a definition are exact, they are not used to determine significant figures. For example, the equality of $1 \mathrm{~g}=1000 \mathrm{mg}$ is a definition, which means that both of the numbers 1 and 1000 are exact.

When an equality consists of a metric unit and a U.S. unit, one of the numbers in the equality is obtained by measurement and counts toward the significant figures in the answer. For example, the equality of $1 \mathrm{lb}=454 \mathrm{~g}$ is obtained by measuring the grams in exactly 1 lb . In this equality, the measured quantity 454 g has three significant figures, whereas the 1 is exact. An exception is the relationship of $1 \mathrm{in} .=2.54 \mathrm{~cm}$, which has been defined as exact.

Metric Conversion Factors

We can write two metric conversion factors for any of the metric relationships. For example, from the equality for meters and centimeters, we can write the following factors:

Metric Equality	Conversion Factors
$1 \mathrm{~m}=100 \mathrm{~cm}$	$\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}$ and $\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}$

CORE CHEMISTRY SKILL
Writing Conversion Factors from Equalities

TEST
Try Practice Problems 2.43 and 2.44

TEST

Try Practice Problems 2.45 and 2.46

ENGAGE
Why does the equality 1 day $=24 \mathrm{~h}$ have two conversion factors?

FIGURE 2.9 In the United States, the contents of many packaged foods are listed in both U.S. and metric units.
Q What are some advantages of using the metric system?

TEST

Try Practice Problems 2.47 to 2.52

Vitamin C, an antioxidant needed by the body, is found in fruits such as lemons.

The thickness of the skin-fold at the abdomen is used to determine the percentage of body fat.

Both are proper conversion factors for the relationship; one is just the inverse of the other. The usefulness of conversion factors is enhanced by the fact that we can turn a conversion factor over and use its inverse. The numbers 100 and 1 in this equality and its conversion factors are both exact numbers.

Metric-U.S. System Conversion Factors

Suppose you need to convert from pounds, a unit in the U.S. system, to kilograms in the metric system. A relationship you could use is

$$
1 \mathrm{~kg}=2.20 \mathrm{lb}
$$

The corresponding conversion factors would be

$$
\frac{2.20 \mathrm{lb}}{1 \mathrm{~kg}} \text { and } \frac{1 \mathrm{~kg}}{2.20 \mathrm{lb}}
$$

FIGURE 2.9 illustrates the contents of some packaged foods in both U.S. and metric units.

Equalities and Conversion Factors Stated Within a Problem

An equality may also be stated within a problem that applies only to that problem. For example, the speed of a car in kilometers per hour or the milligrams of vitamin C in a tablet would be specific relationships for that problem only. From each of the following statements, we can write an equality and two conversion factors, and identify each number as exact or give the number of significant figures.

The car was traveling at a speed of $85 \mathrm{~km} / \mathrm{h}$.

Equality	Conversion Factors	Significant Figures or Exact
$85 \mathrm{~km}=1 \mathrm{~h}$	$\frac{85 \mathrm{~km}}{1 \mathrm{~h}}$ and $\frac{1 \mathrm{~h}}{85 \mathrm{~km}}$	The 85 km is measured: It has two significant figures. The 1 h is exact.

One tablet contains 500 mg of vitamin C.

Equality	Conversion Factors	Significant Figures or Exact
1 tablet $=500 \mathrm{mg}$ of vitamin C	500 mg vitamin C 1 tablet and	The 500 mg is measured: It has one significant figure. The 1 tablet is exact.
	$\frac{1 \text { tablet }}{500 \mathrm{mg} \text { vitamin C }}$	

Conversion Factors from a Percentage

A percentage (\%) is written as a conversion factor by choosing a unit and expressing the numerical relationship of the parts of this unit to 100 parts of the whole. For example, a person might have 18% body fat by mass. The percentage quantity can be written as 18 mass units of body fat in every 100 mass units of body mass. Different mass units such as grams (g), kilograms (kg), or pounds (lb) can be used, but both units used for the factor must be the same.

Equality	Conversion Factors	Significant Figures or Exact
18 kg of body fat $=100 \mathrm{~kg}$ of body mass	$\frac{18 \mathrm{~kg} \text { body fat }}{100 \mathrm{~kg} \text { body mass }}$and	The 18 kg is measured: It has two significant figures. The 100 kg is exact.
	$\frac{100 \mathrm{~kg} \text { body mass }}{18 \mathrm{~kg} \text { body fat }}$	

Conversion Factors from Dosage Problems

Equalities stated within dosage problems for medications can also be written as conversion factors. For example, Keflex (cephalexin), an antibiotic used for respiratory and ear
infections, is available in $250-\mathrm{mg}$ capsules. The quantity of Keflex in a capsule can be written as an equality from which two conversion factors are possible.

Equality	Conversion Factors	Significant Figures or Exact
1 capsule Keflex	$\frac{250 \mathrm{mg} \text { Keflex }}{1 \text { capsule }}$and The 250 mg is measured: It has two significant figures. The 1 capsule is exact.	

SAMPLE PROBLEM 2.7 Equalities and Conversion Factors in a Problem

TRY IT FIRST

Write the equality and two conversion factors, and identify each number as exact or give the number of significant figures for each of the following:
a. The medication that Greg takes for his high blood pressure contains $40 . \mathrm{mg}$ of propranolol in 1 tablet.
b. Cold-water fish such as salmon contains 1.9% omega- 3 fatty acids by mass.

SOLUTION

a. There are $40 . \mathrm{mg}$ of propranolol in 1 tablet.

Equality	Conversion Factors	Significant Figures or Exact
1 tablet $=40 . \mathrm{mg}$ of propranolol	40. mg propranolol	The 40. mg is measured: It has two significant figures. The 1 tablet is exact.
	1 tablet	
	and	
	1 tablet	
	40. mg propranolol	

b. Cold-water fish such as salmon contains 1.9% omega- 3 fatty acids by mass.

Equality	Conversion Factors	Significant Figures or Exact
1.9 g of omega-3 fatty acids $=100 \mathrm{~g}$ of salmon	1.9 g omega-3 fatty acids	The 1.9 g is measured: It has two significant figures. The 100 g is exact.
	100 g salmon and	
	100 g salmon	
	1.9 g omega-3 fatty acids	

STUDY CHECK 2.7

Levsin (hyoscyamine), used to treat stomach and bladder problems, is available as drops with 0.125 mg Levsin per 1 mL of solution. Write the equality and two conversion factors, and identify each number as exact or give the number of significant figures.

ANSWER

0.125 mg of Levsin $=1 \mathrm{~mL}$ of solution
$\frac{0.125 \mathrm{mg} \text { Levsin }}{1 \mathrm{~mL} \text { solution }}$ and $\frac{1 \mathrm{~mL} \text { solution }}{0.125 \mathrm{mg} \text { Levsin }}$
The 0.125 mg is measured: It has three SFs . The 1 mL is exact.

Keflex (cephalexin), used to treat respiratory infections, is available in 250-mg capsules.

Propranolol is used to lower high blood pressure.

Salmon contains high levels of omega-3 fatty acids.

ENGAGE

How is a percentage used to write an equality and two conversion factors?

TEST

Try Practice Problems 2.53 and 2.54

PRACTICE PROBLEMS

2.5 Writing Conversion Factors

LEARNING GOAL Write a conversion factor for two units that describe the same quantity.
2.43 Why can two conversion factors be written for an equality such as $1 \mathrm{~m}=100 \mathrm{~cm}$?
2.44 How can you check that you have written the correct conversion factors for an equality?
2.45 Write the equality and two conversion factors for each of the following pairs of units:
a. centimeters and meters
b. nanograms and grams
c. liters and kiloliters
d. seconds and milliseconds
2.46 Write the equality and two conversion factors for each of the following pairs of units:
a. centimeters and inches
b. kilometers and miles
c. pounds and grams
d. quarts and liters
2.47 Write the equality and two conversion factors, and identify the numbers as exact or give the number of significant figures for each of the following:
a. One yard is 3 ft .
b. One kilogram is 2.20 lb .
c. A car goes 27 mi on 1 gal of gas.
d. Sterling silver is 93% silver by mass.
2.48 Write the equality and two conversion factors, and identify the numbers as exact or give the number of significant figures for each of the following:
a. One liter is 1.06 qt .
b. At the store, oranges are $\$ 1.29$ per lb.
c. One deciliter contains 100 mL .
d. An 18 -carat gold ring contains 75% gold by mass.
2.49 Write the equality and two conversion factors, and identify the numbers as exact or give the number of significant figures for each of the following:
a. A bee flies at an average speed of 3.5 m per second.
b. The Daily Value (DV) for potassium is 3.5 g .
c. An automobile traveled 26.0 km on 1 L of gasoline.
d. Silicon makes up 28.2% by mass of Earth's crust.
2.50 Write the equality and two conversion factors, and identify the numbers as exact or give the number of significant figures for each of the following:
a. The Daily Value (DV) for iodine is 150 mcg .
b. Gold jewelry contains 58% gold by mass.
c. The price of a liter of milk is $\$ 1.65$.
d. A metric ton is 1000 kg .

Clinical Applications

2.51 Write the equality and conversion factors for each of the following statements:
a. An hour has 60 mins.
b. A week has 7 days.
c. A can containing 355 mL of Coke.
d. A bottle of 20 Vitamin C tablets.
2.52 Write the equality and two conversion factors, and identify the numbers as exact or give the number of significant figures for each of the following:
a. The label on a bottle reads 10 mg of furosemide per 1 mL .
b. The Daily Value (DV) for selenium is 70. mcg.
c. An IV of normal saline solution has a flow rate of 85 mL per hour.
d. One capsule of fish oil contains 360 mg of omega- 3 fatty acids.
2.53 Write an equality and two conversion factors for each of the following medications:
a. 10 mg of Atarax per 5 mL of Atarax syrup
b. 0.25 g of Lanoxin per 1 tablet of Lanoxin
c. 300 mg of Motrin per 1 tablet of Motrin
2.54 Write an equality and two conversion factors for each of the following medications:
a. 2.5 mg of Coumadin per 1 tablet of Coumadin
b. 100 mg of Clozapine per 1 tablet of Clozapine
c. 1.5 g of Cefuroxime per 1 mL of Cefuroxime

2.6 Problem Solving Using Unit Conversion

LEARNING GOAL Use conversion factors to change from one unit to another.
The process of problem solving in chemistry often requires one or more conversion factors to change a given unit to the needed unit. For the problem, the unit of the given and the unit of the needed are identified. From there, the problem is set up with one or more conversion factors used to convert the given unit to the needed unit as seen in Sample Problem 2.8.

Given unit \times one or more conversion factors $=$ needed unit

SAMPLE PROBLEM 2.8 Using Conversion Factors

TRY IT FIRST

Greg's doctor has ordered a PET scan of his heart. In radiological imaging, dosages of pharmaceuticals are based on body mass. If Greg weighs 164 lb , what is his body mass in kilograms?

