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Preface
When something can be read without effort, great effort has gone into its writing.

Enrique Jardiel Poncela

This edition of Digital Image Processing is a major revision of the book. As in 
the 1977 and 1987 editions by Gonzalez and Wintz, and the 1992, 2002, and 2008  
editions by Gonzalez and Woods, this sixth-generation edition was prepared 
with students and instructors in mind. The principal objectives of the book 
continue to be to provide an introduction to basic concepts and methodologies 
applicable to digital image processing, and to develop a foundation that can 
be used as the basis for further study and research in this field. To achieve 
these objectives, we focused again on material that we believe is fundamental 
and whose scope of application is not limited to the solution of specialized 
problems. The mathematical complexity of the book remains at a level well 
within the grasp of college seniors and first-year graduate students who have 
introductory preparation in mathematical analysis, vectors, matrices, probability, 
statistics, linear systems, and computer programming. The book website pro-
vides tutorials to support readers needing a review of this background material.  

One of the principal reasons this book has been the world leader in its field for 
40 years is the level of attention we pay to the changing educational needs of our 
readers. The present edition is based on an extensive survey that involved faculty, 
students, and independent readers of the book in 150 institutions from 30 countries. 
The survey revealed a need for coverage of new material that has matured since the 
last edition of the book. The principal findings of the survey indicated a need for: 

• Expanded coverage of the fundamentals of spatial filtering.
• A more comprehensive and cohesive coverage of image transforms.
• A more complete presentation of finite differences, with a focus on edge detec-

tion.
• A discussion of clustering, superpixels, and their use in region segmentation. 
• Coverage of maximally stable extremal regions.
• Expanded coverage of feature extraction to include the Scale Invariant Feature 

Transform (SIFT).
• Expanded coverage of neural networks to include deep neural networks, back-

propagation, deep learning, and, especially, deep convolutional neural networks. 
• More homework exercises at the end of the chapters.

The new and reorganized material that resulted in the present edition is our 
attempt at providing a reasonable balance between rigor, clarity of presentation, 
and the findings of the survey. In addition to new material, earlier portions of the 
text were updated and clarified. This edition contains 241 new images, 72 new draw-
ings, and 135 new exercises.
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New to This Edition
The highlights of this edition are as follows.

Chapter 1: Some figures were updated, and parts of the text were rewritten to cor-
respond to changes in later chapters.

Chapter 2: Many of the sections and examples were rewritten for clarity. We 
added 14 new exercises. 

Chapter 3: Fundamental concepts of spatial filtering were rewritten to include a 
discussion on separable filter kernels, expanded coverage of the properties of low-
pass Gaussian kernels, and expanded coverage of highpass, bandreject, and band-
pass filters, including numerous new examples that illustrate their use. In addition to 
revisions in the text, including 6 new examples, the chapter has 59 new images, 2 new 
line drawings, and 15 new exercises.

Chapter 4: Several of the sections of this chapter were revised to improve the clar-
ity of presentation. We replaced dated graphical material with 35 new images and 4 
new line drawings. We added 21 new exercises. 

Chapter 5: Revisions to this chapter were limited to clarifications and a few cor-
rections in notation. We added 6 new images and 14 new exercises, 

Chapter 6: Several sections were clarified, and the explanation of the CMY and 
CMYK color models was expanded, including 2 new images.

Chapter 7: This is a new chapter that brings together wavelets, several new trans-
forms, and many of the image transforms that were scattered throughout the book. 
The emphasis of this new chapter is on the presentation of these transforms from a 
unified point of view.  We added 24 new images, 20 new drawings, and 25 new exer-
cises. 

Chapter 8: The material was revised with numerous clarifications and several 
improvements to the presentation.

Chapter 9: Revisions of this chapter included a complete rewrite of several sec-
tions, including redrafting of several line drawings. We added 16 new exercises

Chapter 10: Several of the sections were rewritten for clarity. We updated the 
chapter by adding coverage of finite differences, K-means clustering, superpixels, 
and graph cuts. The new topics are illustrated with 4 new examples. In total, we 
added 29 new images, 3 new drawings, and 6 new exercises.

Chapter 11: The chapter was updated with numerous topics, beginning with a more 
detailed classification of feature types and their uses. In addition to improvements in 
the clarity of presentation, we added coverage of slope change codes, expanded the 
explanation of skeletons, medial axes, and the distance transform, and added sev-
eral new basic descriptors of compactness, circularity, and eccentricity. New mate-
rial includes coverage of the Harris-Stephens corner detector, and a presentation of 
maximally stable extremal regions. A major addition to the chapter is a comprehen-
sive discussion dealing with the Scale-Invariant Feature Transform (SIFT). The new 
material is complemented by 65 new images, 15 new drawings, and 12 new exercises.
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Preface    11

Chapter 12: This chapter underwent a major revision to include an extensive 
rewrite of neural networks and deep learning, an area that has grown significantly 
since the last edition of the book. We added a comprehensive discussion on fully 
connected, deep neural networks that includes derivation of backpropagation start-
ing from basic principles. The equations of backpropagation were expressed in “tra-
ditional” scalar terms, and then generalized into a compact set of matrix equations 
ideally suited for implementation of deep neural nets. The effectiveness of fully con-
nected networks was demonstrated with several examples that included a compari-
son with the Bayes classifier. One of the most-requested topics in the survey was 
coverage of deep convolutional neural networks. We added an extensive section on 
this, following the same blueprint we used for deep, fully connected nets. That is, we 
derived the equations of backpropagation for convolutional nets, and showed how 
they are different from “traditional” backpropagation. We then illustrated the use of 
convolutional networks with simple images, and applied them to large image data-
bases of numerals and natural scenes.  The written material is complemented by 23 
new images, 28 new drawings, and 12 new exercises.

Also for the first time, we have created student and faculty support packages that 
can be downloaded from the book website. The Student Support Package contains 
many of the original images in the book and answers to selected exercises The Fac-
ulty Support Package contains solutions to all exercises, teaching suggestions, and all 
the art in the book in the form of modifiable PowerPoint slides. One support pack-
age is made available with every new book, free of charge. 

The book website, established during the launch of the 2002 edition, continues to 
be a success, attracting more than 25,000 visitors each month. The site was upgraded 
for the launch of this edition. For more details on site features and content, see The 
Book Website, following the Acknowledgments section.

This edition of Digital Image Processing is a reflection of how the educational 
needs of our readers have changed since 2008. As is usual in an endeavor such as 
this, progress in the field continues after work on the manuscript stops. One of the 
reasons why this book has been so well accepted since it first appeared in 1977 is its 
continued emphasis on fundamental concepts that retain their relevance over time. 
This approach, among other things, attempts to provide a measure of stability in a 
rapidly evolving body of knowledge. We have tried to follow the same principle in 
preparing this edition of the book.

R.C.G.
R.E.W.
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Digital Image Processing is a completely self-contained book. However, the compan-
ion website offers additional support in a number of important areas.

For the Student or Independent Reader the site contains
• Reviews in areas such as probability, statistics, vectors, and matrices.
• A Tutorials section containing dozens of tutorials on topics relevant to the mate-

rial in the book.
• An image database containing all the images in the book, as well as many other 

image databases.

For the Instructor the site contains
• An Instructor’s Manual with complete solutions to all the problems.
• Classroom presentation materials in modifiable PowerPoint format.
• Material removed from previous editions, downloadable in convenient PDF 

format.
• Numerous links to other educational resources.

For the Practitioner the site contains additional specialized topics such as
• Links to commercial sites.
• Selected new references.
• Links to commercial image databases.

The website is an ideal tool for keeping the book current between editions by includ-
ing new topics, digital images, and other relevant material that has appeared after 
the book was published. Although considerable care was taken in the production 
of the book, the website is also a convenient repository for any errors discovered 
between printings. 

The DIP4E Support Packages
In this edition, we created support packages for students and faculty to organize 
all the classroom support materials available for the new edition of the book into 
one easy download. The Student Support Package contains many of the original 
images in the book, and answers to selected exercises, The Faculty Support Package 
contains solutions to all exercises, teaching suggestions, and all the art in the book 
in modifiable PowerPoint slides. One support package is made available with every 
new book, free of charge. Applications for the support packages are submitted at 
the book website.
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17

1 Introduction

One picture is worth more than ten thousand words.
Anonymous

Preview
Interest in digital image processing methods stems from two principal application areas: improvement 
of pictorial information for human interpretation, and processing of image data for tasks such as storage, 
transmission, and extraction of pictorial information. This chapter has several objectives: (1) to define 
the scope of the field that we call image processing; (2) to give a historical perspective of the origins of 
this field; (3) to present an overview of the state of the art in image processing by examining some of 
the principal areas in which it is applied; (4) to discuss briefly the principal approaches used in digital 
image processing; (5) to give an overview of the components contained in a typical, general-purpose 
image processing system; and (6) to provide direction to the literature where image processing work is 
reported. The material in this chapter is extensively illustrated with a range of images that are represen-
tative of the images we will be using throughout the book.

Upon completion of this chapter, readers should:

 Understand the concept of a digital image.

 Have a broad overview of the historical under-
pinnings of the field of digital image process-
ing.

 Understand the definition and scope of digi-
tal image processing.

 Know the fundamentals of the electromag-
netic spectrum and its relationship to image 
generation.

 Be aware of the different fields in which digi-
tal image processing methods are applied.

 Be familiar with the basic processes involved 
in image processing.

 Be familiar with the components that make 
up a general-purpose digital image process-
ing system.

 Be familiar with the scope of the literature 
where image processing work is reported.
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18    Chapter 1  Introduction

1.1 WHAT IS DIGITAL IMAGE PROCESSING?  

An image may be defined as a two-dimensional function, f x y( , ), where x and y are 
spatial (plane) coordinates, and the amplitude of f at any pair of coordinates ( , )x y  
is called the intensity or gray level of the image at that point. When x, y, and the 
intensity values of f are all finite, discrete quantities, we call the image a digital image. 
The field of digital image processing refers to processing digital images by means of 
a digital computer. Note that a digital image is composed of a finite number of ele-
ments, each of which has a particular location and value. These elements are called 
picture elements, image elements, pels, and pixels. Pixel is the term used most widely 
to denote the elements of a digital image. We will consider these definitions in more 
formal terms in Chapter 2.

Vision is the most advanced of our senses, so it is not surprising that images 
play the single most important role in human perception. However, unlike humans, 
who are limited to the visual band of the electromagnetic (EM) spectrum, imaging 
machines cover almost the entire EM spectrum, ranging from gamma to radio waves. 
They can operate on images generated by sources that humans are not accustomed 
to associating with images. These include ultrasound, electron microscopy, and com-
puter-generated images. Thus, digital image processing encompasses a wide and var-
ied field of applications.

There is no general agreement among authors regarding where image process-
ing stops and other related areas, such as image analysis and computer vision, start. 
Sometimes, a distinction is made by defining image processing as a discipline in 
which both the input and output of a process are images. We believe this to be a 
limiting and somewhat artificial boundary. For example, under this definition, even 
the trivial task of computing the average intensity of an image (which yields a sin-
gle number) would not be considered an image processing operation. On the other 
hand, there are fields such as computer vision whose ultimate goal is to use comput-
ers to emulate human vision, including learning and being able to make inferences 
and take actions based on visual inputs. This area itself is a branch of artificial intel-
ligence (AI) whose objective is to emulate human intelligence. The field of AI is in its 
earliest stages of infancy in terms of development, with progress having been much 
slower than originally anticipated. The area of image analysis (also called image 
understanding) is in between image processing and computer vision.

There are no clear-cut boundaries in the continuum from image processing at 
one end to computer vision at the other. However, one useful paradigm is to con-
sider three types of computerized processes in this continuum: low-, mid-, and high-
level processes. Low-level processes involve primitive operations such as image 
preprocessing to reduce noise, contrast enhancement, and image sharpening. A low-
level process is characterized by the fact that both its inputs and outputs are images. 
Mid-level processing of images involves tasks such as segmentation (partitioning 
an image into regions or objects), description of those objects to reduce them to a 
form suitable for computer processing, and classification (recognition) of individual 
objects. A mid-level process is characterized by the fact that its inputs generally 
are images, but its outputs are attributes extracted from those images (e.g., edges, 
contours, and the identity of individual objects). Finally, higher-level processing 
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involves “making sense” of an ensemble of recognized objects, as in image analysis, 
and, at the far end of the continuum, performing the cognitive functions normally 
associated with human vision.

Based on the preceding comments, we see that a logical place of overlap between 
image processing and image analysis is the area of recognition of individual regions 
or objects in an image. Thus, what we call in this book digital image processing encom-
passes processes whose inputs and outputs are images and, in addition, includes pro-
cesses that extract attributes from images up to, and including, the recognition of 
individual objects. As an illustration to clarify these concepts, consider the area of 
automated analysis of text. The processes of acquiring an image of the area con-
taining the text, preprocessing that image, extracting (segmenting) the individual 
characters, describing the characters in a form suitable for computer processing, and 
recognizing those individual characters are in the scope of what we call digital image 
processing in this book. Making sense of the content of the page may be viewed as 
being in the domain of image analysis and even computer vision, depending on the 
level of complexity implied by the statement “making sense of.” As will become 
evident shortly, digital image processing, as we have defined it, is used routinely in a 
broad range of areas of exceptional social and economic value. The concepts devel-
oped in the following chapters are the foundation for the methods used in those 
application areas.

1.2 THE ORIGINS OF DIGITAL IMAGE PROCESSING  

One of the earliest applications of digital images was in the newspaper industry, 
when pictures were first sent by submarine cable between London and New York. 
Introduction of the Bartlane cable picture transmission system in the early 1920s 
reduced the time required to transport a picture across the Atlantic from more than 
a week to less than three hours. Specialized printing equipment coded pictures for 
cable transmission, then reconstructed them at the receiving end. Figure 1.1 was 
transmitted in this way and reproduced on a telegraph printer fitted with typefaces 
simulating a halftone pattern. 

Some of the initial problems in improving the visual quality of these early digital 
pictures were related to the selection of printing procedures and the distribution of 

1.2

FIGURE 1.1  A digital picture produced in 1921 from a coded tape by a telegraph printer with 
special typefaces. (McFarlane.) [References in the bibliography at the end of the book are 
listed in alphabetical order by authors’ last names.]
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intensity levels. The printing method used to obtain Fig. 1.1 was abandoned toward 
the end of 1921 in favor of a technique based on photographic reproduction made 
from tapes perforated at the telegraph receiving terminal. Figure 1.2 shows an image 
obtained using this method. The improvements over Fig. 1.1 are evident, both in 
tonal quality and in resolution.

The early Bartlane systems were capable of coding images in five distinct levels 
of gray. This capability was increased to 15 levels in 1929. Figure 1.3 is typical of the 
type of images that could be obtained using the 15-tone equipment. During this 
period, introduction of a system for developing a film plate via light beams that were 
modulated by the coded picture tape improved the reproduction process consider-
ably.

Although the examples just cited involve digital images, they are not considered 
digital image processing results in the context of our definition, because digital com-
puters were not used in their creation. Thus, the history of digital image processing 
is intimately tied to the development of the digital computer. In fact, digital images 
require so much storage and computational power that progress in the field of digi-
tal image processing has been dependent on the development of digital computers 
and of supporting technologies that include data storage, display, and transmission.

FIGURE 1.2
A digital picture 
made in 1922 
from a tape 
punched after 
the signals had 
crossed the  
Atlantic twice. 
(McFarlane.)

FIGURE 1.3
Unretouched 
cable picture of 
Generals Pershing 
(right) and Foch,  
transmitted in 
1929 from  
London to New 
York by 15-tone 
equipment. 
(McFarlane.)
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The concept of a computer dates back to the invention of the abacus in Asia 
Minor, more than 5000 years ago. More recently, there have been developments 
in the past two centuries that are the foundation of what we call a computer today. 
However, the basis for what we call a modern digital computer dates back to only 
the 1940s, with the introduction by John von Neumann of two key concepts: (1) a 
memory to hold a stored program and data, and (2) conditional branching. These 
two ideas are the foundation of a central processing unit (CPU), which is at the heart 
of computers today. Starting with von Neumann, there were a series of key advanc-
es that led to computers powerful enough to be used for digital image processing. 
Briefly, these advances may be summarized as follows: (1) the invention of the tran-
sistor at Bell Laboratories in 1948; (2) the development in the 1950s and 1960s of 
the high-level programming languages COBOL (Common Business-Oriented Lan-
guage) and FORTRAN (Formula Translator); (3) the invention of the integrated 
circuit (IC) at Texas Instruments in 1958; (4) the development of operating systems 
in the early 1960s; (5) the development of the microprocessor (a single chip consist-
ing of a CPU, memory, and input and output controls) by Intel in the early 1970s; 
(6) the introduction by IBM of the personal computer in 1981; and (7) progressive 
miniaturization of components, starting with large-scale integration (LI) in the late 
1970s, then very-large-scale integration (VLSI) in the 1980s, to the present use of 
ultra-large-scale integration (ULSI) and experimental nonotechnologies. Concur-
rent with these advances were developments in the areas of mass storage and display 
systems, both of which are fundamental requirements for digital image processing.

The first computers powerful enough to carry out meaningful image processing 
tasks appeared in the early 1960s. The birth of what we call digital image processing 
today can be traced to the availability of those machines, and to the onset of the 
space program during that period. It took the combination of those two develop-
ments to bring into focus the potential of digital image processing for solving prob-
lems of practical significance. Work on using computer techniques for improving 
images from a space probe began at the Jet Propulsion Laboratory (Pasadena, Cali-
fornia) in 1964, when pictures of the moon transmitted by Ranger 7 were processed 
by a computer to correct various types of image distortion inherent in the on-board 
television camera. Figure 1.4 shows the first image of the moon taken by Ranger 
7 on July 31, 1964 at 9:09 A.M. Eastern Daylight Time (EDT), about 17 minutes 
before impacting the lunar surface (the markers, called reseau marks, are used for 
geometric corrections, as discussed in Chapter 2).This also is the first image of the 
moon taken by a U.S. spacecraft. The imaging lessons learned with Ranger 7 served 
as the basis for improved methods used to enhance and restore images from the Sur-
veyor missions to the moon, the Mariner series of flyby missions to Mars, the Apollo 
manned flights to the moon, and others.

In parallel with space applications, digital image processing techniques began in 
the late 1960s and early 1970s to be used in medical imaging, remote Earth resourc-
es observations, and astronomy. The invention in the early 1970s of computerized 
axial tomography (CAT), also called computerized tomography (CT) for short, is 
one of the most important events in the application of image processing in medical 
diagnosis. Computerized axial tomography is a process in which a ring of detectors 
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encircles an object (or patient) and an X-ray source, concentric with the detector 
ring, rotates about the object. The X-rays pass through the object and are collected 
at the opposite end by the corresponding detectors in the ring. This procedure is 
repeated the source rotates. Tomography consists of algorithms that use the sensed 
data to construct an image that represents a “slice” through the object. Motion of 
the object in a direction perpendicular to the ring of detectors produces a set of 
such slices, which constitute a three-dimensional (3-D) rendition of the inside of the 
object. Tomography was invented independently by Sir Godfrey N. Hounsfield and 
Professor Allan M. Cormack, who shared the 1979 Nobel Prize in Medicine for their 
invention. It is interesting to note that X-rays were discovered in 1895 by Wilhelm 
Conrad Roentgen, for which he received the 1901 Nobel Prize for Physics. These two 
inventions, nearly 100 years apart, led to some of the most important applications of 
image processing today.

From the 1960s until the present, the field of image processing has grown vigor-
ously. In addition to applications in medicine and the space program, digital image 
processing techniques are now used in a broad range of applications. Computer pro-
cedures are used to enhance the contrast or code the intensity levels into color for 
easier interpretation of X-rays and other images used in industry, medicine, and the 
biological sciences. Geographers use the same or similar techniques to study pollu-
tion patterns from aerial and satellite imagery. Image enhancement and restoration 
procedures are used to process degraded images of unrecoverable objects, or experi-
mental results too expensive to duplicate. In archeology, image processing meth-
ods have successfully restored blurred pictures that were the only available records 
of rare artifacts lost or damaged after being photographed. In physics and related 
fields, computer techniques routinely enhance images of experiments in areas such 
as high-energy plasmas and electron microscopy. Similarly successful applications 
of image processing concepts can be found in astronomy, biology, nuclear medicine, 
law enforcement, defense, and industry.

FIGURE 1.4
The first picture 
of the moon by 
a U.S. spacecraft. 
Ranger 7 took 
this image on 
July 31, 1964 at 
9:09 A.M. EDT, 
about 17 minutes 
before impacting 
the lunar surface. 
(Courtesy of 
NASA.) 

DIP4E_GLOBAL_Print_Ready.indb   22 6/16/2017   2:01:59 PM



1.3  Examples of Fields that Use Digital Image Processing    23

These examples illustrate processing results intended for human interpretation. 
The second major area of application of digital image processing techniques men-
tioned at the beginning of this chapter is in solving problems dealing with machine 
perception. In this case, interest is on procedures for extracting information from 
an image, in a form suitable for computer processing. Often, this information bears 
little resemblance to visual features that humans use in interpreting the content 
of an image. Examples of the type of information used in machine perception are 
statistical moments, Fourier transform coefficients, and multidimensional distance 
measures. Typical problems in machine perception that routinely utilize image pro-
cessing techniques are automatic character recognition, industrial machine vision 
for product assembly and inspection, military recognizance, automatic processing of 
fingerprints, screening of X-rays and blood samples, and machine processing of aer-
ial and satellite imagery for weather prediction and environmental assessment. The 
continuing decline in the ratio of computer price to performance, and the expansion 
of networking and communication bandwidth via the internet, have created unprec-
edented opportunities for continued growth of digital image processing. Some of 
these application areas will be illustrated in the following section.

1.3 EXAMPLES OF FIELDS THAT USE DIGITAL IMAGE PROCESSING  

Today, there is almost no area of technical endeavor that is not impacted in some 
way by digital image processing. We can cover only a few of these applications in the 
context and space of the current discussion. However, limited as it is, the material 
presented in this section will leave no doubt in your mind regarding the breadth and 
importance of digital image processing. We show in this section numerous areas of 
application, each of which routinely utilizes the digital image processing techniques 
developed in the following chapters. Many of the images shown in this section are 
used later in one or more of the examples given in the book. Most images shown are 
digital images. 

The areas of application of digital image processing are so varied that some form 
of organization is desirable in attempting to capture the breadth of this field. One 
of the simplest ways to develop a basic understanding of the extent of image pro-
cessing applications is to categorize images according to their source (e.g., X-ray, 
visual, infrared, and so on).The principal energy source for images in use today is 
the electromagnetic energy spectrum. Other important sources of energy include 
acoustic, ultrasonic, and electronic (in the form of electron beams used in electron 
microscopy). Synthetic images, used for modeling and visualization, are generated 
by computer. In this section we will discuss briefly how images are generated in 
these various categories, and the areas in which they are applied. Methods for con-
verting images into digital form will be discussed in the next chapter.

Images based on radiation from the EM spectrum are the most familiar, espe-
cially images in the X-ray and visual bands of the spectrum. Electromagnetic waves 
can be conceptualized as propagating sinusoidal waves of varying wavelengths, or 
they can be thought of as a stream of massless particles, each traveling in a wavelike 
pattern and moving at the speed of light. Each massless particle contains a certain 
amount (or bundle) of energy. Each bundle of energy is called a photon. If spectral 
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bands are grouped according to energy per photon, we obtain the spectrum shown 
in Fig. 1.5, ranging from gamma rays (highest energy) at one end to radio waves 
(lowest energy) at the other. The bands are shown shaded to convey the fact that 
bands of the EM spectrum are not distinct, but rather transition smoothly from one 
to the other.

GAMMA-RAY IMAGING

Major uses of imaging based on gamma rays include nuclear medicine and astro-
nomical observations. In nuclear medicine, the approach is to inject a patient with a 
radioactive isotope that emits gamma rays as it decays. Images are produced from 
the emissions collected by gamma-ray detectors. Figure 1.6(a) shows an image of a 
complete bone scan obtained by using gamma-ray imaging. Images of this sort are 
used to locate sites of bone pathology, such as infections or tumors. Figure 1.6(b) 
shows another major modality of nuclear imaging called positron emission tomogra-
phy (PET). The principle is the same as with X-ray tomography, mentioned briefly 
in Section 1.2. However, instead of using an external source of X-ray energy, the 
patient is given a radioactive isotope that emits positrons as it decays. When a pos-
itron meets an electron, both are annihilated and two gamma rays are given off. 
These are detected and a tomographic image is created using the basic principles of 
tomography. The image shown in Fig. 1.6(b) is one sample of a sequence that con-
stitutes a 3-D rendition of the patient. This image shows a tumor in the brain and 
another in the lung, easily visible as small white masses.

A star in the constellation of Cygnus exploded about 15,000 years ago, generat-
ing a superheated, stationary gas cloud (known as the Cygnus Loop) that glows in 
a spectacular array of colors. Figure 1.6(c) shows an image of the Cygnus Loop in 
the gamma-ray band. Unlike the two examples in Figs. 1.6(a) and (b), this image was 
obtained using the natural radiation of the object being imaged. Finally, Fig. 1.6(d) 
shows an image of gamma radiation from a valve in a nuclear reactor. An area of 
strong radiation is seen in the lower left side of the image.

X-RAY IMAGING

X-rays are among the oldest sources of EM radiation used for imaging. The best 
known use of X-rays is medical diagnostics, but they are also used extensively in 
industry and other areas, such as astronomy. X-rays for medical and industrial imag-
ing are generated using an X-ray tube, which is a vacuum tube with a cathode and 
anode. The cathode is heated, causing free electrons to be released. These electrons 
flow at high speed to the positively charged anode. When the electrons strike a 
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FIGURE 1.5  The electromagnetic spectrum arranged according to energy per photon.
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nucleus, energy is released in the form of X-ray radiation. The energy (penetrat-
ing power) of X-rays is controlled by a voltage applied across the anode, and by a 
current applied to the filament in the cathode. Figure 1.7(a) shows a familiar chest 
X-ray generated simply by placing the patient between an X-ray source and a film 
sensitive to X-ray energy. The intensity of the X-rays is modified by absorption as 
they pass through the patient, and the resulting energy falling on the film develops it, 
much in the same way that light develops photographic film. In digital radiography, 
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FIGURE 1.6
Examples of 
gamma-ray  
imaging.  
(a) Bone scan.  
(b) PET image. 
(c) Cygnus Loop. 
(d) Gamma radia-
tion (bright spot) 
from a reactor 
valve.  
(Images  
courtesy of  
(a) G.E. Medical 
Systems; (b) Dr. 
Michael E. Casey, 
CTI PET Systems; 
(c) NASA;  
(d) Professors 
Zhong He and 
David K. Wehe,  
University of 
Michigan.) 
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digital images are obtained by one of two methods: (1) by digitizing X-ray films; or; 
(2) by having the X-rays that pass through the patient fall directly onto devices (such 
as a phosphor screen) that convert X-rays to light. The light signal in turn is captured 
by a light-sensitive digitizing system. We will discuss digitization in more detail in 
Chapters 2 and 4.

b
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FIGURE 1.7
Examples of 
X-ray imaging.  
(a) Chest X-ray. 
(b) Aortic  
angiogram.  
(c) Head CT.  
(d) Circuit boards. 
(e) Cygnus Loop. 
(Images courtesy 
of (a) and (c) Dr. 
David R. Pickens, 
Dept. of  
Radiology & 
Radiological  
Sciences,  
Vanderbilt  
University  
Medical Center; 
(b) Dr. Thomas 
R. Gest, Division 
of Anatomical 
Sciences, Univ. of 
Michigan Medical 
School;  
(d) Mr. Joseph 
E. Pascente, Lixi, 
Inc.; and  
(e) NASA.) 
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Angiography is another major application in an area called contrast enhancement 
radiography. This procedure is used to obtain images of blood vessels, called angio-
grams. A catheter (a small, flexible, hollow tube) is inserted, for example, into an 
artery or vein in the groin. The catheter is threaded into the blood vessel and guided 
to the area to be studied. When the catheter reaches the site under investigation, 
an X-ray contrast medium is injected through the tube. This enhances the contrast 
of the blood vessels and enables a radiologist to see any irregularities or blockages. 
Figure 1.7(b) shows an example of an aortic angiogram. The catheter can be seen 
being inserted into the large blood vessel on the lower left of the picture. Note the 
high contrast of the large vessel as the contrast medium flows up in the direction of 
the kidneys, which are also visible in the image. As we will discuss further in Chapter 2, 
angiography is a major area of digital image processing, where image subtraction is 
used to further enhance the blood vessels being studied.

Another important use of X-rays in medical imaging is computerized axial tomog-
raphy (CAT). Due to their resolution and 3-D capabilities, CAT scans revolution-
ized medicine from the moment they first became available in the early 1970s. As 
noted in Section 1.2, each CAT image is a “slice” taken perpendicularly through 
the patient. Numerous slices are generated as the patient is moved in a longitudinal 
direction. The ensemble of such images constitutes a 3-D rendition of the inside of 
the body, with the longitudinal resolution being proportional to the number of slice 
images taken. Figure 1.7(c) shows a typical CAT slice image of a human head.

Techniques similar to the ones just discussed, but generally involving higher 
energy X-rays, are applicable in industrial processes. Figure 1.7(d) shows an X-ray 
image of an electronic circuit board. Such images, representative of literally hundreds 
of industrial applications of X-rays, are used to examine circuit boards for flaws in 
manufacturing, such as missing components or broken traces. Industrial CAT scans 
are useful when the parts can be penetrated by X-rays, such as in plastic assemblies, 
and even large bodies, such as solid-propellant rocket motors. Figure 1.7(e) shows an 
example of X-ray imaging in astronomy. This image is the Cygnus Loop of Fig. 1.6(c), 
but imaged in the X-ray band.

IMAGING IN THE ULTRAVIOLET BAND

Applications of ultraviolet “light” are varied. They include lithography, industrial 
inspection, microscopy, lasers, biological imaging, and astronomical observations. 
We illustrate imaging in this band with examples from microscopy and astronomy.

Ultraviolet light is used in fluorescence microscopy, one of the fastest growing 
areas of microscopy. Fluorescence is a phenomenon discovered in the middle of the 
nineteenth century, when it was first observed that the mineral fluorspar fluoresces 
when ultraviolet light is directed upon it. The ultraviolet light itself is not visible, but 
when a photon of ultraviolet radiation collides with an electron in an atom of a fluo-
rescent material, it elevates the electron to a higher energy level. Subsequently, the 
excited electron relaxes to a lower level and emits light in the form of a lower-energy 
photon in the visible (red) light region. Important tasks performed with a fluores-
cence microscope are to use an excitation light to irradiate a prepared specimen, 
and then to separate the much weaker radiating fluorescent light from the brighter 
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excitation light. Thus, only the emission light reaches the eye or other detector. The 
resulting fluorescing areas shine against a dark background with sufficient contrast 
to permit detection. The darker the background of the nonfluorescing material, the 
more efficient the instrument.

Fluorescence microscopy is an excellent method for studying materials that can be 
made to fluoresce, either in their natural form (primary fluorescence) or when treat-
ed with chemicals capable of fluorescing (secondary fluorescence). Figures 1.8(a) 
and (b) show results typical of the capability of fluorescence microscopy. Figure 
1.8(a) shows a fluorescence microscope image of normal corn, and Fig. 1.8(b) shows 
corn infected by “smut,” a disease of cereals, corn, grasses, onions, and sorghum that 
can be caused by any one of more than 700 species of parasitic fungi. Corn smut is 
particularly harmful because corn is one of the principal food sources in the world. 
As another illustration, Fig. 1.8(c) shows the Cygnus Loop imaged in the high-energy 
region of the ultraviolet band.

IMAGING IN THE VISIBLE AND INFRARED BANDS
Considering that the visual band of the electromagnetic spectrum is the most famil-
iar in all our activities, it is not surprising that imaging in this band outweighs by far 
all the others in terms of breadth of application. The infrared band often is used in 
conjunction with visual imaging, so we have grouped the visible and infrared bands 
in this section for the purpose of illustration. We consider in the following discus-
sion applications in light microscopy, astronomy, remote sensing, industry, and law 
enforcement.

Figure 1.9 shows several examples of images obtained with a light microscope. 
The examples range from pharmaceuticals and microinspection to materials char-
acterization. Even in microscopy alone, the application areas are too numerous to 
detail here. It is not difficult to conceptualize the types of processes one might apply 
to these images, ranging from enhancement to measurements.

ba c

FIGURE 1.8  Examples of ultraviolet imaging. (a) Normal corn. (b) Corn infected by smut. (c) Cygnus Loop. (Images 
(a) and (b) courtesy of Dr. Michael W. Davidson, Florida State University, (c) NASA.) 
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Another major area of visual processing is remote sensing, which usually includes 
several bands in the visual and infrared regions of the spectrum. Table 1.1 shows the 
so-called thematic bands in NASA’s LANDSAT satellites. The primary function of 
LANDSAT is to obtain and transmit images of the Earth from space, for purposes 
of monitoring environmental conditions on the planet. The bands are expressed in 
terms of wavelength, with 1mm  being equal to 10 6−  m (we will discuss the wave-
length regions of the electromagnetic spectrum in more detail in Chapter 2). Note 
the characteristics and uses of each band in Table 1.1.

In order to develop a basic appreciation for the power of this type of multispec-
tral imaging, consider Fig. 1.10, which shows one image for each of the spectral bands 
in Table 1.1. The area imaged is Washington D.C., which includes features such as 
buildings, roads, vegetation, and a major river (the Potomac) going though the city. 
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FIGURE 1.9
Examples of light  
microscopy images.  
(a) Taxol (antican-
cer agent), magni-
fied 250 ×. 
(b) Cholesterol—
40 ×.  
(c) Microproces-
sor—60 ×.  
(d) Nickel oxide 
thin film—600 ×.  
(e) Surface of audio 
CD—1750 ×.   
(f) Organic super-
conductor— 450 ×.  
(Images courtesy of 
Dr. Michael W.  
Davidson, Florida 
State University.) 
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Images of population centers are used over time to assess population growth and 
shift patterns, pollution, and other factors affecting the environment. The differenc-
es between visual and infrared image features are quite noticeable in these images. 
Observe, for example, how well defined the river is from its surroundings in Bands 
4 and 5.

Weather observation and prediction also are major applications of multispectral 
imaging from satellites. For example, Fig. 1.11 is an image of Hurricane Katrina, one 
of the most devastating storms in recent memory in the Western Hemisphere. This 
image was taken by a National Oceanographic and Atmospheric Administration 
(NOAA) satellite using sensors in the visible and infrared bands. The eye of the hur-
ricane is clearly visible in this image.

Band No. Name
Wavelength 

(Mm)
Characteristics and Uses

1 Visible blue 0.45– 0.52 Maximum water penetration

2 Visible green 0.53– 0.61 Measures plant vigor

3 Visible red 0.63– 0.69 Vegetation discrimination

4 Near infrared 0.78– 0.90 Biomass and shoreline mapping

5 Middle infrared 1.55–1.75 Moisture content: soil/vegetation

6 Thermal infrared 10.4–12.5 Soil moisture; thermal mapping

7 Short-wave infrared 2.09–2.35 Mineral mapping

TABLE 1.1
Thematic bands 
of NASA’s 
LANDSAT  
satellite.

1 2 3

4 5 6 7

FIGURE 1.10 LANDSAT satellite images of the Washington, D.C. area. The numbers refer to the thematic bands in 
Table 1.1. (Images courtesy of NASA.)
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Figures 1.12 and 1.13 show an application of infrared imaging. These images are 
part of the Nighttime Lights of the World data set, which provides a global inventory 
of human settlements. The images were generated by an infrared imaging system 
mounted on a NOAA/DMSP (Defense Meteorological Satellite Program) satel-
lite. The infrared system operates in the band 10.0 to 13.4 mm, and has the unique 
capability to observe faint sources of visible, near infrared emissions present on the  
Earth’s surface, including cities, towns, villages, gas flares, and fires. Even without 
formal training in image processing, it is not difficult to imagine writing a computer 
program that would use these images to estimate the relative percent of total electri-
cal energy used by various regions of the world.

A major area of imaging in the visible spectrum is in automated visual inspection 
of manufactured goods. Figure 1.14 shows some examples. Figure 1.14(a) is a con-
troller board for a CD-ROM drive. A typical image processing task with products 
such as this is to inspect them for missing parts (the black square on the top, right 
quadrant of the image is an example of a missing component).

Figure 1.14(b) is an imaged pill container. The objective here is to have a machine 
look for missing, incomplete, or deformed pills. Figure 1.14(c) shows an application 
in which image processing is used to look for bottles that are not filled up to an 
acceptable level. Figure 1.14(d) shows a clear plastic part with an unacceptable num-
ber of air pockets in it. Detecting anomalies like these is a major theme of industrial 
inspection that includes other products, such as wood and cloth. Figure 1.14(e) shows 
a batch of cereal during inspection for color and the presence of anomalies such as 
burned flakes. Finally, Fig. 1.14(f) shows an image of an intraocular implant (replace-
ment lens for the human eye). A “structured light” illumination technique was used 
to highlight deformations toward the center of the lens, and other imperfections. For 
example, the markings at 1 o’clock and 5 o’clock are tweezer damage. Most of the 
other small speckle detail is debris. The objective in this type of inspection is to find 
damaged or incorrectly manufactured implants automatically, prior to packaging.

FIGURE 1.11
Satellite image of 
Hurricane Katrina 
taken on August 
29, 2005.  
(Courtesy of 
NOAA.)
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Figure 1.15 illustrates some additional examples of image processing in the vis-
ible spectrum. Figure 1.15(a) shows a thumb print. Images of fingerprints are rou-
tinely processed by computer, either to enhance them or to find features that aid 
in the automated search of a database for potential matches. Figure 1.15(b) shows 
an image of paper currency. Applications of digital image processing in this area 

FIGURE 1.12
Infrared  
satellite images of 
the Americas. The 
small shaded map 
is provided for  
reference.  
(Courtesy of 
NOAA.) 
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include automated counting and, in law enforcement, the reading of the serial num-
ber for the purpose of tracking and identifying currency bills. The two vehicle images 
shown in Figs. 1.15(c) and (d) are examples of automated license plate reading. The 
light rectangles indicate the area in which the imaging system detected the plate. 
The black rectangles show the results of automatically reading the plate content by 
the system. License plate and other applications of character recognition are used 
extensively for traffic monitoring and surveillance.

IMAGING IN THE MICROWAVE BAND
The principal application of imaging in the microwave band is radar. The unique 
feature of imaging radar is its ability to collect data over virtually any region at any 
time, regardless of weather or ambient lighting conditions. Some radar waves can 
penetrate clouds, and under certain conditions, can also see through vegetation, ice, 
and dry sand. In many cases, radar is the only way to explore inaccessible regions of 
the Earth’s surface. An imaging radar works like a flash camera in that it provides 
its own illumination (microwave pulses) to illuminate an area on the ground and 

FIGURE 1.13
Infrared  
satellite images 
of the remaining 
populated parts 
of the world. The 
small shaded map 
is provided for 
reference.  
(Courtesy of 
NOAA.) 
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take a snapshot image. Instead of a camera lens, a radar uses an antenna and digital 
computer processing to record its images. In a radar image, one can see only the 
microwave energy that was reflected back toward the radar antenna.

Figure 1.16 shows a spaceborne radar image covering a rugged mountainous area 
of southeast Tibet, about 90 km east of the city of Lhasa. In the lower right cor-
ner is a wide valley of the Lhasa River, which is populated by Tibetan farmers and 
yak herders, and includes the village of Menba. Mountains in this area reach about 
5800 m (19,000 ft) above sea level, while the valley floors lie about 4300 m (14,000 ft) 
above sea level. Note the clarity and detail of the image, unencumbered by clouds or 
other atmospheric conditions that normally interfere with images in the visual band.

IMAGING IN THE RADIO BAND

As in the case of imaging at the other end of the spectrum (gamma rays), the major 
applications of imaging in the radio band are in medicine and astronomy. In medicine, 
radio waves are used in magnetic resonance imaging (MRI). This technique places a 
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FIGURE 1.14 Some examples of manufactured goods checked using digital image processing. (a) Circuit board con-
troller. (b) Packaged pills. (c) Bottles. (d) Air bubbles in a clear plastic product. (e) Cereal. (f) Image of intraocular 
implant. (Figure (f) courtesy of Mr. Pete Sites, Perceptics Corporation.) 
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patient in a powerful magnet and passes radio waves through the individual’s body 
in short pulses. Each pulse causes a responding pulse of radio waves to be emitted 
by the patient’s tissues. The location from which these signals originate and their 
strength are determined by a computer, which produces a two-dimensional image 
of a section of the patient. MRI can produce images in any plane. Figure 1.17 shows 
MRI images of a human knee and spine.

The rightmost image in Fig. 1.18 is an image of the Crab Pulsar in the radio band. 
Also shown for an interesting comparison are images of the same region, but taken 
in most of the bands discussed earlier. Observe that each image gives a totally dif-
ferent “view” of the pulsar.

OTHER IMAGING MODALITIES

Although imaging in the electromagnetic spectrum is dominant by far, there are a 
number of other imaging modalities that are also important. Specifically, we discuss 
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FIGURE 1.15
Some additional 
examples of  
imaging in the  
visible spectrum. 
(a) Thumb print. 
(b) Paper  
currency.  
(c) and (d) Auto-
mated license 
plate reading.  
(Figure (a) 
courtesy of the 
National  
Institute of  
Standards and 
Technology.  
Figures (c) and 
(d) courtesy of 
Dr. Juan  
Herrera,  
Perceptics  
Corporation.) 
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in this section acoustic imaging, electron microscopy, and synthetic (computer-gen-
erated) imaging. 

Imaging using “sound” finds application in geological exploration, industry, and 
medicine. Geological applications use sound in the low end of the sound spectrum 
(hundreds of Hz) while imaging in other areas use ultrasound (millions of Hz). The 
most important commercial applications of image processing in geology are in min-
eral and oil exploration. For image acquisition over land, one of the main approaches 
is to use a large truck and a large flat steel plate. The plate is pressed on the ground by 

FIGURE 1.16
Spaceborne radar 
image of  
mountainous 
region in  
southeast Tibet. 
(Courtesy of 
NASA.)
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FIGURE 1.17  MRI images of a human (a) knee, and (b) spine. (Figure (a) courtesy of Dr. Thom-
as R. Gest, Division of Anatomical Sciences, University of Michigan Medical School, and 
(b) courtesy of Dr. David R. Pickens, Department of Radiology and Radiological Sciences, 
Vanderbilt University Medical Center.)
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the truck, and the truck is vibrated through a frequency spectrum up to 100 Hz. The 
strength and speed of the returning sound waves are determined by the composi-
tion of the Earth below the surface. These are analyzed by computer, and images are 
generated from the resulting analysis.

For marine image acquisition, the energy source consists usually of two air guns 
towed behind a ship. Returning sound waves are detected by hydrophones placed 
in cables that are either towed behind the ship, laid on the bottom of the ocean, 
or hung from buoys (vertical cables). The two air guns are alternately pressurized  
to ~2000 psi and then set off. The constant motion of the ship provides a transversal 
direction of motion that, together with the returning sound waves, is used to gener-
ate a 3-D map of the composition of the Earth below the bottom of the ocean.

Figure 1.19 shows a cross-sectional image of a well-known 3-D model against 
which the performance of seismic imaging algorithms is tested. The arrow points to a 
hydrocarbon (oil and/or gas) trap. This target is brighter than the surrounding layers 
because the change in density in the target region is larger. Seismic interpreters look 
for these “bright spots” to find oil and gas. The layers above also are bright, but their 
brightness does not vary as strongly across the layers. Many seismic reconstruction 
algorithms have difficulty imaging this target because of the faults above it.

Although ultrasound imaging is used routinely in manufacturing, the best known 
applications of this technique are in medicine, especially in obstetrics, where fetuses 
are imaged to determine the health of their development. A byproduct of this 

Gamma X-ray Optical Infrared Radio

FIGURE 1.18 Images of the Crab Pulsar (in the center of each image) covering the electromagnetic spectrum. (Cour-
tesy of NASA.)

FIGURE 1.19
Cross-sectional 
image of a  
seismic model. 
The arrow points 
to a hydrocarbon 
(oil and/or gas) 
trap. (Courtesy of 
Dr. Curtis Ober, 
Sandia National 
Laboratories.)
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examination is determining the sex of the baby. Ultrasound images are generated 
using the following basic procedure:

1. The ultrasound system (a computer, ultrasound probe consisting of a source, a 
receiver, and a display) transmits high-frequency (1 to 5 MHz) sound pulses 
into the body.

2. The sound waves travel into the body and hit a boundary between tissues (e.g., 
between fluid and soft tissue, soft tissue and bone). Some of the sound waves 
are reflected back to the probe, while some travel on further until they reach 
another boundary and are reflected.

3. The reflected waves are picked up by the probe and relayed to the computer.
4. The machine calculates the distance from the probe to the tissue or organ bound-

aries using the speed of sound in tissue (1540 m/s) and the time of each echo’s 
return.

5. The system displays the distances and intensities of the echoes on the screen, 
forming a two-dimensional image.

In a typical ultrasound image, millions of pulses and echoes are sent and received 
each second. The probe can be moved along the surface of the body and angled to 
obtain various views. Figure 1.20 shows several examples of medical uses of ultra-
sound. 

We continue the discussion on imaging modalities with some examples of elec-
tron microscopy. Electron microscopes function as their optical counterparts, except 
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FIGURE 1.20
Examples of 
ultrasound  
imaging. (a) A 
fetus. (b) Another 
view of the fetus.  
(c) Thyroids.  
(d) Muscle layers 
showing lesion. 
(Courtesy of 
Siemens  
Medical Systems, 
Inc., Ultrasound 
Group.)
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that they use a focused beam of electrons instead of light to image a specimen. The 
operation of electron microscopes involves the following basic steps: A stream 
of electrons is produced by an electron source and accelerated toward the speci-
men using a positive electrical potential. This stream is confined and focused using 
metal apertures and magnetic lenses into a thin, monochromatic beam. This beam is 
focused onto the sample using a magnetic lens. Interactions occur inside the irradi-
ated sample, affecting the electron beam. These interactions and effects are detected 
and transformed into an image, much in the same way that light is reflected from, 
or absorbed by, objects in a scene. These basic steps are carried out in all electron 
microscopes.

A transmission electron microscope (TEM) works much like a slide projector. A 
projector transmits a beam of light through a slide; as the light passes through the 
slide, it is modulated by the contents of the slide. This transmitted beam is then 
projected onto the viewing screen, forming an enlarged image of the slide. TEMs 
work in the same way, except that they shine a beam of electrons through a spec-
imen (analogous to the slide). The fraction of the beam transmitted through the 
specimen is projected onto a phosphor screen. The interaction of the electrons with 
the phosphor produces light and, therefore, a viewable image. A scanning electron 
microscope (SEM), on the other hand, actually scans the electron beam and records 
the interaction of beam and sample at each location. This produces one dot on a 
phosphor screen. A complete image is formed by a raster scan of the beam through 
the sample, much like a TV camera. The electrons interact with a phosphor screen 
and produce light. SEMs are suitable for “bulky” samples, while TEMs require very 
thin samples.

Electron microscopes are capable of very high magnification. While light micros-
copy is limited to magnifications on the order of 1000 ×, electron microscopes can 
achieve magnification of 10 000, × or more. Figure 1.21 shows two SEM images of 
specimen failures due to thermal overload.

We conclude the discussion of imaging modalities by looking briefly at images 
that are not obtained from physical objects. Instead, they are generated by computer. 
Fractals are striking examples of computer-generated images. Basically, a fractal is 
nothing more than an iterative reproduction of a basic pattern according to some 
mathematical rules. For instance, tiling is one of the simplest ways to generate a frac-
tal image. A square can be subdivided into four square subregions, each of which can 
be further subdivided into four smaller square regions, and so on. Depending on the 
complexity of the rules for filling each subsquare, some beautiful tile images can be 
generated using this method. Of course, the geometry can be arbitrary. For instance, 
the fractal image could be grown radially out of a center point. Figure 1.22(a) shows 
a fractal grown in this way. Figure 1.22(b) shows another fractal (a “moonscape”) 
that provides an interesting analogy to the images of space used as illustrations in 
some of the preceding sections.

A more structured approach to image generation by computer lies in 3-D model-
ing. This is an area that provides an important intersection between image process-
ing and computer graphics, and is the basis for many 3-D visualization systems (e.g., 
flight simulators). Figures 1.22(c) and (d) show examples of computer-generated 
images. Because the original object is created in 3-D, images can be generated in any 
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perspective from plane projections of the 3-D volume. Images of this type can be 
used for medical training and for a host of other applications, such as criminal foren-
sics and special effects.
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FIGURE 1.21 (a) 250 ×  SEM image of a tungsten filament following thermal failure (note the 
shattered pieces on the lower left). (b) 2500 × SEM image of a damaged integrated circuit. 
The white fibers are oxides resulting from thermal destruction. (Figure (a) courtesy of Mr. 
Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene; (b) cour-
tesy of Dr. J. M. Hudak, McMaster University, Hamilton, Ontario, Canada.) 
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FIGURE 1.22
(a) and (b) Fractal 
images.  
(c) and (d) Images 
generated from 
3-D computer 
models of the 
objects shown. 
(Figures (a) and 
(b) courtesy of 
Ms. Melissa D. 
Binde,  
Swarthmore 
College; (c) and 
(d) courtesy of 
NASA.)
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1.4 FUNDAMENTAL STEPS IN DIGITAL IMAGE PROCESSING  

It is helpful to divide the material covered in the following chapters into the two 
broad categories defined in Section 1.1: methods whose input and output are images, 
and methods whose inputs may be images, but whose outputs are attributes extract-
ed from those images. This organization is summarized in Fig. 1.23. The diagram 
does not imply that every process is applied to an image. Rather, the intention is to 
convey an idea of all the methodologies that can be applied to images for different 
purposes, and possibly with different objectives. The discussion in this section may 
be viewed as a brief overview of the material in the remainder of the book. 

Image acquisition is the first process in Fig. 1.23. The discussion in Section 1.3 
gave some hints regarding the origin of digital images. This topic will be considered 
in much more detail in Chapter 2, where we also introduce a number of basic digital 
image concepts that are used throughout the book. Acquisition could be as simple as 
being given an image that is already in digital form. Generally, the image acquisition 
stage involves preprocessing, such as scaling.

Image enhancement is the process of manipulating an image so the result is more 
suitable than the original for a specific application. The word specific is important 
here, because it establishes at the outset that enhancement techniques are problem 
oriented. Thus, for example, a method that is quite useful for enhancing X-ray images 
may not be the best approach for enhancing satellite images taken in the infrared 
band of the electromagnetic spectrum.

There is no general “theory” of image enhancement. When an image is processed 
for visual interpretation, the viewer is the ultimate judge of how well a particular 
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method works. Enhancement techniques are so varied, and use so many different 
image processing approaches, that it is difficult to assemble a meaningful body of 
techniques suitable for enhancement in one chapter without extensive background 
development. For this reason, and also because beginners in the field of image pro-
cessing generally find enhancement applications visually appealing, interesting, and 
relatively simple to understand, we will use image enhancement as examples when 
introducing new concepts in parts of Chapter 2 and in Chapters 3 and 4. The mate-
rial in the latter two chapters span many of the methods used traditionally for image 
enhancement. Therefore, using examples from image enhancement to introduce new 
image processing methods developed in these early chapters not only saves having 
an extra chapter in the book dealing with image enhancement but, more importantly, 
is an effective approach for introducing newcomers to the details of processing tech-
niques early in the book. However, as you will see in progressing through the rest 
of the book, the material developed in Chapters 3 and 4 is applicable to a much 
broader class of problems than just image enhancement.

Image restoration is an area that also deals with improving the appearance of 
an image. However, unlike enhancement, which is subjective, image restoration 
is objective, in the sense that restoration techniques tend to be based on mathe-
matical or probabilistic models of image degradation. Enhancement, on the other 
hand, is based on human subjective preferences regarding what constitutes a “good” 
enhancement result.

Color image processing is an area that has been gaining in importance because of 
the significant increase in the use of digital images over the internet. Chapter 6 cov-
ers a number of fundamental concepts in color models and basic color processing 
in a digital domain. Color is used also as the basis for extracting features of interest 
in an image.

Wavelets are the foundation for representing images in various degrees of reso-
lution. In particular, this material is used in the book for image data compression 
and for pyramidal representation, in which images are subdivided successively into 
smaller regions. The material in Chapters 4 and 5 is based mostly on the Fourier 
transform. In addition to wavelets, we will also discuss in Chapter 7 a number of 
other transforms that are used routinely in image processing.

Compression, as the name implies, deals with techniques for reducing the storage 
required to save an image, or the bandwidth required to transmit it. Although stor-
age technology has improved significantly over the past decade, the same cannot be 
said for transmission capacity. This is true particularly in uses of the internet, which 
are characterized by significant pictorial content. Image compression is familiar 
(perhaps inadvertently) to most users of computers in the form of image file exten-
sions, such as the jpg file extension used in the JPEG (Joint Photographic Experts 
Group) image compression standard.

Morphological processing deals with tools for extracting image components that 
are useful in the representation and description of shape. The material in this chap-
ter begins a transition from processes that output images to processes that output 
image attributes, as indicated in Section 1.1.

Segmentation partitions an image into its constituent parts or objects. In gen-
eral, autonomous segmentation is one of the most difficult tasks in digital image 
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processing. A rugged segmentation procedure brings the process a long way toward 
successful solution of imaging problems that require objects to be identified indi-
vidually. On the other hand, weak or erratic segmentation algorithms almost always 
guarantee eventual failure. In general, the more accurate the segmentation, the 
more likely automated object classification is to succeed.

Feature extraction almost always follows the output of a segmentation stage, which 
usually is raw pixel data, constituting either the boundary of a region (i.e., the set 
of pixels separating one image region from another) or all the points in the region 
itself. Feature extraction consists of feature detection and feature description. Fea-
ture detection refers to finding the features in an image, region, or boundary. Feature 
description assigns quantitative attributes to the detected features. For example, we 
might detect corners in a region, and describe those corners by their orientation 
and location; both of these descriptors are quantitative attributes. Feature process-
ing methods discussed in this chapter are subdivided into three principal categories, 
depending on whether they are applicable to boundaries, regions, or whole images. 
Some features are applicable to more than one category. Feature descriptors should 
be as insensitive as possible to variations in parameters such as scale, translation, 
rotation, illumination, and viewpoint. 

Image pattern classification is the process that assigns a label (e.g., “vehicle”) to an 
object based on its feature descriptors. In the last chapter of the book, we will discuss  
methods of image pattern classification ranging from “classical” approaches such as 
minimum-distance, correlation, and Bayes classifiers, to more modern approaches 
implemented using deep neural networks. In particular, we will discuss in detail deep 
convolutional neural networks, which are ideally suited for image processing work.

So far, we have said nothing about the need for prior knowledge or about the 
interaction between the knowledge base and the processing modules in Fig. 1.23. 
Knowledge about a problem domain is coded into an image processing system in the 
form of a knowledge database. This knowledge may be as simple as detailing regions 
of an image where the information of interest is known to be located, thus limiting 
the search that has to be conducted in seeking that information. The knowledge base 
can also be quite complex, such as an interrelated list of all major possible defects 
in a materials inspection problem, or an image database containing high-resolution 
satellite images of a region in connection with change-detection applications. In 
addition to guiding the operation of each processing module, the knowledge base 
also controls the interaction between modules. This distinction is made in Fig. 1.23 
by the use of double-headed arrows between the processing modules and the knowl-
edge base, as opposed to single-headed arrows linking the processing modules.

Although we do not discuss image display explicitly at this point, it is important to 
keep in mind that viewing the results of image processing can take place at the out-
put of any stage in Fig. 1.23. We also note that not all image processing applications 
require the complexity of interactions implied by Fig. 1.23. In fact, not even all those 
modules are needed in many cases. For example, image enhancement for human 
visual interpretation seldom requires use of any of the other stages in Fig. 1.23. In 
general, however, as the complexity of an image processing task increases, so does 
the number of processes required to solve the problem.
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1.5 COMPONENTS OF AN IMAGE PROCESSING SYSTEM  

As recently as the mid-1980s, numerous models of image processing systems being 
sold throughout the world were rather substantial peripheral devices that attached 
to equally substantial host computers. Late in the 1980s and early in the 1990s, the 
market shifted to image processing hardware in the form of single boards designed 
to be compatible with industry standard buses and to fit into engineering work-
station cabinets and personal computers. In the late 1990s and early 2000s, a new 
class of add-on boards, called graphics processing units (GPUs) were introduced for 
work on 3-D applications, such as games and other 3-D graphics applications. It was 
not long before GPUs found their way into image processing applications involving 
large-scale matrix implementations, such as training deep convolutional networks. 
In addition to lowering costs, the market shift from substantial peripheral devices to 
add-on processing boards also served as a catalyst for a significant number of new 
companies specializing in the development of software written specifically for image 
processing. 

The trend continues toward miniaturizing and blending of general-purpose small 
computers with specialized image processing hardware and software. Figure 1.24 
shows the basic components comprising a typical general-purpose system used for 
digital image processing. The function of each component will be discussed in the 
following paragraphs, starting with image sensing.

Two subsystems are required to acquire digital images. The first is a physical sen-
sor that responds to the energy radiated by the object we wish to image. The second, 
called a digitizer, is a device for converting the output of the physical sensing device 
into digital form. For instance, in a digital video camera, the sensors (CCD chips) 
produce an electrical output proportional to light intensity. The digitizer converts 
these outputs to digital data. These topics will be covered in Chapter 2.

Specialized image processing hardware usually consists of the digitizer just men-
tioned, plus hardware that performs other primitive operations, such as an arithme-
tic logic unit (ALU), that performs arithmetic and logical operations in parallel on 
entire images. One example of how an ALU is used is in averaging images as quickly 
as they are digitized, for the purpose of noise reduction. This type of hardware some-
times is called a front-end subsystem, and its most distinguishing characteristic is 
speed. In other words, this unit performs functions that require fast data through-
puts (e.g., digitizing and averaging video images at 30 frames/s) that the typical main 
computer cannot handle. One or more GPUs (see above) also are common in image 
processing systems that perform intensive matrix operations.

The computer in an image processing system is a general-purpose computer and 
can range from a PC to a supercomputer. In dedicated applications, sometimes cus-
tom computers are used to achieve a required level of performance, but our interest 
here is on general-purpose image processing systems. In these systems, almost any 
well-equipped PC-type machine is suitable for off-line image processing tasks.

Software for image processing consists of specialized modules that perform 
specific tasks. A well-designed package also includes the capability for the user to 
write code that, as a minimum, utilizes the specialized modules. More sophisticated 
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software packages allow the integration of those modules and general-purpose 
software commands from at least one computer language. Commercially available 
image processing software, such as the well-known MATLAB® Image Processing 
Toolbox, is also common in a well-equipped image processing system. 

Mass storage is a must in image processing applications. An image of size 1024 1024×
pixels, in which the intensity of each pixel is an 8-bit quantity,  requires one megabyte  
of storage space if the image is not compressed. When dealing with image databases 
that contain thousands, or even millions, of images, providing adequate storage in 
an image processing system can be a challenge. Digital storage for image processing 
applications falls into three principal categories: (1) short-term storage for use dur-
ing processing; (2) on-line storage for relatively fast recall; and (3) archival storage, 
characterized by infrequent access. Storage is measured in bytes (eight bits), Kbytes 
(103 bytes), Mbytes (106 bytes), Gbytes (109 bytes), and Tbytes (1012 bytes).

oududCloud
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Components of a 
general-purpose 
image processing 
system. 
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One method of providing short-term storage is computer memory. Another is by 
specialized boards, called frame buffers, that store one or more images and can be 
accessed rapidly, usually at video rates (e.g., at 30 complete images per second). The 
latter method allows virtually instantaneous image zoom, as well as scroll (vertical 
shifts) and pan (horizontal shifts). Frame buffers usually are housed in the special-
ized image processing hardware unit in Fig. 1.24. On-line storage generally takes 
the form of magnetic disks or optical-media storage. The key factor characterizing 
on-line storage is frequent access to the stored data. Finally, archival storage is char-
acterized by massive storage requirements but infrequent need for access. Magnetic 
tapes and optical disks housed in “jukeboxes” are the usual media for archival appli-
cations.

Image displays in use today are mainly color, flat screen monitors. Monitors are 
driven by the outputs of image and graphics display cards that are an integral part of 
the computer system. Seldom are there requirements for image display applications 
that cannot be met by display cards and GPUs available commercially as part of the 
computer system. In some cases, it is necessary to have stereo displays, and these are 
implemented in the form of headgear containing two small displays embedded in 
goggles worn by the user.

Hardcopy devices for recording images include laser printers, film cameras, heat-
sensitive devices, ink-jet units, and digital units, such as optical and CD-ROM disks. 
Film provides the highest possible resolution, but paper is the obvious medium of 
choice for written material. For presentations, images are displayed on film trans-
parencies or in a digital medium if image projection equipment is used. The latter 
approach is gaining acceptance as the standard for image presentations.

Networking and cloud communication are almost default functions in any com-
puter system in use today. Because of the large amount of data inherent in image 
processing applications, the key consideration in image transmission is bandwidth. In 
dedicated networks, this typically is not a problem, but communications with remote 
sites via the internet are not always as efficient. Fortunately, transmission bandwidth 
is improving quickly as a result of optical fiber and other broadband technologies. 
Image data compression continues to play a major role in the transmission of large 
amounts of image data.

Summary, References, and Further Reading  
The main purpose of the material presented in this chapter is to provide a sense of perspective about the origins 
of digital image processing and, more important, about current and future areas of application of this technology. 
Although the coverage of these topics in this chapter was necessarily incomplete due to space limitations, it should 
have left you with a clear impression of the breadth and practical scope of digital image processing. As we proceed 
in the following chapters with the development of image processing theory and applications, numerous examples 
are provided to keep a clear focus on the utility and promise of these techniques. Upon concluding the study of the 
final chapter, a reader of this book will have arrived at a level of understanding that is the foundation for most of 
the work currently underway in this field. 

In past editions, we have provided a long list of journals and books to give readers an idea of the breadth of the 
image processing literature, and where this literature is reported. The list has been updated, and it has become so 
extensive that it is more practical to include it in the book website: www.ImageProcessingPlace.com, in the section 
entitled Publications.
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2 Digital Image Fundamentals

Preview
This chapter is an introduction to a number of basic concepts in digital image processing that are used 
throughout the book. Section 2.1 summarizes some important aspects of the human visual system, includ-
ing image formation in the eye and its capabilities for brightness adaptation and discrimination. Section 
2.2 discusses light, other components of the electromagnetic spectrum, and their imaging characteristics. 
Section 2.3 discusses imaging sensors and how they are used to generate digital images. Section 2.4 intro-
duces the concepts of uniform image sampling and intensity quantization. Additional topics discussed 
in that section include digital image representation, the effects of varying the number of samples and 
intensity levels in an image, the concepts of spatial and intensity resolution, and the principles of image 
interpolation. Section 2.5 deals with a variety of basic relationships between pixels. Finally, Section 2.6 
is an introduction to the principal mathematical tools we use throughout the book. A second objective 
of that section is to help you begin developing a “feel” for how these tools are used in a variety of basic 
image processing tasks. 

Upon completion of this chapter, readers should:
 Have an understanding of some important 

functions and limitations of human vision.

 Be familiar with the electromagnetic energy 
spectrum, including basic properties of light.

 Know how digital images are generated and 
represented.

 Understand the basics of image sampling and 
quantization.

 Be familiar with spatial and intensity resolu-
tion and their effects on image appearance.

 Have an understanding of basic geometric 
relationships between image pixels.

 Be familiar with the principal mathematical 
tools used in digital image processing.

 Be able to apply a variety of introductory dig-
ital image processing techniques.

Those who wish to succeed must ask the right preliminary 
questions.

Aristotle
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48 Chapter 2  Digital Image Fundamentals

2.1 ELEMENTS OF VISUAL PERCEPTION  

Although the field of digital image processing is built on a foundation of mathemat-
ics, human intuition and analysis often play a role in the choice of one technique 
versus another, and this choice often is made based on subjective, visual judgments. 
Thus, developing an understanding of basic characteristics of human visual percep-
tion as a first step in our journey through this book is appropriate. In particular, our 
interest is in the elementary mechanics of how images are formed and perceived 
by humans. We are interested in learning the physical limitations of human vision 
in terms of factors that also are used in our work with digital images. Factors such 
as how human and electronic imaging devices compare in terms of resolution and 
ability to adapt to changes in illumination are not only interesting, they are also 
important from a practical point of view.

STRUCTURE OF THE HUMAN EYE

Figure 2.1 shows a simplified cross section of the human eye. The eye is nearly a 
sphere (with a diameter of about 20 mm) enclosed by three membranes: the cornea 
and sclera outer cover; the choroid; and the retina. The cornea is a tough, transparent 
tissue that covers the anterior surface of the eye. Continuous with the cornea, the 
sclera is an opaque membrane that encloses the remainder of the optic globe.

The choroid lies directly below the sclera. This membrane contains a network of 
blood vessels that serve as the major source of nutrition to the eye. Even superficial 
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2.1  Elements of Visual Perception    49

injury to the choroid can lead to severe eye damage as a result of inflammation that 
restricts blood flow. The choroid coat is heavily pigmented, which helps reduce the 
amount of extraneous light entering the eye and the backscatter within the optic 
globe. At its anterior extreme, the choroid is divided into the ciliary body and the 
iris. The latter contracts or expands to control the amount of light that enters the eye. 
The central opening of the iris (the pupil) varies in diameter from approximately 2 
to 8 mm. The front of the iris contains the visible pigment of the eye, whereas the 
back contains a black pigment.

The lens consists of concentric layers of fibrous cells and is suspended by fibers 
that attach to the ciliary body. It is composed of 60% to 70% water, about 6% fat, 
and more protein than any other tissue in the eye. The lens is colored by a slightly 
yellow pigmentation that increases with age. In extreme cases, excessive clouding of 
the lens, referred to as cataracts, can lead to poor color discrimination and loss of 
clear vision. The lens absorbs approximately 8% of the visible light spectrum, with 
higher absorption at shorter wavelengths. Both infrared and ultraviolet light are 
absorbed by proteins within the lens and, in excessive amounts, can damage the eye.

The innermost membrane of the eye is the retina, which lines the inside of the 
wall’s entire posterior portion. When the eye is focused, light from an object is 
imaged on the retina. Pattern vision is afforded by discrete light receptors distrib-
uted over the surface of the retina. There are two types of receptors: cones and rods. 
There are between 6 and 7 million cones in each eye. They are located primarily in 
the central portion of the retina, called the fovea, and are highly sensitive to color. 
Humans can resolve fine details because each cone is connected to its own nerve end. 
Muscles rotate the eye until the image of a region of interest falls on the fovea. Cone 
vision is called photopic or bright-light vision.

The number of rods is much larger: Some 75 to 150 million are distributed over 
the retina. The larger area of distribution, and the fact that several rods are connect-
ed to a single nerve ending, reduces the amount of detail discernible by these recep-
tors. Rods capture an overall image of the field of view. They are not involved in 
color vision, and are sensitive to low levels of illumination. For example, objects that 
appear brightly colored in daylight appear as colorless forms in moonlight because 
only the rods are stimulated. This phenomenon is known as scotopic or dim-light 
vision.

Figure 2.2 shows the density of rods and cones for a cross section of the right eye, 
passing through the region where the optic nerve emerges from the eye. The absence 
of receptors in this area causes the so-called blind spot (see Fig. 2.1). Except for this 
region, the distribution of receptors is radially symmetric about the fovea. Receptor 
density is measured in degrees from the visual axis. Note in Fig. 2.2 that cones are 
most dense in the center area of the fovea, and that rods increase in density from 
the center out to approximately 20° off axis. Then, their density decreases out to the 
periphery of the retina.

The fovea itself is a circular indentation in the retina of about 1.5 mm in diameter, 
so it has an area of approximately 1.77 mm2. As Fig. 2.2 shows, the density of cones 
in that area of the retina is on the order of 150,000 elements per mm2. Based on 
these figures, the number of cones in the fovea, which is the region of highest acuity 
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50    Chapter 2  Digital Image Fundamentals

in the eye, is about 265,000 elements. Modern electronic imaging chips exceed this 
number by a large factor. While the ability of humans to integrate intelligence and 
experience with vision makes purely quantitative comparisons somewhat superficial, 
keep in mind for future discussions that electronic imaging sensors can easily exceed 
the capability of the eye in resolving image detail.

IMAGE FORMATION IN THE EYE
In an ordinary photographic camera, the lens has a fixed focal length. Focusing at 
various distances is achieved by varying the distance between the lens and the imag-
ing plane, where the film (or imaging chip in the case of a digital camera) is located. 
In the human eye, the converse is true; the distance between the center of the lens 
and the imaging sensor (the retina) is fixed, and the focal length needed to achieve 
proper focus is obtained by varying the shape of the lens. The fibers in the ciliary 
body accomplish this by flattening or thickening the lens for distant or near ob-
jects, respectively. The distance between the center of the lens and the retina along 
the visual axis is approximately 17 mm. The range of focal lengths is approximately 
14 mm to 17 mm, the latter taking place when the eye is relaxed and focused at dis-
tances greater than about 3 m. The geometry in Fig. 2.3 illustrates how to obtain the 
dimensions of an image formed on the retina. For example, suppose that a person 
is looking at a tree 15 m high at a distance of 100 m. Letting h denote the height 
of that object in the retinal image, the geometry of Fig. 2.3 yields 15 100 17= h  or 
h = 2 5.  mm. As indicated earlier in this section, the retinal image is focused primar-
ily on the region of the fovea. Perception then takes place by the relative excitation 
of light receptors, which transform radiant energy into electrical impulses that ulti-
mately are decoded by the brain.

BRIGHTNESS ADAPTATION AND DISCRIMINATION

Because digital images are displayed as sets of discrete intensities, the eye’s abil-
ity to discriminate between different intensity levels is an important consideration 
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2.1  Elements of Visual Perception 51

in presenting image processing results. The range of light intensity levels to which 
the human visual system can adapt is enormous—on the order of 1010— from the 
scotopic threshold to the glare limit. Experimental evidence indicates that subjec-
tive brightness (intensity as perceived by the human visual system) is a logarithmic 
function of the light intensity incident on the eye. Figure 2.4, a plot of light inten-
sity versus subjective brightness, illustrates this characteristic. The long solid curve 
represents the range of intensities to which the visual system can adapt. In photopic 
vision alone, the range is about 106. The transition from scotopic to photopic vision 
is gradual over the approximate range from 0.001 to 0.1 millilambert (−3 to −1 mL 
in the log scale), as the double branches of the adaptation curve in this range show.

The key point in interpreting the impressive dynamic range depicted in Fig. 2.4 
is that the visual system cannot operate over such a range simultaneously. Rather, it 
accomplishes this large variation by changing its overall sensitivity, a phenomenon 
known as brightness adaptation. The total range of distinct intensity levels the eye 
can discriminate simultaneously is rather small when compared with the total adap-
tation range. For a given set of conditions, the current sensitivity level of the visual 
system is called the brightness adaptation level, which may correspond, for example, 
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52    Chapter 2  Digital Image Fundamentals

to brightness Ba  in Fig. 2.4. The short intersecting curve represents the range of sub-
jective brightness that the eye can perceive when adapted to this level. This range is 
rather restricted, having a level Bb at, and below which, all stimuli are perceived as 
indistinguishable blacks. The upper portion of the curve is not actually restricted but, 
if extended too far, loses its meaning because much higher intensities would simply 
raise the adaptation level higher than Ba.

The ability of the eye to discriminate between changes in light intensity at any 
specific adaptation level is of considerable interest. A classic experiment used to 
determine the capability of the human visual system for brightness discrimination 
consists of having a subject look at a flat, uniformly illuminated area large enough to 
occupy the entire field of view. This area typically is a diffuser, such as opaque glass, 
illuminated from behind by a light source, I, with variable intensity. To this field is 
added an increment of illumination, �I , in the form of a short-duration flash that 
appears as a circle in the center of the uniformly illuminated field, as Fig. 2.5 shows.

If �I  is not bright enough, the subject says “no,” indicating no perceivable change. 
As �I  gets stronger, the subject may give a positive response of “yes,” indicating a 
perceived change. Finally, when �I  is strong enough, the subject will give a response 
of “yes” all the time. The quantity �I Ic , where �Ic  is the increment of illumination 
discriminable 50% of the time with background illumination I, is called the Weber 
ratio. A small value of �I Ic  means that a small percentage change in intensity is 
discriminable. This represents “good” brightness discrimination. Conversely, a large 
value of �I Ic  means that a large percentage change in intensity is required for the 
eye to detect the change. This represents “poor” brightness discrimination.

A plot of �I Ic  as a function of log I  has the characteristic shape shown in Fig. 2.6. 
This curve shows that brightness discrimination is poor (the Weber ratio is large) at 
low levels of illumination, and it improves significantly (the Weber ratio decreases) 
as background illumination increases. The two branches in the curve reflect the fact 
that at low levels of illumination vision is carried out by the rods, whereas, at high 
levels, vision is a function of cones.

If the background illumination is held constant and the intensity of the other 
source, instead of flashing, is now allowed to vary incrementally from never being 
perceived to always being perceived, the typical observer can discern a total of one 
to two dozen different intensity changes. Roughly, this result is related to the num-
ber of different intensities a person can see at any one point or small area in a mono-
chrome image. This does not mean that an image can be represented by such a small 
number of intensity values because, as the eye roams about the image, the average 

FIGURE 2.5  
Basic
experimental  
setup used to 
characterize 
brightness  
discrimination.

I

I �I+

DIP4E_GLOBAL_Print_Ready.indb   52 6/16/2017   2:02:04 PM



2.1  Elements of Visual Perception    53

background changes, thus allowing a different set of incremental changes to be detect-
ed at each new adaptation level. The net result is that the eye is capable of a broader 
range of overall intensity discrimination. In fact, as we will show in Section 2.4, the eye 
is capable of detecting objectionable effects in monochrome images whose overall 
intensity is represented by fewer than approximately two dozen levels.

Two phenomena demonstrate that perceived brightness is not a simple function 
of intensity. The first is based on the fact that the visual system tends to undershoot 
or overshoot around the boundary of regions of different intensities. Figure 2.7(a) 
shows a striking example of this phenomenon. Although the intensity of the stripes 
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54    Chapter 2  Digital Image Fundamentals

is constant [see Fig. 2.7(b)], we actually perceive a brightness pattern that is strongly 
scalloped near the boundaries, as Fig. 2.7(c) shows. These perceived scalloped bands 
are called Mach bands after Ernst Mach, who first described the phenomenon in 1865.

The second phenomenon, called simultaneous contrast, is that a region’s per-
ceived brightness does not depend only on its intensity, as Fig. 2.8 demonstrates. All 
the center squares have exactly the same intensity, but each appears to the eye to 
become darker as the background gets lighter. A more familiar example is a piece of 
paper that looks white when lying on a desk, but can appear totally black when used 
to shield the eyes while looking directly at a bright sky.

Other examples of human perception phenomena are optical illusions, in which 
the eye fills in nonexisting details or wrongly perceives geometrical properties of 
objects. Figure 2.9 shows some examples. In Fig. 2.9(a), the outline of a square is 
seen clearly, despite the fact that no lines defining such a figure are part of the image. 
The same effect, this time with a circle, can be seen in Fig. 2.9(b); note how just a few 
lines are sufficient to give the illusion of a complete circle. The two horizontal line 
segments in Fig. 2.9(c) are of the same length, but one appears shorter than the other. 
Finally, all long lines in Fig. 2.9(d) are equidistant and parallel. Yet, the crosshatching 
creates the illusion that those lines are far from being parallel.

2.2 LIGHT AND THE ELECTROMAGNETIC SPECTRUM  

The electromagnetic spectrum was introduced in Section 1.3. We now consider this 
topic in more detail. In 1666, Sir Isaac Newton discovered that when a beam of 
sunlight passes through a glass prism, the emerging beam of light is not white but 
consists instead of a continuous spectrum of colors ranging from violet at one end 
to red at the other. As Fig. 2.10 shows, the range of colors we perceive in visible light 
is a small portion of the electromagnetic spectrum. On one end of the spectrum are 
radio waves with wavelengths billions of times longer than those of visible light. On 
the other end of the spectrum are gamma rays with wavelengths millions of times 
smaller than those of visible light. We showed examples in Section 1.3 of images in 
most of the bands in the EM spectrum.

2.2

ba c

FIGURE 2.8  Examples of simultaneous contrast. All the inner squares have the same intensity, 
but they appear progressively darker as the background becomes lighter.
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2.2  Light and the Electromagnetic Spectrum    55

The electromagnetic spectrum can be expressed in terms of wavelength, frequency, 
or energy. Wavelength (l) and frequency (n) are related by the expression 

 l
n

= c
 (2-1)

where c is the speed of light (2 998 108. *  m/s). Figure 2.11 shows a schematic repre-
sentation of one wavelength. 

The energy of the various components of the electromagnetic spectrum is given 
by the expression

 E h= n  (2-2)

where h is Planck’s constant. The units of wavelength are meters, with the terms 
microns (denoted mm and equal to 10 6−  m) and nanometers (denoted nm and equal 
to 10 9−  m) being used just as frequently. Frequency is measured in Hertz (Hz), with 
one Hz being equal to one cycle of a sinusoidal wave per second. A commonly used 
unit of energy is the electron-volt.

Electromagnetic waves can be visualized as propagating sinusoidal waves with 
wavelength l  (Fig. 2.11), or they can be thought of as a stream of massless particles, 
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each traveling in a wavelike pattern and moving at the speed of light. Each mass-
less particle contains a certain amount (or bundle) of energy, called a photon. We 
see from Eq. (2-2) that energy is proportional to frequency, so the higher-frequency 
(shorter wavelength) electromagnetic phenomena carry more energy per photon. 
Thus, radio waves have photons with low energies, microwaves have more energy 
than radio waves, infrared still more, then visible, ultraviolet, X-rays, and finally 
gamma rays, the most energetic of all. High-energy electromagnetic radiation, espe-
cially in the X-ray and gamma ray bands, is particularly harmful to living organisms. 

Light is a type of electromagnetic radiation that can be sensed by the eye. The 
visible (color) spectrum is shown expanded in Fig. 2.10 for the purpose of discussion 
(we will discuss color in detail in Chapter 6). The visible band of the electromag-
netic spectrum spans the range from approximately 0.43 mm (violet) to about 0.79 
mm (red). For convenience, the color spectrum is divided into six broad regions: 
violet, blue, green, yellow, orange, and red. No color (or other component of the 
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FIGURE 2.10  The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanations, but note 
that it encompasses a very narrow range of the total EM spectrum.
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2.3  Image Sensing and Acquisition    57

electromagnetic spectrum) ends abruptly; rather, each range blends smoothly into 
the next, as Fig. 2.10 shows.

The colors perceived in an object are determined by the nature of the light reflect-
ed by the object. A body that reflects light relatively balanced in all visible wave-
lengths appears white to the observer. However, a body that favors reflectance in 
a limited range of the visible spectrum exhibits some shades of color. For example, 
green objects reflect light with wavelengths primarily in the 500 to 570 nm range, 
while absorbing most of the energy at other wavelengths.

Light that is void of color is called monochromatic (or achromatic) light. The 
only attribute of monochromatic light is its intensity. Because the intensity of mono-
chromatic light is perceived to vary from black to grays and finally to white, the 
term gray level is used commonly to denote monochromatic intensity (we use the 
terms intensity and gray level interchangeably in subsequent discussions). The range 
of values of monochromatic light from black to white is usually called the gray scale, 
and monochromatic images are frequently referred to as grayscale images.

Chromatic (color) light spans the electromagnetic energy spectrum from approxi-
mately 0.43 to 0.79 mm, as noted previously. In addition to frequency, three other 
quantities are used to describe a chromatic light source: radiance, luminance, and 
brightness. Radiance is the total amount of energy that flows from the light source, 
and it is usually measured in watts (W). Luminance, measured in lumens (lm), gives 
a measure of the amount of energy an observer perceives from a light source. For 
example, light emitted from a source operating in the far infrared region of the 
spectrum could have significant energy (radiance), but an observer would hardly 
perceive it; its luminance would be almost zero. Finally, as discussed in Section 2.1, 
brightness is a subjective descriptor of light perception that is practically impossible 
to measure. It embodies the achromatic notion of intensity and is one of the key fac-
tors in describing color sensation.

In principle, if a sensor can be developed that is capable of detecting energy 
radiated in a band of the electromagnetic spectrum, we can image events of inter-
est in that band. Note, however, that the wavelength of an electromagnetic wave 
required to “see” an object must be of the same size as, or smaller than, the object. 
For example, a water molecule has a diameter on the order of 10 10−  m. Thus, to study 
these molecules, we would need a source capable of emitting energy in the far (high-
energy) ultraviolet band or soft (low-energy) X-ray bands. 

Although imaging is based predominantly on energy from electromagnetic wave 
radiation, this is not the only method for generating images. For example, we saw in 
Section 1.3 that sound reflected from objects can be used to form ultrasonic images. 
Other sources of digital images are electron beams for electron microscopy, and 
software for generating synthetic images used in graphics and visualization.

2.3 IMAGE SENSING AND ACQUISITION  

Most of the images in which we are interested are generated by the combination of 
an “illumination” source and the reflection or absorption of energy from that source 
by the elements of the “scene” being imaged. We enclose illumination and scene 
in quotes to emphasize the fact that they are considerably more general than the 

2.3
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familiar situation in which a visible light source illuminates a familiar 3-D scene. For 
example, the illumination may originate from a source of electromagnetic energy, 
such as a radar, infrared, or X-ray system. But, as noted earlier, it could originate 
from less traditional sources, such as ultrasound or even a computer-generated illu-
mination pattern. Similarly, the scene elements could be familiar objects, but they 
can just as easily be molecules, buried rock formations, or a human brain. Depend-
ing on the nature of the source, illumination energy is reflected from, or transmitted 
through, objects. An example in the first category is light reflected from a planar 
surface. An example in the second category is when X-rays pass through a patient’s 
body for the purpose of generating a diagnostic X-ray image. In some applications, 
the reflected or transmitted energy is focused onto a photo converter (e.g., a phos-
phor screen) that converts the energy into visible light. Electron microscopy and 
some applications of gamma imaging use this approach. 

Figure 2.12 shows the three principal sensor arrangements used to transform inci-
dent energy into digital images. The idea is simple: Incoming energy is transformed 
into a voltage by a combination of the input electrical power and sensor material 
that is responsive to the type of energy being detected. The output voltage wave-
form is the response of the sensor, and a digital quantity is obtained by digitizing that 
response. In this section, we look at the principal modalities for image sensing and 
generation. We will discuss image digitizing in Section 2.4.

IMAGE ACQUISITION USING A SINGLE SENSING ELEMENT
Figure 2.12(a) shows the components of a single sensing element. A familiar sensor 
of this type is the photodiode, which is constructed of silicon materials and whose 
output is a voltage proportional to light intensity. Using a filter in front of a sensor 
improves its selectivity. For example, an optical green-transmission filter favors light 
in the green band of the color spectrum. As a consequence, the sensor output would 
be stronger for green light than for other visible light components.

In order to generate a 2-D image using a single sensing element, there has to 
be relative displacements in both the x- and y-directions between the sensor and 
the area to be imaged. Figure 2.13 shows an arrangement used in high-precision 
scanning, where a film negative is mounted onto a drum whose mechanical rotation 
provides displacement in one dimension. The sensor is mounted on a lead screw 
that provides motion in the perpendicular direction. A light source is contained 
inside the drum. As the light passes through the film, its intensity is modified by 
the film density before it is captured by the sensor. This "modulation" of the light 
intensity causes corresponding variations in the sensor voltage, which are ultimately 
converted to image intensity levels by digitization. 

This method is an inexpensive way to obtain high-resolution images because 
mechanical motion can be controlled with high precision. The main disadvantages 
of this method are that it is slow and not readily portable. Other similar mechanical 
arrangements use a flat imaging bed, with the sensor moving in two linear direc-
tions. These types of mechanical digitizers sometimes are referred to as transmission 
microdensitometers. Systems in which light is reflected from the medium, instead 
of passing through it, are called reflection microdensitometers. Another example 
of imaging with a single sensing element places a laser source coincident with the 
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(a) Single sensing 
element. 
(b) Line sensor.  
(c) Array sensor.
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FIGURE 2.13
Combining a 
single sensing 
element with 
mechanical  
motion to  
generate a 2-D 
image.
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60 Chapter 2  Digital Image Fundamentals

sensor. Moving mirrors are used to control the outgoing beam in a scanning pattern 
and to direct the reflected laser signal onto the sensor. 

IMAGE ACQUISITION USING SENSOR STRIPS

A geometry used more frequently than single sensors is an in-line sensor strip, as in 
Fig. 2.12(b). The strip provides imaging elements in one direction. Motion perpen-
dicular to the strip provides imaging in the other direction, as shown in Fig. 2.14(a). 
This arrangement is used in most flat bed scanners. Sensing devices with 4000 or 
more in-line sensors are possible. In-line sensors are used routinely in airborne 
imaging applications, in which the imaging system is mounted on an aircraft that 
flies at a constant altitude and speed over the geographical area to be imaged. One-
dimensional imaging sensor strips that respond to various bands of the electromag-
netic spectrum are mounted perpendicular to the direction of flight. An imaging 
strip gives one line of an image at a time, and the motion of the strip relative to 
the scene completes the other dimension of a 2-D image. Lenses or other focusing 
schemes are used to project the area to be scanned onto the sensors.

Sensor strips in a ring configuration are used in medical and industrial imaging 
to obtain cross-sectional (“slice”) images of 3-D objects, as Fig. 2.14(b) shows. A 
rotating X-ray source provides illumination, and X-ray sensitive sensors opposite 
the source collect the energy that passes through the object. This is the basis for 
medical and industrial computerized axial tomography (CAT) imaging, as indicated 
in Sections 1.2 and 1.3. The output of the sensors is processed by reconstruction 
algorithms whose objective is to transform the sensed data into meaningful cross-
sectional images (see Section 5.11). In other words, images are not obtained directly 

Sensor strip

Linear 
motionImaged area

One image line out per
increment of linear motion

Image
reconstruction

3-D object

Linear m
otio

n

Sensor ring

X-ray source

Cross-sectional images
of 3-D object

Source
rotation

ba

FIGURE 2.14
(a) Image  
acquisition using 
a linear sensor 
strip. (b) Image 
acquisition using 
a circular sensor 
strip.
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from the sensors by motion alone; they also require extensive computer process-
ing. A 3-D digital volume consisting of stacked images is generated as the object is 
moved in a direction perpendicular to the sensor ring. Other modalities of imaging 
based on the CAT principle include magnetic resonance imaging (MRI) and posi-
tron emission tomography (PET). The illumination sources, sensors, and types of 
images are different, but conceptually their applications are very similar to the basic 
imaging approach shown in Fig. 2.14(b).

IMAGE ACQUISITION USING SENSOR ARRAYS
Figure 2.12(c) shows individual sensing elements arranged in the form of a 2-D array. 
Electromagnetic and ultrasonic sensing devices frequently are arranged in this man-
ner. This is also the predominant arrangement found in digital cameras. A typical 
sensor for these cameras is a CCD (charge-coupled device) array, which can be 
manufactured with a broad range of sensing properties and can be packaged in rug-
ged arrays of 4000 4000*  elements or more. CCD sensors are used widely in digital 
cameras and other light-sensing instruments. The response of each sensor is pro-
portional to the integral of the light energy projected onto the surface of the sensor, 
a property that is used in astronomical and other applications requiring low noise 
images. Noise reduction is achieved by letting the sensor integrate the input light 
signal over minutes or even hours. Because the sensor array in Fig. 2.12(c) is two-
dimensional, its key advantage is that a complete image can be obtained by focusing 
the energy pattern onto the surface of the array. Motion obviously is not necessary, 
as is the case with the sensor arrangements discussed in the preceding two sections.

Figure 2.15 shows the principal manner in which array sensors are used. This 
figure shows the energy from an illumination source being reflected from a scene 
(as mentioned at the beginning of this section, the energy also could be transmit-
ted through the scene). The first function performed by the imaging system in Fig. 
2.15(c) is to collect the incoming energy and focus it onto an image plane. If the illu-
mination is light, the front end of the imaging system is an optical lens that projects 
the viewed scene onto the focal plane of the lens, as Fig. 2.15(d) shows. The sensor 
array, which is coincident with the focal plane, produces outputs proportional to the 
integral of the light received at each sensor. Digital and analog circuitry sweep these 
outputs and convert them to an analog signal, which is then digitized by another sec-
tion of the imaging system. The output is a digital image, as shown diagrammatically 
in Fig. 2.15(e). Converting images into digital form is the topic of Section 2.4.

A SIMPLE IMAGE FORMATION MODEL
As introduced in Section 1.1, we denote images by two-dimensional functions of the 
form f x y( , ). The value of f at spatial coordinates ( , )x y  is a scalar quantity whose 
physical meaning is determined by the source of the image, and whose values are 
proportional to energy radiated by a physical source (e.g., electromagnetic waves). 
As a consequence, f x y( , ) must be nonnegative† and finite; that is,

†  Image intensities can become negative during processing, or as a result of interpretation. For example, in radar 
images, objects moving toward the radar often are interpreted as having negative velocities while objects moving 
away are interpreted as having positive velocities. Thus, a velocity image might be coded as having both positive 
and negative values. When storing and displaying images, we normally scale the intensities so that the smallest 
negative value becomes 0 (see Section 2.6 regarding intensity scaling).

In some cases, the source 
is imaged directly, as 
in obtaining images of 
the sun.
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62 Chapter 2  Digital Image Fundamentals

 0 ≤ <f x y( , ) �  (2-3)

Function f x y( , ) is characterized by two components: (1) the amount of source illu-
mination incident on the scene being viewed, and (2) the amount of illumination 
reflected by the objects in the scene. Appropriately, these are called the illumination 
and reflectance components, and are denoted by i x y( , ) and r x y( , ), respectively. The 
two functions combine as a product to form f x y( , ):

 f x y i x y r x y( , ) ( , ) ( , )=  (2-4)

where

 0 ≤ <i x y( , ) �  (2-5)

and

 0 1≤ ≤r x y( , )  (2-6)

Thus, reflectance is bounded by 0 (total absorption) and 1 (total reflectance). The 
nature of i x y( , ) is determined by the illumination source, and r x y( , ) is determined 
by the characteristics of the imaged objects. These expressions are applicable also 
to images formed via transmission of the illumination through a medium, such as a 

Illumination (energy)
source

Imaging system

(Internal) image plane

Output (digitized) image

Scene

b
a dc e

FIGURE 2.15  An example of digital image acquisition. (a) Illumination (energy) source. (b) A scene. (c) Imaging 
system. (d) Projection of the scene onto the image plane. (e) Digitized image.
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2.4  Image Sampling and Quantization    63

chest X-ray. In this case, we would deal with a transmissivity instead of a reflectivity 
function, but the limits would be the same as in Eq. (2-6), and the image function 
formed would be modeled as the product in Eq. (2-4).

EXAMPLE 2.1 :  Some typical values of illumination and reflectance.

The following numerical quantities illustrate some typical values of illumination and reflectance for 
visible light. On a clear day, the sun may produce in excess of 90 000,  lm/m2 of illumination on the sur-
face of the earth. This value decreases to less than 10 000,  lm/m2 on a cloudy day. On a clear evening, a 
full moon yields about 0 1.  lm/m2 of illumination. The typical illumination level in a commercial office 
is about 1 000,  lm/m2. Similarly, the following are typical values of r x y( , ): 0.01 for black velvet, 0.65 for 
stainless steel, 0.80 for flat-white wall paint, 0.90 for silver-plated metal, and 0.93 for snow. 

Let the intensity (gray level) of a monochrome image at any coordinates ( , )x y  
be denoted by 

 / = f x y( , )  (2-7)

From Eqs. (2-4) through (2-6) it is evident that /  lies in the range

 L Lmin max≤ ≤/  (2-8)

In theory, the requirement on Lmin  is that it be nonnegative, and on Lmax that it 
be finite. In practice, L i rmin min min=  and L i rmax max max= . From Example 2.1, using 
average office illumination and reflectance values as guidelines, we may expect 
Lmin ≈ 10 and Lmax ≈ 1000  to be typical indoor values in the absence of additional 
illumination. The units of these quantities are lum/m2. However, actual units sel-
dom are of interest, except in cases where photometric measurements are being 
performed.

The interval [ , ]min maxL L  is called the intensity (or gray) scale. Common practice is 
to shift this interval numerically to the interval [ , ],0 1  or [ , ],0 C  where / = 0 is consid-
ered black and / = 1 (or )C  is considered white on the scale. All intermediate values 
are shades of gray varying from black to white.

2.4  IMAGE SAMPLING AND QUANTIZATION  

As discussed in the previous section, there are numerous ways to acquire images, but 
our objective in all is the same: to generate digital images from sensed data. The out-
put of most sensors is a continuous voltage waveform whose amplitude and spatial 
behavior are related to the physical phenomenon being sensed. To create a digital 
image, we need to convert the continuous sensed data into a digital format. This 
requires two processes: sampling and quantization.

BASIC CONCEPTS IN SAMPLING AND QUANTIZATION

Figure 2.16(a) shows a continuous image f that we want to convert to digital form. 
An image may be continuous with respect to the x- and y-coordinates, and also in 

2.4

The discussion of sam-
pling in this section is of 
an intuitive nature. We 
will discuss this topic in 
depth in Chapter 4.
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64    Chapter 2  Digital Image Fundamentals

amplitude. To digitize it, we have to sample the function in both coordinates and 
also in amplitude. Digitizing the coordinate values is called sampling. Digitizing the 
amplitude values is called quantization.

The one-dimensional function in Fig. 2.16(b) is a plot of amplitude (intensity 
level) values of the continuous image along the line segment AB in Fig. 2.16(a). The 
random variations are due to image noise. To sample this function, we take equally 
spaced samples along line AB, as shown in Fig. 2.16(c). The samples are shown as 
small dark squares superimposed on the function, and their (discrete) spatial loca-
tions are indicated by corresponding tick marks in the bottom of the figure. The set 
of dark squares constitute the sampled function. However, the values of the sam-
ples still span (vertically) a continuous range of intensity values. In order to form a 
digital function, the intensity values also must be converted (quantized) into discrete 
quantities. The vertical gray bar in Fig. 2.16(c) depicts the intensity scale divided 
into eight discrete intervals, ranging from black to white. The vertical tick marks 
indicate the specific value assigned to each of the eight intensity intervals. The con-
tinuous intensity levels are quantized by assigning one of the eight values to each 
sample, depending on the vertical proximity of a sample to a vertical tick mark. The 
digital samples resulting from both sampling and quantization are shown as white 
squares in Fig. 2.16(d). Starting at the top of the continuous image and carrying out 
this procedure downward, line by line, produces a two-dimensional digital image. 
It is implied in Fig. 2.16 that, in addition to the number of discrete levels used, the 
accuracy achieved in quantization is highly dependent on the noise content of the 
sampled signal. 
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FIGURE 2.16
(a) Continuous 
image. (b) A 
scan line show-
ing intensity 
variations along 
line AB in the 
continuous image. 
(c) Sampling and 
quantization.  
(d) Digital scan 
line. (The black 
border in (a) is 
included for  
clarity. It is not 
part of the image).
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In practice, the method of sampling is determined by the sensor arrangement 
used to generate the image. When an image is generated by a single sensing element 
combined with mechanical motion, as in Fig. 2.13, the output of the sensor is quan-
tized in the manner described above. However, spatial sampling is accomplished by 
selecting the number of individual mechanical increments at which we activate the 
sensor to collect data. Mechanical motion can be very exact so, in principle, there is 
almost no limit on how fine we can sample an image using this approach. In practice, 
limits on sampling accuracy are determined by other factors, such as the quality of 
the optical components used in the system.

When a sensing strip is used for image acquisition, the number of sensors in the 
strip establishes the samples in the resulting image in one direction, and mechanical 
motion establishes the number of samples in the other. Quantization of the sensor 
outputs completes the process of generating a digital image.

When a sensing array is used for image acquisition, no motion is required. The 
number of sensors in the array establishes the limits of sampling in both directions. 
Quantization of the sensor outputs is as explained above. Figure 2.17 illustrates this 
concept. Figure 2.17(a) shows a continuous image projected onto the plane of a 2-D 
sensor. Figure 2.17(b) shows the image after sampling and quantization. The quality 
of a digital image is determined to a large degree by the number of samples and dis-
crete intensity levels used in sampling and quantization. However, as we will show 
later in this section, image content also plays a role in the choice of these parameters.

REPRESENTING DIGITAL IMAGES

Let f s t( , ) represent a continuous image function of two continuous variables, s and 
t. We convert this function into a digital image by sampling and quantization, as 
explained in the previous section. Suppose that we sample the continuous image 
into a digital image, f x y( , ), containing M rows and N columns, where ( , )x y  are 
discrete coordinates. For notational clarity and convenience, we use integer values 
for these discrete coordinates: x M= −0 1 2 1, , , ,…  and y N= −0 1 2 1, , , ,… . Thus, 
for example, the value of the digital image at the origin is f ( , )0 0 , and its value at 
the next coordinates along the first row is f ( , )0 1 . Here, the notation (0, 1) is used 

ba

FIGURE 2.17
(a) Continuous 
image projected 
onto a sensor 
array. (b) Result 
of image sampling 
and quantization.
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66    Chapter 2  Digital Image Fundamentals

to denote the second sample along the first row. It does not mean that these are 
the values of the physical coordinates when the image was sampled. In general, the 
value of a digital image at any coordinates ( , )x y  is denoted f x y( , ), where x and y 
are integers. When we need to refer to specific coordinates ( , )i j , we use the notation 
f i j( , ), where the arguments are integers. The section of the real plane spanned by 
the coordinates of an image is called the spatial domain, with x and y being referred 
to as spatial variables or spatial coordinates.

Figure 2.18 shows three ways of representing f x y( , ). Figure 2.18(a) is a plot of 
the function, with two axes determining spatial location and the third axis being the 
values of f as a function of x and y. This representation is useful when working with 
grayscale sets whose elements are expressed as triplets of the form ( , , )x y z , where 
x and y are spatial coordinates and z is the value of f at coordinates ( , ).x y  We will 
work with this representation briefly in Section 2.6.

The representation in Fig. 2.18(b) is more common, and it shows f x y( , ) as it would 
appear on a computer display or photograph. Here, the intensity of each point in the 
display is proportional to the value of f at that point. In this figure, there are only 
three equally spaced intensity values. If the intensity is normalized to the interval 
[ , ],0 1  then each point in the image has the value 0, 0.5, or 1. A monitor or printer con-
verts these three values to black, gray, or white, respectively, as in Fig. 2.18(b). This 
type of representation includes color images, and allows us to view results at a glance.

As Fig. 2.18(c) shows, the third representation is an array (matrix) composed of 
the numerical values of f x y( , ). This is the representation used for computer process-
ing. In equation form, we write the representation of an M N*  numerical array as

 f x y

f f f N

f f f N

f M

( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( ,

=

−
−

−

0 0 0 1 0 1

1 0 1 1 1 1

1

�
�

� � �
00 1 1 1 1) ( , ) ( , )f M f M N− − −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥�

 (2-9)

The right side of this equation is a digital image represented as an array of real 
numbers. Each element of this array is called an image element, picture element, pixel, 
or pel. We use the terms image and pixel throughout the book to denote a digital 
image and its elements. Figure 2.19 shows a graphical representation of an image 
array, where the x- and y-axis are used to denote the rows and columns of the array. 
Specific pixels are values of the array at a fixed pair of coordinates. As mentioned 
earlier, we generally use f i j( , ) when referring to a pixel with coordinates ( , ).i j

We can also represent a digital image in a traditional matrix form:

 A =

⎡

⎣

−

−

− − − −

a a a

a a a

a a a

N

N

M M M N

0 0 0 1 0 1
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⎢⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (2-10)

Clearly, a f i jij = ( , ), so Eqs. (2-9) and (2-10) denote identical arrays.
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As Fig. 2.19 shows, we define the origin of an image at the top left corner. This is 
a convention based on the fact that many image displays (e.g., TV monitors) sweep 
an image starting at the top left and moving to the right, one row at a time. More 
important is the fact that the first element of a matrix is by convention at the top 
left of the array. Choosing the origin of f x y( , ) at that point makes sense mathemati-
cally because digital images in reality are matrices. In fact, as you will see, sometimes 
we use x and y interchangeably in equations with the rows (r) and columns (c) of a 
matrix.

It is important to note that the representation in Fig. 2.19, in which the positive 
x-axis extends downward and the positive y-axis extends to the right, is precisely the 
right-handed Cartesian coordinate system with which you are familiar,† but shown 
rotated by 90°  so that the origin appears on the top, left.

† Recall that a right-handed coordinate system is such that, when the index of the right hand points in the direc-
tion of the positive x-axis and the middle finger points in the (perpendicular) direction of the positive y-axis, the 
thumb points up. As Figs. 2.18 and 2.19 show, this indeed is the case in our image coordinate system. In practice, 
you will also find implementations based on a left-handed system, in which the x- and y-axis are interchanged 
from the way we show them in Figs. 2.18 and 2.19. For example, MATLAB uses a left-handed system for image 
processing. Both systems are perfectly valid, provided they are used consistently.
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FIGURE 2.18
(a) Image plotted 
as a surface.  
(b) Image displayed 
as a visual intensity 
array. (c) Image 
shown as a 2-D nu-
merical array. (The 
numbers 0, .5, and 
1 represent black, 
gray, and white, 
respectively.)
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The center of an M N×  digital image with origin at ( , )0 0  and range to ( , )M N− −1 1
is obtained by dividing M and N by 2 and rounding down to the nearest integer. 
This operation sometimes is denoted using the floor operator, J Ki , as shown in Fig. 
2.19. This holds true for M and N even or odd. For example, the center of an image 
of size 1023 1024×  is at ( , ).511 512  Some programming languages (e.g., MATLAB) 
start indexing at 1 instead of at 0. The center of an image in that case is found at 
( , ) ( ) , ( ) .x y M Nc c = + +( )floor floor2 1 2 1

To express sampling and quantization in more formal mathematical terms, let 
Z and R denote the set of integers and the set of real numbers, respectively. The 
sampling process may be viewed as partitioning the xy-plane into a grid, with the 
coordinates of the center of each cell in the grid being a pair of elements from the 
Cartesian product Z2 (also denoted Z Z× ) which, as you may recall, is the set of 
all ordered pairs of elements ( , )z zi j  with zi and zj  being integers from set Z. Hence, 
f x y( , ) is a digital image if ( , )x y  are integers from Z2 and f is a function that assigns 
an intensity value (that is, a real number from the set of real numbers, R) to each 
distinct pair of coordinates ( , )x y . This functional assignment is the quantization pro-
cess described earlier. If the intensity levels also are integers, then R Z= , and a 
digital image becomes a 2-D function whose coordinates and amplitude values are 
integers. This is the representation we use in the book.

Image digitization requires that decisions be made regarding the values for M, N, 
and for the number, L, of discrete intensity levels. There are no restrictions placed 
on M and N, other than they have to be positive integers. However, digital storage 
and quantizing hardware considerations usually lead to the number of intensity lev-
els, L, being an integer power of two; that is

L k= 2 (2-11)

where k is an integer. We assume that the discrete levels are equally spaced and that 
they are integers in the range [ , ]0 1L − . 

The floor of z, sometimes 
denoted JzK, is the largest 
integer that is less than 
or equal to z. The ceiling 
of z, denoted LzM, is the 
smallest integer that is 
greater than or equal 
to z.

See Eq. (2-41) in  
Section 2.6 for a formal 
definition of the  
Cartesian product.

FIGURE 2.19
Coordinate  
convention used 
to represent digital 
images. Because 
coordinate values 
are integers, there 
is a one-to-one 
correspondence 
between x and y 
and the rows (r) 
and columns (c) of 
a matrix.
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Sometimes, the range of values spanned by the gray scale is referred to as the 
dynamic range, a term used in different ways in different fields. Here, we define the 
dynamic range of an imaging system to be the ratio of the maximum measurable 
intensity to the minimum detectable intensity level in the system. As a rule, the 
upper limit is determined by saturation and the lower limit by noise, although noise 
can be present also in lighter intensities. Figure 2.20 shows examples of saturation 
and slight visible noise. Because the darker regions are composed primarily of pixels 
with the minimum detectable intensity, the background in Fig. 2.20 is the noisiest 
part of the image; however, dark background noise typically is much harder to see. 

The dynamic range establishes the lowest and highest intensity levels that a system 
can represent and, consequently, that an image can have. Closely associated with this 
concept is image contrast, which we define as the difference in intensity between 
the highest and lowest intensity levels in an image. The contrast ratio is the ratio of 
these two quantities. When an appreciable number of pixels in an image have a high 
dynamic range, we can expect the image to have high contrast. Conversely, an image 
with low dynamic range typically has a dull, washed-out gray look. We will discuss 
these concepts in more detail in Chapter 3.

The number, b, of bits required to store a digital image is

 b M N k= * *  (2-12)

When M N= , this equation becomes

 b N k= 2  (2-13)

Noise

Saturation

FIGURE 2.20
An image exhibit-
ing saturation and 
noise. Saturation 
is the highest val-
ue beyond which 
all intensity values 
are clipped (note 
how the entire 
saturated area has 
a high, constant 
intensity level). 
Visible noise in 
this case appears 
as a grainy texture 
pattern. The dark 
background is 
noisier, but the 
noise is difficult 
to see.
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70    Chapter 2  Digital Image Fundamentals

Figure 2.21 shows the number of megabytes required to store square images for 
various values of N and k (as usual, one byte equals 8 bits and a megabyte equals 
106 bytes). 

When an image can have 2k possible intensity levels, it is common practice to 
refer to it as a “k-bit image,” (e,g., a 256-level image is called an 8-bit image). Note 
that storage requirements for large 8-bit images (e.g., 10 000 10 000, ,*  pixels) are 
not insignificant.

LINEAR VS. COORDINATE INDEXING

The convention discussed in the previous section, in which the location of a pixel is 
given by its 2-D coordinates, is referred to as coordinate indexing, or subscript index-
ing. Another type of indexing used extensively in programming image processing 
algorithms is linear indexing, which consists of a 1-D string of nonnegative integers 
based on computing offsets from coordinates ( , )0 0 . There are two principal types of 
linear indexing, one is based on a row scan of an image, and the other on a column scan.

Figure 2.22 illustrates the principle of linear indexing based on a column scan. 
The idea is to scan an image column by column, starting at the origin and proceeding 
down and then to the right. The linear index is based on counting pixels as we scan 
the image in the manner shown in Fig. 2.22. Thus, a scan of the first (leftmost) column 
yields linear indices 0 through M − 1. A scan of the second column yields indices M  
through 2 1M − , and so on, until the last pixel in the last column is assigned the linear 
index value MN − 1. Thus, a linear index, denoted by a , has one of MN possible 
values: 0 1 2 1, , , ,… MN − , as Fig. 2.22 shows. The important thing to notice here is 
that each pixel is assigned a linear index value that identifies it uniquely.

The formula for generating linear indices based on a column scan is straightfor-
ward and can be determined by inspection. For any pair of coordinates ( , )x y , the 
corresponding linear index value is

 a = +My x  (2-14)
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Number of  
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required to store 
images for  
various values of 
N and k.
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Conversely, the coordinate indices for a given linear index value a  are given by the 
equations†

x M= a mod (2-15)

and

 y x M= ( )a - (2-16)

Recall that a mod M  means “the remainder of the division of a  by M.” This is a 
formal way of stating that row numbers repeat themselves at the start of every col-
umn. Thus, when a = 0, the remainder of the division of 0 by M is 0, so x = 0. When 
a = 1, the remainder is 1, and so x = 1. You can see that x will continue to be equal 
to a  until a = −M 1. When a = M  (which is at the beginning of the second column), 
the remainder is 0, and thus x = 0 again, and it increases by 1 until the next column 
is reached, when the pattern repeats itself. Similar comments apply to Eq. (2-16). See 
Problem 2.11 for a derivation of the preceding two equations.

SPATIAL AND INTENSITY RESOLUTION

Intuitively, spatial resolution is a measure of the smallest discernible detail in an 
image. Quantitatively, spatial resolution can be stated in several ways, with line 
pairs per unit distance, and dots (pixels) per unit distance being common measures. 
Suppose that we construct a chart with alternating black and white vertical lines, 
each of width W units (W can be less than 1). The width of a line pair is thus 2W, and 
there are W 2 line pairs per unit distance. For example, if the width of a line is 0.1 mm, 
there are 5 line pairs per unit distance (i.e., per mm). A widely used definition of 
image resolution is the largest number of discernible line pairs per unit distance (e.g., 
100 line pairs per mm). Dots per unit distance is a measure of image resolution used 
in the printing and publishing industry. In the U.S., this measure usually is expressed 
as dots per inch (dpi). To give you an idea of quality, newspapers are printed with a 

†When working with modular number systems, it is more accurate to write x M≡ a mod , where the symbol ≡
means congruence. However, our interest here is just on converting from linear to coordinate indexing, so we 
use the more familiar equal sign.

x

y

Image f(x, y)

(0, 0)  α = 0

(M - 1, 0)  α = M - 1 (M - 1, N - 1)  α = MN - 1

(0, 1)  α = M
(0, 2)  α = 2M

(M - 1, 1)  α = 2M - 1

Image f(ff x, y)

FIGURE 2.22
Illustration of  
column scanning 
for generating  
linear indices. 
Shown are several 
2-D coordinates (in 
parentheses) and 
their corresponding 
linear indices.
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resolution of 75 dpi, magazines at 133 dpi, glossy brochures at 175 dpi, and the book 
page at which you are presently looking was printed at 2400 dpi. 

To be meaningful, measures of spatial resolution must be stated with respect to 
spatial units. Image size by itself does not tell the complete story. For example, to say 
that an image has a resolution of 1024 1024*  pixels is not a meaningful statement 
without stating the spatial dimensions encompassed by the image. Size by itself is 
helpful only in making comparisons between imaging capabilities. For instance, a 
digital camera with a 20-megapixel CCD imaging chip can be expected to have a 
higher capability to resolve detail than an 8-megapixel camera, assuming that both 
cameras are equipped with comparable lenses and the comparison images are taken 
at the same distance.

Intensity resolution similarly refers to the smallest discernible change in inten-
sity level. We have considerable discretion regarding the number of spatial samples 
(pixels) used to generate a digital image, but this is not true regarding the number 
of intensity levels. Based on hardware considerations, the number of intensity levels 
usually is an integer power of two, as we mentioned when discussing Eq. (2-11). The 
most common number is 8 bits, with 16 bits being used in some applications in which 
enhancement of specific intensity ranges is necessary. Intensity quantization using 
32 bits is rare. Sometimes one finds systems that can digitize the intensity levels of 
an image using 10 or 12 bits, but these are not as common. 

Unlike spatial resolution, which must be based on a per-unit-of-distance basis to 
be meaningful, it is common practice to refer to the number of bits used to quan-
tize intensity as the “intensity resolution.” For example, it is common to say that an 
image whose intensity is quantized into 256 levels has 8 bits of intensity resolution. 
However, keep in mind that discernible changes in intensity are influenced also by 
noise and saturation values, and by the capabilities of human perception to analyze 
and interpret details in the context of an entire scene (see Section 2.1). The following 
two examples illustrate the effects of spatial and intensity resolution on discernible 
detail. Later in this section, we will discuss how these two parameters interact in 
determining perceived image quality.

EXAMPLE 2.2 : Effects of reducing the spatial resolution of a digital image.

Figure 2.23 shows the effects of reducing the spatial resolution of an image. The images in Figs. 2.23(a) 
through (d) have resolutions of 930, 300, 150, and 72 dpi, respectively. Naturally, the lower resolution 
images are smaller than the original image in (a). For example, the original image is of size 2136 2140*  
pixels, but the 72 dpi image is an array of only 165 166*  pixels. In order to facilitate comparisons, all the 
smaller images were zoomed back to the original size (the method used for zooming will be discussed 
later in this section). This is somewhat equivalent to “getting closer” to the smaller images so that we can 
make comparable statements about visible details. 

There are some small visual differences between Figs. 2.23(a) and (b), the most notable being a slight 
distortion in the seconds marker pointing to 60 on the right side of the chronometer. For the most part, 
however, Fig. 2.23(b) is quite acceptable. In fact, 300 dpi is the typical minimum image spatial resolution 
used for book publishing, so one would not expect to see much difference between these two images. 
Figure 2.23(c) begins to show visible degradation (see, for example, the outer edges of the chronometer 
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case and compare the seconds marker with the previous two images). The numbers also show visible 
degradation. Figure 2.23(d) shows degradation that is visible in most features of the image. When print-
ing at such low resolutions, the printing and publishing industry uses a number of techniques (such as 
locally varying the pixel size) to produce much better results than those in Fig. 2.23(d). Also, as we will 
show later in this section, it is possible to improve on the results of Fig. 2.23 by the choice of interpola-
tion method used.

EXAMPLE 2.3 :  Effects of varying the number of intensity levels in a digital image.

Figure 2.24(a) is a 774 640×  CT projection image, displayed using 256 intensity levels (see Chapter 1 
regarding CT images). The objective of this example is to reduce the number of intensities of the image 
from 256 to 2 in integer powers of 2, while keeping the spatial resolution constant. Figures 2.24(b) 
through (d) were obtained by reducing the number of intensity levels to 128, 64, and 32, respectively (we 
will discuss in Chapter 3 how to reduce the number of levels). 

ba
dc

FIGURE 2.23
Effects of  
reducing spatial 
resolution. The 
images shown 
are at:  
(a) 930 dpi,  
(b) 300 dpi,  
(c) 150 dpi, and 
(d) 72 dpi.
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The 128- and 64-level images are visually identical for all practical purposes. However, the 32-level image 
in Fig. 2.24(d) has a set of almost imperceptible, very fine ridge-like structures in areas of constant inten-
sity. These structures are clearly visible in the 16-level image in Fig. 2.24(e). This effect, caused by using 
an insufficient number of intensity levels in smooth areas of a digital image, is called false contouring, so 
named because the ridges resemble topographic contours in a map. False contouring generally is quite 
objectionable in images displayed using 16 or fewer uniformly spaced intensity levels, as the images in 
Figs. 2.24(e)-(h) show. 

As a very rough guideline, and assuming integer powers of 2 for convenience, images of size 256 256*  
pixels with 64 intensity levels, and printed on a size format on the order of 5 5*  cm, are about the lowest 
spatial and intensity resolution images that can be expected to be reasonably free of objectionable sam-
pling distortions and false contouring.

ba
dc

FIGURE 2.24
(a) 774 × 640, 
256-level image. 
(b)-(d) Image  
displayed in 128, 
64, and 32 inten-
sity levels, while  
keeping the  
spatial resolution  
constant.  
(Original image 
courtesy of the 
Dr. David R.  
Pickens,  
Department of 
Radiology & 
Radiological  
Sciences,  
Vanderbilt  
University  
Medical Center.)
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The results in Examples 2.2 and 2.3 illustrate the effects produced on image qual-
ity by varying spatial and intensity resolution independently. However, these results 
did not consider any relationships that might exist between these two parameters. 
An early study by Huang [1965] attempted to quantify experimentally the effects on 
image quality produced by the interaction of these two variables. The experiment 
consisted of a set of subjective tests. Images similar to those shown in Fig. 2.25 were 
used. The woman’s face represents an image with relatively little detail; the picture 
of the cameraman contains an intermediate amount of detail; and the crowd picture 
contains, by comparison, a large amount of detail. 

Sets of these three types of images of various sizes and intensity resolution were 
generated by varying N and k [see Eq. (2-13)]. Observers were then asked to rank 

fe
hg

FIGURE 2.24
(Continued) 
(e)-(h) Image 
displayed in 16, 8, 
4, and 2 intensity 
levels. 
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them according to their subjective quality. Results were summarized in the form of 
so-called isopreference curves in the Nk-plane. (Figure 2.26 shows average isopref-
erence curves representative of the types of images in Fig. 2.25.) Each point in the 
Nk-plane represents an image having values of N and k equal to the coordinates 
of that point. Points lying on an isopreference curve correspond to images of equal 
subjective quality. It was found in the course of the experiments that the isoprefer-
ence curves tended to shift right and upward, but their shapes in each of the three 
image categories were similar to those in Fig. 2.26. These results were not unexpect-
ed, because a shift up and right in the curves simply means larger values for N and k, 
which implies better picture quality.

ba c

FIGURE 2.25 (a) Image with a low level of detail. (b) Image with a medium level of detail. (c) Image with a relatively 
large amount of detail. (Image (b) courtesy of the Massachusetts Institute of Technology.)

Face

2561286432

4

5

k

N

Crowd

Cameraman

FIGURE 2.26
Representative  
isopreference 
curves for the 
three types of  
images in  
Fig. 2.25.
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Observe that isopreference curves tend to become more vertical as the detail in 
the image increases. This result suggests that for images with a large amount of detail 
only a few intensity levels may be needed. For example, the isopreference curve in 
Fig. 2.26 corresponding to the crowd is nearly vertical. This indicates that, for a fixed 
value of N, the perceived quality for this type of image is nearly independent of the 
number of intensity levels used (for the range of intensity levels shown in Fig. 2.26). 
The perceived quality in the other two image categories remained the same in some 
intervals in which the number of samples was increased, but the number of intensity 
levels actually decreased. The most likely reason for this result is that a decrease in k 
tends to increase the apparent contrast, a visual effect often perceived as improved 
image quality.

IMAGE INTERPOLATION

Interpolation is used in tasks such as zooming, shrinking, rotating, and geometrically 
correcting digital images. Our principal objective in this section is to introduce inter-
polation and apply it to image resizing (shrinking and zooming), which are basically 
image resampling methods. Uses of interpolation in applications such as rotation 
and geometric corrections will be discussed in Section 2.6.

Interpolation is the process of using known data to estimate values at unknown 
locations. We begin the discussion of this topic with a short example. Suppose that 
an image of size 500 500*  pixels has to be enlarged 1.5 times to 750 750*  pixels. A 
simple way to visualize zooming is to create an imaginary 750 750*  grid with the 
same pixel spacing as the original image, then shrink it so that it exactly overlays the 
original image. Obviously, the pixel spacing in the shrunken 750 750*  grid will be 
less than the pixel spacing in the original image. To assign an intensity value to any 
point in the overlay, we look for its closest pixel in the underlying original image and 
assign the intensity of that pixel to the new pixel in the 750 750*  grid. When intensi-
ties have been assigned to all the points in the overlay grid, we expand it back to the 
specified size to obtain the resized image.

The method just discussed is called nearest neighbor interpolation because it 
assigns to each new location the intensity of its nearest neighbor in the original 
image (see Section 2.5 regarding neighborhoods). This approach is simple but, it has 
the tendency to produce undesirable artifacts, such as severe distortion of straight 
edges. A more suitable approach is bilinear interpolation, in which we use the four 
nearest neighbors to estimate the intensity at a given location. Let ( , )x y  denote the 
coordinates of the location to which we want to assign an intensity value (think of 
it as a point of the grid described previously), and let v( , )x y  denote that intensity 
value. For bilinear interpolation, the assigned value is obtained using the equation

 v( , )x y ax by cxy d= + + +  (2-17)

where the four coefficients are determined from the four equations in four 
unknowns that can be written using the four nearest neighbors of point ( , )x y . 
Bilinear interpolation gives much better results than nearest neighbor interpolation, 
with a modest increase in computational burden.

Contrary to what the 
name suggests, bilinear 
interpolation is not a 
linear operation because 
it involves multiplication 
of coordinates (which is 
not a linear operation). 
See Eq. (2-17).
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The next level of complexity is bicubic interpolation, which involves the sixteen 
nearest neighbors of a point. The intensity value assigned to point ( , )x y  is obtained 
using the equation

 v( , )x y a x yij
i j

ji

=
==
∑∑

0

3

0

3

  (2-18)

The sixteen coefficients are determined from the sixteen equations with six-
teen unknowns that can be written using the sixteen nearest neighbors of point 
( , )x y  . Observe that Eq. (2-18) reduces in form to Eq. (2-17) if the limits of both 
summations in the former equation are 0 to 1. Generally, bicubic interpolation does 
a better job of preserving fine detail than its bilinear counterpart. Bicubic interpola-
tion is the standard used in commercial image editing applications, such as Adobe 
Photoshop and Corel Photopaint.

Although images are displayed with integer coordinates, it is possible during pro-
cessing to work with subpixel accuracy by increasing the size of the image using 
interpolation to “fill the gaps” between pixels in the original image.

EXAMPLE 2.4 :  Comparison of interpolation approaches for image shrinking and zooming.

Figure 2.27(a) is the same as Fig. 2.23(d), which was obtained by reducing the resolution of the 930 dpi 
image in Fig. 2.23(a) to 72 dpi (the size shrank from 2136 2140*  to 165 166*  pixels) and then zooming 
the reduced image back to its original size. To generate Fig. 2.23(d) we used nearest neighbor interpola-
tion both to shrink and zoom the image. As noted earlier, the result in Fig. 2.27(a) is rather poor. Figures 
2.27(b) and (c) are the results of repeating the same procedure but using, respectively, bilinear and bicu-
bic interpolation for both shrinking and zooming. The result obtained by using bilinear interpolation is a 
significant improvement over nearest neighbor interpolation, but the resulting image is blurred slightly. 
Much sharper results can be obtained using bicubic interpolation, as Fig. 2.27(c) shows. 

 
FIGURE 2.27 (a) Image reduced to 72 dpi and zoomed back to its original 930 dpi using nearest neighbor interpolation. 
This figure is the same as Fig. 2.23(d). (b) Image reduced to 72 dpi and zoomed using bilinear interpolation. (c) Same 
as (b) but using bicubic interpolation.

ba c
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It is possible to use more neighbors in interpolation, and there are more complex 
techniques, such as using splines or wavelets, that in some instances can yield better 
results than the methods just discussed. While preserving fine detail is an exception-
ally important consideration in image generation for 3-D graphics (for example, see 
Hughes and Andries [2013]), the extra computational burden seldom is justifiable 
for general-purpose digital image processing, where bilinear or bicubic interpola-
tion typically are the methods of choice.

2.5 SOME BASIC RELATIONSHIPS BETWEEN PIXELS  

In this section, we discuss several important relationships between pixels in a digital 
image. When referring in the following discussion to particular pixels, we use lower-
case letters, such as p and q.

NEIGHBORS OF A PIXEL

A pixel p at coordinates ( , )x y  has two horizontal and two vertical neighbors with 
coordinates

 ( , ), ( , ), ( , ), ( , )x y x y x y x y+ − + −1 1 1 1

This set of pixels, called the 4-neighbors of p, is denoted N p4( ).
The four diagonal neighbors of p have coordinates

 ( , ), ( , ), ( , ), ( , )x y x y x y x y+ + + − − + − −1 1 1 1 1 1 1 1

and are denoted N pD( ). These neighbors, together with the 4-neighbors, are called 
the 8-neighbors of p, denoted by N p8( ). The set of image locations of the neighbors 
of a point p is called the neighborhood of p. The neighborhood is said to be closed if 
it contains p. Otherwise, the neighborhood is said to be open.

ADJACENCY, CONNECTIVITY, REGIONS, AND BOUNDARIES

Let V be the set of intensity values used to define adjacency. In a binary image, 
V = { }1  if we are referring to adjacency of pixels with value 1. In a grayscale image, 
the idea is the same, but set V typically contains more elements. For example, if we 
are dealing with the adjacency of pixels whose values are in the range 0 to 255, set V 
could be any subset of these 256 values. We consider three types of adjacency:

1. 4-adjacency. Two pixels p and q with values from V are 4-adjacent if q is in the 
set N p4( ).

2. 8-adjacency. Two pixels p and q with values from V are 8-adjacent if q is in the 
set N p8( ).

3. m-adjacency (also called mixed adjacency). Two pixels p and q with values from 
V are m-adjacent if

2.5
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(a) q is in N p4( ), or
(b) q is in N pD( ) and the set N p N q4 4( ) ( )¨  has no pixels whose values are 

from V.

Mixed adjacency is a modification of 8-adjacency, and is introduced to eliminate the 
ambiguities that may result from using 8-adjacency. For example, consider the pixel 
arrangement in Fig. 2.28(a) and let V = { }1 . The three pixels at the top of Fig. 2.28(b) 
show multiple (ambiguous) 8-adjacency, as indicated by the dashed lines. This ambi-
guity is removed by using m-adjacency, as in Fig. 2.28(c). In other words, the center 
and upper-right diagonal pixels are not m-adjacent because they do not satisfy con-
dition (b).

A digital path (or curve) from pixel p with coordinates ( , )x y0 0  to pixel q with 
coordinates ( , )x yn n  is a sequence of distinct pixels with coordinates

 ( , ), ( , ), , ( , )x y x y x yn n0 0 1 1 …

where points ( , )x yi i  and ( , )x yi i− −1 1  are adjacent for 1 ≤ ≤i n. In this case, n is the 
length of the path. If ( , ) ( , )x y x yn n0 0 =  the path is a closed path. We can define 4-, 8-, 
or m-paths, depending on the type of adjacency specified. For example, the paths in 
Fig. 2.28(b) between the top right and bottom right points are 8-paths, and the path 
in Fig. 2.28(c) is an m-path.

Let S represent a subset of pixels in an image. Two pixels p and q are said to be 
connected in S if there exists a path between them consisting entirely of pixels in S. 
For any pixel p in S, the set of pixels that are connected to it in S is called a connected 
component of S. If it only has one component, and that component is connected, 
then S is called a connected set.

Let R represent a subset of pixels in an image. We call R a region of the image if R 
is a connected set. Two regions, Ri  and Rj  are said to be adjacent if their union forms 
a connected set. Regions that are not adjacent are said to be disjoint. We consider 4- 
and 8-adjacency when referring to regions. For our definition to make sense, the type 
of adjacency used must be specified. For example, the two regions of 1’s in Fig. 2.28(d) 
are adjacent only if 8-adjacency is used (according to the definition in the previous 

We use the symbols 
¨ and ´ to denote set 
intersection and union, 
respectively. Given sets 
A and B, recall that 
their intersection is the 
set of elements that 
are members of both 
A and B. The union of 
these two sets is the set 
of elements that are 
members of A, of B, or 
of both. We will discuss 
sets in more detail in 
Section 2.6.
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FIGURE 2.28 (a) An arrangement of pixels. (b) Pixels that are 8-adjacent (adjacency is shown by dashed lines).  
(c) m-adjacency. (d) Two regions (of 1’s) that are 8-adjacent. (e) The circled point is on the boundary of the 1-valued 
pixels only if 8-adjacency between the region and background is used. (f) The inner boundary of the 1-valued region 
does not form a closed path, but its outer boundary does.
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paragraph, a 4-path between the two regions does not exist, so their union is not a 
connected set).

Suppose an image contains K disjoint regions, R k Kk , , , , ,=1 2 …  none of which 
touches the image border.† Let Ru  denote the union of all the K regions, and let 
Ru

c( )  denote its complement (recall that the complement of a set A is the set of 
points that are not in A). We call all the points in Ru  the foreground, and all the 
points in Ru

c( )  the background of the image.
The boundary (also called the border or contour) of a region R is the set of pixels in 

R that are adjacent to pixels in the complement of R. Stated another way, the border 
of a region is the set of pixels in the region that have at least one background neigh-
bor. Here again, we must specify the connectivity being used to define adjacency. For 
example, the point circled in Fig. 2.28(e) is not a member of the border of the 1-val-
ued region if 4-connectivity is used between the region and its background, because 
the only possible connection between that point and the background is diagonal. 
As a rule, adjacency between points in a region and its background is defined using 
8-connectivity to handle situations such as this.

The preceding definition sometimes is referred to as the inner border of the 
region to distinguish it from its outer border, which is the corresponding border in 
the background. This distinction is important in the development of border-follow-
ing algorithms. Such algorithms usually are formulated to follow the outer boundary 
in order to guarantee that the result will form a closed path. For instance, the inner 
border of the 1-valued region in Fig. 2.28(f) is the region itself. This border does not 
satisfy the definition of a closed path. On the other hand, the outer border of the 
region does form a closed path around the region.

If R happens to be an entire image, then its boundary (or border) is defined as the 
set of pixels in the first and last rows and columns of the image. This extra definition 
is required because an image has no neighbors beyond its border. Normally, when 
we refer to a region, we are referring to a subset of an image, and any pixels in the 
boundary of the region that happen to coincide with the border of the image are 
included implicitly as part of the region boundary.

The concept of an edge is found frequently in discussions dealing with regions 
and boundaries. However, there is a key difference between these two concepts. The 
boundary of a finite region forms a closed path and is thus a “global” concept. As we 
will discuss in detail in Chapter 10, edges are formed from pixels with derivative val-
ues that exceed a preset threshold. Thus, an edge is a “local” concept that is based on 
a measure of intensity-level discontinuity at a point. It is possible to link edge points 
into edge segments, and sometimes these segments are linked in such a way that 
they correspond to boundaries, but this is not always the case. The one exception in 
which edges and boundaries correspond is in binary images. Depending on the type 
of connectivity and edge operators used (we will discuss these in Chapter 10), the 
edge extracted from a binary region will be the same as the region boundary. This is 

†  We make this assumption to avoid having to deal with special cases. This can be done without loss of generality 
because if one or more regions touch the border of an image, we can simply pad the image with a 1-pixel-wide 
border of background values.
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intuitive. Conceptually, until we arrive at Chapter 10, it is helpful to think of edges 
as intensity discontinuities, and of boundaries as closed paths.

DISTANCE MEASURES

For pixels p, q, and s, with coordinates ( , )x y , ( , )u v , and ( , ),w z  respectively, D
is a distance function or metric if

(a) D p q D p q p q( , ) ( ( , ) )≥ 0 0= =iff ,
(b) D p q D q p( , ) ( , )= , and
(c) D p s D p q D q s( , ) ( , ) ( , ).≤ +

The Euclidean distance between p and q is defined as

 D p q x ye( , ) ( ) ( )= − + −⎡⎣ ⎤⎦u v2 2
1
2  (2-19)

For this distance measure, the pixels having a distance less than or equal to some 
value r from ( , )x y  are the points contained in a disk of radius r centered at ( , )x y .

The D4 distance, (called the city-block distance) between p and q is defined as

 D p q x y4( , ) = − −u v+  (2-20)

In this case, pixels having a D4 distance from ( , )x y  that is less than or equal to some 
value d form a diamond centered at ( , )x y . For example, the pixels with D4 distance ≤ 2 
from ( , )x y  (the center point) form the following contours of constant distance:

 

2

2 1 2

2 1 0 1 2

2 1 2

2

The pixels with D4 1=  are the 4-neighbors of ( , )x y .
The D8 distance (called the chessboard distance) between p and q is defined as

 D p q x y8( , ) max( , )= − −u v  (2-21)

In this case, the pixels with D8 distance from ( , )x y  less than or equal to some value d 
form a square centered at ( , )x y . For example, the pixels with D8 distance ≤ 2 form 
the following contours of constant distance:

 

2 2 2 2 2

2 1 1 1 2

2 1 0 1 2

2 1 1 1 2

2 2 2 2 2

The pixels with D8 1=  are the 8-neighbors of the pixel at ( , )x y .
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Note that the D4  and D8 distances between p and q are independent of any paths 
that might exist between these points because these distances involve only the coor-
dinates of the points. In the case of m-adjacency, however, the Dm distance between 
two points is defined as the shortest m-path between the points. In this case, the 
distance between two pixels will depend on the values of the pixels along the path, 
as well as the values of their neighbors. For instance, consider the following arrange-
ment of pixels and assume that p, p2 , and p4  have a value of 1, and that p1  and p3 
can be 0 or 1:

 

p p

p p

p

3 4

1 2

Suppose that we consider adjacency of pixels valued 1 (i.e.,V = { }1 ). If p1 and p3 are 0, 
the length of the shortest m-path (the Dm distance) between p and p4  is 2. If p1  is 1, 
then p2  and p will no longer be m-adjacent (see the definition of m-adjacency given 
earlier) and the length of the shortest m-path becomes 3 (the path goes through the 
points pp p p1 2 4 ). Similar comments apply if p3 is 1 (and p1  is 0); in this case, the 
length of the shortest m-path also is 3. Finally, if both p1  and p3 are 1, the length of 
the shortest m-path between p and p4  is 4. In this case, the path goes through the 
sequence of points pp p p p1 2 3 4.

2.6 INTRODUCTION TO THE BASIC MATHEMATICAL TOOLS USED IN 
DIGITAL IMAGE PROCESSING 

This section has two principal objectives: (1) to introduce various mathematical 
tools we use throughout the book; and (2) to help you begin developing a “feel” for 
how these tools are used by applying them to a variety of basic image-processing 
tasks, some of which will be used numerous times in subsequent discussions. 

ELEMENTWISE VERSUS MATRIX OPERATIONS

An elementwise operation involving one or more images is carried out on a pixel-by-
pixel basis. We mentioned earlier in this chapter that images can be viewed equiva-
lently as matrices. In fact, as you will see later in this section, there are many situ-
ations in which operations between images are carried out using matrix theory. It 
is for this reason that a clear distinction must be made between elementwise and 
matrix operations. For example, consider the following 2 2*  images (matrices):

 
a a

a a

b b

b b
11 12

21 22

11 12

21 22

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥and

The elementwise product (often denoted using the symbol }  or z ) of these two 
images is

 
a a

a a

b b

b b

a b a b

a b a
11 12

21 22

11 12

21 22

11 11 12 12

21 21 2

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =}

22 22b
⎡

⎣
⎢

⎤

⎦
⎥

2.6

You may find it helpful 
to download and study 
the review material 
dealing with probability, 
vectors, linear algebra, 
and linear systems. The 
review is available in the 
Tutorials section of the 
book website. 

The elementwise product 
of two matrices is also 
called the Hadamard 
product of the matrices.

The symbol | is often 
used to denote element-
wise division.
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That is, the elementwise product is obtained by multiplying pairs of corresponding 
pixels. On the other hand, the matrix product of the images is formed using the rules 
of matrix multiplication:

 
a a

a a

b b

b b

a b a b a b a11 12

21 22

11 12

21 22

11 11 12 21 11 12⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

+ + 112 22

21 11 22 21 21 12 22 22

b

a b a b a b a b+ +
⎡

⎣
⎢

⎤

⎦
⎥

We assume elementwise operations throughout the book, unless stated otherwise. 
For example, when we refer to raising an image to a power, we mean that each indi-
vidual pixel is raised to that power; when we refer to dividing an image by another, 
we mean that the division is between corresponding pixel pairs, and so on. The terms 
elementwise addition and subtraction of two images are redundant because these are 
elementwise operations by definition. However, you may see them used sometimes 
to clarify notational ambiguities. 

LINEAR VERSUS NONLINEAR OPERATIONS

One of the most important classifications of an image processing method is whether 
it is linear or nonlinear. Consider a general operator, �,  that produces an output 
image, g x y( , ), from a given input image, f x y( , ):

 � f x y g x y( , ) ( , )[ ] =  (2-22)

Given two arbitrary constants, a and b, and two arbitrary images f x y1( , ) and f x y2( , ),
�  is said to be a linear operator if

 
� � �a f x y b f x y a f x y b f x y

ag x y bg
1 2 1 2

1 2

( , ) ( , ) ( , ) ( , )

( , ) (

+[ ] = [ ] + [ ]
= + xx y, )

 (2-23)

This equation indicates that the output of a linear operation applied to the sum of 
two inputs is the same as performing the operation individually on the inputs and 
then summing the results. In addition, the output of a linear operation on a con-
stant multiplied by an input is the same as the output of the operation due to the 
original input multiplied by that constant. The first property is called the property 
of additivity, and the second is called the property of homogeneity. By definition, an 
operator that fails to satisfy Eq. (2-23) is said to be nonlinear.

As an example, suppose that �  is the sum operator, Σ. The function performed 
by this operator is simply to sum its inputs. To test for linearity, we start with the left 
side of Eq. (2-23) and attempt to prove that it is equal to the right side:

 

a f x y b f x y a f x y b f x y

a f x y b f x y

1 2 1 2

1 2

( , ) ( , ) ( , ) ( , )

( , ) ( , )

+[ ] = +

= +
∑ ∑∑

∑∑∑
= +ag x y bg x y1 2( , ) ( , )

 

where the first step follows from the fact that summation is distributive. So, an 
expansion of the left side is equal to the right side of Eq. (2-23), and we conclude 
that the sum operator is linear.

These are image  
summations, not the 
sums of all the elements 
of an image. 
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On the other hand, suppose that we are working with the max operation, whose 
function is to find the maximum value of the pixels in an image. For our purposes 
here, the simplest way to prove that this operator is nonlinear is to find an example 
that fails the test in Eq. (2-23). Consider the following two images

 f f1 2

0 2

2 3

6 5

4 7
=

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥and

and suppose that we let a = 1 and b = −1. To test for linearity, we again start with the 
left side of Eq. (2-23):

 
max ( ) ( ) max1

0 2

2 3
1

6 5

4 7

6 3

2 4
⎡

⎣
⎢

⎤

⎦
⎥ + −

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

=
− −
− −

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫⎫
⎬
⎭

= −2

Working next with the right side, we obtain

 ( )max ( )max ( )1
0 2

2 3
1

6 5

4 7
3 1 7 4

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

+ −
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

= + − = −

The left and right sides of Eq. (2-23) are not equal in this case, so we have proved 
that the max operator is nonlinear.

As you will see in the next three chapters, linear operations are exceptionally impor-
tant because they encompass a large body of theoretical and practical results that are 
applicable to image processing. The scope of nonlinear operations is considerably 
more limited. However, you will encounter in the following chapters several nonlin-
ear image processing operations whose performance far exceeds what is achievable 
by their linear counterparts.

ARITHMETIC OPERATIONS

Arithmetic operations between two images f x y( , ) and g x y( , ) are denoted as

 

s x y f x y g x y

d x y f x y g x y

p x y f x y g x

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( ,

= +
= −
= × yy

x y f x y g x y

)

( , ) ( , ) ( , )v = ÷

 (2-24)

These are elementwise operations which, as noted earlier in this section, means 
that they are performed between corresponding pixel pairs in f and g for 
x M= −0 1 2 1, , , ,…  and y N= −0 1 2 1, , , , .…  As usual, M and N are the row and 
column sizes of the images. Clearly, s, d, p, and v  are images of size M N×  also. 
Note that image arithmetic in the manner just defined involves images of the same 
size. The following examples illustrate the important role of arithmetic operations 
in digital image processing.
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EXAMPLE 2.5 :  Using image addition (averaging) for noise reduction.

Suppose that g x y( , ) is a corrupted image formed by the addition of noise, h( , )x y , to a noiseless image 
f x y( , ) ; that is,

 g x y f x y x y( , ) ( , ) ( , )= + h  (2-25)

where the assumption is that at every pair of coordinates ( , )x y  the noise is uncorrelated† and has 
zero average value. We assume also that the noise and image values are uncorrelated (this is a typical 
assumption for additive noise). The objective of the following procedure is to reduce the noise content 
of the output image by adding a set of noisy input images, g x yi( , ) .{ }  This is a technique used frequently 
for image enhancement.

If the noise satisfies the constraints just stated, it can be shown (Problem 2.26) that if an image g x y( , ) 
is formed by averaging K different noisy images,

 g x y
K

g x yi
i

K

( , ) ( , )=
=
∑1

1

 (2-26)

then it follows that 

 E g x y f x y( , ) ( , ){ } =  (2-27)

and

 s shg x y x yK( , ) ( , )
2 21=  (2-28)

where E g x y( , ){ } is the expected value of g x y( , ), and sg x y( , )
2  and sh( , )x y

2  are the variances of g x y( , ) and 
h( , )x y , respectively, all at coordinates ( , )x y . These variances are arrays of the same size as the input 
image, and there is a scalar variance value for each pixel location. 

The standard deviation (square root of the variance) at any point ( , )x y  in the average image is

 s shg x y x y
K

( , ) ( , )= 1
 (2-29)

As K increases, Eqs. (2-28) and (2-29) indicate that the variability (as measured by the variance or the 
standard deviation) of the pixel values at each location ( , )x y  decreases. Because E g x y f x y( , ) ( , ),{ } =  
this means that g x y( , ) approaches the noiseless image f x y( , ) as the number of noisy images used in the 
averaging process increases. In order to avoid blurring and other artifacts in the output (average) image, 
it is necessary that the images g x yi( , ) be registered (i.e., spatially aligned).

An important application of image averaging is in the field of astronomy, where imaging under 
very low light levels often cause sensor noise to render individual images virtually useless for analysis 
(lowering the temperature of the sensor helps reduce noise). Figure 2.29(a) shows an 8-bit image of the 
Galaxy Pair NGC 3314, in which noise corruption was simulated by adding to it Gaussian noise with 
zero mean and a standard deviation of 64 intensity levels. This image, which is representative of noisy 
astronomical images taken under low light conditions, is useless for all practical purposes. Figures 
2.29(b) through (f) show the results of averaging 5, 10, 20, 50, and 100 images, respectively. We see from 
Fig. 2.29(b) that an average of only 10 images resulted in some visible improvement. According to Eq. 

† The variance of a random variable z with mean z  is defined as E z z{( ) }− 2 , where E{ }�  is the expected value of the argument. The covari-
ance of two random variables zi  and zj  is defined as E z z z zi i j j{( )( )}.− −  If the variables are uncorrelated, their covariance is 0, and vice 
versa. (Do not confuse correlation and statistical independence. If two random variables are statistically independent, their correlation is 
zero. However, the converse is not true in general.)
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(2-29), the standard deviation of the noise in Fig. 2.29(b) is less than half ( . )1 5 0 45=  the standard 
deviation of the noise in Fig. 2.29(a), or ( . )( )0 45 64 29≈  intensity levels. Similarly, the standard devia-
tions of the noise in Figs. 2.29(c) through (f) are 0.32, 0.22, 0.14, and 0.10 of the original, which translates 
approximately into 20, 14, 9, and 6 intensity levels, respectively. We see in these images a progression 
of more visible detail as the standard deviation of the noise decreases. The last two images are visually 
identical for all practical purposes. This is not unexpected, as the difference between the standard devia-
tions of their noise level is only about 3 intensity levels According to the discussion in connection with 
Fig. 2.5, this difference is below what a human generally is able to detect.

EXAMPLE 2.6 :  Comparing images using subtraction.

Image subtraction is used routinely for enhancing differences between images. For example, the image 
in Fig. 2.30(b) was obtained by setting to zero the least-significant bit of every pixel in Fig. 2.30(a). 
Visually, these images are indistinguishable. However, as Fig. 2.30(c) shows, subtracting one image from 

ba c
ed f

FIGURE 2.29 (a) Image of Galaxy Pair NGC 3314 corrupted by additive Gaussian noise. (b)-(f) Result of averaging 
5, 10, 20, 50, and 1,00 noisy images, respectively. All images are of size 566 598×  pixels, and all were scaled so that 
their intensities would span the full [0, 255] intensity scale. (Original image courtesy of NASA.)
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the other clearly shows their differences. Black (0) values in the difference image indicate locations 
where there is no difference between the images in Figs. 2.30(a) and (b). 

We saw in Fig. 2.23 that detail was lost as the resolution was reduced in the chronometer image 
shown in Fig. 2.23(a). A vivid indication of image change as a function of resolution can be obtained 
by displaying the differences between the original image and its various lower-resolution counterparts. 
Figure 2.31(a) shows the difference between the 930 dpi and 72 dpi images. As you can see, the dif-
ferences are quite noticeable. The intensity at any point in the difference image is proportional to the 
magnitude of the numerical difference between the two images at that point. Therefore, we can analyze 
which areas of the original image are affected the most when resolution is reduced. The next two images 
in Fig. 2.31 show proportionally less overall intensities, indicating smaller differences between the 930 dpi 
image and 150 dpi and 300 dpi images, as expected. 

ba c

FIGURE 2.30 (a) Infrared image of the Washington, D.C. area. (b) Image resulting from setting to zero the least 
significant bit of every pixel in (a). (c) Difference of the two images, scaled to the range [0, 255] for clarity. (Original 
image courtesy of NASA.)

ba c

FIGURE 2.31 (a) Difference between the 930 dpi and 72 dpi images in Fig. 2.23. (b) Difference between the 930 dpi and 
150 dpi images. (c) Difference between the 930 dpi and 300 dpi images.
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As a final illustration, we discuss briefly an area of medical imaging called mask mode radiography, a 
commercially successful and highly beneficial use of image subtraction. Consider image differences of 
the form

 g x y f x y h x y( , ) ( , ) ( , )= −  (2-30)

In this case h x y( , ), the mask, is an X-ray image of a region of a patient’s body captured by an intensified 
TV camera (instead of traditional X-ray film) located opposite an X-ray source. The procedure consists 
of injecting an X-ray contrast medium into the patient’s bloodstream, taking a series of images called 
live images [samples of which are denoted as f x y( , )] of the same anatomical region as h x y( , ), and sub-
tracting the mask from the series of incoming live images after injection of the contrast medium. The net 
effect of subtracting the mask from each sample live image is that the areas that are different between 
f x y( , ) and h x y( , ) appear in the output image, g x y( , ), as enhanced detail. Because images can be cap-
tured at TV rates, this procedure outputs a video showing how the contrast medium propagates through 
the various arteries in the area being observed.

Figure 2.32(a) shows a mask X-ray image of the top of a patient’s head prior to injection of an iodine 
medium into the bloodstream, and Fig. 2.32(b) is a sample of a live image taken after the medium was 

ba
dc

FIGURE 2.32  
Digital  
subtraction  
angiography.  
(a) Mask image. 
(b) A live image. 
(c) Difference 
between (a) and 
(b). (d) Enhanced 
difference image. 
(Figures (a) and 
(b) courtesy of 
the Image  
Sciences  
Institute,  
University 
Medical Center, 
Utrecht, The 
Netherlands.)
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injected. Figure 2.32(c) is the difference between (a) and (b). Some fine blood vessel structures are vis-
ible in this image. The difference is clear in Fig. 2.32(d), which was obtained by sharpening the image and 
enhancing its contrast (we will discuss these techniques in the next chapter). Figure 2.32(d) is a “snap-
shot” of how the medium is propagating through the blood vessels in the subject’s brain.

EXAMPLE 2.7 :  Using image multiplication and division for shading correction and for masking.

An important application of image multiplication (and division) is shading correction. Suppose that an 
imaging sensor produces images that can be modeled as the product of a “perfect image,” denoted by 
f x y( , ), times a shading function, h x y( , ); that is, g x y f x y h x y( , ) ( , ) ( , )= . If h x y( , ) is known or can be 
estimated, we can obtain f x y( , ) (or an estimate of it) by multiplying the sensed image by the inverse of 
h x y( , ) (i.e., dividing g by h using elementwise division). If access to the imaging system is possible, we 
can obtain a good approximation to the shading function by imaging a target of constant intensity. When 
the sensor is not available, we often can estimate the shading pattern directly from a shaded image using 
the approaches discussed in Sections 3.5 and 9.8. Figure 2.33 shows an example of shading correction 
using an estimate of the shading pattern. The corrected image is not perfect because of errors in the 
shading pattern (this is typical), but the result definitely is an improvement over the shaded image in Fig. 
2.33 (a). See Section 3.5 for a discussion of how we estimated Fig. 2.33 (b). Another use of image mul-
tiplication is in masking, also called region of interest (ROI), operations. As Fig. 2.34 shows, the process 
consists of multiplying a given image by a mask image that has 1’s in the ROI and 0’s elsewhere. There 
can be more than one ROI in the mask image, and the shape of the ROI can be arbitrary.

A few comments about implementing image arithmetic operations are in order 
before we leave this section. In practice, most images are displayed using 8 bits (even 
24-bit color images consist of three separate 8-bit channels). Thus, we expect image 
values to be in the range from 0 to 255. When images are saved in a standard image 
format, such as TIFF or JPEG, conversion to this range is automatic. When image 
values exceed the allowed range, clipping or scaling becomes necessary. For example, 
the values in the difference of two 8-bit images can range from a minimum of −255 

ba c

FIGURE 2.33 Shading correction. (a) Shaded test pattern. (b) Estimated shading pattern. (c) Product of (a) by the 
reciprocal of (b). (See Section 3.5 for a discussion of how (b) was estimated.)
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to a maximum of 255, and the values of the sum of two such images can range from 0 
to 510. When converting images to eight bits, many software applications simply set 
all negative values to 0 and set to 255 all values that exceed this limit. Given a digital 
image g resulting from one or more arithmetic (or other) operations, an approach 
guaranteeing that the full range of a values is “captured” into a fixed number of bits 
is as follows. First, we perform the operation

 g g gm = − min( )  (2-31)

which creates an image whose minimum value is 0. Then, we perform the operation

 g K g gs m m= [ ]max( )  (2-32)

which creates a scaled image, gs , whose values are in the range [0, K]. When working 
with 8-bit images, setting K = 255 gives us a scaled image whose intensities span the 
full 8-bit scale from 0 to 255.  Similar comments apply to 16-bit images or higher. This 
approach can be used for all arithmetic operations. When performing division, we 
have the extra requirement that a small number should be added to the pixels of the 
divisor image to avoid division by 0.

SET AND LOGICAL OPERATIONS

In this section, we discuss the basics of set theory. We also introduce and illustrate 
some important set and logical operations.

Basic Set Operations

A set is a collection of distinct objects. If a is an element of set A, then we write

 a A∈   (2-33)

Similarly, if a is not an element of A we write

 a Ax  (2-34)

The set with no elements is called the null or empty set, and is denoted by ∅ .

These are elementwise 
subtraction and division.

ba c

FIGURE 2.34 (a) Digital dental X-ray image. (b) ROI mask for isolating teeth with fillings (white corresponds to 1 and 
black corresponds to 0). (c) Product of (a) and (b).
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A set is denoted by the contents of two braces: { }.i  For example, the expression

 C c c d d D= ={ }- H,

means that C is the set of elements, c, such that c is formed by multiplying each of 
the elements of set D by −1. 

If every element of a set A is also an element of a set B, then A is said to be a 
subset of B, denoted as

 A B8  (2-35)

The union of two sets A and B, denoted as

 C A B= ´  (2-36)

is a set C consisting of elements belonging either to A, to B, or to both. Similarly, the 
intersection of two sets A and B, denoted by

 D A B= ¨  (2-37)

is a set D consisting of elements belonging to both A and B. Sets A and B are said to 
be disjoint or mutually exclusive if they have no elements in common, in which case,

 A B¨ = ∅  (2-38)

The sample space, Æ, (also called the set universe) is the set of all possible set 
elements in a given application. By definition, these set elements are members of 
the sample space for that application. For example, if you are working with the set 
of real numbers, then the sample space is the real line, which contains all the real 
numbers. In image processing, we typically define Æ  to be the rectangle containing 
all the pixels in an image.

The complement of a set A is the set of elements that are not in A:

 A Ac = { }w w x  (2-39)

The difference of two sets A and B, denoted A B− , is defined as

 A B A B A Bc− = { } =w w wH x ¨,  (2-40)

This is the set of elements that belong to A, but not to B. We can define Ac  in terms 
of Æ  and the set difference operation; that is, A Ac = −Æ . Table 2.1 shows several 
important set properties and relationships.

Figure 2.35 shows diagrammatically (in so-called Venn diagrams) some of the set 
relationships in Table 2.1. The shaded areas in the various figures correspond to the 
set operation indicated above or below the figure. Figure 2.35(a) shows the sample 
set, Æ. As no earlier, this is the set of all possible elements in a given application. Fig-
ure 2.35(b) shows that the complement of a set A is the set of all elements in Æ  that 
are not in A, which agrees with our earlier definition. Observe that Figs. 2.35(e) and 
(g) are identical, which proves the validity of Eq. (2-40) using Venn diagrams. This 
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is an example of the usefulness of Venn diagrams for proving equivalences between 
set relationships. 

When applying the concepts just discussed to image processing, we let sets repre-
sent objects (regions) in a binary image, and the elements of the sets are the ( , )x y  
coordinates of those objects. For example, if we want to know whether two objects, 
A and B, of a binary image overlap, all we have to do is compute A B¨ . If the result 
is not the empty set, we know that some of the elements of the two objects overlap. 
Keep in mind that the only way that the operations illustrated in Fig. 2.35 can make 
sense in the context of image processing is if the images containing the sets are 
binary, in which case we can talk about set membership based on coordinates, the 
assumption being that all members of the sets have the same intensity value (typi-
cally denoted by 1). We will discuss set operations involving binary images in more 
detail in the following section and in Chapter 9.

The preceding concepts are not applicable when dealing with grayscale images, 
because we have not defined yet a mechanism for assigning intensity values to the 
pixels resulting from a set operation. In Sections 3.8 and 9.6 we will define the union 
and intersection operations for grayscale values as the maximum and minimum of 
corresponding pixel pairs, respectively. We define the complement of a grayscale 
image as the pairwise differences between a constant and the intensity of every pixel 
in the image. The fact that we deal with corresponding pixel pairs tells us that gray-
scale set operations are elementwise operations, as defined earlier. The following 
example is a brief illustration of set operations involving grayscale images. We will 
discuss these concepts further in the two sections just mentioned.

Description Expressions

Operations between the 
sample space and null sets

Æ Æ Æ´ Æ Æ ¨c c= ∅ ∅ = ∅ = ∅ = ∅; ; ;

Union and intersection with 
the null and sample space sets

A A A A A A´ ¨ ´ Æ Æ ¨ Æ∅ = ∅ = ∅ = =; ; ;

Union and intersection of a 
set with itself

A A A A A A´ ¨= =;

Union and intersection of a 
set with its complement

A A A Ac c´ Æ ¨= = ∅;

Commutative laws A B B A
A B B A

´ ´
¨ ¨

=
=

Associative laws ( ) ( )
( ) ( )
A B C A B C
A B C A B C

´ ´ ´ ´
¨ ¨ ¨ ¨

=
=

Distributive laws ( ) ( ) ( )
( ) ( ) ( )
A B C A C B C
A B C A C B C

´ ¨ ¨ ´ ¨
¨ ´ ´ ¨ ´

=
=

DeMorgan’s laws  
( )
( )
A B A B
A B A B

c c c

c c c
´ ¨
¨ ´

=
=

TABLE 2.1
Some important 
set operations 
and relationships.
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94 Chapter 2  Digital Image Fundamentals

EXAMPLE 2.8 :  Illustration of set operations involving grayscale images.

Let the elements of a grayscale image be represented by a set A whose elements are triplets of the form 
( , , )x y z , where x and y are spatial coordinates, and z denotes intensity values. We define the complement 
of A as the set 

 A x y K z x y z Ac = −{ }( , , ) ( , , ) H  

which is the set of pixels of A whose intensities have been subtracted from a constant K. This constant 
is equal to the maximum intensity value in the image, 2 1k − , where k is the number of bits used to 
represent z. Let A denote the 8-bit grayscale image in Fig. 2.36(a), and suppose that we want to form 
the negative of A using grayscale set operations. The negative is the set complement, and this is an 8-bit 
image, so all we have to do is let K = 255 in the set defined above:

 A x y z x y z Ac = −{ }( , , ) ( , , )255 H

Figure 2.36(b) shows the result. We show this only for illustrative purposes. Image negatives generally 
are computed using an intensity transformation function, as discussed later in this section.

A
c

A B¨

A A

B

A B− Bc

B

C

A

A Bc¨ A B C¨ ´( )

´A BΩ

B

ba dc
f he g

FIGURE 2.35 Venn diagrams corresponding to some of the set operations in Table 2.1. The results of the operations, 
such as Ac ,  are shown shaded. Figures (e) and (g) are the same, proving via Venn diagrams that A B A Bc− = ¨
[see Eq. (2-40)].
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The union of two grayscale sets A and B with the same number of elements is defined as the set

 A B a b a A b B
z

´ H H= { }max( , ) ,

where it is understood that the max operation is applied to pairs of corresponding elements. If A and B 
are grayscale images of the same size, we see that their the union is an array formed from the maximum 
intensity between pairs of spatially corresponding elements. As an illustration, suppose that A again 
represents the image in Fig. 2.36(a), and let B denote a rectangular array of the same size as A, but in 
which all values of z are equal to 3 times the mean intensity, z, of the elements of A. Figure 2.36(c) shows 
the result of performing the set union, in which all values exceeding 3z  appear as values from A and all 
other pixels have value 3z, which is a mid-gray value.

Before leaving the discussion of sets, we introduce some additional concepts that 
are used later in the book. The Cartesian product of two sets X and Y, denoted 
X Y× , is the set of all possible ordered pairs whose first component is a member of 
X and whose second component is a member of Y. In other words,

 X Y x y x X y Y* = H H( , ) and{ }  (2-41)

For example, if X is a set of M equally spaced values on the x-axis and Y is a set of N 
equally spaced values on the y-axis, we see that the Cartesian product of these two 
sets define the coordinates of an M-by-N rectangular array (i.e., the coordinates of 
an image). As another example, if X and Y denote the specific x- and y-coordinates 
of a group of 8-connected, 1-valued pixels in a binary image, then set X Y×  repre-
sents the region (object) comprised of those pixels.

We follow convention 
in using the symbol × 
to denote the Cartesian 
product. This is not to 
be confused with our 
use of the same symbol 
throughout the book 
to denote the size of 
an M-by-N image (i.e., 
M × N).

ba c

FIGURE 2.36
Set operations  
involving grayscale 
images. (a) Original  
image. (b) Image 
negative obtained 
using grayscale set  
complementation. 
(c) The union of 
image (a) and a 
constant image. 
(Original image 
courtesy of G.E. 
Medical Systems.)
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A relation (or, more precisely, a binary relation) on a set A is a collection of 
ordered pairs of elements from A. That is, a binary relation is a subset of the Carte-
sian product A A× . A binary relation between two sets, A and B, is a subset of A B× .

A partial order on a set S is a relation  on S such that  is:

(a) reflexive: for any a SH , a a;
(b) transitive: for any a b c S, , H , a b and b c implies that a c;
(c) antisymmetric: for any a b S, ,H  a b and b a implies that a b= .

where, for example, a b reads “a is related to b.” This means that a and b are in set 
, which itself is a subset of S S×  according to the preceding definition of a relation. 

A set with a partial order is called a partially ordered set.
Let the symbol  denote an ordering relation. An expression of the form

 a a a an1 2 3 �

reads: a1 precedes a2  or is the same as a2 , a2  precedes a3  or is the same as a3 , and so on. 
When working with numbers, the symbol  typically is replaced by more traditional 
symbols. For example, the set of real numbers ordered by the relation “less than or 
equal to” (denoted by ≤ ) is a partially ordered set (see Problem 2.33). Similarly, the 
set of natural numbers, paired with the relation “divisible by” (denoted by ÷), is a 
partially ordered set.

Of more interest to us later in the book are strict orderings. A strict ordering on a 
set S is a relation  on S, such that  is:

(a) antireflexive: for any a S a aH , ;¬
(b) transitive: for any a b c S, , ,H  a b and b c  implies that a c.

where ¬a a  means that a is not related to a. Let the symbol  denote a strict 
ordering relation. An expression of the form

 a a a an1 2 3 �

reads a1 precedes a2 , a2  precedes a3, and so on. A set with a strict ordering is called 
a strict-ordered set. 

As an example, consider the set composed of the English alphabet of lowercase 
letters, S a b c z= { }, , , ,� . Based on the preceding definition, the ordering

 a b c z�

is strict because no member of the set can precede itself (antireflexivity) and, for any 
three letters in S, if the first precedes the second, and the second precedes the third, 
then the first precedes the third (transitivity). Similarly, the set of integers paired 
with the relation “less than (<)” is a strict-ordered set. 

Logical Operations
Logical operations deal with TRUE (typically denoted by 1) and FALSE (typically 
denoted by 0) variables and expressions. For our purposes, this means binary images 
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2.6  Introduction to the Basic Mathematical Tools Used in Digital Image Processing    97

composed of foreground (1-valued) pixels, and a background composed of 0-valued 
pixels. 

We work with set and logical operators on binary images using one of two basic 
approaches: (1) we can use the coordinates of individual regions of foreground pix-
els in a single image as sets, or (2) we can work with one or more images of the same 
size and perform logical operations between corresponding pixels in those arrays.

In the first category, a binary image can be viewed as a Venn diagram in which 
the coordinates of individual regions of 1-valued pixels are treated as sets. The 
union of these sets with the set composed of 0-valued pixels comprises the set uni-
verse, Æ. In this representation, we work with single images using all the set opera-
tions defined in the previous section. For example, given a binary image with two 
1-valued regions, R1 and R2 , we can determine if the regions overlap (i.e., if they 
have at least one pair of coordinates in common) by performing the set intersec-
tion operation R R1 2¨  (see Fig. 2.35). In the second approach, we perform logical 
operations on the pixels of one binary image, or on the corresponding pixels of two 
or more binary images of the same size. 

Logical operators can be defined in terms of truth tables, as Table 2.2 shows for 
two logical variables a and b. The logical AND operation (also denoted ¿) yields a 1 
(TRUE) only when both a and b are 1. Otherwise, it yields 0 (FALSE). Similarly, 
the logical OR (¡) yields 1 when both a or b or both are 1, and 0 otherwise. The 
NOT ( )�  operator is self explanatory. When applied to two binary images, AND 
and OR operate on pairs of corresponding pixels between the images. That is, they 
are elementwise operators (see the definition of elementwise operators given earlier 
in this chapter) in this context. The operators AND, OR, and NOT are functionally 
complete, in the sense that they can be used as the basis for constructing any other 
logical operator. 

Figure 2.37 illustrates the logical operations defined in Table 2.2 using the second 
approach discussed above. The NOT of binary image B1 is an array obtained by 
changing all 1-valued pixels to 0, and vice versa. The AND of B1 and B2  contains a 
1 at all spatial locations where the corresponding elements of B1 and B2  are 1; the 
operation yields 0’s elsewhere. Similarly, the OR of these two images is an array 
that contains a 1 in locations where the corresponding elements of B1, or B2 , or 
both, are 1. The array contains 0’s elsewhere. The result in the fourth row of Fig. 2.37 
corresponds to the set of 1-valued pixels in B1 but not in B2. The last row in the 
figure is the XOR (exclusive OR) operation, which yields 1 in the locations where 
the corresponding elements of B1 or B2 , (but not both) are 1. Note that the logical 

a b a bAND a bOR NOT(a)

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

TABLE 2.2
Truth table  
defining the 
logical operators 
AND( ),¿   
OR( ),¡  and  
NOT( ).�
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98 Chapter 2  Digital Image Fundamentals

expressions in the last two rows of Fig. 2.37 were constructed using operators from 
Table 2.2; these are examples of the functionally complete nature of these operators.

We can arrive at the same results in Fig. 2.37 using the first approach discussed 
above. To do this, we begin by labeling the individual 1-valued regions in each of 
the two images (in this case there is only one such region in each image). Let A 
and B denote the set of coordinates of all the 1-valued pixels in images B1 and B2 ,
respectively. Then we form a single array by ORing the two images, while keeping 
the labels A and B. The result would look like the array B B1 2OR  in Fig. 2.37, but 
with the two white regions labeled A and B. In other words, the resulting array 
would look like a Venn diagram. With reference to the Venn diagrams and set opera-
tions defined in the previous section, we obtain the results in the rightmost column 
of Fig. 2.37 using set operations as follows: A Bc = NOT( ),1  A B B B¨ = 1 2AND ,
A B B B´ = 1 2OR , and similarly for the other results in Fig. 2.37. We will make 
extensive use in Chapter 9 of the concepts developed in this section.

SPATIAL OPERATIONS

Spatial operations are performed directly on the pixels of an image. We classify 
spatial operations into three broad categories: (1) single-pixel operations, (2) neigh-
borhood operations, and (3) geometric spatial transformations.

FIGURE 2.37
Illustration of 
logical operations 
involving  
foreground 
(white) pixels. 
Black represents 
binary 0’s and 
white binary 1’s. 
The dashed lines 
are shown for  
reference only. 
They are not part 
of the result. 

NOT

NOT(B1)

B1 AND B2

B1 OR B2

B1 AND [NOT (B2)]

B1 XOR B2

AND

B1

B1 B2

OR

XOR

AND-
NOT
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Single-Pixel Operations

The simplest operation we perform on a digital image is to alter the intensity of its 
pixels individually using a transformation function, T, of the form:

 s T z= ( )  (2-42)

where z is the intensity of a pixel in the original image and s is the (mapped) inten-
sity of the corresponding pixel in the processed image. For example, Fig. 2.38 shows 
the transformation used to obtain the negative (sometimes called the complement) 
of an 8-bit image. This transformation could be used, for example, to obtain the 
negative image in Fig. 2.36, instead of using sets. 

Neighborhood Operations

Let Sxy  denote the set of coordinates of a neighborhood (see Section 2.5 regarding 
neighborhoods) centered on an arbitrary point ( , )x y  in an image, f. Neighborhood 
processing generates a corresponding pixel at the same coordinates in an output 
(processed) image, g, such that the value of that pixel is determined by a specified 
operation on the neighborhood of pixels in the input image with coordinates in the 
set Sxy . For example, suppose that the specified operation is to compute the average 
value of the pixels in a rectangular neighborhood of size m n×  centered on ( , )x y  . 
The coordinates of pixels in this region are the elements of set Sxy . Figures 2.39(a) 
and (b) illustrate the process. We can express this averaging operation as

 g x y
mn

f r c
r c Sxy

( , ) ( , )
( , )

= ∑1

H
 (2-43)

where r and c are the row and column coordinates of the pixels whose coordinates 
are in the set Sxy . Image g is created by varying the coordinates ( , )x y  so that the 
center of the neighborhood moves from pixel to pixel in image f, and then repeat-
ing the neighborhood operation at each new location. For instance, the image in 
Fig. 2.39(d) was created in this manner using a neighborhood of size 41 41× . The 

Our use of the word 
“negative” in this context 
refers to the digital 
equivalent of a  
photographic negative, 
not to the numerical 
negative of the pixels in 
the image.

s � T(z)

z

s0

0 255z0

255

FIGURE 2.38
Intensity  
transformation 
function used to 
obtain the digital 
equivalent of 
photographic 
negative of an 
8-bit image..
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net effect is to perform local blurring in the original image. This type of process is 
used, for example, to eliminate small details and thus render “blobs” correspond-
ing to the largest regions of an image. We will discuss neighborhood processing in 
Chapters 3 and 5, and in several other places in the book. 

Geometric Transformations

We use geometric transformations modify the spatial arrangement of pixels in an 
image. These transformations are called rubber-sheet transformations because they 
may be viewed as analogous to “printing” an image on a rubber sheet, then stretch-
ing or shrinking the sheet according to a predefined set of rules. Geometric transfor-
mations of digital images consist of two basic operations: 

The value of this pixel
is the average value of the
pixels in Sxy

Image f Image g

(x, y)(x, y)

Sxy

m

n
ba
dc

FIGURE 2.39
Local averaging  
using neighbor-
hood processing. 
The procedure is  
illustrated in (a) 
and (b) for a  
rectangular  
neighborhood.  
(c) An aortic  
angiogram (see  
Section 1.3).  
(d) The result of  
using Eq. (2-43) 
with m n= = 41. 
The images are 
of size 790 686×  
pixels. (Original  
image courtesy 
of Dr. Thomas R. 
Gest, Division of  
Anatomical  
Sciences,  
University of 
Michigan Medical 
School.)
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1. Spatial transformation of coordinates. 
2. Intensity interpolation that assigns intensity values to the spatially transformed 

pixels. 

The transformation of coordinates may be expressed as

 
′
′

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

x

y

x

y

t t

t t

x

y
T 11 12

21 22

 (2-44)

where ( , )x y  are pixel coordinates in the original image and ( , )′ ′x y  are the 
corresponding pixel coordinates of the transformed image. For example, the 
transformation ( , ) ( , )′ ′ =x y x y2 2  shrinks the original image to half its size in both 
spatial directions. 

Our interest is in so-called affine transformations, which include scaling, translation, 
rotation, and shearing. The key characteristic of an affine transformation in 2-D is 
that it preserves points, straight lines, and planes. Equation (2-44) can be used to 
express the transformations just mentioned, except translation, which would require 
that a constant 2-D vector be added to the right side of the equation. However, it is 
possible to use homogeneous coordinates to express all four affine transformations 
using a single 3 3×  matrix in the following general form: 
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 (2-45)

This transformation can scale, rotate, translate, or sheer an image, depending on the 
values chosen for the elements of matrix A. Table 2.3 shows the matrix values used 
to implement these transformations. A significant advantage of being able to per-
form all transformations using the unified representation in Eq. (2-45) is that it pro-
vides the framework for concatenating a sequence of operations. For example, if we 
want to resize an image, rotate it, and move the result to some location, we simply 
form a 3 3×  matrix equal to the product of the scaling, rotation, and translation 
matrices from Table 2.3 (see Problems 2.36 and 2.37).

The preceding transformation moves the coordinates of pixels in an image to new 
locations. To complete the process, we have to assign intensity values to those loca-
tions. This task is accomplished using intensity interpolation. We already discussed 
this topic in Section 2.4. We began that discussion with an example of zooming an 
image and discussed the issue of intensity assignment to new pixel locations. Zoom-
ing is simply scaling, as detailed in the second row of Table 2.3, and an analysis simi-
lar to the one we developed for zooming is applicable to the problem of assigning 
intensity values to the relocated pixels resulting from the other transformations in 
Table 2.3. As in Section 2.4, we consider nearest neighbor, bilinear, and bicubic inter-
polation techniques when working with these transformations.

We can use Eq. (2-45) in two basic ways. The first, is a forward mapping, which 
consists of scanning the pixels of the input image and, at each location ( , ),x y  com-
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