

ISSLJB-FLUFF-ALIEN-PAREU-BEGUN-OOSSE

Digital Resources for Students

Your new textbook provides 12-month access to digital resources that may include VideoNotes
(step-by-step video tutorials on programming concepts), source code, web chapters, quizzes,
and more. Refer to the preface in the textbook for a detailed list of resources.

Follow the instructions below to register for the Companion Website for Daniel Liang’s
Introduction to Java™ Programming, Brief Version, Eleventh Edition, Global Edition.

1. Go to www.pearsonglobaleditions.com/liang
2. Enter the title of your textbook or browse by author name.
3. Click Companion Website.
4. Click Register and follow the on-screen instructions to create a login name and password.

Use a coin to scratch off the coating and reveal your access code.
Do not use a sharp knife or other sharp object as it may damage the code.

Use the login name and password you created during registration to start using the
digital resources that accompany your textbook.

IMPORTANT:
This prepaid subscription does not include access to MyProgrammingLab, which is available at
www.myprogramminglab.com for purchase.

This access code can only be used once. This subscription is valid for 12 months upon activation
and is not transferable. If the access code has already been revealed it may no longer be valid.

For technical support go to https://support.pearson.com/getsupport

Liang_11_1292222034_ifc_Final.indd 1 21/11/17 7:53 AM

Digital Resources for Students

Your new textbook provides 12-month access to digital resources that may include VideoNotes
(step-by-step video tutorials on programming concepts), source code, web chapters, quizzes,
and more. Refer to the preface in the textbook for a detailed list of resources.

Follow the instructions below to register for the Companion Website for Daniel Liang’s
Introduction to Java™ Programming, Brief Version, Eleventh Edition, Global Edition.

1. Go to www.pearsonglobaleditions.com/liang
2. Enter the title of your textbook or browse by author name.
3. Click Companion Website.
4. Click Register and follow the on-screen instructions to create a login name and password.

Use a coin to scratch off the coating and reveal your access code.
Do not use a sharp knife or other sharp object as it may damage the code.

Use the login name and password you created during registration to start using the
digital resources that accompany your textbook.

IMPORTANT:
This prepaid subscription does not include access to MyProgrammingLab, which is available at
www.myprogramminglab.com for purchase.

This access code can only be used once. This subscription is valid for 12 months upon activation
and is not transferable. If the access code has already been revealed it may no longer be valid.

For technical support go to https://support.pearson.com/getsupport

Liang_11_1292222034_ifc_Final.indd 1 21/11/17 7:53 AM
Digital_Resources_for_Students.indd 1 1/17/18 8:09 PM

www.pearsonglobaleditions.com/liang
https://support.pearson.com/getsupport

IntroductIon to

Java
ProgrammIng

Brief Version

Eleventh Edition

Global Edition

Y. daniel Liang
Armstrong State University

™

330 Hudson Street, NY NY 10013

A01_LIAN2035_11_GE_FM.indd 1 1/3/18 12:04 AM

To Samantha, Michael, and Michelle

Java™ and Netbeans™ screenshots ©2017 by Oracle Corporation, all rights reserved. Reprinted with permission.
Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear
on the appropriate page within text. Microsoft and/or its respective suppliers make no representations about the suit-
ability of the information contained in the documents and related graphics published as part of the services for any
purpose. All such documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or
its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all war-
ranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title
and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or
consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of
contract, negligence or other tortious action, arising out of or in connection with the use or performance of information
 available from the services. The documents and related graphics contained herein could include technical inaccuracies
or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective sup-
pliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time.
Partial screen shots may be viewed in full within the software version specified.

Pearson Education Limited
KAO Two
KAO Park
Harlow
CM17 9NA
United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited 2019

The rights of Y. Daniel Liang to be identified as the author of this work have been asserted by him in accordance
with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Introduction to Java Programming, Brief Version,
11th Edition, ISBN 978-0-13-461103-7 by Y. Daniel Liang, published by Pearson Education © 2018.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written
permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright
Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not
vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trade-
marks imply any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

Typeset by SPi Global. ISBN 10: 1-292-22203-4
Printed and bound by Vivar in Malaysia ISBN 13: 978-1-292-22203-5

Senior Vice President Courseware Portfolio
 Management: Marcia J. Horton

Director, Portfolio Management: Engineering, Comput-
er Science & Global Editions: Julian Partridge

Higher Ed Portfolio Management: Tracy Johnson
(Dunkelberger)

Portfolio Management Assistant: Kristy Alaura
Managing Content Producer: Scott Disanno
Content Producer: Robert Engelhardt
Web Developer: Steve Wright
Assistant Acquisitions Editor, Global Edition: Aditee

Agarwal
Assistant Project Editor, Global Edition: Shaoni Mukherjee
Manager, Media Production, Global Edition: Vikram

Kumar

Senior Manufacturing Controller, Production, Global
Edition: Jerry Kataria

Rights and Permissions Manager: Ben Ferrini
Manufacturing Buyer, Higher Ed, Lake Side

 Communications Inc (LSC): Maura Zaldivar-Garcia
Inventory Manager: Ann Lam
Marketing Manager: Demetrius Hall
Product Marketing Manager: Bram Van Kempen
Marketing Assistant: Jon Bryant
Cover Designer: Lumina Datamatics
Cover Image: Eduardo Rocha/ shutterstock.com
Full-Service Project Management: Shylaja Gattupalli,

SPi Global

A01_LIAN2035_11_GE_FM.indd 2 1/3/18 12:04 AM

http://www.pearsonglobaleditions.com
http://www.Eduardo Rocha/ shutterstock.com

3

Dear Reader,

Many of you have provided feedback on earlier editions of this book, and your comments and
suggestions have greatly improved the book. This edition has been substantially enhanced in
presentation, organization, examples, exercises, and supplements.

The book is fundamentals first by introducing basic programming concepts and techniques
before designing custom classes. The fundamental concepts and techniques of selection
statements, loops, methods, and arrays are the foundation for programming. Building this
strong foundation prepares students to learn object-oriented programming and advanced Java
programming.

This book teaches programming in a problem-driven way that focuses on problem solving
rather than syntax. We make introductory programming interesting by using thought-provok-
ing problems in a broad context. The central thread of early chapters is on problem solving.
Appropriate syntax and library are introduced to enable readers to write programs for solving
the problems. To support the teaching of programming in a problem-driven way, the book
provides a wide variety of problems at various levels of difficulty to motivate students. To
appeal to students in all majors, the problems cover many application areas, including math,
science, business, financial, gaming, animation, and multimedia.

This book is widely used in the introductory programming courses in the universities
around the world. The book is a brief version of Introduction to Java Programming and
Data Structures, Comprehensive Version, Eleventh Edition, Global Edition. This version is
designed for an introductory programming course, commonly known as CS1. It contains the
first eighteen chapters in the comprehensive version and covers fundamentals of programming,
object-oriented programming, GUI programming, exception handling, I/O, and recursion.
The comprehensive version has additional twenty-six chapters that cover data structures,
algorithms, concurrency, parallel programming, networking, internationalization, advanced
GUI, database, and Web programming.

The best way to teach programming is by example, and the only way to learn programming
is by doing. Basic concepts are explained by example and a large number of exercises with
various levels of difficulty are provided for students to practice. For our programming courses,
we assign programming exercises after each lecture.

Our goal is to produce a text that teaches problem solving and programming in a broad
context using a wide variety of interesting examples. If you have any comments on and
 suggestions for improving the book, please email me.

Sincerely,

Y. Daniel Liang
y.daniel.liang@gmail.com

fundamentals-first

problem-driven

comprehensive version
brief version

Preface

A01_LIAN2035_11_GE_FM.indd 3 1/3/18 12:04 AM

http://www.y.daniel.liang@gmail.com

4 Preface

ACM/IEEE Curricular 2013 and ABET
Course Assessment
The new ACM/IEEE Computer Science Curricular 2013 defines the Body of Knowledge
organized into 18 Knowledge Areas. To help instructors design the courses based on this book,
we provide sample syllabi to identify the Knowledge Areas and Knowledge Units. The sample
syllabi are for a three semester course sequence and serve as an example for institutional cus-
tomization. The sample syllabi are accessible from the Instructor Resource Center.

Many of our users are from the ABET-accredited programs. A key component of the
ABET accreditation is to identify the weakness through continuous course assessment against
the course outcomes. We provide sample course outcomes for the courses and sample exams
for measuring course outcomes on the Instructor Resource Center.

What’s New in This Edition?
This edition is completely revised in every detail to enhance clarity, presentation, content,
examples, and exercises. The major improvements are as follows:

■■ Updated to the latest Java technology. Examples and exercises are improved and simplified
by using the new features in Java 8.

■■ The default and static methods are introduced for interfaces in Chapter 13.

■■ The GUI chapters are updated to JavaFX 8. The examples are revised. The user interfaces
in the examples and exercises are now resizable and displayed in the center of the window.

■■ Inner classes, anonymous inner classes, and lambda expressions are covered using practi-
cal examples in Chapter 15.

■■ More examples and exercises in the data structures chapters use lambda expressions to
simplify coding.

■■ The Companion Website has been redesigned with new interactive quiz, CheckPoint ques-
tions, animations, and live coding.

■■ More than 200 additional programming exercises with solutions are provided to the
instructor in the Companion Website. These exercises are not printed in the text.

Pedagogical Features
The book uses the following elements to help students get the most from the material:

■■ The Objectives at the beginning of each chapter list what students should learn from
the chapter. This will help them determine whether they have met the objectives after
 completing the chapter.

■■ The Introduction opens the discussion with representative problems to give the reader an
overview of what to expect from the chapter.

■■ Key Points highlight the important concepts covered in each section.

A01_LIAN2035_11_GE_FM.indd 4 1/3/18 12:04 AM

Preface 5

■■ Check Points provide review questions to help students track their progress as they read
through the chapter and evaluate their learning.

■■ Problems and Case Studies, carefully chosen and presented in an easy-to-follow style,
teach problem solving and programming concepts. The book uses many small, simple, and
stimulating examples to demonstrate important ideas.

■■ The Chapter Summary reviews the important subjects that students should
 understand and remember. It helps them reinforce the key concepts they have learned
in the chapter.

■■ Quizzes are accessible online, grouped by sections, for students to do self-test on
 programming concepts and techniques.

■■ Programming Exercises are grouped by sections to provide students with opportunities
to apply the new skills they have learned on their own. The level of difficulty is rated as
easy (no asterisk), moderate (*), hard (**), or challenging (***). The trick of learning
programming is practice, practice, and practice. To that end, the book provides a great
many exercises. Additionally, more than 200 programming exercises with solutions are
provided to the instructors on the Instructor Resource Center. These exercises are not
printed in the text.

■■ Notes, Tips, Cautions, and Design Guides are inserted throughout the text to offer
 valuable advice and insight on important aspects of program development.

Note
Provides additional information on the subject and reinforces important concepts.

Tip
Teaches good programming style and practice.

Caution
Helps students steer away from the pitfalls of programming errors.

Design Guide
Provides guidelines for designing programs.

Flexible Chapter Orderings
The book is designed to provide flexible chapter orderings to enable GUI, exception handling,
and recursion to be covered earlier or later. The diagram on the next page shows the chapter
dependencies.

A01_LIAN2035_11_GE_FM.indd 5 1/3/18 12:04 AM

Chapter 1 Introduction to
 Computers, Programs, and
 Java

Chapter 2 Elementary
 Programming

Chapter 5 Loops

Chapter 18 Recursion

Chapter 7 Single-Dimensional
 Arrays

Chapter 8 Multidimensional
 Arrays

Chapter 4 Mathematical
 Functions, Characters,
 and Strings

Part I: Fundamentals of
 Programming

Chapter 3 Selections

Chapter 9 Objects and Classes

Chapter 17 Binary I/O

Chapter 10 Thinking in Objects

Chapter 11 Inheritance and
 Polymorphism

Chapter 12 Exception
 Handling and Text I/O

Chapter 13 Abstract Classes
 and Interfaces

Chapter 6 Methods

Part II: Object-Oriented
 Programming

Chapter 14 JavaFX Basics

Chapter 15 Event-Driven
 Programming and
 Animations

Chapter 16 JavaFX Controls
 and Multimedia

Part III: GUI Programming

6 Preface

Organization of the Book
The chapters in this brief version can be grouped into three parts that, taken together, form a
solid introduction to Java programming. Because knowledge is cumulative, the early chapters
provide the conceptual basis for understanding programming and guide students through simple
examples and exercises; subsequent chapters progressively present Java programming in detail,
culminating with the development of comprehensive Java applications. The appendixes contain
a mixed bag of topics, including an introduction to number systems, bitwise operations, regular
expressions, and enumerated types.

Part I: Fundamentals of Programming (Chapters 1–8, 18)

The first part of the book is a stepping stone, preparing you to embark on the journey of learning
Java. You will begin to learn about Java (Chapter 1) and fundamental programming techniques
with primitive data types, variables, constants, assignments, expressions, and operators (Chapter
2), selection statements (Chapter 3), mathematical functions, characters, and strings (Chapter 4),
loops (Chapter 5), methods (Chapter 6), and arrays (Chapters 7–8). After Chapter 7, you can jump
to Chapter 18 to learn how to write recursive methods for solving inherently recursive problems.

Part II: Object-Oriented Programming (Chapters 9–13, and 17)

This part introduces object-oriented programming. Java is an object-oriented programming
language that uses abstraction, encapsulation, inheritance, and polymorphism to provide

A01_LIAN2035_11_GE_FM.indd 6 1/3/18 12:04 AM

great flexibility, modularity, and reusability in developing software. You will learn program-
ming with objects and classes (Chapters 9–10), class inheritance (Chapter 11), polymorphism
(Chapter 11), exception handling (Chapter 12), abstract classes (Chapter 13), and interfaces
(Chapter 13). Text I/O is introduced in Chapter 12 and binary I/O is discussed in Chapter 17.

Part III: GUI Programming (Chapters 14–16)

JavaFX is a new framework for developing Java GUI programs. It is not only useful for
developing GUI programs, but also an excellent pedagogical tool for learning object-oriented
programming. This part introduces Java GUI programming using JavaFX in Chapters 14–16.
Major topics include GUI basics (Chapter 14), container panes (Chapter 14), drawing shapes
(Chapter 14), event-driven programming (Chapter 15), animations (Chapter 15), and GUI con-
trols (Chapter 16), and playing audio and video (Chapter 16). You will learn the architecture
of JavaFX GUI programming and use the controls, shapes, panes, image, and video to develop
useful applications.

Appendixes

This part of the book covers a mixed bag of topics. Appendix A lists Java keywords.
 Appendix B gives tables of ASCII characters and their associated codes in decimal and in
hex. Appendix C shows the operator precedence. Appendix D summarizes Java modifiers and
their usage. Appendix E discusses special floating-point values. Appendix F introduces num-
ber systems and conversions among binary, decimal, and hex numbers. Finally, Appendix G
introduces bitwise operations. Appendix H introduces regular expressions. Appendix I covers
enumerated types.

Java Development Tools
You can use a text editor, such as the Windows Notepad or WordPad, to create Java programs
and to compile and run the programs from the command window. You can also use a Java
development tool, such as NetBeans or Eclipse. These tools support an integrated develop-
ment environment (IDE) for developing Java programs quickly. Editing, compiling, building,
executing, and debugging programs are integrated in one graphical user interface. Using these
tools effectively can greatly increase your programming productivity. NetBeans and Eclipse
are easy to use if you follow the tutorials. Tutorials on NetBeans and Eclipse can be found in
the supplements on the Companion Website at www.pearsonglobaleditions.com/Liang.

Student Resources
The Companion Website (www.pearsonglobaleditions.com/Liang) contains the following
resources:

■■ Answers to CheckPoint questions

■■ Solutions to majority of even-numbered programming exercises

■■ Source code for the examples in the book

■■ Interactive quiz (organized by sections for each chapter)

■■ Supplements

■■ Debugging tips

■■ Video notes

■■ Algorithm animations

IDE tutorials

Preface 7

A01_LIAN2035_11_GE_FM.indd 7 1/3/18 12:04 AM

http://www.pearsonglobaleditions.com/Liang
http://www.pearsonglobaleditions.com/Liang

Supplements
The text covers the essential subjects. The supplements extend the text to introduce additional
topics that might be of interest to readers. The supplements are available from the Companion
Website.

Instructor Resources
The Companion Website, accessible from www.pearsonglobaleditions.com/Liang, contains the
following resources:

■■ Microsoft PowerPoint slides with interactive buttons to view full-color, syntax-highlighted
source code and to run programs without leaving the slides.

■■ Solutions to a majority of odd-numbered programming exercises.

■■ More than 200 additional programming exercises and 300 quizzes organized by chapters.
These exercises and quizzes are available only to the instructors. Solutions to these
 exercises and quizzes are provided.

■■ Web-based quiz generator. (Instructors can choose chapters to generate quizzes from a
large database of more than two thousand questions.)

■■ Sample exams. Most exams have four parts:

■■ Multiple-choice questions or short-answer questions

■■ Correct programming errors

■■ Trace programs

■■ Write programs

■■ Sample exams with ABET course assessment.

■■ Projects. In general, each project gives a description and asks students to analyze, design,
and implement the project.

Some readers have requested the materials from the Instructor Resource Center. Please
 understand that these are for instructors only. Such requests will not be answered.

Online Practice and Assessment
with MyProgrammingLab
MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of program-
ming. Through practice exercises and immediate, personalized feedback, MyProgrammingLab
improves the programming competence of beginning students who often struggle with the
basic concepts and paradigms of popular high-level programming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hundreds of
small practice problems organized around the structure of this textbook. For students, the sys-
tem automatically detects errors in the logic and syntax of their code submissions and offers
targeted hints that enable students to figure out what went wrong—and why. For instructors,
a comprehensive gradebook tracks correct and incorrect answers and stores the code inputted
by students for review.

8 Preface

A01_LIAN2035_11_GE_FM.indd 8 1/5/18 3:28 PM

http://www.pearsonglobaleditions.com/Liang

MyProgrammingLab is offered to users of this book in partnership with Turing’s Craft, the
makers of the CodeLab interactive programming exercise system. For a full demonstration,
to see feedback from instructors and students, or to get started using MyProgrammingLab in
your course, visit www.myprogramminglab.com.

Video Notes
We are excited about the new Video Notes feature that is found in this new edition. These
videos provide additional help by presenting examples of key topics and showing how
to solve problems completely, from design through coding. Video Notes are available from
www.pearsonglobaleditions.com/Liang.

Algorithm Animations
We have provided numerous animations for algorithms. These are valuable pedagogical tools
to demonstrate how algorithms work. Algorithm animations can be accessed from the Com-
panion Website.

VideoNote

Preface 9

Animation

A01_LIAN2035_11_GE_FM.indd 9 1/3/18 12:04 AM

http://www.pearsonglobaleditions.com/Liang
http://www.myprogramminglab.com/

Acknowledgments
I would like to thank Armstrong State University for enabling me to teach what I write and for
supporting me in writing what I teach. Teaching is the source of inspiration for continuing to
improve the book. I am grateful to the instructors and students who have offered comments,
suggestions, bug reports, and praise.

This book has been greatly enhanced thanks to outstanding reviews for this and previous
editions. The reviewers are: Elizabeth Adams (James Madison University), Syed Ahmed (North
Georgia College and State University), Omar Aldawud (Illinois Institute of Technology), Stefan
Andrei (Lamar University), Yang Ang (University of Wollongong, Australia), Kevin Bierre
(Rochester Institute of Technology), Aaron Braskin (Mira Costa High School), David Champion
(DeVry Institute), James Chegwidden (Tarrant County College), Anup Dargar (University of
North Dakota), Daryl Detrick (Warren Hills Regional High School), Charles Dierbach (Towson
University), Frank Ducrest (University of Louisiana at Lafayette), Erica Eddy (University of
Wisconsin at Parkside), Summer Ehresman (Center Grove High School), Deena Engel (New
York University), Henry A. Etlinger (Rochester Institute of Technology), James Ten Eyck
(Marist College), Myers Foreman (Lamar University), Olac Fuentes (University of Texas at
El Paso), Edward F. Gehringer (North Carolina State University), Harold Grossman (Clemson
University), Barbara Guillot (Louisiana State University), Stuart Hansen (University of Wis-
consin, Parkside), Dan Harvey (Southern Oregon University), Ron Hofman (Red River College,
Canada), Stephen Hughes (Roanoke College), Vladan Jovanovic (Georgia Southern University),
Deborah Kabura Kariuki (Stony Point High School), Edwin Kay (Lehigh University), Larry
King (University of Texas at Dallas), Nana Kofi (Langara College, Canada), George Koutsogi-
annakis (Illinois Institute of Technology), Roger Kraft (Purdue University at Calumet), Norman
Krumpe (Miami University), Hong Lin (DeVry Institute), Dan Lipsa (Armstrong State Univer-
sity), James Madison (Rensselaer Polytechnic Institute), Frank Malinowski (Darton College),
Tim Margush (University of Akron), Debbie Masada (Sun Microsystems), Blayne Mayfield
(Oklahoma State University), John McGrath (J.P. McGrath Consulting), Hugh McGuire (Grand
Valley State), Shyamal Mitra (University of Texas at Austin), Michel Mitri (James Madison
University), Kenrick Mock (University of Alaska Anchorage), Frank Murgolo (California State
University, Long Beach), Jun Ni (University of Iowa), Benjamin Nystuen (University of Colo-
rado at Colorado Springs), Maureen Opkins (CA State University, Long Beach), Gavin Osborne
(University of Saskatchewan), Kevin Parker (Idaho State University), Dale Parson (Kutztown
University), Mark Pendergast (Florida Gulf Coast University), Richard Povinelli (Marquette
University), Roger Priebe (University of Texas at Austin), Mary Ann Pumphrey (De Anza Junior
College), Pat Roth (Southern Polytechnic State University), Amr Sabry (Indiana University),
Ben Setzer (Kennesaw State University), Carolyn Schauble (Colorado State University), David
Scuse (University of Manitoba), Ashraf Shirani (San Jose State University), Daniel Spiegel
(Kutztown University), Joslyn A. Smith (Florida Atlantic University), Lixin Tao (Pace Uni-
versity), Ronald F. Taylor (Wright State University), Russ Tront (Simon Fraser University),
Deborah Trytten (University of Oklahoma), Michael Verdicchio (Citadel), Kent Vidrine (George
Washington University), and Bahram Zartoshty (California State University at Northridge).

It is a great pleasure, honor, and privilege to work with Pearson. I would like to thank Tracy
Johnson and her colleagues Marcia Horton, Demetrius Hall, Yvonne Vannatta, Kristy Alaura,
Carole Snyder, Scott Disanno, Bob Engelhardt, Shylaja Gattupalli, and their colleagues for
organizing, producing, and promoting this project.

As always, I am indebted to my wife, Samantha, for her love, support, and encouragement.

10 Preface

A01_LIAN2035_11_GE_FM.indd 10 1/3/18 12:04 AM

Acknowledgments for the Global Edition
Pearson would like to thank and acknowledge Yvan Maillot (Univresite Haute-Alsace) and
Steven Yuwono (National University of Singapore) for contributing to this Global Edition,
and Arif Ahmed (National Institute of Technology, Silchar), Annette Bieniusa (University
of Kaiserslautern), Shaligram Prajapat (Devi Ahilya Vishwavidyalaya, Indore), and Ram
Gopal Raj (University of Malaya) for reviewing this Global Edition.

Preface 11

A01_LIAN2035_11_GE_FM.indd 11 1/3/18 12:04 AM

12

ConTenTs
 chapter 1 Introduction to computers,

 Programs, and Java™ 23
 1.1 Introduction 24
 1.2 What Is a Computer? 24
 1.3 Programming Languages 29
 1.4 Operating Systems 31
 1.5 Java, the World Wide Web, and Beyond 32
 1.6 The Java Language Specification, API, JDK,

JRE, and IDE 33
 1.7 A Simple Java Program 34
 1.8 Creating, Compiling, and Executing a Java Program 37
 1.9 Programming Style and Documentation 40
 1.10 Programming Errors 42
 1.11 Developing Java Programs Using NetBeans 45
 1.12 Developing Java Programs Using Eclipse 47

 chapter 2 elementary Programming 55
 2.1 Introduction 56
 2.2 Writing a Simple Program 56
 2.3 Reading Input from the Console 59
 2.4 Identifiers 62
 2.5 Variables 62
 2.6 Assignment Statements and Assignment Expressions 64
 2.7 Named Constants 65
 2.8 Naming Conventions 66
 2.9 Numeric Data Types and Operations 67
 2.10 Numeric Literals 70
 2.11 Evaluating Expressions and Operator Precedence 72
 2.12 Case Study: Displaying the Current Time 74
 2.13 Augmented Assignment Operators 76
 2.14 Increment and Decrement Operators 77
 2.15 Numeric Type Conversions 79
 2.16 Software Development Process 81
 2.17 Case Study: Counting Monetary Units 85
 2.18 Common Errors and Pitfalls 87

 chapter 3 selections	 97
 3.1 Introduction 98
 3.2 boolean Data Type 98
 3.3 if Statements 100
 3.4 Two-Way if-else Statements 102
 3.5 Nested if and Multi-Way if-else Statements 103
 3.6 Common Errors and Pitfalls 105
 3.7 Generating Random Numbers 109
 3.8 Case Study: Computing Body Mass Index 111
 3.9 Case Study: Computing Taxes 112
 3.10 Logical Operators 115
 3.11 Case Study: Determining Leap Year 119
 3.12 Case Study: Lottery 120
 3.13 switch Statements 122

A01_LIAN2035_11_GE_FM.indd 12 1/3/18 12:04 AM

 3.14 Conditional Operators 125
 3.15 Operator Precedence and Associativity 126
 3.16 Debugging 128

 chapter 4 mathematical functions,
Characters,	and	strings	 141

 4.1 Introduction 142
 4.2 Common Mathematical Functions 142
 4.3 Character Data Type and Operations 147
 4.4 The String Type 152
 4.5 Case Studies 161
 4.6 Formatting Console Output 167

 chapter 5 Loops 181
 5.1 Introduction 182
 5.2 The while Loop 182
 5.3 Case Study: Guessing Numbers 185
 5.4 Loop Design Strategies 188
 5.5 Controlling a Loop with User Confirmation or a Sentinel Value 190
 5.6 The do-while Loop 192
 5.7 The for Loop 195
 5.8 Which Loop to Use? 198
 5.9 Nested Loops 200
 5.10 Minimizing Numeric Errors 202
 5.11 Case Studies 204
 5.12 Keywords break and continue 208
 5.13 Case Study: Checking Palindromes 211
 5.14 Case Study: Displaying Prime Numbers 213

 chapter 6 methods 227
 6.1 Introduction 228
 6.2 Defining a Method 228
 6.3 Calling a Method 230
 6.4 void vs. Value-Returning Methods 233
 6.5 Passing Parameters by Values 236
 6.6 Modularizing Code 239
 6.7 Case Study: Converting Hexadecimals to Decimals 241
 6.8 Overloading Methods 243
 6.9 The Scope of Variables 246
 6.10 Case Study: Generating Random Characters 247
 6.11 Method Abstraction and Stepwise Refinement 249

 chapter 7 single-Dimensional	Arrays	 269
 7.1 Introduction 270
 7.2 Array Basics 270
 7.3 Case Study: Analyzing Numbers 277
 7.4 Case Study: Deck of Cards 278
 7.5 Copying Arrays 280
 7.6 Passing Arrays to Methods 281
 7.7 Returning an Array from a Method 284
 7.8 Case Study: Counting the Occurrences of Each Letter 285
 7.9 Variable-Length Argument Lists 288
 7.10 Searching Arrays 289
 7.11 Sorting Arrays 293

Contents 13

A01_LIAN2035_11_GE_FM.indd 13 1/3/18 12:04 AM

 7.12 The Arrays Class 294
 7.13 Command-Line Arguments 296

 chapter 8 multidimensional arrays 311
 8.1 Introduction 312
 8.2 Two-Dimensional Array Basics 312
 8.3 Processing Two-Dimensional Arrays 315
 8.4 Passing Two-Dimensional Arrays to Methods 317
 8.5 Case Study: Grading a Multiple-Choice Test 318
 8.6 Case Study: Finding the Closest Pair 320
 8.7 Case Study: Sudoku 322
 8.8 Multidimensional Arrays 325

 chapter 9 objects and classes 345
 9.1 Introduction 346
 9.2 Defining Classes for Objects 346
 9.3 Example: Defining Classes and Creating Objects 348
 9.4 Constructing Objects Using Constructors 353
 9.5 Accessing Objects via Reference Variables 354
 9.6 Using Classes from the Java Library 358
 9.7 Static Variables, Constants, and Methods 361
 9.8 Visibility Modifiers 366
 9.9 Data Field Encapsulation 368
 9.10 Passing Objects to Methods 371
 9.11 Array of Objects 375
 9.12 Immutable Objects and Classes 377
 9.13 The Scope of Variables 379
 9.14 The this Reference 380

 chapter 10 object-oriented	Thinking	 389
 10.1 Introduction 390
 10.2 Class Abstraction and Encapsulation 390
 10.3 Thinking in Objects 394
 10.4 Class Relationships 397
 10.5 Case Study: Designing the Course Class 400
 10.6 Case Study: Designing a Class for Stacks 402
 10.7 Processing Primitive Data Type Values as Objects 404
 10.8 Automatic Conversion between Primitive Types

and Wrapper Class Types 407
 10.9 The BigInteger and BigDecimal Classes 408
 10.10 The String Class 410
 10.11 The StringBuilder and StringBuffer Classes 416

 chapter 11 Inheritance and
Polymorphism 433

 11.1 Introduction 434
 11.2 Superclasses and Subclasses 434
 11.3 Using the super Keyword 440
 11.4 Overriding Methods 443
 11.5 Overriding vs. Overloading 444
 11.6 The Object Class and Its toString() Method 446
 11.7 Polymorphism 447
 11.8 Dynamic Binding 447
 11.9 Casting Objects and the instanceof Operator 451
 11.10 The Object’s equals Method 455

14 Contents

A01_LIAN2035_11_GE_FM.indd 14 1/3/18 12:04 AM

 15

 11.11 The ArrayList Class 456
 11.12 Useful Methods for Lists 462
 11.13 Case Study: A Custom Stack Class 463
 11.14 The protected Data and Methods 464
 11.15 Preventing Extending and Overriding 467

 chapter 12 exception Handling
and text I/o 475

 12.1 Introduction 476
 12.2 Exception-Handling Overview 476
 12.3 Exception Types 481
 12.4 More on Exception Handling 484
 12.5 The finally Clause 492
 12.6 When to Use Exceptions 493
 12.7 Rethrowing Exceptions 494
 12.8 Chained Exceptions 495
 12.9 Defining Custom Exception Classes 496
 12.10 The File Class 499
 12.11 File Input and Output 502
 12.12 Reading Data from the Web 508
 12.13 Case Study: Web Crawler 510

 chapter 13 abstract classes and Interfaces 521
 13.1 Introduction 522
 13.2 Abstract Classes 522
 13.3 Case Study: the Abstract Number Class 527
 13.4 Case Study: Calendar and GregorianCalendar 529
 13.5 Interfaces 532
 13.6 The Comparable Interface 535
 13.7 The Cloneable Interface 540
 13.8 Interfaces vs. Abstract Classes 545
 13.9 Case Study: The Rational Class 548
 13.10 Class-Design Guidelines 553

 chapter 14 JavafX Basics 563
 14.1 Introduction 564
 14.2 JavaFX vs Swing and AWT 564
 14.3 The Basic Structure of a JavaFX Program 564
 14.4 Panes, Groups, UI Controls, and Shapes 567
 14.5 Property Binding 570
 14.6 Common Properties and Methods for Nodes 573
 14.7 The Color Class 575
 14.8 The Font Class 576
 14.9 The Image and ImageView Classes 578
 14.10 Layout Panes and Groups 580
 14.11 Shapes 589
 14.12 Case Study: The ClockPane Class 602

 chapter 15 	event-Driven	Programming	
and animations 615

 15.1 Introduction 616
 15.2 Events and Event Sources 618
 15.3 Registering Handlers and Handling Events 619
 15.4 Inner Classes 623
 15.5 Anonymous Inner Class Handlers 624

Contents 15

A01_LIAN2035_11_GE_FM.indd 15 1/3/18 12:04 AM

 15.6 Simplifying Event Handling Using Lambda Expressions 627
 15.7 Case Study: Loan Calculator 631
 15.8 Mouse Events 633
 15.9 Key Events 635
 15.10 Listeners for Observable Objects 638
 15.11 Animation 640
 15.12 Case Study: Bouncing Ball 648
 15.13 Case Study: US Map 652

 chapter 16 JavafX uI controls
and multimedia 665

 16.1 Introduction 666
 16.2 Labeled and Label 666
 16.3 Button 668
 16.4 CheckBox 670
 16.5 RadioButton 673
 16.6 TextField 676
 16.7 TextArea 677
 16.8 ComboBox 681
 16.9 ListView 684
 16.10 ScrollBar 687
 16.11 Slider 690
 16.12 Case Study: Developing a Tic-Tac-Toe Game 693
 16.13 Video and Audio 698
 16.14 Case Study: National Flags and Anthems 701

 chapter 17 Binary I/o 713
 17.1 Introduction 714
 17.2 How Is Text I/O Handled in Java? 714
 17.3 Text I/O vs. Binary I/O 715
 17.4 Binary I/O Classes 716
 17.5 Case Study: Copying Files 726
 17.6 Object I/O 728
 17.7 Random-Access Files 733

 chapter 18 recursion 741
 18.1 Introduction 742
 18.2 Case Study: Computing Factorials 742
 18.3 Case Study: Computing Fibonacci

Numbers 745
 18.4 Problem Solving Using Recursion 748
 18.5 Recursive Helper Methods 750
 18.6 Case Study: Finding the Directory Size 753
 18.7 Case Study: Tower of Hanoi 755
 18.8 Case Study: Fractals 758
 18.9 Recursion vs. Iteration 762
 18.10 Tail Recursion 762

Appendixes 773

 appendix a Java Keywords 775

 appendix B The	AsCii	Character	set	 776

16 Contents

A01_LIAN2035_11_GE_FM.indd 16 1/3/18 12:04 AM

 appendix c operator Precedence chart 778

 appendix d Java modifiers 780

 appendix e special	floating-Point	Values	 782

 appendix f number	systems	 783

 appendix g Bitwise operations 787

 appendix H regular expressions 788

appendix I enumerated types 793

Quick Reference 799

Index 801

Contents 17

A01_LIAN2035_11_GE_FM.indd 17 1/3/18 12:04 AM

A01_GIPE3898_09_SE_FM.indd 3 12/20/17 5:56 PM

This page intentionally left blank

Chapter 1 Introduction to Computers, Programs,
and Java™ 23
Your first Java program 34
Compile and run a Java program 39
NetBeans brief tutorial 45
Eclipse brief tutorial 47

Chapter 2 Elementary Programming 55
Obtain input 59
Use operators / and % 74
Software development
process 81
Compute loan payments 82
Compute BMI 94

Chapter 3 Selections 97
Program addition quiz 99
Program subtraction quiz 109
Use multi-way if-else
statements 112
Sort three integers 132
Check point location 134

Chapter 4 Mathematical Functions, Characters,
and Strings 141
Introduce Math functions 142
Introduce strings and objects 152
Convert hex to decimal 165
Compute great circle distance 173
Convert hex to binary 176

Chapter 5 Loops 181
Use while loop 182
Guess a number 185
Multiple subtraction quiz 188
Use do-while loop 192
Minimize numeric errors 202
Display loan schedule 219
Sum a series 220

Chapter 6 Methods 227
Define/invoke max method 230
Use void method 233
Modularize code 239
Stepwise refinement 249
Reverse an integer 258
Estimate p 261

Chapter 7 Single-Dimensional Arrays 269
Random shuffling 274
Deck of cards 278

Selection sort 293
Command-line arguments 297
Coupon collector’s problem 304
Consecutive four 306

Chapter 8 Multidimensional Arrays 311
Find the row with the largest sum 316
Grade multiple-choice test 318
Sudoku 322
Multiply two matrices 331
Even number of 1s 338

Chapter 9 Objects and Classes 345
Define classes and objects 346
Use classes 358
Static vs. instance 361
Data field encapsulation 368
The this keyword 380
The Fan class 386

Chapter 10 Object-Oriented Thinking 389
The Loan class 391
The BMI class 394
The StackOfIntegers class 402
Process large numbers 408
The String class 410
The MyPoint class 424

Chapter 11 Inheritance and Polymorphism 433
Geometric class hierarchy 434
Polymorphism and dynamic
binding demo 448
The ArrayList class 456
The MyStack class 463
New Account class 470

Chapter 12 Exception Handling and Text I/O 475
Exception-handling advantages 476
Create custom exception classes 496
Write and read data 502
HexFormatException 515

Chapter 13 Abstract Classes and Interfaces 521
Abstract GeometricObject class 522
Calendar and Gregorian
Calendar classes 529
The concept of interface 532
Redesign the Rectangle class 558

Chapter 14 JavaFX Basics 563
Getting started with JavaFX 564

VideoNotes
Locations of VideoNotes
www.pearsonglobaleditions.com/Liang

VideoNote

19

A01_LIAN2035_11_GE_FM.indd 19 1/3/18 12:04 AM

http://www.pearsonglobaleditions.com/Liang

Understand property binding 570
Use Image and ImageView 578
Use layout panes 580
Use shapes 589
Display a tic-tac-toe board 608
Display a bar chart 610

Chapter 15 Event-Driven Programming
and Animations 615
Handler and its registration 622
Anonymous handler 625
Move message using the mouse 634
Animate a rising flag 640
Flashing text 646
Simple calculator 656
Check mouse-point location 658
Display a running fan 661

Chapter 16 JavaFX UI Controls and Multimedia 665
Use ListView 684

Use Slider 690
Tic-Tac-Toe 693
Use Media, MediaPlayer,
and MediaView 698
Use radio buttons and text
fields 705
Set fonts 707

Chapter 17 Binary I/O 713
Copy file 726
Object I/O 728
Split a large file 738

Chapter 18 Recursion 741
Binary search 752
Directory size 753
Fractal (Sierpinski triangle) 758
Search a string in a directory 769
Recursive tree 772

20 VideoNotes

A01_LIAN2035_11_GE_FM.indd 20 1/3/18 12:04 AM

Chapter 7 Single-Dimensional Arrays 269
linear search animation on
Companion Website 290
binary search animation on
Companion Website 290
selection sort animation on
Companion Website 293

Chapter 8 Multidimensional Arrays 311
closest-pair animation on
the Companion Website 320

Animations

21

A01_LIAN2035_11_GE_FM.indd 21 1/3/18 12:04 AM

A01_GIPE3898_09_SE_FM.indd 3 12/20/17 5:56 PM

This page intentionally left blank

Chapter

1
Introduction
to Computers,
Programs, and Java™

Objectives
■■ To understand computer basics, programs, and operating systems

(§§1.2–1.4).

■■ To describe the relationship between Java and the World Wide Web
(§1.5).

■■ To understand the meaning of Java language specification, API, JDK™,
JRE™, and IDE (§1.6).

■■ To write a simple Java program (§1.7).

■■ To display output on the console (§1.7).

■■ To explain the basic syntax of a Java program (§1.7).

■■ To create, compile, and run Java programs (§1.8).

■■ To use sound Java programming style and document programs properly
(§1.9).

■■ To explain the differences between syntax errors, runtime errors, and
logic errors (§1.10).

■■ To develop Java programs using NetBeans™ (§1.11).

■■ To develop Java programs using Eclipse™ (§1.12).

M01_LIAN1878_11_GE_C01.indd 23 1/2/18 10:57 PM

24 Chapter 1 Introduction to Computers, Programs, and Java™

1.1 Introduction
The central theme of this book is to learn how to solve problems by writing a program.

This book is about programming. So, what is programming? The term programming means to
create (or develop) software, which is also called a program. In basic terms, software contains
instructions that tell a computer—or a computerized device—what to do.

Software is all around you, even in devices you might not think would need it. Of course,
you expect to find and use software on a personal computer, but software also plays a role in
running airplanes, cars, cell phones, and even toasters. On a personal computer, you use word
processors to write documents, web browsers to explore the Internet, and e-mail programs to
send and receive messages. These programs are all examples of software. Software developers
create software with the help of powerful tools called programming languages.

This book teaches you how to create programs by using the Java programming language.
There are many programming languages, some of which are decades old. Each language was
invented for a specific purpose—to build on the strengths of a previous language, for example,
or to give the programmer a new and unique set of tools. Knowing there are so many program-
ming languages available, it would be natural for you to wonder which one is best. However, in
truth, there is no “best” language. Each one has its own strengths and weaknesses. Experienced
programmers know one language might work well in some situations, whereas a different
language may be more appropriate in other situations. For this reason, seasoned programmers
try to master as many different programming languages as they can, giving them access to a
vast arsenal of software-development tools.

If you learn to program using one language, you should find it easy to pick up other lan-
guages. The key is to learn how to solve problems using a programming approach. That is the
main theme of this book.

You are about to begin an exciting journey: learning how to program. At the outset, it is
helpful to review computer basics, programs, and operating systems (OSs). If you are already
familiar with such terms as central processing unit (CPU), memory, disks, operating systems,
and programming languages, you may skip Sections 1.2–1.4.

1.2 What Is a Computer?
A computer is an electronic device that stores and processes data.

A computer includes both hardware and software. In general, hardware comprises the visible,
physical elements of the computer, and software provides the invisible instructions that control
the hardware and make it perform specific tasks. Knowing computer hardware isn’t essential
to learning a programming language, but it can help you better understand the effects that a
program’s instructions have on the computer and its components. This section introduces
computer hardware components and their functions.

A computer consists of the following major hardware components (see Figure 1.1):

■■ A central processing unit (CPU)

■■ Memory (main memory)

■■ Storage devices (such as disks and CDs)

■■ Input devices (such as the mouse and the keyboard)

■■ Output devices (such as monitors and printers)

■■ Communication devices (such as modems and network interface cards (NIC))

A computer’s components are interconnected by a subsystem called a bus. You can think
of a bus as a sort of system of roads running among the computer’s components; data and
power travel along the bus from one part of the computer to another. In personal computers,

Point
Key

what is programming?
programming
program

Point
Key

hardware
software

bus

M01_LIAN1878_11_GE_C01.indd 24 1/2/18 10:57 PM

1.2 What Is a Computer? 25

the bus is built into the computer’s motherboard, which is a circuit case that connects all of
the parts of a computer together.

1.2.1 Central Processing Unit
The central processing unit (CPU) is the computer’s brain. It retrieves instructions from the
memory and executes them. The CPU usually has two components: a control unit and an
arithmetic/logic unit. The control unit controls and coordinates the actions of the other com-
ponents. The arithmetic/logic unit performs numeric operations (addition, subtraction, multi-
plication, and division) and logical operations (comparisons).

Today’s CPUs are built on small silicon semiconductor chips that contain millions of tiny
electric switches, called transistors, for processing information.

Every computer has an internal clock that emits electronic pulses at a constant rate. These
pulses are used to control and synchronize the pace of operations. A higher clock speed enables
more instructions to be executed in a given period of time. The unit of measurement of clock
speed is the hertz (Hz), with 1 Hz equaling 1 pulse per second. In the 1990s, computers meas-
ured clock speed in megahertz (MHz), but CPU speed has been improving continuously; the
clock speed of a computer is now usually stated in gigahertz (GHz). Intel’s newest processors
run at about 3 GHz.

CPUs were originally developed with only one core. The core is the part of the processor
that performs the reading and executing of instructions. In order to increase the CPU processing
power, chip manufacturers are now producing CPUs that contain multiple cores. A multicore
CPU is a single component with two or more independent cores. Today’s consumer comput-
ers typically have two, three, and even four separate cores. Soon, CPUs with dozens or even
hundreds of cores will be affordable.

1.2.2 Bits and Bytes
Before we discuss memory, let’s look at how information (data and programs) are stored in
a computer.

A computer is really nothing more than a series of switches. Each switch exists in two states:
on or off. Storing information in a computer is simply a matter of setting a sequence of switches
on or off. If the switch is on, its value is 1. If the switch is off, its value is 0. These 0s and 1s
are interpreted as digits in the binary number system and are called bits (binary digits).

The minimum storage unit in a computer is a byte. A byte is composed of eight bits. A small
number such as 3 can be stored as a single byte. To store a number that cannot fit into a single
byte, the computer uses several bytes.

Data of various kinds, such as numbers and characters, are encoded as a series of bytes. As
a programmer, you don’t need to worry about the encoding and decoding of data, which the
computer system performs automatically, based on the encoding scheme. An encoding scheme
is a set of rules that govern how a computer translates characters and numbers into data with
which the computer can actually work. Most schemes translate each character into a

motherboard

CPU

speed

hertz
megahertz

gigahertz

core

bits

byte

encoding scheme

Figure 1.1 A computer consists of a CPU, memory, storage devices, input devices, output
devices, and communication devices.

Memory

e.g., Disk, CD,
and Tape

e.g., Modem,
and NIC

e.g., Keyboard,
Mouse

e.g., Monitor,
Printer

CPU

Bus

Storage
Devices

Communication
Devices

Input
Devices

Output
Devices

M01_LIAN1878_11_GE_C01.indd 25 1/2/18 10:57 PM

26 Chapter 1 Introduction to Computers, Programs, and Java™

predetermined string of bits. In the popular ASCII encoding scheme, for example, the character
C is represented as 01000011 in 1 byte.

A computer’s storage capacity is measured in bytes and multiples of the byte, as follows:

■■ A kilobyte (KB) is about 1,000 bytes.

■■ A megabyte (MB) is about 1 million bytes.

■■ A gigabyte (GB) is about 1 billion bytes.

■■ A terabyte (TB) is about 1 trillion bytes.

A typical one-page word document might take 20 KB. Therefore, 1 MB can store 50 pages
of documents, and 1 GB can store 50,000 pages of documents. A typical two-hour high-
resolution movie might take 8 GB, so it would require 160 GB to store 20 movies.

1.2.3 Memory
A computer’s memory consists of an ordered sequence of bytes for storing programs as well
as data with which the program is working. You can think of memory as the computer’s work
area for executing a program. A program and its data must be moved into the computer’s
memory before they can be executed by the CPU.

Every byte in the memory has a unique address, as shown in Figure 1.2. The address is used
to locate the byte for storing and retrieving the data. Since the bytes in the memory can be
accessed in any order, the memory is also referred to as random-access memory (RAM).

kilobyte (KB)

megabyte (MB)

gigabyte (GB)

terabyte (TB)

memory

unique address

RAM

Figure 1.2 Memory stores data and program instructions in uniquely addressed memory
locations.

01000011
01110010
01100101
01110111
00000011

Encoding for character ‘C’
Encoding for character ‘r’
Encoding for character ‘e’
Encoding for character ‘w’
Decimal number 3

2000
2001
2002
2003
2004

Memory address Memory content

Today’s personal computers usually have at least 4 GB of RAM, but they more commonly
have 6 to 8 GB installed. Generally speaking, the more RAM a computer has, the faster it can
operate, but there are limits to this simple rule of thumb.

A memory byte is never empty, but its initial content may be meaningless to your program.
The current content of a memory byte is lost whenever new information is placed in it.

Like the CPU, memory is built on silicon semiconductor chips that have millions of transis-
tors embedded on their surface. Compared to CPU chips, memory chips are less complicated,
slower, and less expensive.

1.2.4 Storage Devices
A computer’s memory (RAM) is a volatile form of data storage: Any information that
has been saved in memory is lost when the system’s power is turned off. Programs and
data are permanently stored on storage devices and are moved, when the computer actu- storage devices

M01_LIAN1878_11_GE_C01.indd 26 1/2/18 10:57 PM

1.2 What Is a Computer? 27

ally uses them, to memory, which operates at much faster speeds than permanent storage
devices can.

There are three main types of storage devices:

■■ Magnetic disk drives

■■ Optical disc drives (CD and DVD)

■■ Universal serial bus (USB) flash drives

Drives are devices for operating a medium, such as disks and CDs. A storage medium
physically stores data and program instructions. The drive reads data from the medium and
writes data onto the medium.

Disks

A computer usually has at least one hard disk drive. Hard disks are used for permanently stor-
ing data and programs. Newer computers have hard disks that can store from 500 GB to 1 TB
of data. Hard disk drives are usually encased inside the computer, but removable hard disks
are also available.

CDs and DVDs

CD stands for compact disc. There are three types of CDs: CD-ROM, CD-R, and CD-RW. A CD-
ROM is a prepressed disc. It was popular for distributing software, music, and video. Software,
music, and video are now increasingly distributed on the Internet without using CDs. A CD-R
(CD-Recordable) is a write-once medium. It can be used to record data once and read any number
of times. A CD-RW (CD-ReWritable) can be used like a hard disk; that is, you can write data onto
the disc, then overwrite that data with new data. A single CD can hold up to 700 MB.

DVD stands for digital versatile disc or digital video disc. DVDs and CDs look alike, and
you can use either to store data. A DVD can hold more information than a CD; a standard
DVD’s storage capacity is 4.7 GB. There are two types of DVDs: DVD-R (Recordable) and
DVD-RW (ReWritable).

USB Flash Drives

Universal serial bus (USB) connectors allow the user to attach many kinds of peripheral
devices to the computer. You can use an USB to connect a printer, digital camera, mouse,
external hard disk drive, and other devices to the computer.

An USB flash drive is a device for storing and transporting data. A flash drive is small—about
the size of a pack of gum. It acts like a portable hard drive that can be plugged into your computer’s
USB port. USB flash drives are currently available with up to 256 GB storage capacity.

1.2.5 Input and Output Devices
Input and output devices let the user communicate with the computer. The most common
input devices are the keyboard and mouse. The most common output devices are monitors
and printers.

The Keyboard

A keyboard is a device for entering input. Compact keyboards are available without a numeric
keypad.

Function keys are located across the top of the keyboard and are prefaced with the letter F.
Their functions depend on the software currently being used.

A modifier key is a special key (such as the Shift, Alt, and Ctrl keys) that modifies the normal
action of another key when the two are pressed simultaneously.

drive

hard disk

CD-ROM

CD-R

CD-RW

DVD

function key

modifier key

M01_LIAN1878_11_GE_C01.indd 27 1/2/18 10:57 PM

28 Chapter 1 Introduction to Computers, Programs, and Java™

The numeric keypad, located on the right side of most keyboards, is a separate set of keys
styled like a calculator to use for quickly entering numbers.

Arrow keys, located between the main keypad and the numeric keypad, are used to move
the mouse pointer up, down, left, and right on the screen in many kinds of programs.

The Insert, Delete, Page Up, and Page Down keys are used in word processing and other
programs for inserting text and objects, deleting text and objects, and moving up or down
through a document one screen at a time.

The Mouse

A mouse is a pointing device. It is used to move a graphical pointer (usually in the shape of
an arrow) called a cursor around the screen, or to click on-screen objects (such as a button) to
trigger them to perform an action.

The Monitor

The monitor displays information (text and graphics). The screen resolution and dot pitch
determine the quality of the display.

The screen resolution specifies the number of pixels in horizontal and vertical dimensions
of the display device. Pixels (short for “picture elements”) are tiny dots that form an image on
the screen. A common resolution for a 17-inch screen, for example, is 1,024 pixels wide and
768 pixels high. The resolution can be set manually. The higher the resolution, the sharper and
clearer the image is.

The dot pitch is the amount of space between pixels, measured in millimeters. The smaller
the dot pitch, the sharper is the display.

1.2.6 Communication Devices
Computers can be networked through communication devices, such as a dial-up modem
 (modulator/demodulator), a digital subscriber line (DSL) or cable modem, a wired network
interface card, or a wireless adapter.

■■ A dial-up modem uses a phone line to dial a phone number to connect to the Internet
and can transfer data at a speed up to 56,000 bps (bits per second).

■■ A digital subscriber line (DSL) connection also uses a standard phone line, but it can
transfer data 20 times faster than a standard dial-up modem.

■■ A cable modem uses the cable line maintained by the cable company and is generally
faster than DSL.

■■ A network interface card (NIC) is a device that connects a computer to a local area
network (LAN). LANs are commonly used to connect computers within a limited area
such as a school, a home, and an office. A high-speed NIC called 1000BaseT can
transfer data at 1,000 million bits per second (mbps).

■■ Wireless networking is now extremely popular in homes, businesses, and schools.
Every laptop computer sold today is equipped with a wireless adapter that enables the
computer to connect to the LAN and the Internet.

Note
Answers to the CheckPoint questions are available at www.pearsonglobaleditions
.com/Liang. Choose this book and click Companion Website to select CheckPoint.

 1.2.1 What are hardware and software?

 1.2.2 List the five major hardware components of a computer.

numeric keypad

arrow keys

Insert key
Delete key

Page Up key
Page Down key

screen resolution
pixels

dot pitch

dial-up modem

digital subscriber line (DSL)

cable modem

network interface card (NIC)

local area network (LAN)
million bits per second

(mbps)

Point
Check

M01_LIAN1878_11_GE_C01.indd 28 1/2/18 10:57 PM

http://www.pearsonglobaleditions.com/Liang
http://www.pearsonglobaleditions.com/Liang

1.3 Programming Languages 29

 1.2.3 What does the acronym CPU stand for? What unit is used to measure CPU speed?

 1.2.4 What is a bit? What is a byte?

 1.2.5 What is memory for? What does RAM stand for? Why is memory called RAM?

 1.2.6 What unit is used to measure memory size? What unit is used to measure disk size?

 1.2.7 What is the primary difference between memory and a storage device?

1.3 Programming Languages
Computer programs, known as software, are instructions that tell a computer what to do.

Computers do not understand human languages, so programs must be written in a language a
computer can use. There are hundreds of programming languages, and they were developed
to make the programming process easier for people. However, all programs must be converted
into the instructions the computer can execute.

1.3.1 Machine Language
A computer’s native language, which differs among different types of computers, is its machine
language—a set of built-in primitive instructions. These instructions are in the form of binary
code, so if you want to give a computer an instruction in its native language, you have to enter
the instruction as binary code. For example, to add two numbers, you might have to write an
instruction in binary code as follows:

1101101010011010

1.3.2 Assembly Language
Programming in machine language is a tedious process. Moreover, programs written in
machine language are very difficult to read and modify. For this reason, assembly language
was created in the early days of computing as an alternative to machine languages. Assembly
language uses a short descriptive word, known as a mnemonic, to represent each of the
machine-language instructions. For example, the mnemonic add typically means to add num-
bers, and sub means to subtract numbers. To add the numbers 2 and 3 and get the result, you
might write an instruction in assembly code as follows:

add 2, 3, result

Assembly languages were developed to make programming easier. However, because the
computer cannot execute assembly language, another program—called an assembler—is used
to translate assembly-language programs into machine code, as shown in Figure 1.3.

Point
Key

machine language

assembly language

assembler

Figure 1.3 An assembler translates assembly-language instructions into machine code.

Assembly Source File

...
add 2, 3, result

...

Machine-Code File

...
1101101010011010

...

Assembler

Writing code in assembly language is easier than in machine language. However, it is still
tedious to write code in assembly language. An instruction in assembly language essentially
corresponds to an instruction in machine code. Writing in assembly language requires that you

M01_LIAN1878_11_GE_C01.indd 29 1/2/18 10:57 PM

30 Chapter 1 Introduction to Computers, Programs, and Java™

know how the CPU works. Assembly language is referred to as a low-level language, because
assembly language is close in nature to machine language and is machine dependent.

1.3.3 High-Level Language
In the 1950s, a new generation of programming languages known as high-level languages
emerged. They are platform independent, which means that you can write a program in a high-
level language and run it in different types of machines. High-level languages are similar to
English and easy to learn and use. The instructions in a high-level programming language are
called statements. Here, for example, is a high-level language statement that computes the area of
a circle with a radius of 5:

area = 5 * 5 * 3.14159;

There are many high-level programming languages, and each was designed for a specific
purpose. Table 1.1 lists some popular ones.

low-level language

high-level language

statement

Language Description

Ada Named for Ada Lovelace, who worked on mechanical general-purpose computers. Developed for the Department
of Defense and used mainly in defense projects.

BASIC Beginner’s All-purpose Symbolic Instruction Code. Designed to be learned and used easily by beginners.

C Developed at Bell Laboratories. Combines the power of an assembly language with the ease of use and portability
of a high-level language.

C++ An object-oriented language, based on C

C# Pronounced “C Sharp.” An object-oriented programming language developed by Microsoft.

COBOL COmmon Business Oriented Language. Used for business applications.

FORTRAN FORmula TRANslation. Popular for scientific and mathematical applications.

Java Developed by Sun Microsystems, now part of Oracle. An object-oriented programming language, widely used for
developing platform-independent Internet applications.

JavaScript A Web programming language developed by Netscape

Pascal Named for Blaise Pascal, who pioneered calculating machines in the seventeenth century. A simple, structured,
general-purpose language primarily for teaching programming.

Python A simple general-purpose scripting language good for writing short programs.

Visual Basic Visual Basic was developed by Microsoft. Enables the programmers to rapidly develop Windows-based
applications.

Table 1.1 Popular High-Level Programming Languages

A program written in a high-level language is called a source program or source code.
Because a computer cannot execute a source program, a source program must be translated
into machine code for execution. The translation can be done using another programming tool
called an interpreter or a compiler.

■■ An interpreter reads one statement from the source code, translates it to the machine
code or virtual machine code, then executes it right away, as shown in Figure 1.4a.
Note a statement from the source code may be translated into several machine
instructions.

source program
source code

interpreter

compiler

M01_LIAN1878_11_GE_C01.indd 30 1/2/18 10:57 PM

1.4 Operating Systems 31

Figure 1.4 (a) An interpreter translates and executes a program one statement at a time. (b) A compiler translates
the entire source program into a machine-language file for execution.

Machine-Code File

...
0101100011011100
1111100011000100

...

High-Level Source File

...
 area = 5 * 5 * 3.1415;

...

(b)

Compiler Executor

High-Level Source File

...
 area = 5 * 5 * 3.1415;

...

(a)

Interpreter
Output

Output

■■ A compiler translates the entire source code into a machine-code file, and the machine-code file is then executed,
as shown in Figure 1.4b.

 1.3.1 What language does the CPU understand?

 1.3.2 What is an assembly language? What is an assembler?

 1.3.3 What is a high-level programming language? What is a source program?

 1.3.4 What is an interpreter? What is a compiler?

 1.3.5 What is the difference between an interpreted language and a compiled language?

Point
Check

1.4 Operating Systems
The operating system (OS) is the most important program that runs on a computer.
The OS manages and controls a computer’s activities.

The popular operating systems for general-purpose computers are Microsoft Windows, Mac
OS, and Linux. Application programs, such as a web browser or a word processor, cannot run
unless an operating system is installed and running on the computer. Figure 1.5 shows the
interrelationship of hardware, operating system, application software, and the user.

Point
Key

operating system (OS)

Figure 1.5 Users and applications access the computer’s hardware via the operating system.

User

Application Programs

Operating System

Hardware

M01_LIAN1878_11_GE_C01.indd 31 1/2/18 10:57 PM

32 Chapter 1 Introduction to Computers, Programs, and Java™

The major tasks of an operating system are as follows:

■■ Controlling and monitoring system activities

■■ Allocating and assigning system resources

■■ Scheduling operations

1.4.1 Controlling and Monitoring System Activities
Operating systems perform basic tasks, such as recognizing input from the keyboard, sending
output to the monitor, keeping track of files and folders on storage devices, and controlling
peripheral devices such as disk drives and printers. An operating system must also ensure
different programs and users working at the same time do not interfere with each other. In
addition, the OS is responsible for security, ensuring unauthorized users and programs are not
allowed to access the system.

1.4.2 Allocating and Assigning System Resources
The operating system is responsible for determining what computer resources a program needs
(such as CPU time, memory space, disks, and input and output devices) and for allocating and
assigning them to run the program.

1.4.3 Scheduling Operations
The OS is responsible for scheduling programs’ activities to make efficient use of system
resources. Many of today’s operating systems support techniques such as multiprogramming,
multithreading, and multiprocessing to increase system performance.

Multiprogramming allows multiple programs such as Microsoft Word, E-mail, and web
browser to run simultaneously by sharing the same CPU. The CPU is much faster than the
computer’s other components. As a result, it is idle most of the time—for example, while wait-
ing for data to be transferred from a disk or waiting for other system resources to respond. A
multiprogramming OS takes advantage of this situation by allowing multiple programs to use
the CPU when it would otherwise be idle. For example, multiprogramming enables you to use
a word processor to edit a file at the same time as your web browser is downloading a file.

Multithreading allows a single program to execute multiple tasks at the same time. For
instance, a word-processing program allows users to simultaneously edit text and save it to a
disk. In this example, editing and saving are two tasks within the same program. These two
tasks may run concurrently.

Multiprocessing is similar to multithreading. The difference is that multithreading is for
running multithreads concurrently within one program, but multiprocessing is for running
multiple programs concurrently using multiple processors.

 1.4.1 What is an operating system? List some popular operating systems.

 1.4.2 What are the major responsibilities of an operating system?

 1.4.3 What are multiprogramming, multithreading, and multiprocessing?

1.5 Java, the World Wide Web, and Beyond
Java is a powerful and versatile programming language for developing software run-
ning on mobile devices, desktop computers, and servers.

This book introduces Java programming. Java was developed by a team led by James Gosling
at Sun Microsystems. Sun Microsystems was purchased by Oracle in 2010. Originally called
Oak, Java was designed in 1991 for use in embedded chips in consumer electronic appliances.

multiprogramming
multithreading
multiprocessing

Point
Check

Point
Key

M01_LIAN1878_11_GE_C01.indd 32 1/2/18 10:57 PM

1.6 The Java Language Specification, API, JDK, JRE, and IDE 33

In 1995, renamed Java, it was redesigned for developing web applications. For the history of
Java, see www.java.com/en/javahistory/index.jsp.

Java has become enormously popular. Its rapid rise and wide acceptance can be traced
to its design characteristics, particularly its promise that you can write a program once
and run it anywhere. As stated by its designer, Java is simple, object oriented, distributed,
 interpreted, robust, secure, architecture neutral, portable, high performance, multithreaded,
and dynamic. For the anatomy of Java characteristics, see liveexample.pearsoncmg.com/etc/
JavaCharacteristics.pdf.

Java is a full-featured, general-purpose programming language that can be used to develop
robust mission-critical applications. Today, it is employed not only for web programming but
also for developing stand-alone applications across platforms on servers, desktop computers,
and mobile devices. It was used to develop the code to communicate with and control the
robotic rover on Mars. Many companies that once considered Java to be more hype than sub-
stance are now using it to create distributed applications accessed by customers and partners
across the Internet. For every new project being developed today, companies are asking how
they can use Java to make their work easier.

The World Wide Web is an electronic information repository that can be accessed on the
Internet from anywhere in the world. The Internet, the Web’s infrastructure, has been around
for more than 40 years. The colorful World Wide Web and sophisticated web browsers are the
major reason for the Internet’s popularity.

Java initially became attractive because Java programs can run from a web browser. Such
programs are called applets. Today applets are no longer allowed to run from a Web browser
in the latest version of Java due to security issues. Java, however, is now very popular for
developing applications on web servers. These applications process data, perform computa-
tions, and generate dynamic webpages. Many commercial Websites are developed using Java
on the backend.

Java is a versatile programming language: You can use it to develop applications for desktop
computers, servers, and small handheld devices. The software for Android cell phones is
developed using Java.

 1.5.1 Who invented Java? Which company owns Java now?

 1.5.2 What is a Java applet?

 1.5.3 What programming language does Android use?

1.6 The Java Language Specification, API, JDK,
JRE, and IDE

Java syntax is defined in the Java language specification, and the Java library is
defined in the Java application program interface (API). The JDK is the software for
compiling and running Java programs. An IDE is an integrated development environ-
ment for rapidly developing programs.

Computer languages have strict rules of usage. If you do not follow the rules when writing a
program, the computer will not be able to understand it. The Java language specification and
the Java API define the Java standards.

The Java language specification is a technical definition of the Java programming
 language’s syntax and semantics. You can find the complete Java language specification at
docs.oracle.com/javase/specs/.

The application program interface (API), also known as library, contains predefined classes
and interfaces for developing Java programs. The API is still expanding. You can view and
download the latest version of the Java API at download.java.net/jdk8/docs/api/.

Point
Check

Point
Key

Java language specification

API
library

M01_LIAN1878_11_GE_C01.indd 33 1/2/18 10:57 PM

http://download.java.net/jdk8/docs/api/
http://docs.oracle.com/javase/specs/
http://liveexample.pearsoncmg.com/etc/%E2%80%90JavaCharacteristics.pdf
http://liveexample.pearsoncmg.com/etc/%E2%80%90JavaCharacteristics.pdf
http://www.java.com/en/javahistory/index.jsp

34 Chapter 1 Introduction to Computers, Programs, and Java™

Java is a full-fledged and powerful language that can be used in many ways. It comes in
three editions:

■■ Java Standard Edition (Java SE) to develop client-side applications. The applications
can run on desktop.

■■ Java Enterprise Edition (Java EE) to develop server-side applications, such as Java
servlets, JavaServer Pages (JSP), and JavaServer Faces (JSF).

■■ Java Micro Edition (Java ME) to develop applications for mobile devices, such as
cell phones.

This book uses Java SE to introduce Java programming. Java SE is the foundation upon which
all other Java technology is based. There are many versions of Java SE. The latest, Java SE 8, is
used in this book. Oracle releases each version with a Java Development Toolkit (JDK). For Java
SE 8, the Java Development Toolkit is called JDK 1.8 (also known as Java 8 or JDK 8).

The JDK consists of a set of separate programs, each invoked from a command line, for
compiling, running, and testing Java programs. The program for running Java programs is
known as JRE (Java Runtime Environment). Instead of using the JDK, you can use a Java
development tool (e.g., NetBeans, Eclipse, and TextPad)—software that provides an integrated
development environment (IDE) for developing Java programs quickly. Editing, compiling,
building, debugging, and online help are integrated in one graphical user interface. You simply
enter source code in one window or open an existing file in a window, and then click a button
or menu item or press a function key to compile and run the program.

 1.6.1 What is the Java language specification?

 1.6.2 What does JDK stand for? What does JRE stand for?

 1.6.3 What does IDE stand for?

 1.6.4 Are tools like NetBeans and Eclipse different languages from Java, or are they dia-
lects or extensions of Java?

1.7 A Simple Java Program
A Java program is executed from the main method in the class.

Let’s begin with a simple Java program that displays the message Welcome to Java! on the
console. (The word console is an old computer term that refers to the text entry and display
device of a computer. Console input means to receive input from the keyboard, and console
output means to display output on the monitor.) The program is given in Listing 1.1.

lisTing 1.1 Welcome.java
1 public class Welcome {
2 public static void main(String[] args) {
3 // Display message Welcome to Java! on the console
4 System.out.println("Welcome to Java!");
5 }
6 }

Java SE, EE, and ME

Java Development
Toolkit (JDK)

JDK 1.8 = JDK 8

Java Runtime Environment
(JRE)

Integrated development
environment

Point
Check

Point
Key

what is a console?
console input

console output

class
main method

display message

VideoNote

Your first Java program

Welcome to Java!

Note the line numbers are for reference purposes only; they are not part of the program. So,
don’t type line numbers in your program.

line numbers

M01_LIAN1878_11_GE_C01.indd 34 1/2/18 10:57 PM

1.7 A Simple Java Program 35

Line 1 defines a class. Every Java program must have at least one class. Each class has a
name. By convention, class names start with an uppercase letter. In this example, the class
name is Welcome.

Line 2 defines the main method. The program is executed from the main method. A class
may contain several methods. The main method is the entry point where the program begins
execution.

A method is a construct that contains statements. The main method in this program contains
the System.out.println statement. This statement displays the string Welcome to Java!
on the console (line 4). String is a programming term meaning a sequence of characters. A
string must be enclosed in double quotation marks. Every statement in Java ends with a semi-
colon (;), known as the statement terminator.

Reserved words, or keywords, have a specific meaning to the compiler and cannot be used
for other purposes in the program. For example, when the compiler sees the word class, it
understands that the word after class is the name for the class. Other reserved words in this
program are public, static, and void.

Line 3 is a comment that documents what the program is and how it is constructed. Comments
help programmers to communicate and understand the program. They are not programming
statements, and thus are ignored by the compiler. In Java, comments are preceded by two
slashes (//) on a line, called a line comment, or enclosed between /* and */ on one or several
lines, called a block comment or paragraph comment. When the compiler sees //, it ignores
all text after // on the same line. When it sees /*, it scans for the next */ and ignores any text
between /* and */. Here are examples of comments:

// This application program displays Welcome to Java!
/* This application program displays Welcome to Java! */
/* This application program

displays Welcome to Java! */

A pair of braces in a program forms a block that groups the program’s components. In Java,
each block begins with an opening brace ({) and ends with a closing brace (}). Every class has
a class block that groups the data and methods of the class. Similarly, every method has a
method block that groups the statements in the method. Blocks can be nested, meaning that
one block can be placed within another, as shown in the following code:

class name

main method

string

statement terminator
reserved word
keyword

comment

line comment
block comment

block

match braces

public class Welcome {
 public static void main(String[] args) {
 System.out.println("Welcome to Java!");
 }
}

Method block
Class block

Tip
 An opening brace must be matched by a closing brace. Whenever you type an opening
brace, immediately type a closing brace to prevent the missing-brace error. Most Java
IDEs automatically insert the closing brace for each opening brace.

Caution
 Java source programs are case sensitive. It would be wrong, for example, to replace main
in the program with Main.

You have seen several special characters (e.g., { }, //, ;) in the program. They are used
in almost every program. Table 1.2 summarizes their uses.

The most common errors you will make as you learn to program will be syntax errors. Like
any programming language, Java has its own syntax, and you need to write code that conforms

case sensitive

special characters

common errors

M01_LIAN1878_11_GE_C01.indd 35 1/2/18 10:57 PM

36 Chapter 1 Introduction to Computers, Programs, and Java™

to the syntax rules. If your program violates a rule—for example, if the semicolon is missing,
a brace is missing, a quotation mark is missing, or a word is misspelled—the Java compiler
will report syntax errors. Try to compile the program with these errors and see what the com-
piler reports.

Note
You are probably wondering why the main method is defined this way and why
 System.out.println(...) is used to display a message on the console. For the
time being, simply accept that this is how things are done. Your questions will be fully
answered in subsequent chapters.

The program in Listing 1.1 displays one message. Once you understand the program, it
is easy to extend it to display more messages. For example, you can rewrite the program to
display three messages, as shown in Listing 1.2.

lisTing 1.2 WelcomeWithThreeMessages.java
1 public class WelcomeWithThreeMessages {
2 public static void main(String[] args) {
3 System.out.println("Programming is fun!");
4 System.out.println("Fundamentals First");
5 System.out.println("Problem Driven");
6 }
7 }

syntax rules

class
main method
display message

Character Name Description

{} Opening and closing braces Denote a block to enclose statements.

() Opening and closing parentheses Used with methods.

[] Opening and closing brackets Denote an array.

// Double slashes Precede a comment line.

"" Opening and closing quotation marks Enclose a string (i.e., sequence of characters).

; Semicolon Mark the end of a statement.

Table 1.2 Special Characters

Programming is fun!
Fundamentals First
Problem Driven

Further, you can perform mathematical computations and display the result on the console.

Listing 1.3 gives an example of evaluating
10.5 + 2 * 3

45 - 3.5
.

lisTing 1.3 ComputeExpression.java
1 public class ComputeExpression {
2 public static void main(String[] args) {
3 System.out.print("(10.5 + 2 * 3) / (45 – 3.5) = ");
4 System.out.println((10.5 + 2 * 3) / (45 – 3.5));
5 }
6 }

class
main method

compute expression

(10.5 + 2 * 3) / (45 – 3.5) = 0.39759036144578314

M01_LIAN1878_11_GE_C01.indd 36 1/2/18 10:57 PM

1.8 Creating, Compiling, and Executing a Java Program 37

The print method in line 3

System.out.print("(10.5 + 2 * 3) / (45 – 3.5) = ");

is identical to the println method except that println moves to the beginning of the next
line after displaying the string, but print does not advance to the next line when completed.

The multiplication operator in Java is *. As you can see, it is a straightforward process to
translate an arithmetic expression to a Java expression. We will discuss Java expressions fur-
ther in Chapter 2.

 1.7.1 What is a keyword? List some Java keywords.
 1.7.2 Is Java case sensitive? What is the case for Java keywords?
 1.7.3 What is a comment? Is the comment ignored by the compiler? How do you denote a

comment line and a comment paragraph?
 1.7.4 What is the statement to display a string on the console?
 1.7.5 Show the output of the following code:

public class Test {
 public static void main(String[] args) {
 System.out.println("3.5 * 4 / 2 – 2.5 is ");
 System.out.println(3.5 * 4 / 2 – 2.5);
 }
}

1.8 Creating, Compiling, and Executing a Java Program
You save a Java program in a .java file and compile it into a .class file. The .class file
is executed by the Java Virtual Machine (JVM).

You have to create your program and compile it before it can be executed. This process is
repetitive, as shown in Figure 1.6. If your program has compile errors, you have to modify the
program to fix them, then recompile it. If your program has runtime errors or does not produce
the correct result, you have to modify the program, recompile it, and execute it again.

You can use any text editor or IDE to create and edit a Java source-code file. This section
demonstrates how to create, compile, and run Java programs from a command window. Sec-
tions 1.11 and 1.12 will introduce developing Java programs using NetBeans and Eclipse. From
the command window, you can use a text editor such as Notepad to create the Java source-code
file, as shown in Figure 1.7.

Note
The source file must end with the extension .java and must have the same exact name
as the public class name. For example, the file for the source code in Listing 1.1 should
be named Welcome.java, since the public class name is Welcome.

A Java compiler translates a Java source file into a Java bytecode file. The following com-
mand compiles Welcome.java:

javac Welcome.java

Note
You must first install and configure the JDK before you can compile and run programs.
See Supplement I.B, Installing and Configuring JDK 8, for how to install the JDK and set
up the environment to compile and run Java programs. If you have trouble compiling and
running programs, see Supplement I.C, Compiling and Running Java from the Command
Window. This supplement also explains how to use basic DOS commands and how to
use Windows Notepad to create and edit files. All the supplements are accessible from
the Companion Website.

print vs. println

Point
Check

Point
Key

command window

file name Welcome.java,

compile

Supplement I.B

Supplement I.C

M01_LIAN1878_11_GE_C01.indd 37 1/2/18 10:57 PM

38 Chapter 1 Introduction to Computers, Programs, and Java™

Figure 1.6 The Java program-development process consists of repeatedly creating/modifying source code, compiling,
and executing programs.

Create/Modify Source Code

Result

Compile Source Code
e.g., javac Welcome.java

Saved on the disk

Stored on the disk
If compile errors occur

If runtime errors or incorrect result

Source code (developed by the programmer)

Bytecode (generated by the compiler for JVM
to read and interpret)

…
Method Welcome()
 0 aload_0
 …

Method void main(java.lang.String[])
 0 getstatic #2 …
 3 ldc #3 <String "Welcome to Java!">
 5 invokevirtual #4 …
 8 return

public class Welcome {
 public static void main(String[] args) {
 System.out.println("Welcome to Java!");
 }
}

Run Bytecode
e.g., java Welcome

Source Code

Bytecode

“Welcome to Java” is displayed on the console

Welcome to Java!

Figure 1.7 You can create a Java source file using Windows Notepad.

If there aren’t any syntax errors, the compiler generates a bytecode file with a .class
extension. Thus, the preceding command generates a file named Welcome.class, as shown in
Figure 1.8a. The Java language is a high-level language, but Java bytecode is a low-level
language. The bytecode is similar to machine instructions but is architecture neutral and can
run on any platform that has a Java Virtual Machine (JVM), as shown in Figure 1.8b. Rather
than a physical machine, the virtual machine is a program that interprets Java bytecode. This
is one of Java’s primary advantages: Java bytecode can run on a variety of hardware platforms
and operating systems. Java source code is compiled into Java bytecode, and Java bytecode is
interpreted by the JVM. Your Java code may use the code in the Java library. The JVM exe-
cutes your code along with the code in the library.

To execute a Java program is to run the program’s bytecode. You can execute the bytecode
on any platform with a JVM, which is an interpreter. It translates the individual instructions in
the bytecode into the target machine language code one at a time, rather than the whole pro-
gram as a single unit. Each step is executed immediately after it is translated.

.class bytecode file

bytecode

Java Virtual Machine (JVM)

interpret bytecode

M01_LIAN1878_11_GE_C01.indd 38 1/2/18 10:57 PM

1.8 Creating, Compiling, and Executing a Java Program 39

The following command runs the bytecode for Listing 1.1:

java Welcome

Figure 1.9 shows the javac command for compiling Welcome.java. The compiler generates
the Welcome.class file, and this file is executed using the java command.

Note
For simplicity and consistency, all source-code and class files used in this book are placed
under c:\book unless specified otherwise.

run

javac command
java command

c:\book

VideoNote

Compile and run a Java
program

Figure 1.8 (a) Java source code is translated into bytecode. (b) Java bytecode can be executed on any computer with
a Java Virtual Machine.

Ja

va
 Virtual Machine

Any
Computer

Java Bytecode

Welcome.java
(Java source-

code �le)

Welcome.class
(Java bytecode
executable �le)

Library Code

JVMJava
Compiler

compiled
by generates

executed
by

(a) (b)

Figure 1.9 The output of Listing 1.1 displays the message “Welcome to Java!”

Show �les

Run

Compile

Caution
Do not use the extension .class in the command line when executing the program.
Use java ClassName to run the program. If you use java ClassName.class in
the command line, the system will attempt to fetch ClassName.class.class.

Tip
If you execute a class file that does not exist, a NoClassDefFoundError will
occur. If you execute a class file that does not have a main method or you mistype
the main method (e.g., by typing Main instead of main), a NoSuchMethodError
will occur.

java ClassName

NoClassDefFoundError

NoSuchMethodError

M01_LIAN1878_11_GE_C01.indd 39 1/2/18 10:57 PM

40 Chapter 1 Introduction to Computers, Programs, and Java™

Note
When executing a Java program, the JVM first loads the bytecode of the class to memory
using a program called the class loader. If your program uses other classes, the class loader
dynamically loads them just before they are needed. After a class is loaded, the JVM uses a
program called the bytecode verifier to check the validity of the bytecode and to ensure that
the bytecode does not violate Java’s security restrictions. Java enforces strict security to make
sure Java class files are not tampered with and do not harm your computer.

Pedagogical Note
Your instructor may require you to use packages for organizing programs. For example,
you may place all programs in this chapter in a package named chapter1. For instructions
on how to use packages, see Supplement I.F, Using Packages to Organize the Classes in
the Text.

 1.8.1 What is the Java source filename extension, and what is the Java bytecode filename
extension?

 1.8.2 What are the input and output of a Java compiler?
 1.8.3 What is the command to compile a Java program?
 1.8.4 What is the command to run a Java program?
 1.8.5 What is the JVM?
 1.8.6 Can Java run on any machine? What is needed to run Java on a computer?
 1.8.7 If a NoClassDefFoundError occurs when you run a program, what is the cause

of the error?
 1.8.8 If a NoSuchMethodError occurs when you run a program, what is the cause of the

error?

1.9 Programming Style and Documentation
Good programming style and proper documentation make a program easy to read and
help programmers prevent errors.

Programming style deals with what programs look like. A program can compile and run
properly even if written on only one line, but writing it all on one line would be bad pro-
gramming style because it would be hard to read. Documentation is the body of explanatory
remarks and comments pertaining to a program. Programming style and documentation are
as important as coding. Good programming style and appropriate documentation reduce the
chance of errors and make programs easy to read. This section gives several guidelines. For
more detailed guidelines, see Supplement I.D, Java Coding Style Guidelines, on the Com-
panion Website.

1.9.1 Appropriate Comments and Comment Styles
Include a summary at the beginning of the program that explains what the program does, its key
features, and any unique techniques it uses. In a long program, you should also include comments
that introduce each major step and explain anything that is difficult to read. It is important to make
comments concise so that they do not crowd the program or make it difficult to read.

In addition to line comments (beginning with //) and block comments (beginning with /*),
Java supports comments of a special type, referred to as javadoc comments. javadoc comments
begin with /** and end with */. They can be extracted into an HTML file using the JDK’s
javadoc command. For more information, see Supplement III.Y, javadoc Comments, on the
Companion Website.

class loader

bytecode verifier

use package

Point
Check

Point
Key

programming style
documentation

javadoc comment

M01_LIAN1878_11_GE_C01.indd 40 1/2/18 10:57 PM

1.9 Programming Style and Documentation 41

Use javadoc comments (/** . . . */) for commenting on an entire class or an entire
method. These comments must precede the class or the method header in order to be extracted
into a javadoc HTML file. For commenting on steps inside a method, use line comments (//).
To see an example of a javadoc HTML file, check out liveexample.pearsoncmg.com/javadoc/
Exercise1.html. Its corresponding Java code is shown in liveexample.pearsoncmg.com/java-
doc/Exercise1.txt.

1.9.2 Proper Indentation and Spacing
A consistent indentation style makes programs clear and easy to read, debug, and maintain.
Indentation is used to illustrate the structural relationships between a program’s compo-
nents or statements. Java can read the program even if all of the statements are on the same
long line, but humans find it easier to read and maintain code that is aligned properly. Indent
each subcomponent or statement at least two spaces more than the construct within which
it is nested.

A single space should be added on both sides of a binary operator, as shown in (a), rather
in (b).

System.out.println(3 + 4 * 4); System.out.println(3+4*4);

(a) Good style (b) Bad style

1.9.3 Block Styles
A block is a group of statements surrounded by braces. There are two popular styles, next-line
style and end-of-line style, as shown below.

public class Test
{
 public static void main(String[] args)
 {
 System.out.println("Block Styles");
 }
}

public class Test {
 public static void main(String[] args) {
 System.out.println("Block Styles");
 }
}

Next-line style End-of-line style

The next-line style aligns braces vertically and makes programs easy to read, whereas the
end-of-line style saves space and may help avoid some subtle programming errors. Both are
acceptable block styles. The choice depends on personal or organizational preference. You
should use a block style consistently—mixing styles is not recommended. This book uses the
end-of-line style to be consistent with the Java API source code.

 1.9.1 Reformat the following program according to the programming style and documen-
tation guidelines. Use the end-of-line brace style.

public class Test
{
 // Main method
 public static void main(String[] args) {
 /** Display output */
 System.out.println("Welcome to Java");
 }
}

indent code

Point
Check

M01_LIAN1878_11_GE_C01.indd 41 1/2/18 10:57 PM

http://liveexample.pearsoncmg.com/javadoc/Exercise1.txt
http://liveexample.pearsoncmg.com/javadoc/Exercise1.txt
http://liveexample.pearsoncmg.com/javadoc/Exercise1.html
http://liveexample.pearsoncmg.com/javadoc/Exercise1.html

42 Chapter 1 Introduction to Computers, Programs, and Java™

1.10 Programming Errors
Programming errors can be categorized into three types: syntax errors, runtime
errors, and logic errors.

1.10.1 Syntax Errors
Errors that are detected by the compiler are called syntax errors or compile errors. Syntax
errors result from errors in code construction, such as mistyping a keyword, omitting some
necessary punctuation, or using an opening brace without a corresponding closing brace.
These errors are usually easy to detect because the compiler tells you where they are and
what caused them. For example, the program in Listing 1.4 has a syntax error, as shown in
Figure 1.10.

lisTing 1.4 ShowSyntaxErrors.java
1 public class ShowSyntaxErrors {
2 public static main(String[] args) {
3 System.out.println("Welcome to Java);
4 }
5 }

Four errors are reported, but the program actually has two errors:

■■ The keyword void is missing before main in line 2.

■■ The string Welcome to Java should be closed with a closing quotation mark in line 3.

Since a single error will often display many lines of compile errors, it is a good practice to
fix errors from the top line and work downward. Fixing errors that occur earlier in the program
may also fix additional errors that occur later.

Point
Key

syntax errors

compile errors

Figure 1.10 The compiler reports syntax errors.

Compile

Tip
If you don’t know how to correct an error, compare your program closely, character by
character, with similar examples in the text. In the first few weeks of this course, you will
probably spend a lot of time fixing syntax errors. Soon you will be familiar with Java
syntax, and can quickly fix syntax errors.

fix syntax errors

M01_LIAN1878_11_GE_C01.indd 42 1/2/18 10:57 PM

1.10 Programming Errors 43

1.10.2 Runtime Errors
Runtime errors are errors that cause a program to terminate abnormally. They occur while a
program is running if the environment detects an operation that is impossible to carry out. Input
mistakes typically cause runtime errors. An input error occurs when the program is waiting
for the user to enter a value, but the user enters a value that the program cannot handle. For
instance, if the program expects to read in a number, but instead the user enters a string, this
causes data-type errors to occur in the program.

Another example of runtime errors is division by zero. This happens when the divisor is
zero for integer divisions. For instance, the program in Listing 1.5 would cause a runtime error,
as shown in Figure 1.11.

lisTing 1.5 ShowRuntimeErrors.java
1 public class ShowRuntimeErrors {
2 public static void main(String[] args) {
3 System.out.println(1 / 0);
4 }
5 }

runtime errors

runtime error

Figure 1.11 The runtime error causes the program to terminate abnormally.

Run

1.10.3 Logic Errors
Logic errors occur when a program does not perform the way it was intended to. Errors of this
kind occur for many different reasons. For example, suppose you wrote the program in
 Listing 1.6 to convert Celsius 35 degrees to a Fahrenheit degree:

lisTing 1.6 ShowLogicErrors.java
1 public class ShowLogicErrors {
2 public static void main(String[] args) {
3 System.out.print("Celsius 35 is Fahrenheit degree ");
4 System.out.println((9 / 5) * 35 + 32);
5 }
6 }

logic errors

Celsius 35 is Fahrenheit degree 67

You will get Fahrenheit 67 degrees, which is wrong. It should be 95.0. In Java, the division
for integers is the quotient—the fractional part is truncated—so in Java 9 / 5 is 1. To get the
correct result, you need to use 9.0 / 5, which results in 1.8.

In general, syntax errors are easy to find and easy to correct because the compiler gives indications
as to where the errors came from and why they are wrong. Runtime errors are not difficult to find,
either, since the reasons and locations for the errors are displayed on the console when the program
aborts. Finding logic errors, on the other hand, can be very challenging. In the upcoming chapters,
you will learn the techniques of tracing programs and finding logic errors.

M01_LIAN1878_11_GE_C01.indd 43 1/2/18 10:57 PM

44 Chapter 1 Introduction to Computers, Programs, and Java™

1.10.4 Common Errors
Missing a closing brace, missing a semicolon, missing quotation marks for strings, and mis-
spelling names are common errors for new programmers.

Common Error 1: Missing Braces

The braces are used to denote a block in the program. Each opening brace must be matched
by a closing brace. A common error is missing the closing brace. To avoid this error, type a
closing brace whenever an opening brace is typed, as shown in the following example:

public class Welcome {

} Type this closing brace right away to match the opening brace.

If you use an IDE such as NetBeans and Eclipse, the IDE automatically inserts a closing
brace for each opening brace typed.

Common Error 2: Missing Semicolons

Each statement ends with a statement terminator (;). Often, a new programmer forgets to
place a statement terminator for the last statement in a block, as shown in the following
example:

public static void main(String[] args) {
 System.out.println("Programming is fun!");
 System.out.println("Fundamentals First");
 System.out.println("Problem Driven")
}

 Missing a semicolon

Common Error 3: Missing Quotation Marks

A string must be placed inside the quotation marks. Often, a new programmer forgets to place
a quotation mark at the end of a string, as shown in the following example:

System.out.println("Problem Driven);

 Missing a quotation mark

If you use an IDE such as NetBeans and Eclipse, the IDE automatically inserts a closing
quotation mark for each opening quotation mark typed.

Common Error 4: Misspelling Names

Java is case sensitive. Misspelling names is a common error for new programmers. For exam-
ple, the word main is misspelled as Main and String is misspelled as string in the follow-
ing code:

1 public class Test {
2 public static void Main(string[] args) {
3 System.out.println((10.5 + 2 * 3) / (45 – 3.5));
4 }
5 }

 1.10.1 What are syntax errors (compile errors), runtime errors, and logic errors?

 1.10.2 Give examples of syntax errors, runtime errors, and logic errors.

 1.10.3 If you forget to put a closing quotation mark on a string, what kind error of will be raised?

 1.10.4 If your program needs to read integers, but the user entered strings, an error would
occur when running this program. What kind of error is this?

Point
Check

M01_LIAN1878_11_GE_C01.indd 44 1/2/18 10:57 PM

1.11 Developing Java Programs Using NetBeans 45

 1.10.5 Suppose you write a program for computing the perimeter of a rectangle and you mistak-
enly write your program so it computes the area of a rectangle. What kind of error is this?

 1.10.6 Identify and fix the errors in the following code:

1 public class Welcome {
2 public void Main(String[] args) {
3 System.out.println('Welcome to Java!);
4 }
5)

Note
Section 1.8 introduced developing programs from the command line. Many of our readers
also use an IDE. The following two sections introduce two most popular Java IDEs:
NetBeans and Eclipse. These two sections may be skipped.

1.11 Developing Java Programs Using NetBeans
You can edit, compile, run, and debug Java Programs using NetBeans.

NetBeans and Eclipse are two free popular integrated development environments for develop-
ing Java programs. They are easy to learn if you follow simple instructions. We recommend
that you use either one for developing Java programs. This section gives the essential instruc-
tions to guide new users to create a project, create a class, compile, and run a class in NetBeans.
The use of Eclipse will be introduced in the next section. For instructions on downloading and
installing latest version of NetBeans, see Supplement II.B.

1.11.1 Creating a Java Project
Before you can create Java programs, you need to first create a project. A project is like a folder
to hold Java programs and all supporting files. You need to create a project only once. Here
are the steps to create a Java project:

1. Choose File, New Project to display the New Project dialog box, as shown in Figure 1.12.

2. Select Java in the Categories section and Java Application in the Projects section, and
then click Next to display the New Java Application dialog box, as shown in Figure 1.13.

3. Type demo in the Project Name field and c:\michael in Project Location field. Uncheck
Use Dedicated Folder for Storing Libraries and uncheck Create Main Class.

4. Click Finish to create the project, as shown in Figure 1.14.

Point
Key

VideoNote

NetBeans brief tutorial

Figure 1.12 The New Project dialog is used to create a new project and specify a project type.
Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with
permission.

M01_LIAN1878_11_GE_C01.indd 45 1/2/18 10:57 PM

46 Chapter 1 Introduction to Computers, Programs, and Java™

1.11.2 Creating a Java Class
After a project is created, you can create Java programs in the project using the following steps:

1. Right-click the demo node in the project pane to display a context menu. Choose New,
Java Class to display the New Java Class dialog box, as shown in Figure 1.15.

2. Type Welcome in the Class Name field and select the Source Packages in the Location
field. Leave the Package field blank. This will create a class in the default package.

3. Click Finish to create the Welcome class. The source-code file Welcome.java is placed
under the <default package> node.

4. Modify the code in the Welcome class to match Listing 1.1 in the text, as shown in
Figure 1.16.

1.11.3 Compiling and Running a Class
To run Welcome.java, right-click Welcome.java to display a context menu and choose Run File,
or simply press Shift + F6. The output is displayed in the Output pane, as shown in Figure 1.16.
The Run File command automatically compiles the program if the program has been changed.

Figure 1.13 The New Java Application dialog is for specifying a project name and location.
Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with
permission.

Figure 1.14 A New Java project named demo is created. Source: Copyright © 1995–2016
 Oracle and/or its affiliates. All rights reserved. Used with permission.

M01_LIAN1878_11_GE_C01.indd 46 1/2/18 10:57 PM

1.12 Developing Java Programs Using Eclipse 47

Figure 1.15 The New Java Class dialog box is used to create a new Java class. Source: Copyright © 1995–2016
Oracle and/or its affiliates. All rights reserved. Used with permission.

Figure 1.16 You can edit a program and run it in NetBeans. Source: Copyright © 1995–2016 Oracle and/or its
affiliates. All rights reserved. Used with permission.

Edit pane

Output pane

1.12 Developing Java Programs Using Eclipse
You can edit, compile, run, and debug Java Programs using Eclipse.

The preceding section introduced developing Java programs using NetBeans. You can also use
Eclipse to develop Java programs. This section gives the essential instructions to guide new
users to create a project, create a class, and compile/run a class in Eclipse. For instructions on
downloading and installing latest version of Eclipse, see Supplement II.D.

1.12.1 Creating a Java Project
Before creating Java programs in Eclipse, you need to first create a project to hold all files.
Here are the steps to create a Java project in Eclipse:

1. Choose File, New, Java Project to display the New Project wizard, as shown in Figure 1.17.

2. Type demo in the Project name field. As you type, the Location field is automatically set
by default. You may customize the location for your project.

Point
Key

VideoNote

Eclipse brief tutorial

M01_LIAN1878_11_GE_C01.indd 47 1/2/18 10:57 PM

48 Chapter 1 Introduction to Computers, Programs, and Java™

3. Make sure you selected the options Use project folder as root for sources and class files
so the .java and .class files are in the same folder for easy access.

4. Click Finish to create the project, as shown in Figure 1.18.

Figure 1.17 The New Java Project dialog is for specifying a project name and the properties.
Source: Eclipse Foundation, Inc.

Figure 1.18 A New Java project named demo is created. Source: Eclipse Foundation, Inc.

M01_LIAN1878_11_GE_C01.indd 48 1/2/18 10:57 PM

1.12 Developing Java Programs Using Eclipse 49

1.12.2 Creating a Java Class
After a project is created, you can create Java programs in the project using the following steps:

1. Choose File, New, Class to display the New Java Class wizard.

2. Type Welcome in the Name field.

3. Check the option public static void main(String[] args).

4. Click Finish to generate the template for the source code Welcome.java, as shown in
Figure 1.19.

1.12.3 Compiling and Running a Class
To run the program, right-click the class in the project to display a context menu. Choose Run,
Java Application in the context menu to run the class. The output is displayed in the Console
pane, as shown in Figure 1.20. The Run command automatically compiles the program if the
program has been changed.

Figure 1.19 The New Java Class dialog box is used to create a new Java class. Source: Eclipse
Foundation, Inc.

M01_LIAN1878_11_GE_C01.indd 49 1/2/18 10:57 PM

50 Chapter 1 Introduction to Computers, Programs, and Java™

Figure 1.20 You can edit a program and run it in Eclipse. Source: Eclipse Foundation, Inc.

Edit pane

Output pane

Key Terms

Application Program Interface (API) 33
assembler 29
assembly language 29
bit 25
block 35
block comment 35
bus 24
byte 25
bytecode 38
bytecode verifier 40
cable modem 28
central processing unit (CPU) 25
class loader 40
comment 35
compiler 30
console 34
dot pitch 28
DSL (digital subscriber line) 28
encoding scheme 25
hardware 24
high-level language 30
integrated development environment

(IDE) 34
interpreter 30
java command 39
Java Development Toolkit (JDK) 34
Java language specification 33

Java Runtime Environment (JRE) 34
Java Virtual Machine (JVM) 38
javac command 39
keyword (or reserved word) 35
library 33
line comment 35
logic error 43
low-level language 30
machine language 29
main method 35
memory 26
dial-up modem 28
motherboard 25
network interface card (NIC) 28
operating system (OS) 31
pixel 28
program 24
programming 24
runtime error 43
screen resolution 28
software 24
source code 30
source program 30
statement 30
statement terminator 35
storage devices 26
syntax error 42

Note
The above terms are defined in this chapter. Supplement I.A, Glossary, lists all the key
terms and descriptions in the book, organized by chapters.

Supplement I.A

M01_LIAN1878_11_GE_C01.indd 50 1/2/18 10:57 PM

Chapter Summary 51

ChapTer summary

1. A computer is an electronic device that stores and processes data.

2. A computer includes both hardware and software.

3. Hardware is the physical aspect of the computer that can be touched.

4. Computer programs, known as software, are the invisible instructions that control the
hardware and make it perform tasks.

5. Computer programming is the writing of instructions (i.e., code) for computers to
perform.

6. The central processing unit (CPU) is a computer’s brain. It retrieves instructions from
memory and executes them.

7. Computers use zeros and ones because digital devices have two stable states, referred to
by convention as zero and one.

8. A bit is a binary digit 0 or 1.

9. A byte is a sequence of 8 bits.

10. A kilobyte is about 1,000 bytes, a megabyte about 1 million bytes, a gigabyte about 1
billion bytes, and a terabyte about 1,000 gigabytes.

11. Memory stores data and program instructions for the CPU to execute.

12. A memory unit is an ordered sequence of bytes.

13. Memory is volatile, because information is lost when the power is turned off.

14. Programs and data are permanently stored on storage devices and are moved to memory
when the computer actually uses them.

15. The machine language is a set of primitive instructions built into every computer.

16. Assembly language is a low-level programming language in which a mnemonic is used
to represent each machine-language instruction.

17. High-level languages are English-like and easy to learn and program.

18. A program written in a high-level language is called a source program.

19. A compiler is a software program that translates the source program into a machine-
language program.

20. The operating system (OS) is a program that manages and controls a computer’s activities.

21. Java is platform independent, meaning you can write a program once and run it on any
computer.

22. The Java source file name must match the public class name in the program. Java source-
code files must end with the .java extension.

23. Every class is compiled into a separate bytecode file that has the same name as the class
and ends with the .class extension.

24. To compile a Java source-code file from the command line, use the javac command.

M01_LIAN1878_11_GE_C01.indd 51 1/2/18 10:57 PM

52 Chapter 1 Introduction to Computers, Programs, and Java™

25. To run a Java class from the command line, use the java command.

26. Every Java program is a set of class definitions. The keyword class introduces a class
definition. The contents of the class are included in a block.

27. A block begins with an opening brace ({) and ends with a closing brace (}).

28. Methods are contained in a class. To run a Java program, the program must have a
main method. The main method is the entry point where the program starts when it is
executed.

29. Every statement in Java ends with a semicolon (;), known as the statement terminator.

30. Reserved words, or keywords, have a specific meaning to the compiler and cannot be
used for other purposes in the program.

31. In Java, comments are preceded by two slashes (//) on a line, called a line comment, or
enclosed between /* and */ on one or several lines, called a block comment or para-
graph comment. Comments are ignored by the compiler.

32. Java source programs are case sensitive.

33. Programming errors can be categorized into three types: syntax errors, runtime errors,
and logic errors. Errors reported by a compiler are called syntax errors or compile errors.
Runtime errors are errors that cause a program to terminate abnormally. Logic errors
occur when a program does not perform the way it was intended to.

Quiz

Answer the quiz for this chapter at www.pearsonglobaleditions.com/Liang. Choose this book and
click Companion Website to select Quiz.

programming exerCises

Pedagogical Note
We cannot stress enough the importance of learning programming through exercises.
For this reason, the book provides a large number of programming exercises at various
levels of difficulty. The problems cover many application areas, including math, science,
business, financial, gaming, animation, and multimedia. Solutions to most even-
numbered programming exercises are on the Companion Website. Solutions to most
odd-numbered programming exercises are on the Instructor Resource Website. The level
of difficulty is rated easy (no star), moderate (*), hard (**), or challenging (***).

 1.1 (Display three messages) Write a program that displays Welcome to Java,
 Learning Java Now, and Programming is fun.

 1.2 (Display five messages) Write a program that displays I love Java five times.

 *1.3 (Display a pattern) Write a program that displays the following pattern:

 J
J aaa v vaaa
J J aa v v a a
J aaaa v aaaa

level of difficulty

M01_LIAN1878_11_GE_C01.indd 52 1/2/18 10:57 PM

http://www.pearsonglobaleditions.com/Liang

Programming Exercises 53

 1.4 (Print a table) Write a program that displays the following table:

a a^2 a^3 a^4
1 1 1 1
2 4 8 16
3 9 27 81
4 16 64 256

 1.5 (Compute expressions) Write a program that displays the result of

7.5 * 6.5 - 4.5 * 3
47.5 - 5.5

.

 1.6 (Summation of a series) Write a program that displays the result of

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10.

 1.7 (Approximate p) p can be computed using the following formula:

p = 4 * ¢1 -
1
3

+
1
5

-
1
7

+
1
9

-
1
11

+ c ≤
 Write a program that displays the result of 4 * ¢1 -

1
3

+
1
5

-
1
7

+
1
9

-
1
11

≤

 and 4 * ¢1 -
1
3

+
1
5

-
1
7

+
1
9

-
1
11

+
1
13

≤. Use 1.0 instead of 1 in your

program.

 1.8 (Area and perimeter of a circle) Write a program that displays the area and perim-
eter of a circle that has a radius of 6.5 using the following formula:

p = 3.14159

perimeter = 2 * radius * p

area = radius * radius * p

 1.9 (Area and perimeter of a rectangle) Write a program that displays the area and perim-
eter of a rectangle with a width of 5.3 and height of 8.6 using the following formula:

area = width * height

perimeter = 2 * (width + height)

 1.10 (Average speed in miles) Assume that a runner runs 15 kilometers in 50 minutes
and 30 seconds. Write a program that displays the average speed in miles per hour.
(Note that 1 mile is 1.6 kilometers.)

 *1.11 (Population projection) The U.S. Census Bureau projects population based on the
following assumptions:

■■ One birth every 7 seconds
■■ One death every 13 seconds
■■ One new immigrant every 45 seconds

 Write a program to display the population for each of the next five years. Assume that
the current population is 312,032,486, and one year has 365 days. Hint: In Java, if
two integers perform division, the result is an integer. The fractional part is truncated.
For example, 5 / 4 is 1 (not 1.25) and 10 / 4 is 2 (not 2.5). To get an accurate result
with the fractional part, one of the values involved in the division must be a number
with a decimal point. For example, 5.0 / 4 is 1.25 and 10 / 4.0 is 2.5.

 1.12 (Average speed in kilometers) Assume that a runner runs 24 miles in 1 hour, 40
minutes, and 35 seconds. Write a program that displays the average speed in
kilometers per hour. (Note 1 mile is equal to 1.6 kilometers.)

M01_LIAN1878_11_GE_C01.indd 53 1/2/18 10:57 PM

54 Chapter 1 Introduction to Computers, Programs, and Java™

 *1.13 (Algebra: solve 2 * 2 linear equations) You can use Cramer’s rule to solve the
following 2 * 2 system of linear equation provided that ad – bc is not 0:

ax + by = e
cx + dy = f

 x =
ed - bf

ad - bc
 y =

af - ec

ad - bc

 Write a program that solves the following equation and displays the value for x and
y: (Hint: replace the symbols in the formula with numbers to compute x and y. This
exercise can be done in Chapter 1 without using materials in later chapters.)

3.4x + 50.2y = 44.5
2.1x + .55y = 5.9

Note
More than 200 additional programming exercises with solutions are provided to the
instructors on the Instructor Resource Website.

M01_LIAN1878_11_GE_C01.indd 54 1/2/18 10:57 PM

Elementary
Programming

Objectives
■■ To write Java programs to perform simple computations (§2.2).

■■ To obtain input from the console using the Scanner class (§2.3).

■■ To use identifiers to name variables, constants, methods, and classes (§2.4).

■■ To use variables to store data (§§2.5 and 2.6).

■■ To program with assignment statements and assignment expressions (§2.6).

■■ To use constants to store permanent data (§2.7).

■■ To name classes, methods, variables, and constants by following their
naming conventions (§2.8).

■■ To explore Java numeric primitive data types: byte, short, int,
long, float, and double (§2.9.1).

■■ To read a byte, short, int, long, float, or double value from the
keyboard (§2.9.2).

■■ To perform operations using operators +, -, *, /, and % (§2.9.3).

■■ To perform exponent operations using Math.pow(a, b) (§2.9.4).

■■ To write integer literals, floating-point literals, and literals in scientific
notation (§2.10).

■■ To write and evaluate numeric expressions (§2.11).

■■ To obtain the current system time using
System.currentTimeMillis() (§2.12).

■■ To use augmented assignment operators (§2.13).

■■ To distinguish between postincrement and preincrement and between
postdecrement and predecrement (§2.14).

■■ To cast the value of one type to another type (§2.15).

■■ To describe the software development process and apply it to develop
the loan payment program (§2.16).

■■ To write a program that converts a large amount of money into smaller
units (§2.17).

■■ To avoid common errors and pitfalls in elementary programming (§2.18).

Chapter

2

M02_LIAN1878_11_GE_C02.indd 55 12/29/17 3:47 PM

56 Chapter 2 Elementary Programming

2.1 Introduction
The focus of this chapter is on learning elementary programming techniques to solve
problems.

In Chapter 1, you learned how to create, compile, and run very basic Java programs. You will
learn how to solve problems by writing programs. Through these problems, you will learn
elementary programming using primitive data types, variables, constants, operators, expres-
sions, and input and output.

Suppose, for example, you need to take out a student loan. Given the loan amount, loan
term, and annual interest rate, can you write a program to compute the monthly payment and
total payment? This chapter shows you how to write programs like this. Along the way, you
will learn the basic steps that go into analyzing a problem, designing a solution, and implement-
ing the solution by creating a program.

2.2 Writing a Simple Program
Writing a program involves designing a strategy for solving the problem then using a
programming language to implement that strategy.

Let’s first consider the simple problem of computing the area of a circle. How do we write a
program for solving this problem?

Writing a program involves designing algorithms and translating algorithms into program-
ming instructions, or code. An algorithm lists the steps you can follow to solve a problem.
Algorithms can help the programmer plan a program before writing it in a programming
 language. Algorithms can be described in natural languages or in pseudocode (natural language
mixed with some programming code). The algorithm for calculating the area of a circle can be
described as follows:

1. Read in the circle’s radius.

2. Compute the area using the following formula:

area = radius * radius * p

3. Display the result.

Tip
It’s always a good practice to outline your program (or its underlying problem) in the
form of an algorithm before you begin coding.

When you code—that is, when you write a program—you translate an algorithm into a
program. You already know every Java program begins with a class definition in which the
keyword class is followed by the class name. Assume you have chosen ComputeArea as
the class name. The outline of the program would look as follows:

public class ComputeArea {
 // Details to be given later
}

As you know, every Java program must have a main method where program execution
begins. The program is then expanded as follows:

public class ComputeArea {
 public static void main(String[] args) {
 // Step 1: Read in radius

 // Step 2: Compute area

Point
Key

Point
Key

problem

algorithm

pseudocode

M02_LIAN1878_11_GE_C02.indd 56 12/29/17 3:47 PM

2.2 Writing a Simple Program 57

 // Step 3: Display the area
 }
}

The program needs to read the radius entered by the user from the keyboard. This raises
two important issues:

■■ Reading the radius

■■ Storing the radius in the program

Let’s address the second issue first. In order to store the radius, the program needs to declare
a symbol called a variable. A variable represents a value stored in the computer’s memory.

Rather than using x and y as variable names, choose descriptive names: in this case, radius
for radius and area for area. To let the compiler know what radius and area are, specify
their data types. That is the kind of data stored in a variable, whether an integer, real number,
or something else. This is known as declaring variables. Java provides simple data types for
representing integers, real numbers, characters, and Boolean types. These types are known as
primitive data types or fundamental types.

Real numbers (i.e., numbers with a decimal point) are represented using a method known
as floating-point in computers. Therefore, the real numbers are also called floating-point
 numbers. In Java, you can use the keyword double to declare a floating-point variable. Declare
radius and area as double. The program can be expanded as follows:

public class ComputeArea {
 public static void main(String[] args) {
 double radius;
 double area;

 // Step 1: Read in radius

 // Step 2: Compute area

 // Step 3: Display the area
 }
}

The program declares radius and area as variables. The reserved word double indicates
that radius and area are floating-point values stored in the computer.

The first step is to prompt the user to designate the circle’s radius. You will soon learn
how to prompt the user for information. For now, to learn how variables work, you can assign
a fixed value to radius in the program as you write the code. Later, you’ll modify the program
to prompt the user for this value.

The second step is to compute area by assigning the result of the expression radius *
radius * 3.14159 to area.

In the final step, the program will display the value of area on the console by using the
System.out.println method.

Listing 2.1 shows the complete program, and a sample run of the program is shown in Figure 2.1.

Lisiting 2.1 ComputeArea.java
 1 public class ComputeArea {
 2 public static void main(String[] args) {
 3 double radius; // Declare radius
 4 double area; // Declare area
 5
 6 // Assign a radius
 7 radius = 20; // radius is now 20

variable
descriptive names

declare variables
data type

primitive data types

floating-point

M02_LIAN1878_11_GE_C02.indd 57 12/29/17 3:47 PM

58 Chapter 2 Elementary Programming

 8
 9 // Compute area
10 area = radius * radius * 3.14159;
11
12 // Display results
13 System.out.println("The area for the circle of radius " +
14 radius + " is " + area);
15 }
16 }

Figure 2.1 The program displays the area of a circle.

Compile

Run

Variables such as radius and area correspond to memory locations. Every variable has
a name, a type, and a value. Line 3 declares that radius can store a double value. The value
is not defined until you assign a value. Line 7 assigns 20 into the variable radius. Similarly,
line 4 declares the variable area, and line 10 assigns a value into area. The following table
shows the value in the memory for area and radius as the program is executed. Each row
in the table shows the values of variables after the statement in the corresponding line in the
program is executed. This method of reviewing how a program works is called tracing a pro-
gram. Tracing programs are helpful for understanding how programs work, and they are useful
tools for finding errors in programs.

line# radius area

3 no value

4 no value

7 20

10 1256.636

The plus sign (+) has two meanings: one for addition, and the other for concatenating (com-
bining) strings. The plus sign (+) in lines 13–14 is called a string concatenation operator. It
combines two strings into one. If a string is combined with a number, the number is converted
into a string and concatenated with the other string. Therefore, the plus signs (+) in lines 13–14
concatenate strings into a longer string, which is then displayed in the output. Strings and string
concatenation will be discussed further in Chapter 4.

Caution
A string cannot cross lines in the source code. Thus, the following statement would
result in a compile error:

System.out.println("Introduction to Java Programming,
by Y. Daniel Liang");

To fix the error, break the string into separate substrings, and use the concatenation
operator (+) to combine them:

System.out.println("Introduction to Java Programming, " +
 "by Y. Daniel Liang");

declare variable
assign value

tracing program

concatenate strings with
numbers

concatenate strings

break a long string

M02_LIAN1878_11_GE_C02.indd 58 12/29/17 3:47 PM

2.3 Reading Input from the Console 59

2.2.1 Identify and fix the errors in the following code:

 1 public class Test {
 2 public void main(string[] args) {
 3 double i = 50.0;
 4 double k = i + 50.0;
 5 double j = k + 1;
 6
 7 System.out.println("j is " + j + " and
 8 k is " + k);
 9 }
10 }

2.3 Reading Input from the Console
Reading input from the console enables the program to accept input from the user.

In Listing 2.1, the radius is fixed in the source code. To use a different radius, you have to
modify the source code and recompile it. Obviously, this is not convenient, so instead you can
use the Scanner class for console input.

Java uses System.out to refer to the standard output device, and System.in to the
 standard input device. By default, the output device is the display monitor, and the input
device is the keyboard. To perform console output, you simply use the println method to
display a primitive value or a string to the console. To perform console input, you need to use
the Scanner class to create an object to read input from System.in, as follows:

Scanner input = new Scanner(System.in);

The syntax new Scanner(System.in) creates an object of the Scanner type. The syntax
Scanner input declares that input is a variable whose type is Scanner. The whole line
Scanner input = new Scanner(System.in) creates a Scanner object and assigns its
reference to the variable input. An object may invoke its methods. To invoke a method on
an object is to ask the object to perform a task. You can invoke the nextDouble() method
to read a double value as follows:

double radius = input.nextDouble();

This statement reads a number from the keyboard and assigns the number to radius.
Listing 2.2 rewrites Listing 2.1 to prompt the user to enter a radius.

Listing 2.2 ComputeAreaWithConsoleInput.java
 1 import java.util.Scanner; // Scanner is in the java.util package
 2
 3 public class ComputeAreaWithConsoleInput {
 4 public static void main(String[] args) {
 5 // Create a Scanner object
 6 Scanner input = new Scanner(System.in);
 7
 8 // Prompt the user to enter a radius
 9 System.out.print("Enter a number for radius: ");
10 double radius = input.nextDouble();
11
12 // Compute area
13 double area = radius * radius * 3.14159;
14
15 // Display results
16 System.out.println("The area for the circle of radius " +

Point
Check

Point
Key

VideoNote
Obtain input

import class

read a double

create a Scanner

M02_LIAN1878_11_GE_C02.indd 59 12/29/17 3:47 PM

60 Chapter 2 Elementary Programming

17 radius + " is " + area);
18 }
19 }

Enter a number for radius: 2.5

The area for the circle of radius 2.5 is 19.6349375

Enter a number for radius: 23

The area for the circle of radius 23.0 is 1661.90111

The Scanner class is in the java.util package. It is imported in line 1. Line 6 creates a
Scanner object. Note the import statement can be omitted if you replace Scanner by java.
util.Scanner in line 6.

Line 9 displays a string "Enter a number for radius: " to the console. This is known
as a prompt, because it directs the user to enter an input. Your program should always tell the
user what to enter when expecting input from the keyboard.

Recall that the print method in line 9 is identical to the println method, except that
println moves to the beginning of the next line after displaying the string, but print does
not advance to the next line when completed.

Line 6 creates a Scanner object. The statement in line 10 reads input from the keyboard.

double radius = input.nextDouble();

After the user enters a number and presses the Enter key, the program reads the number
and assigns it to radius.

More details on objects will be introduced in Chapter 9. For the time being, simply accept
that this is how we obtain input from the console.

The Scanner class is in the java.util package. It is imported in line 1. There are two
types of import statements: specific import and wildcard import. The specific import specifies
a single class in the import statement. For example, the following statement imports Scanner
from the package java.util.

import java.util.Scanner;

The wildcard import imports all the classes in a package by using the asterisk as the wildcard.
For example, the following statement imports all the classes from the package java.util.

import java.util.*;

The information for the classes in an imported package is not read in at compile time or
runtime unless the class is used in the program. The import statement simply tells the compiler
where to locate the classes. There is no performance difference between a specific import and
a wildcard import declaration.

Listing 2.3 gives an example of reading multiple inputs from the keyboard. The program
reads three numbers and displays their average.

Listing 2.3 ComputeAverage.java
1 import java.util.Scanner; // Scanner is in the java.util package
2
3 public class ComputeAverage {
4 public static void main(String[] args) {
5 // Create a Scanner object
6 Scanner input = new Scanner(System.in);
7
8 // Prompt the user to enter three numbers
9 System.out.print("Enter three numbers: ");

prompt

specific import

wildcard import

no performance difference

import class

create a Scanner

M02_LIAN1878_11_GE_C02.indd 60 12/29/17 3:47 PM

2.3 Reading Input from the Console 61

10 double number1 = input.nextDouble();
11 double number2 = input.nextDouble();
12 double number3 = input.nextDouble();
13
14 // Compute average
15 double average = (number1 + number2 + number3) / 3;
16
17 // Display results
18 System.out.println("The average of " + number1 + " " + number2
19 + " " + number3 + " is " + average);
20 }
21 }

read a double

enter input in one line

enter input in multiple lines

Enter three numbers: 10.5

11

11.5

The average of 10.5 11.0 11.5 is 11.0

Enter three numbers: 1 2 3

The average of 1.0 2.0 3.0 is 2.0

The codes for importing the Scanner class (line 1) and creating a Scanner object (line
6) are the same as in the preceding example, as well as in all new programs you will write for
reading input from the keyboard.

Line 9 prompts the user to enter three numbers. The numbers are read in lines 10–12. You
may enter three numbers separated by spaces, then press the Enter key, or enter each number
followed by a press of the Enter key, as shown in the sample runs of this program.

If you entered an input other than a numeric value, a runtime error would occur. In Chapter 12,
you will learn how to handle the exception so the program can continue to run.

Note
Most of the programs in the early chapters of this book perform three steps— input,
process, and output—called IPO. Input is receiving input from the user; process is pro-
ducing results using the input; and output is displaying the results.

Note
If you use an IDE such as Eclipse or NetBeans, you will get a warning to ask you to close
the input for preventing a potential resource leak. Ignore the warning for the time being
because the input is automatically closed when your program is terminated. In this case,
there will be no resource leaking.

 2.3.1 How do you write a statement to let the user enter a double value from the
 keyboard? What happens if you entered 5a when executing the following code?

double radius = input.nextDouble();

 2.3.2 Are there any performance differences between the following two import
statements?

import java.util.Scanner;
import java.util.*;

runtime error

IPO

Warning in IDE

Point
Check

M02_LIAN1878_11_GE_C02.indd 61 12/29/17 3:48 PM

62 Chapter 2 Elementary Programming

2.4 Identifiers
Identifiers are the names that identify the elements such as classes, methods, and
 variables in a program.

As you see in Listing 2.3, ComputeAverage, main, input, number1, number2, number3,
and so on are the names of things that appear in the program. In programming terminology,
such names are called identifiers. All identifiers must obey the following rules:

■■ An identifier is a sequence of characters that consists of letters, digits, underscores
(_), and dollar signs ($).

■■ An identifier must start with a letter, an underscore (_), or a dollar sign ($). It cannot
start with a digit.

■■ An identifier cannot be a reserved word. (See Appendix A for a list of reserved
words.)

■■ An identifier cannot be true, false, or null.

■■ An identifier can be of any length.

For example, $2, ComputeArea, area, radius, and print are legal identifiers, whereas
2A and d+4 are not because they do not follow the rules. The Java compiler detects illegal
identifiers and reports syntax errors.

Note
Since Java is case sensitive, area, Area, and AREA are all different identifiers.

Tip
Identifiers are for naming variables, methods, classes, and other items in a program.
Descriptive identifiers make programs easy to read. Avoid using abbreviations for identi-
fiers. Using complete words is more descriptive. For example, numberOfStudents
is better than numStuds, numOfStuds, or numOfStudents. We use descriptive
names for complete programs in the text. However, we will occasionally use variable
names such as i, j, k, x, and y in the code snippets for brevity. These names also
provide a generic tone to the code snippets.

Tip
Do not name identifiers with the $ character. By convention, the $ character should be
used only in mechanically generated source code.

 2.4.1 Which of the following identifiers are valid? Which are Java keywords?

miles, Test, a++, ––a, 4#R, $4, #44, apps
class, public, int, x, y, radius

2.5 Variables
Variables are used to represent values that may be changed in the program.

As you see from the programs in the preceding sections, variables are used to store values
to be used later in a program. They are called variables because their values can be changed.
In the program in Listing 2.2, radius and area are variables of the double type. You can
assign any numerical value to radius and area, and the values of radius and area can
be reassigned. For example, in the following code, radius is initially 1.0 (line 2)
then changed to 2.0 (line 7), and area is set to 3.14159 (line 3) then reset to 12.56636
(line 8).

Point
Key

identifiers

identifier naming rules

case sensitive

descriptive names

the $ character

Point
Check

Point
Key

why called variables?

M02_LIAN1878_11_GE_C02.indd 62 12/29/17 3:48 PM

2.5 Variables 63

1 // Compute the first area
2 radius = 1.0; radius: 1.0
3 area = radius * radius * 3.14159; area: 3.14159
4 System.out.println("The area is " + area + " for radius " + radius);
5
6 // Compute the second area
7 radius = 2.0; radius: 2.0
8 area = radius * radius * 3.14159; area: 12.56636
9 System.out.println("The area is " + area + " for radius " + radius);

Variables are for representing data of a certain type. To use a variable, you declare it by
telling the compiler its name as well as what type of data it can store. The variable declaration
tells the compiler to allocate appropriate memory space for the variable based on its data type.
The syntax for declaring a variable is

datatype variableName;

Here are some examples of variable declarations:

int count; // Declare count to be an integer variable
double radius; // Declare radius to be a double variable
double interestRate; // Declare interestRate to be a double variable

These examples use the data types int and double. Later you will be introduced to
 additional data types, such as byte, short, long, float, char, and boolean.

If variables are of the same type, they can be declared together, as follows:

datatype variable1, variable2, ..., variablen;

The variables are separated by commas. For example,

int i, j, k; // Declare i, j, and k as int variables

Variables often have initial values. You can declare a variable and initialize it in one step.
Consider, for instance, the following code:

int count = 1;

This is equivalent to the next two statements:

int count;
count = 1;

You can also use a shorthand form to declare and initialize variables of the same type
together. For example,

int i = 1, j = 2;

Tip
A variable must be declared before it can be assigned a value. A variable declared in a
method must be assigned a value before it can be used.

Whenever possible, declare a variable and assign its initial value in one step. This will
make the program easy to read and avoid programming errors.

Every variable has a scope. The scope of a variable is the part of the program where the
variable can be referenced. The rules that define the scope of a variable will be gradually
introduced later in the book. For now, all you need to know is that a variable must be declared
and initialized before it can be used.

declare variable

initialize variables

M02_LIAN1878_11_GE_C02.indd 63 12/29/17 3:48 PM

64 Chapter 2 Elementary Programming

 2.5.1 Identify and fix the errors in the following code:

1 public class Test {
2 public static void main(String[] args) {
3 int i = k + 2;
4 System.out.println(i);
5 }
6 }

2.6 Assignment Statements and Assignment
Expressions

An assignment statement designates a value for a variable. An assignment statement
can be used as an expression in Java.

After a variable is declared, you can assign a value to it by using an assignment statement. In
Java, the equal sign (=) is used as the assignment operator. The syntax for assignment state-
ments is as follows:

variable = expression;

An expression represents a computation involving values, variables, and operators that,
taking them together, evaluates to a value. For example, consider the following code:

int y = 1; // Assign 1 to variable y
double radius = 1.0; // Assign 1.0 to variable radius
int x = 5 * (3 / 2); // Assign the value of the expression to x
x = y + 1; // Assign the addition of y and 1 to x
double area = radius * radius * 3.14159; // Compute area

You can use a variable in an expression. A variable can also be used in both sides of the =
operator. For example,

x = x + 1;

In this assignment statement, the result of x + 1 is assigned to x. If x is 1 before the
 statement is executed, then it becomes 2 after the statement is executed.

To assign a value to a variable, you must place the variable name to the left of the assign-
ment operator. Thus, the following statement is wrong:

1 = x; // Wrong

Note
In mathematics, x = 2 * x + 1 denotes an equation. However, in Java, x = 2 * x
+ 1 is an assignment statement that evaluates the expression 2 * x + 1 and assigns the
result to x.

In Java, an assignment statement is essentially an expression that evaluates to the value to
be assigned to the variable on the left side of the assignment operator. For this reason, an
assignment statement is also known as an assignment expression. For example, the following
statement is correct:

System.out.println(x = 1);

which is equivalent to

x = 1;
System.out.println(x);

Point
Check

Point
Key

assignment statement
assignment operator

expression

assignment expression

M02_LIAN1878_11_GE_C02.indd 64 12/29/17 3:48 PM

2.7 Named Constants 65

If a value is assigned to multiple variables, you can use the following syntax:

i = j = k = 1;

which is equivalent to

k = 1;
j = k;
i = j;

Note
In an assignment statement, the data type of the variable on the left must be compatible
with the data type of the value on the right. For example, int x = 1.0 would be ille-
gal, because the data type of x is int. You cannot assign a double value (1.0) to an
int variable without using type casting. Type casting will be introduced in Section 2.15.

 2.6.1 Identify and fix the errors in the following code:

1 public class Test {
2 public static void main(String[] args) {
3 int i = j = k = 2;
4 System.out.println(i + " " + j + " " + k);
5 }
6 }

2.7 Named Constants
A named constant is an identifier that represents a permanent value.

The value of a variable may change during the execution of a program, but a named constant,
or simply constant, represents permanent data that never changes. A constant is also known as
a final variable in Java. In our ComputeArea program, p is a constant. If you use it frequently,
you don’t want to keep typing 3.14159; instead, you can declare a constant for p. Here is the
syntax for declaring a constant:

final datatype CONSTANTNAME = value;

A constant must be declared and initialized in the same statement. The word final is a
Java keyword for declaring a constant. By convention, all letters in a constant are in uppercase.
For example, you can declare p as a constant and rewrite Listing 2.2, as in Listing 2.4.

Listing 2.4 ComputeAreaWithConstant.java

 1 import java.util.Scanner; // Scanner is in the java.util package
 2
 3 public class ComputeAreaWithConstant {
 4 public static void main(String[] args) {
 5 final double PI = 3.14159; // Declare a constant
 6
 7 // Create a Scanner object
 8 Scanner input = new Scanner(System.in);
 9
10 // Prompt the user to enter a radius
11 System.out.print("Enter a number for radius: ");
12 double radius = input.nextDouble();
13
14 // Compute area

Point
Check

Point
Key

constant

final keyword

M02_LIAN1878_11_GE_C02.indd 65 12/29/17 3:48 PM

66 Chapter 2 Elementary Programming

15 double area = radius * radius * PI;
16
17 // Display result
18 System.out.println("The area for the circle of radius " +
19 radius + " is " + area);
20 }
21 }

There are three benefits of using constants: (1) you don’t have to repeatedly type the same
value if it is used multiple times; (2) if you have to change the constant value (e.g., from 3.14
to 3.14159 for PI), you need to change it only in a single location in the source code; and (3)
a descriptive name for a constant makes the program easy to read.

 2.7.1 What are the benefits of using constants? Declare an int constant SIZE with
value 20.

2.8 Naming Conventions
Sticking with the Java naming conventions makes your programs easy to read and
avoids errors.

Make sure you choose descriptive names with straightforward meanings for the vari-
ables, constants, classes, and methods in your program. As mentioned earlier, names
are case sensitive. Listed below are the conventions for naming variables, methods, and
classes.

■■ Use lowercase for variables and methods—for example, the variables radius and
area, and the method print. If a name consists of several words, concatenate them
into one, making the first word lowercase and capitalizing the first letter of each sub-
sequent word—for example, the variable numberOfStudents. This naming style is
known as the camelCase because the uppercase characters in the name resemble a
camel’s humps.

■■ Capitalize the first letter of each word in a class name—for example, the class names
ComputeArea and System.

■■ Capitalize every letter in a constant, and use underscores between words—for exam-
ple, the constants PI and MAX_VALUE.

It is important to follow the naming conventions to make your programs easy to read.

Caution
 Do not choose class names that are already used in the Java library. For example,
since the System class is defined in Java, you should not name your class System.

 2.8.1 What are the naming conventions for class names, method names, constants, and
variables? Which of the following items can be a constant, a method, a variable, or a
class according to the Java naming conventions?

MAX_VALUE, Test, read, readDouble

 2.8.2 Translate the following algorithm into Java code:

Step 1: Declare a double variable named miles with an initial value 100.

Step 2: Declare a double constant named KILOMETERS_PER_MILE with value
1.609.

Step 3: Declare a double variable named kilometers, multiply miles and
 KILOMETERS_PER_MILE, and assign the result to kilometers.

benefits of constants

Point
Check

Point
Key

name variables and methods

name classes

name constants

name classes

Point
Check

M02_LIAN1878_11_GE_C02.indd 66 12/29/17 3:48 PM

2.9 Numeric Data Types and Operations 67

Step 4: Display kilometers to the console.

What is kilometers after Step 4?

2.9 Numeric Data Types and Operations
Java has six numeric types for integers and floating-point numbers with operators +,
-, *, /, and %.

2.9.1 Numeric Types
Every data type has a range of values. The compiler allocates memory space for each
variable or constant according to its data type. Java provides eight primitive data types
for numeric values, characters, and Boolean values. This section introduces numeric data
types and operators.

Table 2.1 lists the six numeric data types, their ranges, and their storage sizes.

Point
Key

byte type

short type

int type

long type

float type

double type

Name Range Storage Size

byte -27 to 27 -1 (-128 to 127) 8-bit signed

short -215 to 215 -1 (-32768 to 32767) 16-bit signed

int -231 to 231 -1 (-2147483648 to 2147483647) 32-bit signed

long -263 to 263-1 64-bit signed

(i.e., -9223372036854775808 to 9223372036854775807)

float Negative range: -3.4028235E + 38 to -1.4E -45 32-bit IEEE 754

Positive range: 1.4E -45 to 3.4028235E+38

double Negative range: -1.7976931348623157E+308 to -4.9E -324 64-bit IEEE 754

Positive range: 4.9E -324 to 1.7976931348623157E+308

tabLe 2.1 Numeric Data Types

Note
IEEE 754 is a standard approved by the Institute of Electrical and Electronics Engineers
for representing floating-point numbers on computers. The standard has been widely
adopted. Java uses the 32-bit IEEE 754 for the float type and the 64-bit IEEE 754
for the double type. The IEEE 754 standard also defines special floating-point values,
which are listed in Appendix E.

Java uses four types for integers: byte, short, int, and long. Choose the type that is most
appropriate for your variable. For example, if you know an integer stored in a variable is within
a range of a byte, declare the variable as a byte. For simplicity and consistency, we will use
int for integers most of the time in this book.

Java uses two types for floating-point numbers: float and double. The double type is
twice as big as float, so the double is known as double precision, and float as single preci-
sion. Normally, you should use the double type, because it is more accurate than the float
type.

2.9.2 Reading Numbers from the Keyboard
You know how to use the nextDouble() method in the Scanner class to read a double value
from the keyboard. You can also use the methods listed in Table 2.2 to read a number of the
byte, short, int, long, and float type.

integer types

floating-point types

M02_LIAN1878_11_GE_C02.indd 67 12/29/17 3:48 PM

68 Chapter 2 Elementary Programming

Here are examples for reading values of various types from the keyboard:

 1 Scanner input = new Scanner(System.in);
 2 System.out.print("Enter a byte value: ");
 3 byte byteValue = input.nextByte();
 4
 5 System.out.print("Enter a short value: ");
 6 short shortValue = input.nextShort();
 7
 8 System.out.print("Enter an int value: ");
 9 int intValue = input.nextInt();
10
11 System.out.print("Enter a long value: ");
12 long longValue = input.nextLong();
13
14 System.out.print("Enter a float value: ");
15 float floatValue = input.nextFloat();

If you enter a value with an incorrect range or format, a runtime error would occur. For
example, if you enter a value 128 for line 3, an error would occur because 128 is out of range
for a byte type integer.

2.9.3 Numeric Operators
The operators for numeric data types include the standard arithmetic operators: addition (+),
subtraction (–), multiplication (*), division (/), and remainder (%), as listed in Table 2.3. The
operands are the values operated by an operator.operands

operators +, -, *, /, and %

Method Description

nextByte() reads an integer of the byte type.

nextShort() reads an integer of the short type.

nextInt() reads an integer of the int type.

nextLong() reads an integer of the long type.

nextFloat() reads a number of the float type.

nextDouble() reads a number of the double type.

tabLe 2.2 Methods for Scanner Objects

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 - 0.1 33.9

* Multiplication 300*30 9000

/ Division 1.0 / 2.0 0.5

% Remainder 20 % 3 2

tabLe 2.3 Numeric Operators

When both operands of a division are integers, the result of the division is the quotient and
the fractional part is truncated. For example, 5 / 2 yields 2, not 2.5, and –5 / 2 yields –2,
not –2.5. To perform a floating-point division, one of the operands must be a floating-point
number. For example, 5.0 / 2 yields 2.5.

The % operator, known as remainder, yields the remainder after division. The operand on
the left is the dividend, and the operand on the right is the divisor. Therefore, 7 % 3 yields 1,
3 % 7 yields 3, 12 % 4 yields 0, 26 % 8 yields 2, and 20 % 13 yields 7.

integer division

M02_LIAN1878_11_GE_C02.indd 68 12/29/17 3:48 PM

2.9 Numeric Data Types and Operations 69

Enter an integer for seconds: 500

500 seconds is 8 minutes and 20 seconds

4 12

12
0

3

8 26

24
2

3

Remainder

Quotient

Divisor Dividend13 20

13
7

1

7 3

0
3

0

3 7

6
1

2

The % operator is often used for positive integers, but it can also be used with negative inte-
gers and floating-point values. The remainder is negative only if the dividend is negative. For
example, -7 % 3 yields -1, -12 % 4 yields 0, -26 % -8 yields -2, and 20 % -13 yields 7.

Remainder is very useful in programming. For example, an even number % 2 is always
0 and a positive odd number % 2 is always 1. Thus, you can use this property to determine
whether a number is even or odd. If today is Saturday, it will be Saturday again in 7 days.
Suppose you and your friends are going to meet in 10 days. What will be the day in 10 days?
You can find that the day is Tuesday using the following expression:

(6 + 10) % 7 is 2

After 10 days

Day 2 in a week is Tuesday
Note: Day 0 in a week is Sunday

A week has 7 days
Day 6 in a week is Saturday

The program in Listing 2.5 obtains minutes and remaining seconds from an amount of time
in seconds. For example, 500 seconds contains 8 minutes and 20 seconds.

Listing 2.5 DisplayTime.java
 1 import java.util.Scanner;
 2
 3 public class DisplayTime {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6 // Prompt the user for input
 7 System.out.print("Enter an integer for seconds: ");
 8 int seconds = input.nextInt();
 9
10 int minutes = seconds / 60; // Find minutes in seconds
11 int remainingSeconds = seconds % 60; // Seconds remaining
12 System.out.println(seconds + " seconds is " + minutes +
13 " minutes and " + remainingSeconds + " seconds");
14 }
15 }

import Scanner

create a Scanner

read an integer

divide
remainder

line# seconds minutes remainingSeconds

8 500

10 8

11 20

The nextInt() method (line 8) reads an integer for seconds. Line 10 obtains the minutes
using seconds / 60. Line 11 (seconds % 60) obtains the remaining seconds after taking
away the minutes.

M02_LIAN1878_11_GE_C02.indd 69 12/29/17 3:48 PM

70 Chapter 2 Elementary Programming

The + and - operators can be both unary and binary. A unary operator has only one operand;
a binary operator has two. For example, the – operator in –5 is a unary operator to negate
number 5, whereas the – operator in 4 – 5 is a binary operator for subtracting 5 from 4.

2.9.4 Exponent Operations
The Math.pow(a, b) method can be used to compute ab. The pow method is defined in the
Math class in the Java API. You invoke the method using the syntax Math.pow(a, b) (e.g.,
Math.pow(2, 3)), which returns the result of ab (23). Here, a and b are parameters for the
pow method and the numbers 2 and 3 are actual values used to invoke the method. For
example,

System.out.println(Math.pow(2, 3)); // Displays 8.0
System.out.println(Math.pow(4, 0.5)); // Displays 2.0
System.out.println(Math.pow(2.5, 2)); // Displays 6.25
System.out.println(Math.pow(2.5, –2)); // Displays 0.16

Chapter 6 introduces more details on methods. For now, all you need to know is how to
invoke the pow method to perform the exponent operation.

 2.9.1 Find the largest and smallest byte, short, int, long, float, and double. Which
of these data types requires the least amount of memory?

 2.9.2 Show the result of the following remainders:

 56 % 6
 78 % -4
-34 % 5
-34 % -5
 5 % 1
 1 % 5

 2.9.3 If today is Tuesday, what will be the day in 100 days?

 2.9.4 What is the result of 25 / 4? How would you rewrite the expression if you wished
the result to be a floating-point number?

 2.9.5 Show the result of the following code:

System.out.println(2 * (5 / 2 + 5 / 2));
System.out.println(2 * 5 / 2 + 2 * 5 / 2);
System.out.println(2 * (5 / 2));
System.out.println(2 * 5 / 2);

 2.9.6 Are the following statements correct? If so, show the output.

System.out.println("25 / 4 is " + 25 / 4);
System.out.println("25 / 4.0 is " + 25 / 4.0);
System.out.println("3 * 2 / 4 is " + 3 * 2 / 4);
System.out.println("3.0 * 2 / 4 is " + 3.0 * 2 / 4);

 2.9.7 Write a statement to display the result of 23.5.

 2.9.8 Suppose m and r are integers. Write a Java expression for mr2 to obtain a floating-point
result.

2.10 Numeric Literals
A literal is a constant value that appears directly in a program.

For example, 34 and 0.305 are literals in the following statements:

int numberOfYears = 34;
double weight = 0.305;

unary operator

binary operator

Math.pow(a, b) method

Point
Check

Point
Key

literal

M02_LIAN1878_11_GE_C02.indd 70 12/29/17 3:48 PM

2.10 Numeric Literals 71

2.10.1 Integer Literals
An integer literal can be assigned to an integer variable as long as it can fit into the variable. A
compile error will occur if the literal is too large for the variable to hold. The statement byte
b = 128, for example, will cause a compile error, because 128 cannot be stored in a variable
of the byte type. (Note the range for a byte value is from –128 to 127.)

An integer literal is assumed to be of the int type, whose value is between
-231 (-2147483648) and 231 -1 (2147483647). To denote an integer literal of the long type,
append the letter L or l to it. For example, to write integer 2147483648 in a Java program,
you have to write it as 2147483648L or 2147483648l, because 2147483648 exceeds the
range for the int value. L is preferred because l (lowercase L) can easily be confused with 1
(the digit one).

Note
By default, an integer literal is a decimal integer number. To denote a binary integer literal,
use a leading 0b or 0B (zero B); to denote an octal integer literal, use a leading 0 (zero);
and to denote a hexadecimal integer literal, use a leading 0x or 0X (zero X). For
example,

System.out.println(0B1111); // Displays 15
System.out.println(07777); // Displays 4095
System.out.println(0XFFFF); // Displays 65535

Hexadecimal numbers, binary numbers, and octal numbers will be introduced in Appendix F.

Note
To improve readability, Java allows you to use underscores between two digits in a
number literal. For example, the following literals are correct.

long ssn = 232_45_4519;
long creditCardNumber = 2324_4545_4519_3415L;

However, 45_ or _45 is incorrect. The underscore must be placed between two digits.

2.10.2 Floating-Point Literals
Floating-point literals are written with a decimal point. By default, a floating-point literal is
treated as a double type value. For example, 5.0 is considered a double value, not a float
value. You can make a number a float by appending the letter f or F, and you can make a
number a double by appending the letter d or D. For example, you can use 100.2f or 100.2F
for a float number, and 100.2d or 100.2D for a double number.

Note
The double type values are more accurate than the float type values. For example,

System.out.println("1.0 / 3.0 is " + 1.0 / 3.0);

displays 1.0 / 3.0 is 0 .3333333333333333

 16 digits

System.out.println("1.0F / 3.0F is " + 1.0F / 3.0F);

displays 1.0F / 3.0F is 0.33333334

 8 digits

A float value has 7–8 numbers of significant digits, and a double value has 15–17 numbers
of significant digits.

binary, octal, and hex literals

underscores in numbers

suffix f or F
suffix d or D

double vs. floatxs

M02_LIAN1878_11_GE_C02.indd 71 12/29/17 3:48 PM

72 Chapter 2 Elementary Programming

2.10.3 Scientific Notation
Floating-point literals can be written in scientific notation in the form of a * 10b. For example,
the scientific notation for 123.456 is 1.23456 * 102 and for 0.0123456 is 1.23456 * 10-2.
A special syntax is used to write scientific notation numbers. For example, 1.23456 * 102 is
written as 1.23456E2 or 1.23456E+2 and 1.23456 * 10-2 as 1.23456E-2. E (or e) repre-
sents an exponent, and can be in either lowercase or uppercase.

Note
The float and double types are used to represent numbers with a decimal point.
Why are they called floating-point numbers? These numbers are stored in scientific
notation internally. When a number such as 50.534 is converted into scientific
notation, such as 5.0534E+1, its decimal point is moved (i.e., floated) to a new
position.

 2.10.1 How many accurate digits are stored in a float or double type variable?

 2.10.2 Which of the following are correct literals for floating-point numbers?

12.3, 12.3e+2, 23.4e-2, –334.4, 20.5, 39F, 40D

 2.10.3 Which of the following are the same as 52.534?

5.2534e+1, 0.52534e+2, 525.34e-1, 5.2534e+0

 2.10.4 Which of the following are correct literals?

5_2534e+1, _2534, 5_2, 5_

2.11 Evaluating Expressions and Operator Precedence
Java expressions are evaluated in the same way as arithmetic expressions.

Writing a numeric expression in Java involves a straightforward translation of an arithmetic
expression using Java operators. For example, the arithmetic expression

3 + 4x
5

-
10(y - 5)(a + b + c)

x
+ 9¢ 4

x
+

9 + x
y

≤
can be translated into a Java expression as follows:

(3 + 4 * x) / 5 – 10 * (y - 5) * (a + b + c) / x +
 9 * (4 / x + (9 + x) / y)

Although Java has its own way to evaluate an expression behind the scene, the result of
a Java expression and its corresponding arithmetic expression is the same. Therefore, you
can safely apply the arithmetic rule for evaluating a Java expression. Operators contained
within pairs of parentheses are evaluated first. Parentheses can be nested, in which case the
expression in the inner parentheses is evaluated first. When more than one operator is used
in an expression, the following operator precedence rule is used to determine the order of
evaluation:.

■■ Multiplication, division, and remainder operators are applied first. If an expression
contains several multiplication, division, and remainder operators, they are applied
from left to right.

■■ Addition and subtraction operators are applied last. If an expression contains several
addition and subtraction operators, they are applied from left to right.

why called floating-point?

Point
Check

Point
Key

evaluating an expression

operator precedence rule

M02_LIAN1878_11_GE_C02.indd 72 12/29/17 3:48 PM

2.11 Evaluating Expressions and Operator Precedence 73

Here is an example of how an expression is evaluated:

3 + 4 * 4 + 5 * (4 + 3) - 1

3 + 4 * 4 + 5 * 7 – 1

3 + 16 + 5 * 7 – 1

3 + 16 + 35 – 1

19 + 35 – 1

54 – 1

53

(1) inside parentheses �rst

(2) multiplication

(3) multiplication

(4) addition

(5) addition

(6) subtraction

Listing 2.6 gives a program that converts a Fahrenheit degree to Celsius using the formula
Celsius = (5

9)(Fahrenheit - 32).

Listing 2.6 FahrenheitToCelsius.java
 1 import java.util.Scanner;
 2
 3 public class FahrenheitToCelsius {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 System.out.print("Enter a degree in Fahrenheit: ");
 8 double fahrenheit = input.nextDouble();
 9
10 // Convert Fahrenheit to Celsius
11 double celsius = (5.0 / 9) * (fahrenheit - 32);
12 System.out.println("Fahrenheit " + fahrenheit + " is " +
13 celsius + " in Celsius");
14 }
15 }

divide

Enter a degree in Fahrenheit: 100

Fahrenheit 100.0 is 37.77777777777778 in Celsius

line# fahrenheit celsius
 8 100

11 37.77777777777778

Be careful when applying division. Division of two integers yields an integer in Java. 59 is
coded 5.0 / 9 instead of 5 / 9 in line 11, because 5 / 9 yields 0 in Java.

 2.11.1 How would you write the following arithmetic expressions in Java?

a.
4

3(r + 34)
- 9(a + bc) +

3 + d(2 + a)

a + bd

b. 5.5 * (r + 2.5)2.5 + t

integer vs. floating-point
division

Point
Check

M02_LIAN1878_11_GE_C02.indd 73 12/29/17 3:48 PM

74 Chapter 2 Elementary Programming

2.12 Case Study: Displaying the Current Time
You can invoke System.currentTimeMillis() to return the current time.

The problem is to develop a program that displays the current time in GMT (Greenwich Mean
Time) in the format hour:minute:second, such as 13:19:8.

The currentTimeMillis method in the System class returns the current time in milli-
seconds elapsed since the time midnight, January 1, 1970 GMT, as shown in Figure 2.2. This
time is known as the UNIX epoch. The epoch is the point when time starts, and 1970 was the
year when the UNIX operating system was formally introduced.

Point
Key

VideoNote

Use operators / and %

currentTimeMillis
UNIX epoch

Figure 2.2 The System.currentTimeMillis() returns the number of milliseconds
since the UNIX epoch.

UNIX epoch
01-01-1970

00:00:00 GMT

Elapsed
time

Current time
System.currentTimeMillis()

Time

You can use this method to obtain the current time, then compute the current second, min-
ute, and hour as follows:

1. Obtain the total milliseconds since midnight, January 1, 1970, in totalMilliseconds
by invoking System.currentTimeMillis() (e.g., 1203183068328 milliseconds).

2. Obtain the total seconds totalSeconds by dividing totalMilliseconds by 1000
(e.g., 1203183068328 milliseconds / 1000 = 1203183068 seconds).

3. Compute the current second from totalSeconds % 60 (e.g., 1203183068 seconds %
60 = 8, which is the current second).

4. Obtain the total minutes totalMinutes by dividing totalSeconds by 60 (e.g.,
1203183068 seconds / 60 = 20053051 minutes).

5. Compute the current minute from totalMinutes % 60 (e.g., 20053051 minutes %
60 = 31, which is the current minute).

6. Obtain the total hours totalHours by dividing totalMinutes by 60 (e.g., 20053051
minutes / 60 = 334217 hours).

7. Compute the current hour from totalHours % 24 (e.g., 334217 hours % 24 = 17,
which is the current hour).

Listing 2.7 gives the complete program.

Listing 2.7 ShowCurrentTime.java
 1 public class ShowCurrentTime {
 2 public static void main(String[] args) {
 3 // Obtain the total milliseconds since midnight, Jan 1, 1970
 4 long totalMilliseconds = System.currentTimeMillis();
 5
 6 // Obtain the total seconds since midnight, Jan 1, 1970
 7 long totalSeconds = totalMilliseconds / 1000;
 8
 9 // Compute the current second in the minute in the hour
10 long currentSecond = totalSeconds % 60;
11

currentSecond

totalSeconds

totalMilliseconds

M02_LIAN1878_11_GE_C02.indd 74 12/29/17 3:48 PM

2.12 Case Study: Displaying the Current Time 75

12 // Obtain the total minutes
13 long totalMinutes = totalSeconds / 60;
14
15 // Compute the current minute in the hour
16 long currentMinute = totalMinutes % 60;
17
18 // Obtain the total hours
19 long totalHours = totalMinutes / 60;
20
21 // Compute the current hour
22 long currentHour = totalHours % 24;
23
24 // Display results
25 System.out.println("Current time is " + currentHour + ":"
26 + currentMinute + ":" + currentSecond + " GMT");
27 }
28 }

totalMinutes

currentMinute

totalHours

currentHour

display output

Current time is 17:31:8 GMT

Line 4 invokes System.currentTimeMillis() to obtain the current time in milliseconds
as a long value. Thus, all the variables are declared as the long type in this program. The
seconds, minutes, and hours are extracted from the current time using the / and % operators
(lines 6–22).

line#

variables

4 7 10 13 16 19 22

totalMilliseconds 1203183068328

totalSeconds 1203183068

currentSecond 8

totalMinutes 20053051

currentMinute 31

totalHours 334217

currentHour 17

In the sample run, a single digit 8 is displayed for the second. The desirable output would
be 08. This can be fixed by using a method that formats a single digit with a prefix 0 (see
Programming Exercise 6.37).

The hour displayed in this program is in GMT. Programming Exercise 2.8 enables to display
the hour in any time zone.

Java also provides the System.nanoTime() method that returns the elapse time in nano-
seconds. nanoTime() is more precise and accurate than currentTimeMillis().

 2.12.1 How do you obtain the current second, minute, and hour?

nanoTime

Point
Check

M02_LIAN1878_11_GE_C02.indd 75 12/29/17 3:48 PM

76 Chapter 2 Elementary Programming

2.13 Augmented Assignment Operators
The operators +, -, *, /, and % can be combined with the assignment operator to form
augmented operators.

Very often, the current value of a variable is used, modified, then reassigned back to the same
variable. For example, the following statement increases the variable count by 1:

count = count + 1;

Java allows you to combine assignment and addition operators using an augmented (or
compound) assignment operator. For example, the preceding statement can be written as

count += 1;

The += is called the addition assignment operator. Table 2.4 shows other augmented assign-
ment operators.

Point
Key

addition assignment operator

Operator Name Example Equivalent

+= Addition assignment i += 8 i = i + 8

-= Subtraction assignment i -= 8 i = i – 8

*= Multiplication assignment i *= 8 i = i * 8

/= Division assignment i /= 8 i = i / 8

%= Remainder assignment i %= 8 i = i % 8

tabLe 2.4 Augmented Assignment Operators

The augmented assignment operator is performed last after all the other operators in the
expression are evaluated. For example,

x /= 4 + 5.5 * 1.5;

is same as

x = x / (4 + 5.5 * 1.5);

Caution
There are no spaces in the augmented assignment operators. For example, + = should
be +=.

Note
Like the assignment operator (=), the operators (+=, -=, *=, /=, and %=) can be used
to form an assignment statement as well as an expression. For example, in the follow-
ing code, x += 2 is a statement in the first line, and an expression in the second line:

x += 2; // Statement
System.out.println(x += 2); // Expression

 2.13.1 Show the output of the following code:

double a = 6.5;
a += a + 1;

Point
Check

M02_LIAN1878_11_GE_C02.indd 76 12/29/17 3:48 PM

2.14 Increment and Decrement Operators 77

System.out.println(a);
a = 6;
a /= 2;
System.out.println(a);

2.14 Increment and Decrement Operators
The increment operator (+ +) and decrement operator (- -) are for incrementing and
decrementing a variable by 1.

The ++ and — — are two shorthand operators for incrementing and decrementing a variable by 1.
These are handy because that’s often how much the value needs to be changed in many program-
ming tasks. For example, the following code increments i by 1 and decrements j by 1.

int i = 3, j = 3;
i++; // i becomes 4
j— —; // j becomes 2

i++ is pronounced as "i plus plus" and i—— as "i minus minus." These operators are known
as postfix increment (or postincrement) and postfix decrement (or postdecrement), because the
operators ++ and —— are placed after the variable. These operators can also be placed before
the variable. For example,

int i = 3, j = 3;
++i; // i becomes 4
— —j; // j becomes 2

++i increments i by 1 and ——j decrements j by 1. These operators are known as prefix
increment (or preincrement) and prefix decrement (or predecrement).

As you see, the effect of i++ and ++i or i—— and ——i are the same in the preceding exam-
ples. However, their effects are different when they are used in statements that do more than
just increment and decrement. Table 2.5 describes their differences and gives examples.

Point
Key

increment operator (+ +)

decrement operator (- -)

postincrement

postdecrement

preincrement

predecrement

Operator Name Description Example (assume i = 1)

++var preincrement Increment var by 1, and use the
new var value in the statement

int j = ++i;
// j is 2, i is 2

var++ postincrement Increment var by 1, but use the
original var value in the statement

int j = i++;
// j is 1, i is 2

——var predecrement Decrement var by 1, and use the
new var value in the statement

int j = — —i;
// j is 0, i is 0

var—— postdecrement Decrement var by 1, and use the
original var value in the statement

int j = i— —;
// j is 1, i is 0

tabLe 2.5 Increment and Decrement Operators

Here are additional examples to illustrate the differences between the prefix form of ++ (or
——) and the postfix form of ++ (or ——). Consider the following code:

int i = 10;
int newNum = 10 * i++;

Same effect as
int newNum = 10 * i;
i = i + 1;System.out.print("i is " + i

+ ", newNum is " + newNum);

i is 11, newNum is 100

M02_LIAN1878_11_GE_C02.indd 77 12/29/17 3:48 PM

78 Chapter 2 Elementary Programming

In this case, i is incremented by 1, then the old value of i is used in the multiplication. Thus,
newNum becomes 100. If i++ is replaced by ++i, then it becomes as follows:

int i = 10;
int newNum = 10 * (++i);

Same effect as
i = i + 1;
int newNum = 10 * i;

System.out.print("i is " + i
 + ", newNum is " + newNum);

i is 11, newNum is 110

i is incremented by 1, and the new value of i is used in the multiplication. Thus, newNum
becomes 110.

Here is another example:

double x = 1.0;
double y = 5.0;
double z = x–– + (++y);

After all three lines are executed, y becomes 6.0, z becomes 7.0, and x becomes 0.0.

Operands are evaluated from left to right in Java. The left-hand operand of a binary operator
is evaluated before any part of the right-hand operand is evaluated. This rule takes precedence
over any other rules that govern expressions. Here is an example:

int i = 1;
int k = ++i + i * 3;

++i is evaluated and returns 2. When evaluating i * 3, i is now 2. Therefore, k
becomes 8.

Tip
Using increment and decrement operators makes expressions short, but it also makes
them complex and difficult to read. Avoid using these operators in expressions that
modify multiple variables or the same variable multiple times, such as this one: int k
= ++i + i * 3.

 2.14.1 Which of these statements are true?

a. Any expression can be used as a statement.

b. The expression x++ can be used as a statement.

c. The statement x = x + 5 is also an expression.

d. The statement x = y = x = 0 is illegal.

 2.14.2 Show the output of the following code:

int a = 6;
int b = a++;
System.out.println(a);
System.out.println(b);
a = 6;
b = ++a;
System.out.println(a);
System.out.println(b);

Point
Check

M02_LIAN1878_11_GE_C02.indd 78 12/29/17 3:48 PM

2.15 Numeric Type Conversions 79

2.15 Numeric Type Conversions
Floating-point numbers can be converted into integers using explicit casting.

Can you perform binary operations with two operands of different types? Yes. If an integer
and a floating-point number are involved in a binary operation, Java automatically converts the
integer to a floating-point value. Therefore, 3 * 4.5 is the same as 3.0 * 4.5.

You can always assign a value to a numeric variable whose type supports a larger range of
values; thus, for instance, you can assign a long value to a float variable. You cannot, how-
ever, assign a value to a variable of a type with a smaller range unless you use type casting.
Casting is an operation that converts a value of one data type into a value of another data type.
Casting a type with a small range to a type with a larger range is known as widening a type.
Casting a type with a large range to a type with a smaller range is known as narrowing a type.
Java will automatically widen a type, but you must narrow a type explicitly.

The syntax for casting a type is to specify the target type in parentheses, followed by the
variable’s name or the value to be cast. For example, the following statement

System.out.println((int)1.7);

displays 1. When a double value is cast into an int value, the fractional part is truncated.
The following statement

System.out.println((double)1 / 2);

displays 0.5, because 1 is cast to 1.0 first, then 1.0 is divided by 2. However, the statement

System.out.println(1 / 2);

displays 0, because 1 and 2 are both integers and the resulting value should also be an integer.

Caution
Casting is necessary if you are assigning a value to a variable of a smaller type range, such
as assigning a double value to an int variable. A compile error will occur if casting is
not used in situations of this kind. However, be careful when using casting, as loss of
information might lead to inaccurate results.

Note
Casting does not change the variable being cast. For example, d is not changed after
casting in the following code:

double d = 4.5;
int i = (int)d; // i becomes 4, but d is still 4.5

Note
In Java, an augmented expression of the form x1 op= x2 is implemented as x1 = (T)
(x1 op x2), where T is the type for x1. Therefore, the following code is correct:

int sum = 0;
sum += 4.5; // sum becomes 4 after this statement
sum += 4.5 is equivalent to sum = (int)(sum + 4.5).

Note
To assign a variable of the int type to a variable of the short or byte type, explicit
casting must be used. For example, the following statements have a compile error:

int i = 1;
byte b = i; // Error because explicit casting is required

Point
Key

casting

widening a type
narrowing a type

possible loss of precision

casting in an augmented
expression

M02_LIAN1878_11_GE_C02.indd 79 12/29/17 3:48 PM

80 Chapter 2 Elementary Programming

However, so long as the integer literal is within the permissible range of the target vari-
able, explicit casting is not needed to assign an integer literal to a variable of the short
or byte type (see Section 2.10, Numeric Literals).

The program in Listing 2.8 displays the sales tax with two digits after the decimal point.

Listing 2.8 SalesTax.java
 1 import java.util.Scanner;
 2
 3 public class SalesTax {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 System.out.print("Enter purchase amount: ");
 8 double purchaseAmount = input.nextDouble();
 9
10 double tax = purchaseAmount * 0.06;
11 System.out.println("Sales tax is $" + (int)(tax * 100) / 100.0);
12 }
13 }

casting

Enter purchase amount: 197.55

Sales tax is $11.85

line# purchaseAmount tax Output

 8 197.55

10 11.853

11 11.85

Using the input in the sample run, the variable purchaseAmount is 197.55 (line 8). The
sales tax is 6% of the purchase, so the tax is evaluated as 11.853 (line 10). Note

tax * 100 is 1185.3
(int)(tax * 100) is 1185
(int)(tax * 100) / 100.0 is 11.85

Thus, the statement in line 11 displays the tax 11.85 with two digits after the decimal
point. Note the expression (int)(tax * 100) / 100.0 rounds down tax to two decimal
places. If tax is 3.456, (int)(tax * 100) / 100.0 would be 3.45. Can it be rounded
up to two decimal places? Note any double value x can be rounded up to an integer using
(int)(x + 0.5). Thus, tax can be rounded up to two decimal places using (int)(tax *
100 + 0.5) / 100.0.

 2.15.1 Can different types of numeric values be used together in a computation?

 2.15.2 What does an explicit casting from a double to an int do with the fractional part
of the double value? Does casting change the variable being cast?

 2.15.3 Show the following output:

float f = 12.5F;
int i = (int)f;
System.out.println("f is " + f);
System.out.println("i is " + i);

formatting numbers

Point
Check

M02_LIAN1878_11_GE_C02.indd 80 12/29/17 3:48 PM

2.16 Software Development Process 81

 2.15.4 If you change (int)(tax * 100) / 100.0 to (int)(tax * 100) / 100
in line 11 in Listing 2.8, what will be the output for the input purchase amount of
197.556?

 2.15.5 Show the output of the following code:

double amount = 5;
System.out.println(amount / 2);
System.out.println(5 / 2);

 2.15.6 Write an expression that rounds up a double value in variable d to an integer.

2.16 Software Development Process
The software development life cycle is a multistage process that includes requirements
specification, analysis, design, implementation, testing, deployment, and maintenance.

Developing a software product is an engineering process. Software products, no matter how
large or how small, have the same life cycle: requirements specification, analysis, design,
implementation, testing, deployment, and maintenance, as shown in Figure 2.3.

Point
Key

VideoNote

Software development
process

Figure 2.3 At any stage of the software development life cycle, it may be necessary to go
back to a previous stage to correct errors or deal with other issues that might prevent the
software from functioning as expected.

Requirements
Speci�cation

System Analysis

System
Design

Testing

Input, Process, Output
IPO

Implementation

Maintenance

Deployment

Requirements specification is a formal process that seeks to understand the problem the
software will address, and to document in detail what the software system needs to do. This
phase involves close interaction between users and developers. Most of the examples in this
book are simple, and their requirements are clearly stated. In the real world, however, problems
are not always well defined. Developers need to work closely with their customers (the indi-
viduals or organizations that will use the software) and study the problem carefully to identify
what the software needs to do.

System analysis seeks to analyze the data flow and to identify the system’s input and output.
When you perform analysis, it helps to identify what the output is first, then figure out what
input data you need in order to produce the output.

requirements specification

system analysis

M02_LIAN1878_11_GE_C02.indd 81 12/29/17 3:48 PM

