


Operating Systems

A01_STAL4290_09_GE_FM.indd   1 5/9/17   4:40 PM



This page intentionally left blank

A01_STAL4290_09_GE_FM.indd   1 5/19/17   9:06 PM



Operating Systems
Internals and Design  
Principles

Ninth Edition

Global Edition

William Stallings

A01_STAL4290_09_GE_FM.indd   3 5/9/17   4:40 PM



Senior Vice President Courseware Portfolio 
Management:  Marcia J. Horton

Director, Portfolio Management:  Engineering, Computer 
Science & Global Editions: Julian Partridge

Higher Ed Portfolio Management:  Tracy Johnson 
(Dunkelberger)

Acquisitions Editor, Global Editions:  Sourabh Maheshwari
Portfolio Management Assistant:  Kristy Alaura
Managing Content Producer:  Scott Disanno
Content Producer:  Robert Engelhardt
Project Editor, Global Editions:  K.K. Neelakantan
Web Developer:  Steve Wright
Rights and Permissions Manager:  Ben Ferrini
Manufacturing Buyer, Higher Ed, Lake Side 

Communications Inc (LSC):  Maura Zaldivar-Garcia

Senior Manufacturing Controller, Global Editions:  Trudy 
Kimber

Media Production Manager, Global Editions:  Vikram 
Kumar

Inventory Manager:  Ann Lam
Marketing Manager:  Demetrius Hall
Product Marketing Manager:  Yvonne Vannatta
Marketing Assistant:  Jon Bryant
Cover Designer:  Lumina Datamatics
Cover Art:  Shai_Halud/Shutterstock
Full-Service Project Management:  Bhanuprakash Sherla, 

SPi Global

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on 
page CL-1.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those 
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in 
initial caps or all caps.

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2018

The right of William Stallings to be identified as the author of this work has been asserted by him in accordance with the 
Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Operating Systems: Internals and Design Principles, 9th Edition, 
ISBN 978-0-13-467095-9, by William Stallings published by Pearson Education © 2018.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or 
by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of 
the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency 
Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in 
the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any 
affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

ISBN 10: 1-292-21429-5
ISBN 13: 978-1-292-21429-0

Typeset by SPi Global

Printed and bound in Malaysia.

A01_STAL4290_09_GE_FM.indd   4 5/9/17   4:40 PM

http://www.pearsonglobaleditions.com


For Tricia

A01_STAL4290_09_GE_FM.indd   5 5/9/17   4:40 PM



This page intentionally left blank

A01_STAL4290_09_GE_FM.indd   1 5/19/17   9:06 PM



Contents

Online Chapters and Appendices 13

VideoNotes 15

Preface 17

About the Author 27

PART 1 Background 29

Chapter 1	 Computer System Overview 29

	 1.1	 Basic Elements 30
	 1.2	 Evolution of the Microprocessor 32
	 1.3	 Instruction Execution 32
	 1.4	 Interrupts 35
	 1.5	 The Memory Hierarchy 46
	 1.6	 Cache Memory 49
	 1.7	 Direct Memory Access 53
	 1.8	 Multiprocessor and Multicore Organization 54
	 1.9	 Key Terms, Review Questions, and Problems 58
	 1A	 Performance Characteristics of Two-Level Memories 61

Chapter 2	 Operating System Overview 68

	 2.1	 Operating System Objectives and Functions 69
	 2.2	 The Evolution of Operating Systems 73
	 2.3	 Major Achievements 83
	 2.4	 Developments Leading to Modern Operating Systems 92
	 2.5	 Fault Tolerance 95
	 2.6	 Os Design Considerations for Multiprocessor and Multicore 98
	 2.7	 Microsoft Windows Overview 101
	 2.8	 Traditional Unix Systems 108
	 2.9	 Modern Unix Systems 110
	 2.10	 Linux 113
	 2.11	 Android 118
	 2.12	 Key Terms, Review Questions, and Problems 127

Part 2 Processes 129

Chapter 3	 Process Description and Control 129

	 3.1	 What is a Process? 131
	 3.2	 Process States 133
	 3.3	 Process Description 148

7

A01_STAL4290_09_GE_FM.indd   7 5/9/17   4:40 PM



8    Contents

	 3.4	 Process Control 157
	 3.5	 Execution of the Operating System 163
	 3.6	 Unix Svr4 Process Management 166
	 3.7 	 Summary 171
	 3.8	 Key Terms, Review Questions, and Problems 171

Chapter 4	 Threads 176

	 4.1	 Processes and Threads 177
	 4.2	 Types of Threads 183
	 4.3	 Multicore and Multithreading 190
	 4.4	 Windows Process and Thread Management 195
	 4.5	 Solaris Thread and Smp Management 202
	 4.6	 Linux Process and Thread Management 206
	 4.7	 Android Process and Thread Management 211
	 4.8	 Mac OS X Grand Central Dispatch 215
	 4.9	 Summary 217
	 4.10 	 Key Terms, Review Questions, and Problems 218

Chapter 5	 Concurrency: Mutual Exclusion  
and Synchronization 223

	 5.1	 Mutual Exclusion: Software Approaches 226
	 5.2	 Principles of Concurrency 232
	 5.3	 Mutual Exclusion: Hardware Support 241
	 5.4	 Semaphores 244
	 5.5	 Monitors 257
	 5.6	 Message Passing 263
	 5.7	 Readers/Writers Problem 270
	 5.8	 Summary 274
	 5.9	 Key Terms, Review Questions, and Problems 275

Chapter 6	 Concurrency: Deadlock and Starvation 289

	 6.1	 Principles of Deadlock 290
	 6.2	 Deadlock Prevention 299
	 6.3	 Deadlock Avoidance 300
	 6.4	 Deadlock Detection 306
	 6.5	 An Integrated Deadlock Strategy 308
	 6.6	 Dining Philosophers Problem 309
	 6.7	 Unix Concurrency Mechanisms 313
	 6.8	 Linux Kernel Concurrency Mechanisms 315
	 6.9	 Solaris Thread Synchronization Primitives 324
	 6.10	 Windows Concurrency Mechanisms 326
	 6.11	 Android Interprocess Communication 330
	 6.12	 Summary 331
	 6.13	 Key Terms, Review Questions, and Problems 332

A01_STAL4290_09_GE_FM.indd   8 5/9/17   4:40 PM



Contents   9

Part 3 Memory 339

Chapter 7	 Memory Management 339

	 7.1	 Memory Management Requirements 340
	 7.2	 Memory Partitioning 344
	 7.3	 Paging 355
	 7.4	 Segmentation 358
	 7.5	 Summary 360
	 7.6	 Key Terms, Review Questions, and Problems 360
	 7A	 Loading and Linking 363

Chapter 8	 Virtual Memory 370

	 8.1	 Hardware and Control Structures 371
	 8.2	 Operating System Software 388
	 8.3	 Unix and Solaris Memory Management 407
	 8.4	 Linux Memory Management 413
	 8.5	 Windows Memory Management 417
	 8.6	 Android Memory Management 419
	 8.7	 Summary 420
	 8.8	 Key Terms, Review Questions, and Problems 421

PART 4 Scheduling 425

Chapter 9	 Uniprocessor Scheduling 425

	 9.1	 Types of Processor Scheduling 426
	 9.2	 Scheduling Algorithms 430
	 9.3	 Traditional Unix Scheduling 452
	 9.4	 Summary 454
	 9.5	 Key Terms, Review Questions, and Problems 455

Chapter 10	Multiprocessor, Multicore, and Real-Time Scheduling 460

	 10.1	 Multiprocessor and Multicore Scheduling 461
	 10.2	 Real-Time Scheduling 474
	 10.3	 Linux Scheduling 489
	 10.4	 Unix Svr4 Scheduling 492
	 10.5	 Unix Freebsd Scheduling 494
	 10.6	 Windows Scheduling 498
	 10.7 	 Summary 500
	 10.8	 Key Terms, Review Questions, and Problems 500

Part 5 Input/Output And Files 505

Chapter 11	 I/O Management and Disk Scheduling 505

	 11.1	 I/O Devices 506
	 11.2	 Organization of the I/O Function 508
	 11.3	 Operating System Design Issues 511

A01_STAL4290_09_GE_FM.indd   9 5/9/17   4:40 PM



10    Contents

	 11.4	 I/O Buffering 514
	 11.5	 Disk Scheduling 517
	 11.6	 Raid 524
	 11.7	 Disk Cache 533
	 11.8	 Unix Svr4 I/O 537
	 11.9	 Linux I/O 540
	 11.10	 Windows I/O 544
	 11.11	 Summary 546
	 11.12	 Key Terms, Review Questions, and Problems 547

Chapter 12	 File Management 550

	 12.1	 Overview 551
	 12.2	 File Organization and Access 557
	 12.3	 B-Trees 561
	 12.4	 File Directories 564
	 12.5	 File Sharing 569
	 12.6	 Record Blocking 570
	 12.7	 Secondary Storage Management 572
	 12.8	 Unix File Management 580
	 12.9	 Linux Virtual File System 585
	 12.10	 Windows File System 589
	 12.11	 Android File Management 594
	 12.12	 Summary 595
	 12.13	 Key Terms, Review Questions, and Problems 596

Part 6 Embedded Systems 599

Chapter 13	 Embedded Operating Systems 599

	 13.1	 Embedded Systems 600
	 13.2	 Characteristics of Embedded Operating Systems 605
	 13.3	 Embedded Linux 609
	 13.4	 Tinyos 615
	 13.5	 Key Terms, Review Questions, and Problems 625

Chapter 14	Virtual Machines 627

	 14.1	 Virtual Machine Concepts 628
	 14.2	 Hypervisors 631
	 14.3	 Container Virtualization 635
	 14.4	 Processor Issues 642
	 14.5	 Memory Management 644
	 14.6	 I/O Management 645
	 14.7	 Vmware Esxi 647
	 14.8	 Microsoft Hyper-V and Xen Variants 650
	 14.9	 Java Vm 651
	 14.10	 Linux Vserver Virtual Machine Architecture 652
	 14.11	 Summary 655
	 14.12	 Key Terms, Review Questions, and Problems 655

A01_STAL4290_09_GE_FM.indd   10 5/9/17   4:40 PM



Contents   11

Chapter 15	Operating System Security 657

	 15.1	 Intruders and Malicious Software 658
	 15.2	 Buffer Overflow 662
	 15.3	 Access Control 670
	 15.4	 Unix Access Control 678
	 15.5	 Operating Systems Hardening 681
	 15.6	 Security Maintenance 685
	 15.7	 Windows Security 686
	 15.8	 Summary 691
	 15.9	 Key Terms, Review Questions, and Problems 692

Chapter 16	Cloud and IoT Operating Systems 695

	 16.1	 Cloud Computing 696
	 16.2	 Cloud Operating Systems 704
	 16.3	 The Internet of Things 720
	 16.4	 IoT Operating Systems 724
	 16.5	 Key Terms and Review Questions 731

Appendices

Appendix A  Topics in Concurrency A-1
	 A.1	 Race Conditions and Semaphores A-2
	 A.2	 A Barbershop Problem A-9
	 A.3	 Problems A-14

Appendix B  Programming and Operating System Projects B-1
	 B.1	 Semaphore Projects B-2
	 B.2	 File Systems Project B-3
	 B.3	 OS/161 B-3
	 B.4	 Simulations B-4
	 B.5	 Programming Projects B-4
	 B.6	 Research Projects B-6
	 B.7	 Reading/Report Assignments B-7
	 B.8	 Writing Assignments B-7
	 B.9	 Discussion Topics B-7
	 B.10	 BACI B-7

References R-1

Credits CL-1

Index I-1

A01_STAL4290_09_GE_FM.indd   11 5/9/17   4:40 PM



This page intentionally left blank

A01_STAL4290_09_GE_FM.indd   1 5/19/17   9:06 PM



Online Chapters and Appendices1

13

1Online chapters, appendices, and other documents are Premium Content, available via the access card 
at the front of this book.

Chapter 17	Network Protocols

	 17.1	 The Need for a Protocol Architecture 17-3
	 17.2	 The TCP/IP Protocol Architecture 17-5
	 17.3	 Sockets 17-12
	 17.4	 Linux Networking 17-16
	 17.5 	 Summary 17-18
	 17.6 	 Key Terms, Review Questions, and Problems 17-18
	 17A 	 The Trivial File Transfer Protocol 17-21

Chapter 18	Distributed Processing, Client/Server, and Clusters

	 18.1	 Client/Server Computing 18-2
	 18.2	 Distributed Message Passing 18-12
	 18.3	 Remote Procedure Calls 18-16
	 18.4	 Clusters 18-19
	 18.5	 Windows Cluster Server 18-25
	 18.6	 Beowulf and Linux Clusters 18-27
	 18.7 	 Summary 18-29
	 18.8 	 References 18-29
	 18.9 	 Key Terms, Review Questions, and Problems 18-30

Chapter 19	Distributed Process Management

	 19.1	 Process Migration 19-2
	 19.2	 Distributed Global States 19-9
	 19.3	 Distributed Mutual Exclusion 19-14
	 19.4	 Distributed Deadlock 19-23
	 19.5 	 Summary 19-35
	 19.6 	 References 19-35
	 19.7 	 Key Terms, Review Questions, and Problems 19-37

Chapter 20	Overview of Probability and Stochastic Processes

	 20.1	 Probability 20-2
	 20.2	 Random Variables 20-7
	 20.3	 Elementary Concepts of Stochastic Processes 20-12
	 20.4 	 Problems 20-20

Chapter 21	Queueing Analysis

	 21.1	 How Queues Behave—A Simple Example 21-3
	 21.2	 Why Queueing Analysis? 21-8

A01_STAL4290_09_GE_FM.indd   13 5/9/17   4:40 PM



	 21.3	 Queueing Models 21-10
	 21.4	 Single-Server Queues 21-17
	 21.5	 Multiserver Queues 21-20
	 21.6	 Examples 21-20
	 21.7	 Queues With Priorities 21-26
	 21.8	 Networks of Queues 21-27
	 21.9	 Other Queueing Models 21-31
	 21.10	 Estimating Model Parameters 21-32
	 21.11	 References 21-35
	 21.12	 Problems 21-35

Programming Project One  Developing a Shell

Programming Project Two  The HOST Dispatcher Shell

Appendix C	 Topics in Concurrency C-1

Appendix D	 Object-Oriented Design D-1

Appendix E		 Amdahl’s Law E-1

Appendix F		 Hash Tables F-1

Appendix G	 Response Time G-1

Appendix H	 Queueing System Concepts H-1

Appendix I		 The Complexity of Algorithms I-1

Appendix J		 Disk Storage Devices J-1

Appendix K	 Cryptographic Algorithms K-1

Appendix L		 Standards Organizations L-1

Appendix M	 Sockets: A Programmer’s Introduction M-1

Appendix N	 The International Reference Alphabet N-1

Appendix O	 BACI: The Ben-Ari Concurrent Programming System O-1

Appendix P		 Procedure Control P-1

Appendix Q	 ECOS Q-1

Glossary

14  O  nline Chapters and Appendices

A01_STAL4290_09_GE_FM.indd   14 5/9/17   4:40 PM



	 VideoNotes

Locations of VideoNotes

http://www.pearsonglobaleditions.com/stallings

Chapter 5	 Concurrency: Mutual Exclusion and Synchronization 223

	 5.1	 Mutual Exclusion Attempts 227
	 5.2	 Dekker’s Algorithm 230
	 5.3	 Peterson’s Algorithm for Two Processes 231
	 5.4	 Illustration of Mutual Exclusion 238
	 5.5	 Hardware Support for Mutual Exclusion 242
	 5.6	 A Definition of Semaphore Primitives 246
	 5.7	 A Definition of Binary Semaphore Primitives 247
	 5.9	 Mutual Exclusion Using Semaphores 249
	 5.12	 An Incorrect Solution to the Infinite-Buffer Producer/Consumer Problem  

Using Binary Semaphores 252
	 5.13	 A Correct Solution to the Infinite-Buffer Producer/Consumer Problem  

Using Binary Semaphores 254
	 5.14	 A Solution to the Infinite-Buffer Producer/Consumer Problem  

Using Semaphores 255
	 5.16	 A Solution to the Bounded-Buffer Producer/Consumer Problem  

Using Semaphores 256
	 5.17	 Two Possible Implementations of Semaphores 257
	 5.19	 A Solution to the Bounded-Buffer Producer/Consumer Problem  

Using a Monitor 260
	 5.20	 Bounded-Buffer Monitor Code for Mesa Monitor 262
	 5.23	 Mutual Exclusion Using Messages 268
	 5.24	 A Solution to the Bounded-Buffer Producer/Consumer Problem Using Messages 269
	 5.25	 A Solution to the Readers/Writers Problem Using Semaphore:  

Readers Have Priority 271
	 5.26	 A Solution to the Readers/Writers Problem Using Semaphore:  

Writers Have Priority 273
	 5.27	 A Solution to the Readers/Writers Problem Using Message Passing 274
	 5.28	 An Application of Coroutines 277

Chapter 6	 Concurrency: Deadlock and Starvation 289

	 6.9	 Deadlock Avoidance Logic 305
	 6.12	 A First Solution to the Dining Philosophers Problem 311
	 6.13	 A Second Solution to the Dining Philosophers Problem 311
	 6.14	 A Solution to the Dining Philosophers Problem Using a Monitor 312
	 6.18	 Another Solution to the Dining Philosophers Problem Using a Monitor 337

Chapter 13	 Embedded Operating Systems 599

	 13.12	 Condition Variable Example Code 626

VideoNote

15

A01_STAL4290_09_GE_FM.indd   15 5/9/17   4:40 PM

http://www.pearsonglobaleditions.com/stallings


This page intentionally left blank

A01_STAL4290_09_GE_FM.indd   1 5/19/17   9:06 PM



Preface

WHAT’S NEW IN THE NINTH EDITION

Since the eighth edition of this book was published, the field of operating systems 
has seen continuous innovations and improvements. In this new edition, I have tried 
to capture these changes while maintaining a comprehensive coverage of the entire 
field. To begin the process of revision, the eighth edition of this book was extensively 
reviewed by a number of professors who teach the subject and by professionals 
working in the field. The result is that, in many places, the narrative has been clari-
fied and tightened, and illustrations have been improved.

Beyond these refinements to improve pedagogy and user friendliness, the 
technical content of the book has been updated throughout to reflect the ongo-
ing changes in this exciting field, and the instructor and student support has been 
expanded. The most noteworthy changes are as follows:

•	 Updated Linux coverage: The Linux material has been updated and expanded 
to reflect changes in the Linux kernel since the eighth edition.

•	 Updated Android coverage: The Android material has been updated and 
expanded to reflect changes in the Android kernel since the eighth edition.

•	 New Virtualization coverage: The chapter on virtual machines has been com-
pletely rewritten to provide better organization and an expanded and more 
up-to-date treatment. In addition, a new section has been added on the use of 
containers.

•	 New Cloud operating systems: New to this edition is the coverage of cloud 
operating systems, including an overview of cloud computing, a discussion of 
the principles and requirements for a cloud operating system, and a discussion 
of a OpenStack, a popular open-source Cloud OS.

•	 New IoT operating systems: New to this edition is the coverage of operating 
systems for the Internet of Things. The coverage includes an overview of the 
IoT, a discussion of the principles and requirements for an IoT operating sys-
tem, and a discussion of a RIOT, a popular open-source IoT OS.

•	 Updated and Expanded Embedded operating systems: This chapter has been 
substantially revised and expanded including:

—�The section on embedded systems has been expanded and now includes 
discussions of microcontrollers and deeply embedded systems.

—�The overview section on embedded OSs has been expanded and updated.
—�The treatment of embedded Linux has been expanded, and a new discussion 

of a popular embedded Linux system, mClinux, has been added.

•	 Concurrency: New projects have been added to the Projects Manual to better 
help the student understand the principles of concurrency.

17

A01_STAL4290_09_GE_FM.indd   17 5/9/17   4:40 PM



18  P  reface

OBJECTIVES

This book is about the concepts, structure, and mechanisms of operating systems. Its 
purpose is to present, as clearly and completely as possible, the nature and charac-
teristics of modern-day operating systems.

This task is challenging for several reasons. First, there is a tremendous range 
and variety of computer systems for which operating systems are designed. These 
include embedded systems, smart phones, single-user workstations and personal 
computers, medium-sized shared systems, large mainframe and supercomputers, 
and specialized machines such as real-time systems. The variety is not just con-
fined to the capacity and speed of machines, but in applications and system support 
requirements. Second, the rapid pace of change that has always characterized com-
puter systems continues without respite. A number of key areas in operating system 
design are of recent origin, and research into these and other new areas continues.

In spite of this variety and pace of change, certain fundamental concepts apply 
consistently throughout. To be sure, the application of these concepts depends on 
the current state of technology and the particular application requirements. The in-
tent of this book is to provide a thorough discussion of the fundamentals of operat-
ing system design, and to relate these to contemporary design issues and to current 
directions in the development of operating systems.

EXAMPLE SYSTEMS

This text is intended to acquaint the reader with the design principles and imple-
mentation issues of contemporary operating systems. Accordingly, a purely concep-
tual or theoretical treatment would be inadequate. To illustrate the concepts and 
to tie them to real-world design choices that must be made, four operating systems 
have been chosen as running examples:

•	 Windows: A multitasking operating system for personal computers, worksta-
tions, servers, and mobile devices. This operating system incorporates many of 
the latest developments in operating system technology. In addition, Windows 
is one of the first important commercial operating systems to rely heavily on 
object-oriented design principles. This book covers the technology used in the 
most recent version of Windows, known as Windows 10.

•	 Android: Android is tailored for embedded devices, especially mobile phones. 
Focusing on the unique requirements of the embedded environment, the book 
provides details of Android internals.

•	 UNIX: A multiuser operating system, originally intended for minicomputers, 
but implemented on a wide range of machines from powerful microcomput-
ers to supercomputers. Several flavors of UNIX are included as examples. 
FreeBSD is a widely used system that incorporates many state-of-the-art fea-
tures. Solaris is a widely used commercial version of UNIX.

•	 Linux: An open-source version of UNIX that is widely used.

A01_STAL4290_09_GE_FM.indd   18 5/9/17   4:40 PM



Preface   19

These systems were chosen because of their relevance and representativeness. 
The discussion of the example systems is distributed throughout the text rather than 
assembled as a single chapter or appendix. Thus, during the discussion of concur-
rency, the concurrency mechanisms of each example system are described, and the 
motivation for the individual design choices is discussed. With this approach, the 
design concepts discussed in a given chapter are immediately reinforced with real-
world examples. For convenience, all of the material for each of the example sys-
tems is also available as an online document.

SUPPORT OF ACM/IEEE COMPUTER SCIENCE CURRICULA 2013

The book is intended for both an academic and a professional audience. As a textbook, 
it is intended as a one-semester or two-semester undergraduate course in operating 
systems for computer science, computer engineering, and electrical engineering majors. 
This edition is designed to support the recommendations of the current (December 
2013) version of the ACM/IEEE Computer Science Curricula 2013 (CS2013). The 
CS2013 curriculum recommendation includes Operating Systems (OS) as one of the 
Knowledge Areas in the Computer Science Body of Knowledge. CS2013 divides all 
course work into three categories: Core-Tier 1 (all topics should be included in the cur-
riculum), Core-Tier 2 (all or almost all topics should be included), and Elective (desir-
able to provide breadth and depth). In the OS area, CS2013 includes two Tier 1 topics, 
four Tier 2 topics, and six Elective topics, each of which has a number of subtopics. This 
text covers all of the topics and subtopics listed by CS2013 in these three categories.

Table P.1 shows the support for the OS Knowledge Areas provided in this text-
book. A detailed list of subtopics for each topic is available as the file CS2013-OS 
.pdf at box.com/OS9e.

PLAN OF THE TEXT

The book is divided into six parts:

1.	 Background

2.	 Processes

3.	 Memory

4.	 Scheduling

5.	 Input/Output and files

6.	 Advanced topics (embedded OSs, virtual machines, OS security, and cloud and 
IoT operating systems)

The book includes a number of pedagogic features, including the use of anima-
tions and videonotes and numerous figures and tables to clarify the discussion. Each 
chapter includes a list of key words, review questions, and homework problems. 
The book also includes an extensive glossary, a list of frequently used acronyms, 
and a bibliography. In addition, a test bank is available to instructors.

A01_STAL4290_09_GE_FM.indd   19 5/9/17   4:40 PM

http://box.com/OS9e


20  P  reface

INSTRUCTOR SUPPORT MATERIALS

The major goal of this text is to make it as effective a teaching tool as possible for 
this fundamental yet evolving subject. This goal is reflected both in the structure of 
the book and in the supporting material. The text is accompanied by the following 
supplementary material to aid the instructor:

•	 Solutions manual: Solutions to end-of-chapter Review Questions and Problems.

•	 Projects manual: Suggested project assignments for all of the project catego-
ries listed in this Preface.

•	 PowerPoint slides: A set of slides covering all chapters, suitable for use in 
lecturing.

•	 PDF files: Reproductions of all figures and tables from the book.

•	 Test bank: A chapter-by-chapter set of questions with a separate file of answers.

Table P.1  Coverage of CS2013 Operating Systems (OSs) Knowledge Area

Topic Coverage in Book

Overview of Operating Systems (Tier 1) Chapter 2: Operating System Overview

Operating System Principles (Tier 1) Chapter 1: Computer System Overview
Chapter 2: Operating System Overview

Concurrency (Tier 2) Chapter 5: Mutual Exclusion and Synchronization
Chapter 6: Deadlock and Starvation
Appendix A: Topics in Concurrency
Chapter 18: Distributed Process Management

Scheduling and Dispatch (Tier 2) Chapter 9: Uniprocessor Scheduling
Chapter 10: Multiprocessor and Real-Time 
Scheduling

Memory Management (Tier 2) Chapter 7: Memory Management
Chapter 8: Virtual Memory

Security and Protection (Tier 2) Chapter 15: Operating System Security

Virtual Machines (Elective) Chapter 14: Virtual Machines

Device Management (Elective) Chapter 11: I/O Management and Disk Scheduling

File System (Elective) Chapter 12: File Management

Real Time and Embedded Systems (Elective) Chapter 10: Multiprocessor and Real-Time 
Scheduling
Chapter 13: Embedded Operating Systems
Material on Android throughout the text

Fault Tolerance (Elective) Section 2.5: Fault Tolerance

System Performance Evaluation (Elective) Performance issues related to memory management, 
scheduling, and other areas addressed throughout 
the text

A01_STAL4290_09_GE_FM.indd   20 5/9/17   4:40 PM



Preface   21

•	 VideoNotes on concurrency: Professors perennially cite concurrency as per-
haps the most difficult concept in the field of operating systems for students to 
grasp. The edition is accompanied by a number of VideoNotes lectures discuss-
ing the various concurrency algorithms defined in the book. This icon appears 
next to each algorithm definition in the book to indicate that a VideoNote is 
available: 

•	 Sample syllabuses: The text contains more material that can be conveniently 
covered in one semester. Accordingly, instructors are provided with several 
sample syllabuses that guide the use of the text within limited time. These 
samples are based on real-world experience by professors with the seventh 
edition.

All of these support materials are available at the Instructor Resource Center 
(IRC) for this textbook, which can be reached through the publisher’s website http://
www.pearsonglobaleditions.com/stallings. To gain access to the IRC, please contact 
your local Pearson sales representative.

PROJECTS AND OTHER STUDENT EXERCISES

For many instructors, an important component of an OS course is a project or set of 
projects by which the student gets hands-on experience to reinforce concepts from 
the text. This book has incorporated a projects component in the course as a result 
of an overwhelming support it received. In the online portion of the text, two major 
programming projects are defined. In addition, the instructor’s support materials 
available through Pearson not only includes guidance on how to assign and struc-
ture the various projects, but also includes a set of user’s manuals for various project 
types plus specific assignments, all written especially for this book. Instructors can 
assign work in the following areas:

•	 OS/161 projects: Described later.

•	 Simulation projects: Described later.

•	 Semaphore projects: Designed to help students understand concurrency 
concepts, including race conditions, starvation, and deadlock.

•	 Kernel projects: The IRC includes complete instructor support for two dif-
ferent sets of Linux kernel programming projects, as well as a set of kernel 
programming projects for Android.

•	 Programming projects: Described below.

•	 Research projects: A series of research assignments that instruct the student to 
research a particular topic on the Internet and write a report.

•	 Reading/report assignments: A list of papers that can be assigned for reading 
and writing a report, plus suggested assignment wording.

•	 Writing assignments: A list of writing assignments to facilitate learning the 
material.

VideoNote

A01_STAL4290_09_GE_FM.indd   21 5/9/17   4:40 PM

http://www.pearsonglobaleditions.com/stallings
http://www.pearsonglobaleditions.com/stallings


22  P  reface

•	 Discussion topics: These topics can be used in a classroom, chat room, or mes-
sage board environment to explore certain areas in greater depth and to foster 
student collaboration.

In addition, information is provided on a software package known as BACI that 
serves as a framework for studying concurrency mechanisms.

This diverse set of projects and other student exercises enables the instructor 
to use the book as one component in a rich and varied learning experience and to 
tailor a course plan to meet the specific needs of the instructor and students. See 
Appendix B in this book for details.

OS/161

This edition provides support for an active learning component based on OS/161. 
OS/161 is an educational operating system that is becoming increasingly rec-
ognized as the preferred teaching platform for OS internals. It aims to strike a 
balance between giving students experience in working on a real operating sys-
tem, and potentially overwhelming students with the complexity that exists 
in a full-fledged operating system, such as Linux. Compared to most deployed 
operating systems, OS/161 is quite small (approximately 20,000 lines of code and 
comments), and therefore it is much easier to develop an understanding of the 
entire code base.

The IRC includes:

1.	 A packaged set of html files that the instructor can upload to a course server 
for student access.

2.	 A getting-started manual to be distributed to students to help them begin using 
OS/161.

3.	 A set of exercises using OS/161, to be distributed to students.

4.	 Model solutions to each exercise for the instructor’s use.

5.	 All of this will be cross-referenced with appropriate sections in the book, so the 
student can read the textbook material then do the corresponding OS/161 
project.

SIMULATIONS

The IRC provides support for assigning projects based on a set of seven simulations 
that cover key areas of OS design. The student can use a set of simulation packages 
to analyze OS design features. The simulators are written in Java and can be run 
either locally as a Java application or online through a browser. The IRC includes 
specific assignments to give to students, telling them specifically what they are to do 
and what results are expected.

A01_STAL4290_09_GE_FM.indd   22 5/9/17   4:40 PM



Preface   23

ANIMATIONS

This edition also incorporates animations. Animations provide a powerful tool for 
understanding the complex mechanisms of a modern OS. A total of 53 animations 
are used to illustrate key functions and algorithms in OS design. The animations are 
used for Chapters 3, 5, 6, 7, 8, 9, and 11.

PROGRAMMING PROJECTS

This edition provides support for programming projects. Two major programming 
projects, one to build a shell, or command line interpreter, and one to build a process 
dispatcher are described in the online portion of this textbook. The IRC provides 
further information and step-by-step exercises for developing the programs.

As an alternative, the instructor can assign a more extensive series of pro-
jects that cover many of the principles in the book. The student is provided with 
detailed instructions for doing each of the projects. In addition, there is a set of 
homework problems, which involve questions related to each project for the 
student to answer.

Finally, the project manual provided at the IRC includes a series of program-
ming projects that cover a broad range of topics and that can be implemented in any 
suitable language on any platform.

ONLINE DOCUMENTS AND VIDEONOTES FOR STUDENTS

For this new edition, a substantial amount of original supporting material for stu-
dents has been made available online, at two online locations. The book’s website, 
at http://www.pearsonglobaleditions.com/stallings (click on Student Resources 
link), includes a list of relevant links organized by chapter and an errata sheet for 
the book.

Purchasing this textbook new also grants the reader twelve months of access 
to the Companion Website, which includes the following materials:

•	 Online chapters: To limit the size and cost of the book, 5 chapters of the book, 
covering security, are provided in PDF format. The chapters are listed in this 
book’s table of contents.

•	 Online appendices: There are numerous interesting topics that support mate-
rial found in the text, but whose inclusion is not warranted in the printed text. 
A total of 15 online appendices cover these topics for the interested student. 
The appendices are listed in this book’s table of contents.

•	 Homework problems and solutions: To aid the student in understanding the 
material, a separate set of homework problems with solutions is available.

A01_STAL4290_09_GE_FM.indd   23 5/9/17   4:40 PM

http://www.pearsonglobaleditions.com/stallings


24  P  reface

•	 Animations: Animations provide a powerful tool for understanding the com-
plex mechanisms of a modern OS. A total of 53 animations are used to illus-
trate key functions and algorithms in OS design. The animations are used for 
Chapters 3, 5, 6, 7, 8, 9, and 11.

•	 VideoNotes: VideoNotes are step-by-step video tutorials specifically designed 
to enhance the programming concepts presented in this textbook. The book is 
accompanied by a number of VideoNotes lectures discussing the various con-
currency algorithms defined in the book.

To access the Premium Content site, click on the Companion website link at 
www.pearsonglobaleditions.com/stallings and enter the student access code found 
on the card in the front of the book.

ACKNOWLEDGMENTS

I would like to thank the following for their contributions. Rami Rosen contributed 
most of the new material on Linux. Vineet Chadha made a major contribution to the 
new chapter on virtual machines. Durgadoss Ramanathan provided the new mate-
rial on Android ART.

Through its multiple editions this book has benefited from review by hun-
dreds of instructors and professionals, who generously spared their precious time 
and shared their expertise. Here I acknowledge those whose help contributed to 
this latest edition.

The following instructors reviewed all or a large part of the manuscript for this 
edition: Jiang Guo (California State University, Los Angeles), Euripides Montagne 
(University of Central Florida), Kihong Park (Purdue University), Mohammad 
Abdus Salam (Southern University and A&M College), Robert Marmorstein 
(Longwood University), Christopher Diaz (Seton Hill University), and Barbara 
Bracken (Wilkes University).

Thanks also to all those who provided detailed technical reviews of one 
or more chapters: Nischay Anikar, Adri Jovin, Ron Munitz, Fatih Eyup Nar, 
Atte Peltomaki, Durgadoss Ramanathan, Carlos Villavieja, Wei Wang, Serban 
Constantinescu and Chen Yang.

Thanks also to those who provided detailed reviews of the example sys-
tems. Reviews of the Android material were provided by Kristopher Micinski, 
Ron Munitz, Atte Peltomaki, Durgadoss Ramanathan, Manish Shakya, Samuel 
Simon, Wei Wang, and Chen Yang. The Linux reviewers were Tigran Aivazian, 
Kaiwan Billimoria, Peter Huewe, Manmohan Manoharan, Rami Rosen, Neha 
Naik, and Hualing Yu. The Windows material was reviewed by Francisco Cotrina, 
Sam Haidar, Christopher Kuleci, Benny Olsson, and Dave Probert. The RIOT ma-
terial was reviewed by Emmanuel Baccelli and Kaspar Schleiser, and OpenStack 
was reviewed by Bob Callaway. Nick Garnett of eCosCentric reviewed the material 
on eCos; and Philip Levis, one of the developers of TinyOS reviewed the material 
on TinyOS. Sid Young reviewed the material on container virtualization.

A01_STAL4290_09_GE_FM.indd   24 5/9/17   4:40 PM

http://www.pearsonglobaleditions.com/stallings


Preface   25

Andrew Peterson of the University of Toronto prepared the OS/161 supple-
ments for the IRC. James Craig Burley authored and recorded the VideoNotes.

Adam Critchley (University of Texas at San Antonio) developed the simula-
tion exercises. Matt Sparks (University of Illinois at Urbana-Champaign) adapted a 
set of programming problems for use with this textbook.

Lawrie Brown of the Australian Defence Force Academy produced the mate-
rial on buffer overflow attacks. Ching-Kuang Shene (Michigan Tech University) 
provided the examples used in the section on race conditions and reviewed the 
section. Tracy Camp and Keith Hellman, both at the Colorado School of Mines, 
developed a new set of homework problems. In addition, Fernando Ariel Gont con-
tributed a number of homework problems; he also provided detailed reviews of all 
of the chapters.

I would also like to thank Bill Bynum (College of William and Mary) and 
Tracy Camp (Colorado School of Mines) for contributing Appendix O; Steve Taylor 
(Worcester Polytechnic Institute) for contributing the programming projects and 
reading/report assignments in the instructor’s manual; and Professor Tan N. Nguyen 
(George Mason University) for contributing the research projects in the instruction 
manual. Ian G. Graham (Griffith University) contributed the two programming 
projects in the textbook. Oskars Rieksts (Kutztown University) generously allowed 
me to make use of his lecture notes, quizzes, and projects.

Finally, I thank the many people responsible for the publication of this book, 
all of whom did their usual excellent job. This includes the staff at Pearson, par-
ticularly my editor Tracy Johnson, her assistant Kristy Alaura, program manager 
Carole Snyder, and project manager Bob Engelhardt. Thanks also to the marketing 
and sales staffs at Pearson, without whose efforts this book would not be in front 
of you.

Acknowledgments for the Global Edition

Pearson would like to thank and acknowledge Moumita Mitra Manna (Bangabasi 
College) for contributing to the Global Edition, and A. Kannamal (Coimbatore 
Institute of Technology), Kumar Shashi Prabh (Shiv Nadar University), and Khyat 
Sharma for reviewing the Global Edition.

A01_STAL4290_09_GE_FM.indd   25 5/9/17   4:40 PM



This page intentionally left blank

A01_STAL4290_09_GE_FM.indd   1 5/19/17   9:06 PM



About the Author

Dr. William Stallings has authored 18 titles, and including the revised editions, over 
40 books on computer security, computer networking, and computer architecture. 
His writings have appeared in numerous publications, including the Proceedings of 
the IEEE, ACM Computing Reviews and Cryptologia.

He has received the Best Computer Science textbook of the Year award 13 
times from the Text and Academic Authors Association.

In over 30 years in the field, he has been a technical contributor, technical 
manager, and an executive with several high-technology firms. He has designed 
and implemented both TCP/IP-based and OSI-based protocol suites on a variety 
of computers and operating systems, ranging from microcomputers to mainframes. 
As a consultant, he has advised government agencies, computer and software ven-
dors, and major users on the design, selection, and use of networking software and 
products.

He created and maintains the Computer Science Student Resource Site at 
ComputerScienceStudent.com. This site provides documents and links on a variety 
of subjects of general interest to computer science students (and professionals). He 
is a member of the editorial board of Cryptologia, a scholarly journal devoted to all 
aspects of cryptology.

Dr. Stallings holds a Ph.D. from M.I.T. in Computer Science and a B.S. from 
Notre Dame in electrical engineering.

27

A01_STAL4290_09_GE_FM.indd   27 5/9/17   4:40 PM

http://ComputerScienceStudent.com


This page intentionally left blank

A01_STAL4290_09_GE_FM.indd   1 5/19/17   9:06 PM



29

 

1.1	  Basic Elements

1.2	  Evolution of the Microprocessor

1.3	  Instruction Execution

1.4	  Interrupts
Interrupts and the Instruction Cycle
Interrupt Processing
Multiple Interrupts

1.5	  The Memory Hierarchy

1.6	  Cache Memory
Motivation
Cache Principles
Cache Design

1.7	  Direct Memory Access

1.8	  Multiprocessor and Multicore Organization
Symmetric Multiprocessors
Multicore Computers

1.9	  Key Terms, Review Questions, and Problems

APPENDIX 1A	 Performance Characteristics of Two-Level Memories
Locality
Operation of Two-Level Memory
Performance

Computer System Overview

Chapter 

BackgroundPart 1

M01_STAL4290_09_GE_C01.indd   29 5/9/17   4:36 PM



30    Chapter 1 / Computer System Overview

An operating system (OS) exploits the hardware resources of one or more processors 
to provide a set of services to system users. The OS also manages secondary memory 
and I/O (input/output) devices on behalf of its users. Accordingly, it is important to 
have some understanding of the underlying computer system hardware before we 
begin our examination of operating systems.

This chapter provides an overview of computer system hardware. In most areas, 
the survey is brief, as it is assumed that the reader is familiar with this subject. How-
ever, several areas are covered in some detail because of their importance to topics 
covered later in the book.  Additional topics are covered in Appendix C. For a more 
detailed treatment, see [STAL16a].

	 1.1	 BASIC ELEMENTS

At a top level, a computer consists of processor, memory, and I/O components, with 
one or more modules of each type. These components are interconnected in some 
fashion to achieve the main function of the computer, which is to execute programs. 
Thus, there are four main structural elements:

•	 Processor: Controls the operation of the computer and performs its data pro-
cessing functions. When there is only one processor, it is often referred to as the 
central processing unit (CPU).

•	 Main memory: Stores data and programs. This memory is typically volatile; 
that is, when the computer is shut down, the contents of the memory are lost. 
In contrast, the contents of disk memory are retained even when the computer 
system is shut down. Main memory is also referred to as real memory or primary 
memory.

Learning Objectives

After studying this chapter, you should be able to:
•	 Describe the basic elements of a computer system and their interrelationship.
•	 Explain the steps taken by a processor to execute an instruction.
•	 Understand the concept of interrupts, and how and why a processor uses 

interrupts.
•	 List and describe the levels of a typical computer memory hierarchy.
•	 Explain the basic characteristics of multiprocessor systems and multicore 

computers.
•	 Discuss the concept of locality and analyze the performance of a multilevel 

memory hierarchy.
•	 Understand the operation of a stack and its use to support procedure call 

and return.

M01_STAL4290_09_GE_C01.indd   30 5/9/17   4:36 PM



1.1 / BASIC ELEMENTS   31

•	 I/O modules: Move data between the computer and its external environment. 
The external environment consists of a variety of devices, including secondary 
memory devices (e.g., disks), communications equipment, and terminals.

•	 System bus: Provides for communication among processors, main memory, 
and I/O modules.

Figure 1.1 depicts these top-level components. One of the processor’s functions 
is to exchange data with memory. For this purpose, it typically makes use of two 
internal (to the processor) registers: a memory address register (MAR), which speci-
fies the address in memory for the next read or write; and a memory buffer register 
(MBR), which contains the data to be written into memory, or receives the data read 
from memory. Similarly, an I/O address register (I/OAR) specifies a particular I/O 
device. An I/O buffer register (I/OBR) is used for the exchange of data between an 
I/O module and the processor.

A memory module consists of a set of locations, defined by sequentially num-
bered addresses. Each location contains a bit pattern that can be interpreted as either 

Figure 1.1  Computer Components: Top-Level View

CPU Main memory

System
bus

I/O module

Bu�ers

Instruction

n22
n21

Data

Data

Data

Data

Instruction

Instruction

PC 5 Program counter
IR 5 Instruction register
MAR 5 Memory address register
MBR 5 Memory bu�er register
I/O AR 5 Input/output address register
I/O BR 5 Input/output bu�er register

0
1
2

PC MAR

IR MBR

I/O AR

I/O BR
Execution

unit

M01_STAL4290_09_GE_C01.indd   31 5/9/17   4:36 PM



32    Chapter 1 / Computer System Overview

an instruction or data. An I/O module transfers data from external devices to proces-
sor and memory, and vice versa. It contains internal buffers for temporarily storing 
data until they can be sent on.

	 1.2	 EVOLUTION OF THE MICROPROCESSOR

The hardware revolution that brought about desktop and handheld computing was 
the invention of the microprocessor, which contained a processor on a single chip. 
Though originally much slower than multichip processors, microprocessors have 
continually evolved to the point that they are now much faster for most computa-
tions due to the physics involved in moving information around in sub-nanosecond 
timeframes.

Not only have microprocessors become the fastest general-purpose processors 
available, they are now multiprocessors; each chip (called a socket) contains multiple 
processors (called cores), each with multiple levels of large memory caches, and mul-
tiple logical processors sharing the execution units of each core. As of 2010, it is not 
unusual for even a laptop to have 2 or 4 cores, each with 2 hardware threads, for a 
total of 4 or 8 logical processors.

Although processors provide very good performance for most forms of com-
puting, there is increasing demand for numerical computation. Graphical Processing 
Units (GPUs) provide efficient computation on arrays of data using Single-Instruction 
Multiple Data (SIMD) techniques pioneered in supercomputers. GPUs are no lon-
ger used just for rendering advanced graphics, but they are also used for general 
numerical processing, such as physics simulations for games or computations on 
large spreadsheets. Simultaneously, the CPUs themselves are gaining the capability 
of operating on arrays of data–with increasingly powerful vector units integrated into 
the processor architecture of the x86 and AMD64 families.

Processors and GPUs are not the end of the computational story for the mod-
ern PC. Digital Signal Processors (DSPs) are also present for dealing with stream-
ing signals such as audio or video. DSPs used to be embedded in I/O devices, like 
modems, but they are now becoming first-class computational devices, especially in 
handhelds. Other specialized computational devices (fixed function units) co-exist 
with the CPU to support other standard computations, such as encoding/decoding 
speech and video (codecs), or providing support for encryption and security.

To satisfy the requirements of handheld devices, the classic microprocessor is 
giving way to the System on a Chip (SoC), where not just the CPUs and caches are 
on the same chip, but also many of the other components of the system, such as DSPs, 
GPUs, I/O devices (such as radios and codecs), and main memory.

	 1.3	 INSTRUCTION EXECUTION

A program to be executed by a processor consists of a set of instructions stored in 
memory. In its simplest form, instruction processing consists of two steps: The pro-
cessor reads (fetches) instructions from memory one at a time and executes each 
instruction. Program execution consists of repeating the process of instruction fetch 

M01_STAL4290_09_GE_C01.indd   32 5/9/17   4:36 PM



1.3 / INSTRUCTION EXECUTION   33

and instruction execution. Instruction execution may involve several operations and 
depends on the nature of the instruction.

The processing required for a single instruction is called an instruction cycle. 
Using a simplified two-step description, the instruction cycle is depicted in Figure 1.2. 
The two steps are referred to as the fetch stage and the execute stage. Program execu-
tion halts only if the processor is turned off, some sort of unrecoverable error occurs, 
or a program instruction that halts the processor is encountered.

At the beginning of each instruction cycle, the processor fetches an instruc-
tion from memory. Typically, the program counter (PC) holds the address of the 
next instruction to be fetched. Unless instructed otherwise, the processor always 
increments the PC after each instruction fetch so it will fetch the next instruction 
in sequence (i.e., the instruction located at the next higher memory address). For 
example, consider a simplified computer in which each instruction occupies one 16-bit 
word of memory. Assume that the program counter is set to location 300. The proces-
sor will next fetch the instruction at location 300. On succeeding instruction cycles, it 
will fetch instructions from locations 301, 302, 303, and so on. This sequence may be 
altered, as explained subsequently.

The fetched instruction is loaded into the instruction register (IR). The instruc-
tion contains bits that specify the action the processor is to take. The processor inter-
prets the instruction and performs the required action. In general, these actions fall 
into four categories:

•	 Processor-memory: Data may be transferred from processor to memory, or 
from memory to processor.

•	 Processor-I/O: Data may be transferred to or from a peripheral device by trans-
ferring between the processor and an I/O module.

•	 Data processing: The processor may perform some arithmetic or logic opera-
tion on data.

•	 Control: An instruction may specify that the sequence of execution be altered. 
For example, the processor may fetch an instruction from location 149, which 
specifies that the next instruction be from location 182. The processor sets the 
program counter to 182. Thus, on the next fetch stage, the instruction will be 
fetched from location 182 rather than 150.

An instruction’s execution may involve a combination of these actions.
Consider a simple example using a hypothetical processor that includes the 

characteristics listed in Figure 1.3. The processor contains a single data register, called 

Figure 1.2  Basic Instruction Cycle

START HALTFetch next
instruction

Fetch stage Execute stage

Execute
instruction

M01_STAL4290_09_GE_C01.indd   33 5/9/17   4:36 PM



34    Chapter 1 / Computer System Overview

the accumulator (AC). Both instructions and data are 16 bits long, and memory is 
organized as a sequence of 16-bit words. The instruction format provides 4 bits for 
the opcode, allowing as many as 24 = 16 different opcodes (represented by a single 
hexadecimal1 digit). The opcode defines the operation the processor is to perform. 
With the remaining 12 bits of the instruction format, up to 212 = 4,096 (4K) words of 
memory (denoted by three hexadecimal digits) can be directly addressed.

Figure 1.4 illustrates a partial program execution, showing the relevant portions 
of memory and processor registers. The program fragment shown adds the contents of 
the memory word at address 940 to the contents of the memory word at address 941 
and stores the result in the latter location. Three instructions, which can be described 
as three fetch and three execute stages, are required:

1.	 The PC contains 300, the address of the first instruction. This instruction (the 
value 1940 in hexadecimal) is loaded into the IR and the PC is incremented. 
Note that this process involves the use of a memory address register (MAR) 
and a memory buffer register (MBR). For simplicity, these intermediate regis-
ters are not shown.

2.	 The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be 
loaded from memory. The remaining 12 bits (three hexadecimal digits) specify 
the address, which is 940.

3.	 The next instruction (5941) is fetched from location 301 and the PC is incremented.

1A basic refresher on number systems (decimal, binary, hexadecimal) can be found at the Computer 
Science Student Resource Site at ComputerScienceStudent.com.

Figure 1.3  Characteristics of a Hypothetical Machine

0 3 4 15

15

Opcode Address 

0 1
S Magnitude 

Program counter (PC) = Address of instruction 
Instruction register (IR) = Instruction being executed 
Accumulator (AC) = Temporary storage 

(a) Instruction format 

(b) Integer format 

(c) Internal CPU registers 

0001 = Load AC from memory 
0010 = Store AC to memory 
0101 = Add to AC from memory 

(d) Partial list of opcodes 

M01_STAL4290_09_GE_C01.indd   34 5/9/17   4:36 PM

http://ComputerScienceStudent.com


1.4 / INTERRUPTS   35

4.	 The old contents of the AC and the contents of location 941 are added, and the 
result is stored in the AC.

5.	 The next instruction (2941) is fetched from location 302, and the PC is 
incremented.

6.	 The contents of the AC are stored in location 941.

In this example, three instruction cycles, each consisting of a fetch stage and an 
execute stage, are needed to add the contents of location 940 to the contents of 941. 
With a more complex set of instructions, fewer instruction cycles would be needed. 
Most modern processors include instructions that contain more than one address. 
Thus, the execution stage for a particular instruction may involve more than one 
reference to memory. Also, instead of memory references, an instruction may specify 
an I/O operation.

	 1.4	 INTERRUPTS

Virtually all computers provide a mechanism by which other modules (I/O, memory) 
may interrupt the normal sequencing of the processor. Table 1.1 lists the most com-
mon classes of interrupts.

Figure 1.4 � Example of Program Execution (contents of 
memory and registers in hexadecimal)

2

PC300
CPU registersMemory

Fetch stage Execute stage

3 0 01 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR1 9 4 0

Step 1

PC300
CPU registersMemory

3 0 11 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR1 9 4 0

0 0 0 3

Step 2

PC300
CPU registersMemory

3 0 1
0 0 0 5

0 0 0 5

0 0 0 3

0 0 0 5

1 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR5 9 4 1

Step 3

PC300
CPU registersMemory

3 0 21 9 4 0
301 5 9 4 1
302 2 9 4 1

1

940 0 0 0 3
941 0 0 0 2

AC
IR5 9 4 1

Step 4

PC300
CPU registersMemory

3 01 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR2 9 4 1

Step 5

PC300
CPU registersMemory

3 0 31 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 5

AC
IR2 9 4 1

Step 6

3 + 2 = 5

M01_STAL4290_09_GE_C01.indd   35 5/9/17   4:36 PM



36    Chapter 1 / Computer System Overview

Interrupts are provided primarily as a way to improve processor utilization. 
For example, most I/O devices are much slower than the processor. Suppose that 
the processor is transferring data to a printer using the instruction cycle scheme of 
Figure 1.2. After each write operation, the processor must pause and remain idle 
until the printer catches up. The length of this pause may be on the order of many 
thousands or even millions of instruction cycles. Clearly, this is a very wasteful use 
of the processor.

To give a specific example, consider a PC that operates at 1 GHz, which would 
allow roughly 109 instructions per second.2 A typical hard disk has a rotational speed 
of 7200 revolutions per minute for a half-track rotation time of 4 ms, which is 4 mil-
lion times slower than the processor.

Figure 1.5a illustrates this state of affairs. The user program performs a series 
of WRITE calls interleaved with processing. The solid vertical lines represent seg-
ments of code in a program. Code segments 1, 2, and 3 refer to sequences of instruc-
tions that do not involve I/O. The WRITE calls are to an I/O routine that is a system 
utility and will perform the actual I/O operation. The I/O program consists of three 
sections:

•	 A sequence of instructions, labeled 4 in the figure, to prepare for the actual I/O 
operation. This may include copying the data to be output into a special buffer 
and preparing the parameters for a device command.

•	 The actual I/O command. Without the use of interrupts, once this command is 
issued, the program must wait for the I/O device to perform the requested func-
tion (or periodically check the status of, or poll, the I/O device). The program 
might wait by simply repeatedly performing a test operation to determine if 
the I/O operation is done.

•	 A sequence of instructions, labeled 5 in the figure, to complete the opera-
tion. This may include setting a flag indicating the success or failure of the 
operation.

The dashed line represents the path of execution followed by the processor; that 
is, this line shows the sequence in which instructions are executed. Thus, after the first 

2A discussion of the uses of numerical prefixes, such as giga and tera, is contained in a supporting document 
at the Computer Science Student Resource Site at ComputerScienceStudent.com.

Program Generated by some condition that occurs as a result of an instruction execu-
tion, such as arithmetic overflow, division by zero, attempt to execute an illegal 
machine instruction, or reference outside a user’s allowed memory space.

Timer Generated by a timer within the processor. This allows the operating system to 
perform certain functions on a regular basis.

I/O Generated by an I/O controller, to signal normal completion of an operation or 
to signal a variety of error conditions.

Hardware failure Generated by a failure, such as power failure or memory parity error.

Table 1.1  Classes of Interrupts

M01_STAL4290_09_GE_C01.indd   36 5/9/17   4:36 PM

http://ComputerScienceStudent.com


1.4 / INTERRUPTS   37

WRITE instruction is encountered, the user program is interrupted and execution 
continues with the I/O program. After the I/O program execution is complete, execu-
tion resumes in the user program immediately following the WRITE instruction.

Because the I/O operation may take a relatively long time to complete, the I/O 
program is hung up waiting for the operation to complete; hence, the user program is 
stopped at the point of the WRITE call for some considerable period of time.

Interrupts and the Instruction Cycle

With interrupts, the processor can be engaged in executing other instructions while 
an I/O operation is in progress. Consider the flow of control in Figure 1.5b. As before, 
the user program reaches a point at which it makes a system call in the form of a 
WRITE call. The I/O program that is invoked in this case consists only of the prepa-
ration code and the actual I/O command. After these few instructions have been 
executed, control returns to the user program. Meanwhile, the external device is 
busy accepting data from computer memory and printing it. This I/O operation is 
conducted concurrently with the execution of instructions in the user program.

When the external device becomes ready to be serviced (that is, when it is 
ready to accept more data from the processor) the I/O module for that external 
device sends an interrupt request signal to the processor. The processor responds by 
suspending operation of the current program; branching off to a routine to service 

Figure 1.5  Program Flow of Control Without and With Interrupts

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

END

1

2

3

2

3

4

5

(a) No interrupts

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

Interrupt
Handler

END

1

2a

2b

3a

3b

4

5

(b) Interrupts; short I/O wait

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

Interrupt
Handler

END

1 4

5

(c) Interrupts; long I/O wait

= interrupt occurs during course of execution of user program

M01_STAL4290_09_GE_C01.indd   37 5/9/17   4:36 PM



38    Chapter 1 / Computer System Overview

that particular I/O device (known as an interrupt handler); and resuming the original 
execution after the device is serviced. The points at which such interrupts occur are 
indicated by  in Figure 1.5b. Note that an interrupt can occur at any point in the 
main program, not just at one specific instruction.

For the user program, an interrupt suspends the normal sequence of execution. 
When the interrupt processing is completed, execution resumes (see Figure 1.6). Thus, 
the user program does not have to contain any special code to accommodate inter-
rupts; the processor and the OS are responsible for suspending the user program, 
then resuming it at the same point.

To accommodate interrupts, an interrupt stage is added to the instruction cycle, 
as shown in Figure 1.7 (compare with Figure 1.2). In the interrupt stage, the proces-
sor checks to see if any interrupts have occurred, indicated by the presence of an 

Figure 1.6  Transfer of Control via Interrupts

1

2

i

i 1 1

M

Interrupt
occurs here

User program Interrupt handler

Figure 1.7  Instruction Cycle with Interrupts

Fetch stage Execute stage Interrupt stage

START

HALT

Interrupts
disabled

Interrupts
enabled

Fetch next
instruction

Execute
instruction

Check for
interrupt;

initiate interrupt
handler

M01_STAL4290_09_GE_C01.indd   38 5/9/17   4:36 PM



1.4 / INTERRUPTS   39

interrupt signal. If no interrupts are pending, the processor proceeds to the fetch 
stage and fetches the next instruction of the current program. If an interrupt is 
pending, the processor suspends execution of the current program and executes an 
interrupt-handler routine. The interrupt-handler routine is generally part of the OS. 
Typically, this routine determines the nature of the interrupt and performs whatever 
actions are needed. In the example we have been using, the handler determines 
which I/O module generated the interrupt, and may branch to a program that will 
write more data out to that I/O module. When the interrupt-handler routine is com-
pleted, the processor can resume execution of the user program at the point of 
interruption.

It is clear that there is some overhead involved in this process. Extra instruc-
tions must be executed (in the interrupt handler) to determine the nature of the 
interrupt and to decide on the appropriate action. Nevertheless, because of the 
relatively large amount of time that would be wasted by simply waiting on an I/O 
operation, the processor can be employed much more efficiently with the use of 
interrupts.

To appreciate the gain in efficiency, consider Figure 1.8, which is a timing dia-
gram based on the flow of control in Figures 1.5a and 1.5b. Figures 1.5b and 1.8 assume 

Figure 1.8  Program Timing: Short I/O Wait

Time

4

1

5 5

2

5

3

4

I/O operation;
processor waits

I/O operation
concurrent with

processor executing

I/O operation
concurrent with

processor executing

I/O operation;
processor waits

4

2a

1

2b

4

3a

5

3b

(a) Without interrupts

(b) With interrupts

M01_STAL4290_09_GE_C01.indd   39 5/9/17   4:36 PM



40    Chapter 1 / Computer System Overview

that the time required for the I/O operation is relatively short: less than the time to 
complete the execution of instructions between write operations in the user program. 
The more typical case, especially for a slow device such as a printer, is that the I/O 
operation will take much more time than executing a sequence of user instructions. 
Figure 1.5c indicates this state of affairs. In this case, the user program reaches the 
second WRITE call before the I/O operation spawned by the first call is complete. 
The result is that the user program is hung up at that point. When the preceding 
I/O operation is completed, this new WRITE call may be processed, and a new I/O 
operation may be started. Figure 1.9 shows the timing for this situation with and 
without the use of interrupts. We can see there is still a gain in efficiency, because 
part of the time during which the I/O operation is underway overlaps with the execu-
tion of user instructions.

Figure 1.9  Program Timing: Long I/O Wait

4

1

5

2

5

3

4

Time

4

2

1

5

4

(a) Without interrupts

(b) With interrupts

3

5

I/O operation;
processor waits

I/O operation;
processor waits

I/O operation
concurrent with

processor executing;
then processor

waits

I/O operation
concurrent with

processor executing;
then processor

waits

M01_STAL4290_09_GE_C01.indd   40 5/9/17   4:36 PM



1.4 / INTERRUPTS   41

Interrupt Processing

An interrupt triggers a number of events, both in the processor hardware and in 
software. Figure 1.10 shows a typical sequence. When an I/O device completes an I/O 
operation, the following sequence of hardware events occurs:

1.	 The device issues an interrupt signal to the processor.

2.	 The processor finishes execution of the current instruction before responding 
to the interrupt, as indicated in Figure 1.7.

3.	 The processor tests for a pending interrupt request, determines there is one, 
and sends an acknowledgment signal to the device that issued the interrupt. The 
acknowledgment allows the device to remove its interrupt signal.

4.	 The processor next needs to prepare to transfer control to the interrupt routine. 
To begin, it saves information needed to resume the current program at the 
point of interrupt. The minimum information required is the program status 
word3 (PSW) and the location of the next instruction to be executed, which is 

3The PSW contains status information about the currently running process, including memory usage infor-
mation, condition codes, and other status information such as an interrupt enable/disable bit and a kernel/
user-mode bit. See Appendix C for further discussion.

Figure 1.10  Simple Interrupt Processing

Device controller or
other system hardware
issues an interrupt

Processor finishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on
interrupt

Save remainder of
process state
information

Process interrupt

Restore process state
information

Restore old PSW
and PC

Hardware Software

M01_STAL4290_09_GE_C01.indd   41 5/9/17   4:36 PM



42    Chapter 1 / Computer System Overview

contained in the program counter (PC). These can be pushed onto a control 
stack (see Appendix P).

5.	 The processor then loads the program counter with the entry location of the 
interrupt-handling routine that will respond to this interrupt. Depending on 
the computer architecture and OS design, there may be a single program, one 
for each type of interrupt, or one for each device and each type of interrupt. 
If there is more than one interrupt-handling routine, the processor must deter-
mine which one to invoke. This information may have been included in the 
original interrupt signal, or the processor may have to issue a request to the 
device that issued the interrupt to get a response that contains the needed 
information.

Once the program counter has been loaded, the processor proceeds to the next 
instruction cycle, which begins with an instruction fetch. Because the instruction fetch 
is determined by the contents of the program counter, control is transferred to the 
interrupt-handler program. The execution of this program results in the following 
operations:

6.	 At this point, the program counter and PSW relating to the interrupted program 
have been saved on the control stack. However, there is other information that 
is considered part of the state of the executing program. In particular, the con-
tents of the processor registers need to be saved, because these registers may be 
used by the interrupt handler. So all of these values, plus any other state infor-
mation, need to be saved. Typically, the interrupt handler will begin by saving 
the contents of all registers on the stack. Other state information that must be 
saved will be discussed in Chapter 3. Figure 1.11a shows a simple example. In 
this case, a user program is interrupted after the instruction at location N. The 
contents of all of the registers plus the address of the next instruction (N + 1), 
a total of M words, are pushed onto the control stack. The stack pointer is 
updated to point to the new top of stack, and the program counter is updated 
to point to the beginning of the interrupt service routine.

7.	 The interrupt handler may now proceed to process the interrupt. This includes 
an examination of status information relating to the I/O operation or other 
event that caused an interrupt. It may also involve sending additional com-
mands or acknowledgments to the I/O device.

8.	 When interrupt processing is complete, the saved register values are retrieved 
from the stack and restored to the registers (see Figure 1.11b).

9.	 The final act is to restore the PSW and program counter values from the stack. 
As a result, the next instruction to be executed will be from the previously 
interrupted program.

It is important to save all of the state information about the interrupted pro-
gram for later resumption. This is because the interrupt is not a routine called from 
the program. Rather, the interrupt can occur at any time, and therefore at any point 
in the execution of a user program. Its occurrence is unpredictable.

M01_STAL4290_09_GE_C01.indd   42 5/9/17   4:36 PM



1.4 / INTERRUPTS   43

Multiple Interrupts

So far, we have discussed the occurrence of a single interrupt. Suppose, however, that 
one or more interrupts can occur while an interrupt is being processed. For example, 
a program may be receiving data from a communications line, and printing results at 
the same time. The printer will generate an interrupt every time it completes a print 
operation. The communication line controller will generate an interrupt every time a 
unit of data arrives. The unit could either be a single character or a block, depending 
on the nature of the communications discipline. In any case, it is possible for a com-
munications interrupt to occur while a printer interrupt is being processed.

Figure 1.11  Changes in Memory and Registers for an Interrupt

Start

N 1 1

Y 1 L

N

Y

Y

T

Return

User’s
program

Main
memory

Processor

General
registers

Program
counter

Stack
pointer

N + 1

T 2 M

T 2 M

T

Control
stack

Interrupt
service
routine

User’s
program

Interrupt
service
routine

(a)  Interrupt occurs after instruction
at location N

(b)  Return from interrupt

Start

N 1 1

Y 1 L

N

Y

T

Return

Main
memory

Processor

General
registers

Program
counter

Stack
pointer

Y 1 L 1 1

T 2 M

T 2 M

T

Control
stack

N 1 1

M01_STAL4290_09_GE_C01.indd   43 5/9/17   4:36 PM



44    Chapter 1 / Computer System Overview

Two approaches can be taken to dealing with multiple interrupts. The first 
is to disable interrupts while an interrupt is being processed. A disabled interrupt 
simply means the processor ignores any new interrupt request signal. If an interrupt 
occurs during this time, it generally remains pending and will be checked by the 
processor after the processor has reenabled interrupts. Thus, if an interrupt occurs 
when a user program is executing, then interrupts are disabled immediately. After 
the interrupt-handler routine completes, interrupts are reenabled before resuming 
the user program, and the processor checks to see if additional interrupts have 
occurred. This approach is simple, as interrupts are handled in strict sequential 
order (see Figure 1.12a).

Figure 1.12  Transfer of Control with Multiple Interrupts

User program

Interrupt
handler X

Interrupt
handler Y

(a) Sequential interrupt processing

(b) Nested interrupt processing

User program

Interrupt
handler X

Interrupt
handler Y

M01_STAL4290_09_GE_C01.indd   44 5/9/17   4:36 PM



1.4 / INTERRUPTS   45

The drawback to the preceding approach is that it does not take into account 
relative priority or time-critical needs. For example, when input arrives from the com-
munications line, it may need to be absorbed rapidly to make room for more input. If 
the first batch of input has not been processed before the second batch arrives, data 
may be lost because the buffer on the I/O device may fill and overflow.

A second approach is to define priorities for interrupts and to allow an inter-
rupt of higher priority to cause a lower-priority interrupt handler to be interrupted 
(see Figure 1.12b). As an example of this second approach, consider a system with 
three I/O devices: a printer, a disk, and a communications line, with increasing pri-
orities of 2, 4, and 5, respectively. Figure 1.13 illustrates a possible sequence. A user 
program begins at t = 0. At t = 10, a printer interrupt occurs; user information 
is placed on the control stack and execution continues at the printer interrupt 
service routine (ISR). While this routine is still executing, at t = 15 a commu-
nications interrupt occurs. Because the communications line has higher priority 
than the printer, the interrupt request is honored. The printer ISR is interrupted, 
its state is pushed onto the stack, and execution continues at the communications 
ISR. While this routine is executing, a disk interrupt occurs (t = 20). Because 
this interrupt is of lower priority, it is simply held, and the communications ISR 
runs to completion.

When the communications ISR is complete (t = 25), the previous processor 
state is restored, which is the execution of the printer ISR. However, before even a 
single instruction in that routine can be executed, the processor honors the higher-
priority disk interrupt and transfers control to the disk ISR. Only when that routine is 
complete  (t = 35) is the printer ISR resumed. When that routine completes (t = 40), 
control finally returns to the user program.

Figure 1.13  Example Time Sequence of Multiple Interrupts

User program Printer
interrupt service routine

Communication
interrupt service routine

Disk
interrupt service routine

t 5
 10 

t 5 40 

t 5
 15 

t 5 25 

t 5 25 

t 5 35 

t 5 0

M01_STAL4290_09_GE_C01.indd   45 5/9/17   4:36 PM



46    Chapter 1 / Computer System Overview

	 1.5	 THE MEMORY HIERARCHY

The design constraints on a computer’s memory can be summed up by three ques-
tions: How much? How fast? How expensive?

The question of how much is somewhat open-ended. If the capacity is there, 
applications will likely be developed to use it. The question of how fast is, in a sense, 
easier to answer. To achieve greatest performance, the memory must be able to keep 
up with the processor. That is, as the processor is executing instructions, we would not 
want it to have to pause waiting for instructions or operands. The final question must 
also be considered. For a practical system, the cost of memory must be reasonable in 
relationship to other components.

As might be expected, there is a trade-off among the three key characteristics 
of memory: capacity, access time, and cost. A variety of technologies are used to 
implement memory systems, and across this spectrum of technologies, the following 
relationships hold:

•	 Faster access time, greater cost per bit

•	 Greater capacity, smaller cost per bit

•	 Greater capacity, slower access speed

The dilemma facing the designer is clear. The designer would like to use mem-
ory technologies that provide for large-capacity memory, both because the capacity 
is needed and because the cost per bit is low. However, to meet performance require-
ments, the designer needs to use expensive, relatively lower-capacity memories with 
fast access times.

The way out of this dilemma is to not rely on a single memory component or 
technology, but to employ a memory hierarchy. A typical hierarchy is illustrated in 
Figure 1.14. As one goes down the hierarchy, the following occur:

a.	 Decreasing cost per bit

b.	 Increasing capacity

c.	 Increasing access time

d.	 Decreasing frequency of access to the memory by the processor

Thus, smaller, more expensive, faster memories are supplemented by larger, 
cheaper, slower memories. The key to the success of this organization is the decreas-
ing frequency of access at lower levels. We will examine this concept in greater detail 
later in this chapter when we discuss the cache, and when we discuss virtual memory 
later in this book. A brief explanation is provided at this point.

Suppose the processor has access to two levels of memory. Level 1 contains 
1000 bytes and has an access time of 0.1 ms; level 2 contains 100,000 bytes and has 
an access time of 1 ms. Assume that if a byte to be accessed is in level 1, then the 
processor accesses it directly. If it is in level 2, the byte is first transferred to level 1, 
then accessed by the processor. For simplicity, we ignore the time required for the 
processor to determine whether the byte is in level 1 or level 2. Figure 1.15 shows the 
general shape of the curve that models this situation. The figure shows the average 
access time to a two-level memory as a function of the hit ratio H, where H is defined 

M01_STAL4290_09_GE_C01.indd   46 5/9/17   4:36 PM



1.5 / THE MEMORY HIERARCHY   47

Figure 1.14  The Memory Hierarchy

Inboardmemory

Outboardstorage

O�-linestorage

Main

memory

Magnetic disk

CD-ROM

CD-RW

DVD-RW

DVD-RAM

Blu-Ray

Magnetic tape

Cache

Reg-

iste
rs

Figure 1.15 � Performance of a Simple Two-Level 
Memory

0

T1

T2

T1 1 T2

1

Fraction of accesses involving only level 1 (Hit ratio)

A
ve

ra
ge

 a
cc

es
s 

tim
e

M01_STAL4290_09_GE_C01.indd   47 5/9/17   4:36 PM



48    Chapter 1 / Computer System Overview

as the fraction of all memory accesses that are found in the faster memory (e.g., the 
cache), T1 is the access time to level 1, and T2 is the access time to level 2.4 As can be 
seen, for high percentages of level 1 access, the average total access time is much 
closer to that of level 1 than that of level 2.

In our example, suppose 95% of the memory accesses are found in the cache 
(H = 0.95). Then, the average time to access a byte can be expressed as

(0.95)(0.1 ms) + (0.05)(0.1 ms + 1 ms) = 0.095 + 0.055 = 0.15 ms

The result is close to the access time of the faster memory. So the strategy of 
using two memory levels works in principle, but only if conditions (a) through (d) 
in the preceding list apply. By employing a variety of technologies, a spectrum of 
memory systems exists that satisfies conditions (a) through (c). Fortunately, condition 
(d) is also generally valid.

The basis for the validity of condition (d) is a principle known as locality of 
reference [DENN68]. During the course of execution of a program, memory refer-
ences by the processor, for both instructions and data, tend to cluster. Programs 
typically contain a number of iterative loops and subroutines. Once a loop or subrou-
tine is entered, there are repeated references to a small set of instructions. Similarly, 
operations on tables and arrays involve access to a clustered set of data bytes. Over 
a long period of time, the clusters in use change, but over a short period of time, the 
processor is primarily working with fixed clusters of memory references.

Accordingly, it is possible to organize data across the hierarchy such that the 
percentage of accesses to each successively lower level is substantially less than that 
of the level above. Consider the two-level example already presented. Let level 2 
memory contain all program instructions and data. The current clusters can be tem-
porarily placed in level 1. From time to time, one of the clusters in level 1 will have 
to be swapped back to level 2 to make room for a new cluster coming in to level 1. 
On average, however, most references will be to instructions and data contained in 
level 1.

This principle can be applied across more than two levels of memory. The fast-
est, smallest, and most expensive type of memory consists of the registers internal to 
the processor. Typically, a processor will contain a few dozen such registers, although 
some processors contain hundreds of registers. Skipping down two levels, main 
memory is the principal internal memory system of the computer. Each location in 
main memory has a unique address, and most machine instructions refer to one or 
more main memory addresses. Main memory is usually extended with a higher-speed, 
smaller cache. The cache is not usually visible to the programmer or, indeed, to the 
processor. It is a device for staging the movement of data between main memory and 
processor registers to improve performance.

The three forms of memory just described are typically volatile and employ 
semiconductor technology. The use of three levels exploits the fact that semicon-
ductor memory comes in a variety of types, which differ in speed and cost. Data are 
stored more permanently on external mass storage devices, of which the most com-
mon are hard disk and removable media, such as removable disk, tape, and optical 

4If the accessed word is found in the faster memory, that is defined as a hit. A miss occurs if the accessed 
word is not found in the faster memory.

M01_STAL4290_09_GE_C01.indd   48 5/9/17   4:36 PM



1.6 / CACHE MEMORY   49

storage. External, nonvolatile memory is also referred to as secondary memory or 
auxiliary memory. These are used to store program and data files, and are usually 
visible to the programmer only in terms of files and records, as opposed to individual 
bytes or words. A hard disk is also used to provide an extension to main memory 
known as virtual memory, which will be discussed in Chapter 8.

Additional levels can be effectively added to the hierarchy in software. For 
example, a portion of main memory can be used as a buffer to temporarily hold data 
that are to be read out to disk. Such a technique, sometimes referred to as a disk 
cache (to be examined in detail in Chapter 11), improves performance in two ways:

1.	 Disk writes are clustered. Instead of many small transfers of data, we have 
a few large transfers of data. This improves disk performance and minimizes 
processor involvement.

2.	 Some data destined for write-out may be referenced by a program before the 
next dump to disk. In that case, the data are retrieved rapidly from the software 
cache rather than slowly from the disk.

Appendix 1A examines the performance implications of multilevel memory 
structures.

	 1.6	 CACHE MEMORY

Although cache memory is invisible to the OS, it interacts with other memory man-
agement hardware. Furthermore, many of the principles used in virtual memory 
schemes (to be discussed in Chapter 8) are also applied in cache memory.

Motivation

On all instruction cycles, the processor accesses memory at least once, to fetch the 
instruction, and often one or more additional times, to fetch operands and/or store 
results. The rate at which the processor can execute instructions is clearly limited by 
the memory cycle time (the time it takes to read one word from or write one word 
to memory). This limitation has been a significant problem because of the persistent 
mismatch between processor and main memory speeds. Over the years, processor 
speed has consistently increased more rapidly than memory access speed. We are 
faced with a trade-off among speed, cost, and size. Ideally, main memory should be 
built with the same technology as that of the processor registers, giving memory 
cycle times comparable to processor cycle times. This has always been too expensive 
a strategy. The solution is to exploit the principle of locality by providing a small, fast 
memory between the processor and main memory, namely the cache.

Cache Principles

Cache memory is intended to provide memory access time approaching that of the 
fastest memories available, and at the same time support a large memory size that 
has the price of less expensive types of semiconductor memories. The concept is 
illustrated in Figure 1.16a. There is a relatively large and slow main memory together 
with a smaller, faster cache memory. The cache contains a copy of a portion of main 

M01_STAL4290_09_GE_C01.indd   49 5/9/17   4:36 PM



50    Chapter 1 / Computer System Overview

memory. When the processor attempts to read a byte or word of memory, a check 
is made to determine if the byte or word is in the cache. If so, the byte or word is 
delivered to the processor. If not, a block of main memory, consisting of some fixed 
number of bytes, is read into the cache then the byte or word is delivered to the pro-
cessor. Because of the phenomenon of locality of reference, when a block of data is 
fetched into the cache to satisfy a single memory reference, it is likely that many of 
the near-future memory references will be to other bytes in the block.

Figure 1.16b depicts the use of multiple levels of cache. The L2 cache is slower 
and typically larger than the L1 cache, and the L3 cache is slower and typically larger 
than the L2 cache.

Figure 1.17 depicts the structure of a cache/main memory system. Main memory 
consists of up to 2n addressable words, with each word having a unique n-bit address. 
For mapping purposes, this memory is considered to consist of a number of fixed-
length blocks of K words each. That is, there are M = 2n/K blocks. Cache consists of 
C slots (also referred to as lines) of K words each, and the number of slots is consider-
ably less than the number of main memory blocks (C 6 6  M).5 Some subset of the 
blocks of main memory resides in the slots of the cache. If a word in a block of 
memory that is not in the cache is read, that block is transferred to one of the slots 
of the cache. Because there are more blocks than slots, an individual slot cannot be 
uniquely and permanently dedicated to a particular block. Therefore, each slot 
includes a tag that identifies which particular block is currently being stored. The tag 
is usually some number of higher-order bits of the address, and refers to all addresses 
that begin with that sequence of bits.

5The symbol 6 6  means much less than. Similarly, the symbol 7 7  means much greater than.

Figure 1.16  Cache and Main Memory

(b) Three-level cache organization

Fast Slow

CPU Cache Main memory

Fastest Fast Less
fast

Slow

CPU Level 1
(L1) cache

Level 2
(L2) cache

Level 3
(L3) cache

Main
memory

Block transfer
Word transfer

(a) Single cache

M01_STAL4290_09_GE_C01.indd   50 5/9/17   4:36 PM



1.6 / CACHE MEMORY   51

As a simple example, suppose we have a 6-bit address and a 2-bit tag. The tag 01 
refers to the block of locations with the following addresses: 010000, 010001, 010010, 
010011, 010100, 010101, 010110, 010111, 011000, 011001, 011010, 011011, 011100, 
011101, 011110, 011111.

Figure 1.18 illustrates the read operation. The processor generates the address, 
RA, of a word to be read. If the word is contained in the cache, it is delivered to the 
processor. Otherwise, the block containing that word is loaded into the cache, and 
the word is delivered to the processor.

Cache Design

A detailed discussion of cache design is beyond the scope of this book. Key elements 
are briefly summarized here. We will see that similar design issues must be addressed 
in dealing with virtual memory and disk cache design. They fall into the following 
categories:

•	 Cache size

•	 Block size

Figure 1.17  Cache/Main Memory Structure

Memory
address

0
1
2

0
1
2

C 2 1

3

2n 2 1
Word
length

Block length
(K words)

Block 0
(K words)

Block M – 1

Line
number Tag Block

(b) Main memory

(a) Cache

M01_STAL4290_09_GE_C01.indd   51 5/9/17   4:36 PM



52    Chapter 1 / Computer System Overview

•	 Mapping function

•	 Replacement algorithm

•	 Write policy

•	 Number of cache levels

We have already dealt with the issue of cache size. It turns out that reasonably 
small caches can have a significant impact on performance. Another size issue is that 
of block size: the unit of data exchanged between cache and main memory. Consider 
beginning with a relatively small block size, then increasing the size. As the block size 
increases, more useful data are brought into the cache with each block transfer. The 
result will be that the hit ratio increases because of the principle of locality: the high 
probability that data in the vicinity of a referenced word are likely to be referenced 
in the near future. The hit ratio will begin to decrease, however, as the block becomes 
even bigger, and the probability of using the newly fetched data becomes less than 
the probability of reusing the data that have to be moved out of the cache to make 
room for the new block.

When a new block of data is read into the cache, the mapping function deter-
mines which cache location the block will occupy. Two constraints affect the design 

Figure 1.18  Cache Read Operation

Receive address
RA from CPU

Is block
containing RA
in cache?

Fetch RA word
and deliver
to CPU

DONE

Access main
memory for block
containing RA

Allocate cache
slot for main
memory block

Deliver RA word
to CPU

Load main
memory block
into cache slot

START

No

RA—read address

Yes

M01_STAL4290_09_GE_C01.indd   52 5/9/17   4:36 PM



1.7 / DIRECT MEMORY ACCESS   53

of the mapping function. First, when one block is read in, another may have to be 
replaced. We would like to do this in such a way as to minimize the probability that we 
will replace a block that will be needed in the near future. The more flexible the map-
ping function, the more scope we have to design a replacement algorithm to maximize 
the hit ratio. Second, the more flexible the mapping function, the more complex is the 
circuitry required to search the cache to determine if a given block is in the cache.

The replacement algorithm chooses (within the constraints of the mapping 
function) which block to replace when a new block is to be loaded into the cache 
and the cache already has all slots filled with other blocks. We would like to replace 
the block that is least likely to be needed again in the near future. Although it is 
impossible to identify such a block, a reasonably effective strategy is to replace the 
block that has been in the cache longest with no reference to it. This policy is referred 
to as the least-recently-used (LRU) algorithm. Hardware mechanisms are needed to 
identify the least-recently-used block.

If the contents of a block in the cache are altered, then it is necessary to write it 
back to main memory before replacing it. The write policy dictates when the memory 
write operation takes place. At one extreme, the writing can occur every time that 
the block is updated. At the other extreme, the writing occurs only when the block 
is replaced. The latter policy minimizes memory write operations, but leaves main 
memory in an obsolete state. This can interfere with multiple-processor operation, 
and with direct memory access by I/O hardware modules.

Finally, it is now commonplace to have multiple levels of cache, labeled L1 
(cache closest to the processor), L2, and in many cases L3. A discussion of the perfor-
mance benefits of multiple cache levels is beyond our current scope (see [STAL16a] 
for a discussion).

	 1.7	 DIRECT MEMORY ACCESS

Three techniques are possible for I/O operations: programmed I/O, interrupt-driven 
I/O, and direct memory access (DMA). Before discussing DMA, we will briefly define 
the other two techniques; see Appendix C for more detail.

When the processor is executing a program and encounters an instruction relat-
ing to I/O, it executes that instruction by issuing a command to the appropriate I/O 
module. In the case of programmed I/O, the I/O module performs the requested 
action, then sets the appropriate bits in the I/O status register but takes no further 
action to alert the processor. In particular, it does not interrupt the processor. Thus, 
after the I/O instruction is invoked, the processor must take some active role in 
determining when the I/O instruction is completed. For this purpose, the processor 
periodically checks the status of the I/O module until it finds that the operation is 
complete.

With programmed I/O, the processor has to wait a long time for the I/O module 
of concern to be ready for either reception or transmission of more data. The pro-
cessor, while waiting, must repeatedly interrogate the status of the I/O module. As a 
result, the performance level of the entire system is severely degraded.

An alternative, known as interrupt-driven I/O, is for the processor to issue an 
I/O command to a module then go on to do some other useful work. The I/O module 

M01_STAL4290_09_GE_C01.indd   53 5/9/17   4:36 PM



54    Chapter 1 / Computer System Overview

will then interrupt the processor to request service when it is ready to exchange data 
with the processor. The processor then executes the data transfer, as before, and 
resumes its former processing.

Interrupt-driven I/O, though more efficient than simple programmed I/O, still 
requires the active intervention of the processor to transfer data between memory 
and an I/O module, and any data transfer must traverse a path through the processor. 
Thus, both of these forms of I/O suffer from two inherent drawbacks:

1.	 The I/O transfer rate is limited by the speed with which the processor can test 
and service a device.

2.	 The processor is tied up in managing an I/O transfer; a number of instructions 
must be executed for each I/O transfer.

When large volumes of data are to be moved, a more efficient technique is 
required: direct memory access (DMA). The DMA function can be performed by 
a separate module on the system bus, or it can be incorporated into an I/O module. 
In either case, the technique works as follows. When the processor wishes to read 
or write a block of data, it issues a command to the DMA module by sending the 
following information:

•	 Whether a read or write is requested

•	 The address of the I/O device involved

•	 The starting location in memory to read data from or write data to

•	 The number of words to be read or written

The processor then continues with other work. It has delegated this I/O opera-
tion to the DMA module, and that module will take care of it. The DMA module 
transfers the entire block of data, one word at a time, directly to or from memory 
without going through the processor. When the transfer is complete, the DMA mod-
ule sends an interrupt signal to the processor. Thus, the processor is involved only at 
the beginning and end of the transfer.

The DMA module needs to take control of the bus to transfer data to and 
from memory. Because of this competition for bus usage, there may be times when 
the processor needs the bus and must wait for the DMA module. Note this is not 
an interrupt; the processor does not save a context and do something else. Rather, 
the processor pauses for one bus cycle (the time it takes to transfer one word across 
the bus). The overall effect is to cause the processor to execute more slowly dur-
ing a DMA transfer when processor access to the bus is required. Nevertheless, for 
a multiple-word I/O transfer, DMA is far more efficient than interrupt-driven or 
programmed I/O.

	 1.8	 MULTIPROCESSOR AND MULTICORE ORGANIZATION

Traditionally, the computer has been viewed as a sequential machine. Most com-
puter programming languages require the programmer to specify algorithms as 
sequences of instructions. A processor executes programs by executing machine 
instructions in sequence and one at a time. Each instruction is executed in 

M01_STAL4290_09_GE_C01.indd   54 5/9/17   4:36 PM



1.8 / MULTIPROCESSOR AND MULTICORE ORGANIZATION   55

a sequence of operations (fetch instruction, fetch operands, perform operation, 
store results).

This view of the computer has never been entirely true. At the micro-
operation level, multiple control signals are generated at the same time. Instruction 
pipelining, at least to the extent of overlapping fetch and execute operations, has 
been around for a long time. Both of these are examples of performing functions 
in parallel.

As computer technology has evolved and as the cost of computer hardware has 
dropped, computer designers have sought more and more opportunities for paral-
lelism, usually to improve performance and, in some cases, to improve reliability. In 
this book, we will examine three approaches to providing parallelism by replicating 
processors: symmetric multiprocessors (SMPs), multicore computers, and clusters. 
SMPs and multicore computers are discussed in this section; clusters will be examined 
in Chapter 16.

Symmetric Multiprocessors

Definition  An SMP can be defined as a stand-alone computer system with the 
following characteristics:

1.	 There are two or more similar processors of comparable capability.

2.	 These processors share the same main memory and I/O facilities and are inter-
connected by a bus or other internal connection scheme, such that memory 
access time is approximately the same for each processor.

3.	 All processors share access to I/O devices, either through the same channels or 
through different channels that provide paths to the same device.

4.	 All processors can perform the same functions (hence the term symmetric).

5.	 The system is controlled by an integrated operating system that provides inter-
action between processors and their programs at the job, task, file, and data 
element levels.

Points 1 to 4 should be self-explanatory. Point 5 illustrates one of the contrasts 
with a loosely coupled multiprocessing system, such as a cluster. In the latter, the 
physical unit of interaction is usually a message or complete file. In an SMP, individual 
data elements can constitute the level of interaction, and there can be a high degree 
of cooperation between processes.

An SMP organization has a number of potential advantages over a uniprocessor 
organization, including the following:

•	 Performance: If the work to be done by a computer can be organized such that 
some portions of the work can be done in parallel, then a system with multiple 
processors will yield greater performance than one with a single processor of 
the same type.

•	 Availability: In a symmetric multiprocessor, because all processors can perform 
the same functions, the failure of a single processor does not halt the machine. 
Instead, the system can continue to function at reduced performance.

M01_STAL4290_09_GE_C01.indd   55 5/9/17   4:36 PM



56    Chapter 1 / Computer System Overview

•	 Incremental growth: A user can enhance the performance of a system by adding 
an additional processor.

•	 Scaling: Vendors can offer a range of products with different price and per-
formance characteristics based on the number of processors configured in the 
system.

It is important to note these are potential, rather than guaranteed, benefits. The oper-
ating system must provide tools and functions to exploit the parallelism in an SMP 
system.

An attractive feature of an SMP is that the existence of multiple processors is 
transparent to the user. The operating system takes care of scheduling of tasks on 
individual processors, and of synchronization among processors.

Organization  Figure 1.19 illustrates the general organization of an SMP. There are 
multiple processors, each of which contains its own control unit, arithmetic-logic unit, 
and registers. Each processor typically has two dedicated levels of cache, designated 
L1 and L2. As Figure 1.19 indicates, each processor and its dedicated caches are 
housed on a separate chip. Each processor has access to a shared main memory 
and the I/O devices through some form of interconnection mechanism; a shared 
bus is a common facility. The processors can communicate with each other through 

Figure 1.19  Symmetric Multiprocessor Organization

L2 cache

L1 cache

I/O
subsystem

System bus

Main
memory

I/O
adapter

I/O
adapter

I/O
adapter

Processor

CHIP

L2 cache

L1 cache

Processor

CHIP

L2 cache

L1 cache

Processor

CHIP

M01_STAL4290_09_GE_C01.indd   56 5/9/17   4:36 PM



1.8 / MULTIPROCESSOR AND MULTICORE ORGANIZATION   57

memory (messages and status information left in shared address spaces). It may also 
be possible for processors to exchange signals directly. The memory is often organized 
so multiple simultaneous accesses to separate blocks of memory are possible.

In modern computers, processors generally have at least one level of cache 
memory that is private to the processor. This use of cache introduces some new design 
considerations. Because each local cache contains an image of a portion of main 
memory, if a word is altered in one cache, it could conceivably invalidate a word in 
another cache. To prevent this, the other processors must be alerted that an update 
has taken place. This problem is known as the cache coherence problem, and is typi-
cally addressed in hardware rather than by the OS.6

Multicore Computers

A multicore computer, also known as a chip multiprocessor, combines two or more 
processors (called cores) on a single piece of silicon (called a die). Typically, each 
core consists of all of the components of an independent processor, such as registers, 
ALU, pipeline hardware, and control unit, plus L1 instruction and data caches. In 
addition to the multiple cores, contemporary multicore chips also include L2 cache 
and, in some cases, L3 cache.

The motivation for the development of multicore computers can be summed 
up as follows. For decades, microprocessor systems have experienced a steady, usually 
exponential, increase in performance. This is partly due to hardware trends, such as an 
increase in clock frequency and the ability to put cache memory closer to the processor 
because of the increasing miniaturization of microcomputer components. Performance 
has also been improved by the increased complexity of processor design to exploit 
parallelism in instruction execution and memory access. In brief, designers have come 
up against practical limits in the ability to achieve greater performance by means of 
more complex processors. Designers have found that the best way to improve perfor-
mance to take advantage of advances in hardware is to put multiple processors and 
a substantial amount of cache memory on a single chip. A detailed discussion of the 
rationale for this trend is beyond our current scope, but is summarized in Appendix C.

An example of a multicore system is the Intel Core i7-5960X, which includes 
six x86 processors, each with a dedicated L2 cache, and with a shared L3 cache (see 
Figure 1.20a). One mechanism Intel uses to make its caches more effective is prefetch-
ing, in which the hardware examines memory access patterns and attempts to fill the 
caches speculatively with data that’s likely to be requested soon. Figure 1.20b shows 
the physical layout of the 5960X in its chip.

The Core i7-5960X chip supports two forms of external communications to 
other chips. The DDR4 memory controller brings the memory controller for the 
DDR (double data rate) main memory onto the chip. The interface supports four 
channels that are 8 bytes wide for a total bus width of 256 bits, for an aggregate data 
rate of up to 64 GB/s. With the memory controller on the chip, the Front Side Bus is 
eliminated. The PCI Express is a peripheral bus and enables high-speed communi-
cations among connected processor chips. The PCI Express link operates at 8 GT/s 
(transfers per second). At 40 bits per transfer, that adds up to 40 GB/s.

6A description of hardware-based cache coherency schemes is provided in [STAL16a].

M01_STAL4290_09_GE_C01.indd   57 5/9/17   4:36 PM



58    Chapter 1 / Computer System Overview

	 1.9	 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Figure 1.20  Intel Core i7-5960X Block Diagram

(a) Block diagram

(b) Physical layout on chip

Core 0

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

256 kB
L2 Cache

Core 1

256 kB
L2 Cache

4 × 8B @ 2.133 GT/s

Core 6

256 kB
L2 Cache

Core 7

256 kB
L2 Cache

20 MB
L3 Cache

DDR4 Memory
Controllers

PCI Express

40 lanes @ 8 GT/s

Shared
L3 Cache

I/O

M
em

or
y 

co
nt

ro
lle

r

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

Shared
L3 Cache

I/O

M
em

or
y 

co
nt

ro
lle

r

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

address register
auxiliary memory
block
cache memory
cache slot
central processing unit
chip multiprocessor
data register
direct memory access (DMA)
hit
hit ratio
input/output
instruction

instruction cycle
instruction register
interrupt
interrupt-driven I/O
I/O module
locality of reference
main memory
memory hierarchy
miss
multicore
multiprocessor
processor
program counter

programmed I/O
register
replacement algorithm
secondary memory
slot
spatial locality
stack
stack frame
stack pointer
system bus
temporal locality

M01_STAL4290_09_GE_C01.indd   58 5/9/17   4:36 PM



1.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   59

Review Questions

	 1.1.	 List and briefly define the four main elements of a computer.
	 1.2.	 Define the two main categories of processor registers.
	 1.3.	 In general terms, what are the four distinct actions that a machine instruction can 

specify?
	 1.4.	 What is an interrupt?
	 1.5.	 How can multiple interrupts be serviced by setting priorities?
	 1.6.	 What characteristics are observed while going up the memory hierarchy?
	 1.7.	 What are the trade-offs that determine the size of the cache memory?
	 1.8.	 What is the difference between a multiprocessor and a multicore system?
	 1.9.	 What is the distinction between spatial locality and temporal locality?
	1.10.	 In general, what are the strategies for exploiting spatial locality and temporal 

locality?

Problems

	 1.1.	 Suppose the hypothetical processor of Figure 1.3 also has two I/O instructions:
0011 = Load AC from I/O
0100 = SUB from AC

		  In these cases, the 12-bit address identifies a particular external device. Show the pro-
gram execution (using the format of Figure 1.4) for the following program:
1.	 Load AC from device 7.
2.	 SUB from AC contents of memory location 880.
3.	 Store AC to memory location 881.

		  Assume that the next value retrieved from device 7 is 6 and that location 880 contains 
a value of 5.

	 1.2.	 The program execution of Figure 1.4 is described in the text using six steps. Expand 
this description to show the use of the MAR and MBR.

	 1.3.	 Consider a hypothetical 64-bit microprocessor having 64-bit instructions composed 
of two fields. The first 4 bytes contain the opcode, and the remainder an immediate 
operand or an operand address.
a.	 What is the maximum directly addressable memory capacity?
b.	 What ideal size of microprocessor address buses should be used? How will system 

speed be affected for data buses of 64 bits, 32 bits and 16 bits?
c.	 How many bits should the instruction register contain if the instruction register is 

to contain only the opcode, and how many if the instruction register is to contain 
the whole instruction?

	 1.4.	 Consider a hypothetical microprocessor generating a 16-bit address (e.g., assume 
the program counter and the address registers are 16 bits wide) and having a 16-bit 
data bus.
a.	 What is the maximum memory address space that the processor can access directly 

if it is connected to a “16-bit memory”?
b.	 What is the maximum memory address space that the processor can access directly 

if it is connected to an “8-bit memory”?
c.	 What architectural features will allow this microprocessor to access a separate 

“I/O space”?
d.	 If an input and an output instruction can specify an 8-bit I/O port number, how 

many 8-bit I/O ports can the microprocessor support? How many 16-bit I/O ports? 
Explain.

M01_STAL4290_09_GE_C01.indd   59 5/9/17   4:36 PM



60    Chapter 1 / Computer System Overview

	 1.5.	 Consider a 64-bit microprocessor, with a 32-bit external data bus, driven by a 16 MHz 
input clock. Assume that this microprocessor has a bus cycle whose minimum dura-
tion equals four input clock cycles. What is the maximum data transfer rate across 
the bus that this microprocessor can sustain in bytes/s? To increase its performance, 
would it be better to make its external data bus 64 bits or to double the external 
clock frequency supplied to the microprocessor? State any other assumptions you 
make and explain. Hint: Determine the number of bytes that can be transferred per 
bus cycle.

	 1.6.	 Consider a computer system that contains an I/O module controlling a simple 
keyboard/printer Teletype. The following registers are contained in the CPU and con-
nected directly to the system bus:

INPR:	 Input Register, 8 bits
OUTR:	 Output Register, 8 bits
FGI:	 Input Flag, 1 bit
FGO:	 Output Flag, 1 bit
IEN:	 Interrupt Enable, 1 bit

		  Keystroke input from the Teletype and output to the printer are controlled by the I/O 
module. The Teletype is able to encode an alphanumeric symbol to an 8-bit word and 
decode an 8-bit word into an alphanumeric symbol. The Input flag is set when an 8-bit 
word enters the input register from the Teletype. The Output flag is set when a word is 
printed.
a.	 Describe how the CPU, using the first four registers listed in this problem, can 

achieve I/O with the Teletype.
b.	 Describe how the function can be performed more efficiently by also 

employing IEN.
	 1.7.	 In virtually all systems that include DMA modules, DMA access to main memory is 

given higher priority than processor access to main memory. Why?
	 1.8.	 A DMA module is transferring characters to main memory from an external device 

transmitting at 10800 bits per second (bps). The processor can fetch instructions at the 
rate of 1 million instructions per second. By how much will the processor be slowed 
down due to the DMA activity?

	 1.9.	 A computer consists of a CPU and an I/O device D connected to main memory M via 
a shared bus with a data bus width of one word. The CPU can execute a maximum of 
106 instructions per second. An average instruction requires five processor cycles, three 
of which use the memory bus. A memory read or write operation uses one processor 
cycle. Suppose that the CPU is continuously executing “background” programs that 
require 95% of its instruction execution rate but not any I/O instructions. Assume that 
one processor cycle equals one bus cycle. Now suppose that very large blocks of data 
are to be transferred between M and D.
a.	 If programmed I/O is used and each one-word I/O transfer requires the CPU to 

execute two instructions, estimate the maximum I/O data transfer rate, in words 
per second, possible through D.

b.	 Estimate the same rate if DMA transfer is used.
	1.10.	 Consider the following code:

for (i = 0; i < 20; i++)
      for (j = 0; j < 10; j++)

            a[i] = a[i] * j

a.	 Give one example of the spatial locality in the code.
b.	 Give one example of the temporal locality in the code.

	1.11.	 Extend Equations (1.1) and (1.2) in Appendix 1A to 3-level memory hierarchies.

M01_STAL4290_09_GE_C01.indd   60 5/9/17   4:36 PM



APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES   61

	1.12.	 Consider a memory system with cache having the following parameters:

Sc = 32 KB Cc = 0.1 cents>bytes TC = 10 ns
Sm = 256 MB Cm = 0.0001 cents>bytes Tm = 100 ns

a.	 What was the total cost prior to addition of cache?
b.	 What is the total cost after addition of cache?
c.	 What is the percentage decrease in time due to inclusion of cache with respect to a 

system without cache memory considering a cache hit ratio of 0.85?
	1.13.	 Suppose that a large file is being accessed by a computer memory system comprising 

of a cache and a main memory. The cache access time is 60 ns. Time to access main 
memory (including cache access) is 300 ns. The file can be opened either in read or in 
write mode. A write operation involves accessing both main memory and the cache 
(write-through cache). A read operation accesses either only the cache or both the 
cache and main memory depending upon whether the access word is found in the 
cache or not. It is estimated that read operations comprise of 80% of all operations. 
If the cache hit ratio for read operations is 0.9, what is the average access time of this 
system?

	1.14.	 Suppose a stack is to be used by the processor to manage procedure calls and returns. Can 
the program counter be eliminated by using the top of the stack as a program counter?

APPENDIX 1A  PERFORMANCE CHARACTERISTICS 
OF TWO-LEVEL MEMORIES

In this chapter, reference is made to a cache that acts as a buffer between main 
memory and processor, creating a two-level internal memory. This two-level archi-
tecture exploits a property known as locality to provide improved performance over 
a comparable one-level memory.

The main memory cache mechanism is part of the computer architecture, imple-
mented in hardware and typically invisible to the OS. Accordingly, this mechanism 
is not pursued in this book. However, there are two other instances of a two-level 
memory approach that also exploit the property of locality and that are, at least par-
tially, implemented in the OS: virtual memory and the disk cache (Table 1.2). These 
two topics are explored in Chapters 8 and 11, respectively. In this appendix, we will 
look at some of the performance characteristics of two-level memories that are com-
mon to all three approaches.

Main Memory  
Cache

Virtual Memory 
(Paging) Disk Cache

Typical access time ratios 5 : 1 106: 1 106: 1

Memory management  
system

Implemented by special 
hardware

Combination of hardware 
and system software

System software

Typical block size 4 to 128 bytes 64 to 4096 bytes 64 to 4096 bytes

Access of processor to 
second level

Direct access Indirect access Indirect access

Table 1.2  Characteristics of Two-Level Memories

M01_STAL4290_09_GE_C01.indd   61 5/9/17   4:36 PM



62    Chapter 1 / Computer System Overview

Locality

The basis for the performance advantage of a two-level memory is the principle of 
locality, referred to in Section 1.5. This principle states that memory references tend 
to cluster. Over a long period of time, the clusters in use change; but over a short 
period of time, the processor is primarily working with fixed clusters of memory 
references.

Intuitively, the principle of locality makes sense. Consider the following line of 
reasoning:

1.	 Except for branch and call instructions, which constitute only a small fraction 
of all program instructions, program execution is sequential. Hence, in most 
cases, the next instruction to be fetched immediately follows the last instruc-
tion fetched.

2.	 It is rare to have a long uninterrupted sequence of procedure calls followed by 
the corresponding sequence of returns. Rather, a program remains confined to a 
rather narrow window of procedure-invocation depth. Thus, over a short period 
of time, references to instructions tend to be localized to a few procedures.

3.	 Most iterative constructs consist of a relatively small number of instructions 
repeated many times. For the duration of the iteration, computation is therefore 
confined to a small contiguous portion of a program.

4.	 In many programs, much of the computation involves processing data struc-
tures, such as arrays or sequences of records. In many cases, successive refer-
ences to these data structures will be to closely located data items.

This line of reasoning has been confirmed in many studies. With reference to 
point (1), a variety of studies have analyzed the behavior of high-level language 
programs. Table 1.3 includes key results, measuring the appearance of various 
statement types during execution, from the following studies. The earliest study of 
programming language behavior, performed by Knuth [KNUT71], examined a col-
lection of FORTRAN programs used as student exercises. Tanenbaum [TANE78] 
published measurements collected from over 300 procedures used in OS programs 
and written in a language that supports structured programming (SAL). Patterson 
and Sequin [PATT82] analyzed a set of measurements taken from compilers and 

Study 
Language 
Workload

[HUCK83] 
Pascal 

Scientific

[KNUT71] 
FORTRAN 

Student

[PATT82]
[TANE78] 

SAL 
System

Pascal  
System

C 
System

Assign 74 67 45 38 42

Loop   4   3   5   3   4

Call   1   3 15 12 12

IF 20 11 29 43 36

GOTO   2   9 –   3 –

Other –   7   6   1   6

Table 1.3  Relative Dynamic Frequency of High-Level Language Operations

M01_STAL4290_09_GE_C01.indd   62 5/9/17   4:36 PM



APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES   63

programs for typesetting, computer-aided design (CAD), sorting, and file comparison. 
The programming languages C and Pascal were studied. Huck [HUCK83] analyzed 
four programs intended to represent a mix of general-purpose scientific comput-
ing, including fast Fourier transform and the integration of systems of differential 
equations. There is good agreement in the results of this mixture of languages and 
applications that branching and call instructions represent only a fraction of state-
ments executed during the lifetime of a program. Thus, these studies confirm assertion 
(1), from the preceding list.

With respect to assertion (2), studies reported in [PATT85] provide confirma-
tion. This is illustrated in Figure 1.21, which shows call-return behavior. Each call is 
represented by the line moving down and to the right, and each return by the line 
moving up and to the right. In the figure, a window with depth equal to 5 is defined. 
Only a sequence of calls and returns with a net movement of 6 in either direction 
causes the window to move. As can be seen, the executing program can remain within 
a stationary window for long periods of time. A study by the same analysts of C and 
Pascal programs showed that a window of depth 8 would only need to shift on less 
than 1% of the calls or returns [TAMI83].

A distinction is made in the literature between spatial locality and temporal 
locality. Spatial locality refers to the tendency of execution to involve a number of 
memory locations that are clustered. This reflects the tendency of a processor to 
access instructions sequentially. Spatial location also reflects the tendency of a pro-
gram to access data locations sequentially, such as when processing a table of data. 
Temporal locality refers to the tendency for a processor to access memory locations 
that have been used recently. For example, when an iteration loop is executed, the 
processor executes the same set of instructions repeatedly.

Traditionally, temporal locality is exploited by keeping recently used instruc-
tion and data values in cache memory, and by exploiting a cache hierarchy. Spatial 
locality is generally exploited by using larger cache blocks, and by incorporating 

Figure 1.21  Example Call-Return Behavior of a Program

w 5 5

t 5 33

Time
(in units of calls/returns)

Nesting
depth

Return

Call

M01_STAL4290_09_GE_C01.indd   63 5/9/17   4:36 PM



64    Chapter 1 / Computer System Overview

prefetching mechanisms (fetching items whose use is expected) into the cache control 
logic. Recently, there has been considerable research on refining these techniques to 
achieve greater performance, but the basic strategies remain the same.

Operation of Two-Level Memory

The locality property can be exploited in the formation of a two-level memory. The 
upper-level memory (M1) is smaller, faster, and more expensive (per bit) than the 
lower-level memory (M2). M1 is used as temporary storage for part of the contents 
of the larger M2. When a memory reference is made, an attempt is made to access 
the item in M1. If this succeeds, then a quick access is made. If not, then a block of 
memory locations is copied from M2 to M1, and the access then takes place via M1. 
Because of locality, once a block is brought into M1, there should be a number of 
accesses to locations in that block, resulting in fast overall service.

To express the average time to access an item, we must consider not only the 
speeds of the two levels of memory but also the probability that a given reference 
can be found in M1. We have

	 Ts = H * T1 + (1 - H) * (T1 + T2)

	 T1 + (1 - H) * T2� (1.1)

where

Ts = average (system) access time
T1 = access time of M1 (e.g., cache, disk cache)
T2 = access time of M2 (e.g., main memory, disk)
H = hit ratio (fraction of time reference is found in M1)

Figure 1.15 shows average access time as a function of hit ratio. As can be seen, 
for a high percentage of hits, the average total access time is much closer to that of 
M1 than M2.

Performance

Let us look at some of the parameters relevant to an assessment of a two-level mem-
ory mechanism. First, consider cost. We have

	 CS =
C1S1 + C2S2

S1 + S2
� (1.2)

where

Cs = average cost per bit for the combined two-level memory
C1 = average cost per bit of upper-level memory M1
C2 = average cost per bit of lower-level memory M2
S1 = size of M1
S2 = size of M2

We would like Cs ≈ C2. Given that C1 7 7  C2, this requires S1 6 6  S2. Figure 1.22 
shows the relationship.7

7Note both axes use a log scale. A basic review of log scales is in the math refresher document on the 
Computer Science Student Resource Site at ComputerScienceStudent.com.

M01_STAL4290_09_GE_C01.indd   64 5/9/17   4:36 PM

http://ComputerScienceStudent.com


APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES   65

Next, consider access time. For a two-level memory to provide a significant 
performance improvement, we need to have Ts approximately equal to T1 Ts ≈ T1. 
Given that T1 is much less than T2 Ts 7 7  T1, a hit ratio of close to 1 is needed.

So, we would like M1 to be small to hold down cost, and large to improve the 
hit ratio and therefore the performance. Is there a size of M1 that satisfies both 
requirements to a reasonable extent? We can answer this question with a series of 
subquestions:

•	 What value of hit ratio is needed to satisfy the performance requirement?

•	 What size of M1 will assure the needed hit ratio?

•	 Does this size satisfy the cost requirement?

To get at this, consider the quantity T1/Ts, which is referred to as the access efficiency. 
It is a measure of how close average access time (Ts) is to M1 access time (T1). From 
Equation (1.1),

	
T1

TS
=

1

1 + (1 - H) 
T2

T1

� (1.3)

In Figure 1.23, we plot T1/Ts as a function of the hit ratio H, with the quantity T2/T1 as 
a parameter. A hit ratio in the range of 0.8 to 0.9 would seem to be needed to satisfy 
the performance requirement.

Figure 1.22 � Relationship of Average Memory Cost to Relative Memory Size for a Two-Level 
Memory

Relative size of two levels (S2/S1)

R
el

at
iv

e 
co

m
bi

ne
d 

co
st

 (
C

S
/C

2)

(C1/C2) 5 1000

(C1/C2) 5 10

(C1/C2) 5 100

2

3

4
5
6
7
8

1000

2 3 4 5 6 7 8 10002 3 4 5 6 7 8 10095 6 7 8 109

2

3

4
5
6
7
8

100

2

3

4
5
6
7
8

10

1

M01_STAL4290_09_GE_C01.indd   65 5/9/17   4:36 PM



66    Chapter 1 / Computer System Overview

We can now phrase the question about relative memory size more exactly. Is 
a hit ratio of 0.8 or higher reasonable for S1 6 6  S2? This will depend on a number 
of factors, including the nature of the software being executed and the details of the 
design of the two-level memory. The main determinant is, of course, the degree of 
locality. Figure 1.24 suggests the effect of locality on the hit ratio. Clearly, if M1 is the 
same size as M2, then the hit ratio will be 1.0: All of the items in M2 are also stored 
in M1. Now suppose there is no locality; that is, references are completely random. 
In that case, the hit ratio should be a strictly linear function of the relative memory 
size. For example, if M1 is half the size of M2, then at any time half of the items from 
M2 are also in M1, and the hit ratio will be 0.5. In practice, however, there is some 
degree of locality in the references. The effects of moderate and strong locality are 
indicated in the figure.

So, if there is strong locality, it is possible to achieve high values of hit ratio even 
with relatively small upper-level memory size. For example, numerous studies have 
shown that rather small cache sizes will yield a hit ratio above 0.75 regardless of the 
size of main memory ([AGAR89], [PRZY88], [STRE83], and [SMIT82]). A cache in 
the range of 1K to 128K words is generally adequate, whereas main memory is now 
typically in the gigabyte range. When we consider virtual memory and disk cache, we 
will cite other studies that confirm the same phenomenon, namely that a relatively 
small M1 yields a high value of hit ratio because of locality.

This brings us to the last question listed earlier: Does the relative size of the two 
memories satisfy the cost requirement? The answer is clearly yes. If we need only a 

Figure 1.23  Access Efficiency as a Function of Hit Ratio (r = T2/T1)

Hit ratio 5 H

r 5 1

r 5 10

r 5 100

r 5 1000

0.0 0.2 0.4 0.6 0.8 1.0

1

0.1

0.01

0.001

A
cc

es
s 

e�
ci

en
cy

 5
 T

1/
T

s

M01_STAL4290_09_GE_C01.indd   66 5/9/17   4:36 PM



APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES   67

relatively small upper-level memory to achieve good performance, then the average 
cost per bit of the two levels of memory will approach that of the cheaper lower-level 
memory. Please note that with L2 cache (or even L2 and L3 caches) involved, analysis 
is much more complex. See [PEIR99] and [HAND98] for discussions.

Figure 1.24  Hit Ratio as a Function of Relative Memory Size

No locality

Moderate
locality

Strong
locality

H
it

 r
at

io

Relative memory size (S1/S2)
0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

M01_STAL4290_09_GE_C01.indd   67 5/9/17   4:36 PM



2.1	 Operating System Objectives and Functions
The Operating System as a User/Computer Interface
The Operating System as Resource Manager
Ease of Evolution of an Operating System

2.2	 The Evolution of Operating Systems
Serial Processing
Simple Batch Systems
Multiprogrammed Batch Systems
Time-Sharing Systems

2.3	 Major Achievements
The Process
Memory Management
Information Protection and Security
Scheduling and Resource Management

2.4	 Developments Leading to Modern Operating Systems
2.5	 Fault Tolerance

Fundamental Concepts
Faults
Operating System Mechanisms

2.6	 OS Design Considerations for Multiprocessor and Multicore
Symmetric Multiprocessor OS Considerations
Multicore OS Considerations

2.7	 Microsoft Windows Overview
Background
Architecture
Client/Server Model
Threads and SMP
Windows Objects

2.8	 Traditional Unix Systems
History
Description

2.9	 Modern Unix Systems
System V Release 4 (SVR4)
BSD
Solaris 11

2.10	 Linux
History
Modular Structure
Kernel Components

2.11	 Android
Android Software Architecture
Android Runtime
Android System Architecture
Activities
Power Management

2.12	 Key Terms, Review Questions, and Problems

Chapter 

68

Operating System Overview
 

M02_STAL4290_09_GE_C02.indd   68 5/2/17   6:27 PM



2.1 / OPERATING SYSTEM OBJECTIVES AND FUNCTIONS   69

We begin our study of operating systems (OSs) with a brief history. This history 
is itself interesting, and also serves the purpose of providing an overview of OS prin-
ciples. The first section examines the objectives and functions of operating systems. 
Then, we will look at how operating systems have evolved from primitive batch sys-
tems to sophisticated multitasking, multiuser systems. The remainder of the chapter 
will look at the history and general characteristics of the two operating systems that 
serve as examples throughout this book.

	 2.1	 OPERATING SYSTEM OBJECTIVES AND FUNCTIONS

An OS is a program that controls the execution of application programs, and acts as 
an interface between applications and the computer hardware. It can be thought of 
as having three objectives:

•	 Convenience: An OS makes a computer more convenient to use.

•	 Efficiency: An OS allows the computer system resources to be used in an effi-
cient manner.

•	 Ability to evolve: An OS should be constructed in such a way as to permit the 
effective development, testing, and introduction of new system functions with-
out interfering with service.

Let us examine these three aspects of an OS in turn.

Learning Objectives

After studying this chapter, you should be able to:
•	 Summarize, at a top level, the key functions of an operating system (OS).
•	 Discuss the evolution of operating systems for early simple batch systems to 

modern complex systems.
•	 Give a brief explanation of each of the major achievements in OS research, 

as defined in Section 2.3.
•	 Discuss the key design areas that have been instrumental in the development 

of modern operating systems.
•	 Define and discuss virtual machines and virtualization.
•	 Understand the OS design issues raised by the introduction of multiproces-

sor and multicore organization.
•	 Understand the basic structure of Windows.
•	 Describe the essential elements of a traditional UNIX system.
•	 Explain the new features found in modern UNIX systems.
•	 Discuss Linux and its relationship to UNIX.

M02_STAL4290_09_GE_C02.indd   69 5/2/17   6:27 PM



70    Chapter 2 / Operating System Overview

The Operating System as a User/Computer Interface

The hardware and software used in providing applications to a user can be viewed 
in a layered fashion, as depicted in Figure 2.1. The user of those applications (the 
end user) generally is not concerned with the details of computer hardware. Thus, 
the end user views a computer system in terms of a set of applications. An applica-
tion can be expressed in a programming language, and is developed by an applica-
tion programmer. If one were to develop an application program as a set of machine 
instructions that is completely responsible for controlling the computer hardware, 
one would be faced with an overwhelmingly complex undertaking. To ease this 
chore, a set of system programs is provided. Some of these programs are referred 
to as utilities, or library programs. These implement frequently used functions that 
assist in program creation, the management of files, and the control of I/O devices. 
A programmer will make use of these facilities in developing an application, and 
the application, while it is running, will invoke the utilities to perform certain func-
tions. The most important collection of system programs comprises the OS. The OS 
masks the details of the hardware from the programmer, and provides the program-
mer with a convenient interface for using the system. It acts as a mediator, making 
it easier for the programmer and for application programs to access and use those 
facilities and services.

Briefly, the OS typically provides services in the following areas:

•	 Program development: The OS provides a variety of facilities and services, such 
as editors and debuggers, to assist the programmer in creating programs. Typi-
cally, these services are in the form of utility programs that, while not strictly 
part of the core of the OS, are supplied with the OS, and are referred to as 
application program development tools.

•	 Program execution: A number of steps need to be performed to execute a pro-
gram. Instructions and data must be loaded into main memory, I/O devices and 

Figure 2.1  Computer Hardware and Software Structure

I/O devices
and

networking

System interconnect
(bus)

Software

Application
programming interface

Instruction set
architecture

Hardware

Main
memory

Memory
translation

Execution hardware

Application programs

Application
binary interface

Operating system

Libraries/utilities

M02_STAL4290_09_GE_C02.indd   70 5/2/17   6:27 PM



2.1 / OPERATING SYSTEM OBJECTIVES AND FUNCTIONS   71

files must be initialized, and other resources must be prepared. The OS handles 
these scheduling duties for the user.

•	 Access to I/O devices: Each I/O device requires its own peculiar set of instruc-
tions or control signals for operation. The OS provides a uniform interface that 
hides these details so programmers can access such devices using simple reads 
and writes.

•	 Controlled access to files: For file access, the OS must reflect a detailed under-
standing of not only the nature of the I/O device (disk drive, tape drive), but 
also the structure of the data contained in the files on the storage medium. In 
the case of a system with multiple users, the OS may provide protection mecha-
nisms to control access to the files.

•	 System access: For shared or public systems, the OS controls access to the sys-
tem as a whole and to specific system resources. The access function must pro-
vide protection of resources and data from unauthorized users, and must resolve 
conflicts for resource contention.

•	 Error detection and response: A variety of errors can occur while a computer 
system is running. These include internal and external hardware errors (such as 
a memory error, or a device failure or malfunction), and various software errors, 
(such as division by zero, attempt to access forbidden memory location, and inabil-
ity of the OS to grant the request of an application). In each case, the OS must 
provide a response that clears the error condition with the least impact on running 
applications. The response may range from ending the program that caused the 
error, to retrying the operation, or simply reporting the error to the application.

•	 Accounting: A good OS will collect usage statistics for various resources and 
monitor performance parameters such as response time. On any system, this 
information is useful in anticipating the need for future enhancements and in 
tuning the system to improve performance. On a multiuser system, the informa-
tion can be used for billing purposes.

Figure 2.1 also indicates three key interfaces in a typical computer system:

•	 Instruction set architecture (ISA): The ISA defines the repertoire of machine 
language instructions that a computer can follow. This interface is the boundary 
between hardware and software. Note both application programs and utilities 
may access the ISA directly. For these programs, a subset of the instruction 
repertoire is available (user ISA). The OS has access to additional machine 
language instructions that deal with managing system resources (system ISA).

•	 Application binary interface (ABI): The ABI defines a standard for binary 
portability across programs. The ABI defines the system call interface to the 
operating system, and the hardware resources and services available in a system 
through the user ISA.

•	 Application programming interface (API): The API gives a program access 
to the hardware resources and services available in a system through the user 
ISA supplemented with high-level language (HLL) library calls. Any system 
calls are usually performed through libraries. Using an API enables applica-
tion software to be ported easily, through recompilation, to other systems that 
support the same API.

M02_STAL4290_09_GE_C02.indd   71 5/2/17   6:27 PM



72    Chapter 2 / Operating System Overview

The Operating System as Resource Manager

The OS is responsible for controlling the use of a computer’s resources, such as I/O, 
main and secondary memory, and processor execution time. But this control is exer-
cised in a curious way. Normally, we think of a control mechanism as something 
external to that which is controlled, or at least as something that is a distinct and 
separate part of that which is controlled. (For example, a residential heating system 
is controlled by a thermostat, which is separate from the heat-generation and heat-
distribution apparatus.) This is not the case with the OS, which as a control mecha-
nism is unusual in two respects:

•	 The OS functions in the same way as ordinary computer software; that is, it is a 
program or suite of programs executed by the processor.

•	 The OS frequently relinquishes control, and must depend on the processor to 
allow it to regain control.

Like other computer programs, the OS consists of instructions executed by the 
processor. While executing, the OS decides how processor time is to be allocated 
and which computer resources are available for use. But in order for the processor 
to act on these decisions, it must cease executing the OS program and execute other 
programs. Thus, the OS relinquishes control for the processor to do some “useful” 
work, then resumes control long enough to prepare the processor to do the next piece 
of work. The mechanisms involved in all this should become clear as the chapter 
proceeds.

Figure 2.2 suggests the main resources that are managed by the OS. A por-
tion of the OS is in main memory. This includes the kernel, or nucleus, which 
contains the most frequently used functions in the OS and, at a given time, other 
portions of the OS currently in use. The remainder of main memory contains user 
and utility programs and data. The OS and the memory management hardware 
in the processor jointly control the allocation of main memory, as we shall see. 
The OS decides when an I/O device can be used by a program in execution, and 
controls access to and use of files. The processor itself is a resource, and the OS 
must determine how much processor time is to be devoted to the execution of a 
particular user program.

Ease of Evolution of an Operating System

A major OS will evolve over time for a number of reasons:

•	 Hardware upgrades plus new types of hardware: For example, early versions of 
UNIX and the Macintosh OS did not employ a paging mechanism because they 
were run on processors without paging hardware.1 Subsequent versions of these 
operating systems were modified to exploit paging capabilities. Also, the use of 
graphics terminals and page-mode terminals instead of line-at-a-time scroll 
mode terminals affects OS design. For example, a graphics terminal typically 
allows the user to view several applications at the same time through “windows” 
on the screen. This requires more sophisticated support in the OS.

1Paging will be introduced briefly later in this chapter, and will be discussed in detail in Chapter 7.

M02_STAL4290_09_GE_C02.indd   72 5/2/17   6:27 PM



2.2 / THE EVOLUTION OF OPERATING SYSTEMS   73

•	 New services: In response to user demand or in response to the needs of system 
managers, the OS expands to offer new services. For example, if it is found to 
be difficult to maintain good performance for users with existing tools, new 
measurement and control tools may be added to the OS.

•	 Fixes: Any OS has faults. These are discovered over the course of time and fixes 
are made. Of course, the fix may introduce new faults.

The need to regularly update an OS places certain requirements on its design. 
An obvious statement is that the system should be modular in construction, with 
clearly defined interfaces between the modules, and that it should be well docu-
mented. For large programs, such as the typical contemporary OS, what might be 
referred to as straightforward modularization is inadequate [DENN80a]. That is, 
much more must be done than simply partitioning a program into modules. We will 
return to this topic later in this chapter.

	 2.2	 THE EVOLUTION OF OPERATING SYSTEMS

In attempting to understand the key requirements for an OS and the significance 
of the major features of a contemporary OS, it is useful to consider how operating 
systems have evolved over the years.

Figure 2.2  The Operating System as Resource Manager

Memory

Computer system

I/O devices

Operating
system

software

Programs
and data

ProcessorProcessor

OS
Programs

Data

Storage

I/O controller

I/O controller

I/O controller Printers,
keyboards,
digital cameras,
etc.

M02_STAL4290_09_GE_C02.indd   73 5/2/17   6:27 PM



74    Chapter 2 / Operating System Overview

Serial Processing

With the earliest computers, from the late 1940s to the mid-1950s, the program-
mer interacted directly with the computer hardware; there was no OS. These 
computers were run from a console consisting of display lights, toggle switches, 
some form of input device, and a printer. Programs in machine code were loaded 
via the input device (e.g., a card reader). If an error halted the program, the 
error condition was indicated by the lights. If the program proceeded to a normal 
completion, the output appeared on the printer. These early systems presented 
two main problems:

•	 Scheduling: Most installations used a hardcopy sign-up sheet to reserve com-
puter time. Typically, a user could sign up for a block of time in multiples of a 
half hour or so. A user might sign up for an hour and finish in 45 minutes; this 
would result in wasted computer processing time. On the other hand, the user 
might run into problems, not finish in the allotted time, and be forced to stop 
before resolving the problem.

•	 Setup time: A single program, called a job, could involve loading the compiler 
plus the high-level language program (source program) into memory, saving 
the compiled program (object program), then loading and linking together 
the object program and common functions. Each of these steps could involve 
mounting or dismounting tapes or setting up card decks. If an error occurred, 
the hapless user typically had to go back to the beginning of the setup sequence. 
Thus, a considerable amount of time was spent just in setting up the program 
to run.

This mode of operation could be termed serial processing, reflecting the fact that 
users have access to the computer in series. Over time, various system software tools 
were developed to attempt to make serial processing more efficient. These include 
libraries of common functions, linkers, loaders, debuggers, and I/O driver routines 
that were available as common software for all users.

Simple Batch Systems

Early computers were very expensive, and therefore it was important to maxi-
mize processor utilization. The wasted time due to scheduling and setup time was 
unacceptable.

To improve utilization, the concept of a batch OS was developed. It appears 
that the first batch OS (and the first OS of any kind) was developed in the mid-1950s 
by General Motors for use on an IBM 701 [WEIZ81]. The concept was subsequently 
refined and implemented on the IBM 704 by a number of IBM customers. By the 
early 1960s, a number of vendors had developed batch operating systems for their 
computer systems. IBSYS, the IBM OS for the 7090/7094 computers, is particularly 
notable because of its widespread influence on other systems.

The central idea behind the simple batch-processing scheme is the use of a 
piece of software known as the monitor. With this type of OS, the user no longer has 
direct access to the processor. Instead, the user submits the job on cards or tape to a 

M02_STAL4290_09_GE_C02.indd   74 5/2/17   6:27 PM



2.2 / THE EVOLUTION OF OPERATING SYSTEMS   75

computer operator, who batches the jobs together sequentially and places the entire 
batch on an input device, for use by the monitor. Each program is constructed to 
branch back to the monitor when it completes processing, at which point the monitor 
automatically begins loading the next program.

To understand how this scheme works, let us look at it from two points of view: 
that of the monitor, and that of the processor.

•	 Monitor point of view: The monitor controls the sequence of events. For this 
to be so, much of the monitor must always be in main memory and available 
for execution (see Figure 2.3). That portion is referred to as the resident moni-
tor. The rest of the monitor consists of utilities and common functions that 
are loaded as subroutines to the user program at the beginning of any job that 
requires them. The monitor reads in jobs one at a time from the input device 
(typically a card reader or magnetic tape drive). As it is read in, the current job 
is placed in the user program area, and control is passed to this job. When the 
job is completed, it returns control to the monitor, which immediately reads 
in the next job. The results of each job are sent to an output device, such as a 
printer, for delivery to the user.

•	 Processor point of view: At a certain point, the processor is executing instruc-
tions from the portion of main memory containing the monitor. These instruc-
tions cause the next job to be read into another portion of main memory. Once 
a job has been read in, the processor will encounter a branch instruction in 
the monitor that instructs the processor to continue execution at the start of 

Figure 2.3  Memory Layout for a Resident Monitor

Interrupt
processing

Device
drivers

Job
sequencing

Control language
interpreter

User
program

area

Monitor

Boundary

M02_STAL4290_09_GE_C02.indd   75 5/2/17   6:27 PM



76    Chapter 2 / Operating System Overview

the user program. The processor will then execute the instructions in the user 
program until it encounters an ending or error condition. Either event causes 
the processor to fetch its next instruction from the monitor program. Thus the 
phrase “control is passed to a job” simply means the processor is now fetching 
and executing instructions in a user program, and “control is returned to the 
monitor” means the processor is now fetching and executing instructions from 
the monitor program.

The monitor performs a scheduling function: a batch of jobs is queued up, and 
jobs are executed as rapidly as possible, with no intervening idle time. The monitor 
improves job setup time as well. With each job, instructions are included in a primitive 
form of job control language (JCL). This is a special type of programming language 
used to provide instructions to the monitor. A simple example is that of a user sub-
mitting a program written in the programming language FORTRAN plus some data 
to be used by the program. All FORTRAN instructions and data are on a separate 
punched card or a separate record on tape. In addition to FORTRAN and data lines, 
the job includes job control instructions, which are denoted by the beginning $. The 
overall format of the job looks like this:

$JOB
$FTN
~
~
~
   s  FORTRAN instructions

$LOAD
$RUN
~
~
~
   s  Data

$END

To execute this job, the monitor reads the $FTN line and loads the appropri-
ate language compiler from its mass storage (usually tape). The compiler translates 
the user’s program into object code, which is stored in memory or mass storage. If 
it is stored in memory, the operation is referred to as “compile, load, and go.” If it is 
stored on tape, then the $LOAD instruction is required. This instruction is read by the 
monitor, which regains control after the compile operation. The monitor invokes the 
loader, which loads the object program into memory (in place of the compiler) and 
transfers control to it. In this manner, a large segment of main memory can be shared 
among different subsystems, although only one such subsystem could be executing 
at a time.

During the execution of the user program, any input instruction causes one line 
of data to be read. The input instruction in the user program causes an input routine 
that is part of the OS to be invoked. The input routine checks to make sure that the 
program does not accidentally read in a JCL line. If this happens, an error occurs and 
control transfers to the monitor. At the completion of the user job, the monitor will 

M02_STAL4290_09_GE_C02.indd   76 5/2/17   6:27 PM



2.2 / THE EVOLUTION OF OPERATING SYSTEMS   77

scan the input lines until it encounters the next JCL instruction. Thus, the system is 
protected against a program with too many or too few data lines.

The monitor, or batch OS, is simply a computer program. It relies on the abil-
ity of the processor to fetch instructions from various portions of main memory to 
alternately seize and relinquish control. Certain other hardware features are also 
desirable:

•	 Memory protection: While the user program is executing, it must not alter the 
memory area containing the monitor. If such an attempt is made, the proces-
sor hardware should detect an error and transfer control to the monitor. The 
monitor would then abort the job, print out an error message, and load in the 
next job.

•	 Timer: A timer is used to prevent a single job from monopolizing the system. 
The timer is set at the beginning of each job. If the timer expires, the user pro-
gram is stopped, and control returns to the monitor.

•	 Privileged instructions: Certain machine level instructions are designated as 
privileged and can be executed only by the monitor. If the processor encounters 
such an instruction while executing a user program, an error occurs causing con-
trol to be transferred to the monitor. Among the privileged instructions are I/O 
instructions, so that the monitor retains control of all I/O devices. This prevents, 
for example, a user program from accidentally reading job control instructions 
from the next job. If a user program wishes to perform I/O, it must request that 
the monitor perform the operation for it.

•	 Interrupts: Early computer models did not have this capability. This feature 
gives the OS more flexibility in relinquishing control to, and regaining control 
from, user programs.

Considerations of memory protection and privileged instructions lead to the 
concept of modes of operation. A user program executes in a user mode, in which 
certain areas of memory are protected from the user’s use, and in which certain 
instructions may not be executed. The monitor executes in a system mode, or what 
has come to be called kernel mode, in which privileged instructions may be executed, 
and in which protected areas of memory may be accessed.

Of course, an OS can be built without these features. But computer vendors 
quickly learned that the results were chaos, and so even relatively primitive batch 
operating systems were provided with these hardware features.

With a batch OS, processor time alternates between execution of user programs 
and execution of the monitor. There have been two sacrifices: Some main memory is 
now given over to the monitors and some processor time is consumed by the monitor. 
Both of these are forms of overhead. Despite this overhead, the simple batch system 
improves utilization of the computer.

Multiprogrammed Batch Systems

Even with the automatic job sequencing provided by a simple batch OS, the proces-
sor is often idle. The problem is I/O devices are slow compared to the processor. 

M02_STAL4290_09_GE_C02.indd   77 5/2/17   6:27 PM



78    Chapter 2 / Operating System Overview

Figure 2.4 details a representative calculation. The calculation concerns a program 
that processes a file of records and performs, on average, 100 machine instructions 
per record. In this example, the computer spends over 96% of its time waiting for I/O 
devices to finish transferring data to and from the file. Figure 2.5a illustrates this situ-
ation, where we have a single program, referred to as uniprogramming. The processor 

Figure 2.5  Multiprogramming Example

Run Wait WaitRun

Time

Run Wait WaitRun

Run
A

Run
A

Run WaitWait WaitRun

Run
B Wait Wait

Run
B

Run
A

Run
A

Run
B

Run
B

Run
C

Run
C

(a) Uniprogramming

Time

(b) Multiprogramming with two programs

Time

(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Read one record from file 15 ms

Execute 100 instructions 1 ms

Write one record to file 15 ms

Total 31 ms

Percent CPU utilization =
1
31

= 0.032 = 3.2,

Figure 2.4  System Utilization Example

M02_STAL4290_09_GE_C02.indd   78 5/2/17   6:27 PM



2.2 / THE EVOLUTION OF OPERATING SYSTEMS   79

spends a certain amount of time executing, until it reaches an I/O instruction. It must 
then wait until that I/O instruction concludes before proceeding.

This inefficiency is not necessary. We know there must be enough memory to 
hold the OS (resident monitor) and one user program. Suppose there is room for the 
OS and two user programs. When one job needs to wait for I/O, the processor can 
switch to the other job, which is likely not waiting for I/O (see Figure 2.5b). Further-
more, we might expand memory to hold three, four, or more programs and switch 
among all of them (see Figure 2.5c). The approach is known as multiprogramming, 
or multitasking. It is the central theme of modern operating systems.

To illustrate the benefit of multiprogramming, we give a simple example. Con-
sider a computer with 250 Mbytes of available memory (not used by the OS), a disk, 
a terminal, and a printer. Three programs, JOB1, JOB2, and JOB3, are submitted for 
execution at the same time, with the attributes listed in Table 2.1. We assume minimal 
processor requirements for JOB2 and JOB3, and continuous disk and printer use by 
JOB3. For a simple batch environment, these jobs will be executed in sequence. Thus, 
JOB1 completes in 5 minutes. JOB2 must wait until the 5 minutes are over, then com-
pletes 15 minutes after that. JOB3 begins after 20 minutes and completes at 30 minutes 
from the time it was initially submitted. The average resource utilization, throughput, 
and response times are shown in the uniprogramming column of Table 2.2. Device-
by-device utilization is illustrated in Figure 2.6a. It is evident that there is gross unde-
rutilization for all resources when averaged over the required 30-minute time period.

Now suppose the jobs are run concurrently under a multiprogramming OS. 
Because there is little resource contention between the jobs, all three can run in 

JOB1 JOB2 JOB3

Type of job Heavy compute Heavy I/O Heavy I/O

Duration 5 min 15 min 10 min

Memory required 50 M 100 M 75 M

Need disk? No No Yes

Need terminal? No Yes No

Need printer? No No Yes

Table 2.1  Sample Program Execution Attributes

Uniprogramming Multiprogramming

Processor use 20% 40%

Memory use 33% 67%

Disk use 33% 67%

Printer use 33% 67%

Elapsed time 30 min 15 min

Throughput 6 jobs/hr 12 jobs/hr

Mean response time 18 min 10 min

Table 2.2  Effects of Multiprogramming on Resource Utilization

M02_STAL4290_09_GE_C02.indd   79 5/2/17   6:27 PM



80    Chapter 2 / Operating System Overview

nearly minimum time while coexisting with the others in the computer (assuming 
JOB2 and JOB3 are allotted enough processor time to keep their input and output 
operations active). JOB1 will still require 5 minutes to complete, but at the end of that 
time, JOB2 will be one-third finished and JOB3 half-finished. All three jobs will have 
finished within 15 minutes. The improvement is evident when examining the multi-
programming column of Table 2.2, obtained from the histogram shown in Figure 2.6b.

As with a simple batch system, a multiprogramming batch system must rely 
on certain computer hardware features. The most notable additional feature that is 
useful for multiprogramming is the hardware that supports I/O interrupts and DMA 
(direct memory access). With interrupt-driven I/O or DMA, the processor can issue 
an I/O command for one job and proceed with the execution of another job while 
the I/O is carried out by the device controller. When the I/O operation is complete, 
the processor is interrupted and control is passed to an interrupt-handling program 
in the OS. The OS will then pass control to another job after the interrupt is handled.

Multiprogramming operating systems are fairly sophisticated compared to 
single-program, or uniprogramming, systems. To have several jobs ready to run, they 
must be kept in main memory, requiring some form of memory management. In addi-
tion, if several jobs are ready to run, the processor must decide which one to run, and 
this decision requires an algorithm for scheduling. These concepts will be discussed 
later in this chapter.

Figure 2.6  Utilization Histograms

0%

0 5 10 15 20 25 30
minutes

time

(a) Uniprogramming

JOB1 JOB2 JOB3Job history

Printer

Terminal

Disk

Memory

CPU

100%
0%

100%
0%

100%
0%

100%
0%

100%

0%

0 5 10 15
minutes

(b) Multiprogramming

JOB1
JOB2

JOB3

Job history

Printer

Terminal

Disk

Memory

CPU

100%
0%

100%
0%

100%
0%

100%
0%

100%

time

M02_STAL4290_09_GE_C02.indd   80 5/2/17   6:27 PM



2.2 / THE EVOLUTION OF OPERATING SYSTEMS   81

Time-Sharing Systems

With the use of multiprogramming, batch processing can be quite efficient. However, 
for many jobs, it is desirable to provide a mode in which the user interacts directly 
with the computer. Indeed, for some jobs, such as transaction processing, an interac-
tive mode is essential.

Today, the requirement for an interactive computing facility can be, and often 
is, met by the use of a dedicated personal computer or workstation. That option was 
not available in the 1960s, when most computers were big and costly. Instead, time 
sharing was developed.

Just as multiprogramming allows the processor to handle multiple batch jobs 
at a time, multiprogramming can also be used to handle multiple interactive jobs. In 
this latter case, the technique is referred to as time sharing, because processor time 
is shared among multiple users. In a time-sharing system, multiple users simultane-
ously access the system through terminals, with the OS interleaving the execution of 
each user program in a short burst or quantum of computation. Thus, if there are n 
users actively requesting service at one time, each user will only see on the average 
1/n of the effective computer capacity, not counting OS overhead. However, given 
the relatively slow human reaction time, the response time on a properly designed 
system should be similar to that on a dedicated computer.

Both batch processing and time sharing use multiprogramming. The key differ-
ences are listed in Table 2.3.

One of the first time-sharing operating systems to be developed was the Com-
patible Time-Sharing System (CTSS) [CORB62], developed at MIT by a group 
known as Project MAC (Machine-Aided Cognition, or Multiple-Access Comput-
ers). The system was first developed for the IBM 709 in 1961 and later ported to 
IBM 7094.

Compared to later systems, CTSS is primitive. The system ran on a computer 
with 32,000 36-bit words of main memory, with the resident monitor consuming 5,000 
of those. When control was to be assigned to an interactive user, the user’s program 
and data were loaded into the remaining 27,000 words of main memory. A program 
was always loaded to start at the location of the 5,000th word; this simplified both 
the monitor and memory management. A system clock generated interrupts at a rate 
of approximately one every 0.2 seconds. At each clock interrupt, the OS regained 
control and could assign the processor to another user. This technique is known as 
time slicing. Thus, at regular time intervals, the current user would be preempted and 
another user loaded in. To preserve the old user program status for later resumption, 
the old user programs and data were written out to disk before the new user pro-
grams and data were read in. Subsequently, the old user program code and data were 
restored in main memory when that program was next given a turn.

Batch Multiprogramming Time Sharing

Principal objective Maximize processor use Minimize response time

Source of directives to 
operating system

Job control language commands 
provided with the job

Commands entered at the 
terminal

Table 2.3  Batch Multiprogramming versus Time Sharing

M02_STAL4290_09_GE_C02.indd   81 5/2/17   6:27 PM



82    Chapter 2 / Operating System Overview

To minimize disk traffic, user memory was only written out when the incoming 
program would overwrite it. This principle is illustrated in Figure 2.7. Assume there 
are four interactive users with the following memory requirements, in words:

•	 JOB1: 15,000

•	 JOB2: 20,000

•	 JOB3: 5,000

•	 JOB4: 10,000

Initially, the monitor loads JOB1 and transfers control to it (Figure 2.7a). Later, 
the monitor decides to transfer control to JOB2. Because JOB2 requires more mem-
ory than JOB1, JOB1 must be written out first, and then JOB2 can be loaded (Figure 
2.7b). Next, JOB3 is loaded in to be run. However, because JOB3 is smaller than 
JOB2, a portion of JOB2 can remain in memory, reducing disk write time (Figure 
2.7c). Later, the monitor decides to transfer control back to JOB1. An additional por-
tion of JOB2 must be written out when JOB1 is loaded back into memory (Figure 
2.7d). When JOB4 is loaded, part of JOB1 and the portion of JOB2 remaining in 
memory are retained (Figure 2.7e). At this point, if either JOB1 or JOB2 is activated, 
only a partial load will be required. In this example, it is JOB2 that runs next. This 
requires that JOB4 and the remaining resident portion of JOB1 be written out, and 
the missing portion of JOB2 be read in (Figure 2.7f).

The CTSS approach is primitive compared to present-day time sharing, but 
it was effective. It was extremely simple, which minimized the size of the monitor. 
Because a job was always loaded into the same locations in memory, there was no 
need for relocation techniques at load time (discussed subsequently). The technique 

Figure 2.7  CTSS Operation

Monitor

Free
Free Free

JOB 1

0

32000

5000

20000

20000

(a)

Monitor

JOB 2

0

32000

5000

25000 25000

(b)

Free

Monitor

JOB 2

0

32000

5000

25000

(f)

Monitor

JOB 3

(JOB 2)

0

32000

5000

10000

(c)

Free
25000

Monitor

JOB 1

(JOB 2)

0

32000

5000

(d)

20000

15000

Free
25000

Monitor

JOB 4

(JOB 2)

(JOB 1)

0

32000

5000

(e)

M02_STAL4290_09_GE_C02.indd   82 5/2/17   6:27 PM



2.3 / MAJOR ACHIEVEMENTS   83

of only writing out what was necessary minimized disk activity. Running on the 7094, 
CTSS supported a maximum of 32 users.

Time sharing and multiprogramming raise a host of new problems for the OS. If 
multiple jobs are in memory, then they must be protected from interfering with each 
other by, for example, modifying each other’s data. With multiple interactive users, 
the file system must be protected so only authorized users have access to a particular 
file. The contention for resources, such as printers and mass storage devices, must 
be handled. These and other problems, with possible solutions, will be encountered 
throughout this text.

	 2.3	 MAJOR ACHIEVEMENTS

Operating systems are among the most complex pieces of software ever developed. 
This reflects the challenge of trying to meet the difficult and in some cases competing 
objectives of convenience, efficiency, and ability to evolve. [DENN80a] proposes that 
there have been four major theoretical advances in the development of operating 
systems:

•	 Processes

•	 Memory management

•	 Information protection and security

•	 Scheduling and resource management

Each advance is characterized by principles, or abstractions, developed to 
meet difficult practical problems. Taken together, these four areas span many of 
the key design and implementation issues of modern operating systems. The brief 
review of these four areas in this section serves as an overview of much of the rest 
of the text.

The Process

Central to the design of operating systems is the concept of process. This term was 
first used by the designers of Multics in the 1960s [DALE68]. It is a somewhat 
more general term than job. Many definitions have been given for the term process, 
including:

•	 A program in execution.

•	 An instance of a program running on a computer.

•	 The entity that can be assigned to and executed on a processor.

•	 A unit of activity characterized by a single sequential thread of execution, a 
current state, and an associated set of system resources.

This concept should become clearer as we proceed.
Three major lines of computer system development created problems in tim-

ing and synchronization that contributed to the development of the concept of the 
process: multiprogramming batch operation, time-sharing, and real-time transaction 
systems. As we have seen, multiprogramming was designed to keep the processor 

M02_STAL4290_09_GE_C02.indd   83 5/2/17   6:27 PM



84    Chapter 2 / Operating System Overview

and I/O devices, including storage devices, simultaneously busy to achieve maximum 
efficiency. The key mechanism is this: In response to signals indicating the completion 
of I/O transactions, the processor is switched among the various programs residing 
in main memory.

A second line of development was general-purpose time sharing. Here, the key 
design objective is to be responsive to the needs of the individual user and yet, for 
cost reasons, be able to support many users simultaneously. These goals are compat-
ible because of the relatively slow reaction time of the user. For example, if a typical 
user needs an average of 2 seconds of processing time per minute, then close to 30 
such users should be able to share the same system without noticeable interference. 
Of course, OS overhead must be factored into such calculations.

A third important line of development has been real-time transaction process-
ing systems. In this case, a number of users are entering queries or updates against a 
database. An example is an airline reservation system. The key difference between 
the transaction processing system and the time-sharing system is that the former 
is limited to one or a few applications, whereas users of a time-sharing system can 
engage in program development, job execution, and the use of various applications. 
In both cases, system response time is paramount.

The principal tool available to system programmers in developing the early 
multiprogramming and multiuser interactive systems was the interrupt. The activity 
of any job could be suspended by the occurrence of a defined event, such as an I/O 
completion. The processor would save some sort of context (e.g., program counter 
and other registers) and branch to an interrupt-handling routine which would deter-
mine the nature of the interrupt, process the interrupt, then resume user processing 
with the interrupted job or some other job.

The design of the system software to coordinate these various activities turned 
out to be remarkably difficult. With many jobs in progress at any one time, each of 
which involved numerous steps to be performed in sequence, it became impossible 
to analyze all of the possible combinations of sequences of events. In the absence of 
some systematic means of coordination and cooperation among activities, program-
mers resorted to ad hoc methods based on their understanding of the environment 
that the OS had to control. These efforts were vulnerable to subtle programming 
errors whose effects could be observed only when certain relatively rare sequences 
of actions occurred. These errors were difficult to diagnose, because they needed to 
be distinguished from application software errors and hardware errors. Even when 
the error was detected, it was difficult to determine the cause, because the precise 
conditions under which the errors appeared were very hard to reproduce. In general 
terms, there are four main causes of such errors [DENN80a]:

•	 Improper synchronization: It is often the case that a routine must be suspended 
awaiting an event elsewhere in the system. For example, a program that initiates 
an I/O read must wait until the data are available in a buffer before proceeding. 
In such cases, a signal from some other routine is required. Improper design 
of the signaling mechanism can result in signals being lost or duplicate signals 
being received.

•	 Failed mutual exclusion: It is often the case that more than one user or program 
will attempt to make use of a shared resource at the same time. For example, 

M02_STAL4290_09_GE_C02.indd   84 5/2/17   6:27 PM



2.3 / MAJOR ACHIEVEMENTS   85

two users may attempt to edit the same file at the same time. If these accesses 
are not controlled, an error can occur. There must be some sort of mutual exclu-
sion mechanism that permits only one routine at a time to perform an update 
against the file. The implementation of such mutual exclusion is difficult to 
verify as being correct under all possible sequences of events.

•	 Nondeterminate program operation: The results of a particular program nor-
mally should depend only on the input to that program, and not on the activities 
of other programs in a shared system. But when programs share memory, and 
their execution is interleaved by the processor, they may interfere with each 
other by overwriting common memory areas in unpredictable ways. Thus, the 
order in which various programs are scheduled may affect the outcome of any 
particular program.

•	 Deadlocks: It is possible for two or more programs to be hung up waiting for 
each other. For example, two programs may each require two I/O devices to per-
form some operation (e.g., disk to tape copy). One of the programs has seized 
control of one of the devices, and the other program has control of the other 
device. Each is waiting for the other program to release the desired resource. 
Such a deadlock may depend on the chance timing of resource allocation and 
release.

What is needed to tackle these problems is a systematic way to monitor and 
control the various programs executing on the processor. The concept of the process 
provides the foundation. We can think of a process as consisting of three components:

1.	 An executable program

2.	 The associated data needed by the program (variables, work space, buffers, etc.)

3.	 The execution context of the program

This last element is essential. The execution context, or process state, is the 
internal data by which the OS is able to supervise and control the process. This inter-
nal information is separated from the process, because the OS has information not 
permitted to the process. The context includes all of the information the OS needs 
to manage the process, and the processor needs to execute the process properly. The 
context includes the contents of the various processor registers, such as the program 
counter and data registers. It also includes information of use to the OS, such as the 
priority of the process and whether the process is waiting for the completion of a 
particular I/O event.

Figure 2.8 indicates a way in which processes may be managed. Two processes, 
A and B, exist in portions of main memory. That is, a block of memory is allocated to 
each process that contains the program, data, and context information. Each process 
is recorded in a process list built and maintained by the OS. The process list contains 
one entry for each process, which includes a pointer to the location of the block 
of memory that contains the process. The entry may also include part or all of the 
execution context of the process. The remainder of the execution context is stored 
elsewhere, perhaps with the process itself (as indicated in Figure 2.8) or frequently in 
a separate region of memory. The process index register contains the index into the 
process list of the process currently controlling the processor. The program counter 

M02_STAL4290_09_GE_C02.indd   85 5/2/17   6:27 PM



86    Chapter 2 / Operating System Overview

points to the next instruction in that process to be executed. The base and limit reg-
isters define the region in memory occupied by the process: The base register is the 
starting address of the region of memory, and the limit is the size of the region (in 
bytes or words). The program counter and all data references are interpreted relative 
to the base register and must not exceed the value in the limit register. This prevents 
interprocess interference.

In Figure 2.8, the process index register indicates that process B is executing. 
Process A was previously executing but has been temporarily interrupted. The con-
tents of all the registers at the moment of A’s interruption were recorded in its execu-
tion context. Later, the OS can perform a process switch and resume the execution 
of process A. The process switch consists of saving the context of B and restoring 
the context of A. When the program counter is loaded with a value pointing into A’s 
program area, process A will automatically resume execution.

Thus, the process is realized as a data structure. A process can either be execut-
ing or awaiting execution. The entire state of the process at any instant is contained in 
its context. This structure allows the development of powerful techniques for ensuring 

Figure 2.8  Typical Process Implementation

Context

Data

Program
(code)

Context

Data

i

Process index

PC

Base
limit

Other
registers

i

b
h

j

b

h
Process

B

Process
A

Main
memory

Processor
registers

Process
list

Program
(code)

M02_STAL4290_09_GE_C02.indd   86 5/2/17   6:27 PM



2.3 / MAJOR ACHIEVEMENTS   87

coordination and cooperation among processes. New features can be designed and 
incorporated into the OS (e.g., priority) by expanding the context to include any 
new information needed to support the feature. Throughout this book, we will see a 
number of examples where this process structure is employed to solve the problems 
raised by multiprogramming and resource sharing.

A final point, which we introduce briefly here, is the concept of thread. In 
essence, a single process, which is assigned certain resources, can be broken up into 
multiple, concurrent threads that execute cooperatively to perform the work of the 
process. This introduces a new level of parallel activity to be managed by the hard-
ware and software.

Memory Management

The needs of users can be met best by a computing environment that supports modu-
lar programming and the flexible use of data. System managers need efficient and 
orderly control of storage allocation. The OS, to satisfy these requirements, has five 
principal storage management responsibilities:

1.	 Process isolation: The OS must prevent independent processes from interfering 
with each other’s memory, both data and instructions.

2.	 Automatic allocation and management: Programs should be dynamically allo-
cated across the memory hierarchy as required. Allocation should be transpar-
ent to the programmer. Thus, the programmer is relieved of concerns relating 
to memory limitations, and the OS can achieve efficiency by assigning memory 
to jobs only as needed.

3.	 Support of modular programming: Programmers should be able to define pro-
gram modules, and to dynamically create, destroy, and alter the size of modules.

4.	 Protection and access control: Sharing of memory, at any level of the memory 
hierarchy, creates the potential for one program to address the memory space 
of another. This is desirable when sharing is needed by particular applications. 
At other times, it threatens the integrity of programs and even of the OS itself. 
The OS must allow portions of memory to be accessible in various ways by 
various users.

5.	 Long-term storage: Many application programs require means for storing infor-
mation for extended periods of time, after the computer has been powered down.

Typically, operating systems meet these requirements with virtual memory and 
file system facilities. The file system implements a long-term store, with information 
stored in named objects called files. The file is a convenient concept for the program-
mer, and is a useful unit of access control and protection for the OS.

Virtual memory is a facility that allows programs to address memory from a 
logical point of view, without regard to the amount of main memory physically avail-
able. Virtual memory was conceived to meet the requirement of having multiple user 
jobs concurrently reside in main memory, so there would not be a hiatus between 
the execution of successive processes while one process was written out to secondary 
store and the successor process was read in. Because processes vary in size, if the pro-
cessor switches among a number of processes, it is difficult to pack them compactly 

M02_STAL4290_09_GE_C02.indd   87 5/2/17   6:27 PM



88    Chapter 2 / Operating System Overview

into main memory. Paging systems were introduced, which allow processes to be 
comprised of a number of fixed-size blocks, called pages. A program references a 
word by means of a virtual address consisting of a page number and an offset within 
the page. Each page of a process may be located anywhere in main memory. The pag-
ing system provides for a dynamic mapping between the virtual address used in the 
program and a real address, or physical address, in main memory.

With dynamic mapping hardware available, the next logical step was to eliminate 
the requirement that all pages of a process simultaneously reside in main memory. 
All the pages of a process are maintained on disk. When a process is executing, some 
of its pages are in main memory. If reference is made to a page that is not in main 
memory, the memory management hardware detects this and, in coordination with 
the OS, arranges for the missing page to be loaded. Such a scheme is referred to as 
virtual memory and is depicted in Figure 2.9.

Figure 2.9  Virtual Memory Concepts

Main memory Disk

User
program

A

0
A.0

B.0 B.1

B.5 B.6

B.2 B.3

A.1

A.2

A.7

A.8

A.5

A.9

1

2

3

4

5

6

7

8

9

10

User
program

B

0

1

2

3

4

5

6

Main memory consists of a
number of fixed-length frames, 
each equal to the size of a page.
For a program to execute, some
or all of its pages must be in
main memory.

Secondary memory (disk) can
hold many fixed-length pages. A
user program consists of some 
number of pages. Pages of all
programs plus the OS are on
disk, as are files.

M02_STAL4290_09_GE_C02.indd   88 5/2/17   6:27 PM



2.3 / MAJOR ACHIEVEMENTS   89

The processor hardware, together with the OS, provides the user with a “virtual 
processor” that has access to a virtual memory. This memory may be a linear address 
space or a collection of segments, which are variable-length blocks of contiguous 
addresses. In either case, programming language instructions can reference program 
and data locations in the virtual memory area. Process isolation can be achieved by 
giving each process a unique, nonoverlapping virtual memory. Memory sharing can be 
achieved by overlapping portions of two virtual memory spaces. Files are maintained 
in a long-term store. Files and portions of files may be copied into the virtual memory 
for manipulation by programs.

Figure 2.10 highlights the addressing concerns in a virtual memory scheme. 
Storage consists of directly addressable (by machine instructions) main memory, 
and lower-speed auxiliary memory that is accessed indirectly by loading blocks into 
main memory. Address translation hardware (a memory management unit) is inter-
posed between the processor and memory. Programs reference locations using virtual 
addresses, which are mapped into real main memory addresses. If a reference is made 
to a virtual address not in real memory, then a portion of the contents of real memory 
is swapped out to auxiliary memory and the desired block of data is swapped in. Dur-
ing this activity, the process that generated the address reference must be suspended. 
The OS designer needs to develop an address translation mechanism that generates 
little overhead, and a storage allocation policy that minimizes the traffic between 
memory levels.

Information Protection and Security

The growth in the use of time-sharing systems and, more recently, computer net-
works has brought with it a growth in concern for the protection of information. The 
nature of the threat that concerns an organization will vary greatly depending on the 
circumstances. However, there are some general-purpose tools that can be built into 

Figure 2.10  Virtual Memory Addressing

Processor
Virtual
address

Real
address

Disk
address

Memory
management

unit

Main
memory

Secondary
memory

M02_STAL4290_09_GE_C02.indd   89 5/2/17   6:27 PM



90    Chapter 2 / Operating System Overview

computers and operating systems that support a variety of protection and security 
mechanisms. In general, we are concerned with the problem of controlling access to 
computer systems and the information stored in them.

Much of the work in security and protection as it relates to operating systems 
can be roughly grouped into four categories:

1.	 Availability: Concerned with protecting the system against interruption.

2.	 Confidentiality: Assures that users cannot read data for which access is 
unauthorized.

3.	 Data integrity: Protection of data from unauthorized modification.

4.	 Authenticity: Concerned with the proper verification of the identity of users 
and the validity of messages or data.

Scheduling and Resource Management

A key responsibility of the OS is to manage the various resources available to it (main 
memory space, I/O devices, processors) and to schedule their use by the various active 
processes. Any resource allocation and scheduling policy must consider three factors:

1.	 Fairness: Typically, we would like all processes that are competing for the use 
of a particular resource to be given approximately equal and fair access to that 
resource. This is especially so for jobs of the same class, that is, jobs of similar 
demands.

2.	 Differential responsiveness: On the other hand, the OS may need to discrimi-
nate among different classes of jobs with different service requirements. The 
OS should attempt to make allocation and scheduling decisions to meet the 
total set of requirements. The OS should also make these decisions dynamically. 
For example, if a process is waiting for the use of an I/O device, the OS may 
wish to schedule that process for execution as soon as possible; the process can 
then immediately use the device, then release it for later demands from other 
processes.

3.	 Efficiency: The OS should attempt to maximize throughput, minimize response 
time, and, in the case of time sharing, accommodate as many users as possible. 
These criteria conflict; finding the right balance for a particular situation is an 
ongoing problem for OS research.

Scheduling and resource management are essentially operations-research 
problems and the mathematical results of that discipline can be applied. In addition, 
measurement of system activity is important to be able to monitor performance and 
make adjustments.

Figure 2.11 suggests the major elements of the OS involved in the scheduling 
of processes and the allocation of resources in a multiprogramming environment. 
The OS maintains a number of queues, each of which is simply a list of processes 
waiting for some resource. The short-term queue consists of processes that are in 
main memory (or at least an essential minimum portion of each is in main mem-
ory) and are ready to run as soon as the processor is made available. Any one of 
these processes could use the processor next. It is up to the short-term scheduler, 

M02_STAL4290_09_GE_C02.indd   90 5/2/17   6:27 PM



2.3 / MAJOR ACHIEVEMENTS   91

or dispatcher, to pick one. A common strategy is to give each process in the queue 
some time in turn; this is referred to as a round-robin technique. In effect, the 
round-robin technique employs a circular queue. Another strategy is to assign prior-
ity levels to the various processes, with the scheduler selecting processes in priority 
order.

The long-term queue is a list of new jobs waiting to use the processor. The OS 
adds jobs to the system by transferring a process from the long-term queue to the 
short-term queue. At that time, a portion of main memory must be allocated to the 
incoming process. Thus, the OS must be sure that it does not overcommit memory or 
processing time by admitting too many processes to the system. There is an I/O queue 
for each I/O device. More than one process may request the use of the same I/O 
device. All processes waiting to use each device are lined up in that device’s queue. 
Again, the OS must determine which process to assign to an available I/O device.

The OS receives control of the processor at the interrupt handler if an inter-
rupt occurs. A process may specifically invoke some OS service, such as an I/O device 
handler, by means of a service call. In this case, a service call handler is the entry point 
into the OS. In any case, once the interrupt or service call is handled, the short-term 
scheduler is invoked to pick a process for execution.

The foregoing is a functional description; details and modular design of this 
portion of the OS will differ in various systems. Much of the research and develop-
ment effort in operating systems has been directed at picking algorithms and data 
structures for this function that provide fairness, differential responsiveness, and 
efficiency.

Figure 2.11  Key Elements of an Operating System for Multiprogramming

Service
call

handler (code)

Pass control
to process

Interrupt
handler (code)

Short-term
scheduler

(code)

Long-
term

queue

Short-
term

queue

I/O
queues

Operating system

Service call
from process

Interrupt
from process

Interrupt
from I/O

M02_STAL4290_09_GE_C02.indd   91 5/2/17   6:27 PM



92    Chapter 2 / Operating System Overview

	 2.4	 DEVELOPMENTS LEADING TO MODERN OPERATING 
SYSTEMS

Over the years, there has been a gradual evolution of OS structure and capabilities. 
However, in recent years, a number of new design elements have been introduced 
into both new operating systems and new releases of existing operating systems that 
create a major change in the nature of operating systems. These modern operating 
systems respond to new developments in hardware, new applications, and new secu-
rity threats. Among the key hardware drivers are multiprocessor systems, greatly 
increased processor speed, high-speed network attachments, and increasing size and 
variety of memory storage devices. In the application arena, multimedia applications, 
Internet and Web access, and client/server computing have influenced OS design. 
With respect to security, Internet access to computers has greatly increased the poten-
tial threat, and increasingly sophisticated attacks (such as viruses, worms, and hacking 
techniques) have had a profound impact on OS design.

The rate of change in the demands on operating systems requires not just modi-
fications and enhancements to existing architectures, but new ways of organizing the 
OS. A wide range of different approaches and design elements has been tried in both 
experimental and commercial operating systems, but much of the work fits into the 
following categories:

•	 Microkernel architecture

•	 Multithreading

•	 Symmetric multiprocessing

•	 Distributed operating systems

•	 Object-oriented design

Until recently, most operating systems featured a large monolithic kernel. Most 
of what is thought of as OS functionality is provided in these large kernels, including 
scheduling, file system, networking, device drivers, memory management, and more. 
Typically, a monolithic kernel is implemented as a single process, with all elements 
sharing the same address space. A microkernel architecture assigns only a few essen-
tial functions to the kernel, including address space management, interprocess com-
munication (IPC), and basic scheduling. Other OS services are provided by processes, 
sometimes called servers, that run in user mode and are treated like any other appli-
cation by the microkernel. This approach decouples kernel and server development. 
Servers may be customized to specific application or environment requirements. 
The microkernel approach simplifies implementation, provides flexibility, and is well 
suited to a distributed environment. In essence, a microkernel interacts with local 
and remote server processes in the same way, facilitating construction of distributed 
systems.

Multithreading is a technique in which a process, executing an application, is  
divided into threads that can run concurrently. We can make the following distinction:

•	 Thread: A dispatchable unit of work. It includes a processor context (which 
includes the program counter and stack pointer) and its own data area for a 

M02_STAL4290_09_GE_C02.indd   92 5/2/17   6:27 PM



2.4 / DEVELOPMENTS LEADING TO MODERN OPERATING SYSTEMS   93

stack (to enable subroutine branching). A thread executes sequentially and is 
interruptible so the processor can turn to another thread.

•	 Process: A collection of one or more threads and associated system resources 
(such as memory containing both code and data, open files, and devices). This 
corresponds closely to the concept of a program in execution. By breaking a 
single application into multiple threads, the programmer has great control over 
the modularity of the application and the timing of application-related events.

Multithreading is useful for applications that perform a number of essentially 
independent tasks that do not need to be serialized. An example is a database server 
that listens for and processes numerous client requests. With multiple threads run-
ning within the same process, switching back and forth among threads involves less 
processor overhead than a major process switch between different processes. Threads 
are also useful for structuring processes that are part of the OS kernel, as will be 
described in subsequent chapters.

Symmetric multiprocessing (SMP) is a term that refers to a computer hardware 
architecture (described in Chapter 1) and also to the OS behavior that exploits that 
architecture. The OS of an SMP schedules processes or threads across all of the pro-
cessors. SMP has a number of potential advantages over uniprocessor architecture, 
including the following:

•	 Performance: If the work to be done by a computer can be organized so some 
portions of the work can be done in parallel, then a system with multiple pro-
cessors will yield greater performance than one with a single processor of the 
same type. This is illustrated in Figure 2.12. With multiprogramming, only one 
process can execute at a time; meanwhile, all other processes are waiting for 
the processor. With multiprocessing, more than one process can be running 
simultaneously, each on a different processor.

•	 Availability: In a symmetric multiprocessor, because all processors can perform 
the same functions, the failure of a single processor does not halt the system. 
Instead, the system can continue to function at reduced performance.

•	 Incremental growth: A user can enhance the performance of a system by adding 
an additional processor.

•	 Scaling: Vendors can offer a range of products with different price and per-
formance characteristics based on the number of processors configured in the 
system.

It is important to note that these are potential, rather than guaranteed, benefits. 
The OS must provide tools and functions to exploit the parallelism in an SMP 
system.

Multithreading and SMP are often discussed together, but the two are indepen-
dent facilities. Even on a uniprocessor system, multithreading is useful for structuring 
applications and kernel processes. An SMP system is useful even for nonthreaded 
processes, because several processes can run in parallel. However, the two facilities 
complement each other, and can be used effectively together.

An attractive feature of an SMP is that the existence of multiple processors 
is transparent to the user. The OS takes care of scheduling of threads or processes 

M02_STAL4290_09_GE_C02.indd   93 5/2/17   6:27 PM



94    Chapter 2 / Operating System Overview

on individual processors and of synchronization among processors. This book dis-
cusses the scheduling and synchronization mechanisms used to provide the single-
system appearance to the user. A different problem is to provide the appearance 
of a single system for a cluster of separate computers—a multicomputer system. 
In this case, we are dealing with a collection of computers, each with its own main 
memory, secondary memory, and other I/O modules. A distributed operating sys-
tem provides the illusion of a single main memory space and a single secondary 
memory space, plus other unified access facilities, such as a distributed file system. 
Although clusters are becoming increasingly popular, and there are many cluster 
products on the market, the state of the art for distributed operating systems lags 
behind that of uniprocessor and SMP operating systems. We will examine such 
systems in Part Eight.

Another innovation in OS design is the use of object-oriented technologies. 
Object-oriented design lends discipline to the process of adding modular exten-
sions to a small kernel. At the OS level, an object-based structure enables program-
mers to customize an OS without disrupting system integrity. Object orientation 
also eases the development of distributed tools and full-blown distributed operat-
ing systems.

Figure 2.12  Multiprogramming and Multiprocessing

(a) Interleaving (multiprogramming; one processor)

Process 1

Process 2

Process 3

Process 1

Process 2

Process 3

(b) Interleaving and overlapping (multiprocessing; two processors)

Blocked Running

Time

M02_STAL4290_09_GE_C02.indd   94 5/2/17   6:27 PM



2.5 / FAULT TOLERANCE   95

	 2.5	 FAULT TOLERANCE

Fault tolerance refers to the ability of a system or component to continue nor-
mal operation despite the presence of hardware or software faults. This typically 
involves some degree of redundancy. Fault tolerance is intended to increase the 
reliability of a system. Typically, increased fault tolerance (and therefore increased 
reliability) comes with a cost, either in financial terms or performance, or both. 
Thus, the extent adoption of fault tolerance measures must be determined by how 
critical the resource is.

Fundamental Concepts

The three basic measures of the quality of the operation of a system that relate to 
fault tolerance are reliability, mean time to failure (MTTF), and availability. These 
concepts were developed with specific reference to hardware faults, but apply more 
generally to hardware and software faults.

The reliability R(t) of a system is defined as the probability of its correct opera-
tion up to time t given that the system was operating correctly at time t = 0. For 
computer systems and operating systems, the term correct operation means the cor-
rect execution of a set of programs, and the protection of data from unintended 
modification. The mean time to failure (MTTF) is defined as

MTTF = L
∞

0
R(t)

The mean time to repair (MTTR) is the average time it takes to repair or 
replace a faulty element. Figure 2.13 illustrates the relationship between MTTF and 
MTTR.

The availability of a system or service is defined as the fraction of time the sys-
tem is available to service users’ requests. Equivalently, availability is the probability 
that an entity is operating correctly under given conditions at a given instant of time. 
The time during which the system is not available is called downtime; the time during 

Figure 2.13  System Operational States

A1

B1

Down

Up

B2 B3

A2 A3

MTTF = MTTR =  
B1� B2 � B3

3
A1� A2� A3

3

M02_STAL4290_09_GE_C02.indd   95 5/2/17   6:27 PM



96    Chapter 2 / Operating System Overview

which the system is available is called uptime. The availability A of a system can be 
expressed as follows:

A =
MTTF

MTTF + MTTR

Table 2.4 shows some commonly identified availability levels and the corre-
sponding annual downtime.

Often, the mean uptime, which is MTTF, is a better indicator than availability. 
A small downtime and a small uptime combination may result in a high availability 
measure, but the users may not be able to get any service if the uptime is less than 
the time required to complete a service.

Faults

The IEEE Standards Dictionary defines a fault as an erroneous hardware or software 
state resulting from component failure, operator error, physical interference from the 
environment, design error, program error, or data structure error. The standard also 
states that a fault manifests itself as (1) a defect in a hardware device or component; 
for example, a short circuit or broken wire, or (2) an incorrect step, process, or data 
definition in a computer program.

We can group faults into the following categories:

•	 Permanent: A fault that, after it occurs, is always present. The fault persists 
until the faulty component is replaced or repaired. Examples include disk head 
crashes, software bugs, and a burnt-out communications component.

•	 Temporary: A fault that is not present all the time for all operating conditions. 
Temporary faults can be further classified as follows:

—Transient: A fault that occurs only once. Examples include bit transmission 
errors due to an impulse noise, power supply disturbances, and radiation that 
alters a memory bit.
—Intermittent: A fault that occurs at multiple, unpredictable times. An example 
of an intermittent fault is one caused by a loose connection.

In general, fault tolerance is built into a system by adding redundancy. Methods 
of redundancy include the following:

•	 Spatial (physical) redundancy: Physical redundancy involves the use of mul-
tiple components that either perform the same function simultaneously, or are 

Class Availability Annual Downtime

Continuous 1.0 0

Fault tolerant 0.99999 5 minutes

Fault resilient 0.9999 53 minutes

High availability 0.999 8.3 hours

Normal availability 0.99–0.995 44–87 hours

Table 2.4  Availability Classes

M02_STAL4290_09_GE_C02.indd   96 5/2/17   6:27 PM



2.5 / FAULT TOLERANCE   97

configured so one component is available as a backup in case of the failure of 
another component. An example of the former is the use of multiple parallel 
circuitry with the majority result produced as output. An example of the latter 
is a backup name server on the Internet.

•	 Temporal redundancy: Temporal redundancy involves repeating a function or 
operation when an error is detected. This approach is effective with temporary 
faults, but not useful for permanent faults. An example is the retransmission of 
a block of data when an error is detected, such as is done with data link control 
protocols.

•	 Information redundancy: Information redundancy provides fault tolerance by 
replicating or coding data in such a way that bit errors can be both detected 
and corrected. An example is the error-control coding circuitry used with mem-
ory systems, and error-correction techniques used with RAID disks, as will be 
described in subsequent chapters.

Operating System Mechanisms

A number of techniques can be incorporated into OS software to support fault toler-
ance. A number of examples will be evident throughout the book. The following list 
provides examples:

•	 Process isolation: As was mentioned earlier in this chapter, processes are gener-
ally isolated from one another in terms of main memory, file access, and flow of 
execution. The structure provided by the OS for managing processes provides 
a certain level of protection for other processes from a process that produces 
a fault.

•	 Concurrency controls: Chapters 5 and 6 will discuss some of the difficulties and 
faults that can occur when processes communicate or cooperate. These chapters 
will also discuss techniques used to ensure correct operation and to recover 
from fault conditions, such as deadlock.

•	 Virtual machines: Virtual machines, as will be discussed in Chapter 14, pro-
vide a greater degree of application isolation and hence fault isolation. Virtual 
machines can also be used to provide redundancy, with one virtual machine 
serving as a backup for another.

•	 Checkpoints and rollbacks: A checkpoint is a copy of an application’s state 
saved in some storage that is immune to the failures under consideration. A 
rollback restarts the execution from a previously saved checkpoint. When a 
failure occurs, the application’s state is rolled back to the previous checkpoint 
and restarted from there. This technique can be used to recover from transient 
as well as permanent hardware failures, and certain types of software failures. 
Database and transaction processing systems typically have such capabilities 
built in.

A much wider array of techniques could be discussed, but a full treatment of 
OS fault tolerance is beyond our current scope.

M02_STAL4290_09_GE_C02.indd   97 5/2/17   6:27 PM



98    Chapter 2 / Operating System Overview

	 2.6	 OS DESIGN CONSIDERATIONS FOR MULTIPROCESSOR 
AND MULTICORE

Symmetric Multiprocessor OS Considerations

In an SMP system, the kernel can execute on any processor, and typically each proces-
sor does self-scheduling from the pool of available processes or threads. The kernel 
can be constructed as multiple processes or multiple threads, allowing portions of the 
kernel to execute in parallel. The SMP approach complicates the OS. The OS designer 
must deal with the complexity due to sharing resources (such as data structures) 
and coordinating actions (such as accessing devices) from multiple parts of the OS 
executing at the same time. Techniques must be employed to resolve and synchronize 
claims to resources.

An SMP operating system manages processor and other computer resources so 
the user may view the system in the same fashion as a multiprogramming uniproces-
sor system. A user may construct applications that use multiple processes or multiple 
threads within processes without regard to whether a single processor or multiple 
processors will be available. Thus, a multiprocessor OS must provide all the func-
tionality of a multiprogramming system, plus additional features to accommodate 
multiple processors. The key design issues include the following:

•	 Simultaneous concurrent processes or threads: Kernel routines need to be reen-
trant to allow several processors to execute the same kernel code simultane-
ously. With multiple processors executing the same or different parts of the 
kernel, kernel tables and management structures must be managed properly to 
avoid data corruption or invalid operations.

•	 Scheduling: Any processor may perform scheduling, which complicates the task 
of enforcing a scheduling policy and assuring that corruption of the sched-
uler data structures is avoided. If kernel-level multithreading is used, then the 
opportunity exists to schedule multiple threads from the same process simul-
taneously on multiple processors. Multiprocessor scheduling will be examined 
in Chapter 10.

•	 Synchronization: With multiple active processes having potential access to 
shared address spaces or shared I/O resources, care must be taken to provide 
effective synchronization. Synchronization is a facility that enforces mutual 
exclusion and event ordering. A common synchronization mechanism used in 
multiprocessor operating systems is locks, and will be described in Chapter 5.

•	 Memory management: Memory management on a multiprocessor must deal 
with all of the issues found on uniprocessor computers, and will be discussed in 
Part Three. In addition, the OS needs to exploit the available hardware paral-
lelism to achieve the best performance. The paging mechanisms on different 
processors must be coordinated to enforce consistency when several proces-
sors share a page or segment and to decide on page replacement. The reuse of 
physical pages is the biggest problem of concern; that is, it must be guaranteed 
that a physical page can no longer be accessed with its old contents before the 
page is put to a new use.

M02_STAL4290_09_GE_C02.indd   98 5/2/17   6:27 PM



2.6 / OS DESIGN CONSIDERATIONS FOR MULTIPROCESSOR AND MULTICORE   99

•	 Reliability and fault tolerance: The OS should provide graceful degradation 
in the face of processor failure. The scheduler and other portions of the OS 
must recognize the loss of a processor and restructure management tables 
accordingly.

Because multiprocessor OS design issues generally involve extensions to solu-
tions to multiprogramming uniprocessor design problems, we do not treat multi-
processor operating systems separately. Rather, specific multiprocessor issues are 
addressed in the proper context throughout this book.

Multicore OS Considerations

The considerations for multicore systems include all the design issues discussed so 
far in this section for SMP systems. But additional concerns arise. The issue is one of 
the scale of the potential parallelism. Current multicore vendors offer systems with 
ten or more cores on a single chip. With each succeeding processor technology gen-
eration, the number of cores and the amount of shared and dedicated cache memory 
increases, so we are now entering the era of “many-core” systems.

The design challenge for a many-core multicore system is to efficiently har-
ness the multicore processing power and intelligently manage the substantial on-chip 
resources. A central concern is how to match the inherent parallelism of a many-core 
system with the performance requirements of applications. The potential for paral-
lelism in fact exists at three levels in contemporary multicore system. First, there is 
hardware parallelism within each core processor, known as instruction level parallel-
ism, which may or may not be exploited by application programmers and compilers. 
Second, there is the potential for multiprogramming and multithreaded execution 
within each processor. Finally, there is the potential for a single application to execute 
in concurrent processes or threads across multiple cores. Without strong and effective 
OS support for the last two types of parallelism just mentioned, hardware resources 
will not be efficiently used.

In essence, since the advent of multicore technology, OS designers have been 
struggling with the problem of how best to extract parallelism from computing work-
loads. A variety of approaches are being explored for next-generation operating sys-
tems. We will introduce two general strategies in this section, and will consider some 
details in later chapters.

Parallelism within Applications  Most applications can, in principle, be 
subdivided into multiple tasks that can execute in parallel, with these tasks then 
being implemented as multiple processes, perhaps each with multiple threads. The 
difficulty is that the developer must decide how to split up the application work into 
independently executable tasks. That is, the developer must decide what pieces can 
or should be executed asynchronously or in parallel. It is primarily the compiler and 
the programming language features that support the parallel programming design 
process. But the OS can support this design process, at minimum, by efficiently 
allocating resources among parallel tasks as defined by the developer.

One of the most effective initiatives to support developers is Grand Central 
Dispatch (GCD), implemented in the latest release of the UNIX-based Mac OS X 
and the iOS operating systems. GCD is a multicore support capability. It does not 

M02_STAL4290_09_GE_C02.indd   99 5/2/17   6:27 PM



100    Chapter 2 / Operating System Overview

help the developer decide how to break up a task or application into separate con-
current parts. But once a developer has identified something that can be split off 
into a separate task, GCD makes it as easy and noninvasive as possible to actually 
do so.

In essence, GCD is a thread pool mechanism, in which the OS maps tasks onto 
threads representing an available degree of concurrency (plus threads for blocking 
on I/O). Windows also has a thread pool mechanism (since 2000), and thread pools 
have been heavily used in server applications for years. What is new in GCD is the 
extension to programming languages to allow anonymous functions (called blocks) as 
a way of specifying tasks. GCD is hence not a major evolutionary step. Nevertheless, 
it is a new and valuable tool for exploiting the available parallelism of a multicore 
system.

One of Apple’s slogans for GCD is “islands of serialization in a sea of concur-
rency.” That captures the practical reality of adding more concurrency to run-of-the-
mill desktop applications. Those islands are what isolate developers from the thorny 
problems of simultaneous data access, deadlock, and other pitfalls of multithreading. 
Developers are encouraged to identify functions of their applications that would be 
better executed off the main thread, even if they are made up of several sequential 
or otherwise partially interdependent tasks. GCD makes it easy to break off the 
entire unit of work while maintaining the existing order and dependencies between 
subtasks. In later chapters, we will look at some of the details of GCD.

Virtual Machine Approach  An alternative approach is to recognize that with 
the ever-increasing number of cores on a chip, the attempt to multiprogram individual 
cores to support multiple applications may be a misplaced use of resources [JACK10]. 
If instead, we allow one or more cores to be dedicated to a particular process, then 
leave the processor alone to devote its efforts to that process, we avoid much of the 
overhead of task switching and scheduling decisions. The multicore OS could then 
act as a hypervisor that makes a high-level decision to allocate cores to applications, 
but does little in the way of resource allocation beyond that.

The reasoning behind this approach is as follows. In the early days of computing, 
one program was run on a single processor. With multiprogramming, each application 
is given the illusion that it is running on a dedicated processor. Multiprogramming 
is based on the concept of a process, which is an abstraction of an execution envi-
ronment. To manage processes, the OS requires protected space, free from user and 
program interference. For this purpose, the distinction between kernel mode and user 
mode was developed. In effect, kernel mode and user mode abstracted the processor 
into two processors. With all these virtual processors, however, come struggles over 
who gets the attention of the real processor. The overhead of switching between all 
these processors starts to grow to the point where responsiveness suffers, especially 
when multiple cores are introduced. But with many-core systems, we can consider 
dropping the distinction between kernel and user mode. In this approach, the OS 
acts more like a hypervisor. The programs themselves take on many of the duties of 
resource management. The OS assigns an application, a processor and some memory, 
and the program itself, using metadata generated by the compiler, would best know 
how to use these resources.

M02_STAL4290_09_GE_C02.indd   100 5/2/17   6:27 PM



2.7 / MICROSOFT WINDOWS OVERVIEW   101

	 2.7	 MICROSOFT WINDOWS OVERVIEW

Background

Microsoft initially used the name Windows in 1985, for an operating environ-
ment extension to the primitive MS-DOS operating system, which was a success-
ful OS used on early personal computers. This Windows/MS-DOS combination 
was ultimately replaced by a new version of Windows, known as Windows NT, 
first released in 1993, and intended for laptop and desktop systems. Although 
the basic internal architecture has remained roughly the same since Windows 
NT, the OS has continued to evolve with new functions and features. The latest 
release at the time of this writing is Windows 10. Windows 10 incorporates fea-
tures from the preceding desktop/laptop release, Windows 8.1, as well as from 
versions of Windows intended for mobile devices for the Internet of Things 
(IoT). Windows 10 also incorporates software from the Xbox One system. The 
resulting unified Windows 10 supports desktops, laptops, smart phones, tablets, 
and Xbox One.

Architecture

Figure 2.14 illustrates the overall structure of Windows. As with virtually all operating 
systems, Windows separates application-oriented software from the core OS software. 
The latter, which includes the Executive, the Kernel, device drivers, and the hardware 
abstraction layer, runs in kernel mode. Kernel-mode software has access to system 
data and to the hardware. The remaining software, running in user mode, has limited 
access to system data.

Operating System Organization  Windows has a highly modular architecture. 
Each system function is managed by just one component of the OS. The rest of the 
OS and all applications access that function through the responsible component 
using standard interfaces. Key system data can only be accessed through the 
appropriate function. In principle, any module can be removed, upgraded, or 
replaced without rewriting the entire system or its standard application program 
interfaces (APIs).

The kernel-mode components of Windows are the following:

•	 Executive: Contains the core OS services, such as memory management, process 
and thread management, security, I/O, and interprocess communication.

•	 Kernel: Controls execution of the processors. The Kernel manages thread 
scheduling, process switching, exception and interrupt handling, and multipro-
cessor synchronization. Unlike the rest of the Executive and the user levels, the 
Kernel’s own code does not run in threads.

•	 Hardware abstraction layer (HAL): Maps between generic hardware com-
mands and responses and those unique to a specific platform. It isolates the OS 
from platform-specific hardware differences. The HAL makes each comput-
er’s system bus, direct memory access (DMA) controller, interrupt controller, 

M02_STAL4290_09_GE_C02.indd   101 5/2/17   6:27 PM



102    Chapter 2 / Operating System Overview

system timers, and memory controller look the same to the Executive and 
kernel components. It also delivers the support needed for SMP, explained 
subsequently.

•	 Device drivers: Dynamic libraries that extend the functionality of the Execu-
tive. These include hardware device drivers that translate user I/O function 
calls into specific hardware device I/O requests, and software components for 
implementing file systems, network protocols, and any other system extensions 
that need to run in kernel mode.

•	 Windowing and graphics system: Implements the GUI functions, such as deal-
ing with windows, user interface controls, and drawing.

Figure 2.14  Windows Internals Architecture [RUSS11]

User mode

Kernel mode

Session
manager

System
threads

System service dispatcher

Winlogon

Lsass

Lsass = local security authentication server
POSIX = portable operating system interface
GDI = graphics device interface
DLL = dynamic link library

Colored area indicates Executive

System support
processes

Service processes Applications

Environment
subsystems

Service control
manager

Spooler

Winmgmt.exe

SVChost.exe

User
application

Subsytem DLLs Win32

Ntdll.dll

Windows
explorer

Task manager

(Kernel-mode callable interfaces)
Win32 USER,

GDI

Graphics
drivers

Hardware abstraction layer (HAL)

File system
 cache

O
bject m

anager

Plug-and-play
m

anager

Pow
er m

anager

Security reference
m

onitor

V
irtual m

em
ory

Processes and
threads

C
onfiguration

m
anager (registry)

L
ocal procedure

call

POSIX

Device
and file
system
drivers

I/O manager

Kernel

Services.exe

M02_STAL4290_09_GE_C02.indd   102 5/2/17   6:27 PM



2.7 / MICROSOFT WINDOWS OVERVIEW   103

The Windows Executive includes components for specific system functions and 
provides an API for user-mode software. Following is a brief description of each of 
the Executive modules:

•	 I/O manager: Provides a framework through which I/O devices are accessible 
to applications, and is responsible for dispatching to the appropriate device 
drivers for further processing. The I/O manager implements all the Windows 
I/O APIs and enforces security and naming for devices, network protocols, 
and file systems (using the object manager). Windows I/O will be discussed 
in Chapter 11.

•	 Cache manager: Improves the performance of file-based I/O by causing recently 
referenced file data to reside in main memory for quick access, and by deferring 
disk writes by holding the updates in memory for a short time before sending 
them to the disk in more efficient batches.

•	 Object manager: Creates, manages, and deletes Windows Executive objects that 
are used to represent resources such as processes, threads, and synchronization 
objects. It enforces uniform rules for retaining, naming, and setting the security 
of objects. The object manager also creates the entries in each process’s handle 
table, which consist of access control information and a pointer to the object. 
Windows objects will be discussed later in this section.

•	 Plug-and-play manager: Determines which drivers are required to support a 
particular device and loads those drivers.

•	 Power manager: Coordinates power management among various devices and 
can be configured to reduce power consumption by shutting down idle devices, 
putting the processor to sleep, and even writing all of memory to disk and shut-
ting off power to the entire system.

•	 Security reference monitor: Enforces access-validation and audit-generation 
rules. The Windows object-oriented model allows for a consistent and uniform 
view of security, right down to the fundamental entities that make up the Execu-
tive. Thus, Windows uses the same routines for access validation and for audit 
checks for all protected objects, including files, processes, address spaces, and 
I/O devices. Windows security will be discussed in Chapter 15.

•	 Virtual memory manager: Manages virtual addresses, physical memory, and 
the paging files on disk. Controls the memory management hardware and data 
structures which map virtual addresses in the process’s address space to physical 
pages in the computer’s memory. Windows virtual memory management will 
be described in Chapter 8.

•	 Process/thread manager: Creates, manages, and deletes process and thread 
objects. Windows process and thread management will be described in Chapter 4.

•	 Configuration manager: Responsible for implementing and managing the sys-
tem registry, which is the repository for both system-wide and per-user settings 
of various parameters.

M02_STAL4290_09_GE_C02.indd   103 5/2/17   6:27 PM



104    Chapter 2 / Operating System Overview

•	 Advanced local procedure call (ALPC) facility: Implements an efficient cross-
process procedure call mechanism for communication between local processes 
implementing services and subsystems. Similar to the remote procedure call 
(RPC) facility used for distributed processing.

User-Mode Processes  Windows supports four basic types of user-mode processes:

1.	 Special system processes: User-mode services needed to manage the system, 
such as the session manager, the authentication subsystem, the service manager, 
and the logon process.

2.	 Service processes: The printer spooler, the event logger, user-mode components 
that cooperate with device drivers, various network services, and many others. 
Services are used by both Microsoft and external software developers to extend 
system functionality, as they are the only way to run background user-mode 
activity on a Windows system.

3.	 Environment subsystems: Provide different OS personalities (environments). 
The supported subsystems are Win32 and POSIX. Each environment 
subsystem includes a subsystem process shared among all applications using 
the subsystem and dynamic link libraries (DLLs) that convert the user appli-
cation calls to ALPC calls on the subsystem process, and/or native Windows 
calls.

4.	 User applications: Executables (EXEs) and DLLs that provide the functional-
ity users run to make use of the system. EXEs and DLLs are generally targeted 
at a specific environment subsystem; although some of the programs that are 
provided as part of the OS use the native system interfaces (NT API). There is 
also support for running 32-bit programs on 64-bit systems.

Windows is structured to support applications written for multiple OS per-
sonalities. Windows provides this support using a common set of kernel-mode 
components that underlie the OS environment subsystems. The implementation of 
each environment subsystem includes a separate process, which contains the shared 
data structures, privileges, and Executive object handles needed to implement a 
particular personality. The process is started by the Windows Session Manager 
when the first application of that type is started. The subsystem process runs as a 
system user, so the Executive will protect its address space from processes run by 
ordinary users.

An environment subsystem provides a graphical or command-line user inter-
face that defines the look and feel of the OS for a user. In addition, each subsys-
tem provides the API for that particular environment. This means that applications 
created for a particular operating environment need only be recompiled to run on 
Windows. Because the OS interface that applications see is the same as that for which 
they were written, the source code does not need to be modified.

Client/Server Model

The Windows OS services, the environment subsystems, and the applications are 
structured using the client/server computing model, which is a common model for 

M02_STAL4290_09_GE_C02.indd   104 5/2/17   6:27 PM



2.7 / MICROSOFT WINDOWS OVERVIEW   105

distributed computing and will be discussed in Part Six. This same architecture can be 
adopted for use internally to a single system, as is the case with Windows.

The native NT API is a set of kernel-based services which provide the core 
abstractions used by the system, such as processes, threads, virtual memory, I/O, and 
communication. Windows provides a far richer set of services by using the client/
server model to implement functionality in user-mode processes. Both the environ-
ment subsystems and the Windows user-mode services are implemented as processes 
that communicate with clients via RPC. Each server process waits for a request from 
a client for one of its services (e.g., memory services, process creation services, or 
networking services). A client, which can be an application program or another server 
program, requests a service by sending a message. The message is routed through the 
Executive to the appropriate server. The server performs the requested operation 
and returns the results or status information by means of another message, which is 
routed through the Executive back to the client.

Advantages of a client/server architecture include the following:

•	 It simplifies the Executive. It is possible to construct a variety of APIs imple-
mented in user-mode servers without any conflicts or duplications in the Execu-
tive. New APIs can be added easily.

•	 It improves reliability. Each new server runs outside of the kernel, with its 
own partition of memory, protected from other servers. A single server can fail 
without crashing or corrupting the rest of the OS.

•	 It provides a uniform means for applications to communicate with services 
via RPCs without restricting flexibility. The message-passing process is hidden 
from the client applications by function stubs, which are small pieces of code 
which wrap the RPC call. When an application makes an API call to an envi-
ronment subsystem or a service, the stub in the client application packages the 
parameters for the call and sends them as a message to the server process that 
implements the call.

•	 It provides a suitable base for distributed computing. Typically, distributed 
computing makes use of a client/server model, with remote procedure calls 
implemented using distributed client and server modules and the exchange of 
messages between clients and servers. With Windows, a local server can pass 
a message on to a remote server for processing on behalf of local client appli-
cations. Clients need not know whether a request is being serviced locally or 
remotely. Indeed, whether a request is serviced locally or remotely can change 
dynamically, based on current load conditions and on dynamic configuration 
changes.

Threads and SMP

Two important characteristics of Windows are its support for threads and for symmet-
ric multiprocessing (SMP), both of which were introduced in Section 2.4. [RUSS11] 
lists the following features of Windows that support threads and SMP:

•	 OS routines can run on any available processor, and different routines can 
execute simultaneously on different processors.

M02_STAL4290_09_GE_C02.indd   105 5/2/17   6:27 PM



106    Chapter 2 / Operating System Overview

•	 Windows supports the use of multiple threads of execution within a single pro-
cess. Multiple threads within the same process may execute on different proces-
sors simultaneously.

•	 Server processes may use multiple threads to process requests from more than 
one client simultaneously.

•	 Windows provides mechanisms for sharing data and resources between pro-
cesses and flexible interprocess communication capabilities.

Windows Objects

Though the core of Windows is written in C, the design principles followed draw 
heavily on the concepts of object-oriented design. This approach facilitates the shar-
ing of resources and data among processes, and the protection of resources from 
unauthorized access. Among the key object-oriented concepts used by Windows are 
the following:

•	 Encapsulation: An object consists of one or more items of data, called attri-
butes, and one or more procedures that may be performed on those data, called 
services. The only way to access the data in an object is by invoking one of 
the object’s services. Thus, the data in the object can easily be protected from 
unauthorized use and from incorrect use (e.g., trying to execute a nonexecut-
able piece of data).

•	 Object class and instance: An object class is a template that lists the attributes 
and services of an object, and defines certain object characteristics. The OS 
can create specific instances of an object class as needed. For example, there is 
a single process object class and one process object for every currently active 
process. This approach simplifies object creation and management.

•	 Inheritance: Although the implementation is hand coded, the Executive uses 
inheritance to extend object classes by adding new features. Every Executive 
class is based on a base class which specifies virtual methods that support cre-
ating, naming, securing, and deleting objects. Dispatcher objects are Executive 
objects that inherit the properties of an event object, so they can use common 
synchronization methods. Other specific object types, such as the device class, 
allow classes for specific devices to inherit from the base class, and add addi-
tional data and methods.

•	 Polymorphism: Internally, Windows uses a common set of API functions to 
manipulate objects of any type; this is a feature of polymorphism, as defined in 
Appendix D. However, Windows is not completely polymorphic because there 
are many APIs that are specific to a single object type.

The reader unfamiliar with object-oriented concepts should review Appendix D.
Not all entities in Windows are objects. Objects are used in cases where data are 

intended for user-mode access, or when data access is shared or restricted. Among 
the entities represented by objects are files, processes, threads, semaphores, timers, and 
graphical windows. Windows creates and manages all types of objects in a uniform way, 
via the object manager. The object manager is responsible for creating and destroying 
objects on behalf of applications, and for granting access to an object’s services and data.

M02_STAL4290_09_GE_C02.indd   106 5/2/17   6:27 PM



2.7 / MICROSOFT WINDOWS OVERVIEW   107

Each object within the Executive, sometimes referred to as a kernel object 
(to distinguish from user-level objects not of concern to the Executive), exists as a 
memory block allocated by the kernel and is directly accessible only by kernel-mode 
components. Some elements of the data structure are common to all object types (e.g., 
object name, security parameters, usage count), while other elements are specific to 
a particular object type (e.g., a thread object’s priority). Because these object data 
structures are in the part of each process’s address space accessible only by the kernel, 
it is impossible for an application to reference these data structures and read or write 
them directly. Instead, applications manipulate objects indirectly through the set of 
object manipulation functions supported by the Executive. When an object is created, 
the application that requested the creation receives back a handle for the object. In 
essence, a handle is an index into a per-process Executive table containing a pointer 
to the referenced object. This handle can then be used by any thread within the same 
process to invoke Win32 functions that work with objects, or can be duplicated into 
other processes.

Objects may have security information associated with them, in the form of a 
Security Descriptor (SD). This security information can be used to restrict access to 
the object based on contents of a token object which describes a particular user. For 
example, a process may create a named semaphore object with the intent that only 
certain users should be able to open and use that semaphore. The SD for the sema-
phore object can list those users that are allowed (or denied) access to the semaphore 
object along with the sort of access permitted (read, write, change, etc.).

In Windows, objects may be either named or unnamed. When a process cre-
ates an unnamed object, the object manager returns a handle to that object, and the 
handle is the only way to refer to it. Handles can be inherited by child processes or 
duplicated between processes. Named objects are also given a name that other unre-
lated processes can use to obtain a handle to the object. For example, if process A 
wishes to synchronize with process B, it could create a named event object and pass 
the name of the event to B. Process B could then open and use that event object. 
However, if process A simply wished to use the event to synchronize two threads 
within itself, it would create an unnamed event object, because there is no need for 
other processes to be able to use that event.

There are two categories of objects used by Windows for synchronizing the use 
of the processor:

•	 Dispatcher objects: The subset of Executive objects which threads can wait on 
to control the dispatching and synchronization of thread-based system opera-
tions. These will be described in Chapter 6.

•	 Control objects: Used by the Kernel component to manage the operation of 
the processor in areas not managed by normal thread scheduling. Table 2.5 lists 
the Kernel control objects.

Windows is not a full-blown object-oriented OS. It is not implemented in an 
object-oriented language. Data structures that reside completely within one Execu-
tive component are not represented as objects. Nevertheless, Windows illustrates the 
power of object-oriented technology and represents the increasing trend toward the 
use of this technology in OS design.

M02_STAL4290_09_GE_C02.indd   107 5/2/17   6:27 PM



108    Chapter 2 / Operating System Overview

	 2.8	 TRADITIONAL UNIX SYSTEMS

History

UNIX was initially developed at Bell Labs and became operational on a PDP-7 
in 1970. Work on UNIX at Bell Labs, and later elsewhere, produced a series of ver-
sions of UNIX. The first notable milestone was porting the UNIX system from the 
PDP-7 to the PDP-11. This was the first hint that UNIX would be an OS for all 
computers. The next important milestone was the rewriting of UNIX in the program-
ming language C. This was an unheard-of strategy at the time. It was generally felt 
that something as complex as an OS, which must deal with time-critical events, had 
to be written exclusively in assembly language. Reasons for this attitude include the 
following:

•	 Memory (both RAM and secondary store) was small and expensive by today’s 
standards, so effective use was important. This included various techniques for 
overlaying memory with different code and data segments, and self-modifying 
code.

•	 Even though compilers had been available since the 1950s, the computer indus-
try was generally skeptical of the quality of automatically generated code. With 
resource capacity small, efficient code, both in terms of time and space, was 
essential.

•	 Processor and bus speeds were relatively slow, so saving clock cycles could make 
a substantial difference in execution time.

The C implementation demonstrated the advantages of using a high-level 
language for most if not all of the system code. Today, virtually all UNIX implemen-
tations are written in C.

Asynchronous procedure call Used to break into the execution of a specified thread and to cause a proce-
dure to be called in a specified processor mode.

Deferred procedure call Used to postpone interrupt processing to avoid delaying hardware interrupts. 
Also used to implement timers and interprocessor communication.

Interrupt Used to connect an interrupt source to an interrupt service routine by means 
of an entry in an Interrupt Dispatch Table (IDT). Each processor has an IDT 
that is used to dispatch interrupts that occur on that processor.

Process Represents the virtual address space and control information necessary for 
the execution of a set of thread objects. A process contains a pointer to an 
address map, a list of ready threads containing thread objects, a list of threads 
belonging to the process, the total accumulated time for all threads executing 
within the process, and a base priority.

Thread Represents thread objects, including scheduling priority and quantum, and 
which processors the thread may run on.

Profile Used to measure the distribution of run time within a block of code. Both 
user and system codes can be profiled.

Table 2.5  Windows Kernel Control Objects

M02_STAL4290_09_GE_C02.indd   108 5/2/17   6:27 PM



2.8 / TRADITIONAL UNIX SYSTEMS   109

These early versions of UNIX were popular within Bell Labs. In 1974, the 
UNIX system was described in a technical journal for the first time [RITC74]. This 
spurred great interest in the system. Licenses for UNIX were provided to commercial 
institutions as well as universities. The first widely available version outside Bell Labs 
was Version 6, in 1976. The follow-on Version 7, released in 1978, is the ancestor of 
most modern UNIX systems. The most important of the non-AT&T systems to be 
developed was done at the University of California at Berkeley, called UNIX BSD 
(Berkeley Software Distribution), running first on PDP and then on VAX comput-
ers. AT&T continued to develop and refine the system. By 1982, Bell Labs had com-
bined several AT&T variants of UNIX into a single system, marketed commercially 
as UNIX System III. A number of features was later added to the OS to produce 
UNIX System V.

Description

The classic UNIX architecture can be pictured as in three levels: hardware, kernel, 
and user. The OS is often called the system kernel, or simply the kernel, to emphasize 
its isolation from the user and applications. It interacts directly with the hardware. It is 
the UNIX kernel that we will be concerned with in our use of UNIX as an example in 
this book. UNIX also comes equipped with a number of user services and interfaces 
that are considered part of the system. These can be grouped into the shell, which 
supports system calls from applications, other interface software, and the components 
of the C compiler (compiler, assembler, loader). The level above this consists of user 
applications and the user interface to the C compiler.

A look at the kernel is provided in Figure 2.15. User programs can invoke OS 
services either directly, or through library programs. The system call interface is the 
boundary with the user and allows higher-level software to gain access to specific 
kernel functions. At the other end, the OS contains primitive routines that interact 
directly with the hardware. Between these two interfaces, the system is divided into 
two main parts: one concerned with process control, and the other concerned with file 
management and I/O. The process control subsystem is responsible for memory man-
agement, the scheduling and dispatching of processes, and the synchronization and 
interprocess communication of processes. The file system exchanges data between 
memory and external devices either as a stream of characters or in blocks. To achieve 
this, a variety of device drivers are used. For block-oriented transfers, a disk cache 
approach is used: A system buffer in main memory is interposed between the user 
address space and the external device.

The description in this subsection has dealt with what might be termed tra-
ditional UNIX systems; [VAHA96] uses this term to refer to System V Release 3 
(SVR3), 4.3BSD, and earlier versions. The following general statements may be made 
about a traditional UNIX system. It is designed to run on a single processor, and lacks 
the ability to protect its data structures from concurrent access by multiple processors. 
Its kernel is not very versatile, supporting a single type of file system, process schedul-
ing policy, and executable file format. The traditional UNIX kernel is not designed to 
be extensible and has few facilities for code reuse. The result is that, as new features 
were added to the various UNIX versions, much new code had to be added, yielding 
a bloated and unmodular kernel.

M02_STAL4290_09_GE_C02.indd   109 5/2/17   6:27 PM



110    Chapter 2 / Operating System Overview

	 2.9	 MODERN UNIX SYSTEMS

As UNIX evolved, the number of different implementations proliferated, each pro-
viding some useful features. There was a need to produce a new implementation that 
unified many of the important innovations, added other modern OS design features, 
and produced a more modular architecture. Typical of the modern UNIX kernel is 
the architecture depicted in Figure 2.16. There is a small core of facilities, written in 
a modular fashion, that provide functions and services needed by a number of OS 
processes. Each of the outer circles represents functions and an interface that may 
be implemented in a variety of ways.

We now turn to some examples of modern UNIX systems (see Figure 2.17).

System V Release 4 (SVR4)

SVR4, developed jointly by AT&T and Sun Microsystems, combines features from 
SVR3, 4.3BSD, Microsoft Xenix System V, and SunOS. It was almost a total rewrite 
of the System V kernel and produced a clean, if complex, implementation. New fea-
tures in the release include real-time processing support, process scheduling classes, 

Figure 2.15  Traditional UNIX Architecture

Hardware level

User level

Kernel level

User programs

Trap

Hardware control

System call interface

Libraries

Device drivers

File subsystem
Process
control

subsystem

Character Block

Bu�er cache

Inter-process
communication

Scheduler

Memory
management

M02_STAL4290_09_GE_C02.indd   110 5/2/17   6:27 PM



2.9 / MODERN UNIX SYSTEMS   111

dynamically allocated data structures, virtual memory management, virtual file sys-
tem, and a preemptive kernel.

SVR4 draws on the efforts of both commercial and academic designers, and was 
developed to provide a uniform platform for commercial UNIX deployment. It has 
succeeded in this objective and is perhaps the most important UNIX variant. It incor-
porates most of the important features ever developed on any UNIX system and does 
so in an integrated, commercially viable fashion. SVR4 runs on processors ranging 
from 32-bit microprocessors up to supercomputers.

BSD

The Berkeley Software Distribution (BSD) series of UNIX releases have played a 
key role in the development of OS design theory. 4.xBSD is widely used in academic 
installations and has served as the basis of a number of commercial UNIX products. 
It is probably safe to say that BSD is responsible for much of the popularity of UNIX, 
and that most enhancements to UNIX first appeared in BSD versions.

Figure 2.16  Modern UNIX Kernel

Common
facilities

Virtual
memory

framework

Block
device
switch

exec
switch

a.out

File mappings

Disk driver

Tape driver

Network
driver

tty
driver

System
processes

Time-sharing
processes

RFS

s5fs

FFS

NFS

Anonymous
mappings

co�

elf

Streams

vnode/vfs
interface

Scheduler
framework

Device
mappings

M02_STAL4290_09_GE_C02.indd   111 5/2/17   6:27 PM



112    Chapter 2 / Operating System Overview

4.4BSD was the final version of BSD to be released by Berkeley, with the design 
and implementation organization subsequently dissolved. It is a major upgrade to 
4.3BSD and includes a new virtual memory system, changes in the kernel structure, 
and a long list of other feature enhancements.

There are several widely used, open-source versions of BSD. FreeBSD 
is popular for Internet-based servers and firewalls and is used in a number of 
embedded systems. NetBSD is available for many platforms, including large-
scale server systems, desktop systems, and handheld devices, and is often used in 
embedded systems. OpenBSD is an open-source OS that places special emphasis 
on security.

The latest version of the Macintosh OS, originally known as OS X and now 
called MacOS, is based on FreeBSD 5.0 and the Mach 3.0 microkernel.

Solaris 11

Solaris is Oracle’s SVR4-based UNIX release, with the latest version being 11. Solaris 
provides all of the features of SVR4 plus a number of more advanced features, such 
as a fully preemptable, multithreaded kernel, full support for SMP, and an object-
oriented interface to file systems. Solaris is one the most widely used and most suc-
cessful commercial UNIX implementations.

Figure 2.17  UNIX Family Tree

FreeBSD

4.4

11.0

7.0

6.0

4.7

11.3

11iv3

7.2

10.12

4.1.4

1970 1980 1990 2000 2010 2016

NetBSD

OpenBSD

SunOS

NextStep  3.3

Xenix OS

GNU

Commercial Unix (AT&T) UnixWare (Univel/SCO)

Solaris (Sun/Oracle)

Linux

OS X (now macOS)

HP-UX

AIX (IBM)

BSD (Berkeley Software Distribution)

BSD
Family

Research Unix (Bell Labs) 10.5

System V
Family

M02_STAL4290_09_GE_C02.indd   112 5/2/17   6:27 PM


