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To Karen

Los ríos no llevan agua,
el sol las fuentes secó . . .

¡Yo sé donde hay una fuente
que no ha de secar el sol!
La fuente que no se agota
es mi propio corazón . . .

—V. Ruiz Aguilera (1862)
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What’s New in the  
Tenth Edition

Over the past few editions, I agonized over the benefit of continuing to include the 
hand computational algorithms that, to my thinking, have been made obsolete by 
 present-day great advances in computing. I no longer have this “anxiety” because I 
sought and received feedback from colleagues regarding this matter. The consensus is 
that these classical algorithms must be preserved because they are an important part 
of OR history. Some responses even included possible scenarios (now included in this 
edition) in which these classical algorithms can be beneficial in practice.

In the spirit of my colleagues collective wisdom, which I now enthusiastically 
 espouse, I added throughout the book some 25 entries titled Aha! moments. These 
 entries, written mostly in an informal style, deal with OR anecdotes/stories (some 
dating back to centuries ago) and OR concepts (theory, applications, computations, 
and teaching methodology). The goal is to provide a historical perspective of the roots 
of OR (and, hopefully, render a “less dry” book read).

Additional changes/additions in the tenth edition include:

•	 Using a brief introduction, inventory modeling is presented within the more 
 encompassing context of supply chains.

•	 New sections are added about computational issues in the simplex method  
(Section 7.2.3) and in inventory (Section 13.5).

•	 This edition adds two new case analyses, resulting in a total of 17 fully developed 
real-life applications. All the cases appear in Chapter 26 on the website and are 
cross-referenced throughout the book using abstracts at the start of their most 
applicable chapters. For convenience, a select number of these cases appear in the 
printed book (I would have liked to move all the cases to their most applicable 
chapters, but I am committed to limiting the number of hard-copy pages to less 
than 900).

•	 By popular demand, all problems now appear at end of their respective chapters 
and are cross-referenced by text section to facilitate making problem assignments.

•	 New problems have been added.
•	 TORA software has been updated.

 23
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Chapter 1

What Is Operations research?

1.1 IntroductIon

The first formal activities of Operations Research (OR) were initiated in England 
 during World War II, when a team of British scientists set out to assess the best utiliza-
tion of war materiel based on scientific principles rather than on ad hoc rules. After the 
war, the ideas advanced in military operations were adapted to improve efficiency and 
productivity in the civilian sector.

This chapter introduces the basic terminology of OR, including mathematical 
 modeling, feasible solutions, optimization, and iterative algorithmic computations. It 
stresses that defining the problem correctly is the most important (and most difficult) 
phase of  practicing OR. The chapter also emphasizes that, while mathematical model-
ing is a cornerstone of OR, unquantifiable factors (such as human behavior) must be 
 accounted for in the final decision. The book presents a variety of applications using 
solved examples and chapter problems. In particular, the book includes end-of-chapter 
fully developed case analyses.

1.2 operatIons research Models

Consider the following tickets purchasing problem. A businessperson has a 5-week 
commitment traveling between Fayetteville (FYV) and Denver (DEN). Weekly 
 departure from Fayetteville occurs on Mondays for return on Wednesdays. A regular 
roundtrip ticket costs $400, but a 20% discount is granted if the roundtrip dates span 
a weekend. A one-way ticket in either direction costs 75% of the regular price. How 
should the tickets be bought for the 5-week period?

 31
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We can look at the situation as a decision-making problem whose solution 
 requires answering three questions:

1. What are the decision alternatives?
2. Under what restrictions is the decision made?
3. What is an appropriate objective criterion for evaluating the alternatives?

Three plausible alternatives come to mind:

1. Buy five regular FYV-DEN-FYV for departure on Monday and return on 
Wednesday of the same week.

2. Buy one FYV-DEN, four DEN-FYV-DEN that span weekends, and one DEN-FYV.
3. Buy one FYV-DEN-FYV to cover Monday of the first week and Wednesday of 

the last week and four DEN-FYV-DEN to cover the remaining legs. All tickets in 
this alternative span at least one weekend.

The restriction on these options is that the businessperson should be able to leave 
FYV on Monday and return on Wednesday of the same week.

An obvious objective criterion for evaluating the proposed alternatives is the price 
of the tickets. The alternative that yields the smallest cost is the best. Specifically, we have:

Alternative 1 cost = 5 * $400 = $2000

Alternative 2 cost = .75 * $400 + 4 * 1.8 * $4002 + .75 * $400 = $1880

Alternative 3 cost = 5 * 1.8 * $4002 = $1600

Alternative 3 is the cheapest.
Though the preceding example illustrates the three main components of an OR 

model—alternatives, objective criterion, and constraints—situations differ in the details 
of how each component is developed, and how the resulting model is solved. To illus-
trate this point, consider the following garden problem: A home owner is in the process 
of starting a backyard vegetable garden. The garden must take on a rectangular shape to 
facilitate row irrigation. To keep critters out, the garden must be fenced. The owner has 
enough material to build a fence of length L = 100 ft. The goal is to fence the largest 
possible rectangular area.

In contrast with the tickets example, where the number of alternatives is finite, the 
number of alternatives in the present example is infinite; that is, the width and height of 
the rectangle can each assume (theoretically) infinity of values between 0 and L. In this 
case, the width and the height are continuous variables.

Because the variables of the problem are continuous, it is impossible to find the 
solution by exhaustive enumeration. However, we can sense the trend toward the best 
value of the garden area by fielding increasing values of width (and hence decreasing 
values of height). For example, for L = 100 ft, the combinations (width, height) = (10, 
40), (20, 30), (25, 25), (30, 20), and (40, 10) respectively yield (area) = (400, 600, 625, 
600, and 400), which demonstrates, but not proves, that the largest area occurs when 
width = height = L>4 = 25 ft. Clearly, this is no way to compute the optimum, par-
ticularly for situations with several decision variables. For this reason, it is important to 
express the problem mathematically in terms of its unknowns, in which case the best 
solution is found by applying appropriate solution methods.
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To demonstrate how the garden problem is expressed mathematically in terms of 
its two unknowns, width and height, define

w = width of the rectangle in feet

h = height of the rectangle in feet

Based on these definitions, the restrictions of the situation can be expressed verbally as

1. Width of rectangle + Height of rectangle = Half the length of the garden fence
2. Width and height cannot be negative

These restrictions are translated algebraically as

1. 21w + h2 = L
2. w Ú 0, h Ú 0

The only remaining component now is the objective of the problem; namely, 
maximization of the area of the rectangle. Let z be the area of the rectangle, then the 
complete model becomes

Maximize z = wh

subject to

21w + h2 = L

w, h Ú 0

Actually, this model can be simplified further by eliminating one of the variables in the 
objective function using the constraint equation; that is,

w = L
2 - h

The result is

z = wh = 1L
2 - h2h = Lh

2 - h2

The maximization of z is achieved by using differential calculus (Chapter 20), which 
yields the best solution as h = L

4 = 25 ft. Back substitution in the constraint equation 
then yields w = L

4 = 25 ft. Thus the solution calls for constructing a square-shaped 
garden.

Based on the preceding two examples, the general OR model can be organized in 
the following general format:

Maximize or minimize Objective Function

subject to

Constraints
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A solution is feasible if it satisfies all the constraints. It is optimal if, in addition to 
being feasible, it yields the best (maximum or minimum) value of the objective func-
tion. In the ticket purchasing problem, the problem considers three feasible alternatives, 
with the third alternative being optimal. In the garden problem, a feasible alternative 
must satisfy the condition w + h = L

2 , with w and h Ú 0, that is, nonnegative variables. 
This definition leads to an infinite number of feasible solutions and, unlike the ticket 
purchasing problem, which uses simple price comparisons, the optimum solution is 
 determined using differential calculus.

Though OR models are designed to optimize a specific objective criterion sub-
ject to a set of constraints, the quality of the resulting solution depends on the degree 
of completeness of the model in representing the real system. Take, for example, the 
ticket purchasing model. If all the dominant alternatives for purchasing the tickets are 
not identified, then the resulting solution is optimum only relative to the alternatives 
represented in the model. To be specific, if for some reason alternative 3 is left out of 
the model, the resulting “optimum” solution would call for purchasing the tickets for 
$1880, which is a suboptimal solution. The conclusion is that “the” optimum solution of 
a model is best only for that model. If the model happens to represent the real system 
reasonably well, then its solution is optimum also for the real situation.

1.3 solvIng the or Model

In practice, OR does not offer a single general technique for solving all mathematical 
models. Instead, the type and complexity of the mathematical model dictate the nature 
of the solution method. For example, in Section 1.2 the solution of the tickets purchas-
ing problem requires simple ranking of alternatives based on the total purchasing price, 
whereas the solution of the garden problem utilizes differential calculus to determine 
the maximum area.

The most prominent OR technique is linear programming. It is designed for 
 models with linear objective and constraint functions. Other techniques include  integer 
 programming (in which the variables assume integer values), dynamic programming (in 
which the original model can be decomposed into smaller more manageable subprob-
lems), network programming (in which the problem can be modeled as a network), and 
nonlinear programming (in which functions of the model are nonlinear). These are only 
a few among many available OR tools.

A peculiarity of most OR techniques is that solutions are not generally obtained 
in (formula-like) closed forms. Instead, they are determined by algorithms. An algorithm 
provides fixed computational rules that are applied repetitively to the problem, with 
each repetition (called iteration) attempting to move the solution closer to the optimum. 
Because the computations in each iteration are typically tedious and voluminous, it is 
imperative in practice to use the computer to carry out these algorithms.

Some mathematical models may be so complex that it becomes impossible to 
solve them by any of the available optimization algorithms. In such cases, it may be 
necessary to abandon the search for the optimal solution and simply seek a good solu-
tion using heuristics or metaheuristics, a collection of intelligent search rules of thumb 
that move the solution point advantageously toward the optimum.
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aha! Moment: ada lovelace, the First-ever algorithm programmer

Though the first conceptual development of an algorithm is attributed to the founder of alge-
bra Muhammad Ibn-Musa Al-Khwarizmi (born c. 780 in Khuwarezm, Uzbekistan, died c. 850 
in Baghdad, Iraq),1 it was British Ada Lovelace (1815–1852) who developed the first computer 
algorithm. And when we speak of computers, we are referring to the mechanical Difference and 
Analytical Engines pioneered and designed by the famed British mathematician Charles Babbage 
(1791–1871).

Lovelace had a keen interest in mathematics. As a teenager, she visited the Babbage home 
and was fascinated by his invention and its potential uses in doing more than just arithmetic 
operations. Collaborating with Babbage, she translated into English an article that provided the 
design details of the Analytical Engine. The article was based on lectures Babbage presented in 
Italy. In the translated article, Lovelace appended her own notes (which turned out to be longer 
than the original article and included some corrections of Babbage’s design ideas). One of her 
notes detailed the first-ever algorithm, that of computing Bernoulli numbers on the yet-to-be-
completed Analytical Engine. She even predicted that the Babbage machine had the potential to 
manipulate symbols (and not just numbers) and to create complex music scores.2

Ada Lovelace died at the young age of 37. In her honor, the computer language Ada, 
developed for the United States Department of Defense, was named after her. The annual 
mid-October Ada Lovelace Day is an international celebration of women in science, technol-
ogy, engineering, mathematics (STEM). And those of us who have visited St. James Square in 
London may recall the blue plaque that read “Ada Countess of Lovelace (1815–1852) Pioneer 
of Computing.”

1.4 QueuIng and sIMulatIon Models

Queuing and simulation deal with the study of waiting lines. They are not optimization 
techniques; rather, they determine measures of performance of waiting lines, such as 
average waiting time in queue, average waiting time for service, and utilization of ser-
vice facilities, among others.

Queuing models utilize probability and stochastic models to analyze waiting lines, 
and simulation estimates the measures of performance by “imitating” the behavior of 
the real system. In a way, simulation may be regarded as the next best thing to observ-
ing a real system. The main difference between queuing and simulation is that queuing 
models are purely mathematical, and hence are subject to specific assumptions that 
limit their scope of application. Simulation, on the other hand, is flexible and can be 
used to analyze practically any queuing situation.

1According to Dictionary.com, the word algorithm originates “from Medieval Latin algorismus, a mangled 
transliteration of Arabic al-Khwarizmi.”
2Lack of funding, among other factors, prevented Babbage from building fully working machines during his 
lifetime. It was only in 1991 that the London Science Museum built a complete Difference Engine No. 2 using 
the same materials and technology available to Babbage, thus vindicating his design ideas. There is currently 
an ongoing long-term effort to construct a fully working Analytical Engine funded entirely by public contri-
butions. It is impressive that modern-day computers are based on the same principal components (memory, 
CPU, input, and output) advanced by Babbage 100 years earlier.
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The use of simulation is not without drawbacks. The process of developing simula-
tion models is costly in both time and resources. Moreover, the execution of simulation 
models, even on the fastest computer, is usually slow.

1.5 art oF ModelIng

The illustrative models developed in Section 1.2 are exact representations of real situ-
ations. This is a rare occurrence in OR, as the majority of applications usually involve 
(varying degrees of) approximations. Figure 1.1 depicts the levels of abstraction that 
characterize the development of an OR model. We abstract the assumed real world from 
the real situation by concentrating on the dominant variables that control the behavior of 
the real system. The model expresses in an amenable manner the mathematical functions 
that represent the behavior of the assumed real world.

To illustrate levels of abstraction in modeling, consider the Tyko Manufacturing 
Company, where a variety of plastic containers are produced. When a production order 
is issued to the production department, necessary raw materials are acquired from the 
company’s stocks or purchased from outside sources. Once a production batch is com-
pleted, the sales department takes charge of distributing the product to retailers.

A viable question in the analysis of Tyko’s situation is the determination of the 
size of a production batch. How can this situation be represented by a model?

Looking at the overall system, a number of variables can bear directly on the 
level of production, including the following (partial) list categorized by department:

1. Production Department: Production capacity expressed in terms of available 
 machine and labor hours, in-process inventory, and quality control standards.

2. Materials Department: Available stock of raw materials, delivery schedules from 
outside sources, and storage limitations.

3. Sales Department: Sales forecast, capacity of distribution facilities, effectiveness 
of the advertising campaign, and effect of competition.

Model

Real World

Assumed Real World

FIguRe 1.1

Levels of abstraction in model development
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Each of these variables affects the level of production at Tyko. Trying to establish 
explicit functional relationships between them and the level of production is a difficult 
task indeed.

A first level of abstraction requires defining the boundaries of the assumed real world. 
With some reflection, we can approximate the real system by two dominant parameters:

1. Production rate.
2. Consumption rate.

The production rate is determined using data such as production capacity, quality con-
trol standards, and availability of raw materials. The consumption rate is determined 
from the sales data. In essence, simplification from the real world to the assumed real 
world is achieved by “lumping” several real-world parameters into a single assumed-
real-world parameter.

It is easier now to abstract a model from the assumed real world. From the 
 production and consumption rates, measures of excess or shortage inventory can be 
established. The abstracted model may then be constructed to balance the conflicting 
costs of excess and shortage inventory—that is, to minimize the total cost of inventory.

1.6 More than Just MatheMatIcs

Because of the mathematical nature of OR models, one tends to think that an OR 
study is always rooted in mathematical analysis. Though mathematical modeling is a 
cornerstone of OR, simpler approaches should be explored first. In some cases, a “com-
monsense” solution may be reached through simple observations. Indeed, since the 
human element invariably affects most decision problems, a study of the psychology 
of people may be key to solving the problem. Six illustrations are presented here to 
demonstrate the validity of this argument.

1. The stakes were high in 2004 when United Parcel Service (UPS) unrolled its 
ORION software (based on the sophisticated Traveling Salesman Algorithm—see 
 Chapter 11) to provide its drivers with tailored daily delivery itineraries. The software 
generally proposed shorter routes than those presently taken by the drivers, with poten-
tial savings of millions of dollars a year. For their part, the drivers resented the notion that 
a machine could “best” them, given their long years of experience on the job. Faced with 
this human dilemma, ORION developers resolved the issue simply placing a visible ban-
ner on the itinerary sheets that read “Beat the Computer.” At the same time, they kept 
ORION-generated routes intact. The drivers took the challenge to heart, with some actu-
ally beating the computer suggested route. ORION was no longer putting them down. 
Instead, they regarded the software as complementing their intuition and experience.3

2. Travelers arriving at the Intercontinental Airport in Houston, Texas, com-
plained about the long wait for their baggage. Authorities increased the number of 

3http://www.fastcompany.com/3004319/brown-down-ups-drivers-vs-ups-algorithm. See also “At UPS, the 
Algorithm Is the Driver,” Wall Street Journal, February 16, 2015.

http://www.fastcompany.com/3004319/brown-down-ups-drivers-vs-ups-algorithm
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baggage handlers in hope of alleviating the problem, but the complaints persisted. In 
the end, the decision was made to simply move arrival gates farther away from baggage 
claim, forcing the passengers to walk longer before reaching the baggage area. The 
complaints disappeared because the extra walking allowed ample time for the luggage 
to be delivered to the carousel.4

3. In a study of the check-in counters at a large British airport, a U.S.– Canadian 
consulting team used queuing theory to investigate and analyze the situation. Part 
of the solution recommended the use of well-placed signs urging passengers within 
20 mins of departure time to advance to the head of the queue and request priority 
service. The solution was not successful because the passengers, being mostly British, 
were “conditioned to very strict queuing behavior.” Hence they were reluctant to move 
ahead of others waiting in the queue.5

4. In a steel mill in India, ingots were first produced from iron ore and then used 
in the manufacture of steel bars and beams. The manager noticed a long delay between 
the ingots production and their transfer to the next manufacturing phase (where end 
products were produced). Ideally, to reduce reheating cost, manufacturing should start 
soon after the ingots leave the furnaces. Initially, the problem could be perceived as a 
line-balancing situation, which could be resolved either by reducing the output of ingots 
or by increasing the capacity of manufacturing. Instead, the OR team used simple charts 
to summarize the output of the furnaces during the three shifts of the day. They discov-
ered that during the third shift starting at 11:00 P.M., most of the ingots were produced 
between 2:00 and 7:00 A.M. Investigation revealed that third-shift operators preferred 
to get long periods of rest at the start of the shift and then make up for lost production 
during morning hours. Clearly, the third-shift operators have hours to spare to meet their 
quota. The problem was solved by “leveling out” both the number of operators and the 
production schedule of ingots throughout the shift.

5. In response to complaints of slow elevator service in a large office building, 
the OR team initially perceived the situation as a waiting-line problem that might 
 require the use of mathematical queuing analysis or simulation. After studying the 
behavior of the people voicing the complaint, the psychologist on the team suggested 
 installing full-length mirrors at the entrance to the elevators. The complaints disap-
peared, as people were kept occupied watching themselves and others while waiting 
for the elevator.

6. A number of departments in a production facility share the use of three trucks 
to transport material. Requests initiated by a department are filled on a first-come-
first-serve basis. Nevertheless, the departments complained of long wait for service, 
and demanded adding a fourth truck to the pool. Ensuing simple tallying of the usage 
of the trucks showed modest daily utilization, obviating a fourth truck. Further inves-
tigations revealed that the trucks were parked in an obscure parking lot out of the 
line of vision for the departments. A requesting supervisor, lacking visual sighting of 
the trucks,  assumed that no trucks were available and hence did not initiate a request.  

4Stone, A., “Why Waiting Is Torture,” The New York Times, August 18, 2012.
5Lee, A., Applied Queuing Theory, St. Martin’s Press, New York, 1966.
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The problem was solved simply by installing two-way radio communication between 
the truck lot and each department.6

Four conclusions can be drawn from these illustrations:

1. The OR team should explore the possibility of using “different” ideas to re-
solve the situation. The (common-sense) solutions proposed for the UPS problem 
 (using Beat the Computer banner to engage drivers), the Houston airport (moving 
 arrival gates away from the baggage claim area), and the elevator problem (installing 
mirrors) are rooted in human psychology rather than in mathematical modeling. This is 
the reason OR teams may generally seek the expertise of individuals trained in social 
science and psychology, a point that was recognized and implemented by the first OR 
team in Britain during World War II.

2. Before jumping to the use of sophisticated mathematical modeling, a bird’s 
eye view of the situation should be adopted to uncover possible nontechnical reasons 
that led to the problem in the first place. In the steel mill situation, this was achieved 
by using only simple charting of the ingots production to discover the imbalance in the 
third-shift operation. A similar simple observation in the case with the transport trucks 
situation also led to a simple solution of the problem.

3. An OR study should not start with a bias toward using a specific mathemati-
cal tool before the use of the tool is justified. For example, because linear programming 
(Chapter 2 and beyond) is a successful technique, there is a tendency to use it as the 
modeling tool of choice. Such an approach may lead to a mathematical model that is far 
removed from the real situation. It is thus imperative to analyze available data, using 
the simplest possible technique, to understand the essence of the problem. Once the 
problem is defined, a decision can be made regarding the most appropriate tool for the 
solution. In the steel mill problem, simple charting of the ingots production was all that 
was needed to clarify the situation.

4. Solutions are rooted in people and not in technology. Any solution that does 
not take human behavior into consideration is apt to fail. Even though the solution 
of the British airport problem may have been mathematically sound, the fact that the 
 consulting team was unaware of the cultural differences between the United States 
and Britain  resulted in an unimplementable  recommendation (Americans and Cana-
dians tend to be less formal). The same viewpoint can, in a way, be expressed in the 
UPS case.

1.7 phases oF an or study

OR studies are rooted in teamwork, where the OR analysts and the client work side by 
side. The OR analysts’ expertise in modeling is complemented by the experience and 
cooperation of the client for whom the study is being carried out.

6G. P. Cosmetatos, “The Value of Queuing Theory—A Case Study,” Interfaces, Vol. 9, No. 3, pp. 47–51, 1979.
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As a decision-making tool, OR is both a science and an art: It is a science by 
virtue of the mathematical techniques it embodies, and an art because the success of 
the phases leading to the solution of the mathematical model depends largely on the 
creativity and experience of the OR team. Willemain (1994) advises that “effective 
[OR] practice requires more than analytical competence: It also requires, among other 
attributes, technical judgment (e.g., when and how to use a given technique) and skills 
in communication and organizational survival.”

It is difficult to prescribe specific courses of action (similar to those dictated by 
the precise theory of most mathematical models) for these intangible factors. We can, 
however, offer general guidelines for the implementation of OR in practice.

The principal phases for implementing OR in practice include the following:

1. Definition of the problem.
2. Construction of the model.
3. Solution of the model.
4. Validation of the model.
5. Implementation of the solution.

Phase 3, dealing with model solution, is the best defined and generally the easiest to 
implement in an OR study, because it deals mostly with well-defined mathematical 
models. Implementation of the remaining phases is more an art than a theory.

problem definition involves delineating the scope of the problem under investi-
gation. This function should be carried out by the entire OR team. The aim is to iden-
tify three principal elements of the decision problem: (1) description of the decision 
alternatives, (2) determination of the objective of the study, and (3) specification of the 
limitations under which the modeled system operates.

Model construction entails an attempt to translate the problem definition into 
mathematical relationships. If the resulting model fits one of the standard mathematical 
models, such as linear programming, we can usually reach a solution by using available 
algorithms. Alternatively, if the mathematical relationships are too complex to allow the 
determination of an analytic solution, the OR team may opt to simplify the model and 
use a heuristic approach, or the team may consider the use of simulation, if appropri-
ate. In some cases, mathematical, simulation, and heuristic models may be combined to 
solve the decision problem, as some of the end-of-chapter case analyses demonstrate.

Model solution is by far the simplest of all OR phases because it entails the use 
of well-defined optimization algorithms. An important aspect of the model solution 
phase is sensitivity analysis. It deals with obtaining additional information about the 
behavior of the optimum solution when the model undergoes some parameter changes. 
Sensitivity analysis is particularly needed when the parameters of the model cannot 
be  estimated accurately. In these cases, it is important to study the behavior of the 
 optimum solution in the neighborhood of the parameters estimates.

Model validity checks whether or not the proposed model does what it purports 
to  do—that is, does it adequately predict the behavior of the system under study? 
Initially, the OR team should be convinced that the model’s output does not include 
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“surprises.” In other words, does the solution make sense? Are the results intuitively 
acceptable? On the formal side, a common method for validating a model is to com-
pare its output with historical output data. The model is valid if, under similar input 
conditions, it reasonably duplicates past performance. Generally, however, there is 
no guarantee that future performance will continue to duplicate past behavior. Also, 
 because the model is usually based on examination of past data, the proposed compari-
son should usually be favorable. If the proposed model represents a new (non-existing) 
system, no historical data would be available. In some situations, simulation may be 
used as an independent tool for validating the output of the mathematical model.

Implementation of the solution of a validated model involves the translation of 
the results into understandable operating instructions to be issued to the people who 
will administer the recommended system. The burden of this task lies primarily with 
the OR team.

1.8 about thIs book

Morris (1967) states “the teaching of models is not equivalent to the teaching of 
modeling.” I have taken note of this important statement during the preparation of 
this edition, making every effort to introduce the art of modeling in OR by including 
realistic models and case studies throughout the book. Because of the importance of 
computations in OR, the book discusses how the theoretical algorithms fit in com-
mercial computer codes (see Section 3.7). It also presents extensive tools for carrying 
out the computational task, ranging from tutorial-oriented TORA to the commercial 
packages Excel, Excel Solver, and AMPL.

OR is both an art and a science—the art of describing and modeling the problem 
and the science of solving the model using (precise) mathematical algorithms. A first 
course in the subject should give the student an appreciation of the importance of both 
areas. This will provide OR users with the kind of confidence that normally would be 
lacking if training is dedicated solely to the art aspect of OR, under the guise that com-
puters can relieve the user of the need to understand why the solution algorithms work.

Modeling and computational capabilities can be enhanced by studying published 
practical cases. To assist you in this regard, fully developed end-of-chapter case analy-
ses are included. The cases cover most of the OR models presented in this book. There 
are also some 50 cases that are based on real-life applications in Appendix E on the 
website that accompanies this book. Additional case studies are available in journals 
and publications. In particular, Interfaces (published by INFORMS) is a rich source of 
diverse OR applications.
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probleMs7

Section Assigned Problems

1.2 1-1 to 1-11

  1-1.  In the tickets example,
(a) Provide an infeasible alternative.

(b) Identify a fourth feasible alternative and determine its cost.
  1-2.  In the garden problem, identify three feasible solutions, and determine which one is better.

  1-3.  Determine the optimal solution of the garden problem. (Hint: Use the constraint to 
express the objective function in terms of one variable, then use differential calculus.)

  *1-4.  Amy, Jim, John, and Kelly are standing on the east bank of a river and wish to cross 
to the west side using a canoe. The canoe can hold at most two people at a time. Amy, 
being the most athletic, can row across the river in 1 minute. Jim, John, and Kelly would 
take 3, 6, and 9 minutes, respectively. If two people are in the canoe, the slower person 
dictates the crossing time. The objective is for all four people to be on the other side of 
the river in the shortest time possible. 
(a) Define the criterion for evaluating the alternatives (remember, the canoe is the only 

mode of transportation, and it cannot be shuttled empty).

*(b) What is the shortest time for moving all four people to the other side of the river?
  1-5.  In a baseball game, Jim is the pitcher and Joe is the batter. Suppose that Jim can throw 

either a fast or a curve ball at random. If Joe correctly predicts a curve ball, he can 
maintain a .400 batting average, else, if Jim throws a curve ball and Joe prepares for a 
fast ball, his batting average is kept down to .200. On the other hand, if Joe correctly 
predicts a fast ball, he gets a .250 batting average, else, his batting average is only .125.
(a) Define the alternatives for this situation.

(b) Define the objective function for the problem and discuss how it differs from the 
familiar optimization (maximization or minimization) of a criterion.

7Appendix B gives the solution to asterisk-prefixed problems. The same convention is used in all end-of-
chapter problems throughout the book. 
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  1-6.  During the construction of a house, six joists of 24 ft each must be trimmed to the correct 
length of 23 ft. The operations for cutting a joist involve the following sequence:

Operation Time (seconds)

1. Place joist on saw horses 15
2. Measure correct length (23 ft)  5
3. Mark cutting line for circular saw  5
4. Trim joist to correct length 20
5. Stack trimmed joist in a designated area 20

Three persons are involved: Two loaders must work simultaneously on operations 1, 2, 
and 5, and one cutter handles operations 3 and 4. There are two pairs of saw horses on 
which untrimmed joists are placed in preparation for cutting, and each pair can hold up 
to three side-by-side joists. Suggest a good schedule for trimming the six joists.

  1-7. An upright symmetrical triangle is divided into four layers: The bottom layer consists 
of four (equally-spaced) dots, designated as A, B, C, and D. The next layer includes dots 
E, F, and G, and the following layer has dots H and I. The top layer has dot J. You want 
to invert the triangle (bottom layer has one dot and top layer has four) by moving the 
dots around as necessary.8

(a) Identify two feasible solutions.

(b) Determine the smallest number of moves needed to invert the triangle.
  1-8.  You have five chains, each consisting of four solid links. You need to make a bracelet by 

connecting all five chains. It costs 2 cents to break a link and 3 cents to re-solder it.
(a) Identify two feasible solutions and evaluate them.

(b) Determine the cheapest cost for making the bracelet.
  1-9.  The squares of a rectangular board of 11 rows and 9 columns are numbered sequentially 

1 through 99 with a hidden monetary reward between 0 and 50 dollars assigned to each 
square. A game using the board requires the player to choose a square by selecting any 
two digits and then subtracting the sum of its two digits from the selected number. The 
player then receives the reward assigned the selected square. What monetary values 
should be assigned to the 99 squares to minimize the player’s reward (regardless of how 
many times the game is repeated)? To make the game interesting, the assignment of $0 to 
all the squares is not an option.

  1-10.  You have 10 identical cartons each holding 10 water bottles. All bottles weigh 10 oz. 
each, except for one defective carton in which each of the 10 bottles weighs on 9 oz. only. 
A scale is available for weighing.
(a) Suggest a method for locating the defective carton.

*(b) What is the smallest number of times the scale is used that guarantees finding the 
defective carton? (Hint: You will need to be creative in deciding what to weigh.)

*1-11.  You are given two identical balls made of a tough alloy. The hardness test fails if a ball 
dropped from a floor of a 120-storey building is dented upon impact. A ball can be 
reused in fresh drops only if it has not been dented in a previous drop. Using only these 
two identical balls, what is the smallest number of ball drops that will determine the high-
est floor from which the ball can be dropped without being damaged?

8Problems 1-7 and 1-8 are adapted from Bruce Goldstein, Cognitive Psychology: Mind, Research, and 
Everyday Experience, Wadsworth Publishing, 2005.
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Chapter 2

Modeling with Linear programming

Real-Life Application—Frontier Airlines Purchases Fuel Economically

The fueling of an aircraft can take place at any of the stopovers along a flight route. 
Fuel price varies among the stopovers, and potential savings can be realized by tankering 
(loading) extra fuel at a cheaper location for use on subsequent flight legs. The disadvan-
tage is that the extra weight of tankered fuel will result in higher burn of gasoline. Linear 
programming (LP) and heuristics are used to determine the optimum amount of tanker-
ing that balances the cost of excess burn against the savings in fuel cost. The study, carried 
out in 1981, resulted in net savings of about $350,000 per year. With the significant rise 
in the cost of fuel, many airlines are using LP-based tankering software to purchase fuel. 
Details of the study are given in Case 1, Chapter 26 on the website.

2.1 Two-VARiAbLE LP ModEL

This section deals with the graphical solution of a two-variable LP.  Though two-variable 
problems hardly exist in practice, the treatment provides concrete foundations for the 
development of the general simplex algorithm presented in Chapter 3.

Example 2.1-1 (The Reddy Mikks Company)

Reddy Mikks produces both interior and exterior paints from two raw materials, M1 and M2. 
The following table provides the basic data of the problem:

Tons of raw material per ton of
Maximum daily  

availability (tons)Exterior paint Interior paint

Raw material, M1 6 4 24
Raw material, M2 1 2  6

Profit per ton ($1000) 5 4

 45
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The daily demand for interior paint cannot exceed that for exterior paint by more than 1 ton. 
Also, the maximum daily demand for interior paint is 2 tons.

Reddy Mikks wants to determine the optimum (best) product mix of interior and exterior 
paints that maximizes the total daily profit.

All OR models, LP included, consist of three basic components:

1. Decision variables that we seek to determine.
2. Objective (goal) that we need to optimize (maximize or minimize).
3. Constraints that the solution must satisfy.

The proper definition of the decision variables is an essential first step in the development of the 
model. Once done, the task of constructing the objective function and the constraints becomes 
more straightforward.

For the Reddy Mikks problem, we need to determine the daily amounts of exterior and 
interior paints to be produced. Thus the variables of the model are defined as:

 x1 = Tons produced daily of exterior paint

 x2 = Tons produced daily of interior paint

The goal of Reddy Mikks is to maximize (i.e., increase as much as possible) the total daily 
profit of both paints. The two components of the total daily profit are expressed in terms of the 
variables x1 and x2 as:

Profit from exterior paint = 5x1 1thousand2 dollars

Profit from interior paint = 4x2 1thousand2 dollars

Letting z represent the total daily profit (in thousands of dollars), the objective (or goal) of 
Reddy Mikks is expressed as

Maximize z = 5x1 + 4x2

Next, we construct the constraints that restrict raw material usage and product demand. The 
raw material restrictions are expressed verbally as

aUsage of a raw material
by both paints

b … aMaximum raw material
availability

b

The daily usage of raw material M1 is 6 tons per ton of exterior paint and 4 tons per ton of inte-
rior paint. Thus,

Usage of raw material M1 by both paints = 6x1 + 4x2 tons/day

In a similar manner,

Usage of raw material M2 by both paints = 1x1 + 2x2 tons/day

The maximum daily availabilities of raw materials M1 and M2 are 24 and 6 tons, respectively. 
Thus, the raw material constraints are:

6x1 + 4x2 … 24 1Raw material M12
x1 + 2x2 … 6 1Raw material M22

The first restriction on product demand stipulates that the daily production of interior paint 
cannot exceed that of exterior paint by more than 1 ton, which translates to:

x2 - x1 … 1 1Market limit2
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The second restriction limits the daily demand of interior paint to 2 tons—that is,

x2 … 2 1Demand limit2
An implicit (or “understood-to-be”) restriction requires (all) the variables, x1 and x2, to 

 assume zero or positive values only. The restrictions, expressed as x1 Ú 0 and x2 Ú 0, are  referred 
to as nonnegativity constraints.

The complete Reddy Mikks model is

Maximize z = 5x1 + 4x2

subject to

 6x1 + 4x2 … 24 (1)

 x1 + 2x2 … 6 (2)

 -x1 + x2 … 1 (3)

 x2 … 2 (4)

 x1, x2 Ú 0 (5)

Any values of x1 and x2 that satisfy all five constraints constitute a feasible solution. 
Otherwise, the solution is infeasible. For example, the solution x1 = 3 tons per day and x2 = 1 
ton per day is feasible because it does not violate any of the five constraints;a result that is 
 confirmed by using substituting 1x1 = 3, x2 = 12 in the left-hand side of each constraint. In 
 constraint (1), we have 6x1 + 4x2 = 16 * 32 + 14 * 12 = 22, which is less than the right-hand 
side of the constraint 1=  242. Constraints 2 to 5 are checked in a similar manner (verify!). On 
the other hand, the solution x1 = 4 and x2 = 1 is infeasible because it does not satisfy at least 
one constraint. For example, in constraint (1), 16 * 42 + 14 * 12 = 28, which is larger than the 
right-hand side 1=  242.

The goal of the problem is to find the optimum, the best feasible solution that maximizes 
the total profit z. First, we need to show that the Reddy Mikks problem has an infinite number of 
feasible solutions, a property that is shared by all nontrivial LPs. Hence the problem cannot be 
solved by enumeration. The graphical method in Section 2.2 and its algebraic generalization in 
Chapter 3 show how the optimum can be determined in a finite number of steps.

remarks. The objective and the constraint function in all LPs must be linear. 
Additionally, all the parameters (coefficients of the objective and constraint functions) 
of the model are known with certainty.

2.2 GRAPhiCAL LP SoLuTion

The graphical solution includes two steps:

1. Determination of the feasible solution space.
2. Determination of the optimum solution from among all the points in the solution 

space.

The presentation uses two examples to show how maximization and minimiza-
tion objective functions are handled.
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2.2.1  Solution of a Maximization Model

Example 2.2-1

This example solves the Reddy Mikks model of Example 2.1-1.

 Step 1.  Determination of the Feasible Solution Space:
First, consider the nonnegativity constraints x1 Ú 0 and x2 Ú 0. In Figure 2.1, the 
horizontal axis x1 and the vertical axis x2 represent the exterior- and interior-paint 
variables, respectively. Thus, the nonnegativity constraints restrict the variables to the 
first quadrant (above the x1-axis and to the right of the x2-axis).

To account for the remaining four constraints, first replace each inequality with 
an equation, and then graph the resulting straight line by locating two distinct points. 
For example, after replacing 6x1 + 4x2 … 24 with the straight line 6x1 + 4x2 = 24, 
two distinct points are determined by setting x1 = 0 to obtain x2 = 24

4 = 6 and then 
by setting x2 = 0 to obtain x1 = 24

6 = 4. Thus the line 6x1 + 4x2 = 24 passes through 
(0, 6) and (4, 0), as shown by line (1) in Figure 2.1.

Next, consider the direction 17  or 6 2 of the inequality. It divides the (x1, x2) plane 
into two half-spaces, one on each side of the graphed line. Only one of these two halves 
satisfies the inequality. To determine the correct side, designate any point not  lying on 
the straight line as a reference point. If the chosen reference point satisfies the inequality, 
then its side is feasible; otherwise, the opposite side becomes the feasible half-space.

The origin (0, 0) is a convenient reference point and should always be used so 
long as it does not lie on the line representing the constraint. This happens to be true 
for all the constraints of this example. Starting with the constraint 6x1 + 4x2 … 24, 
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FiGure 2.1

Feasible space of the Reddy Mikks model
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substitution of 1x1, x22 = 10, 02 automatically yields zero for the left-hand side. 
Since it is less than 24, the half-space containing (0, 0) is feasible for inequality 
(1), as the direction of the arrow in Figure 2.1 shows. A similar application of the 
reference-point procedure to the remaining constraints produces the feasible solution 
space ABCDEF in which all the constraints are satisfied (verify!). All points outside 
the boundary of the area ABCDEF are infeasible.

 Step 2. Determination of the Optimum Solution:
The number of solution points in the feasible space ABCDEF in Figure 2.1 is infinite, 
clearly precluding the use of exhaustive enumeration. A systematic procedure is thus 
needed to determine the optimum solution.

First, the direction in which the profit function z = 5x1 + 4x2 increases  (recall 
that we are maximizing z) is determined by assigning arbitrary increasing values 
to z.  In Figure 2.2, the two lines 5x1 + 4x2 = 10 and 5x1 + 4x2 = 15 corresponding 
to (arbitrary) z = 10 and z = 15 depict the direction in which z increases. Moving 
in that direction, the optimum  solution occurs at C because it is the feasible point 
in the solution space beyond which any further increase will render an infeasible 
solution.

The values of x1 and x2 associated with the optimum point C are determined by 
solving the equations associated with lines (1) and (2):

 6x1 + 4x2 = 24

 x1 + 2x2 = 6

1

2

3

2

1

0 1 2 3 4
x1

x2

DE

F

(Maximize z 5 5x1 1 4x2)

In
cre

asin
g z

z 5
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z 5
 15

z 5
 21

x1 1 2x2 # 6
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x2 5 1.5 tons
z 5 $21,000

A B

C

6x1 1 4x2 # 24

FiGure 2.2

Optimum solution of the Reddy Mikks model
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The solution is x1 = 3 and x2 = 1.5 with z = 15 * 32 + 14 * 1.52 = 21. This calls 
for a daily product mix of 3 tons of exterior paint and 1.5 tons of interior paint. The 
associated daily profit is $21,000.

remarks. In practice, a typical LP may include hundreds or even thousands of variables 
and constraints. Of what good then is the study of a two-variable LP? The answer is that 
the graphical solution provides a key result: The optimum solution of an LP, when it exists, 
is always associated with a corner point of the solution space, thus limiting the search for the 
optimum from an infinite number of feasible points to a finite number of corner points. This 
powerful result is the basis for the development of the general algebraic simplex method 
presented in Chapter 3.1

2.2.2  Solution of a Minimization Model

Example 2.2-2 (diet Problem)

Ozark Farms uses at least 800 lb of special feed daily. The special feed is a mixture of corn and 
soybean meal with the following compositions:

lb per lb of feedstuff

Feedstuff Protein Fiber Cost ($/lb)

Corn .09 .02 .30
Soybean meal .60 .06 .90

The dietary requirements of the special feed are at least 30% protein and at most 5% fiber. 
The goal is to determine the daily minimum-cost feed mix.

The decision variables of the model are:

x1 = lb of corn in the daily mix

x2 = lb of soybean meal in the daily mix

The objective is to minimize the total daily cost (in dollars) of the feed mix—that is,

Minimize z = .3x1 + .9x2

1To reinforce this key result, use TORA to verify that the optimum of the following objective func-
tions of the Reddy Mikks model (Example 2.1-1) will yield the associated corner points as defined in 
Figure 2.2 (click View/Modify Input Data  to modify the objective coefficients and re-solve the problem 
graphically):

(a) z = 5x1 + x2 (optimum: point B in Figure 2.2)

(b) z = 5x1 + 4x2 (optimum: point C)

(c) z = x1 + 3x2 (optimum: point D)

(d) z = x2 (optimum: point D or E, or any point inbetween—see Section 3.5.2)

(e) z = -2x1 + x2 (optimum: point F)

(f) z = -x1 - x2 (optimum: point A)
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The constraints represent the daily amount of the mix and the dietary requirements. Ozark 
Farms needs at least 800 lb of feed a day—that is,

x1 + x2 Ú 800

The amount of protein included in x1 lb of corn and x2 lb of soybean meal is 1.09x1 + .6x22 lb. 
This quantity should equal at least 30% of the total feed mix 1x1 + x22 lb—that is,

.09x1 + .6x2 Ú .31x1 + x22
In a similar manner, the fiber requirement of at most 5% is represented as

.02x1 + .06x2 … .051x1 + x22
The constraints are simplified by moving the terms in x1 and x2 to the left-hand side of each 

inequality, leaving only a constant on the right-hand side. The complete model is

Minimize z = .3x1 + .9x2

subject to

x1 + x2 Ú 800
.21x1 - .30x2 … 0
.03x1 - .01x2 Ú 0

x1, x2 Ú 0

Figure 2.3 provides the graphical solution of the model. The second and third constraints pass 
through the origin. Thus, unlike the Reddy Mikks model of Example 2.2-1, the determination of 
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the feasible half-spaces of these two constraints requires using a reference point other than (0, 0) 
[e.g., (100, 0) or (0, 100)].

Solution:

The model minimizes the value of the objective function by reducing z in the direction shown 
in Figure 2.3. The optimum solution is the intersection of the two lines x1 + x2 = 800 and 
.21x1 - .3x2 = 0, which yields x1 = 470.6 lb and x2 = 329.4 lb. The minimum cost of the feed 
mix is z = .3 * 470.6 + .9 * 329.4 = $437.64 per day.

remarks. One may wonder why the constraint x1 + x2 Ú 800 cannot be replaced with 
x1 + x2 = 800 because it would not be optimum to produce more than the minimum quantity. 
Although the solution of the present model did satisfy the equation, a more complex model may 
impose additional restrictions that would require mixing more than the minimum amount. More 
importantly, the weak inequality 1Ú 2, by definition, implies the equality case, so that the equation 
1= 2 is permitted if optimality requires it. The conclusion is that one should not “preguess” the 
solution by imposing the additional equality restriction.

2.3 CoMPuTER SoLuTion wiTh SoLVER And AMPL

In practice, where typical LP models may involve thousands of variables and constraints, 
the computer is the only viable venue for solving LP problems. This section presents 
two commonly used software systems: Excel Solver and AMPL. Solver is particularly 
appealing to spreadsheet users. AMPL is an algebraic modeling language that, like all 
higher-order programming languages, requires more expertise. Nevertheless, AMPL, 
and similar languages,2 offers great modeling flexibility. Although the presentation in 
this section concentrates on LPs, both AMPL and Solver can handle integer and nonlin-
ear problems, as will be shown in later chapters.

2.3.1  LP Solution with Excel Solver

In Excel Solver, the spreadsheet is the input and output medium for the LP. Figure 2.4 
shows the layout of the data for the Reddy Mikks model (file solverRM1.xls). The top 
of the figure includes four types of information: (1) input data cells (B5:C9 and F6:F9), 
(2) cells representing the variables and the objective function (B13:D13), (3) algebraic 
definitions of the objective function and the left-hand side of the constraints (cells 
D5:D9), and (4) cells that provide (optional) explanatory names or symbols. Solver 
requires the first three types only. The fourth type enhances readability but serves 
no other purpose. The relative positioning of the four types of information on the 

2Other known commercial packages include AIMMS, GAMS, LINGO, MPL, OPL Studio, and 
Xpress-Mosel.
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FiGure 2.4

Defining the Reddy Mikks model with Excel Solver (file solverRM1.xls)

spreadsheet (as suggested in Figure 2.4) is convenient for proper cell cross-referencing 
in Solver, and its use is recommended.

How does Solver link to the spreadsheet data? First, we provide “algebraic” defi-
nitions of the objective function and the left-hand side of the constraints using the 
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input data (cells B5:C9 and F6:F9) and the objective function and variables (cells 
B13:D13). Next, we place the resulting formulas appropriately in cells D5:D9, as the 
following table shows:

Algebraic expression Spreadsheet formula Entered in cell

Objective, z 5x1 + 4x2 =B5*$B$13+C5*$C$13 D5
Constraint 1 6x1 + 4x2 =B6*$B$13+C6*$C$13 D6
Constraint 2  x1 + 2x2 =B7*$B$13+C7*$C$13 D7
Constraint 3 -x1 + x2 =B8*$B$13+C8*$C$13 D8
Constraint 4 0x1 + x2 =B9*$B$13+C9*$C$13 D9

Actually, you only need to enter the formula for cell D5 and then copy it into cells 
D6:D9. To do so correctly, it is necessary to use fixed referencing of the cells represent-
ing x1 and x2 (i.e., $B$13 and $C$13, respectively).

The explicit formulas just described are impractical for large LPs. Instead, the 
formula in cell D5 can be written compactly as

=  SUMPRODUCT1B5:C5,$B$13:$C$132
The new formula can then be copied into cells D6:D9.

All the elements of the LP model are now in place. To execute the model, click 
Solver from the spreadsheet menu bar3 to access Solver parameters dialogue box 
(shown in the middle of Figure 2.4). Next, update the dialogue box as follows:

Set Target Cell: $D$5
Equal To: ⊙ Max
By Changing Cells: $B$13:$C$13

This information tells Solver that the LP variables (cells $B$13 and $C$13) are deter-
mined by maximizing the objective function in cell $D$5.

To set up the constraints, click Add  in the dialogue box to display the add 
Constraint box (bottom of Figure 2.4) and then enter the left-hand side, inequality 
type, and right-hand side of the constraints as4

$D$6:$D$9 6 =  $F$6:$F$9

For the nonnegativity restrictions, click Add  once again and enter

$B$13:$C$13 7 =  0

Another way to enter the nonnegative constraints is to click Options  in the Solver 
parameters box to access Solver Options (see Figure 2.5) and then check n✓ Assume  
Non@Negative  . Also, while in the same box, check n✓ Assume Linear Model .

4In the add Constraint box in Figure 2.4, the two additional options, int and bin, which stand for integer and 
binary, are used with integer programs to restrict variables to integer or binary values (see Chapter 9).

3If Solver does not appear under Data menu (on Excel menu bar), click Excel Office Button S Excel 
Options S Add Ins S Solver Add-in S OK; then close and restart Excel.
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In general, the remaining default settings in Solver Options need not be changed. 
However, the default precision of .000001 may be too “high” for some problems, and 
Solver may incorrectly return the message “Solver could not find a feasible solution”. 
In such cases, less precision (i.e., larger value) needs to be specified. If the message per-
sists, then the problem may be infeasible.

Descriptive Excel range names can be used to enhance readability. A range is 
created by highlighting the desired cells, typing the range name in the top left box of 
the sheet, and then pressing Return. Figure 2.6 (file solverRM2.xls) provides the details 
with a summary of the range names used in the model. The model should be contrasted 
with the file solverRM1.xls to see how ranges are used in the formulas.

To solve the problem, click Solve  on Solver parameters. A new dialogue box, 
Solver results, then gives the status of the solution. If the model setup is correct, the 
optimum value of z will appear in cell D5 and the values of x1 and x2 will go to cells 
B13 and C13,  respectively. For convenience, cell D13 exhibits the optimum value of z by 
entering the formula = D5 in cell D13, thus displaying the entire optimum solution in 
contiguous cells.

If a problem has no feasible solution, Solver will issue the explicit message 
“Solver could not find a feasible solution”. If the optimal objective value is unbounded 
(not finite), Solver will issue the somewhat ambiguous message “The Set Cell values do 
not converge”. In either case, the message indicates that there is something wrong with 
the formulation of the model, as will be discussed in Section 3.5.

The Solver results dialogue box provides the opportunity to request further details 
about the solution, including the sensitivity analysis report. We will discuss these addi-
tional results in Section 3.6.4.

The solution of the Reddy Mikks by Solver is straightforward. Other models may 
require a “bit of ingenuity” before they can be set up. A class of LP models that falls in 
this category deals with network optimization, as will be demonstrated in Chapter 6.

FiGure 2.5

Solver options dialogue box
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2.3.2  LP Solution with AMPL5

This section provides a brief introduction to AMPL. The material in Appendix C on the 
website details AMPL syntax. It will be cross-referenced with the presentation in this 
section and with other AMPL presentations in the book. The two examples presented 
here deal with the basics of AMPL.

reddy Mikks problem—a rudimentary Model. AMPL provides a facility for modeling 
an LP in a rudimentary longhand format. Figure 2.7 gives the self-explanatory code for the 
Reddy Mikks model (file amplRM1.txt). All reserved keywords are in bold. All other names 
are user generated. The objective function and each of the constraints must have distinct 
(user-generated) names followed by a colon. Each statement closes with a semicolon.

The longhand format is problem-specific, in the sense that a new code is needed 
whenever the input data are changed. For practical problems (with complex structure 
and a large number of variables and constraints), the longhand format is at best cum-
bersome. AMPL alleviates this difficulty by devising a code that divides the problem 
into two components: (1) a general algebraic model for a specific class of problems 

FiGure 2.6

Use of range names in Excel Solver (file solverRM2.xls)

5For convenience, the AMPL student version is on the website. Future updates may be downloaded from 
www.ampl.com. AMPL uses line commands and does not operate in Windows environment.

www.ampl.com
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applicable to any number of variables and constraints, and (2) data for driving the 
algebraic model. The implementation of these two points is addressed in the following 
section using the Reddy Mikks problem.

reddy Mikks problem—an algebraic Model. Figure 2.8 lists the statements of the 
model (file amplRM2.txt). The file must be strictly text (ASCII). The symbol # designates 
the start of explanatory comments. Comments may appear either on a separate line or 
following the semicolon at the end of a statement. The language is case sensitive, and all 
of its keywords, with few exceptions, are in lower case. (Section C.2 provides more details.)

The algebraic model in AMPL views the general LP problem with n variables and 
m constraints in the following generic format (restr is a user-generated name):

Maximize z:  a
n

j = 1
cj xj

subject to restri :a
n

j = 1
aijxj … bi, i = 1, 2, c, m

xj Ú 0, j = 1, 2, c, n

It gives the objective function and constraint i the (user-specified) names z and restri.
The model starts with the param statements that declare m, n, c, b, and aij as 

parameters (or constants) whose specific values are given in the input data section 
of the model. It translates cj1j = 1, 2, c, n2 as c{1..n}, bi1i = 1, 2, c, m2 as 
b{1..m}, and aij1i = 1, 2, c, m, j = 1, 2, c, n2 as a{1..m,1..n}. Next, the 
variables xj 1j = 1, 2, c, n2 together with the nonnegativity restriction are defined 
by the var statement

var x{1..n}>=0;

A variable is considered unrestricted if >=0 is removed from its definition. The nota-
tion in {} represents the set of subscripts over which a param or a var is defined.

The model is developed in terms of the parameters and the variables in the follow-
ing manner. The objective function and constraints carry distinct names  followed by a 

colon (:). The objective statement is a direct translation of maximize z = a
n

j = 1
cj  xj:

maximize z: sum{j in 1..n}c[j]*x[j];

Constraint i is given the (arbitrary) root name restr indexed over the set {1..m}:

restr{i in 1..m}:sum{j in 1..n}a[i,j]*x[j]<=b[i];

maximize z: 5*x1+4*x2;
subject to
c1: 6*x1+4*x2<=24;
c2: x1+2*x2<=6;
c3: -x1+x2<=1;
c4: x2<=2;

solve;
display z,x1,x2;

FiGure 2.7

Rudimentary AMPL model for 
the Reddy Mikks problem (file 
amplRM1.txt)
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The statement is a direct translation of restri a
n

j = 1
aij xj … bi.

The algebraic model may now be used with any set of applicable data that can 
be entered following the statement data;. For the Reddy Mikks model, the data 
tells AMPL that the problem has two variables (param n:=2;) and four constraints 
(param m:=4;). The compound operator := must be used, and the statement must 
start with the keyword param. For the single-subscripted parameters, c and b, each 
element is represented by its index followed by its value and separated by at least one 
blank space. Thus, c1 = 5 and c2 = 4 are entered as

param c:= 1 5 2 4;

The data for param b is entered in a similar manner.

#------------------------------------------algebraic model
param m;
param n;
param c{1..n};
param b{1..m};
param a{1..m,1..n};

var x{1..n}==0;

maximize z: sum{j in 1..n}c[j]*x[j];
subject to restr{i in 1..m}:

sum{j in 1..n}a[i,j]*x[j]<=b[i];
#------------------------------------------specify model data
data;
param n:=2;
param m:=4;
param c:=1 5 2 4;
param b:=1 24  2 6  3 1  4 2;
param a:     1     2 :=

1    6     4
2    1     2
3   -1     1
4    0     1;

#------------------------------------------solve the problem
solve;
display z, x;

FiGure 2.8

AMPL model of the Reddy Mikks problem using hard-coded input data (file amplRM2.txt)
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For the double-subscripted parameter aij, that data set reads as a two-dimensional 
matrix with its rows designating i and its columns designating j. The top line defines the 
subscript j, and the subscript i is entered at the start of each row as

param a:  1  2 :=
  1   6  4
  2   1  2
  3  -1  1
  4   0  1;

The data set must terminate with a semicolon. Note the mandatory location of the 
separator : and the compound operator := after param a.

The model and its data are now ready. The command solve; invokes the solu-
tion algorithm and the command display z, x; provides the solution.

To execute the model, first invoke AMPL (by clicking ampl.exe in the AMPL direc-
tory). At the ampl: prompt, enter the following model command, and then press Return:

model amplRM2.txt;

The output of the system will then appear on the screen as follows:

MINOS 5.5: Optimal solution found.
2 iterations, objective = 21

z = 21
x[*]:=

1 = 3
2 = 1.5

The bottom four lines are the result of executing display z,x;. Actually, AMPL 
has formatting capabilities that enhance the readability of the output results (see 
Section C.5.2).

AMPL allows separating the algebraic model and the data into two indepen-
dent files. This arrangement is more convenient because only the data file needs to be 
changed once the model has been developed. See the end of Section C.2 for details.

AMPL offers a wide range of programming capabilities. For example, the input/ 
output data can be secured from/sent to external files, spreadsheets, and databases, and 
the model can be executed interactively for a wide variety of options. The details are 
given in Appendix C on the website.

2.4 LinEAR PRoGRAMMinG APPLiCATionS

This section presents realistic LP models in which the definition of the variables and 
the construction of the objective function and the constraints are not as straightfor-
ward as in the case of the two-variable model. The areas covered by these applications 
include the following:

1. Investment.
2. Production planning and inventory control.
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3. Workforce planning.
4. Urban development planning.
5. Oil refining and blending.

Each model is detailed, and its optimum solution is interpreted.

2.4.1  investment

Multitudes of investment opportunities are available to today’s investor. Examples of 
investment problems are capital budgeting for projects, bond investment strategy, stock 
portfolio selection, and establishment of bank loan policy. In many of these situations, 
LP can be used to select the optimal mix of opportunities that will maximize return 
while meeting requirements set by the investor and the market.

Example 2.4-1 (bank Loan Model)

Bank One is in the process of devising a loan policy that involves a maximum of $12 million. The 
following table provides the pertinent data about available loans.

Type of loan Interest rate Bad-debt ratio

Personal .140 .10
Car .130 .07
Home .120 .03
Farm .125 .05
Commercial .100 .02

Bad debts are unrecoverable and produce no interest revenue.
Competition with other financial institutions dictates the allocation of at least 40% of the 

funds to farm and commercial loans. To assist the housing industry in the region, home loans 
must equal at least 50% of the personal, car, and home loans. The bank limits the overall ratio of 
bad debts on all loans to at most 4%.

Mathematical Model: The situation deals with determining the amount of loan in each 
category, thus leading to the following definitions of the variables:

 x1 = personal loans 1in millions of dollars2
 x2 = car loans

 x3 = home loans

 x4 = farm loans

 x5 = commercial loans

The objective of the Bank One is to maximize net return, the difference between interest  revenue 
and lost bad debts. Interest revenue is accrued on loans in good standing. For example, when 
10% of personal loans are lost to bad debt, the bank will receive interest on 90% of the loan—that 
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is, it will receive 14% interest on .9x1 of the original loan x1. The same reasoning  applies to the 
 remaining four types of loans. Thus,

 Total interest = .141.9x12 + .131.93x22 + .121.97x32 + .1251.95x42 + .11.98x52
 = .126x1 + .1209x2 + .1164x3 + .11875x4 + .098x5

We also have

Bad debt = .1x1 + .07x2 + .03x3 + .05x4 + .02x5

The objective function combines interest revenue and bad debt as:

 Maximize z = Total interest -  Bad debt

 = 1.126x1 + .1209x2 + .1164x3 + .11875x4 + .098x52
 - 1.1x1 + .07x2 + .03x3 + .05x4 + .02x52
 = .026x1 + .0509x2 + .0864x3 + .06875x4 + .078x5

The problem has five constraints:

1. Total funds should not exceed $12 (million):

x1 + x2 + x3 + x4 + x5 … 12

2. Farm and commercial loans equal at least 40% of all loans:

x4 + x5 Ú .41x1 + x2 + x3 + x4 + x52
or

.4x1 + .4x2 + .4x3 - .6x4 - .6x5 … 0

3. Home loans should equal at least 50% of personal, car, and home loans:

x3 Ú .51x1 + x2 + x32
or

.5x1 + .5x2 - .5x3 … 0

4. Bad debts should not exceed 4% of all loans:

.1x1 + .07x2 + .03x3 + .05x4 + .02x5 … .041x1 + x2 + x3 + x4 + x52
or

.06x1 + .03x2 - .01x3 + .01x4 - .02x5 … 0

5. Nonnegativity:

x1 Ú 0, x2 Ú 0, x3 Ú 0, x4 Ú 0, x5 Ú 0

A subtle assumption in the preceding formulation is that all loans are issued at approxi-
mately the same time. This allows us to ignore differences in the time value of the funds allocated 
to the different loans.
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Solution:

The optimal solution is computed using AMPL (file amplEx2.4-1.txt):

z = .99648, x1 = 0, x2 = 0, x3 = 7.2, x4 = 0, x5 = 4.8

remarks.

1. You may be wondering why we did not define the right-hand side of the second con-
straint as .4 * 12 instead of .41x1 + x2 + x3 + x4 + x52. After all, it appears plausible 
that the bank would want to loan out all $12 million. The answer is that the usage given 
in the formulation does not disallow this possibility. But there are two more reasons why 
you should not use .4 * 12: (1) If other constraints in the model are such that all $12 mil-
lion cannot be used (e.g., the bank may set caps on the different loans), then the choice 
.4 * 12 could lead to an infeasible or incorrect solution. (2) If you want to experiment 
with the effect of changing available funds (say from $12 to $13 million) on the optimum 
solution, there is a real chance that you may forget to change .4 * 12 to .4 * 13, in which 
case the solution will not be correct. A similar reasoning applies to the left-hand side of 
the fourth constraint.

2. The optimal solution calls for allocating all $12 million: $7.2 million to home loans and $4.8 
million to commercial loans. The remaining categories receive none. The return on the 
investment is

Rate of return =
z
12

=
.99648

12
= .08034

This shows that the combined annual rate of return is 8.034%, which is less than the best 
net interest rate 1=  8.64% for home loans2, and one wonders why the model does not take 
full advantage of this opportunity. The answer is that the stipulation that farm and com-
mercial loans must account for at least 40% of all loans (constraint 2) forces the solution 
to allocate $4.8 million to commercial loans at the lower net rate of 7.8%, hence lowering 
the overall interest rate to 1001.0864 * 7.2 + .078 * 4.8

12 2 = 8.034%. In fact, if we remove con-
straint 2, the optimum will allocate all the funds to home loans at the higher 8.64% rate (try 
it using the AMPL model!).

2.4.2  Production Planning and inventory Control

There is a wealth of LP applications in the area of production planning and inventory 
control. This section presents three examples. The first deals with production sched-
uling to meet a single-period demand. The second deals with the use of inventory in 
a multiperiod production system to meet future demand, and the third deals with the 
use of inventory and worker hiring/firing to “smooth” production over a multiperiod 
planning horizon.

Example 2.4-2 (Single-Period Production Model)

In preparation for the winter season, a clothing company is manufacturing parka and goose 
overcoats, insulated pants, and gloves. All products are manufactured in four different depart-
ments: cutting, insulating, sewing, and packaging. The company has received firm orders for its 
products. The contract stipulates a penalty for undelivered items. Devise an optimal production 
plan for the company based on the following data:
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Time per unit (hr)

Department Parka Goose Pants Gloves Capacity (hr)

Cutting .30 .30 .25 .15 1000
Insulating .25 .35 .30 .10 1000
Sewing .45 .50 .40 .22 1000
Packaging .15 .15 .1 .05 1000
Demand 800 750 600 500
Unit profit $30 $40 $20 $10
Unit penalty $15 $20 $10 $8

Mathematical Model: The variables of the problem are as follows:

 x1 = number of parka jackets

 x2 = number of goose jackets

 x3 = number of pairs of pants

 x4 = number of pairs of gloves

The company is penalized for not meeting demand. The objective then is to maximize net profit, 
defined as

Net profit = Total profit - Total penalty

The total profit is 30x1 + 40x2 + 20x3 + 10x4. To compute the total penalty, the demand con-
straints can be written as

x1 + s1 = 800, x2 + s2 = 750, x3 + s3 = 600, x4 + s4 = 500, 

xj Ú 0, sj Ú 0, j = 1, 2, 3, 4

The new variable sj represents the shortage in demand for product j, and the total penalty can be 
computed as 15s1 + 20s2 + 10s3 + 8s4. The complete model thus becomes

Maximize z = 30x1 + 40x2 + 20x3 + 10x4 - 115s1 + 20s2 + 10s3 + 8s42
subject to

.30x1 + .30x2 + .25x3 + .15x4 … 1000

.25x1 + .35x2 + .30x3 + .10x4 … 1000

.45x1 + .50x2 + .40x3 + .22x4 … 1000

.15x1 + .15x2 + .10x3 + .05x4 … 1000

x1 + s1 = 800, x2 + s2 = 750, x3 + s3 = 600, x4 + s4 = 500

xj Ú 0, sj Ú 0, j = 1, 2, 3, 4

Solution:

The optimum solution (obtained using file amplEx2.4-2.txt) is z = $64,625, x1 = 800, x2 = 750,
x3 = 387.5, x4 = 500, s1 = s2 = s4 = 0, s3 = 212.5. The solution satisfies all the demand for 
both types of jackets and the gloves. A shortage of 213 (rounded up from 212.5) pairs of pants 
will result in a penalty cost of 213 * $10 = $2130.
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Example 2.4-3 (Multiple Period Production-inventory Model)

Acme Manufacturing Company has a contract to deliver 100, 250, 190, 140, 220, and 110 home 
windows over the next 6 months. Production cost (labor, material, and utilities) per window 
 varies by period and is estimated to be $50, $45, $55, $48, $52, and $50 over the next 6 months. 
To take advantage of the fluctuations in manufacturing cost, Acme can produce more windows 
than needed in a given month and hold the extra units for delivery in later months. This will 
incur a storage cost at the rate of $8 per window per month, assessed on end-of-month inventory. 
Develop a linear program to determine the optimum production schedule.

Mathematical Model: The variables of the problem include the monthly production amount 
and the end-of-month inventory. For i = 1, 2, c, 6, let

 xi = Number of units produced in month i

 Ii = Inventory units left at the end of month i

The relationship between these variables and the monthly demand over the 6-month horizon is 
represented schematically in Figure 2.9. The system starts empty 1I0 = 02.

The objective is to minimize the total cost of production and end-of-month inventory.

 Total production cost = 50x1 + 45x2 + 55x3 + 48x4 + 52x5 + 50x6

 Total inventory 1storage2  cost = 81I1 + I2 + I3 + I4 + I5 + I62
Thus the objective function is

Minimize z = 50x1 + 45x2 + 55x3 + 48x4 + 52x5 + 50x6 + 81I1 + I2 + I3 + I4 + I5 + I62
The constraints of the problem can be determined directly from the representation in 

Figure 2.9. For each period we have the following balance equation:

Beginning inventory + Production amount - Ending inventory = Demand

This is translated mathematically for the individual months as

x1 - I1 = 100 1Month 12
I1 + x2 - I2 = 250 1Month 22
I2 + x3 - I3 = 190 1Month 32
I3 + x4 - I4 = 140 1Month 42
I4 + x5 - I5 = 220 1Month 52

I5 + x6 = 110 1Month 62
xi, i = 1, 2, c, 6, Ii Ú 0, i = 1, 2, c, 5

x2
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I2

x3

190

I3

x4

140

I4
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x1

100

I1I 5 0

FiGure 2.9

Schematic representation of the production-inventory system
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Example 2.4-4 (Multiperiod Production Smoothing Model)

A company is planning the manufacture of a product for March, April, May, and June of next 
year. The demand quantities are 520, 720, 520, and 620 units, respectively. The company has a 
steady workforce of 10 employees but can meet fluctuating production needs by hiring and fir-
ing temporary workers. The extra costs of hiring and firing a temp in any month are $200 and 
$400, respectively. A permanent worker produces 12 units per month, and a temporary worker, 
lacking equal experience, produces 10 units per month. The company can produce more than 
needed in any month and carry the surplus over to a succeeding month at a holding cost of $50 
per unit per month. Develop an optimal hiring/firing policy over the 4-month planning horizon.

Mathematical Model: This model is similar to that of Example 2.4-3 in the sense that each 
month has its production, demand, and ending inventory. The only exception deals with handling 
a permanent versus temporary workforce.

The permanent workers (10 in all) can be accounted for by subtracting the units they 
produce from the respective monthly demand. The remaining demand is then satisfied through 
the hiring and firing of temps. Thus,

 Remaining demand for March = 520 - 12 * 10 = 400 units

 Remaining demand for April = 720 - 12 * 10 = 600 units

 Remaining demand for May = 520 - 12 * 10 = 400 units

 Remaining demand for June = 620 - 12 * 10 = 500 units

The variables of the model for month i can be defined as

 xi = Net number of temps at the start of month i after any hiring or firing

 Si = Number of temps hired or fired at the start of month i

 Ii = Units of ending inventory for month i

440
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110

100

100

0 0 190 0 0 0 0

FiGure 2.10

Optimum solution of the production-inventory problem

Note that the initial inventory, I0, is zero. Also, in any optimal solution, the ending inventory I6 
will be zero because it is not economical to incur unnecessary additional storage cost.

Solution:

The optimum solution (obtained using file amplEx2.4-3.txt) is summarized in Figure 2.10. It shows 
that each month’s demand is satisfied from the same month’s production, except for month 2, 
where the production quantity 1=  440 units2 covers the demand for both months 2 and 3. The 
total associated cost is z = $49,980.
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By definition, xi and Ii are nonnegative, whereas Si is unrestricted in sign because it equals the 
number of hired or fired workers in month i. This is the first instance in this chapter of using an 
unrestricted variable. As we will see shortly, special substitution is needed to allow the imple-
mentation of hiring and firing in the model.

In this model, the development of the objective function requires constructing the constraints 
first. The number of units produced in month i by xi temps is 10xi. Thus, we have the following 
 inventory constraints:

 10x1 = 400 + I1 1March2
 I1 + 10x2 = 600 + I2 1April2
 I2 + 10x3 = 400 + I3 1May2
 I3 + 10x4 = 500  1June2

x1, x2, x3, x4 Ú 0, I1, I2, I3 Ú 0

For hiring and firing, the temp workforce starts with x1 workers at the beginning of March. At 
the start of April, x1 will be adjusted (up or down) by S2 temps to generate x2. The same idea 
applies to x3 and x4, thus leading to the following constraint equations:

x1 = S1

x2 = x1 + S2

x3 = x2 + S3

x4 = x3 + S4

S1, S2, S3, S4 unrestricted in sign

x1, x2, x3, x4 Ú 0

Next, we develop the objective function. The goal is to minimize the inventory cost plus the 
cost of hiring and firing. As in Example 2.4-3,

Inventory holding cost = 501I1 + I2 + I32
Modeling the cost of hiring and firing is a bit involved. Given the costs of hiring and firing a temp 
are $200 and $400, respectively, we have

aCost of hiring
and firing

b = 200 a Number of hired temps
at the start of each month

b + 400 a Number of fired temps
at the start of each month

b

If the variable Si is positive, hiring takes place in month i. If it is negative, then firing occurs. This 
“qualitative” assessment can be translated mathematically by using the substitution

Si = Si
- - Si

+,  where Si
-, Si

+ Ú 0

The unrestricted variable Si is now the difference between the two nonnegative variables 
Si

-  and Si
+. We can think of Si

- as the number of temps hired and Si
+ as the number fired. For 

example, if Si
- = 5 and Si

+ = 0, then Si = 5 - 0 = + 5, which represents hiring. If Si
- = 0 and 

Si
+ = 7, then Si = 0 - 7 = - 7, which represents firing. In the first case, the corresponding 

cost of hiring is 200Si
- = 200 * 5 = $1000,  and in the second case, the corresponding cost of 

firing is 400Si
+ = 400 * 7 = $2800.

The substitution Si = Si
- - Si

+ is the basis for the development of cost of hiring and firing. 
First we need to address a possible question: What if both Si

- and Si
+ are positive? The answer is 
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that this cannot happen because it implies both hiring and firing in the same month. Interestingly, 
the theory of LP (see Chapter 7) tells us that Si

- and Si
+ cannot be positive simultaneously, a 

mathematical result that confirms intuition. 
We can now write the total cost of hiring and firing as

Cost of hiring = 2001S1
- + S2

- + S3
- + S4

-2
Cost of firing = 4001S1

+ + S2
+ + S3

+ + S4
+2

It may appear necessary to add to z the amount 400x4 representing the cost of end-of- horizon-
firing of x4 temps. From the standpoint of optimization, this factor is accounted for by the 
 presence of S4

+ in the objective function. Hence the optimum will not change, except for inflating 
optimum z by 400x4 (try it!).

The complete model is as follows:

Minimize z = 501I1 + I2 + I32 + 2001S1
- + S2

- + S3
- + S4

-2 + 4001S1
+ + S2

+ + S3
+ + S4

+2
subject to

10x1 = 400 + I1

I1 + 10x2 = 600 + I2

I2 + 10x3 = 400 + I3

I3 + 10x4 = 500

 x1 = S1
- - S1

+

 x2 = x1 + S2
- - S2

+

 x3 = x2 + S3
- - S3

+

 x4 = x3 + S4
- - S4

+

S1
-, S1

+S2
-, S2

+, S3
-, S3

+, S4
-, S4

+ Ú 0

x1, x2, x3, x4 Ú 0

I1, I2, I3 Ú 0

Solution:

The optimum solution (obtained using file amplEx2.4-4.txt) is z = $19, 500, x1 = 50, x2 = 50, 
x2 = 50, x3 = 45, x4 = 45, S1

- = 50, S3
+ = 5,  I1 = 100, I3 = 50. All the remaining variables 

are zero. The solution calls for hiring 50 temps in March 1S1
- = 502 and holding the workforce 

steady till May when five temps are fired 1S3
+ = 52. No further hiring or firing is recommended 

until the end of June, when, presumably, all temps are terminated. This solution requires 100 units 
of inventory to be carried into May and 50 units to be carried into June.

2.4.3  workforce Planning

Real-Life Application—Telephone Sales workforce Planning  
at Qantas Airways

Australian airline Qantas operates its main reservation offices from 7:00 till 22:00 
using six shifts that start at different times of the day. Qantas used LP (with imbedded 
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queuing analysis) to staff its main telephone sales reservation office efficiently while 
providing convenient service to its customers. The study, carried out in the late 1970s, 
resulted in annual savings of over 200,000 Australian dollars per year. The study is 
detailed in Case 15, Chapter 26, on the website.

Fluctuations in a labor force to meet variable demand over time can be achieved 
through the process of hiring and firing, as demonstrated in Example 2.4-4. There are 
situations in which the effect of fluctuations in demand can be “absorbed” by adjusting 
the start and end times of a work shift. For example, instead of following the traditional 
three 8-hr-shift start times at 8:00 a.m., 3:00 p.m., and 11:00 p.m., we can use overlapping 
8-hr shifts in which the start time of each is made in response to increase or decrease 
in demand.

The idea of redefining the start of a shift to accommodate fluctuation in demand 
can be extended to other operating environments as well. Example 2.4-5 deals with the 
determination of the minimum number of buses needed to meet rush-hour and off-
hour transportation needs.

Example 2.4-5 (bus Scheduling Model)

Progress City is studying the feasibility of introducing a mass-transit bus system to reduce in-city 
driving. The study seeks the minimum number of buses that can handle the transportation needs. 
After gathering necessary information, the city engineer noticed that the minimum number of 
buses needed fluctuated with time of the day, and that the required number of buses could be 
 approximated by constant values over successive 4-hr intervals. Figure 2.11 summarizes the engi-
neer’s findings. To carry out the required daily maintenance, each bus can operate only 8 succes-
sive hours a day.

Mathematical Model: The variables of the model are the number of buses needed in each shift, 
and the constraints deal with satisfying demand. The objective is to minimize the number of 
buses in operation.

The stated definition of the variables is somewhat “vague.” We know that each bus will run 
for 8 consecutive hours, but we do not know when a shift should start. If we follow a normal 
three-shift schedule (8:01 a.m. to 4:00 p.m., 4:01 p.m. to 12:00 midnight, and 12:01 a.m. to 8:00 a.m.) 
and assume that x1, x2, and x3 are the number of buses starting in the first, second, and third 
shifts, we can see in Figure 2.11 that x1 Ú 10, x2 Ú 12, and x3 Ú 8. The corresponding minimum 
number of daily buses is x1 + x2 + x3 = 10 + 12 + 8 = 30.

The given solution is acceptable only if the shifts must coincide with the normal three-
shift schedule. However, it may be advantageous to allow the optimization process to choose 
the “best” starting time for a shift. A reasonable way to accomplish this goal is to allow a shift 
to start every 4 hr. The bottom of Figure 2.11 illustrates this idea with overlapping 8-hr shifts 
starting at 12:01 a.m., 4:01 a.m., 8:01 a.m., 12:01 p.m., 4:01 p.m., and 8:01 p.m. Thus, the variables 
are defined as

x1 = number of buses starting at 12:01 a.m.

x2 = number of buses starting at 4:01 a.m.
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x3 = number of buses starting at 8:01 a.m.

x4 = number of buses starting at 12:01 p.m.

x5 = number of buses starting at 4:01 p.m.

x6 = number of buses starting at 8:01 p.m.

We can see from Figure 2.11 that because of the overlapping of the shifts, the number of buses 
for the successive 4-hr periods can be computed as follows:

Time period Number of buses in operation

12:01 a.m. to 4:00 a.m. x1 + x6

4:01 a.m. to 8:00 a.m. x1 + x2

8:01 a.m. to 12:00 noon x2 + x3

12:01 p.m. to 4:00 p.m. x3 + x4

4:01 p.m. to 8:00 p.m. x4 + x5

8:01 a.m. to 12:00 a.m. x5 + x6

The complete model thus becomes

Minimize z = x1 + x2 + x3 + x4 + x5 + x6

12

8

4
4

8

N
um

be
r 

of
 b

us
es

10

7

12

4

4:00 8:00 4:00 8:0012:00
AM

12:00
Noon

12:00
Midnight

x1

x2

x3

x4

x5

x6

FiGure 2.11

Number of buses as a function of the time of the day



70   Chapter 2    Modeling with Linear Programming

subject to

x1 + x6 Ú 4 (12:01 a.m.–4:00 a.m.)

x1 + x2 Ú 8 (4:01 a.m.–8:00 a.m.)

x2 + x3 Ú 10 (8:01 a.m.–12:00 noon)

x3 + x4 Ú 7 (12:01 p.m.–4:00 p.m.)

x4 + x5 Ú 12 (4:01 p.m.–8:00 p.m.)

x5 + x6 Ú 4 (8:01 p.m.–12:00 p.m.)

xj Ú 0, j = 1, 2, c, 6

Solution:

The optimal solution (obtained using file amplEx2.4-5.txt, solverEx2.4-5.xls, or toraEx2.4-5.txt)  
calls for scheduling 26 buses (compared with 30 buses when the three traditional shifts are 
used). The schedule calls for x1 = 4 buses to start at 12:01 a.m., x2 = 10 at 4:01 a.m., x4 = 8 at 
12:01 p.m., and x5 = 4 at 4:01 p.m. (Note: File solverEx2.4-5.xls yields the alternative optimum 
x1 = 2, x2 = 6, x3 = 4, x4 = 6, x5 = 6, and x6 = 2, with z = 26.)

2.4.4  urban development Planning6

Urban planning deals with three general areas: (1) building new housing developments, 
(2) upgrading inner-city deteriorating housing and recreational areas, and (3) planning 
public facilities (such as schools and airports). The constraints associated with these 
projects are both economic (land, construction, and financing) and social (schools, 
parks,  and income level). The objectives in urban planning vary. In new housing 
 developments, profit is usually the motive for undertaking the project. In the remaining 
two categories, the goals involve social, political, economic, and cultural considerations. 
Indeed, in a publicized case in 2004, the mayor of a city in Ohio wanted to condemn 
an old area of the city to make way for a luxury housing development. The motive was 
to increase tax collection to help alleviate budget shortages. The example presented in 
this section is fashioned after the Ohio case.

Example 2.4-6 (urban Renewal Model)

The city of Erstville is faced with a severe budget shortage. Seeking a long-term solution, the city 
council votes to improve the tax base by condemning an inner-city housing area and replacing it 
with a modern development.

The project involves two phases: (1) demolishing substandard houses to provide land for the 
new development and (2) building the new development. The following is a summary of the situation.

1. As many as 300 substandard houses can be demolished. Each house occupies a .25-acre lot. 
The cost of demolishing a condemned house is $2000.

2. Lot sizes for new single-, double-, triple-, and quadruple-family homes (units) are .18, .28, 
.4, and .5 acre, respectively. Streets, open space, and utility easements account for 15% of 
available acreage.

6This section is based on Laidlaw (1972).
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3. In the new development, the triple and quadruple units account for at least 25% of the 
total. Single units must be at least 20% of all units, and double units at least 10%.

4. The tax levied per unit for single, double, triple, and quadruple units is $1000, $1900, $2700, 
and $3400, respectively.

5. The construction cost per unit for single-, double-, triple-, and quadruple-family homes is 
$50,000, $70,000, $130,000, and $160,000, respectively.

6. Financing through a local bank is limited to $15 million.

How many units of each type should be constructed to maximize tax collection?

Mathematical Model: Besides determining the number of units of each type of housing to be 
constructed, we also need to decide how many houses must be demolished to make room for the 
new development. Thus, the variables of the problem can be defined as follows:

 x1 = Number of units of single@family homes

 x2 = Number of units of double@family homes

 x3 = Number of units of triple@family homes

 x4 = Number of units of quadruple@family homes

 x5 = Number of condemned homes to be demolished

The objective is to maximize total tax collection from all four types of homes—that is,

Maximize z = 1000x1 + 1900x2 + 2700x3 + 3400x4

The first constraint of the problem deals with land availability.

aAcreage used for new
  homes construction

b … aNet available
acreage

b

From the data of the problem, we have

Acreage needed for new homes = .18x1 + .28x2 + .4x3 + .5x4

To determine the available acreage, each demolished home occupies a .25-acre lot, thus netting 
.25x5 acres. Allowing for 15% open space, streets, and easements, the net acreage available is 
.851.25x52 = .2125x5. The resulting constraint is

.18x1 + .28x2 + .4x3 + .5x4 … .2125x5

or

.18x1 + .28x2 + .4x3 + .5x4 - .2125x5 … 0

The number of demolished homes cannot exceed 300, which translates to

x5 … 300

Next, we add the constraints limiting the number of units of each home type.

 1Number of single units2 Ú 120% of all units2
 1Number of double units2 Ú 110% of all units2

 1Number of triple and quadruple units2 Ú 125% of all units2
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These constraints translate mathematically to

 x1 Ú .21x1 + x2 + x3 + x42
 x2 Ú .11x1 + x2 + x3 + x42

 x3 + x4 Ú .251x1 + x2 + x3 + x42
The only remaining constraint deals with keeping the demolition/construction cost within the 
allowable budget—that is,

1Construction and demolition cost2 … 1Available budget2
Expressing all the costs in thousands of dollars, we get

150x1 + 70x2 + 130x3 + 160x42 + 2x5 … 15000

The complete model thus becomes

Maximize z = 1000x1 + 1900x2 + 2700x3 + 3400x4

subject to

.18x1 + .28x2 + .4x3 + .5x4 - .2125x5 … 0
x5 … 300

- .8x1 + .2x2 + .2x3 + .2x4 … 0
.1x1 - .9x2 + .1x3 + .1x4 … 0

.25x1 + .25x2 - .75x3 - .75x4 … 0
50x1 + 70x2 + 130x3 + 160x4 + 2x5 … 15000

x1, x2, x3, x4, x5 Ú 0

Solution:

The optimum solution (obtained using file amplEX2.4-6.txt or solverEx2.4-6.xls) is

Total tax collection = z = $343, 965
Number of single homes = x1 = 35.83 ≃ 36 units
Number of double homes = x2 = 98.53 ≃ 99 units
Number of triple homes = x3 = 44.79 ≃ 45 units
Number of quadruple homes = x4 = 0 units
Number of homes demolished = x5 = 244.49 ≃ 245 units

remarks. Linear programming does not automatically guarantee an integer solution, and this 
is the reason for rounding the continuous values to the closest integer. The rounded  solution 
calls for constructing 180 1=  36 + 99 + 452 units and demolishing 245 old homes, which 
yields $345,600 in taxes. Keep in mind, however, that, in general, the rounded solution may 
not be feasible. In fact, the current rounded solution violates the budget constraint by $70,000 
(verify!). Interestingly, the true optimum integer solution (using the algorithms in Chapter 9) 
is x1 = 36, x2 = 98, x3 = 45, x4 = 0, and x5 = 245 with z = $343,700. Carefully note that the 
rounded solution yields a better objective value, which appears contradictory. The reason is 
that the rounded solution calls for producing an extra double home, which is feasible only if 
the budget is increased by $70,000.
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2.4.5  blending and Refining

A number of LP applications deal with blending different input materials to manu-
facture products that meet certain specifications while minimizing cost or maximizing 
profit. The input materials could be ores, metal scraps, chemicals, or crude oils, and 
the output products could be metal ingots, paints, or gasoline of various grades. This 
section presents a (simplified) model for oil refining. The process starts with distilling 
crude oil to produce intermediate gasoline stocks, and then blending these stocks to 
produce final gasoline products. The final products must satisfy certain quality speci-
fications (such as octane rating). In addition, distillation capacities and demand limits 
can directly affect the level of production of the different grades of gasoline. One goal 
of the model is to determine the optimal mix of final products that will maximize an 
appropriate profit function. In some cases, the goal may be to minimize a cost function.

Example 2.4-7 (Crude oil Refining and Gasoline blending)

Shale Oil, located on the island of Aruba, has a capacity of 1,500,000 bbl of crude oil per day. The 
final products from the refinery include three types of unleaded gasoline with different  octane 
numbers (ON): regular with ON = 87, premium with ON = 89, and super with ON = 92. 
The refining process encompasses three stages: (1) a distillation tower that produces feedstock 
1ON = 822 at the rate of .2 bbl per bbl of crude oil, (2) a cracker unit that produces gasoline 
stock 1ON = 982 by using a portion of the feedstock produced from the distillation tower at the 
rate of .5 bbl per bbl of feedstock, and (3) a blender unit that blends the gasoline stock from the 
cracker unit and the feedstock from the distillation tower. The company estimates the net profit 
per barrel of the three types of gasoline to be $6.70, $7.20, and $8.10, respectively. The input 
capacity of the cracker unit is 200,000 bbl of feedstock a day. The demand limits for regular, 
premium, and super gasoline are 50,000, 30,000, and 40,000 bbl, respectively, per day. Develop a 
model for determining the optimum production schedule for the refinery.

Mathematical Model: Figure 2.12 summarizes the elements of the model. The variables can be 
defined in terms of two input streams to the blender (feedstock and cracker gasoline) and the 
three final products. Let

xij = bbl/day of input stream i used to blend final product j, i = 1, 2; j = 1, 2, 3

Distillation

5:1

Crude

ON 5 82
Feed-
stock

Cracker

Blender

x21 1 x22 1 x23

x11 1 x12 1 x13 x11 1 x21, ON 5 87

x12 1 x22, ON 5 89

x13 1 x23, ON 5 92

ON 5 82

ON 5 98

2:1

1:1

FiGure 2.12

Product flow in the refinery problem
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Using this definition, we have

Daily production of regular gasoline = x11 + x21 bbl/day

Daily production of premium gasoline = x12 + x22 bbl/day

Daily production of super gasoline = x13 + x23 bbl/day

a Daily output
of blender unit

b = aDaily regular
production

b + aDaily premium
production

b + aDaily super
production

b

 = 1x11 + x212 + 1x12 + x222 + 1x13 + x232 bbl/day

aDaily feedstock
to blender

b = x11 + x12 + x13 bbl/day

aDaily cracker unit
feed to blender

b = x21 + x22 + x23 bbl/day

aDaily feedstock
to cracker

b = 21x21 + x22 + x232 bbl/day

aDaily crude oil used
in the refinery

b = 51x11 + x12 + x132 + 101x21 + x22 + x232 bbl/day

The objective of the model is to maximize the total profit resulting from the sale of all 
three grades of gasoline. From the definitions given earlier, we get

Maximize z = 6.701x11 + x212 + 7.201x12 + x222 + 8.101x13 + x232
The constraints of the problem are developed as follows:

1. Daily crude oil supply does not exceed 1,500,000 bbl/day:

51x11 + x12 + x132 + 101x21 + x22 + x232 … 1,500,000

2. Cracker unit input capacity does not exceed 200,000 bbl/day:

21x21 + x22 + x232 … 200,000

3. Daily demand for regular does not exceed 50,000 bbl:

x11 + x21 … 50,000

4. Daily demand for premium does not exceed 30,000 bbl:

x12 + x22 … 30,000

5. Daily demand for super does not exceed 40,000 bbl:

x13 + x23 … 40,000

6. Octane number (ON) for regular is at least 87:

The octane number of a gasoline product is the weighted average of the octane numbers of 
the input streams used in the blending process and can be computed as
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a Average ON of
regular gasoline

b =  

  
Feedstock ON * feedstock bbl/day + Cracker unit ON * Cracker unit bbl/day

Total bbl/day of regular gasoline

=
82x11 + 98x21

x11 + x21

Thus, octane number constraint for regular gasoline becomes

82x11 + 98x21

x11 + x21
 Ú 87

The constraint is linearized as

82x11 + 98x21 Ú 871x11 + x212
7. Octane number for premium is at least 89:

82x12 + 98x22

x12 + x22
 Ú 89

which is linearized as

82x12 + 98x22 Ú 891x12 + x222
8. Octane number for super is at least 92:

82x13 + 98x23

x13 + x23
 Ú 92

or

82x13 + 98x23 Ú 921x13 + x232
The complete model is thus summarized as

Maximize z = 6.701x11 + x212 + 7.201x12 + x222 + 8.101x13 + x232
subject to

 51x11 + x12 + x132 + 101x21 + x22 + x232 … 1,500,000

 21x21 + x22 + x232 … 200,000

 x11 + x21 … 50,000

 x12 + x22 … 30,000

 x13 + x23 … 40,000

 82x11 + 98x21 Ú 871x11 + x212
 82x12 + 98x22 Ú 891x12 + x222
 82x13 + 98x23 Ú 921x13 + x232

x11, x12, x13, x21, x22, x23 Ú 0

The last three constraints can be simplified to produce a constant right-hand side.
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Solution:

The optimum solution (obtained using file toraEx2.4-7.txt or amplEx2.4-7.txt) is z = 875,000,  
x11 = 34,375, x21 = 15,625, x12 = 16,875, x22 = 13,125, x13 = 15,000, x23 = 25,000. This trans-
lates to

Daily profit = $875,000
Daily amount of regular gasoline = x11 + x21 = 34,375 + 13,125 = 30,000 bbl/day
Daily amount of premium gasoline = x12 + x22 = 16,875 + 13,125 = 30,000 bbl/day
Daily amount of super gasoline = x13 + x23 = 15,000 + 25,000 = 40,000 bbl/day

The solution shows that regular gasoline production is 20,000 bbl/day short of satisfying the 
maximum demand. The demand for the remaining two grades is satisfied.

2.4.6  Additional LP Applications

The preceding sections have demonstrated representative LP applications in five areas. 
Problems 2-77 to 2-87 provide additional areas of application, ranging from agriculture 
to military.
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  2-1.  For the Reddy Mikks model, construct each of the following constraints, and express it 
with a linear left-hand side and a constant right-hand side:

*(a) The daily demand for interior paint exceeds that of exterior paint by at least 1 ton.

(b) The daily usage of raw material M1 in tons is at most 8 and at least 5.

*(c) The demand for exterior paint cannot be less than the demand for interior paint.

(d) The maximum quantity that should be produced of both the interior and the 
 exterior paint is 15 tons.

*(e) The proportion of exterior paint to the total production of both interior and exterior 
paints must not exceed .5.

 2-2.  Determine the best feasible solution among the following (feasible and infeasible) solutions 
of the Reddy Mikks model:
(a) x1 = 1, x2 = 2.

(b) x1 = 3, x2 = 1.

(c) x1 = 3, x2 = 1.5.

(d) x1 = 2, x2 = 1.

(e) x1 = 2, x2 = -1.
 *2-3.  For the feasible solution x1 = 1, x2 = 2 of the Reddy Mikks model, determine the un-

used amounts of raw materials M1 and M2.
 2-4.  Suppose that Reddy Mikks sells its exterior paint to a single wholesaler at a quantity discount. 

The profit per ton is $5000 if the contractor buys no more than 5 tons daily and $4300 other-
wise. Express the objective function mathematically. Is the resulting function linear?

 2-5.  Determine the feasible space for each of the following independent constraints, given 
that x1, x2 Ú 0.

*(a) -3x1 + x2 … 6.

(b) x1 - 2x2 Ú 5.

(c) 2x1 - 3x2 … 12.

(d) x1 - x2 … 0.

*(e) -x1 + x2 Ú 0.
 2-6.  Identify the direction of increase in z in each of the following cases:

*(a) Maximize z = x1 - x2.

(b) Maximize z = -8x1 - 3x2.

(c) Maximize z = -x1 + 3x2.

*(d) Maximize z = -3x1 + x2.
 2-7.  Determine the solution space and the optimum solution of the Reddy Mikks model for 

each of the following independent changes:
(a) The maximum daily demand for interior paint is 1.9 tons and that for exterior paint 

is at most 2.5 tons.

(b) The daily demand for interior paint is at least 2.5 tons.

(c) The daily demand for interior paint is exactly 1 ton higher than that for exterior paint.

(d) The daily availability of raw material M1 is at least 24 tons.

(e) The daily availability of raw material M1 is at least 24 tons, and the daily demand for 
interior paint exceeds that for exterior paint by at least 1 ton.
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 2-8.  A company that operates 10 hrs a day manufactures two products on three sequential 
processes. The following table summarizes the data of the problem:

Minutes per unit

Product Process 1 Process 2 Process 3 Unit profit

1 10  6  8 $20
2  5 20 10 $30

Determine the optimal mix of the two products.
 *2-9.  A company produces two products, A and B. The sales volume for A is at least 80% of 

the total sales of both A and B. However, the company cannot sell more than 110 units of 
A per day. Both products use one raw material, of which the maximum daily availability 
is 300 lb. The usage rates of the raw material are 2 lb per unit of A, and 4 lb per unit of B. 
The profit units for A and B are $40 and $90, respectively. Determine the optimal product 
mix for the company.

2-10.  Alumco manufactures aluminum sheets and aluminum bars. The maximum production 
capacity is estimated at either 800 sheets or 600 bars per day. The maximum daily demand 
is 550 sheets and 560 bars. The profit per ton is $40 per sheet and $35 per bar. Determine 
the optimal daily production mix.

*2-11.  An individual wishes to invest $5000 over the next year in two types of investment: 
Investment A yields 5%, and investment B yields 8%. Market research recommends 
an allocation of at least 25% in A and at most 50% in B. Moreover, investment in A 
should be at least half the investment in B. How should the fund be allocated to the 
two investments?

2-12.  The Continuing Education Division at the Ozark Community College offers a total of 
30 courses each semester. The courses offered are usually of two types: practical and 
 humanistic. To satisfy the demands of the community, at least 10 courses of each type 
must be offered each semester. The division estimates that the revenues of offering prac-
tical and humanistic courses are approximately $1500 and $1000 per course, respectively.
(a) Devise an optimal course offering for the college.

(b) Show that the worth per additional course is $1500, which is the same as the reve-
nue per practical course. What does this result mean in terms of offering  additional 
courses?

2-13.  ChemLabs uses raw materials I and II to produce two domestic cleaning solutions, A and 
B. The daily availabilities of raw materials I and II are 150 and 145 units, respectively. 
One unit of solution A consumes .5 unit of raw material I and .6 unit of raw material II. 
One unit of solution B uses .5 unit of raw material I and .4 unit of raw material II.  The 
profits per unit of solutions A and B are $8 and $10, respectively. The daily demand for 
solution A lies between 30 and 150 units, and that for solution B between 40 and 200 
units. Find the optimal production amounts of A and B.

2-14.  In the Ma-and-Pa grocery store, shelf space is limited and must be used effectively to 
 increase profit. Two cereal items, Grano and Wheatie, compete for a total shelf space of 
60 ft2. A box of Grano occupies .2 ft2 and a box of Wheatie needs .4 ft2. The maximum 
daily demands of Grano and Wheatie are 200 and 120 boxes, respectively. A box of 
Grano nets $1.00 in profit and a box of Wheatie $1.35. Ma-and-Pa thinks that because 
the unit profit of Wheatie is 35% higher than that of Grano, Wheatie should be allocated 
35% more space than Grano, which amounts to allocating about 57% to Wheatie and 
43% to Grano. What do you think?
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2-15.  Jack is an aspiring freshman at Ulern University. He realizes that “all work and no play 
make Jack a dull boy.” Jack wants to apportion his available time of about 10 hrs a day 
 between work and play. He estimates that play is twice as much fun as work. He also 
wants to study at least as much as he plays. However, Jack realizes that if he is going 
to get all his homework assignments done, he cannot play more than 4 hrs a day. How 
should Jack allocate his time to maximize his pleasure from both work and play?

2-16.  Wild West produces two types of cowboy hats. A Type 1 hat requires twice as much labor 
time as a Type 2. If all the available labor time is dedicated to Type 2 alone, the company 
can produce a total of 400 Type 2 hats a day. The respective market limits for Type 1 
and Type 2 are 150 and 200 hats per day, respectively. The profit is $8 per Type 1 hat and 
$5 per Type 2 hat. Determine the number of hats of each type that maximizes profit.

2-17.  Show & Sell can advertise its products on local radio and television (TV). The advertising 
budget is limited to $10,000 a month. Each minute of radio advertising costs $15, and each 
minute of TV commercials $300. Show & Sell likes to advertise on radio at least twice as 
much as on TV. In the meantime, it is not practical to use more than 400 minutes of radio 
advertising a month. From past experience, advertising on TV is estimated to be 25 times 
as effective as on radio. Determine the optimum allocation of the budget to radio and TV 
advertising.

*2-18.  Wyoming Electric Coop owns a steam-turbine power-generating plant. Because Wyoming 
is rich in coal deposits, the plant generates its steam from coal. This, however, may result 
in emission that does not meet the Environmental Protection Agency (EPA) standards. 
EPA regulations limit sulfur dioxide discharge to 2000 parts per million per ton of coal 
burned and smoke discharge from the plant stacks to 20 lb per hour. The Coop receives 
two grades of pulverized coal, C1 and C2, for use in the steam plant. The two grades 
are usually mixed together before burning. For simplicity, it can be assumed that the 
amount of sulfur pollutant discharged (in parts per million) is a weighted average of 
the proportion of each grade used in the mixture. The following data is based on the 
consumption of 1 ton per hr of each of the two coal grades.

Coal grade
Sulfur discharge  
in parts per million

Smoke discharge  
in lb per hour

Steam generated  
in lb per hour

C1 1800 2.1 12,000
C2 2100  .9   9,000

(a) Determine the optimal ratio for mixing the two coal grades.

(b) Determine the effect of relaxing the smoke discharge limit by 1 lb on the amount of 
generated steam per hour.

2-19.  Top Toys is planning a new radio and TV advertising campaign. A radio commercial costs 
$300 and a TV ad costs $2000. A total budget of $20,000 is allocated to the campaign. 
However, to ensure that each medium will have at least one radio commercial and one 
TV ad, the most that can be allocated to either medium cannot exceed 80% of the total 
budget. It is estimated that the first radio commercial will reach 5000 people, with each 
additional commercial reaching only 2000 new ones. For TV, the first ad will reach 4500 
people, and each additional ad an additional 3000. How should the budgeted amount be 
allocated between radio and TV?

2-20.  The Burroughs Garment Company manufactures men’s shirts and women’s blouses for 
Walmark Discount Stores. Walmark will accept all the production supplied by Burroughs. 
The production process includes cutting, sewing, and packaging. Burroughs employs 
25 workers in the cutting department, 35 in the sewing department, and 5 in the  
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packaging department. The factory works one 8-hr shift, 5 days a week. The following 
table gives the time requirements and profits per unit for the two garments.

Minutes per unit

Garment Cutting Sewing Packaging Unit profit ($)

Shirts 20 70 12  8

Blouses 60 60  4 12

Determine the optimal weekly production schedule for Burroughs.
2-21.  A furniture company manufactures desks and chairs. The sawing department cuts the 

 lumber for both products, which is then sent to separate assembly departments.  Assembled 
items are sent to the painting department for finishing. The daily capacity of the  sawing 
 department is 200 chairs or 80 desks. The chair assembly department can  produce 
120 chairs daily, and the desk assembly department 60 desks daily. The paint department 
has a daily capacity of either 150 chairs or 110 desks. Given that the profit per chair is 
$50 and that of a desk is $100, determine the optimal production mix for the company.

*2-22.  An assembly line consisting of three consecutive stations produces two radio models: HiFi-1 
and HiFi-2. The following table provides the assembly times for the three workstations.

Minutes per unit

Workstation HiFi-1 HiFi-2

1 6 4
2 5 5
3 4 6

The daily maintenance for stations 1, 2, and 3 consumes 10%, 14%, and 12%, respectively, 
of the maximum 480 minutes available for each station each day. Determine the optimal 
product mix that will minimize the idle (or unused) times in the three workstations.

2-23.  Determination of the Optimum LP Solution by Enumerating All Feasible Corner Points. 
The remarkable observation gleaned from the graphical LP solution is that the optimum, 
when finite, is always associated with a corner point of the feasible solution space. Show 
how this idea is applied to the Reddy Mikks model by evaluating all of its feasible corner 
points A, B, C, D, E, and F.

2-24.  TORA Experiment. Enter the following LP into TORA, and select the graphic solution 
mode to reveal the LP graphic screen.

Minimize z = 3x1 + 8x2

subject to

 x1 +  x2 Ú 8

 2x1 - 3x2 … 0

 x1 + 2x2 … 30

 3x1 -    x2 Ú 0

 x1    … 10

 x2 Ú 9

 x1, x2 Ú 0
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Next, on a sheet of paper, graph and scale the x1- and x2-axes for the problem (you may 
also click Print Graph on the top of the right window to obtain a ready-to-use scaled 
sheet). Now, graph a constraint manually on the prepared sheet, and then click on the 
left window of the screen to check your answer. Repeat the same for each constraint, 
and then terminate the procedure with a graph of the objective function. The suggested 
process is designed to test and reinforce your understanding of the graphical LP solution 
through immediate feedback from TORA.

2-25.  TORA Experiment. Consider the following LP model:

Maximize z = 5x1 + 4x2

subject to

 6x1 + 4x2 … 24

 6x1 + 3x2 … 22.5

 x1 + x2 … 5

 x1 + 2x2 … 6

 -x1 + x2 … 1

 x2 … 2

 x1, x2 Ú 0

In LP, a constraint is said to be redundant if its removal from the model leaves the 
feasible solution space unchanged. Use the graphical facility of TORA to identify the 
redundant constraints, and then show that their removal (simply by not graphing them) 
does not affect the solution space or the optimal solution.

2-26.  TORA Experiment. In the Reddy Mikks model, use TORA to show that the removal of 
the raw material constraints (constraints 1 and 2) would result in an unbounded solution 
space. What can be said in this case about the optimal solution of the model?

2-27.  TORA Experiment. In the Reddy Mikks model, suppose that the following constraint is 
added to the problem:

x2 Ú 3

Use TORA to show that the resulting model has conflicting constraints that cannot be 
satisfied simultaneously, and hence it has no feasible solution.

2-28.  Identify the direction of decrease in z in each of the following cases:
*(a) Minimize z = 4x1 - 2x2.

(b) Minimize z = -6x1 + 2x2.

(c) Minimize z = -3x1 - 6x2.
2-29.  For the diet model, suppose that the daily availability of corn is limited to 400 lb. Identify 

the new solution space, and determine the new optimum solution.
2-30.  For the diet model, determine the optimum solution given the feed mix does not exceed 

500 lb a day? Does the solution make sense?
2-31.  John must work at least 20 hours a week to supplement his income while attending school. 

He has the opportunity to work in two retail stores. In store 1, he can work between 
4.5 and 12 hours a week, and in store 2, he is allowed between 5.5 and 10 hours. Both 
stores pay the same hourly wage. In deciding how many hours to work in each store, John 
wants to base his decision on work stress. Based on interviews with present employees, 
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John estimates that, on an ascending scale of 1 to 10, the stress factors are 8 and 6 at stores 
1 and 2, respectively. Because stress mounts by the hour, he assumes that the total stress 
for each store at the end of the week is proportional to the number of hours he works in 
the store. How many hours should John work in each store?

*2-32.  OilCo is building a refinery to produce four products: diesel, gasoline, lubricants, and 
jet fuel. The minimum demand (in bbl/day) for each of these products is 14,000, 30,000, 
10,000, and 8000, respectively. Iraq and Dubai are under contract to ship crude to OilCo. 
Because of the production quotas specified by OPEC (Organization of Petroleum 
 Exporting Countries), the new refinery can receive at least 40% of its crude from Iraq 
and the remaining amount from Dubai. OilCo predicts that the demand and crude oil 
quotas will remain steady over the next 10 years.

The specifications of the two crude oils lead to different product mixes. One barrel 
of Iraq crude yields .2 bbl of diesel, .25 bbl of gasoline, .1 bbl of lubricant, and .15 bbl of 
jet fuel. The corresponding yields from Dubai crude are .1, .6, .15, and .1, respectively. 
OilCo needs to determine the minimum capacity of the refinery (in bbl/day).

2-33.  Day Trader wants to invest a sum of money that would generate an annual yield of at 
least $10,000. Two stock groups are available: blue chips and high tech, with average 
 annual yields of 10% and 25%, respectively. Though high-tech stocks provide higher 
yield, they are more risky, and Trader wants to limit the amount invested in these stocks 
to no more than 60% of the total investment. What is the minimum amount Trader 
should invest in each stock group to accomplish the investment goal?

*2-34.  An industrial recycling center uses two scrap aluminum metals, A and B, to produce a 
special alloy. Scrap A contains 6% aluminum, 3% silicon, and 4% carbon. Scrap B has 
3% aluminum, 6% silicon, and 3% carbon. The costs per ton for scraps A and B are $100 
and $80, respectively. The specifications of the special alloy require that (1) the aluminum 
content must be at least 3% and at most 6%, (2) the silicon content must be between 
3% and 5%, and (3) the carbon content must be between 3% and 7%. Determine the 
optimum mix of the scraps that should be used in producing 1000 tons of the alloy.

2-35.  TORA Experiment. Consider the Diet Model, and let the objective function be given as

Minimize z = .8x1 + .8x2

Use TORA to show that the optimum solution is associated with two distinct corner 
points, and that both points yield the same objective value. In this case, the problem is 
said to have alternative optima. Explain the conditions leading to this situation, and show 
that, in effect, the problem has an infinite number of alternative optima. Then provide a 
formula for determining all such solutions.

2-36.  Modify the Reddy Mikks Solver model of Figure 2.4 to account for a third type of paint 
named “marine.” Requirements per ton of raw materials 1 and 2 are .6 and .85 ton, re-
spectively. The daily demand for the new paint lies between .6 ton and 1.9 tons. The profit 
per ton is $3700. 

2-37.  Develop the Excel Solver model for the following problems:
(a) The diet model of Example 2.2-2.

(b) Problem 2-21.

(c) Problem 2-34.
2-38.  In the Reddy Mikks model, suppose that a third type of paint, named “marine,” is produced. 

The requirements per ton of raw materials M1 and M2 are .7 and .95 ton, respectively. The 
daily demand for the new paint lies between .4 ton and 2.1 tons, and the profit per ton is 
$4500. Modify the Excel Solver model solverRM2.xls and the AMPL model amplRM2.txt to 
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account for the new situation and determine the optimum solution. Compare the additional 
effort associated with each modification.

2-39.  Develop AMPL models for the following problems:
(a) The diet problem of Example 2.2-2 and find the optimum solution.

(b) Problem 2-22.

(c) Problem 2-34.
2-40.  Fox Enterprises is considering six projects for possible construction over the next 

four years. Fox can undertake any of the projects partially or completely. A partial 
 undertaking of a project will prorate both the return and cash outlays proportionately. 
The expected (present value) returns and cash outlays for the projects are given in the 
following table.

Cash outlay ($1000)

Project Year 1 Year 2 Year 3 Year 4 Return ($1000)

1 10.5 14.4 2.2 2.4 324.00
2 8.3 12.6 9.5 3.1 358.00
3 10.2 14.2 5.6 4.2 177.50
4 7.2 10.5 7.5 5.0 148.00
5 12.3 10.1 8.3 6.3 182.00
6 9.2  7.8 6.9 5.1 123.50

Available funds ($1000) 60.0 70.0 35.0 20.0

(a) Formulate the problem as a linear program, and determine the optimal project mix 
that maximizes the total return using AMPL, Solver, or TORA. Ignore the time 
value of money.

(b) Suppose that if a portion of project 2 is undertaken, then at least an equal portion 
of project 6 must be undertaken. Modify the formulation of the model, and find the 
new optimal solution.

(c) In the original model, suppose that any funds left at the end of a year are used in 
the next year. Find the new optimal solution, and determine how much each year 
 “borrows” from the preceding year. For simplicity, ignore the time value of money.

(d) Suppose in the original model the yearly funds available for any year can be exceeded, 
if necessary, by borrowing from other financial activities within the company. Ignoring 
the time value of money, reformulate the LP model, and find the optimum solution. 
Would the new solution require borrowing in any year? If so, what is the rate of return 
on borrowed money?

*2-41.  Investor Doe has $10,000 to invest in four projects. The following table gives the cash 
flow for the four investments.

Cash flow ($1000) at the start of

Project Year 1 Year 2 Year 3 Year 4 Year 5

1 -1.00 0.50 0.30 1.80 1.20
2 -1.00 0.60 0.20 1.50 1.30
3 0.00 -1.00 0.80 1.90 0.80
4 -1.00 0.40 0.60 1.80 0.95
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The information in the table can be interpreted as follows: For project 1, $1.00 invested 
at the start of year 1 will yield $.50 at the start of year 2, $.30 at the start of year 3, $1.80 
at the start of year 4, and $1.20 at the start of year 5. The remaining entries can be in-
terpreted similarly. The entry 0.00 indicates that no transaction is taking place. Doe has 
the additional option of investing in a bank account that earns 6.5% annually. All funds 
accumulated at the end of 1 year can be reinvested in the following year. Formulate the 
problem as a linear program to determine the optimal allocation of funds to investment 
opportunities. Solve the model using Solver or AMPL.

2-42.  HiRise Construction can bid on two 1-year projects. The following table provides the 
quarterly cash flow (in millions of dollars) for the two projects.

Cash flow (in millions of $) at

Project January 1 April 1 July 1 October 1 December 31

I -1.0 -3.1 -1.5 1.8 5.0
II -3.0 -2.5   1.5 1.8 2.8

HiRise has cash funds of $1 million at the beginning of each quarter and may borrow 
at most $1 million at a 10% nominal annual interest rate. Any borrowed money must 
be returned at the end of the quarter. Surplus cash can earn quarterly interest at an 
8% nominal annual rate. Net accumulation at the end of one quarter is invested in the 
next quarter.
(a) Assume that HiRise is allowed partial or full participation in the two projects. 

Determine the level of participation that will maximize the net cash accumulated on 
December 31. Solve the model using Solver or AMPL.

(b) Is it possible in any quarter to borrow money and simultaneously end up with surplus 
funds? Explain.

2-43.  In anticipation of the immense college expenses, Joe and Jill started an annual investment 
program on their child’s eighth birthday that will last until the eighteenth birthday. They 
plan to invest the following amounts at the beginning of each year:

Year 1 2 3 4 5 6 7 8 9 10

Amount ($) 2000 2000 2500 2500 3000 3500 3500 4000 4000 5000

To avoid unpleasant surprises, they want to invest the money safely in the following 
 options: insured savings with 7.5% annual yield, 6-year government bonds that yield 
7.9% and have a current market price equal to 98% of face value, and 9-year municipal 
bonds yielding 8.5% and having a current market price of 1.02 of face value. How should 
the money be invested?

*2-44.  A business executive has the option to invest money in two plans: Plan A guarantees that 
each dollar invested will earn $.70 a year later, and plan B guarantees that each dollar 
invested will earn $2 after 2 years. In plan A, investments can be made annually, and 
in plan B, investments are allowed for periods that are multiples of 2 years only. How 
should the executive invest $100,000 to maximize the earnings at the end of 3 years? 
Solve the model using Solver or AMPL.

2-45.  A gambler plays a game that requires dividing bet money among four choices. The game 
has three outcomes. The following table gives the corresponding gain or loss per dollar 
for the different options of the game.


