
GLOBAL
EDITION

This is a special edition of an established
title widely used by colleges and universities
throughout the world. Pearson published this
exclusive edition for the benefit of students
outside the United States and Canada. If you
purchased this book within the United States
or Canada, you should be aware that it has
been imported without the approval of the
Publisher or Author.

Pearson Global Edition

GLOBAL
EDITION

For these Global Editions, the editorial team at Pearson has
collaborated with educators across the world to address a
wide range of subjects and requirements, equipping students
with the best possible learning tools. This Global Edition
preserves the cutting-edge approach and pedagogy of the
original, but also features alterations, customization, and
adaptation from the North American version.

Building Java™ Programs
A Back to Basics Approach
FOURTH EDITION

Stuart Reges • Marty Stepp

Building Java™
 Program

s
A Back to Basics Approach

Reges
Stepp

FO
U

RT
H

ED

IT
IO

N
G

LO
B

A
L

ED
IT

IO
N

Reges_04_129216168X_Final.indd 1 08/11/16 5:37 PM

Building Java Programs
A Back to Basics Approach

Stuart Reges
University of Washington

Marty Stepp
Stanford University

Fourth Edition
Global Edition

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

A01_REGE1686_04_GE_FM.indd 1 17/11/16 3:27 PM

Vice President, Editorial Director: Marcia Horton
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Kristy Alaura
Acquisitions Editor, Global Editions: Sourabh Maheshwari
VP of Marketing: Christy Lesko
Director of Field Marketing: Tim Galligan
Product Marketing Manager: Bram Van Kempen
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Director of Product Management: Erin Gregg
Team Lead, Program and Project Management:

Scott Disanno
Program Manager: Carole Snyder
Project Editor, Global Editions: K.K. Neelakantan

Project Manager: Lakeside Editorial Services L.L.C.
Senior Specialist, Program Planning and Support:

Maura Zaldivar-Garcia
Senior Manufacturing Controller, Global Editions: Kay

Holman
Media Production Manager, Global Editions: Vikram

Kumar
Cover Design: Lumina Datamatics
R&P Manager: Rachel Youdelman
R&P Project Manager: Timothy Nicholls
Inventory Manager: Meredith Maresca
Cover Art: © Westend61 Premium/Shutterstock.com
Full-Service Project Management:

Apoorva Goel/Cenveo® Publisher Services

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The authors and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or to the documentation
contained in this book. The authors and publisher shall not be liable in any event for incidental or consequential damages
in connection with, or arising out of, the furnishing, performance, or use of these programs.

Acknowledgements of third-party content appear on pages 1219–1220, which constitute an extension of this copyright page.

PEARSON, and MYPROGRAMMINGLAB are exclusive trademarks in the U.S. and/or other countries owned by
Pearson Education, Inc. or its affiliates.

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2018
The rights of Stuart Reges and Marty Stepp to be identified as the authors of this work have been asserted by them
in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Building Java Programs: A Back to Basics Approach,
4th Edition, ISBN 978-0-13-432276-6, by Stuart Reges and Marty Stepp published by Pearson Education © 2017.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written
permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright
Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest
in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply
any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
10 9 8 7 6 5 4 3 2 1

ISBN 10: 1-292-16168-X
ISBN 13: 978-1-292-16168-6

Typeset in Monotype by Cenveo Publisher Services
Printed and bound in Malaysia.

A01_REGE1686_04_GE_FM.indd 2 14/12/16 6:05 PM

http://www.pearsonglobaleditions.com

Preface

The newly revised fourth edition of our Building Java Programs textbook is designed
for use in a two-course introduction to computer science. We have class-tested it with
thousands of undergraduates, most of whom were not computer science majors, in our
CS1-CS2 sequence at the University of Washington. These courses are experiencing
record enrollments, and other schools that have adopted our textbook report that stu-
dents are succeeding with our approach.

Introductory computer science courses are often seen as “killer” courses with high
failure rates. But as Douglas Adams says in The Hitchhiker’s Guide to the Galaxy, “Don’t
panic.” Students can master this material if they can learn it gradually. Our textbook uses
a layered approach to introduce new syntax and concepts over multiple chapters.

Our textbook uses an “objects later” approach where programming fundamentals
and procedural decomposition are taught before diving into object-oriented program-
ming. We have championed this approach, which we sometimes call “back to basics,”
and have seen through years of experience that a broad range of scientists, engineers,
and others can learn how to program in a procedural manner. Once we have built a
solid foundation of procedural techniques, we turn to object-oriented programming.
By the end of the course, students will have learned about both styles of programming.

Here are some of the changes that we have made in the fourth edition:

 • New chapter on functional programming with Java 8. As explained below, we
have introduced a chapter that uses the new language features available in Java 8
to discuss the core concepts of functional programming.

 • New section on images and 2D pixel array manipulation. Image manipula-
tion is becoming increasingly popular, so we have expanded our DrawingPanel
class to include features that support manipulating images as two-dimensional
arrays of pixel values. This extra coverage will be particularly helpful for stu-
dents taking an AP/CS A course because of the heavy emphasis on two-dimen-
sional arrays on the AP exam.

 • Expanded self-checks and programming exercises. Many chapters have
received new self-check problems and programming exercises. There are roughly
fifty total problems and exercises per chapter, all of which have been class-tested
with real students and have solutions provided for instructors on our web site.

Since the publication of our third edition, Java 8 has been released. This new version
supports a style of programming known as functional programming that is gaining in

3

A01_REGE1686_04_GE_FM.indd 3 17/11/16 3:27 PM

popularity because of its ability to simply express complex algorithms that are more
easily executed in parallel on machines with multiple processors. ACM and IEEE have
released new guidelines for undergraduate computer science curricula, including a
strong recommendation to cover functional programming concepts.

We have added a new Chapter 19 that covers most of the functional concepts
from the new curriculum guidelines. The focus is on concepts, not on language
features. As a result, it provides an introduction to several new Java 8 constructs
but not a comprehensive coverage of all new language features. This provides
flexibility to instructors since functional programming features can be covered as
an advanced independent topic, incorporated along the way, or skipped entirely.
Instructors can choose to start covering functional constructs along with tradi-
tional constructs as early as Chapter 6. See the dependency chart at the end of this
section.

The following features have been retained from previous editions:

 • Focus on problem solving. Many textbooks focus on language details when
they introduce new constructs. We focus instead on problem solving. What new
problems can be solved with each construct? What pitfalls are novices likely
to encounter along the way? What are the most common ways to use a new
construct?

 • Emphasis on algorithmic thinking. Our procedural approach allows us to
emphasize algorithmic problem solving: breaking a large problem into smaller
problems, using pseudocode to refine an algorithm, and grappling with the chal-
lenge of expressing a large program algorithmically.

 • Layered approach. Programming in Java involves many concepts that are dif-
ficult to learn all at once. Teaching Java to a novice is like trying to build a house
of cards. Each new card has to be placed carefully. If the process is rushed and
you try to place too many cards at once, the entire structure collapses. We teach
new concepts gradually, layer by layer, allowing students to expand their under-
standing at a manageable pace.

 • Case studies. We end most chapters with a significant case study that shows
students how to develop a complex program in stages and how to test it as it is
being developed. This structure allows us to demonstrate each new program-
ming construct in a rich context that can’t be achieved with short code exam-
ples. Several of the case studies were expanded and improved in the second
edition.

 • Utility as a CS1+CS2 textbook. In recent editions, we added chapters that extend
the coverage of the book to cover all of the topics from our second course in com-
puter science, making the book usable for a two-course sequence. Chapters 12–19
explore recursion, searching and sorting, stacks and queues, collection implemen-
tation, linked lists, binary trees, hash tables, heaps, and more. Chapter 12 also

4 Preface

A01_REGE1686_04_GE_FM.indd 4 17/11/16 3:27 PM

Preface 5

Chapter

Control Flow

Data

Programming
Techniques

Input/Output

1 methods String literals procedural

decomposition
println, print

2 definite loops (for) variables,

expressions, int,

double

local variables,

class constants,

pseudocode

3 return values using objects parameters console input, 2D

graphics (optional)

4 conditional

(if/else)
char pre/post conditions,

throwing exceptions
printf

5 indefinite loops

(while)
boolean assertions,

robust programs

6 Scanner token/line-based

file processing

file I/O

Chapters 1–6 are designed to be worked through in order, with greater flexibility
of study then beginning in Chapter 7. Chapter 6 may be skipped, although the case
study in Chapter 7 involves reading from a file, a topic that is covered in Chapter 6.

Layers and Dependencies

Many introductory computer science books are language-oriented, but the early chap-
ters of our book are layered. For example, Java has many control structures (including
for-loops, while-loops, and if/else-statements), and many books include all of these
control structures in a single chapter. While that might make sense to someone who al-
ready knows how to program, it can be overwhelming for a novice who is learning how
to program. We find that it is much more effective to spread these control structures
into different chapters so that students learn one structure at a time rather than trying
to learn them all at once.

The following table shows how the layered approach works in the first six chapters:

received a section on recursive backtracking, a powerful technique for exploring a
set of possibilities for solving problems such as 8 Queens and Sudoku.

A01_REGE1686_04_GE_FM.indd 5 17/11/16 3:27 PM

6 Preface

The following is a dependency chart for the book:

Supplements

Answers to all self-check problems appear on the web site and are accessible to
anyone. Our web site has the following additional resources for students:

 • Online-only supplemental chapters, such as a chapter on creating Graphical User
Interfaces

Chapters 1-6
Programming Fundamentals

Chapter 7
Arrays

Chapter 8
Classes

Chapter 9
Functional Programming

(except section 19.5)

Chapter 19
Section 19.5

Chapter 9
Inheritance,
Interfaces

Chapter 12
Recursion

Chapter 13
Searching,

Sorting
Chapter 10
ArrayLists

Chapter 11
Collections

Chapter 14
Stacks,
Queues

Chapter 15
Implementing
Collections

Chapter 16
Linked Lists

Chapter 17
Binary Trees

Chapter 18
Hashing,
Heaps

A01_REGE1686_04_GE_FM.indd 6 17/11/16 3:27 PM

Preface 7

 • Source code and data files for all case studies and other complete program
examples

 • The DrawingPanel class used in the optional graphics Supplement 3G

Our web site has the following additional resources for teachers:

 • PowerPoint slides suitable for lectures

 • Solutions to exercises and programming projects, along with homework specifi-
cation documents for many projects

 • Sample exams and solution keys

 • Additional lab exercises and programming exercises with solution keys

 • Closed lab creation tools to produce lab handouts with the instructor’s choice
of problems integrated with the textbook

The materials are available at www.pearsonglobaleditions.com/reges.

MyProgrammingLab

MyProgrammingLab is an online practice and assessment tool that helps students fully
grasp the logic, semantics, and syntax of programming. Through practice exercises
and immediate, personalized feedback, MyProgrammingLab improves the program-
ming competence of beginning students who often struggle with basic concepts and
paradigms of popular high-level programming languages. A self-study and homework
tool, the MyProgrammingLab course consists of hundreds of small practice exercises
organized around the structure of this textbook. For students, the system automatically
detects errors in the logic and syntax of code submissions and offers targeted hints that
enable students to figure out what went wrong, and why. For instructors, a comprehen-
sive grade book tracks correct and incorrect answers and stores the code inputted by
students for review.

For a full demonstration, to see feedback from instructors and students, or
to adopt MyProgrammingLab for your course, visit the following web site:
http://www.myprogramminglab.com/

VideoNotes

We have recorded a series of instructional videos to accompany the textbook. They are
available at the following web site: www.pearsonglobaleditions.com/reges.

Roughly 3–4 videos are posted for each chapter. An icon in the margin of the page
indicates when a VideoNote is available for a given topic. In each video, we spend

VideoNote

A01_REGE1686_04_GE_FM.indd 7 06/12/16 11:01 PM

http://www.pearsonglobaleditions.com/reges
http://www.myprogramminglab.com/
http://www.pearsonglobaleditions.com/reges

8 Preface

5–15 minutes walking through a particular concept or problem, talking about the
challenges and methods necessary to solve it. These videos make a good supplement
to the instruction given in lecture classes and in the textbook. Your new copy of the
textbook has an access code that will allow you to view the videos.

Acknowledgments

First, we would like to thank the many colleagues, students, and teaching assistants
who have used and commented on early drafts of this text. We could not have written
this book without their input. Special thanks go to Hélène Martin, who pored over
early versions of our first edition chapters to find errors and to identify rough patches
that needed work. We would also like to thank instructor Benson Limketkai for spend-
ing many hours performing a technical proofread of the second edition.

Second, we would like to thank the talented pool of reviewers who guided us in
the process of creating this textbook:

 • Greg Anderson, Weber State University

 • Delroy A. Brinkerhoff, Weber State University

 • Ed Brunjes, Miramar Community College

 • Tom Capaul, Eastern Washington University

 • Tom Cortina, Carnegie Mellon University

 • Charles Dierbach, Towson University

 • H.E. Dunsmore, Purdue University

 • Michael Eckmann, Skidmore College

 • Mary Anne Egan, Siena College

 • Leonard J. Garrett, Temple University

 • Ahmad Ghafarian, North Georgia College & State University

 • Raj Gill, Anne Arundel Community College

 • Michael Hostetler, Park University

 • David Hovemeyer, York College of Pennsylvania

 • Chenglie Hu, Carroll College

 • Philip Isenhour, Virginia Polytechnic Institute

 • Andree Jacobson, University of New Mexico

 • David C. Kamper, Sr., Northeastern Illinois University

 • Simon G.M. Koo, University of San Diego

 • Evan Korth, New York University

 • Joan Krone, Denison University

 • John H.E.F. Lasseter, Fairfield University

A01_REGE1686_04_GE_FM.indd 8 17/11/16 3:27 PM

Preface 9

 • Eric Matson, Wright State University

 • Kathryn S. McKinley, University of Texas, Austin

 • Jerry Mead, Bucknell University

 • George Medelinskas, Northern Essex Community College

 • John Neitzke, Truman State University

 • Dale E. Parson, Kutztown University

 • Richard E. Pattis, Carnegie Mellon University

 • Frederick Pratter, Eastern Oregon University

 • Roger Priebe, University of Texas, Austin

 • Dehu Qi, Lamar University

 • John Rager, Amherst College

 • Amala V.S. Rajan, Middlesex University

 • Craig Reinhart, California Lutheran University

 • Mike Scott, University of Texas, Austin

 • Alexa Sharp, Oberlin College

 • Tom Stokke, University of North Dakota

 • Leigh Ann Sudol, Fox Lane High School

 • Ronald F. Taylor, Wright State University

 • Andy Ray Terrel, University of Chicago

 • Scott Thede, DePauw University

 • Megan Thomas, California State University, Stanislaus

 • Dwight Tuinstra, SUNY Potsdam

 • Jeannie Turner, Sayre School

 • Tammy VanDeGrift, University of Portland

 • Thomas John VanDrunen, Wheaton College

 • Neal R. Wagner, University of Texas, San Antonio

 • Jiangping Wang, Webster University

 • Yang Wang, Missouri State University

 • Stephen Weiss, University of North Carolina at Chapel Hill

 • Laurie Werner, Miami University

 • Dianna Xu, Bryn Mawr College

 • Carol Zander, University of Washington, Bothell

Finally, we would like to thank the great staff at Pearson who helped produce the
book. Michelle Brown, Jeff Holcomb, Maurene Goo, Patty Mahtani, Nancy Kotary,
and Kathleen Kenny did great work preparing the first edition. Our copy editors
and the staff of Aptara Corp, including Heather Sisan, Brian Baker, Brendan Short,

A01_REGE1686_04_GE_FM.indd 9 17/11/16 3:27 PM

and Rachel Head, caught many errors and improved the quality of the writing.
Marilyn Lloyd and Chelsea Bell served well as project manager and editorial assis-
tant respectively on prior editions. For their help with the third edition we would like
to thank Kayla Smith-Tarbox, Production Project Manager, and Jenah Blitz-Stoehr,
Computer Science Editorial Assistant. Mohinder Singh and the staff at Aptara, Inc.,
were also very helpful in the final production of the third edition. For their great
work on production of the fourth edition, we thank Louise Capulli and the staff of
Lakeside Editorial Services, along with Carole Snyder at Pearson. Special thanks go
to our lead editor at Pearson, Matt Goldstein, who has believed in the concept of our
book from day one. We couldn’t have finished this job without all of their hard work
and support.

Stuart Reges
Marty Stepp

Acknowledgments for the Global Edition

Pearson would like to thank and acknowledge the following people for their contribu-
tions to the Global Edition.

Contributor

Ankur Saxena, Amity University

Reviewers

Arup Bhattacharya, RCC Institute of Technology

Soumen Mukherjee, RCC Institute of Technology

Khyat Sharma

10 Preface

A01_REGE1686_04_GE_FM.indd 10 14/12/16 5:16 PM

A01_REGE1686_04_GE_FM.indd 11 12/12/16 5:31 pm

LOCATION OF VIDEO NOTES IN THE TEXT
www.pearsonglobaleditions.com/reges

Chapter 1 Pages 57, 66

Chapter 2 Pages 91, 100, 115, 123, 136

Chapter 3 Pages 167, 182, 187, 193

Chapter 3G Pages 223, 241

Chapter 4 Pages 269, 277, 304

Chapter 5 Pages 350, 353, 355, 359, 382

Chapter 6 Pages 422, 435, 449

Chapter 7 Pages 484, 491, 510, 531

Chapter 8 Pages 561, 573, 581, 594

Chapter 9 Pages 623, 636, 652

Chapter 10 Pages 698, 703, 712

Chapter 11 Pages 742, 755, 763

Chapter 12 Pages 790, 798, 835

Chapter 13 Pages 860, 863, 869

Chapter 14 Pages 915, 922

Chapter 15 Pages 956, 962, 966

Chapter 16 Pages 998, 1005, 1018

Chapter 17 Pages 1063, 1064, 1074

Chapter 18 Pages 1099, 1118

VideoNote

12

A01_REGE1686_04_GE_FM.indd 12 17/11/16 3:27 PM

http://www.pearsonglobaleditions.com/reges

Brief Contents

Chapter 1 Introduction to Java Programming 27

Chapter 2 Primitive Data and Definite Loops 89

Chapter 3 Introduction to Parameters and Objects 163

Supplement 3G Graphics (Optional) 222

Chapter 4 Conditional Execution 264

Chapter 5 Program Logic and Indefinite Loops 341

Chapter 6 File Processing 413

Chapter 7 Arrays 469

Chapter 8 Classes 556

Chapter 9 Inheritance and Interfaces 613

Chapter 10 ArrayLists 688

Chapter 11 Java Collections Framework 741

Chapter 12 Recursion 780

Chapter 13 Searching and Sorting 858

Chapter 14 Stacks and Queues 910

Chapter 15 Implementing a Collection Class 948

Chapter 16 Linked Lists 991

Chapter 17 Binary Trees 1043

Chapter 18 Advanced Data Structures 1097

Chapter 19 Functional Programming with Java 8 1133

Appendix A Java Summary 1175

Appendix B The Java API Specification and Javadoc Comments 1190

Appendix C Additional Java Syntax 1196

13

A01_REGE1686_04_GE_FM.indd 13 14/12/16 5:17 PM

561590_MILL_MICRO_FM_ppi-xxvi.indd 2 24/11/14 5:26 PM

This page intentionally left blank

 Contents

Chapter 1 Introduction to Java Programming 27

1.1 Basic Computing Concepts 28
Why Programming? 28
Hardware and Software 29
The Digital Realm 30
The Process of Programming 32
Why Java? 33
The Java Programming Environment 34

1.2 And Now—Java 36
String Literals (Strings) 40
System.out.println 41
Escape Sequences 41
print versus println 43
Identifiers and Keywords 44
A Complex Example: DrawFigures1 46
Comments and Readability 47

1.3 Program Errors 50
Syntax Errors 50
Logic Errors (Bugs) 54

1.4 Procedural Decomposition 54
Static Methods 57
Flow of Control 60
Methods That Call Other Methods 62
An Example Runtime Error 65

1.5 Case Study: DrawFigures 66
Structured Version 67
Final Version without Redundancy 69
Analysis of Flow of Execution 70

Chapter 2 Primitive Data and Definite Loops 89

2.1 Basic Data Concepts 90
Primitive Types 90

15

A01_REGE1686_04_GE_FM.indd 15 17/11/16 3:27 PM

Expressions 91
Literals 93
Arithmetic Operators 94
Precedence 96
Mixing Types and Casting 99

2.2 Variables 100
Assignment/Declaration Variations 105
String Concatenation 108
Increment/Decrement Operators 110
Variables and Mixing Types 113

2.3 The for Loop 115
Tracing for Loops 117
for Loop Patterns 121
Nested for Loops 123

2.4 Managing Complexity 125
Scope 125
Pseudocode 131
Class Constants 134

2.5 Case Study: Hourglass Figure 136
Problem Decomposition and Pseudocode 137
Initial Structured Version 139
Adding a Class Constant 140
Further Variations 143

Chapter 3 Introduction to Parameters
and Objects 163

3.1 Parameters 164
The Mechanics of Parameters 167
Limitations of Parameters 171
Multiple Parameters 174
Parameters versus Constants 177
Overloading of Methods 177

3.2 Methods That Return Values 178
The Math Class 179
Defining Methods That Return Values 182

3.3 Using Objects 186
String Objects 187
Interactive Programs and Scanner Objects 193
Sample Interactive Program 196

16 Contents

A01_REGE1686_04_GE_FM.indd 16 17/11/16 3:27 PM

3.4 Case Study: Projectile Trajectory 199
Unstructured Solution 203
Structured Solution 205

Supplement 3G Graphics (Optional) 222

3G.1 Introduction to Graphics 223
DrawingPanel 223
Drawing Lines and Shapes 224
Colors 229
Drawing with Loops 232
Text and Fonts 236
Images 239

3G.2 Procedural Decomposition with Graphics 241
A Larger Example: DrawDiamonds 242

3G.3 Case Study: Pyramids 245
Unstructured Partial Solution 246
Generalizing the Drawing of Pyramids 248
Complete Structured Solution 249

Chapter 4 Conditional Execution 264

4.1 if/else Statements 265
Relational Operators 267
Nested if/else Statements 269
Object Equality 276
Factoring if/else Statements 277
Testing Multiple Conditions 279

4.2 Cumulative Algorithms 280
Cumulative Sum 280
Min/Max Loops 282
Cumulative Sum with if 286
Roundoff Errors 288

4.3 Text Processing 291
The char Type 291
char versus int 292
Cumulative Text Algorithms 293
System.out.printf 295

4.4 Methods with Conditional Execution 300
Preconditions and Postconditions 300
Throwing Exceptions 300

Contents 17

A01_REGE1686_04_GE_FM.indd 17 17/11/16 3:27 PM

Revisiting Return Values 304
Reasoning about Paths 309

4.5 Case Study: Body Mass Index 311
One-Person Unstructured Solution 312
Two-Person Unstructured Solution 315
Two-Person Structured Solution 317
Procedural Design Heuristics 321

Chapter 5 Program Logic and Indefinite Loops 341

5.1 The while Loop 342
A Loop to Find the Smallest Divisor 343
Random Numbers 346
Simulations 350
do/while Loop 351

5.2 Fencepost Algorithms 353
Sentinel Loops 355
Fencepost with if 356

5.3 The boolean Type 359
Logical Operators 361
Short-Circuited Evaluation 364
boolean Variables and Flags 368
Boolean Zen 370
Negating Boolean Expressions 373

5.4 User Errors 374
Scanner Lookahead 375
Handling User Errors 377

5.5 Assertions and Program Logic 379
Reasoning about Assertions 381
A Detailed Assertions Example 382

5.6 Case Study: NumberGuess 387
Initial Version without Hinting 387
Randomized Version with Hinting 389
Final Robust Version 393

Chapter 6 File Processing 413

6.1 File-Reading Basics 414
Data, Data Everywhere 414

18 Contents

A01_REGE1686_04_GE_FM.indd 18 17/11/16 3:27 PM

Files and File Objects 414
Reading a File with a Scanner 417

6.2 Details of Token-Based Processing 422
Structure of Files and Consuming Input 424
Scanner Parameters 429
Paths and Directories 430
A More Complex Input File 433

6.3 Line-Based Processing 435
String Scanners and Line/Token Combinations 436

6.4 Advanced File Processing 441
Output Files with PrintStream 441
Guaranteeing That Files Can Be Read 446

6.5 Case Study: Zip Code Lookup 449

Chapter 7 Arrays 469

7.1 Array Basics 470
Constructing and Traversing an Array 470
Accessing an Array 474
A Complete Array Program 477
Random Access 481
Arrays and Methods 484
The For-Each Loop 487
Initializing Arrays 489
The Arrays Class 490

7.2 Array-Traversal Algorithms 491
Printing an Array 492
Searching and Replacing 494
Testing for Equality 497
Reversing an Array 498
String Traversal Algorithms 503
Functional Approach 504

7.3 Reference Semantics 505
Multiple Objects 507

7.4 Advanced Array Techniques 510
Shifting Values in an Array 510
Arrays of Objects 514
Command-Line Arguments 516
Nested Loop Algorithms 516

Contents 19

A01_REGE1686_04_GE_FM.indd 19 17/11/16 3:27 PM

7.5 Multidimensional Arrays 518
Rectangular Two-Dimensional Arrays 518
Jagged Arrays 520

7.6 Arrays of Pixels 525

7.7 Case Study: Benford’s Law 530
Tallying Values 531
Completing the Program 535

Chapter 8 Classes 556

8.1 Object-Oriented Programming 557
Classes and Objects 558
Point Objects 560

8.2 Object State and Behavior 561
Object State: Fields 562
Object Behavior: Methods 564
The Implicit Parameter 567
Mutators and Accessors 569
The toString Method 571

8.3 Object Initialization: Constructors 573
The Keyword this 578
Multiple Constructors 580

8.4 Encapsulation 581
Private Fields 582
Class Invariants 588
Changing Internal Implementations 592

8.5 Case Study: Designing a Stock Class 594
Object-Oriented Design Heuristics 595
Stock Fields and Method Headers 597
Stock Method and Constructor Implementation 599

Chapter 9 Inheritance and Interfaces 613

9.1 Inheritance Basics 614
Nonprogramming Hierarchies 615
Extending a Class 617
Overriding Methods 621

20 Contents

A01_REGE1686_04_GE_FM.indd 20 17/11/16 3:27 PM

9.2 Interacting with the Superclass 623
Calling Overridden Methods 623
Accessing Inherited Fields 624
Calling a Superclass’s Constructor 626
DividendStock Behavior 628
The Object Class 630
The equals Method 631
The instanceof Keyword 634

9.3 Polymorphism 636
Polymorphism Mechanics 639
Interpreting Inheritance Code 641
Interpreting Complex Calls 643

9.4 Inheritance and Design 646
A Misuse of Inheritance 646
Is-a Versus Has-a Relationships 649
Graphics2D 650

9.5 Interfaces 652
An Interface for Shapes 653
Implementing an Interface 655
Benefits of Interfaces 658

9.6 Case Study: Financial Class Hierarchy 660
Designing the Classes 661
Redundant Implementation 665
Abstract Classes 668

Chapter 10 ArrayLists 688

10.1 ArrayLists 689
Basic ArrayList Operations 690
ArrayList Searching Methods 693
A Complete ArrayList Program 696
Adding to and Removing from an ArrayList 698
Using the For-Each Loop with ArrayLists 702
Wrapper Classes 703

10.2 The Comparable Interface 706
Natural Ordering and compareTo 708
Implementing the Comparable Interface 712

10.3 Case Study: Vocabulary Comparison 718
Some Efficiency Considerations 718
Version 1: Compute Vocabulary 721

Contents 21

A01_REGE1686_04_GE_FM.indd 21 17/11/16 3:27 PM

Version 2: Compute Overlap 724
Version 3: Complete Program 729

Chapter 11 Java Collections Framework 741

11.1 Lists 742
Collections 742
LinkedList versus ArrayList 743
Iterators 746
Abstract Data Types (ADTs) 750
LinkedList Case Study: Sieve 752

11.2 Sets 755
Set Concepts 756
TreeSet versus HashSet 758
Set Operations 759
Set Case Study: Lottery 761

11.3 Maps 763
Basic Map Operations 764
Map Views (keySet and values) 766
TreeMap versus HashMap 767
Map Case Study: WordCount 768
Collection Overview 771

Chapter 12 Recursion 780

12.1 Thinking Recursively 781
A Nonprogramming Example 781
An Iterative Solution Converted to Recursion 784
Structure of Recursive Solutions 786

12.2 A Better Example of Recursion 788
Mechanics of Recursion 790

12.3 Recursive Functions and Data 798
Integer Exponentiation 798
Greatest Common Divisor 801
Directory Crawler 807
Helper Methods 811

12.4 Recursive Graphics 814

22 Contents

A01_REGE1686_04_GE_FM.indd 22 17/11/16 3:27 PM

12.5 Recursive Backtracking 818
A Simple Example: Traveling North/East 819
8 Queens Puzzle 824
Solving Sudoku Puzzles 831

12.6 Case Study: Prefix Evaluator 835
Infix, Prefix, and Postfix Notation 835
Evaluating Prefix Expressions 836
Complete Program 839

Chapter 13 Searching and Sorting 858

13.1 Searching and Sorting in the Java Class Libraries 859
Binary Search 860
Sorting 863
Shuffling 864
Custom Ordering with Comparators 865

13.2 Program Complexity 869
Empirical Analysis 870
Complexity Classes 876

13.3 Implementing Searching and Sorting Algorithms 878
Sequential Search 879
Binary Search 880
Recursive Binary Search 883
Searching Objects 886
Selection Sort 877

13.4 Case Study: Implementing Merge Sort 890
Splitting and Merging Arrays 891
Recursive Merge Sort 894
Complete Program 897

Chapter 14 Stacks and Queues 910

14.1 Stack/Queue Basics 911
Stack Concepts 911
Queue Concepts 914

14.2 Common Stack/Queue Operations 915
Transferring Between Stacks and Queues 917
Sum of a Queue 918
Sum of a Stack 919

Contents 23

A01_REGE1686_04_GE_FM.indd 23 17/11/16 3:27 PM

14.3 Complex Stack/Queue Operations 922
Removing Values from a Queue 922
Comparing Two Stacks for Similarity 924

14.4 Case Study: Expression Evaluator 926
Splitting into Tokens 927
The Evaluator 932

Chapter 15 Implementing a Collection Class 948

15.1 Simple ArrayIntList 949
Adding and Printing 949
Thinking about Encapsulation 955
Dealing with the Middle of the List 956
Another Constructor and a Constant 961
Preconditions and Postconditions 962

15.2 A More Complete ArrayIntList 966
Throwing Exceptions 966
Convenience Methods 969

15.3 Advanced Features 972
Resizing When Necessary 972
Adding an Iterator 974

15.4 ArrayList<E> 980

Chapter 16 Linked Lists 991

16.1 Working with Nodes 992
Constructing a List 993
List Basics 995
Manipulating Nodes 998
Traversing a List 1001

16.2 A Linked List Class 1005
Simple LinkedIntList 1005
Appending add 1007
The Middle of the List 1011

16.3 A Complex List Operation 1018
Inchworm Approach 1023

16.4 An IntList Interface 1024

24 Contents

A01_REGE1686_04_GE_FM.indd 24 17/11/16 3:27 PM

16.5 LinkedList<E> 1027
Linked List Variations 1028
Linked List Iterators 1031
Other Code Details 1033

Chapter 17 Binary Trees 1043

17.1 Binary Tree Basics 1044
Node and Tree Classes 1047

17.2 Tree Traversals 1048
Constructing and Viewing a Tree 1054

17.3 Common Tree Operations 1063
Sum of a Tree 1063
Counting Levels 1064
Counting Leaves 1066

17.4 Binary Search Trees 1067
The Binary Search Tree Property 1068
Building a Binary Search Tree 1070
The Pattern x = change(x) 1074
Searching the Tree 1077
Binary Search Tree Complexity 1081

17.5 SearchTree<E> 1082

Chapter 18 Advanced Data Structures 1097

18.1 Hashing 1098
Array Set Implementations 1098
Hash Functions and Hash Tables 1099
Collisions 1101
Rehashing 1106
Hashing Non-Integer Data 1109
Hash Map Implementation 1112

18.2 Priority Queues and Heaps 1113
Priority Queues 1113
Introduction to Heaps 1115
Removing from a Heap 1117
Adding to a Heap 1118
Array Heap Implementation 1120
Heap Sort 1124

Contents 25

A01_REGE1686_04_GE_FM.indd 25 17/11/16 3:27 PM

26 Contents

Chapter 19 Functional Programming
with Java 8 1133

19.1 Effect-Free Programming 1134

19.2 First-Class Functions 1137
Lambda Expressions 1140

19.3 Streams 1143
Basic Idea 1143
Using Map 1145
Using Filter 1146
Using Reduce 1148
Optional Results 1149

19.4 Function Closures 1150

19.5 Higher-Order Operations on Collections 1153
Working with Arrays 1154
Working with Lists 1155
Working with Files 1159

19.6 Case Study: Perfect Numbers 1160
Computing Sums 1161
Incorporating Square Root 1164
Just Five and Leveraging Concurrency 1167

Appendix A Java Summary 1175

Appendix B The Java API Specification
and Javadoc Comments 1190

Appendix C Additional Java Syntax 1196

Index 1205

Credits 1219

A01_REGE1686_04_GE_FM.indd 26 17/11/16 3:27 PM

Introduction

This chapter begins with a review of some basic terminology about com-
puters and computer programming. Many of these concepts will come up
in later chapters, so it will be useful to review them before we start delving
into the details of how to program in Java.

We will begin our exploration of Java by looking at simple programs that
produce output. This discussion will allow us to explore many elements
that are common to all Java programs, while working with programs that
are fairly simple in structure.

After we have reviewed the basic elements of Java programs, we will
explore the technique of procedural decomposition by learning how to
break up a Java program into several methods. Using this technique, we
can break up complex tasks into smaller subtasks that are easier to manage
and we can avoid redundancy in our program solutions.

Chapter 1

1.1 Basic Computing Concepts
■	 Why Programming?
■	 Hardware and Software
■	 The Digital Realm
■	 The Process of Programming
■	 Why Java?
■	 The Java Programming

Environment

1.2 And Now—Java
■	 String Literals (Strings)
■	 System.out.println
■	 Escape Sequences
■	 print versus println
■	 Identifiers and Keywords
■	 A Complex Example:

DrawFigures1
■	 Comments and Readability

1.3 Program Errors
■	 Syntax Errors
■	 Logic Errors (Bugs)

1.4 Procedural Decomposition
■	 Static Methods
■	 Flow of Control
■	 Methods That Call Other

Methods
■	 An Example Runtime Error

1.5 Case Study: DrawFigures
■	 Structured Version
■	 Final Version without

Redundancy
■	 Analysis of Flow of Execution

Introduction to
Java Programming

27

M01_REGE1686_04_GE_C01.indd 27 04/11/16 2:34 PM

28 Chapter 1 Introduction to Java Programming

1.1 Basic Computing Concepts

Computers are pervasive in our daily lives, and, thanks to the Internet, they give us
access to nearly limitless information. Some of this information is essential news,
like the headlines at cnn.com. Computers let us share photos with our families and
map directions to the nearest pizza place for dinner.

Lots of real-world problems are being solved by computers, some of which don’t
much resemble the one on your desk or lap. Computers allow us to sequence the
human genome and search for DNA patterns within it. Computers in recently manu-
factured cars monitor each vehicle’s status and motion. Digital music players such as
Apple’s iPod actually have computers inside their small casings. Even the Roomba
vacuum-cleaning robot houses a computer with complex instructions about how to
dodge furniture while cleaning your floors.

But what makes a computer a computer? Is a calculator a computer? Is a human
being with a paper and pencil a computer? The next several sections attempt to
address this question while introducing some basic terminology that will help prepare
you to study programming.

Why Programming?

At most universities, the first course in computer science is a programming course.
Many computer scientists are bothered by this because it leaves people with the
impression that computer science is programming. While it is true that many trained
computer scientists spend time programming, there is a lot more to the discipline. So
why do we study programming first?

A Stanford computer scientist named Don Knuth answers this question by saying
that the common thread for most computer scientists is that we all in some way work
with algorithms.

Algorithm

A step-by-step description of how to accomplish a task.

Knuth is an expert in algorithms, so he is naturally biased toward thinking of them
as the center of computer science. Still, he claims that what is most important is not
the algorithms themselves, but rather the thought process that computer scientists
employ to develop them. According to Knuth,

It has often been said that a person does not really understand something
until after teaching it to someone else. Actually a person does not really
understand something until after teaching it to a computer, i.e., expressing
it as an algorithm.1

1Knuth, Don. Selected Papers on Computer Science. Stanford, CA: Center for the Study of Language and
Information, 1996.

M01_REGE1686_04_GE_C01.indd 28 04/11/16 2:34 PM

1.1 Basic Computing Concepts 29

Knuth is describing a thought process that is common to most of computer science,
which he refers to as algorithmic thinking. We study programming not because it
is the most important aspect of computer science, but because it is the best way to
explain the approach that computer scientists take to solving problems.

The concept of algorithms is helpful in understanding what a computer is and
what computer science is all about. The Merriam-Webster dictionary defines the
word “computer” as “one that computes.” Using that definition, all sorts of devices
qualify as computers, including calculators, GPS navigation systems, and children’s
toys like the Furby. Prior to the invention of electronic computers, it was common to
refer to humans as computers. The nineteenth-century mathematician Charles Peirce,
for example, was originally hired to work for the U.S. government as an “Assistant
Computer” because his job involved performing mathematical computations.

In a broad sense, then, the word “computer” can be applied to many devices. But
when computer scientists refer to a computer, we are usually thinking of a universal
computation device that can be programmed to execute any algorithm. Computer sci-
ence, then, is the study of computational devices and the study of computation itself,
including algorithms.

Algorithms are expressed as computer programs, and that is what this book is all
about. But before we look at how to program, it will be useful to review some basic
concepts about computers.

Hardware and Software

A computer is a machine that manipulates data and executes lists of instructions
known as programs.

Program

A list of instructions to be carried out by a computer.

One key feature that differentiates a computer from a simpler machine like a cal-
culator is its versatility. The same computer can perform many different tasks (play-
ing games, computing income taxes, connecting to other computers around the
world), depending on what program it is running at a given moment. A computer
can run not only the programs that exist on it currently, but also new programs that
haven’t even been written yet.

The physical components that make up a computer are collectively called hard-
ware. One of the most important pieces of hardware is the central processing unit, or
CPU. The CPU is the “brain” of the computer: It is what executes the instructions.
Also important is the computer’s memory (often called random access memory, or
RAM, because the computer can access any part of that memory at any time). The
computer uses its memory to store programs that are being executed, along with their
data. RAM is limited in size and does not retain its contents when the computer is
turned off. Therefore, computers generally also use a hard disk as a larger permanent
storage area.

M01_REGE1686_04_GE_C01.indd 29 04/11/16 2:34 PM

30 Chapter 1 Introduction to Java Programming

Computer programs are collectively called software. The primary piece of soft-
ware running on a computer is its operating system. An operating system provides an
environment in which many programs may be run at the same time; it also provides a
bridge between those programs, the hardware, and the user (the person using the com-
puter). The programs that run inside the operating system are often called applications.

When the user selects a program for the operating system to run (e.g., by double-
clicking the program’s icon on the desktop), several things happen: The instructions
for that program are loaded into the computer’s memory from the hard disk, the oper-
ating system allocates memory for that program to use, and the instructions to run the
program are fed from memory to the CPU and executed sequentially.

The Digital Realm

In the last section, we saw that a computer is a general-purpose device that can
be programmed. You will often hear people refer to modern computers as digital
computers because of the way they operate.

Digital

Based on numbers that increase in discrete increments, such as the integers
0, 1, 2, 3, etc.

Because computers are digital, everything that is stored on a computer is stored as a
sequence of integers. This includes every program and every piece of data. An MP3
file, for example, is simply a long sequence of integers that stores audio informa-
tion. Today we’re used to digital music, digital pictures, and digital movies, but in
the 1940s, when the first computers were built, the idea of storing complex data in
integer form was fairly unusual.

Not only are computers digital, storing all information as integers, but they are
also binary, which means they store integers as binary numbers.

Binary Number

A number composed of just 0s and 1s, also known as a base-2 number.

Humans generally work with decimal or base-10 numbers, which match our phys-
iology (10 fingers and 10 toes). However, when we were designing the first comput-
ers, we wanted systems that would be easy to create and very reliable. It turned out
to be simpler to build these systems on top of binary phenomena (e.g., a circuit being
open or closed) rather than having 10 different states that would have to be distin-
guished from one another (e.g., 10 different voltage levels).

From a mathematical point of view, you can store things just as easily using
binary numbers as you can using base-10 numbers. But since it is easier to construct
a physical device that uses binary numbers, that’s what computers use.

This does mean, however, that people who aren’t used to computers find their con-
ventions unfamiliar. As a result, it is worth spending a little time reviewing how binary

M01_REGE1686_04_GE_C01.indd 30 04/11/16 2:34 PM

1.1 Basic Computing Concepts 31

numbers work. To count with binary numbers, as with base-10 numbers, you start with 0
and count up, but you run out of digits much faster. So, counting in binary, you say

0

1

And already you’ve run out of digits. This is like reaching 9 when you count in
base-10. After you run out of digits, you carry over to the next digit. So, the next two
binary numbers are

10

11

And again, you’ve run out of digits. This is like reaching 99 in base-10. Again,
you carry over to the next digit to form the three-digit number 100. In binary, when-
ever you see a series of ones, such as 111111, you know you’re just one away from
the digits all flipping to 0s with a 1 added in front, the same way that, in base-10,
when you see a number like 999999, you know that you are one away from all those
digits turning to 0s with a 1 added in front.

Table 1.1 shows how to count up to the base-10 number 8 using binary.

Table 1.1 Decimal vs. Binary

Decimal Binary

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

We can make several useful observations about binary numbers. Notice in the
table that the binary numbers 1, 10, 100, and 1000 are all perfect powers of 2 (20, 21,
22, 23). In the same way that in base-10 we talk about a ones digit, tens digit, hun-
dreds digit, and so on, we can think in binary of a ones digit, twos digit, fours digit,
eights digit, sixteens digit, and so on.

Computer scientists quickly found themselves needing to refer to the sizes of differ-
ent binary quantities, so they invented the term bit to refer to a single binary digit and the
term byte to refer to 8 bits. To talk about large amounts of memory, they invented the
terms “kilobytes” (KB), “megabytes” (MB), “gigabytes” (GB), and so on. Many people
think that these correspond to the metric system, where “kilo” means 1000, but that is
only approximately true. We use the fact that 210 is approximately equal to 1000 (it actu-
ally equals 1024). Table 1.2 shows some common units of memory storage:

M01_REGE1686_04_GE_C01.indd 31 04/11/16 2:34 PM

32 Chapter 1 Introduction to Java Programming

Table 1.2 Units of Memory Storage

Measurement Power of 2 Actual Value Example

kilobyte (KB) 210 1024 500-word paper (3 KB)

megabyte (MB) 220 1,048,576 typical book (1 MB) or song

(5 MB)

gigabyte (GB) 230 1,073,741,824 typical movie (4.7 GB)

terabyte (TB) 240 1,099,511,627,776 20 million books in the

Library of Congress

(20 TB)

petabyte (PB) 250 1,125,899,906,842,624 10 billion photos on

Facebook (1.5 PB)

The Process of Programming

The word code describes program fragments (“these four lines of code”) or the act
of programming (“Let’s code this into Java”). Once a program has been written, you
can execute it.

Program Execution

The act of carrying out the instructions contained in a program.

The process of execution is often called running. This term can also be used as a
verb (“When my program runs it does something strange”) or as a noun (“The last
run of my program produced these results”).

A computer program is stored internally as a series of binary numbers known as
the machine language of the computer. In the early days, programmers entered num-
bers like these directly into the computer. Obviously, this is a tedious and confusing
way to program a computer, and we have invented all sorts of mechanisms to sim-
plify this process.

Modern programmers write in what are known as high-level programming lan-
guages, such as Java. Such programs cannot be run directly on a computer: They first
have to be translated into a different form by a special program known as a compiler.

Compiler

A program that translates a computer program written in one language
into an equivalent program in another language (often, but not always,
translating from a high-level language into machine language).

A compiler that translates directly into machine language creates a program that
can be executed directly on the computer, known as an executable. We refer to such
compilers as native compilers because they compile code to the lowest possible level
(the native machine language of the computer).

This approach works well when you know exactly what computer you want to use
to run your program. But what if you want to execute a program on many different

M01_REGE1686_04_GE_C01.indd 32 04/11/16 2:34 PM

1.1 Basic Computing Concepts 33

computers? You’d need a compiler that generates different machine language output
for each of them. The designers of Java decided to use a different approach. They cared
a lot about their programs being able to run on many different computers, because they
wanted to create a language that worked well for the Web.

Instead of compiling into machine language, Java programs compile into what
are known as Java bytecodes. One set of bytecodes can execute on many different
machines. These bytecodes represent an intermediate level: They aren’t quite as
high-level as Java or as low-level as machine language. In fact, they are the machine
language of a theoretical computer known as the Java Virtual Machine (JVM).

Java Virtual Machine

A theoretical computer whose machine language is the set of Java bytecodes.

A JVM isn’t an actual machine, but it’s similar to one. When we compile pro-
grams to this level, there isn’t much work remaining to turn the Java bytecodes into
actual machine instructions.

To actually execute a Java program, you need another program that will execute
the Java bytecodes. Such programs are known generically as Java runtimes, and
the standard environment distributed by Oracle Corporation is known as the Java
Runtime Environment (JRE).

Java Runtime

A program that executes compiled Java bytecodes.

Most people have Java runtimes on their computers, even if they don’t know
about them. For example, Apple’s Mac OS X includes a Java runtime, and many
Windows applications install a Java runtime.

Why Java?

When Sun Microsystems released Java in 1995, it published a document called a
“white paper” describing its new programming language. Perhaps the key sentence
from that paper is the following:

Java: A simple, object-oriented, network-savvy, interpreted, robust, secure,
architecture neutral, portable, high-performance, multithreaded, dynamic
language.2

This sentence covers many of the reasons why Java is a good introductory pro-
gramming language. For starters, Java is reasonably simple for beginners to learn,
and it embraces object-oriented programming, a style of writing programs that has
been shown to be very successful for creating large and complex software systems.

2http://www.oracle.com/technetwork/java/langenv-140151.html

M01_REGE1686_04_GE_C01.indd 33 04/11/16 2:34 PM

http://www.oracle.com/technetwork/java/langenv-140151.html

34 Chapter 1 Introduction to Java Programming

Java also includes a large amount of prewritten software that programmers can
utilize to enhance their programs. Such off-the-shelf software components are often
called libraries. For example, if you wish to write a program that connects to a site
on the Internet, Java contains a library to simplify the connection for you. Java con-
tains libraries to draw graphical user interfaces (GUIs), retrieve data from databases,
and perform complex mathematical computations, among many other things. These
libraries collectively are called the Java class libraries.

Java Class Libraries

The collection of preexisting Java code that provides solutions to common
programming problems.

The richness of the Java class libraries has been an extremely important factor in
the rise of Java as a popular language. The Java class libraries in version 1.7 include
over 4000 entries.

Another reason to use Java is that it has a vibrant programmer community.
Extensive online documentation and tutorials are available to help programmers
learn new skills. Many of these documents are written by Oracle, including an exten-
sive reference to the Java class libraries called the API Specification (API stands for
Application Programming Interface).

Java is extremely platform independent; unlike programs written in many other
languages, the same Java program can be executed on many different operating sys-
tems, such as Windows, Linux, and Mac OS X.

Java is used extensively for both research and business applications, which means
that a large number of programming jobs exist in the marketplace today for skilled
Java programmers. A sample Google search for the phrase “Java jobs” returned
around 180,000,000 hits at the time of this writing.

The Java Programming Environment

You must become familiar with your computer setup before you start programming.
Each computer provides a different environment for program development, but there
are some common elements that deserve comment. No matter what environment you
use, you will follow the same basic three steps:

 1. Type in a program as a Java class.

 2. Compile the program file.

 3. Run the compiled version of the program.

The basic unit of storage on most computers is a file. Every file has a name. A
file name ends with an extension, which is the part of a file’s name that follows the
period. A file’s extension indicates the type of data contained in the file. For exam-
ple, files with the extension .doc are Microsoft Word documents, and files with the
extension .mp3 are MP3 audio files.

M01_REGE1686_04_GE_C01.indd 34 04/11/16 2:34 PM

1.1 Basic Computing Concepts 35

The Java program files that you create must use the extension .java. When you
compile a Java program, the resulting Java bytecodes are stored in a file with the
same name and the extension .class.

Most Java programmers use what are known as Integrated Development
Environments, or IDEs, which provide an all-in-one environment for creating, edit-
ing, compiling, and executing program files. Some of the more popular choices for
introductory computer science classes are Eclipse, jGRASP, DrJava, BlueJ, and
TextPad. Your instructor will tell you what environment you should use.

Try typing the following simple program in your IDE (the line numbers are not
part of the program but are used as an aid):

1 public class Hello {

2 public static void main(String[] args) {

3 System.out.println("Hello, world!");

4 }

5 }

Don’t worry about the details of this program right now. We will explore those in
the next section.

Once you have created your program file, move to step 2 and compile it. The com-
mand to compile will be different in each development environment, but the process
is the same (typical commands are “compile” or “build”). If any errors are reported,
go back to the editor, fix them, and try to compile the program again. (We’ll discuss
errors in more detail later in this chapter.)

Once you have successfully compiled your program, you are ready to move to
step 3, running the program. Again, the command to do this will differ from one
environment to the next, but the process is similar (the typical command is “run”). The
diagram in Figure 1.1 summarizes the steps you would follow in creating a program
called Hello.java.

In some IDEs (most notably Eclipse), the first two steps are combined. In these
environments the process of compiling is more incremental; the compiler will warn
you about errors as you type in code. It is generally not necessary to formally ask
such an environment to compile your program because it is compiling as you type.

When your program is executed, it will typically interact with the user in some
way. The Hello.java program involves an onscreen window known as the console.

Console Window

A special text-only window in which Java programs interact with the user.

The console window is a classic interaction mechanism wherein the computer dis-
plays text on the screen and sometimes waits for the user to type responses. This is
known as console or terminal interaction. The text the computer prints to the console
window is known as the output of the program. Anything typed by the user is known
as the console input.

M01_REGE1686_04_GE_C01.indd 35 04/11/16 2:34 PM

36 Chapter 1 Introduction to Java Programming

To keep things simple, most of the sample programs in this book involve con-
sole interaction. Keeping the interaction simple will allow you to focus your atten-
tion and effort on other aspects of programming.

1.2 And Now—Java

It’s time to look at a complete Java program. In the Java programming language,
nothing can exist outside of a class.

Class

A unit of code that is the basic building block of Java programs.

The notion of a class is much richer than this, as you’ll see when we get to
Chapter 8, but for now all you need to know is that each of your Java programs will
be stored in a class.

It is a tradition in computer science that when you describe a new programming
language, you should start with a program that produces a single line of output with the
words, “Hello, world!” The “hello world” tradition has been broken by many authors
of Java books because the program turns out not to be as short and simple when it is
written in Java as when it is written in other languages, but we’ll use it here anyway.

Step 1
Use editor to

create/edit source file

Step 2
Submit source file
to Java compiler

Step 3
Execute Java

class file

output
Hello.java

success

failure

output
Hello.class

Figure 1.1 Creation and execution of a Java program

M01_REGE1686_04_GE_C01.indd 36 04/11/16 2:34 PM

1.2 And Now—Java 37

Here is our “hello world” program:

1 public class Hello {

2 public static void main(String[] args) {

3 System.out.println("Hello, world!");

4 }

5 }

This program defines a class called Hello. Oracle has established the convention
that class names always begin with a capital letter, which makes it easy to recog-
nize them. Java requires that the class name and the file name match, so this program
must be stored in a file called Hello.java. You don’t have to understand all the
details of this program just yet, but you do need to understand the basic structure.

The basic form of a Java class is as follows:

public class <name> {

<method>

<method>

...

<method>

}

This type of description is known as a syntax template because it describes the basic
form of a Java construct. Java has rules that determine its legal syntax or grammar.
Each time we introduce a new element of Java, we’ll begin by looking at its syntax
template. By convention, we use the less-than (<) and greater-than (>) characters in
a syntax template to indicate items that need to be filled in (in this case, the name of
the class and the methods). When we write “...” in a list of elements, we’re indicat-
ing that any number of those elements may be included.

The first line of the class is known as the class header. The word public in the
header indicates that this class is available to anyone to use. Notice that the program
code in a class is enclosed in curly brace characters ({ }). These characters are used
in Java to group together related bits of code. In this case, the curly braces are indi-
cating that everything defined within them is part of this public class.

So what exactly can appear inside the curly braces? What can be contained in a
class? All sorts of things, but for now, we’ll limit ourselves to methods. Methods are
the next-smallest unit of code in Java, after classes. A method represents a single
action or calculation to be performed.

Method

A program unit that represents a particular action or computation.

Simple methods are like verbs: They command the computer to perform some
action. Inside the curly braces for a class, you can define several different methods.

M01_REGE1686_04_GE_C01.indd 37 04/11/16 2:34 PM

38 Chapter 1 Introduction to Java Programming

At a minimum, a complete program requires a special method that is known as the
main method. It has the following syntax:

public static void main(String[] args) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

Just as the first line of a class is known as a class header, the first line of a method
is known as a method header. The header for main is rather complicated. Most peo-
ple memorize this as a kind of magical incantation. You want to open the door to Ali
Baba’s cave? You say, “Open Sesame!” You want to create an executable Java pro-
gram? You say, public static void main(String[] args). A group of Java
teachers make fun of this with a website called publicstaticvoidmain.com.

Just memorizing magical incantations is never satisfying, especially for computer
scientists who like to know everything that is going on in their programs. But this
is a place where Java shows its ugly side, and you’ll just have to live with it. New
programmers, like new drivers, must learn to use something complex without fully
understanding how it works. Fortunately, by the time you finish this book, you’ll
understand every part of the incantation.

Notice that the main method has a set of curly braces of its own. They are
again used for grouping, indicating that everything that appears between them is
part of the main method. The lines in between the curly braces specify the series
of actions the computer should perform when it executes the method. We refer to
these as the statements of the method. Just as you put together an essay by string-
ing together complete sentences, you put together a method by stringing together
statements.

Statement

An executable snippet of code that represents a complete command.

Each statement is terminated by a semicolon. The sample “hello world” program
has just a single statement that is known as a println statement:

System.out.println("Hello, world!");

Notice that this statement ends with a semicolon. The semicolon has a special sta-
tus in Java; it is used to terminate statements in the same way that periods terminate
sentences in English.

In the basic “hello world” program there is just a single command to produce a
line of output, but consider the following variation (called Hello2), which has four
lines of code to be executed in the main method:

M01_REGE1686_04_GE_C01.indd 38 04/11/16 2:34 PM

1.2 And Now—Java 39

1 public class Hello2 {

2 public static void main(String[] args) {

3 System.out.println("Hello, world!");

4 System.out.println();

5 System.out.println("This program produces four");

6 System.out.println("lines of output.");

7 }

8 }

Notice that there are four semicolons in the main method, one at the end of each
of the four println statements. The statements are executed in the order in which
they appear, from first to last, so the Hello2 program produces the following output:

Hello, world!

This program produces four

lines of output.

Let’s summarize the different levels we just looked at:

 • A Java program is stored in a class.

 • Within the class, there are methods. At a minimum, a complete program requires
a special method called main.

 • Inside a method like main, there is a series of statements, each of which repre-
sents a single command for the computer to execute.

It may seem odd to put the opening curly brace at the end of a line rather than on a
line by itself. Some people would use this style of indentation for the program instead:

1 public class Hello3

2 {

3 public static void main(String[] args)

4 {

5 System.out.println("Hello, world!");

6 }

7 }

Different people will make different choices about the placement of curly braces. The
style we use follows Oracle’s official Java coding conventions, but the other style has
its advocates too. Often people will passionately argue that one way is much better than
the other, but it’s really a matter of personal taste because each choice has some advan-
tages and some disadvantages. Your instructor may require a particular style; if not, you
should choose a style that you are comfortable with and then use it consistently.

Now that you’ve seen an overview of the structure, let’s examine some of the
details of Java programs.

M01_REGE1686_04_GE_C01.indd 39 04/11/16 2:34 PM

40 Chapter 1 Introduction to Java Programming

String Literals (Strings)

When you are writing Java programs (such as the preceding “hello world” pro-
gram), you’ll often want to include some literal text to send to the console window
as output. Programmers have traditionally referred to such text as a string because it
is composed of a sequence of characters that we string together. The Java language
specification uses the term string literals.

In Java you specify a string literal by surrounding the literal text in quotation
marks, as in

"This is a bunch of text surrounded by quotation marks."

You must use double quotation marks, not single quotation marks. The following
is not a valid string literal:

'Bad stuff here.'

The following is a valid string literal:

"This is a string even with 'these' quotes inside."

String literals must not span more than one line of a program. The following is not
a valid string literal:

"This is really

bad stuff

right here."

Did You Know?

Hello, World!

The “hello world” tradition was started by Brian Kernighan and Dennis Ritchie.
Ritchie invented a programming language known as C in the 1970s and, together
with Kernighan, coauthored the first book describing C, published in 1978. The
first complete program in their book was a “hello world” program. Kernighan
and Ritchie, as well as their book The C Programming Language, have been
affectionately referred to as “K & R” ever since.

Many major programming languages have borrowed the basic C syntax as a
way to leverage the popularity of C and to encourage programmers to switch to it.
The languages C11 and Java both borrow a great deal of their core syntax from C.

Kernighan and Ritchie also had a distinctive style for the placement of curly
braces and the indentation of programs that has become known as “K & R style.”
This is the style that Oracle recommends and that we use in this book.

M01_REGE1686_04_GE_C01.indd 40 04/11/16 2:34 PM

1.2 And Now—Java 41

System.out.println

As you have seen, the main method of a Java program contains a series of statements
for the computer to carry out. They are executed sequentially, starting with the first
statement, then the second, then the third, and so on until the final statement has been
executed. One of the simplest and most common statements is System.out.println,
which is used to produce a line of output. This is another “magical incantation” that
you should commit to memory. As of this writing, Google lists around 8,000,000 web
pages that mention System.out.println. The key thing to remember about this state-
ment is that it’s used to produce a line of output that is sent to the console window.

The simplest form of the println statement has nothing inside its parentheses
and produces a blank line of output:

System.out.println();

You need to include the parentheses even if you don’t have anything to put inside
them. Notice the semicolon at the end of the line. All statements in Java must be ter-
minated with a semicolon.

More often, however, you use println to output a line of text:

System.out.println("This line uses the println method.");

The above statement commands the computer to produce the following line of output:

This line uses the println method.

Each println statement produces a different line of output. For example, con-
sider the following three statements:

System.out.println("This is the first line of output.");

System.out.println();

System.out.println("This is the third, below a blank line.");

Executing these statements produces the following three lines of output (the sec-
ond line is blank):

This is the first line of output.

This is the third, below a blank line.

Escape Sequences

Any system that involves quoting text will lead you to certain difficult situations. For
example, string literals are contained inside quotation marks, so how can you include
a quotation mark inside a string literal? String literals also aren’t allowed to break
across lines, so how can you include a line break inside a string literal?

M01_REGE1686_04_GE_C01.indd 41 04/11/16 2:34 PM

42 Chapter 1 Introduction to Java Programming

Table 1.3 Common Escape Sequences

Sequence Represents

\t tab character

\n new line character

\" quotation mark

\\ backslash character

The solution is to embed what are known as escape sequences in the string liter-
als. Escape sequences are two-character sequences that are used to represent special
characters. They all begin with the backslash character (\). Table 1.3 lists some of
the more common escape sequences.

Keep in mind that each of these two-character sequences actually stands for just a
single character. For example, consider the following statement:

System.out.println("What \"characters\" does this \\ print?");

If you executed this statement, you would get the following output:

What "characters" does this \ print?

The string literal in the println has three escape sequences, each of which is two
characters long and produces a single character of output.

While string literals themselves cannot span multiple lines (that is, you cannot
use a carriage return within a string literal to force a line break), you can use the \n
escape sequence to embed new line characters in a string. This leads to the odd situa-
tion where a single println statement can produce more than one line of output.

For example, consider this statement:

System.out.println("This\nproduces 3 lines\nof output.");

If you execute it, you will get the following output:

This

produces 3 lines

of output.

The println itself produces one line of output, but the string literal contains two
new line characters that cause it to be broken up into a total of three lines of output.
To produce the same output without new line characters, you would have to issue
three separate println statements.

This is another programming habit that tends to vary according to taste. Some peo-
ple (including the authors) find it hard to read string literals that contain \n escape
sequences, but other people prefer to write fewer lines of code. Once again, you
should make up your own mind about when to use the new line escape sequence.

M01_REGE1686_04_GE_C01.indd 42 04/11/16 2:34 PM

1.2 And Now—Java 43

print versus println

Java has a variation of the println command called print that allows you to produce
output on the current line without going to a new line of output. The println com-
mand really does two different things: It sends output to the current line, and then
it moves to the beginning of a new line. The print command does only the first of
these. Thus, a series of print commands will generate output all on the same line.
Only a println command will cause the current line to be completed and a new line
to be started. For example, consider these six statements:

System.out.print("To be ");

System.out.print("or not to be.");

System.out.print("That is ");

System.out.println("the question.");

System.out.print("This is");

System.out.println(" for the whole family!");

These statements produce two lines of output. Remember that every println
statement produces exactly one line of output; because there are two println state-
ments here, there are two lines of output. After the first statement executes, the cur-
rent line looks like this:

The arrow below the output line indicates the position where output will be sent
next. We can simplify our discussion if we refer to the arrow as the output cursor.
Notice that the output cursor is at the end of this line and that it appears after a space.
The reason is that the command was a print (doesn’t go to a new line) and the string
literal in the print ended with a space. Java will not insert a space for you unless
you specifically request it. After the next print, the line looks like this:

To be
^

There’s no space at the end now because the string literal in the second print
command ends in a period, not a space. After the next print, the line looks like this:

To be or not to be.
^

To be or not to be.That is the question.

^

There is no space between the period and the word “That” because there was no
space in the print commands, but there is a space at the end of the string literal in
the third statement. After the next statement executes, the output looks like this:

To be or not to be.That is
^

M01_REGE1686_04_GE_C01.indd 43 04/11/16 2:34 PM

44 Chapter 1 Introduction to Java Programming

Because this fourth statement is a println command, it finishes the output line
and positions the cursor at the beginning of the second line. The next statement is
another print that produces this:

To be or not to be.That is the question.

This is
^

The final println completes the second line and positions the output cursor at the
beginning of a new line:

These six statements are equivalent to the following two single statements:

System.out.println("To be or not to be.That is the question.");

System.out.println("This is for the whole family!");

Using the print and println commands together to produce lines like these may
seem a bit silly, but you will see that there are more interesting applications of print
in the next chapter.

Remember that it is possible to have an empty println command:

System.out.println();

Because there is nothing inside the parentheses to be written to the output line, this
command positions the output cursor at the beginning of the next line. If there are
print commands before this empty println, it finishes out the line made by those
print commands. If there are no previous print commands, it produces a blank
line. An empty print command is meaningless and illegal.

Identifiers and Keywords

The words used to name parts of a Java program are called identifiers.

Identifier

A name given to an entity in a program, such as a class or method.

Identifiers must start with a letter, which can be followed by any number of letters
or digits. The following are all legal identifiers:

first hiThere numStudents TwoBy4

To be or not to be.That is the question.

This is for the whole family!

^

M01_REGE1686_04_GE_C01.indd 44 04/11/16 2:34 PM

1.2 And Now—Java 45

The Java language specification defines the set of letters to include the underscore
and dollar-sign characters (_ and $), which means that the following are legal identi-
fiers as well:

two_plus_two _count $2donuts MAX_COUNT

The following are illegal identifiers:

two+two hi there hi-There 2by4

Java has conventions for capitalization that are followed fairly consistently by
programmers. All class names should begin with a capital letter, as with the Hello,
Hello2, and Hello3 classes introduced earlier. The names of methods should begin
with lowercase letters, as in the main method. When you are putting several words
together to form a class or method name, capitalize the first letter of each word after
the first. In the next chapter we’ll discuss constants, which have yet another capitaliza-
tion scheme, with all letters in uppercase and words separated by underscores. These
different schemes might seem like tedious constraints, but using consistent capitaliza-
tion in your code allows the reader to quickly identify the various code elements.

For example, suppose that you were going to put together the words “all my chil-
dren” into an identifier. The result would be

 • AllMyChildren for a class name (each word starts with a capital)

 • allMyChildren for a method name (starts with a lowercase letter, subsequent
words capitalized)

 • ALL_MY_CHILDREN for a constant name (all uppercase, with words separated by
underscores; described in Chapter 2)

Java is case sensitive, so the identifiers class, Class, CLASS, and cLASs are all
considered different. Keep this in mind as you read error messages from the com-
piler. People are good at understanding what you write, even if you misspell words
or make little mistakes like changing the capitalization of a word. However, mistakes
like these cause the Java compiler to become hopelessly confused.

Don’t hesitate to use long identifiers. The more descriptive your names are, the
easier it will be for people (including you) to read your programs. Descriptive identi-
fiers are worth the time they take to type. Java’s String class, for example, has a
method called compareToIgnoreCase.

Be aware, however, that Java has a set of predefined identifiers called keywords
that are reserved for particular uses. As you read this book, you will learn many
of these keywords and their uses. You can only use keywords for their intended pur-
poses. You must be careful to avoid using these words in the names of identifiers.
For example, if you name a method short or try, this will cause a problem, because
short and try are reserved keywords. Table 1.4 shows the complete list of reserved
keywords.

M01_REGE1686_04_GE_C01.indd 45 04/11/16 2:34 PM

46 Chapter 1 Introduction to Java Programming

A Complex Example: DrawFigures1

The println statement can be used to draw text figures as output. Consider the fol-
lowing more complicated program example (notice that it uses two empty println
statements to produce blank lines):

 1 public class DrawFigures1 {

 2 public static void main(String[] args) {

 3 System.out.println(" /\\");

 4 System.out.println(" / \\");

 5 System.out.println(" / \\");

 6 System.out.println(" \\ /");

 7 System.out.println(" \\ /");

 8 System.out.println(" \\/");

 9 System.out.println();

10 System.out.println(" \\ /");

11 System.out.println(" \\ /");

12 System.out.println(" \\/");

13 System.out.println(" /\\");

14 System.out.println(" / \\");

15 System.out.println(" / \\");

16 System.out.println();

17 System.out.println(" /\\");

18 System.out.println(" / \\");

19 System.out.println(" / \\");

20 System.out.println("+------+");

21 System.out.println("| |");

22 System.out.println("| |");

23 System.out.println("+------+");

24 System.out.println("|United|");

25 System.out.println("|States|");

26 System.out.println("+------+");

27 System.out.println("| |");

Table 1.4 List of Java Keywords

abstract continue for new switch
assert default goto package synchronized
boolean do if private this
break double implements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try
char final interface static void
class finally long strictfp volatile
const float native super while

M01_REGE1686_04_GE_C01.indd 46 04/11/16 2:34 PM

1.2 And Now—Java 47

28 System.out.println("| |");

29 System.out.println("+------+");

30 System.out.println(" /\\");

31 System.out.println(" / \\");

32 System.out.println(" / \\");

33 }

34 }

The following is the output the program generates. Notice that the program
includes double backslash characters (\\), but the output has single backslash char-
acters. This is an example of an escape sequence, as described previously.

 /\
 / \
 / \
 \ /
 \ /
 \/

 \ /
 \ /
 \/
 /\
 / \
 / \

 /\
 / \
 / \
+------+
| |
| |
+------+
|United|
|States|
+------+
| |
| |
+------+
 /\
 / \
 / \

Comments and Readability

Java is a free-format language. This means you can put in as many or as few spaces and
blank lines as you like, as long as you put at least one space or other punctuation mark
between words. However, you should bear in mind that the layout of a program can
enhance (or detract from) its readability. The following program is legal but hard to read:

1 public class Ugly{public static void main(String[] args)

2 {System.out.println("How short I am!");}}

M01_REGE1686_04_GE_C01.indd 47 04/11/16 2:34 PM

48 Chapter 1 Introduction to Java Programming

Here are some simple rules to follow that will make your programs more readable:

 • Put class and method headers on lines by themselves.

 • Put no more than one statement on each line.

 • Indent your program properly. When an opening brace appears, increase the
indentation of the lines that follow it. When a closing brace appears, reduce the
indentation. Indent statements inside curly braces by a consistent number of
spaces (a common choice is four spaces per level of indentation).

 • Use blank lines to separate parts of the program (e.g., methods).

Using these rules to rewrite the Ugly program yields the following code:

1 public class Ugly {

2 public static void main(String[] args) {

3 System.out.println("How short I am!");

4 }

5 }

Well-written Java programs can be quite readable, but often you will want to
include some explanations that are not part of the program itself. You can annotate
programs by putting notes called comments in them.

Comment

Text that programmers include in a program to explain their code. The
compiler ignores comments.

There are two comment forms in Java. In the first form, you open the comment with
a slash followed by an asterisk and you close it with an asterisk followed by a slash:

/* like this */

You must not put spaces between the slashes and the asterisks:

/ * this is bad * /

You can put almost any text you like, including multiple lines, inside the comment:

/* Thaddeus Martin

 Assignment #1

 Instructor: Professor Walingford

 Grader: Bianca Montgomery */

The only things you aren’t allowed to put inside a comment are the comment end
characters. The following code is not legal:

M01_REGE1686_04_GE_C01.indd 48 04/11/16 2:34 PM

1.2 And Now—Java 49

/* This comment has an asterisk/slash /*/ in it,

 which prematurely closes the comment. This is bad. */

Java also provides a second comment form for shorter, single-line comments. You can
use two slashes in a row to indicate that the rest of the current line (everything to the right
of the two slashes) is a comment. For example, you can put a comment after a statement:

System.out.println("You win!"); // Good job!

Or you can create a comment on its own line:

// give an introduction to the user

System.out.println("Welcome to the game of blackjack.");

System.out.println();

System.out.println("Let me explain the rules.");

You can even create blocks of single-line comments:

// Thaddeus Martin

// Assignment #1

// Instructor: Professor Walingford

// Grader: Bianca Montgomery

Some people prefer to use the first comment form for comments that span multiple
lines but it is safer to use the second form because you don’t have to remember to
close the comment. It also makes the comment stand out more. This is another case
in which, if your instructor does not tell you to use a particular comment style, you
should decide for yourself which style you prefer and use it consistently.

Don’t confuse comments with the text of println statements. The text of your
comments will not be displayed as output when the program executes. The comments
are there only to help readers examine and understand the program.

It is a good idea to include comments at the beginning of each class file to indicate
what the class does. You might also want to include information about who you are,
what course you are taking, your instructor and/or grader’s name, the date, and so on.
You should also comment each method to indicate what it does.

Commenting becomes more useful in larger and more complicated programs, as
well as in programs that will be viewed or modified by more than one programmer.
Clear comments are extremely helpful to explain to another person, or to yourself at
a later time, what your program is doing and why it is doing it.

In addition to the two comment forms already discussed, Java supports a particular
style of comments known as Javadoc comments. Their format is more complex, but
they have the advantage that you can use a program to extract the comments to make
HTML files suitable for reading with a web browser. Javadoc comments are useful in
more advanced programming and are discussed in more detail in Appendix B.

M01_REGE1686_04_GE_C01.indd 49 04/11/16 2:34 PM

50 Chapter 1 Introduction to Java Programming

1.3 Program Errors

In 1949, Maurice Wilkes, an early pioneer of computing, expressed a sentiment that
still rings true today:

As soon as we started programming, we found out to our surprise that it wasn’t
as easy to get programs right as we had thought. Debugging had to be discov-
ered. I can remember the exact instant when I realized that a large part of
my life from then on was going to be spent in finding mistakes in my own
programs.

You also will have to face this reality as you learn to program. You’re going to
make mistakes, just like every other programmer in history, and you’re going to need
strategies for eliminating those mistakes. Fortunately, the computer itself can help
you with some of the work.

There are three kinds of errors that you’ll encounter as you write programs:

 • Syntax errors occur when you misuse Java. They are the programming equivalent
of bad grammar and are caught by the Java compiler.

 • Logic errors occur when you write code that doesn’t perform the task it is
intended to perform.

 • Runtime errors are logic errors that are so severe that Java stops your program
from executing.

Syntax Errors

Human beings tend to be fairly forgiving about minor mistakes in speech. For exam-
ple, we might find Master Yoda's phrasing odd, but we generally have no problems
in understanding him.

The Java compiler will be far less forgiving. The compiler reports syntax errors as
it attempts to translate your program from Java into bytecodes if your program breaks
any of Java’s grammar rules. For example, if you misplace a single semicolon in your
program, you can send the compiler into a tailspin of confusion. The compiler
may report several error messages, depending on what it thinks is wrong with your
 program.

A program that generates compilation errors cannot be executed. If you submit
your program to the compiler and the compiler reports errors, you must fix the errors
and resubmit the program. You will not be able to proceed until your program is free
of compilation errors.

Some development environments, such as Eclipse, help you along the way by
underlining syntax errors as you write your program. This makes it easy to spot
exactly where errors occur.

M01_REGE1686_04_GE_C01.indd 50 06/12/16 11:04 PM

1.3 Program Errors 51

Common Programming Error

Misspelled Words

Java (like most programming languages) is very picky about spelling. You need
to spell each word correctly, including proper capitalization. Suppose, for exam-
ple, that you were to replace the println statement in the “hello world” pro-
gram with the following:

System.out.pruntln("Hello, world!");

When you try to compile this program, it will generate an error message similar
to the following:

Hello.java:3: error: cannot find symbol

symbol : method pruntln(java.lang.String)

Continued on next page

It’s possible for you to introduce an error before you even start writing your pro-
gram, if you choose the wrong name for its file.

Common Programming Error

File Name Does Not Match Class Name

As mentioned earlier, Java requires that a program’s class name and file name
match. For example, a program that begins with public class Hello must be
stored in a file called Hello.java.

If you use the wrong file name (for example, saving it as WrongFileName.java),
you’ll get an error message like this:

WrongFileName.java:1: error: class Hello is public,

 should be declared in a file named Hello.java

public class Hello {

 ∧
1 error

The file name is just the first hurdle. A number of other errors may exist in your
Java program. One of the most common syntax errors is to misspell a word. You may
have punctuation errors, such as missing semicolons. It’s also easy to forget an entire
word, such as a required keyword.

The error messages the compiler gives may or may not be helpful. If you don’t
understand the content of the error message, look for the caret marker (∧) below the
line, which points at the position in the line where the compiler became confused.
This can help you pinpoint the place where a required keyword might be missing.

M01_REGE1686_04_GE_C01.indd 51 04/11/16 2:34 PM

52 Chapter 1 Introduction to Java Programming

If you still can’t figure out the error, try looking at the error’s line number and
comparing the contents of that line with similar lines in other programs. You can also
ask someone else, such as an instructor or lab assistant, to examine your program.

Continued from previous page

location: variable out of type PrintStream

 System.out.pruntln("Hello, world!");

 ∧
1 error

The first line of this output indicates that the error occurs in the file Hello.java
on line 3 and that the error is that the compiler cannot find a symbol. The second
line indicates that the symbol it can’t find is a method called pruntln. That’s
because there is no such method; the method is called println. The error mes-
sage can take slightly different forms depending on what you have misspelled.
For example, you might forget to capitalize the word System:

system.out.println("Hello, world!");

You will get the following error message:

Hello.java:3: error: package system does not exist

 system.out.println("Hello, world!");

 ∧
1 error

Again, the first line indicates that the error occurs in line 3 of the file Hello
.java. The error message is slightly different here, though, indicating that it
can’t find a package called system. The second and third lines of this error mes-
sage include the original line of code with an arrow (caret) pointing to where the
compiler got confused. The compiler errors are not always very clear, but if you
pay attention to where the arrow is pointing, you’ll have a pretty good sense of
where the error occurs.

Common Programming Error

Forgetting a Semicolon

All Java statements must end with semicolons, but it’s easy to forget to put a
semicolon at the end of a statement, as in the following program:

1 public class MissingSemicolon {

2 public static void main(String[] args) {

3 System.out.println("A rose by any other name")

Continued on next page

M01_REGE1686_04_GE_C01.indd 52 04/11/16 2:34 PM

Continued from previous page

4 System.out.println("would smell as sweet");

5 }

6 }

In this case, the compiler produces output similar to the following:

MissingSemicolon.java:3: error: ';' expected

 System.out.println("would smell as sweet");

 ∧
1 error

Some versions of the Java compiler list line 4 as the cause of the problem, not
line 3, where the semicolon was actually forgotten. This is because the compiler
is looking forward for a semicolon and isn’t upset until it finds something that
isn’t a semicolon, which it does when it reaches line 4. Unfortunately, as this
case demonstrates, compiler error messages don’t always direct you to the correct
line to be fixed.

1.3 Program Errors 53

Common Programming Error

Forgetting a Required Keyword

Another common syntax error is to forget a required keyword when you are typing
your program, such as static or class. Double-check your programs against the
examples in the textbook to make sure you haven’t omitted an important keyword.

The compiler will give different error messages depending on which keyword
is missing, but the messages can be hard to understand. For example, you might
write a program called Bug4 and forget the keyword class when writing its class
header. In this case, the compiler will provide the following error message:

Bug4.java:1: error: class, interface, or enum expected

public Bug4 {

 ∧
1 error

However, if you forget the keyword void when declaring the main method, the
compiler generates a different error message:

Bug5.java:2: error: invalid method declaration; return type required

 public static main(String[] args) {

 ∧
1 error

M01_REGE1686_04_GE_C01.indd 53 04/11/16 2:34 PM

54 Chapter 1 Introduction to Java Programming

Yet another common syntax error is to forget to close a string literal.
A good rule of thumb to follow is that the first error reported by the compiler is

the most important one. The rest might be the result of that first error. Many pro-
grammers don’t even bother to look at errors beyond the first, because fixing that
error and recompiling may cause the other errors to disappear.

Logic Errors (Bugs)

Logic errors are also called bugs. Computer programmers use words like “bug-
ridden” and “buggy” to describe poorly written programs, and the process of find-
ing and eliminating bugs from programs is called debugging.

The word “bug” is an old engineering term that predates computers; early com-
puting bugs sometimes occurred in hardware as well as software. Admiral Grace
Hopper, an early pioneer of computing, is largely credited with popularizing the use
of the term in the context of computer programming. She often told the true story of
a group of programmers at Harvard University in the mid-1940s who couldn’t fig-
ure out what was wrong with their programs until they opened up the computer and
found an actual moth trapped inside.

The form that a bug takes may vary. Sometimes your program will simply
behave improperly. For example, it might produce the wrong output. Other times it
will ask the computer to perform some task that is clearly a mistake, in which case
your program will have a runtime error that stops it from executing. In this chapter,
since your knowledge of Java is limited, generally the only type of logic error you
will see is a mistake in program output from an incorrect println statement or
method call.

We’ll look at an example of a runtime error in the next section.

1.4 Procedural Decomposition

Brian Kernighan, coauthor of The C Programming Language, has said, “Controlling
complexity is the essence of computer programming.” People have only a modest
capacity for detail. We can’t solve complex problems all at once. Instead, we struc-
ture our problem solving by dividing the problem into manageable pieces and con-
quering each piece individually. We often use the term decomposition to describe
this principle as applied to programming.

Decomposition

A separation into discernible parts, each of which is simpler than the whole.

With procedural programming languages like C, decomposition involves divid-
ing a complex task into a set of subtasks. This is a very verb- or action-oriented
approach, involving dividing up the overall action into a series of smaller actions.
This technique is called procedural decomposition.

M01_REGE1686_04_GE_C01.indd 54 04/11/16 2:34 PM

Java was designed for a different kind of decomposition that is more noun- or
object-oriented. Instead of thinking of the problem as a series of actions to be per-
formed, we think of it as a collection of objects that have to interact.

Common Programming Error

Not Closing a String Literal or Comment

Every string literal has to have an opening quote and a closing quote, but it’s
easy to forget the closing quotation mark. For example, you might say:

System.out.println("Hello, world!);

This produces three different error messages, even though there is only one
underlying syntax error:

Hello.java:3: error: unclosed string literal

 System.out.println("hello world);

 ∧
Hello.java:3: error: ';' expected

 System.out.println("hello world);

 ∧
Hello.java:5: error: reached end of file while parsing

 }

 ∧
3 errors

In this case, the first error message is quite clear, including an arrow pointing
at the beginning of the string literal that wasn’t closed. The second error message
was caused by the first. Because the string literal was not closed, the compiler
didn’t notice the right parenthesis and semicolon that appear at the end of the line.

A similar problem occurs when you forget to close a multiline comment by
writing */, as in the first line of the following program:

/* This is a bad program.

public class Bad {

 public static void main(String[] args){

 System.out.println("Hi there.");

 }

} /* end of program */

The preceding file is not a program; it is one long comment. Because the com-
ment on the first line is not closed, the entire program is swallowed up.

Luckily, many Java editor programs color the parts of a program to help you
identify them visually. Usually, if you forget to close a string literal or comment, the
rest of your program will turn the wrong color, which can help you spot the mistake.

1.4 Procedural Decomposition 55

M01_REGE1686_04_GE_C01.indd 55 04/11/16 2:34 PM

56 Chapter 1 Introduction to Java Programming

As a computer scientist, you should be familiar with both types of problem solv-
ing. This book begins with procedural decomposition and devotes many chapters to
mastering various aspects of the procedural approach. Only after you have thorougly
practiced procedural programming will we turn our attention back to object decom-
position and object-oriented programming.

As an example of procedural decomposition, consider the problem of baking a
cake. You can divide this problem into the following subproblems:

 • Make the batter.

 • Bake the cake.

 • Make the frosting.

 • Frost the cake.

Each of these four tasks has details associated with it. To make the batter, for
example, you follow these steps:

 • Mix the dry ingredients.

 • Cream the butter and sugar.

 • Beat in the eggs.

 • Stir in the dry ingredients.

Thus, you divide the overall task into subtasks, which you further divide into even
smaller subtasks. Eventually, you reach descriptions that are so simple they require
no further explanation (i.e., primitives).

A partial diagram of this decomposition is shown in Figure 1.2. “Make cake”
is the highest-level operation. It is defined in terms of four lower-level operations
called “Make batter,” “Bake,” “Make frosting,” and “Frost cake.” The “Make batter”
operation is defined in terms of even lower-level operations, and the same could be
done for the other three operations. This diagram is called a structure diagram and is
intended to show how a problem is broken down into subproblems. In this diagram,
you can also tell in what order operations are performed by reading from left to right.
That is not true of most structure diagrams. To determine the actual order in which
subprograms are performed, you usually have to refer to the program itself.

Figure 1.2 Decomposition of “Make cake” task

Make batter Bake Make frosting Frost cake

Make cake

Mix dry
ingredients

Cream butter
sugar

Beat in
eggs

Stir in dry
ingredients

M01_REGE1686_04_GE_C01.indd 56 04/11/16 2:34 PM

One final problem-solving term has to do with the process of programming.
Professional programmers develop programs in stages. Instead of trying to produce
a complete working program all at once, they choose some piece of the problem to
implement first. Then they add another piece, and another, and another. The over-
all program is built up slowly, piece by piece. This process is known as iterative
enhancement or stepwise refinement.

Iterative Enhancement

The process of producing a program in stages, adding new functionality at
each stage. A key feature of each iterative step is that you can test it to
make sure that piece works before moving on.

Now, let’s look at a construct that will allow you to iteratively enhance your Java
programs to improve their structure and reduce their redundancy: static methods.

Static Methods

Java is designed for objects, and programming in Java usually involves decomposing
a problem into various objects, each with methods that perform particular tasks. You
will see how this works in later chapters, but for now, we are going to explore pro-
cedural decomposition. We will postpone examining some of Java’s details while we
discuss programming in general.

Consider the following program, which draws two text boxes on the console:

 1 public class DrawBoxes {

 2 public static void main(String[] args) {

 3 System.out.println("+------+");

 4 System.out.println("| |");

 5 System.out.println("| |");

 6 System.out.println("+------+");

 7 System.out.println();

 8 System.out.println("+------+");

 9 System.out.println("| |");

10 System.out.println("| |");

11 System.out.println("+------+");

12 }

13 }

The program works correctly, but the four lines used to draw the box appear
twice. This redundancy is undesirable for several reasons. For example, you might
wish to change the appearance of the boxes, in which case you’ll have to make all of
the edits twice. Also, you might wish to draw additional boxes, which would require
you to type additional copies of (or copy and paste) the redundant lines.

1.4 Procedural Decomposition 57

VideoNote

M01_REGE1686_04_GE_C01.indd 57 04/11/16 2:34 PM

58 Chapter 1 Introduction to Java Programming

A preferable program would include a Java command that specifies how to draw
the box and then executes that command twice. Java doesn’t have a “draw a box”
command, but you can create one. Such a named command is called a static method.

Static Method

A block of Java statements that is given a name.

Static methods are units of procedural decomposition. We typically break a class
into several static methods, each of which solves some piece of the overall problem.
For example, here is a static method to draw a box:

public static void drawBox() {

 System.out.println("+------+");

 System.out.println("| |");

 System.out.println("| |");

 System.out.println("+------+");

}

You have already seen a static method called main in earlier programs. Recall that
the main method has the following form:

public static void main(String[] args) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

The static methods you’ll write have a similar structure:

public static void <name>() {

 <statement>;

 <statement>;

 ...

 <statement>;

}

The first line is known as the method header. You don’t yet need to fully under-
stand what each part of this header means in Java; for now, just remember that
you’ll need to write public static void, followed by the name you wish to give
the method, followed by a set of parentheses. Briefly, here is what the words in the
header mean:

M01_REGE1686_04_GE_C01.indd 58 04/11/16 2:34 PM

 • The keyword public indicates that this method is available to be used by all
parts of your program. All methods you write will be public.

 • The keyword static indicates that this is a static (procedural-style, not object-
oriented) method. For now, all methods you write will be static, until you learn
about defining objects in Chapter 8.

 • The keyword void indicates that this method executes statements but does not
produce any value. (Other methods you’ll see later compute and return values.)

 • <name> (e.g., drawBox) is the name of the method.

 • The empty parentheses specify a list (in this case, an empty list) of values that are
sent to your method as input; such values are called parameters and will not be
included in your methods until Chapter 3.

Including the keyword static for each method you define may seem cumber-
some. Other Java textbooks often do not discuss static methods as early as we do
here; instead, they show other techniques for decomposing problems. But even
though static methods require a bit of work to create, they are powerful and useful
tools for improving basic Java programs.

After the header in our sample method, a series of println statements makes up
the body of this static method. As in the main method, the statements of this method
are executed in order from first to last.

By defining the method drawBox, you have given a simple name to this sequence
of println statements. It’s like saying to the Java compiler, “Whenever I tell you
to ‘drawBox,’ I really mean that you should execute the println statements in the
drawBox method.” But the command won’t actually be executed unless our main
method explicitly says that it wants to do so. The act of executing a static method is
called a method call.

Method Call

A command to execute another method, which causes all of the statements
inside that method to be executed.

To execute the drawBox command, include this line in your program’s main
method:

drawBox();

Since we want to execute the drawBox command twice (to draw two boxes),
the main method should contain two calls to the drawBox method. The following

1.4 Procedural Decomposition 59

M01_REGE1686_04_GE_C01.indd 59 04/11/16 2:34 PM

60 Chapter 1 Introduction to Java Programming

 program uses the drawBox method to produce the same output as the original
DrawBoxes program:

 1 public class DrawBoxes2 {

 2 public static void main(String[] args) {

 3 drawBox();

 4 System.out.println();

 5 drawBox();

 6 }

 7

 8 public static void drawBox() {

 9 System.out.println("+------+");

10 System.out.println("| |");

11 System.out.println("| |");

12 System.out.println("+------+");

13 }

14 }

Flow of Control

The most confusing thing about static methods is that programs with static meth-
ods do not execute sequentially from top to bottom. Rather, each time the program
encounters a static method call, the execution of the program “jumps” to that static
method, executes each statement in that method in order, and then “jumps” back to
the point where the call began and resumes executing. The order in which the state-
ments of a program are executed is called the program’s flow of control.

Flow of Control

The order in which the statements of a Java program are executed.

Let’s look at the control flow of the DrawBoxes2 program shown previously. It
has two methods. The first method is the familiar main method, and the second is
drawBox. As in any Java program, execution starts with the main method:

public static void main(String[] args) {

 drawBox();

 System.out.println();

 drawBox();

}

In a sense, the execution of this program is sequential: Each statement listed in the
main method is executed in turn, from first to last.

But this main method includes two different calls on the drawBox method. This
program will do three different things: execute drawBox, execute a println, then
execute drawBox again.

M01_REGE1686_04_GE_C01.indd 60 04/11/16 2:34 PM

The diagram below indicates the flow of control produced by this program.

1.4 Procedural Decomposition 61

public static void main(String[] args) {

drawBox();

 public static void drawBox() {

 System.out.println("+------+");

 System.out.println(" ");

 System.out.println(" ");

 System.out.println("+------+");

 }

System.out.println();

drawBox();

 public static void drawBox() {

 System.out.println("+------+");

 System.out.println(" ");

 System.out.println(" ");

 System.out.println("+------+");

 }

}

Following the diagram, you can see that nine println statements are executed.
First you transfer control to the drawBox method and execute its four statements.
Then you return to main and execute its println statement. Then you transfer con-
trol a second time to drawBox and once again execute its four statements. Making
these method calls is almost like copying and pasting the code of the method into the
main method. As a result, this program has the exact same behavior as the nine-line
main method of the DrawBoxes program:

public static void main(String[] args) {

 System.out.println("+------+");

 System.out.println("| |");

 System.out.println("| |");

 System.out.println("+------+");

 System.out.println();

 System.out.println("+------+");

 System.out.println("| |");

 System.out.println("| |");

 System.out.println("+------+");

}

This version is simpler in terms of its flow of control, but the first version avoids the
redundancy of having the same println statements appear multiple times. It also gives
a better sense of the structure of the solution. In the original version, it is clear that there
is a subtask called drawBox that is being performed twice. Also, while the last version of

M01_REGE1686_04_GE_C01.indd 61 04/11/16 2:34 PM

62 Chapter 1 Introduction to Java Programming

the main method contains fewer lines of code than the DrawBoxes2 program, consider
what would happen if you wanted to add a third box to the output. You would have to
add the five requisite println statements again, whereas in the programs that use the
drawBox method you can simply add one more println and a third method call.

Java allows you to define methods in any order you like. It is a common conven-
tion to put the main method as either the first or last method in the class. In this text-
book we will generally put main first, but the programs would behave the same if we
switched the order. For example, the following modified program behaves identically
to the previous DrawBoxes2 program:

 1 public class DrawBoxes3 {

 2 public static void drawBox() {

 3 System.out.println("+------+");

 4 System.out.println("| |");

 5 System.out.println("| |");

 6 System.out.println("+------+");

 7 }

 8

 9 public static void main(String[] args) {

10 drawBox();

11 System.out.println();

12 drawBox();

13 }

14 }

The main method is always the starting point for program execution, and from
that starting point you can determine the order in which other methods are called.

Methods That Call Other Methods

The main method is not the only place where you can call another method. In fact,
any method may call any other method. As a result, the flow of control can get quite
complicated. Consider, for example, the following rather strange program. We use
nonsense words (“foo,” “bar,” “baz,” and “mumble”) on purpose because the pro-
gram is not intended to make sense.

 1 public class FooBarBazMumble {

 2 public static void main(String[] args) {

 3 foo();

 4 bar();

 5 System.out.println("mumble");

 6 }

 7

 8 public static void foo() {

 9 System.out.println("foo");

10 }

M01_REGE1686_04_GE_C01.indd 62 04/11/16 2:34 PM

11

12 public static void bar() {

13 baz();

14 System.out.println("bar");

15 }

16

17 public static void baz() {

18 System.out.println("baz");

19 }

20 }

You can’t tell easily what output this program produces, so let’s explore in detail
what the program is doing. Remember that Java always begins with the method
called main. In this program, the main method calls the foo method and the bar
method and then executes a println statement:

public static void main(String[] args) {

foo();

bar();

System.out.println("mumble");

}

Each of these two method calls will expand into more statements. Let’s first
expand the calls on the foo and bar methods:

1.4 Procedural Decomposition 63

This helps to make our picture of the flow of control more complete, but notice
that bar calls the baz method, so we have to expand that as well.

public static void main(String[] args) {

foo();

 public static void foo() {

 System.out.println("foo");

 }

bar();

 public static void bar() {

 baz();

 System.out.println("bar");

 }

System.out.println("mumble");

}

M01_REGE1686_04_GE_C01.indd 63 04/11/16 2:34 PM

64 Chapter 1 Introduction to Java Programming

Finally, we have finished our picture of the flow of control of this program. It
should make sense, then, that the program produces the following output:

foo

baz

bar

mumble

We will see a much more useful example of methods calling methods when we go
through the case study at the end of the chapter.

public static void main(String[] args) {

foo();

 public static void foo() {

 System.out.println("foo");

 }

bar();

 public static void bar() {

 baz();

 System.out.println("bar");

 }

System.out.println("mumble");

}

public static void baz() {

 System.out.println("baz");

}

Did You Know?

The New Hacker’s Dictionary

Computer scientists and computer programmers use a lot of jargon that can be
confusing to novices. A group of software professionals spearheaded by Eric
Raymond have collected together many of the jargon terms in a book called The
New Hacker’s Dictionary. You can buy the book, or you can browse it online at
Eric’s website: http://catb.org/esr/jargon/html/frames.html.

For example, if you look up foo, you’ll find this definition: “Used very gen-
erally as a sample name for absolutely anything, esp. programs and files.” In

Continued on next page

M01_REGE1686_04_GE_C01.indd 64 04/11/16 2:34 PM

http://catb.org/esr/jargon/html/frames.html

An Example Runtime Error

Runtime errors occur when a bug causes your program to be unable to continue
executing. What could cause such a thing to happen? One example is if you asked
the computer to calculate an invalid value, such as 1 divided by 0. Another example
would be if your program tries to read data from a file that does not exist.

We haven’t discussed how to compute values or read files yet, but there is a way you
can “accidentally” cause a runtime error. The way to do this is to write a static method
that calls itself. If you do this, your program will not stop running, because the method
will keep calling itself indefinitely, until the computer runs out of memory. When this
happens, the program prints a large number of lines of output, and then eventually stops
executing with an error message called a StackOverflowError. Here’s an example:

 1 public class Infinite {

 2 public static void main(String[] args) {

 3 oops();

 4 }

 5

 6 public static void oops() {

 7 System.out.println("Make it stop!");

 8 oops();

 9 }

10 }

This ill-fated program produces the following output (with large groups of identical
lines represented by “...”):

Make it stop!

Make it stop!

Make it stop!

Make it stop!

Make it stop!

Make it stop!

Make it stop!

1.4 Procedural Decomposition 65

Continued from previous page

other words, when we find ourselves looking for a nonsense word, we use
“foo.”

The New Hacker’s Dictionary contains a great deal of historical information about
the origins of jargon terms. The entry for foo includes a lengthy discussion of the
combined term foobar and how it came into common usage among engineers.

If you want to get a flavor of what is there, check out the entries for bug,
hacker, bogosity, and bogo-sort.

M01_REGE1686_04_GE_C01.indd 65 04/11/16 2:34 PM

66 Chapter 1 Introduction to Java Programming

Make it stop!

Make it stop!

...

Make it stop!

Exception in thread "main" java.lang.StackOverflowError

 at sun.nio.cs.SingleByteEncoder.encodeArrayLoop(Unknown Source)

 at sun.nio.cs.SingleByteEncoder.encodeLoop(Unknown Source)

 at java.nio.charset.CharsetEncoder.encode(Unknown Source)

 at sun.nio.cs.StreamEncoder$CharsetSE.implWrite(Unknown Source)

 at sun.nio.cs.StreamEncoder.write(Unknown Source)

 at java.io.OutputStreamWriter.write(Unknown Source)

 at java.io.BufferedWriter.flushBuffer(Unknown Source)

 at java.io.PrintStream.newLine(Unknown Source)

 at java.io.PrintStream.println(Unknown Source)

 at Infinite.oops(Infinite.java:7)

 at Infinite.oops(Infinite.java:8)

 at Infinite.oops(Infinite.java:8)

 at Infinite.oops(Infinite.java:8)

 at ...

Runtime errors are, unfortunately, something you’ll have to live with as you learn to
program. You will have to carefully ensure that your programs not only compile suc-
cessfully, but do not contain any bugs that will cause a runtime error. The most com-
mon way to catch and fix runtime errors is to run the program several times to test its
behavior.

1.5 Case Study: DrawFigures

Earlier in the chapter, you saw a program called DrawFigures1 that produced the
following output:

 /\
 / \
 / \
 \ /
 \ /
 \/

 \ /
 \ /
 \/
 /\
 / \
 / \

VideoNote

M01_REGE1686_04_GE_C01.indd 66 04/11/16 2:34 PM

 /\
 / \
 / \
+------+
| |
| |
+------+
|United|
|States|
+------+
| |
| |
+------+
 /\
 / \
 / \

It did so with a long sequence of println statements in the main method. In this
section you’ll improve the program by using static methods for procedural decompo-
sition to capture structure and eliminate redundancy. The redundancy might be more
obvious, but let’s start by improving the way the program captures the structure of
the overall task.

Structured Version

If you look closely at the output, you’ll see that it has a structure that would be desir-
able to capture in the program structure. The output is divided into three subfigures:
the diamond, the X, and the rocket.

You can better indicate the structure of the program by dividing it into static meth-
ods. Since there are three subfigures, you can create three methods, one for each sub-
figure. The following program produces the same output as DrawFigures1:

 1 public class DrawFigures2 {

 2 public static void main(String[] args) {

 3 drawDiamond();

 4 drawX();

 5 drawRocket();

 6 }

 7

 8 public static void drawDiamond() {

 9 System.out.println(" /\\");

10 System.out.println(" / \\");

11 System.out.println(" / \\");

12 System.out.println(" \\ /");

13 System.out.println(" \\ /");

14 System.out.println(" \\ /");

15 System.out.println();

16 }

17

1.5 Case Study: DrawFigures 67

M01_REGE1686_04_GE_C01.indd 67 04/11/16 2:34 PM

68 Chapter 1 Introduction to Java Programming

18 public static void drawX() {

19 System.out.println(" \\ /");

20 System.out.println(" \\ /");

21 System.out.println(" \\ /");

22 System.out.println(" /\\");

23 System.out.println(" / \\");

24 System.out.println(" / \\");

25 System.out.println();

26 }

27

28 public static void drawRocket() {

29 System.out.println(" /\\");

30 System.out.println(" / \\");

31 System.out.println(" / \\");

32 System.out.println("+------+");

33 System.out.println("| |");

34 System.out.println("| |");

35 System.out.println("+------+");

36 System.out.println("|United|");

37 System.out.println("|States|");

38 System.out.println("+------+");

39 System.out.println("| |");

40 System.out.println("| |");

41 System.out.println("+------+");

42 System.out.println(" /\\");

43 System.out.println(" / \\");

44 System.out.println(" / \\");

45 }

46 }

The program appears in a class called DrawFigures2 and has four static methods
defined within it. The first static method is the usual main method, which calls three
methods. The three methods called by main appear next.

Figure 1.3 is a structure diagram for this version of the program. Notice that it has
two levels of structure. The overall problem is broken down into three subtasks.

drawDiamond drawX drawRocket

main

Figure 1.3 Decomposition of DrawFigures2

M01_REGE1686_04_GE_C01.indd 68 04/11/16 2:34 PM

Final Version without Redundancy

The program can still be improved. Each of the three subfigures has individual ele-
ments, and some of those elements appear in more than one of the three subfigures.
The program prints the following redundant group of lines several times:

 /\
 / \
/ \

A better version of the preceding program adds an additional method for each
redundant section of output. The redundant sections are the top and bottom halves of
the diamond shape and the box used in the rocket. Here is the improved program:

 1 public class DrawFigures3 {

 2 public static void main(String[] args) {

 3 drawDiamond();

 4 drawX();

 5 drawRocket();

 6 }

 7

 8 public static void drawDiamond() {

 9 drawCone();

10 drawV();

11 System.out.println();

12 }

13

14 public static void drawX() {

15 drawV();

16 drawCone();

17 System.out.println();

18 }

19

20 public static void drawRocket() {

21 drawCone();

22 drawBox();

23 System.out.println("|United|");

24 System.out.println("|States|");

25 drawBox();

26 drawCone();

27 System.out.println();

28 }

29

1.5 Case Study: DrawFigures 69

M01_REGE1686_04_GE_C01.indd 69 04/11/16 2:34 PM

70 Chapter 1 Introduction to Java Programming

30 public static void drawBox() {

31 System.out.println("+------+");

32 System.out.println("| |");

33 System.out.println("| |");

34 System.out.println("+------+");

35 }

36

37 public static void drawCone() {

38 System.out.println(" /\\");

39 System.out.println(" / \\");

40 System.out.println(" / \\");

41 }

42

43 public static void drawV() {

44 System.out.println(" \\ /");

45 System.out.println(" \\ /");

46 System.out.println(" \\/");

47 }

48 }

This program, now called DrawFigures3, has seven static methods defined within
it. The first static method is the usual main method, which calls three methods. These
three methods in turn call three other methods, which appear next.

Analysis of Flow of Execution

The structure diagram in Figure 1.4 shows which static methods main calls and
which static methods each of them calls. As you can see, this program has three levels
of structure and two levels of decomposition. The overall task is split into three
subtasks, each of which has two subtasks.

A program with methods has a more complex flow of control than one without
them, but the rules are still fairly simple. Remember that when a method is called, the
computer executes the statements in the body of that method. Then the computer pro-
ceeds to the next statement after the method call. Also remember that the computer
always starts with the main method, executing its statements from first to last.

drawDiamond drawX drawRocket

main

drawCone drawV drawV drawCone drawCone drawBox

Figure 1.4 Decomposition of DrawFigures3

M01_REGE1686_04_GE_C01.indd 70 04/11/16 2:34 PM

So, to execute the DrawFigures3 program, the computer first executes its
main method. That, in turn, first executes the body of the method drawDiamond.
drawDiamond executes the methods drawCone and drawV (in that order). When
drawDiamond finishes executing, control shifts to the next statement in the body of
the main method: the call to the drawX method.

A complete breakdown of the flow of control from static method to static method
in DrawFigures3 follows:

 1st main

 2nd drawDiamond

 3rd drawCone

 4th drawV

 5th drawX

 6th drawV

 7th drawCone

 8th drawRocket

 9th drawCone

10th drawBox

11th drawBox

12th drawCone

Recall that the order in which you define methods does not have to parallel the
order in which they are executed. The order of execution is determined by the body
of the main method and by the bodies of methods called from main. A static method
declaration is like a dictionary entry—it defines a word, but it does not specify how
the word will be used. The body of this program’s main method says to first execute
drawDiamond, then drawX, then drawRocket. This is the order of execution, regard-
less of the order in which the methods are defined.

Java allows you to define methods in any order you like. Starting with main at
the top and working down to lower and lower-level methods is a popular approach
to take, but many people prefer the opposite, placing the low-level methods first and
main at the end. Java doesn’t care what order you use, so you can decide for yourself
and do what you think is best. Consistency is important, though, so that you can eas-
ily find a method later in a large program.

It is important to note that the programs DrawFigures1, DrawFigures2, and
DrawFigures3 produce exactly the same output to the console. While DrawFigures1
may be the easiest program for a novice to read, DrawFigures2 and particularly
DrawFigures3 have many advantages over it. For one, a well-structured solution is
easier to comprehend, and the methods themselves become a means of explaining
the program. Also, programs with methods are more flexible and can more easily
be adapted to similar but different tasks. You can take the seven methods defined
in DrawFigures3 and write a new program to produce a larger and more complex
output. Building static methods to create new commands increases your flexibility
without adding unnecessary complication. For example, you could replace the main

1.5 Case Study: DrawFigures 71

M01_REGE1686_04_GE_C01.indd 71 04/11/16 2:34 PM

method with a version that calls the other methods in the following new order. What
output would it produce?

public static void main(String[] args) {

 drawCone();

 drawCone();

 drawRocket();

 drawX();

 drawRocket();

 drawDiamond();

 drawBox();

 drawDiamond();

 drawX();

 drawRocket();

}

72 Chapter 1 Introduction to Java Programming

Chapter Summary

Computers execute sets of instructions called programs.

Computers store information internally as sequences of 0s

and 1s (binary numbers).

Programming and computer science deal with algorithms,

which are step-by-step descriptions for solving problems.

Java is a modern object-oriented programming language

developed by Sun Microsystems, now owned by Oracle

Corporation, that has a large set of libraries you can use to

build complex programs.

A program is translated from text into computer instruc-

tions by another program called a compiler. Java’s com-

piler turns Java programs into a special format called Java

bytecodes, which are executed using a special program

called the Java Runtime Environment.

Java programmers typically complete their work using

an editor called an Integrated Development Environment

(IDE). The commands may vary from environment to

environment, but the same three-step process is always

involved:

 1. Type in a program as a Java class.

 2. Compile the program file.

 3. Run the compiled version of the program.

Java uses a command called System.out.println to

display text on the console screen.

Written words in a program can take different meanings.

Keywords are special reserved words that are part of the

language. Identifiers are words defined by the programmer

to name entities in the program. Words can also be put

into strings, which are pieces of text that can be printed to

the console.

Java programs that use proper spacing and layout are more

readable to programmers. Readability is also improved by

writing notes called comments inside the program.

M01_REGE1686_04_GE_C01.indd 72 04/11/16 2:34 PM

The Java language has a syntax, or a legal set of com-

mands that can be used. A Java program that does not

follow the proper syntax will not compile. A program that

does compile but that is written incorrectly may still con-

tain errors called exceptions that occur when the program

runs. A third kind of error is a logic or intent error. This

kind of error occurs when the program runs but does not

do what the programmer intended.

Commands in programs are called statements. A class can

group statements into larger commands called static meth-

ods. Static methods help the programmer group code into

reusable pieces. An important static method that must be

part of every program is called main.

Iterative enhancement is the process of building a program

piece by piece, testing the program at each step before

advancing to the next.

Complex programming tasks should be broken down into

the major tasks the computer must perform. This process

is called procedural decomposition. Correct use of static

methods aids procedural decomposition.

Self-Check Problems

Section 1.1: Basic Computing Concepts

 1. Why do computers use binary numbers?

 2. Convert each of the following decimal numbers into its equivalent binary number:

a. 6

b. 44

c. 72

d. 131

 3. What is the decimal equivalent of each of the following binary numbers?

a. 100

b. 1011

c. 101010

d. 1001110

 4. In your own words, describe an algorithm for baking cookies. Assume that you have a large number of hungry

friends, so you’ll want to produce several batches of cookies!

 5. What is the difference between the file MyProgram.java and the file MyProgram.class?

Section 1.2: And Now—Java

 6. Which of the following can be used in a Java program as identifiers?

println first-name AnnualSalary "hello" ABC

42isTheAnswer for sum_of_data _average B4

 7. Which of the following is the correct syntax to output a message?

a. System.println(Hello, world!);

b. System.println.out('Hello, world!');

c. System.println("Hello, world!");

Self-Check Problems 73

M01_REGE1686_04_GE_C01.indd 73 04/11/16 2:34 PM

74 Chapter 1 Introduction to Java Programming

d. System.out.println("Hello, world!");

e. Out.system.println"(Hello, world!)";

 8. What is the output produced from the following statements?

System.out.println("\"Quotes\"");

System.out.println("Slashes \\//");

System.out.println("How '\"confounding' \"\\\" it is!");

 9. What is the output produced from the following statements?

System.out.println("name\tage\theight");

System.out.println("Archie\t17\t5'9\"");

System.out.println("Betty\t17\t5'6\"");

System.out.println("Jughead\t16\t6'");

 10. What is the output produced from the following statements?

System.out.println("Shaq is 7'1");

System.out.println("The string \"\" is an empty message.");

System.out.println("\\'\"\"");

 11. What is the output produced from the following statements?

System.out.println("\ta\tb\tc");

System.out.println("\\\\");

System.out.println("'");

System.out.println("\"\"\"");

System.out.println("C:\nin\the downward spiral");

 12. What is the output produced from the following statements?

System.out.println("Dear \"DoubleSlash\" magazine,");

System.out.println();

System.out.println("\tYour publication confuses me. Is it");

System.out.println("a \\\\ slash or a //// slash?");

System.out.println("\nSincerely,");

System.out.println("Susan \"Suzy\" Smith");

 13. What series of println statements would produce the following output?

"Several slashes are sometimes seen,"

said Sally. "I've said so." See?

\ / \\ // \\\ ///

 14. What series of println statements would produce the following output?

This is a test of your

knowledge of "quotes" used

in 'string literals.'

You're bound to "get it right"

if you read the section on

''quotes.''

M01_REGE1686_04_GE_C01.indd 74 04/11/16 2:34 PM

 15. Write a println statement that produces the following output:

/ \ // \\ /// \\\

 16. Rewrite the following code as a series of equivalent System.out.println statements (i.e., without any

System.out.print statements):

System.out.print("Twas ");

System.out.print("brillig and the");

System.out.println(" ");

System.out.print(" slithy toves did");

System.out.print(" ");

System.out.println("gyre and");

System.out.println("gimble");

System.out.println();

System.out.println("in the wabe.");

 17. What is the output of the following program? Note that the program contains several comments.

 1 public class Commentary {

 2 public static void main(String[] args) {

 3 System.out.println("some lines of code");

 4 System.out.println("have // characters on them");

 5 System.out.println("which means "); // that they are comments

 6 // System.out.println("written by the programmer.");

 7

 8 System.out.println("lines can also");

 9 System.out.println("have /* and */ characters");

10 /* System.out.println("which represents");

11 System.out.println("a multi-line style");

12 */ System.out.println("of comment.");

13 }

14 }

Section 1.3: Program Errors

 18. Name the three errors in the following program:

1 public MyProgram {

2 public static void main(String[] args) {

3 System.out.println("This is a test of the")

4 System.out.Println("emergency broadcast system.");

5 }

6 }

 19. Name the four errors in the following program:

1 public class SecretMessage {

2 public static main(string[] args) {

3 System.out.println("Speak friend");

Self-Check Problems 75

M01_REGE1686_04_GE_C01.indd 75 04/11/16 2:34 PM

76 Chapter 1 Introduction to Java Programming

4 System.out.println("and enter);

5

6 }

 20. Name the four errors in the following program:

 1 public class FamousSpeech

 2 public static void main(String[]) {

 3 System.out.println("Four score and seven years ago,");

 4 System.out.println("our fathers brought forth on");

 5 System.out.println("this continent a new nation");

 6 System.out.println("conceived in liberty,");

 7 System.out.println("and dedicated to the proposition");

 8 System.out.println("that"); /* this part should

 9 System.out.println("all"); really say,

10 System.out.println("men"); "all PEOPLE!" */

11 System.out.println("are";

12 System.out.println("created");

13 System.out.println("equal");

14 }

15 }

Section 1.4: Procedural Decomposition

 21. Which of the following method headers uses the correct syntax?

a. public static example() {

b. public static void example() {

c. public void static example() {

d. public static example void[] {

e. public void static example{} (

 22. What is the output of the following program? (You may wish to draw a structure diagram first.)

 1 public class Tricky {

 2 public static void main(String[] args) {

 3 message1();

 4 message2();

 5 System.out.println("Done with main.");

 6 }

 7

 8 public static void message1() {

 9 System.out.println("This is message1.");

10 }

11

12 public static void message2() {

13 System.out.println("This is message2.");

14 message1();

M01_REGE1686_04_GE_C01.indd 76 04/11/16 2:34 PM

15 System.out.println("Done with message2.");

16 }

17 }

 23. What is the output of the following program? (You may wish to draw a structure diagram first.)

 1 public class Strange {

 2 public static void first() {

 3 System.out.println("Inside first method");

 4 }

 5

 6 public static void second() {

 7 System.out.println("Inside second method");

 8 first();

 9 }

10

11 public static void third() {

12 System.out.println("Inside third method");

13 first();

14 second();

15 }

16

17 public static void main(String[] args) {

18 first();

19 third();

20 second();

21 third();

22 }

23 }

 24. What would have been the output of the preceding program if the third method had contained the following

statements?

public static void third() {

 first();

 second();

 System.out.println("Inside third method");

}

 25. What would have been the output of the Strange program if the main method had contained the following

statements? (Use the original version of third, not the modified version from the most recent exercise.)

public static void main(String[] args) {

 second();

 first();

 second();

 third();

}

Self-Check Problems 77

M01_REGE1686_04_GE_C01.indd 77 04/11/16 2:34 PM

78 Chapter 1 Introduction to Java Programming

 26. What is the output of the following program? (You may wish to draw a structure diagram first.)

 1 public class Confusing {

 2 public static void method2() {

 3 method1();

 4 System.out.println("I am method 2.");

 5 }

 6

 7 public static void method3() {

 8 method2();

 9 System.out.println("I am method 3.");

10 method1();

11 }

12

13 public static void method1() {

14 System.out.println("I am method 1.");

15 }

16

17 public static void main(String[] args) {

18 method1();

19 method3();

20 method2();

21 method3();

22 }

23 }

 27. What would have been the output of the preceding program if the method3 method had contained the following

statements?

public static void method3() {

 method1();

 method2();

 System.out.println("I am method 3.");

}

 28. What would have been the output of the Confusing program if the main method had contained the following

statements? (Use the original version of method3, not the modified version from the most recent exercise.)

public static void main(String[] args) {

 method2();

 method1();

 method3();

 method2();

}

 29. The following program contains at least 10 syntax errors. What are they?

 1 public class LotsOf Errors {

 2 public static main(String args) {

 3 System.println(Hello, world!);

M01_REGE1686_04_GE_C01.indd 78 04/11/16 2:34 PM

 4 message()

 5 }

 6

 7 public static void message {

 8 System.out println("This program surely cannot ";

 9 System.out.println("have any "errors" in it");

10 }

 30. Consider the following program, saved into a file named Example.java:

 1 public class Example {

 2 public static void displayRule() {

 3 System.out.println("The first rule ");

 4 System.out.println("of Java Club is,");

 5 System.out.println();

 6 System.out.println("you do not talk about Java Club.");

 7 }

 8

 9 public static void main(String[] args) {

10 System.out.println("The rules of Java Club.");

11 displayRule();

12 displayRule();

13 }

14 }

 What would happen if each of the following changes were made to the Example program? For example, would

there be no effect, a syntax error, or a different program output? Treat each change independently of the others.

a. Change line 1 to: public class Demonstration

b. Change line 9 to: public static void MAIN(String[] args) {

c. Insert a new line after line 11 that reads: System.out.println();

d. Change line 2 to: public static void printMessage() {

e. Change line 2 to: public static void showMessage() { and change lines 11 and 12 to: showMessage();

f. Replace lines 3–4 with: System.out.println("The first rule of Java Club is,");

 31. The following program is legal under Java’s syntax rules, but it is difficult to read because of its layout and lack of

comments. Reformat it using the rules given in this chapter, and add a comment header at the top of the program.

 1 public

 2 class GiveAdvice{ public static

 3 void main (String[]args){ System.out.println (

 4

 5 "Programs can be easy or"); System.out.println(

 6 "difficult to read, depending"

 7); System.out.println("upon their format.")

 8 ;System.out.println();System.out.println(

 9 "Everyone, including yourself,");

10 System.out.println

11 ("will be happier if you choose");

Self-Check Problems 79

M01_REGE1686_04_GE_C01.indd 79 04/11/16 2:34 PM

12 System.out.println("to format your programs."

13); }

14 }

 32. The following program is legal under Java’s syntax rules, but it is difficult to read because of its layout and lack of

comments. Reformat it using the rules given in this chapter, and add a comment header at the top of the program.

 1 public

 2 class Messy{public

 3 static void main(String[]args){message ()

 4 ;System.out.println() ; message ();} public static void

 5 message() { System.out.println(

 6 "I really wish that"

 7);System.out.println

 8 ("I had formatted my source")

 9 ;System.out.println("code correctly!");}}

80 Chapter 1 Introduction to Java Programming

Exercises

 1. Write a complete Java program called Stewie that prints the following output:

//////////////////////
|| Victory is mine! ||
\\\\\\\\\\\\\\\\\\\\\\

 2. Write a complete Java program called Spikey that prints the following output:

 \/
 \\//
\\\///
///\\\
 //\\
 /\

 3. Write a complete Java program called WellFormed that prints the following output:

A well–formed Java program has

a main method with { and }

braces.

A System.out.println statement

has (and) and usually a

String that starts and ends

with a " character.

(But we type \" instead!)

 4. Write a complete Java program called Difference that prints the following output:

What is the difference between

a ' and a "? Or between a " and a \"?

One is what we see when we're typing our program.

The other is what appears on the "console."

M01_REGE1686_04_GE_C01.indd 80 04/11/16 2:34 PM

 5. Write a complete Java program called MuchBetter that prints the following output:

A "quoted" String is

'much' better if you learn

the rules of "escape sequences."

Also, "" represents an empty String.

Don't forget: use \" instead of " !

'' is not the same as "

 6. Write a complete Java program called Meta whose output is the text that would be the source code of a Java pro-

gram that prints “Hello, world!” as its output.

 7. Write a complete Java program called Mantra that prints the following output. Use at least one static method

besides main.

There's one thing every coder must understand:

The System.out.println command.

There's one thing every coder must understand:

The System.out.println command.

 8. Write a complete Java program called Stewie2 that prints the following output. Use at least one static method

besides main.

//////////////////////
|| Victory is mine! ||
\\\\\\\\\\\\\\\\\\\\\\
|| Victory is mine! ||
\\\\\\\\\\\\\\\\\\\\\\
|| Victory is mine! ||
\\\\\\\\\\\\\\\\\\\\\\
|| Victory is mine! ||
\\\\\\\\\\\\\\\\\\\\\\
|| Victory is mine! ||
\\\\\\\\\\\\\\\\\\\\\\

 9. Write a program called Egg that displays the following output:

 / \
/ \
-"-'-"-'-"-
\ /
 _______/

 10. Modify the program from the previous exercise to become a new program Egg2 that displays the following output.

Use static methods as appropriate.

 / \
/ \
\ /
 _______/

-"-'-"-'-"-

 / \
/ \
\ /
 _______/

Exercises 81

M01_REGE1686_04_GE_C01.indd 81 04/11/16 2:34 PM

82 Chapter 1 Introduction to Java Programming

-"-'-"-'-"-
\ /
 _______/

 / \
/ \
-"-'-"-'-"-
\ /
 _______/

 11. Write a Java program called TwoRockets that generates the following output. Use static methods to show structure

and eliminate redundancy in your solution. Note that there are two rocket ships next to each other. What redundancy

can you eliminate using static methods? What redundancy cannot be eliminated?

 /\ /\
 / \ / \
 / \ / \
+------+ +------+
| | | |
| | | |
+------+ +------+
|United| |United|
|States| |States|
+------+ +------+
| | | |
| | | |
+------+ +------+
 /\ /\
 / \ / \
 / \ / \

 12. Write a program called FightSong that produces this output. Use at least two static methods to show structure and

eliminate redundancy in your solution.

Go, team, go!

You can do it.

Go, team, go!

You can do it.

You're the best,

In the West.

Go, team, go!

You can do it.

Go, team, go!

You can do it.

You're the best,

in the West.

Go, team, go!

You can do it.

Go, team, go!

You can do it.

M01_REGE1686_04_GE_C01.indd 82 04/11/16 2:34 PM

 13. Write a Java program called StarFigures that generates the following output. Use static methods to show structure

and eliminate redundancy in your solution.

 * *
 *
 * *

 * *
 *
 * *

 *
 *
 *

 * *
 *
 * *

 14. Write a Java program called Lanterns that generates the following output. Use static methods to show structure

and eliminate redundancy in your solution.

* | | | | | *

* | | | | | *
* | | | | | *

Exercises 83

M01_REGE1686_04_GE_C01.indd 83 04/11/16 2:34 PM

84 Chapter 1 Introduction to Java Programming

 15. Write a Java program called EggStop that generates the following output. Use static methods to show structure and

eliminate redundancy in your solution.

 / \
/ \
\ /
 _______/
\ /
 _______/
 +-------+

 / \
/ \
| STOP |
\ /
 _______/

 / \
/ \
+---------+

 16. Write a program called Shining that prints the following line of output 1000 times:

All work and no play makes Jack a dull boy.

 You should not write a program that uses 1000 lines of source code; use methods to shorten the program. What is the

shortest program you can write that will produce the 1000 lines of output, using only the material from this chapter?

Programming Projects

 1. Write a program to spell out MISSISSIPPI using block letters like the following (one per line):

M M IIIII SSSSS PPPPPP
MM MM I S S P P
M M M M I S P P
M M M I SSSSS PPPPPP
M M I S P
M M I S S P
M M IIIII SSSSS P

 2. Sometimes we write similar letters to different people. For example, you might write to your parents to tell them

about your classes and your friends and to ask for money; you might write to a friend about your love life, your

classes, and your hobbies; and you might write to your brother about your hobbies and your friends and to ask for

money. Write a program that prints similar letters such as these to three people of your choice. Each letter should

have at least one paragraph in common with each of the other letters. Your main program should have three method

calls, one for each of the people to whom you are writing. Try to isolate repeated tasks into methods.

 3. Write a program that produces as output the following lyrics. Use methods for each verse and the refrain. Here are

the complete lyrics to print:

There was an old lady who swallowed a fly.
I don't know why she swallowed that fly,
Perhaps she'll die.

M01_REGE1686_04_GE_C01.indd 84 06/12/16 11:05 PM

Programming Projects 85

There was an old lady who swallowed a spider,
That wriggled and iggled and jiggled inside her.
She swallowed the spider to catch the fly,
I don't know why she swallowed that fly,
Perhaps she'll die.

There was an old lady who swallowed a bird,
How absurd to swallow a bird.
She swallowed the bird to catch the spider,
She swallowed the spider to catch the fly,
I don't know why she swallowed that fly,
Perhaps she'll die.

There was an old lady who swallowed a cat,
Imagine that to swallow a cat.
She swallowed the cat to catch the bird,
She swallowed the bird to catch the spider,
She swallowed the spider to catch the fly,
I don't know why she swallowed that fly,
Perhaps she'll die.

There was an old lady who swallowed a dog,
What a hog to swallow a dog.
She swallowed the dog to catch the cat,
She swallowed the cat to catch the bird,
She swallowed the bird to catch the spider,
She swallowed the spider to catch the fly,
I don't know why she swallowed that fly,
Perhaps she'll die.

There was an old lady who swallowed a horse,

She died of course.

 4. Write a program that produces as output the following lyrics. Use methods for each verse and the refrain. Here are

the complete lyrics to print:

On the first day of Christmas,

my true love sent to me

a partridge in a pear tree.

On the second day of Christmas,

my true love sent to me

two turtle doves, and

a partridge in a pear tree.

...

On the twelfth day of Christmas,

my true love sent to me

Twelve drummers drumming,

eleven pipers piping,

ten lords a-leaping,

nine ladies dancing,

eight maids a-milking,

seven swans a-swimming,

six geese a-laying,

M01_REGE1686_04_GE_C01.indd 85 04/11/16 2:34 PM

86 Chapter 1 Introduction to Java Programming

five golden rings,

four calling birds,

three French hens,

two turtle doves, and

a partridge in a pear tree.

 5. Write a program that produces as output the words of “The House That Jack Built.” Use methods for each verse

and for repeated text. Here are lyrics to use:

This is the house that Jack built.

This is the malt

That lay in the house that Jack built.

This is the rat,

That ate the malt

That lay in the house that Jack built.

This is the cat,

That killed the rat,

That ate the malt

That lay in the house that Jack built.

This is the dog,

That worried the cat,

That killed the rat,

That ate the malt

That lay in the house that Jack built.

This is the cow with the crumpled horn,

That tossed the dog,

That worried the cat,

That killed the rat,

That ate the malt

That lay in the house that Jack built.

This is the maiden all forlorn

That milked the cow with the crumpled horn,

That tossed the dog,

That worried the cat,

That killed the rat,

That ate the malt

That lay in the house that Jack built.

 6. Write a program that produces as output the words of “Bought Me a Cat.” Use methods for each verse and for

repeated text. Here are the song’s complete lyrics:

Bought me a cat and the cat pleased me,

I fed my cat under yonder tree.

Cat goes fiddle-i-fee.

Bought me a hen and the hen pleased me,

I fed my hen under yonder tree.

M01_REGE1686_04_GE_C01.indd 86 04/11/16 2:34 PM

Hen goes chimmy-chuck, chimmy-chuck,

Cat goes fiddle-i-fee.

Bought me a duck and the duck pleased me,

I fed my duck under yonder tree.

Duck goes quack, quack,

Hen goes chimmy-chuck, chimmy-chuck,

Cat goes fiddle-i-fee.

Bought me a goose and the goose pleased me,

I fed my goose under yonder tree.

Goose goes hissy, hissy,

Duck goes quack, quack,

Hen goes chimmy-chuck, chimmy-chuck,

Cat goes fiddle-i-fee.

Bought me a sheep and the sheep pleased me,

I fed my sheep under yonder tree.

Sheep goes baa, baa,

Goose goes hissy, hissy,

Duck goes quack, quack,

Hen goes chimmy-chuck, chimmy-chuck,

Cat goes fiddle-i-fee.

 7. Write a program that produces as output the words of the following silly song. Use methods for each verse and for

repeated text. Here are the song’s complete lyrics:

I once wrote a program that wouldn't compile

I don't know why it wouldn't compile,

My TA just smiled.

My program did nothing

So I started typing.

I added System.out.println("I <3 coding"),

I don't know why it wouldn't compile,

My TA just smiled.

"Parse error," cried the compiler

Luckily I'm such a code baller.

I added a backslash to escape the quotes,

I added System.out.println("I <3 coding"),

I don't know why it wouldn't compile,

My TA just smiled.

Now the compiler wanted an identifier

And I thought the situation was getting dire.

I added a main method with its String[] args,

I added a backslash to escape the quotes,

I added System.out.println("I <3 coding"),

I don't know why it wouldn't compile,

My TA just smiled.

Programming Projects 87

M01_REGE1686_04_GE_C01.indd 87 04/11/16 2:34 PM

Java complained it expected an enum

Boy, these computers really are dumb!

I added a public class and called it Scum,

I added a main method with its String[] args,

I added a backslash to escape the quotes,

I added System.out.println("I <3 coding"),

I don't know why it wouldn't compile,

My TA just smiled.

88 Chapter 1 Introduction to Java Programming

M01_REGE1686_04_GE_C01.indd 88 04/11/16 2:34 PM

Introduction

Now that you know something about the basic structure of Java programs,
you are ready to learn how to solve more complex problems. For the time
being we will still concentrate on programs that produce output, but we
will begin to explore some of the aspects of programming that require
problem-solving skills.

The first half of this chapter fills in two important areas. First, it examines
expressions, which are used to perform simple computations in Java, par-
ticularly those involving numeric data. Second, it discusses program ele-
ments called variables that can change in value as the program executes.

The second half of the chapter introduces your first control structure: the
for loop. You use this structure to repeat actions in a program. This is
useful whenever you find a pattern in a task such as the creation of a
 complex figure, because you can use a for loop to repeat the action to
create that particular pattern. The challenge is finding each pattern and
 figuring out what repeated actions will reproduce it.

The for loop is a flexible control structure that can be used for many
tasks. In this chapter we use it for definite loops, where you know exactly
how many times you want to perform a particular task. In Chapter 5 we
will discuss how to write indefinite loops, where you don’t know in advance
how many times to perform a task.

Chapter 2

2.1 Basic Data Concepts
■	 Primitive Types
■	 Expressions
■	 Literals
■	 Arithmetic Operators
■	 Precedence
■	 Mixing Types and Casting

2.2 Variables
■	 Assignment/Declaration

Variations
■	 String Concatenation
■	 Increment/Decrement Operators
■	 Variables and Mixing Types

2.3 The for Loop
■	 Tracing for Loops
■	 for Loop Patterns
■	 Nested for Loops

2.4 Managing Complexity
■	 Scope
■	 Pseudocode
■	 Class Constants

2.5 Case Study: Hourglass
Figure

■	 Problem Decomposition
and Pseudocode

■	 Initial Structured Version
■	 Adding a Class Constant
■	 Further Variations

Primitive Data and
Definite Loops

89

M02_REGE1686_04_GE_C02.indd 89 04/11/16 5:21 PM

90 Chapter 2 Primitive Data and Definite Loops90 Chapter 2 Primitive Data and Definite Loops

2.1 Basic Data Concepts

Programs manipulate information, and information comes in many forms. Java is a
type-safe language, which means that it requires you to be explicit about what kind of
information you intend to manipulate and it guarantees that you manipulate the data
in a reasonable manner. Everything that you manipulate in a Java program will be of
a certain type, and you will constantly find yourself telling Java what types of data
you intend to use.

Data Type

A name for a category of data values that are all related, as in type int in
Java, which is used to represent integer values.

A decision was made early in the design of Java to support two different kinds of
data: primitive data and objects. The designers made this decision purely on the basis
of performance, to make Java programs run faster. Unfortunately, it means that you
have to learn two sets of rules about how data works, but this is one of those times
when you simply have to pay the price if you want to use an industrial-strength pro-
gramming language. To make things a little easier, we will study the primitive data
types first, in this chapter; in the next chapter, we will turn our attention to objects.

Primitive Types

There are eight primitive data types in Java: boolean, byte, char, double, float,
int, long, and short. Four of these are considered fundamental: boolean, char,
double, and int. The other four types are variations that exist for programs that
have special requirements. The four fundamental types that we will explore are listed
in Table 2.1.

The type names (int, double, char, and boolean) are Java keywords that you will
use in your programs to let the compiler know that you intend to use that type of data.

It may seem odd to use one type for integers and another type for real numbers.
Isn’t every integer a real number? The answer is yes, but these are fundamentally dif-
ferent types of numbers. The difference is so great that we make this distinction even
in English. We don’t ask, “How much sisters do you have?” or “How many do you
weigh?” We realize that sisters come in discrete integer quantities (0 sisters, 1 sister, 2
sisters, 3 sisters, and so on), and we use the word “many” for integer quantities (“How

Table 2.1 Commonly Used Primitive Types in Java

Type Description Examples

int integers (whole numbers) 42, –3, 18, 20493, 0

double real numbers 7.35, 14.9, –19.83423

char single characters 'a', 'X', '!'

boolean logical values true, false

M02_REGE1686_04_GE_C02.indd 90 04/11/16 5:21 PM

2.1 Basic Data Concepts 91

many sisters do you have?”). Similarly, we realize that weight can vary by tiny
amounts (175 pounds versus 175.5 pounds versus 175.25 pounds, and so on), and we
use the word “much” for these real-number quantities (“How much do you weigh?”).

In programming, this distinction is even more important, because integers and
reals are represented in different ways in the computer’s memory: Integers are stored
exactly, while reals are stored as approximations with a limited number of digits of
accuracy. You will see that storing values as approximations can lead to round-off
errors when you use real values.

The name double for real values is not very intuitive. It’s an accident of history
in much the same way that we still talk about “dialing” a number on our telephones
even though modern telephones don’t have dials. The C programming language
introduced a type called float (short for “floating-point number”) for storing real
numbers. But floats had limited accuracy, so another type was introduced, called
double (short for “double precision,” meaning that it had double the precision of a
simple float). As memory became cheaper, people began using double as the default
for floating-point values. In hindsight, it might have been better to use the word
float for what is now called double and a word like “half” for the values with less
accuracy, but it’s tough to change habits that are so ingrained. So, programming lan-
guages will continue to use the word double for floating-point numbers, and people
will still talk about “dialing” people on the phone even if they’ve never touched a
telephone dial.

Expressions

When you write programs, you will often need to include values and calculations.
The technical term for these elements is expressions.

Expression

A simple value or a set of operations that produces a value.

The simplest expression is a specific value, like 42 or 28.9. We call these “lit-
eral values,” or literals. More complex expressions involve combining simple values.
Suppose, for example, that you want to know how many bottles of water you have. If
you have two 6-packs, four 4-packs, and two individual bottles, you can compute the
total number of bottles with the following expression:

(2 * 6) + (4 * 4) + 2

Notice that we use an asterisk to represent multiplication and that we use paren-
theses to group parts of the expression. The computer determines the value of an
expression by evaluating it.

Evaluation

The process of obtaining the value of an expression.

VideoNote

M02_REGE1686_04_GE_C02.indd 91 04/11/16 5:21 PM

92 Chapter 2 Primitive Data and Definite Loops

The value obtained when an expression is evaluated is called the result.
Complex expressions are formed using operators.

Operator

A special symbol (like + or *) that is used to indicate an operation to be
performed on one or more values.

The values used in the expression are called operands. For example, consider the
following simple expressions:

3 + 29

4 * 5

The operators here are the + and *, and the operands are simple numbers.

operand

29

operator

+

operand

3

operand

5

operator

*

operand

4

When you form complex expressions, these simpler expressions can in turn
become operands for other operators. For example, the expression

(3 + 29) – (4 * 5)

has two levels of operators.

operand

operand
operator

operand

29)

operator

+ –

operand

(3

operand

5)

operator

*

operand

(4

The addition operator has simple operands of 3 and 29 and the multiplication
operator has simple operands of 4 and 5, but the subtraction operator has operands
that are each parenthesized expressions with operators of their own. Thus, complex
expressions can be built from smaller expressions. At the lowest level, you have
simple numbers. These are used as operands to make more complex expressions,
which in turn can be used as operands in even more complex expressions.

M02_REGE1686_04_GE_C02.indd 92 04/11/16 5:21 PM

There are many things you can do with expressions. One of the simplest things
you can do is to print the value of an expression using a println statement. For
example, if you say:

System.out.println(42);

System.out.println(2 + 2);

you will get the following two lines of output:

42

4

Notice that for the second println, the computer evaluates the expression
 (adding 2 and 2) and prints the result (in this case, 4).

You will see many different operators as you progress through this book, all of
which can be used to form expressions. Expressions can be arbitrarily complex, with
as many operators as you like. For that reason, when we tell you, “An expression can
be used here,” we mean that you can use arbitrary expressions that include complex
expressions as well as simple values.

Literals

The simplest expressions refer to values directly using what are known as literals. An
integer literal (considered to be of type int) is a sequence of digits with or without a
leading sign:

3 482 229434 0 92348 +9812

A floating-point literal (considered to be of type double) includes a decimal point:

298.4 0.284 207. .2843 –17.452 –.98

Notice that 207. is considered a double even though it coincides with an integer,
because of the decimal point. Literals of type double can also be expressed in scien-
tific notation (a number followed by e followed by an integer):

2.3e4 1e-5 3.84e92 2.458e12

The first of these numbers represents 2.3 times 10 to the 4th power, which equals
23,000. Even though this value happens to coincide with an integer, it is considered
to be of type double because it is expressed in scientific notation. The second num-
ber represents 1 times 10 to the –5th power, which is equal to 0.00001. The third
number represents 3.84 times 10 to the 92nd power. The fourth number represents
2.458 times 10 to the 12th power.

We have seen that textual information can be stored in literal strings that store
a sequence of characters. In later chapters we will explore how to process a string

2.1 Basic Data Concepts 93

M02_REGE1686_04_GE_C02.indd 93 04/11/16 5:21 PM

94 Chapter 2 Primitive Data and Definite Loops

character by character. Each such character is of type char. A character literal is
enclosed in single quotation marks and includes just one character:

'a' 'm' 'X' '!' '3' '\\'

All of these examples are of type char. Notice that the last example uses an
escape sequence to represent the backslash character. You can even refer to the sin-
gle quotation character using an escape sequence:

'\''

Finally, the primitive type boolean stores logical information. We won’t be
exploring the use of type boolean until we reach Chapter 4 and see how to introduce
logical tests into our programs, but for completeness, we include the boolean literal
values here. Logic deals with just two possibilities: true and false. These two Java
keywords are the two literal values of type boolean:

true false

Arithmetic Operators

The basic arithmetic operators are shown in Table 2.2. The addition and subtraction
operators will, of course, look familiar to you, as should the asterisk as a multiplication
operator and the forward slash as a division operator. However, as you’ll see, Java has
two different division operations. The remainder or mod operation may be unfamiliar.

Division presents a problem when the operands are integers. When you divide 119
by 5, for example, you do not get an integer result. Therefore, the results of integer
division are expressed as two different integers, a quotient and a remainder:

119
5

 5 23 (quotient) with 4 (remainder)

In terms of the arithmetic operators:

119 / 5 evaluates to 23
119 % 5 evaluates to 4

Table 2.2 Arithmetic Operators in Java

Operator Meaning Example Result

+ addition 2 + 2 4

– subtraction 53 – 18 35

* multiplication 3 * 8 24

/ division 4.8 / 2.0 2.4

% remainder or mod 19 % 5 4

M02_REGE1686_04_GE_C02.indd 94 04/11/16 5:21 PM

These two division operators should be familiar if you recall how long-division
calculations are performed:

 31
34)1079

102
59
34
25

Here, dividing 1079 by 34 yields 31 with a remainder of 25. Using arithmetic
operators, the problem would be described like this:

1079 / 34 evaluates to 31
1079 % 34 evaluates to 25

It takes a while to get used to integer division in Java. When you are using the
division operator (/), the key thing to keep in mind is that it truncates anything after
the decimal point. So, if you imagine computing an answer on a calculator, just think
of ignoring anything after the decimal point:

 • 19/5 is 3.8 on a calculator, so 19/5 evaluates to 3

 • 207/10 is 20.7 on a calculator, so 207/10 evaluates to 20
 • 3/8 is 0.375 on a calculator, so 3/8 evaluates to 0

The remainder operator (%) is usually referred to as the “mod operator,” or simply
“mod.” The mod operator lets you know how much was left unaccounted for by the
truncating division operator. For example, given the previous examples, you’d com-
pute the mod results as shown in Table 2.3.

In each case, you figure out how much of the number is accounted for by the trun-
cating division operator. The mod operator gives you any excess (the remainder).
When you put this into a formula, you can think of the mod operator as behaving as
follows:

x % y = x (x / y) * y

2.1 Basic Data Concepts 95

Table 2.3 Examples of Mod Operator

 What does division How much
Mod problem First divide account for? is left over? Answer

19 % 5 19/5 is 3 3 * 5 is 15 19 2 15 is 4 4

207 % 10 207/10 is 20 20 * 10 is 200 207 2 200 is 7 7

3 % 8 3/8 is 0 0 * 8 is 0 3 2 0 is 3 3

M02_REGE1686_04_GE_C02.indd 95 04/11/16 5:21 PM

96 Chapter 2 Primitive Data and Definite Loops

It is possible to get a result of 0 for the mod operator. This happens when one
number divides evenly into another. For example, each of the following expressions
evaluates to 0 because the second number goes evenly into the first number:

28 % 7

95 % 5

44 % 2

A few special cases are worth noting because they are not always immediately
obvious to novice programmers:

 • Numerator smaller than denominator: In this case division produces 0 and
mod produces the original number. For example, 7 / 10 is 0 and 7 % 10 is 7.

 • Numerator of 0: In this case both division and mod return 0. For example, both
 0 / 10 and 0 % 10 evaluate to 0.

 • Denominator of 0: In this case, both division and mod are undefined and pro-
duce a runtime error. For example, a program that attempts to evaluate either 7 /
0 or 7 % 0 will throw an ArithmeticException error.

The mod operator has many useful applications in computer programs. Here are
just a few ideas:

 • Testing whether a number is even or odd (number % 2 is 0 for evens, number %
2 is 1 for odds).

 • Finding individual digits of a number (e.g., number % 10 is the final digit).

 • Finding the last four digits of a social security number (number % 10000).

The remainder operator can be used with doubles as well as with integers, and it
works similarly: You consider how much is left over when you take away as many
“whole” values as you can. For example, the expression 10.2 % 2.4 evaluates to
0.6 because you can take away four 2.4s from 10.2, leaving you with 0.6 left over.

For floating-point values (values of type double), the division operator does what
we consider “normal” division. So, even though the expression 119 / 5 evaluates to
23, the expression 119.0 / 5.0 evaluates to 23.8.

Precedence

Java expressions are like complex noun phrases in English. Such phrases are sub-
ject to ambiguity. For example, consider the phrase “the man on the hill by the river
with the telescope.” Is the river by the hill or by the man? Is the man holding the tel-
escope, or is the telescope on the hill, or is the telescope in the river? We don’t know
how to group the various parts together.

You can get the same kind of ambiguity if parentheses aren’t used to group the
parts of a Java expression. For example, the expression 2 + 3 * 4 has two opera-
tors. Which operation is performed first? You could interpret this two ways:

M02_REGE1686_04_GE_C02.indd 96 04/11/16 5:21 PM

2.1 Basic Data Concepts 97

The first of these evaluates to 20 while the second evaluates to 14. To deal with
the ambiguity, Java has rules of precedence that determine how to group together the
various parts.

Precedence

The binding power of an operator, which determines how to group parts of
an expression.

The computer applies rules of precedence when the grouping of operators in
an expression is ambiguous. An operator with high precedence is evaluated first,
followed by operators of lower precedence. Within a given level of precedence the
operators are evaluated in one direction, usually left to right.

For arithmetic expressions, there are two levels of precedence. The multiplica-
tive operators (*, /, %) have a higher level of precedence than the additive operators
(+, –). Thus, the expression 2 + 3 * 4 is interpreted as

You would get a different result if the second subtraction were evaluated first.
You can always override precedence with parentheses. For example, if you really

want the second subtraction to be evaluated first, you can force that to happen by
introducing parentheses:

40 – (25 – 9)

+2 3 * 4

2 + 12

14

+2 3 * 4

5 * 4

20

+2 3 * 4

2 + 12

14

–40 25 – 9

– 915

6

Within the same level of precedence, arithmetic operators are evaluated from left
to right. This often doesn’t make a difference in the final result, but occasionally it
does. Consider, for example, the expression

40 – 25 – 9

which evaluates as follows:

M02_REGE1686_04_GE_C02.indd 97 04/11/16 5:21 PM

98 Chapter 2 Primitive Data and Definite Loops

The expression now evaluates as follows:

Table 2.4 Java Operator Precedence

Description Operators

unary operators +, –

multiplicative operators *, /, %

additive operators +, –

40 – (25 – 9)

40 – 16

24

Another concept in arithmetic is unary plus and minus, which take a single operand,
as opposed to the binary operators we have seen thus far (e.g., *, /, and even binary +
and –), all of which take two operands. For example, we can find the negation of 8 by
asking for –8. These unary operators have a higher level of precedence than the multi-
plicative operators. Consequently, we can form expressions like the following:

12 * –8

which evaluates to –96.
We will see many types of operators in the next few chapters. Table 2.4 is a prec-

edence table that includes the arithmetic operators. As we introduce more operators,
we’ll update this table to include them as well. The table is ordered from highest
precedence to lowest precedence and indicates that Java will first group parts of an
expression using the unary operators, then using the multiplicative operators, and
finally using the additive operators.

Before we leave this topic, let’s look at a complex expression and see how it is
evaluated step by step. Consider the following expression:

13 * 2 + 239 / 10 % 5 – 2 * 2

It has a total of six operators: two multiplications, one division, one mod, one sub-
traction, and one addition. The multiplication, division, and mod operations will be
performed first, because they have higher precedence, and they will be performed
from left to right because they are all at the same level of precedence:

13 * 2 + 239 / 10 % 5 – 2 * 2

+ 23 % 5 – 2 * 226

 – 2 * 226 + 3

+ – 426 3

+ 239 / 10 % 5 – 2 * 226

M02_REGE1686_04_GE_C02.indd 98 04/11/16 5:21 PM

Now we evaluate the additive operators from left to right:

2.1 Basic Data Concepts 99

26 + 3 – 4

– 429

25

Mixing Types and Casting

You’ll often find yourself mixing values of different types and wanting to convert
from one type to another. Java has simple rules to avoid confusion and provides a
mechanism for requesting that a value be converted from one type to another.

Two types that are frequently mixed are ints and doubles. You might, for exam-
ple, ask Java to compute 2 * 3.6. This expression includes the int literal 2 and
the double literal 3.6. In this case, Java converts the int into a double and per-
forms the computation entirely with double values; this is always the rule when Java
encounters an int where it was expecting a double.

This becomes particularly important when you form expressions that involve
division. If the two operands are both of type int, Java will use integer (truncating)
division. If either of the two operands is of type double, however, it will do real-
valued (normal) division. For example, 23 / 4 evaluates to 5, but all of the follow-
ing evaluate to 5.75:

23.0 / 4

23. / 4

23 / 4.0

23 / 4.

23. / 4.

23.0 / 4.0

Sometimes you want Java to go the other way, converting a double into an int.
You can ask Java for this conversion with a cast. Think of it as “casting a value in a
different light.” You request a cast by putting the name of the type you want to cast
to in parentheses in front of the value you want to cast. For example,

(int) 4.75

will produce the int value 4. When you cast a double value to an int, it simply
truncates anything after the decimal point.

If you want to cast the result of an expression, you have to be careful to use paren-
theses. For example, suppose that you have some books that are each 0.15 feet wide
and you want to know how many of them will fit in a bookshelf that is 2.5 feet wide.
You could do a straight division of 2.5 / 0.15, but that evaluates to a double
result that is between 16 and 17. Americans use the phrase “16 and change” as a way
to express the idea that a value is larger than 16 but not as big as 17. In this case, we

M02_REGE1686_04_GE_C02.indd 99 04/11/16 5:21 PM

100 Chapter 2 Primitive Data and Definite Loops

don’t care about the “change”; we only want to compute the 16 part. You might form
the following expression:

(int) 2.5 / 0.15

Unfortunately, this expression evaluates to the wrong answer because the cast is
applied to whatever comes right after it (here, the value 2.5). This casts 2.5 into the
integer 2, divides by 0.15, and evaluates to 13 and change, which isn’t an integer
and isn’t the right answer. Instead, you want to form this expression:

(int) (2.5 / 0.15)

This expression first performs the division to get 16 and change, and then casts
that value to an int by truncating it. It thus evaluates to the int value 16, which is
the answer you’re looking for.

2.2 Variables

Primitive data can be stored in the computer’s memory in a variable.

Variable

A memory location with a name and a type that stores a value.

Think of the computer’s memory as being like a giant spreadsheet that has many
cells where data can be stored. When you create a variable in Java, you are asking it
to set aside one of those cells for this new variable. Initially the cell will be empty,
but you will have the option to store a value in the cell. And as with a spreadsheet,
you will have the option to change the value in that cell later.

Java is a little more picky than a spreadsheet, though, in that it requires you to
tell it exactly what kind of data you are going to store in the cell. For example, if
you want to store an integer, you need to tell Java that you intend to use type int. If
you want to store a real value, you need to tell Java that you intend to use a double.
You also have to decide on a name to use when you want to refer to this memory
location. The normal rules of Java identifiers apply (the name must start with a let-
ter, which can be followed by any combination of letters and digits). The standard
convention in Java is to start variable names with a lowercase letter, as in number or
digits, and to capitalize any subsequent words, as in numberOfDigits.

To explore the basic use of variables, let’s examine a program that computes an
individual’s body mass index (BMI). Health professionals use this number to advise
people about whether or not they are overweight. Given an individual’s height and
weight, we can compute that person’s BMI. A simple BMI program, then, would
naturally have three variables for these three pieces of information. There are several
details that we need to discuss about variables, but it can be helpful to look at a complete

VideoNote

M02_REGE1686_04_GE_C02.indd 100 04/11/16 5:21 PM

program first to see the overall picture. The following program computes and prints
the BMI for an individual who is 5 feet 10 inches tall and weighs 195 pounds:

 1 public class BMICalculator {

 2 public static void main(String[] args) {

 3 // declare variables

 4 double height;

 5 double weight;

 6 double bmi;

 7

 8 // compute BMI

 9 height = 70;

10 weight = 195;

11 bmi = weight / (height * height) * 703;

12

13 // print results

14 System.out.println("Current BMI:");

15 System.out.println(bmi);

16 }

17 }

Notice that the program includes blank lines to separate the sections and comments
to indicate what the different parts of the program do. It produces the following output:

Current BMI:

27.976530612244897

Let’s now examine the details of this program to understand how variables work.
Before variables can be used in a Java program, they must be declared. The line of
code that declares the variable is known as a variable declaration.

Declaration

A request to set aside a new variable with a given name and type.

Each variable is declared just once. If you declare a variable more than once, you will
get an error message from the Java compiler. Simple variable declarations are of the form

<type> <name>;

as in the three declarations at the beginning of our sample program:

double height;

double weight;

double bmi;

2.2 Variables 101

M02_REGE1686_04_GE_C02.indd 101 04/11/16 5:21 PM

102 Chapter 2 Primitive Data and Definite Loops

Notice that a variable declaration, like a statement, ends with a semicolon. These
declarations can appear anywhere a statement can occur. The declaration indicates
the type and the name of the variable. Remember that the name of each primitive
type is a keyword in Java (int, double, char, boolean). We’ve used the keyword
double to define the type of these three variables.

Once a variable is declared, Java sets aside a memory location to store its value.
However, with the simple form of variable declaration used in our program, Java
does not store initial values in these memory locations. We refer to these as uninitial-
ized variables, and they are similar to blank cells in a spreadsheet:

height ? weight ? bmi ?

So how do we get values into those cells? The easiest way to do so is using an
assignment statement. The general syntax of the assignment statement is

<variable> = <expression>;

as in

height = 70;

This statement stores the value 70 in the memory location for the variable height,
indicating that this person is 70 inches tall (5 feet 10 inches). We often use the phrase
“gets” or “is assigned” when reading a statement like this, as in “height gets 70” or
“height is assigned 70.”

When the statement executes, the computer first evaluates the expression on the
right side; then, it stores the result in the memory location for the given variable. In
this case the expression is just a simple literal value, so after the computer executes
this statement, the memory looks like this:

height 70.0 weight ? bmi ?

Notice that the value is stored as 70.0 because the variable is of type double. The
variable height has now been initialized, but the variables weight and bmi are still
uninitialized. The second assignment statement gives a value to weight:

weight = 195;

After executing this statement, the memory looks like this:

height 70.0 weight 195.0 bmi ?

The third assignment statement includes a formula (an expression to be evaluated):

bmi = weight / (height * height) * 703;

M02_REGE1686_04_GE_C02.indd 102 04/11/16 5:21 PM

To calculate the value of this expression, the computer divides the weight by the
square of the height and then multiplies the result of that operation by the literal
value 703. The result is stored in the variable bmi. So, after the computer has exe-
cuted the third assignment statement, the memory looks like this:

height 70.0 weight 195.0 bmi 27.976530612244897

The last two lines of the program report the BMI result using println statements:

System.out.println("Current BMI:");

System.out.println(bmi);

Notice that we can include a variable in a println statement the same way that
we include literal values and other expressions to be printed.

As its name implies, a variable can take on different values at different times. For
example, consider the following variation of the BMI program, which computes a new
BMI assuming the person lost 15 pounds (going from 195 pounds to 180 pounds).

 1 public class BMICalculator2 {

 2 public static void main(String[] args) {

 3 // declare variables

 4 double height;

 5 double weight;

 6 double bmi;

 7

 8 // compute BMI

 9 height = 70;

10 weight = 195;

11 bmi = weight / (height * height) * 703;

12

13 // print results

14 System.out.println("Previous BMI:");

15 System.out.println(bmi);

16

17 // recompute BMI

18 weight = 180;

19 bmi = weight / (height * height) * 703;

20

21 // report new results

22 System.out.println("Current BMI:");

23 System.out.println(bmi);

24 }

25 }

2.2 Variables 103

M02_REGE1686_04_GE_C02.indd 103 04/11/16 5:21 PM

104 Chapter 2 Primitive Data and Definite Loops

The program begins the same way, setting the three variables to the following
values and reporting this initial value for BMI:

height 70.0 weight 195.0 bmi 27.976530612244897

But the new program then includes the following assignment statement:

weight = 180;

This changes the value of the weight variable:

height 70.0 weight 180.0 bmi 27.976530612244897

You might think that this would also change the value of the bmi variable. After
all, earlier in the program we said that the following should be true:

bmi = weight / (height * height) * 703;

This is a place where the spreadsheet analogy is not as accurate. A spreadsheet
can store formulas in its cells and when you update one cell it can cause the values in
other cells to be updated. The same is not true in Java.

You might also be misled by the use of an equals sign for assignment. Don’t con-
fuse this statement with a statement of equality. The assignment statement does not
represent an algebraic relationship. In algebra, you might say

x 5 y 1 2

In mathematics you state definitively that x is equal to y plus two, a fact that is
true now and forever. If x changes, y will change accordingly, and vice versa. Java’s
assignment statement is very different.

The assignment statement is a command to perform an action at a particular point
in time. It does not represent a lasting relationship between variables. That’s why we
usually say “gets” or “is assigned” rather than saying “equals” when we read assign-
ment statements.

Getting back to the program, resetting the variable called weight does not reset
the variable called bmi. To recompute bmi based on the new value for weight, we
must include the second assignment statement:

weight = 180;

bmi = weight / (height * height) * 703;

Otherwise, the variable bmi would store the same value as before. That would
be a rather depressing outcome to report to someone who’s just lost 15 pounds. By
including both of these statements, we reset both the weight and bmi variables so
that memory looks like this:

height 70.0 weight 180.0 bmi 25.82448979591837

M02_REGE1686_04_GE_C02.indd 104 04/11/16 5:21 PM

2.2 Variables 105

The output of the new version of the program is

Previous BMI:

27.976530612244897

Current BMI:

25.82448979591837

One very common assignment statement that points out the difference between
algebraic relationships and program statements is:

x = x + 1;

Remember not to think of this as “x equals x + 1.” There are no numbers that
satisfy that equation. We use a word like “gets” to read this as “x gets the value of
x plus one.” This may seem a rather odd statement, but you should be able to deci-
pher it given the rules outlined earlier. Suppose that the current value of x is 19. To
execute the statement, you first evaluate the expression to obtain the result 20. The
computer stores this value in the variable named on the left, x. Thus, this statement
adds one to the value of the variable. We refer to this as incrementing the value of x.
It is a fundamental programming operation because it is the programming equivalent
of counting (1, 2, 3, 4, and so on). The following statement is a variation that counts
down, which we call decrementing a variable:

x = x – 1;

We will discuss incrementing and decrementing in more detail later in this chapter.

Assignment/Declaration Variations

Java is a complex language that provides a lot of flexibility to programmers. In the
last section we saw the simplest form of variable declaration and assignment, but
there are many variations on this theme. It wouldn’t be a bad idea to stick with the
simplest form while you are learning, but you’ll come across other forms as you read
other people’s programs, so you’ll want to understand what they mean.

The first variation is that Java allows you to provide an initial value for a variable
at the time that you declare it. The syntax is as follows:

<type> <name> = <expression>;

as in

double height = 70;

double weight = 195;

double bmi = weight / (height * height) * 703;

This variation combines declaration and assignment in one line of code. The first
two assignments have simple numbers after the equals sign, but the third has a complex

M02_REGE1686_04_GE_C02.indd 105 04/11/16 5:21 PM

106 Chapter 2 Primitive Data and Definite Loops

Common Programming Error

Declaring the Same Variable Twice

One of the things to keep in mind as you learn is that you can declare any given
variable just once. You can assign it as many times as you like once you’ve
declared it, but the declaration should appear just once. Think of variable decla-
ration as being like checking into a hotel and assignment as being like going in

expression after the equals sign. These three assignments have the same effect as pro-
viding three declarations followed by three assignment statements:

double height;

double weight;

double bmi;

height = 70;

weight = 195;

bmi = weight / (height * height) * 703;

Another variation is to declare several variables that are all of the same type in a
single statement. The syntax is

<type> <name>, <name>, <name>, ..., <name>;

as in

double height, weight;

This example declares two different variables, both of type double. Notice that
the type appears just once, at the beginning of the declaration.

The final variation is a mixture of the previous two forms. You can declare mul-
tiple variables all of the same type, and you can initialize them at the same time. For
example, you could say

double height = 70, weight = 195;

This statement declares the two double variables height and weight and gives
them initial values (70 and 195, respectively). Java even allows you to mix initializ-
ing and not initializing, as in

double height = 70, weight = 195, bmi;

This statement declares three double variables called height, weight, and bmi
and provides initial values to two of them (height and weight). The variable bmi is
uninitialized.

Continued on next page

M02_REGE1686_04_GE_C02.indd 106 04/11/16 5:21 PM

We have been referring to the “assignment statement,” but in fact assignment is an
operator, not a statement. When you assign a value to a variable, the overall expres-
sion evaluates to the value just assigned. That means that you can form expressions
that have assignment operators embedded within them. Unlike most other operators,
the assignment operator evaluates from right to left, which allows programmers to
write statements like the following:

int x, y, z;

x = y = z = 2 * 5 + 4;

Because the assignment operator evaluates from right to left, this statement is
equivalent to:

x = (y = (z = 2 * 5 + 4));

The expression 2 * 5 + 4 evaluates to 14. This value is assigned to z. The
assignment is itself an expression that evaluates to 14, which is then assigned to y.
The assignment to y evaluates to 14 as well, which is then assigned to x. The result is
that all three variables are assigned the value 14.

2.2 Variables 107

Continued from previous page

and out of your room. You have to check in first to get your room key, but then
you can come and go as often as you like. If you tried to check in a second time,
the hotel would be likely to ask you if you really want to pay for a second room.

If you declare a variable more than once, Java generates a compiler error. For
example, say your program contains the following lines:

int x = 13;

System.out.println(x);

int x = 2; // this line does not compile

System.out.println(x);

The first line is okay. It declares an integer variable called x and initializes
it to 13. The second line is also okay, because it simply prints the value of x.
But the third line will generate an error message indicating that “x is already
defined.” If you want to change the value of x you need to use a simple assign-
ment statement instead of a variable declaration:

int x = 13;

System.out.println(x);

x = 2;

System.out.println(x);

M02_REGE1686_04_GE_C02.indd 107 04/11/16 5:21 PM

108 Chapter 2 Primitive Data and Definite Loops

String Concatenation

You saw in Chapter 1 that you can output string literals using System.out.println.
You can also output numeric expressions using System.out.println:

System.out.println(12 + 3 – 1);

This statement causes the computer first to evaluate the expression, which yields
the value 14, and then to write that value to the console window. You’ll often want to
output more than one value on a line, but unfortunately, you can pass only one value
to println. To get around this limitation, Java provides a simple mechanism called
concatenation for putting together several pieces into one long string literal.

String Concatenation

Combining several strings into a single string, or combining a string with
other data into a new, longer string.

The addition (+) operator concatenates the pieces together. Doing so forms an
expression that can be evaluated. Even if the expression includes both numbers and
text, it can be evaluated just like the numeric expressions we have been exploring.
Consider, for example, the following:

"I have " + 3 + " things to concatenate"

You have to pay close attention to the quotation marks in an expression like this
to keep track of which parts are “inside” a string literal and which are outside. This
expression begins with the text "I have " (including a space at the end), followed
by a plus sign and the integer literal 3. Java converts the integer into a textual form
("3") and concatenates the two pieces together to form "I have 3". Following
the 3 is another plus and another string literal, "things to concatenate" (which
starts with a space). This piece is glued onto the end of the previous string to form
the string "I have 3 things to concatenate".

Because this expression produces a single concatenated string, we can include it in
a println statement:

System.out.println("I have " + 3 + " things to concatenate");

This statement produces a single line of output:

I have 3 things to concatenate

String concatenation is often used to report the value of a variable. Consider, for
example, the following program that computes the number of hours, minutes, and
seconds in a standard year:

 1 public class Time {

 2 public static void main(String[] args) {

 3 int hours = 365 * 24;

M02_REGE1686_04_GE_C02.indd 108 04/11/16 5:21 PM

 4 int minutes = hours * 60;

 5 int seconds = minutes * 60;

 6 System.out.println("Hours in a year = " + hours);

 7 System.out.println("Minutes in a year = " + minutes);

 8 System.out.println("Seconds in a year = " + seconds);

 9 }

10 }

Notice that the three println commands at the end each have a string literal
concatenated with a variable. The program produces the following output:

Hours in a year = 8760

Minutes in a year = 525600

Seconds in a year = 31536000

You can use concatenation to form arbitrarily complex expressions. For example,
if you had variables x, y, and z and you wanted to write out their values in coordinate
format with parentheses and commas, you could say:

System.out.println("(" + x + ", " + y + ", " + z + ")");

If x, y, and z had the values 8, 19, and 23, respectively, this statement would
output the string "(8, 19, 23)".

The + used for concatenation has the same level of precedence as the normal
arithmetic + operator, which can lead to some confusion. Consider, for example, the
following expression:

2 + 3 + " hello " + 7 + 2 * 3

This expression has four addition operators and one multiplication operator.
Because of precedence, we evaluate the multiplication first:

2 + 3 + " hello " + 7 + 2 * 3

2 + 3 + " hello " + 7 + 6

This grouping might seem odd, but that’s what the precedence rule says to do: We
don’t evaluate any additive operators until we’ve first evaluated all of the multiplica-
tive operators. Once we’ve taken care of the multiplication, we’re left with the four
addition operators. These will be evaluated from left to right.

The first addition involves two integer values. Even though the overall expression
involves a string, because this little subexpression has just two integers we perform
integer addition:

2.2 Variables 109

2 + 3 + " hello " + 7 + 6

5 + " hello " + 7 + 6

M02_REGE1686_04_GE_C02.indd 109 04/11/16 5:21 PM

110 Chapter 2 Primitive Data and Definite Loops

You might think that Java would add together the 7 and 6 the same way it added the
2 and 3 to make 5. But it doesn’t work that way. The rules of precedence are simple,
and Java follows them with simple-minded consistency. Precedence tells us that addition
operators are evaluated from left to right, so first we add the string "5 hello " to 7.
That is another combination of a string and an integer, so Java converts the integer to its
textual equivalent ("7") and concatenates the two parts together to form a new string:

"5 hello " + 7 + 6

+ 6"5 hello 7"

Now there is just a single remaining addition to perform, which again involves a
string/integer combination. We convert the integer to its textual equivalent ("6") and
concatenate the two parts together to form a new string:

"5 hello 7" + 6

"5 hello 76"

Clearly, such expressions can be confusing, but you wouldn’t want the Java compiler
to have to try to guess what you mean. Our job as programmers is easier if we know
that the compiler is going to follow simple rules consistently. You can make the expres-
sion clearer, and specify how it is evaluated, by adding parentheses. For example, if we
really did want Java to add together the 7 and 6 instead of concatenating them sepa-
rately, we could have written the original expression in the following much clearer way:

(2 + 3) + " hello " + (7 + 2 * 3)

Because of the parentheses, Java will evaluate the two numeric parts of this
expression first and then concatenate the results with the string in the middle. This
expression evaluates to "5 hello 13".

Increment/Decrement Operators

In addition to the standard assignment operator, Java has several special operators
that are useful for a particular family of operations that are common in programming.
As we mentioned earlier, you will often find yourself increasing the value of a vari-
able by a particular amount, an operation called incrementing. You will also often

5 + " hello " + 7 + 6

"5 hello " + 7 + 6

The next addition involves adding the integer 5 to the string literal " hello ". If
either of the two operands is a string, we perform concatenation. So, in this case, we
convert the integer into a text equivalent ("5") and glue the pieces together to form
a new string value:

M02_REGE1686_04_GE_C02.indd 110 04/11/16 5:21 PM

find yourself decreasing the value of a variable by a particular amount, an operation
called decrementing. To accomplish this, you write statements like the following:

x = x + 1;

y = y – 1;

z = z + 2;

Likewise, you’ll frequently find yourself wanting to double or triple the value of
a variable or to reduce its value by a factor of 2, in which case you might write code
like the following:

x = x * 2;

y = y * 3;

z = z / 2;

Java has a shorthand for these situations. You glue together the operator charac-
ter (+, –, *, etc.) with the equals sign to get a special assignment operator (+=, –=,
*=, etc.). This variation allows you to rewrite assignment statements like the previous
ones as follows:

x += 1;

y –= 1;

z += 2;

x *= 2;

y *= 3;

z /= 2;

This convention is yet another detail to learn about Java, but it can make the code
easier to read. Think of a statement like x += 2 as saying, “add 2 to x.” That’s more
concise than saying x = x + 2.

Java has an even more concise way of expressing the particular case in which you
want to increment by 1 or decrement by 1. In this case, you can use the increment
and decrement operators (++ and – –). For example, you can say

x++;

y– –;

There are actually two different forms of each of these operators, because you can
also put the operator in front of the variable:

++x;

– –y;

The two versions of ++ are known as the preincrement (++x) and postincrement
(x++) operators. The two versions of – – are similarly known as the predecrement

2.2 Variables 111

M02_REGE1686_04_GE_C02.indd 111 04/11/16 5:21 PM

112 Chapter 2 Primitive Data and Definite Loops

(– –x) and postdecrement (x– –) operators. The pre- versus post- distinction doesn’t
matter when you include them as statements by themselves, as in these two exam-
ples. The difference comes up only when you embed these statements inside more
complex expressions, which we don’t recommend.

Now that we’ve seen a number of new operators, it is worth revisiting the issue
of precedence. Table 2.5 shows an updated version of the Java operator precedence
table that includes the assignment operators and the increment and decrement opera-
tors. Notice that the increment and decrement operators are grouped with the unary
operators and have the highest precedence.

Table 2.5 Java Operator Precedence

Description Operators

unary operators ++, – –, +, –

multiplicative operators *, /, %

additive operators +, –

assignment operators =, +=, –=, *=, /=, %=

Did You Know?

 ++ and ––

The ++ and – – operators were first introduced in the C programming language.
Java has them because the designers of the language decided to use the syntax
of C as the basis for Java syntax. Many languages have made the same choice,
including C++ and C#. There is almost a sense of pride among C program-
mers that these operators allow you to write extremely concise code, but many
other people feel that they can make code unnecessarily complex. In this book
we always use these operators as separate statements so that it is obvious what is
going on, but in the interest of completeness we will look at the other option here.

The pre- and post- variations both have the same overall effect—the two incre-
ment operators increment a variable and the two decrement operators decrement a
variable—but they differ in terms of what they evaluate to. When you increment or
decrement, there are really two values involved: the original value that the variable
had before the increment or decrement operation, and the final value that the vari-
able has after the increment or decrement operation. The post- versions evaluate to
the original (older) value and the pre- versions evaluate to the final (later) value.

Consider, for example, the following code fragment:

int x = 10;

int y = 20;

int z = ++x * y– –;

Continued on next page

M02_REGE1686_04_GE_C02.indd 112 04/11/16 5:21 PM

Variables and Mixing Types

You already know that when you declare a variable, you must tell Java what type of
value it will be storing. For example, you might declare a variable of type int for
integer values or of type double for real values. The situation is fairly clear when
you have just integers or just reals, but what happens when you start mixing the
types? For example, the following code is clearly okay:

int x;

double y;

x = 2 + 3;

y = 3.4 * 2.9;

Here, we have an integer variable that we assign an integer value and a double vari-
able that we assign a double value. But what if we try to do it the other way around?

int x;

double y;

x = 3.4 * 2.9; // illegal

y = 2 + 3; // okay

As the comments indicate, you can’t assign an integer variable a double value,
but you can assign a double variable an integer value. Let’s consider the second case
first. The expression 2 + 3 evaluates to the integer 5. This value isn’t a double, but
every integer is a real value, so it is easy enough for Java to convert the integer into a
double. The technical term is that Java promotes the integer into a double.

The first case is more problematic. The expression 3.4 * 2.9 evaluates to the
double value 9.86. This value can’t be stored in an integer because it isn’t an integer.
If you want to perform this kind of operation, you’ll have to tell Java to convert this

Continued from previous page

What value is z assigned? The answer is 220. The third assignment increments
x to 11 and decrements y to 19, but in computing the value of z, it uses the new
value of x (++x) times the old value of y (y– –), which is 11 times 20, or 220.

There is a simple mnemonic to remember this: When you see x++, read it as
“give me x, then increment,” and when you see ++x, read it as “increment, then
give me x.” Another memory device that might help is to remember that C++ is
a bad name for a programming language. The expression “C++” would be inter-
preted as “evaluate to the old value of C and then increment C.” In other words,
even though you’re trying to come up with something new and different, you’re
really stuck with the old awful language. The language you want is ++C, which
would be a new and improved language rather than the old one. Some people
have suggested that perhaps Java is ++C.

2.2 Variables 113

M02_REGE1686_04_GE_C02.indd 113 04/11/16 5:21 PM

114 Chapter 2 Primitive Data and Definite Loops

value into an integer. As described earlier, you can cast a double to an int, which
will truncate anything after the decimal point:

x = (int) (3.4 * 2.9); // now legal

This statement first evaluates 3.4 * 2.9 to get 9.86 and then truncates that value
to get the integer 9.

Common Programming Error

Forgetting to Cast

We often write programs that involve a mixture of ints and doubles, so it is easy
to make mistakes when it comes to combinations of the two. For example, sup-
pose that you want to compute the percentage of correctly answered questions on
a student’s test, given the total number of questions on the test and the number of
questions the student got right. You might declare the following variables:

int totalQuestions;

int numRight;

double percent;

Suppose the first two are initialized as follows:

totalQuestions = 73;

numRight = 59;

How do you compute the percentage of questions that the student got right?
You divide the number right by the total number of questions and multiply by
100 to turn it into a percentage:

percent = numRight / totalQuestions * 100; // incorrect

Unfortunately, if you print out the value of the variable percent after execut-
ing this line of code, you will find that it has the value 0.0. But obviously the
student got more than 0% correct.

The problem comes from integer division. The expression you are using
begins with two int values:

numRight / totalQuestions

which means you are computing

59 / 73

Continued on next page

M02_REGE1686_04_GE_C02.indd 114 04/11/16 5:21 PM

2.3 The for Loop

Programming often involves specifying redundant tasks. The for loop helps to avoid
such redundancy by repeatedly executing a sequence of statements over a particular
range of values. Suppose you want to write out the squares of the first five integers.
You could write a program like this:

 1 public class WriteSquares {

 2 public static void main(String[] args) {

 3 System.out.println(1 + " squared = " + (1 * 1));

 4 System.out.println(2 + " squared = " + (2 * 2));

 5 System.out.println(3 + " squared = " + (3 * 3));

 6 System.out.println(4 + " squared = " + (4 * 4));

 7 System.out.println(5 + " squared = " + (5 * 5));

 8 }

 9 }

2.3 The for Loop 115

Continued from previous page

This evaluates to 0 with integer division. Some students fix this by changing the
types of all the variables to double. That will solve the immediate problem, but it’s
not a good choice from a stylistic point of view. It is best to use the most appropriate
type for data, and the number of questions on the test will definitely be an integer.
You could try to fix this by changing the value 100 to 100.0:

percent = numRight / totalQuestions * 100.0; // incorrect

but this doesn’t help because the division is done first. However, it does work if
you put the 100.0 first:

percent = 100.0 * numRight / totalQuestions;

Now the multiplication is computed before the division, which means that
everything is converted to double.

Sometimes you can fix a problem like this through a clever rearrangement of
the formula, but you don’t want to count on cleverness. This is a good place to
use a cast. For example, returning to the original formula, you can cast each of
the int variables to double:

percent = (double) numRight / (double) totalQuestions * 100.0;

You can also take advantage of the fact that once you have cast one of these
two variables to double, the division will be done with doubles. So you could,
for example, cast just the first value to double:

percent = (double) numRight / totalQuestions * 100.0;

VideoNote

M02_REGE1686_04_GE_C02.indd 115 04/11/16 5:21 PM

116 Chapter 2 Primitive Data and Definite Loops

which would produce the following output:

1 squared = 1

2 squared = 4

3 squared = 9

4 squared = 16

5 squared = 25

But this approach is tedious. The program has five statements that are very simi-
lar. They are all of the form:

System.out.println(number + " squared = " + (number * number));

where number is either 1, 2, 3, 4, or 5. The for loop avoids such redundancy. Here is
an equivalent program using a for loop:

 1 public class WriteSquares2 {

 2 public static void main(String[] args) {

 3 for (int i = 1; i <= 5; i++) {

 4 System.out.println(i + " squared = " + (i * i));

 5 }

 6 }

 7 }

This program initializes a variable called i to the value 1. Then it repeatedly
executes the println statement as long as the variable i is less than or equal to 5.
After each println, it evaluates the expression i++ to increment i.

The general syntax of the for loop is as follows:

for (<initialization>; <continuation test>; <update>) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

You always include the keyword for and the parentheses. Inside the parentheses
are three different parts, separated by semicolons: the initialization, the continuation
test, and the update. Then there is a set of curly braces that encloses a set of state-
ments. The for loop controls the statements inside the curly braces. We refer to the
controlled statements as the body of the loop. The idea is that we execute the body
multiple times, as determined by the combination of the other three parts.

The diagram in Figure 2.1 indicates the steps that Java follows to execute a for
loop. It performs whatever initialization you have requested once before the loop
begins executing. Then it repeatedly performs the continuation test you have provided.

M02_REGE1686_04_GE_C02.indd 116 04/11/16 5:21 PM

If the continuation test evaluates to true, it executes the controlled statements once
and executes the update part. Then it performs the test again. If it again evaluates to
true, it executes the statements again and executes the update again. Notice that the
update is performed after the controlled statements are executed. When the test eval-
uates to false, Java is done executing the loop and moves on to whatever statement
comes after the loop.

The for loop is the first example of a control structure that we will study.

Control Structure

A syntactic structure that controls other statements.

You should be careful to use indentation to indicate controlled statements. In the
case of the for loop, all of the statements in the body of the loop are indented as a
way to indicate that they are “inside” the loop.

Tracing for Loops

Let’s examine the for loop of the WriteSquares2 program in detail:

for (int i = 1; i <= 5; i++) {

 System.out.println(i + " squared = " + (i * i));

}

2.3 The for Loop 117

Figure 2.1 Flow of for loop

Perform initialization once

Is the test true?
No Yes

Execute statement
after for loop

Execute the
controlled statement(s)

Perform the update

M02_REGE1686_04_GE_C02.indd 117 04/11/16 5:21 PM

118 Chapter 2 Primitive Data and Definite Loops

In this loop, the initialization (int i = 1) declares an integer variable i that is
initialized to 1. The continuation test (i <= 5) indicates that we should keep execut-
ing as long as i is less than or equal to 5. That means that once i is greater than 5,
we will stop executing the body of the loop. The update (i++) will increment the
value of i by one each time, bringing i closer to being larger than 5. After five exe-
cutions of the body and the accompanying five updates, i will be larger than 5 and
the loop will finish executing. Table 2.6 traces this process in detail.

Java allows great flexibility in deciding what to include in the initialization part
and the update, so we can use the for loop to solve all sorts of programming tasks.
For now, though, we will restrict ourselves to a particular kind of loop that declares
and initializes a single variable that is used to control the loop. This variable is often
referred to as the control variable of the loop. In the test we compare the control vari-
able against some final desired value, and in the update we change the value of the
control variable, most often incrementing it by 1. Such loops are very common in pro-
gramming. By convention, we often use names like i, j, and k for the control variables.

Each execution of the controlled statement of a loop is called an iteration of the
loop (as in, “The loop finished executing after four iterations”). Iteration also refers
to looping in general (as in, “I solved the problem using iteration”).

Consider another for loop:

for (int i = 100; i <= 100; i++) {

 System.out.println(i + " squared = " + (i * i));

}

Table 2.6 Trace of for (int i = 1; i <= 5; i++)

Step Code Description

initialization int i = 1; variable i is created and initialized to 1

test i <= 5 true because 1 <= 5, so we enter the loop

body {. . . } execute the println with i equal to 1

update i++ increment i, which becomes 2

test i <= 5 true because 2 <= 5, so we enter the loop

body {. . . } execute the println with i equal to 2

update i++ increment i, which becomes 3

test i <= 5 true because 3 <= 5, so we enter the loop

body {. . . } execute the println with i equal to 3

update i++ increment i, which becomes 4

test i <= 5 true because 4 <= 5, so we enter the loop

body {. . . } execute the println with i equal to 4

update i++ increment i, which becomes 5

test i <= 5 true because 5 <= 5, so we enter the loop

body {. . . } execute the println with i equal to 5

update i++ increment i, which becomes 6

test i <= 5 false because 6 > 5, so we are finished

M02_REGE1686_04_GE_C02.indd 118 04/11/16 5:21 PM

This loop executes a total of 201 times, producing the squares of all the integers
between –100 and +100 inclusive. The values used in the initialization and the test,
then, can be any integers. They can, in fact, be arbitrary integer expressions:

for (int i = (2 + 2); i <= (17 * 3); i++) {

 System.out.println(i + " squared = " + (i * i));

}

This loop will generate the squares of all the integers between 4 and 51 inclusive.
The parentheses around the expressions are not necessary but improve readability.
Consider the following loop:

for (int i = 1; i <= 30; i++) {

 System.out.println("+--------+");

}

This loop generates 30 lines of output, all exactly the same. It is slightly different
from the previous one because the statement controlled by the for loop makes no
reference to the control variable. Thus,

for (int i = –30; i <= –1; i++) {

 System.out.println("+--------+");

}

generates exactly the same output. The behavior of such a loop is determined solely
by the number of iterations it performs. The number of iterations is given by

<ending value> – <starting value> + 1

It is much simpler to see that the first of these loops iterates 30 times, so it is better
to use that loop.

Now let’s look at some borderline cases. Consider this loop:

for (int i = 1; i <= 1; i++) {

 System.out.println("+--------+");

}

According to our rule it should iterate once, and it does. It initializes the variable
i to 1 and tests to see if this is less than or equal to 1, which it is. So it executes the
println, increments i, and tests again. The second time it tests, it finds that i is no
longer less than or equal to 1, so it stops executing. Now consider this loop:

for (int i = 1; i <= 0; i++) {

 System.out.println("+--------+"); // never executes

}

2.3 The for Loop 119

M02_REGE1686_04_GE_C02.indd 119 04/11/16 5:21 PM

120 Chapter 2 Primitive Data and Definite Loops

This loop performs no iterations at all. It will not cause an execution error; it just
won’t execute the body. It initializes the variable to 1 and tests to see if this is less than
or equal to 0. It isn’t, so rather than executing the statements in the body, it stops there.

When you construct a for loop, you can include more than one statement inside
the curly braces. Consider, for example, the following code:

for (int i = 1; i <= 20; i++) {

 System.out.println("Hi!");

 System.out.println("Ho!");

}

This will produce 20 pairs of lines, the first of which has the word “Hi!” on it and
the second of which has the word “Ho!”

When a for loop controls a single statement, you don’t have to include the curly
braces. The curly braces are required only for situations like the previous one, where
you have more than one statement that you want the loop to control. However, the
Java coding convention includes the curly braces even for a single statement, and we
follow this convention in this book. There are two advantages to this convention:

 • Including the curly braces prevents future errors. Even if you need only one state-
ment in the body of your loop now, your code is likely to change over time.
Having the curly braces there ensures that, if you add an extra statement to the
body later, you won’t accidentally forget to include them. In general, including
curly braces in advance is cheaper than locating obscure bugs later.

 • Always including the curly braces reduces the level of detail you have to consider
as you learn new control structures. It takes time to master the details of any new
control structure, and it will be easier to master those details if you don’t have to
also be thinking about when to include and when not to include the braces.

Common Programming Error

Forgetting Curly Braces

You should use indentation to indicate the body of a for loop, but indentation alone
is not enough. Java ignores indentation when it is deciding how different statements
are grouped. Suppose, for example, that you were to write the following code:

for (int i = 1; i <= 20; i++)

 System.out.println("Hi!");

 System.out.println("Ho!");

The indentation indicates to the reader that both of the println statements
are in the body of the for loop, but there aren’t any curly braces to indicate that
to Java. As a result, this code is interpreted as follows:

Continued on next page

M02_REGE1686_04_GE_C02.indd 120 04/11/16 5:21 PM

for Loop Patterns

In general, if you want a loop to iterate exactly n times, you will use one of two
standard loops. The first standard form looks like the ones you have already seen:

for (int <variable> = 1; <variable> <= n; i++) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

It’s pretty clear that this loop executes n times, because it starts at 1 and contin-
ues as long as it is less than or equal to n. For example, this loop prints the numbers
1 through 10:

for (int i = 1; i <= 10; i++) {

 System.out.print(i + " ");

}

Because it uses a print instead of a println statement, it produces a single line
of output:

1 2 3 4 5 6 7 8 9 10

Often, however, it is more convenient to start our counting at 0 instead of 1. That
requires a change in the loop test to allow you to stop when n is one less:

2.3 The for Loop 121

Continued from previous page

for (int i = 1; i <= 20; i++) {

 System.out.println("Hi!");

}

System.out.println("Ho!");

Only the first println is considered to be in the body of the for loop. The
second println is considered to be outside the loop. So, this code would produce
20 lines of output that all say “Hi!” followed by one line of output that says “Ho!”
To include both printlns in the body, you need curly braces around them:

for (int i = 1; i <= 20; i++) {

 System.out.println("Hi!");

 System.out.println("Ho!");

}

M02_REGE1686_04_GE_C02.indd 121 04/11/16 5:21 PM

122 Chapter 2 Primitive Data and Definite Loops

for (int <variable> = 0; <variable> < n; i++) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

Notice that in this form when you initialize the variable to 0, you test whether it is
strictly less than n. Either form will execute exactly n times, although there are some
situations where the zero-based loop works better. For example, this loop executes
10 times just like the previous loop:

for (int i = 0; i < 10; i++) {

 System.out.print(i + " ");

}

Because it starts at 0 instead of starting at 1, it produces a different sequence of 10
values:

0 1 2 3 4 5 6 7 8 9

Most often you will use the loop that starts at 0 or 1 to perform some operation a
fixed number of times. But there is a slight variation that is also sometimes useful.
Instead of running the loop in a forward direction, we can run it backward. Instead of
starting at 1 and executing until you reach n, you instead start at n and keep execut-
ing until you reach 1. You can accomplish this by using a decrement rather than an
increment, so we sometimes refer to this as a decrementing loop.

Here is the general form of a decrementing loop:

for (int <variable> = n; <variable> >= 1; <variable>––) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

For example, here is a decrementing loop that executes 10 times:

for (int i = 10; i >= 1; i––) {

 System.out.print(i + " ");

}

Because it runs backward, it prints the values in reverse order:

10 9 8 7 6 5 4 3 2 1

M02_REGE1686_04_GE_C02.indd 122 04/11/16 5:21 PM

