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Useful Data 
Me Mass of the earth 5.98 * 1024 kg 
Re Radius of the earth 6.37 * 106 m
g Free-fall acceleration on earth 9.80 m/s2 
G Gravitational constant 6.67 * 10-11 N m2/kg2 
kB Boltzmann’s constant 1.38 * 10-23 J/K 
R Gas constant 8.31 J/mol K 
NA Avogadro’s number 6.02 * 1023 particles/mol 
T0 Absolute zero -273°C 
s Stefan-Boltzmann constant 5.67 * 10-8 W/m2 K4 
patm Standard atmosphere 101,300 Pa
vsound Speed of sound in air at 20°C 343 m/s 
mp Mass of the proton (and the neutron) 1.67 * 10-27 kg 
me Mass of the electron 9.11 * 10-31 kg 
K Coulomb’s law constant (1/4pP0) 8.99 * 109 N m2/C2 
P0 Permittivity constant 8.85 * 10-12 C2/N m2 
m0 Permeability constant 1.26 * 10-6 T m/A 
e Fundamental unit of charge 1.60 * 10-19 C 
c Speed of light in vacuum 3.00 * 108 m/s 
h Planck’s constant 6.63 * 10-34 J s 4.14 * 10-15 e V s 
U Planck’s constant 1.05 * 10-34 J s 6.58 * 10-16 e V s 
aB Bohr radius 5.29 * 10-11 m 

Mathematical Approximations 
Binominal approximation:  (1 + x)n ≈ 1 + nx if x V 1 

Small-angle approximation:  sin u ≈ tan u ≈ u and cos u ≈ 1 if u V 1 radian 

Greek Letters Used in Physics 
Alpha a Mu m 
Beta b Pi p 
Gamma Γ g Rho r 
Delta ∆ d Sigma g  s 
Epsilon P Tau t 
Eta h Phi Φ f 
Theta ϴ u Psi c 
Lambda l Omega Ω v 

Common Prefixes 
Prefix Meaning

femto- 10-15 
pico- 10-12 
nano- 10-9 
micro- 10-6 
milli- 10-3 
centi- 10-2 
kilo- 103 
mega- 106 
giga- 109 
terra- 1012 

Conversion Factors 
Length
1 in = 2.54 cm
1 mi = 1.609 km
1 m = 39.37 in
1 km = 0.621 mi

Velocity
1 mph = 0.447 m/s 
1 m/s = 2.24 mph =  3.28 ft/s

Mass and energy
1 u = 1.661 * 10-27 kg 
1 cal = 4.19 J
1 eV = 1.60 * 10-19 J

Time
1 day = 86,400 s
1 year = 3.16 * 107 s 

Pressure
1 atm = 101.3 kPa = 760 mm of Hg
1 atm = 14.7 lb/in2 

Rotation
1 rad = 180°/p = 57.3° 
1 rev = 360° = 2p rad 
1 rev/s = 60 rpm 
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Problem-Solving Strategies and Model Boxes

MODEL PAGE

2.1 Uniform motion 57
2.2 Constant acceleration 68

4.1 Projectile motion 110

4.2 Uniform circular motion 119

4.3 Constant angular acceleration 121

5.1 Ball-and-spring model of solids 136
6.1 Mechanical equilibrium 154

6.2 Constant force 158

6.3 Friction 164

8.1 Central force with constant r 208

9.1 Basic energy model 231

11.1 Collisions 299

12.1 Rigid-body model 317

12.2 Constant torque 332

12.3 Static equilibrium 333

14.1 Molecular model of gases and liquids 380
14.2 Ideal fluid 395

15.1 Simple harmonic motion 428

16.1 The wave model 460

18.1 Solids, liquids, and gases 513

19.1 Thermodynamic energy model 546

22.1 Charge model 626, 628

22.2 Electric field 640

23.1 Four key electric fields 652

26.1 Charge escalator model of a battery 745
29.1 Three key magnetic fields 824

33.1 Wave model of light 971

34.1 Ray model of light 983

38.1 Photon model of light 1115

38.2 The Bohr model of the atom 1122

PROBLEM-SOLVING STRATEGY PAGE

1.1 Motion diagrams 35

1.2 General problem-solving strategy 43

2.1 Kinematics with constant  
acceleration 69

4.1 Projectile motion problems 110

6.1 Newtonian mechanics 156

7.1 Interacting-objects problems 189

8.1 Circular-motion problems 217

10.1 Energy-conservation problems 265

11.1 Conservation of momentum 292

12.1 Rotational dynamics problems 331

17.1 Interference of two waves 498

19.1 Work in ideal-gas processes 542

19.2 Calorimetry problems 552

21.1 Heat-engine problems 601

22.1 Electrostatic forces and  
Coulomb’s law 636

23.1 The electric field of multiple point  
charges 653

23.2 The electric field of a continuous  
distribution of charge 659

24.1 Gauss’s law 695

25.1 Conservation of energy in charge  
interactions 719

25.2 The electric potential of a  
continuous distribution of charge 727

28.1 Resistor circuits 802

29.1 The magnetic field of a current 825

30.1 Electromagnetic induction 871

36.1 Relativity 1066

40.1 Quantum-mechanics problems 1168
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Built from the ground up on physics education research and 
crafted using key ideas from learning theory, Knight has set the 
standard for eff ective and accessible pedagogical materials in 
physics. In this fourth edition, Knight continues to refi ne and 
expand the instructional techniques to take students further.

NEW AND UPDATED LEARNING TOOLS PROMOTE DEEPER AND 
BETTER-CONNECTED UNDERSTANDING

NEW! MODEL BOXES enhance the text’s 
emphasis on modeling—analyzing a complex, 
real-world situation in terms of simple but 
reasonable idealizations that can be applied 
over and over in solving problems. These fun-
damental simplifications are developed in the 
text and then deployed more explicitly in the 
worked examples, helping students to recog-
nize when and how to use recurring models, a 
key critical-thinking skill.

REVISED! ENHANCED 
CHAPTER PREVIEWS, 
based on the educational 
psychology concept of an 
“advance organizer,” have 
been reconceived to address 
the questions students are 
most likely to ask themselves 
while studying the material 
for the first time. Questions 
cover the important ideas, 
and provide a big-picture 
overview of the chapter’s key 
principles. Each chapter con-
cludes with the visual Chapter 
Summary, consolidating and 
structuring understanding.

46 CHAPTER 2 Kinematics in One Dimension

a
u

Mathematically:

Limitations: Model fails if the particle’s
acceleration changes.

Model the object as a particle moving
in a straight line with constant acceleration.

For motion with constant acceleration.

v
u

Parabola

s

si t

The slope is vs.

Horizontal lineas

0 t

The acceleration is constant.

Straight linevs

vis t

The slope is as.
vfs = vis + as ∆t

vfs
2 = vis

2 + 2as ∆s

sf = si + vis ∆t + as1∆t221
2

Constant acceleration

MODEL 2.2 

Exercise 16
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142 CHAPTER 6 Dynamics I: Motion Along a Line 

MODEL 6.3 

Friction
The friction force is parallel to the surface.

■    Static friction: Acts as needed to prevent motion. 
Can have any magnitude up to fs max = ms n.

■   Kinetic friction: Opposes motion with fk = mk n.

■   Rolling friction: Opposes motion with fr = mr n.

■   Graphically:

Push or
pull

Friction

Motion is relative
to the surface.

f

Push or pull force

Static friction
increases to match
the push or pull.

Kinetic friction is constant
as the object moves.

KineticStatic

The object slips when static
friction reaches fs max.

Rest Moving

fs max = msn

mkn

0
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152 CHAPTER 6 Dynamics I: Motion Along a Line 

SUMMARY 

The goal of Chapter 6 has been to learn to solve linear force-and-motion problems.

GENERAL PRINCIPLES

Two Explanatory Models
An object on which there is 
no net force is in mechanical 
equilibrium.
• Objects at rest.
• Objects moving with constant 

velocity.
• Newton’s second law applies 

with au = 0
u
.

An object on which the net force  
is constant undergoes dynamics  
with constant force.
• The object accelerates.
• The kinematic model is that of  

constant acceleration.
• Newton’s second law applies.

A Problem-Solving Strategy
A four-part strategy applies to both equilibrium and 
dynamics problems.

MODEL Make simplifying assumptions.

VISUALIZE

• Translate words into symbols.
• Draw a sketch to define the situation.
• Draw a motion diagram.
• Identify forces.
• Draw a free-body diagram.

SOLVE Use Newton’s second law:

F
u

net = a
i

 F
u

i = mau

“Read” the vectors from the free-body diagram. Use 
kinematics to find velocities and positions.

ASSESS Is the result reasonable? Does it have correct 
units and significant figures?

equilibrium model
constant-force model
flat-earth approximation

weight
coefficient of static friction, ms

coefficient of kinetic friction, mk

rolling friction
coefficient of rolling  
 friction, mr

drag coefficient, C
terminal speed, vterm

TERMS AND NOTATION 

A falling object reaches 
terminal speed

vterm = B
2mg

CrA

APPLICATIONS

Mass is an intrinsic property of an object that describes the object’s 
inertia and, loosely speaking, its quantity of matter.

The weight of an object is the reading of a spring scale when the 
object is at rest relative to the scale. Weight is the result of weigh-
ing. An object’s weight depends on its mass, its acceleration, and the 
strength of gravity. An object in free fall is weightless.

IMPORTANT CONCEPTS

Specific information about three important descriptive models:

Gravity F
u

G = 1mg, downward2
Friction f 

u

s = 10 to ms n, direction as necessary to prevent motion2
 f 

u

k = 1mk n, direction opposite the motion2
 f

u

r = 1mr n, direction opposite the motion2
Drag F

u

drag = 11
2 CrAv2, direction opposite the motion2

Newton’s laws are vector  
expressions. You must write 
them out by components:

 1Fnet2x = aFx = max 

 1Fnet2y = aFy = may 

The acceleration is zero in equi-
librium and also along an axis 
perpendicular to the motion.

Fnet = 0
u u

a
u

Go back and forth
between these
steps as needed.

d

y

x

Fnet

u

F1

u

F3

u

F2

u

FG

Terminal speed is reached 
when the drag force exactly 
balances the gravitational 
force:  a = 0.

u

u

u

Fdrag

u
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6 
The powerful thrust of the jet engines 
accelerates this enormous plane to a 
speed of over 150 mph in less than  
a mile.

Dynamics I: Motion  
Along a Line

IN THIS CHAPTER, you will learn to solve linear force-and-motion problems.

How are Newton’s laws used to solve problems?
Newton’s first and second laws are  
vector equations. To use them,

■ Draw a free-body diagram.
■  Read the x- and y-components of the 

forces directly off the free-body diagram.
■ Use aFx = max and aFy = may.

How are dynamics problems solved?
A net force on an object causes the 
object to accelerate.

■  Identify the forces and draw a  
free-body diagram.

■  Use Newton’s second law to find the 
object’s acceleration.

■ Use kinematics for velocity and position.

❮❮ LOOKING BACK Sections 2.4–2.6 Kinematics

How are equilibrium problems solved?
An object at rest or moving with constant 
velocity is in equilibrium with no net force.

■  Identify the forces and draw a free-body 
diagram.

■  Use Newton’s second law with a = 0  
to solve for unknown forces.

❮❮ LOOKING BACK Sections 5.1–5.2 Forces

What are mass and weight?
Mass and weight are not the same.

■  Mass describes an object’s inertia. Loosely 
speaking, it is the amount of matter in an 
object. It is the same everywhere.

■  Gravity is a force.
■  Weight is the result of weighing an object 

on a scale. It depends on mass, gravity, and 
acceleration.

How do we model friction and drag?
Friction and drag are complex forces, but 
we will develop simple models of each.

■  Static, kinetic, and rolling friction  
depend on the coefficients of friction 
but not on the object’s speed.

■  Drag depends on the square of an object’s 
speed and on its cross-section area.

■  Falling objects reach terminal speed 
when drag and gravity are balanced.

How do we solve problems?
We will develop and use a four-part problem-solving strategy:

■ Model the problem, using information about objects and forces.
■ Visualize the situation with a pictorial representation.
■ Set up and solve the problem with Newton’s laws.
■ Assess the result to see if it is reasonable.

Fnet

u

y

x

a
u

Friction fs

u
Normal n

u

Gravity FG

u

FG

u

Fsp

u

v
u

Kinetic friction
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A research-driven approach, 
fine-tuned for even greater 
ease-of-use and student success

REVISED COVERAGE AND ORGANIZATION GIVE INSTRUCTORS 
GREATER CHOICE AND FLEXIBILITY

NEW! CHAPTER ORGANIZATION allows instructors to 
more easily present material as needed to complement labs, course 
schedules, and different teaching styles. Work and energy are now 
covered before momentum, oscillations are grouped with mechan-
ical waves, and optics appears after electricity and magnetism. 
Unchanged is Knight’s unique approach of working from concrete 
to abstract, using multiple representations, balancing qualitative 
with quantitative, and addressing misconceptions.

NEW! MORE CALCULUS-BASED 
PROBLEMS have been added, along with an 
icon to make these easy to identify. The sig-
nificantly revised end-of-chapter problem sets, 
extensively class-tested and both calibrated 
and improved using MasteringPhysics® data, 
expand the range of physics and math skills 
students will use to solve problems.

Exercises and Problems 259

55. ||| Protons and neutrons (together called nucleons) are held 
together in the nucleus of an atom by a force called the strong 
force. At very small separations, the strong force between two 
nucleons is larger than the repulsive electrical force between two 
protons—hence its name. But the strong force quickly weakens 
as the distance between the protons increases. A well-established 
model for the potential energy of two nucleons interacting via the 
strong force is

U = U031 - e-x/x04
where x is the distance between the centers of the two nucle-
ons, x0  is a constant having the value x0 = 2.0 * 10-15 m, and 
U0 = 6.0 * 10-11 J.

Quantum effects are essential for a proper understand-
ing of nucleons, but let us innocently consider two neutrons as 
if they were small, hard, electrically neutral spheres of mass 
1.67 * 10-27 kg and diameter 1.0 * 10-15 m. Suppose you hold 
two neutrons 5.0 * 10-15 m apart, measured between their 
 centers, then release them. What is the speed of each neutron 
as they crash together? Keep in mind that both neutrons are 
moving.

56. || A 2.6 kg block is attached to a horizontal rope that exerts a 
variable force Fx = 120 - 5x2 N, where x is in m. The coefficient 
of kinetic friction between the block and the floor is 0.25. 
 Initially the block is at rest at x = 0 m. What is the block’s speed 
when it has been pulled to x = 4.0 m?

57. || A system has potential energy

U1x2 = x + sin112 rad/m2x2
as a particle moves over the range 0 m … x … p m.
a. Where are the equilibrium positions in this range?
b. For each, is it a point of stable or unstable equilibrium?

58. || A particle that can move along the x-axis is part of a system 
with potential energy

U1x2 =
A

x2 -
B
x

where A and B are positive constants.
a. Where are the particle’s equilibrium positions?
b. For each, is it a point of stable or unstable equilibrium?

59. Suppose the particle is shot to the right from x = 1.0 m with 
a speed of 25 m/s. Where is its turning point?FIGURE P10.59  
 
 
 
 
 

60. || A clever engineer designs a “sprong” that obeys the force law 
Fx = -q1x - xeq23, where xeq is the equilibrium position of the 
end of the sprong and q is the sprong constant. For simplicity, 
we’ll let xeq = 0 m. Then Fx = -qx3.
a. What are the units of q?
b. Find an expression for the potential energy of a stretched or 

compressed sprong.
c. A sprong-loaded toy gun shoots a 20 g plastic ball. What 

is the launch speed if the sprong constant is 40,000, with  
the units you found in part a, and the sprong is compressed  
10 cm? Assume the barrel is frictionless.

61. || The potential energy for a particle that can move along the 
x-axis is U = Ax2 + B sin1px/L2, where A, B, and L are  constants. 
What is the force on the particle at (a) x = 0, (b) x = L/2, and (c) 
x = L?

62. || A particle that can move along the x-axis experiences an 
interaction force Fx = 13x2 - 5x2 N, where x is in m. Find an 
expression for the system’s potential energy.

63. || An object moving in the xy-plane is subjected to the force 
F
u

= 12xy in + x2 jn2 N, where x and y are in m.
a. The particle moves from the origin to the point with coordinates 

1a, b2 by moving first along the x-axis to 1a, 02, then parallel 
to the y-axis. How much work does the force do?

b. The particle moves from the origin to the point with coordinates 
1a, b2 by moving first along the y-axis to 10, b2, then parallel 
to the x-axis. How much work does the force do?

c. Is this a conservative force?
64. || An object moving in the xy-plane is subjected to the force 

F
u

= 12xy in + 3y jn2 N, where x and y are in m.
a. The particle moves from the origin to the point with coordinates 

1a, b2 by moving first along the x-axis to 1a, 02, then parallel to 
the y-axis. How much work does the force do?

b. The particle moves from the origin to the point with coordinates 
1a, b2 by moving first along the y-axis to 10, b2, then parallel to 
the x-axis. How much work does the force do?

c. Is this a conservative force?
65. Write a realistic problem for which the energy bar chart shown in 

FIGURE P10.65 correctly shows the energy at the beginning and end 
of the problem.

In Problems 66 through 68 you are given the equation used to solve a 
problem. For each of these, you are to

a. Write a realistic problem for which this is the correct equation.
b. Draw the before-and-after pictorial representation.
c. Finish the solution of the problem.

=

=

40

20

0

-20
Ki UGi USp i UGf

+ + + +

+ + + +USp fKf

E (J)

FIGURE P10.65 

66. 1
211500 kg215.0 m/s22 + 11500 kg219.80 m/s22110 m2 

  =  12 11500 kg2vi 

2 + 11500 kg219.80 m/s2210 m2
67. 1

210.20 kg212.0 m/s22 + 1
2 k10 m22 

  =  12 10.20 kg210 m/s22 + 1
2 k1-0.15 m22

68. 1
210.50 kg2vf 

2 + 10.50 kg219.80 m/s2210 m2 

  +  12 1400 N/m210 m22 = 1
2 10.50 kg210 m/s22 

  +  10.50 kg219.80 m/s2211-0.10 m2 sin 30°2 

  +  12 1400 N/m21-0.10 m22

Challenge Problems

69. ||| A pendulum is formed from a small ball of mass m on a string 
of length L. As FIGURE CP10.69 shows, a peg is height h = L /3 
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NEW! ADVANCED 
TOPICS as optional sections 
add even more flexibility 
for instructors’ individual 
courses. Topics include rocket 
propulsion, gyroscopes and 
precession, the wave equation 
(including for electromagnetic 
waves), the speed of sound in gases, and more 
details on the interference of light.

STOP TO THINK 11.6 An object trav-
eling to the right with pu = 2 in kg m/s 
suddenly explodes into two pieces. 
Piece 1 has the momentum pu1 shown in 
the figure. What is the momentum pu2 of 
the second piece?

11.6 advanced topic Rocket Propulsion 
Newton’s second law F

u
= mau applies to objects whose mass does not change. That’s 

an excellent assumption for balls and bicycles, but what about something like a rocket 
that loses a significant amount of mass as its fuel is burned? Problems of varying 
mass are solved with momentum rather than acceleration. We’ll look at one important 
example.

FIGURE 11.29 shows a rocket being propelled by the thrust of burning fuel but not 
influenced by gravity or drag. Perhaps it is a rocket in deep space where gravity is very 
weak in comparison to the rocket’s thrust. This may not be highly realistic, but ignoring 
gravity allows us to understand the essentials of rocket propulsion without making the 
mathematics too complicated. Rocket propulsion with gravity is a Challenge Problem 
in the end-of-chapter problems.

The system rocket +  exhaust gases is an isolated system, so its total momentum is 
conserved. The basic idea is simple: As exhaust gases are shot out the back, the rocket 
“recoils” in the opposite direction. Putting this idea on a mathematical footing is fairly 
straightforward—it’s basically the same as analyzing an explosion—but we have to be 
extremely careful with signs.

We’ll use a before-and-after approach, as we do with all momentum problems. The 
Before state is a rocket of mass m (including all onboard fuel) moving with velocity 
vx and having initial momentum Pix = mvx. During a small interval of time dt, the 
rocket burns a small mass of fuel mfuel and expels the resulting gases from the back of 
the rocket at an exhaust speed vex relative to the rocket. That is, a space cadet on the 
rocket sees the gases leaving the rocket at speed vex regardless of how fast the rocket 
is traveling through space.

After this little packet of burned fuel has been ejected, the rocket has new velocity 
vx + dvx and new mass m + dm. Now you’re probably thinking that this can’t be right; 
the rocket loses mass rather than gaining mass. But that’s our understanding of the 
physical situation. The mathematical analysis knows only that the mass changes, not 
whether it increases or decreases. Saying that the mass is m + dm at time t + dt is a 
formal statement that the mass has changed, and that’s how analysis of change is done 
in calculus. The fact that the rocket’s mass is decreasing means that dm has a negative 
value. That is, the minus goes with the value of dm, not with the statement that the 
mass has changed.

After the gas has been ejected, both the rocket and the gas have momentum. 
Conservation of momentum tells us that

 Pfx = mrocket1vx2rocket + mfuel1vx2fuel = Pix = mvx (11.35)

The mass of this little packet of burned fuel is the mass lost by the rocket: mfuel = -dm. 
Mathematically, the minus sign tells us that the mass of the burned fuel (the gases) and 
the rocket mass are changing in opposite directions. Physically, we know that dm 6 0, 
so the exhaust gases have a positive mass.

a

b

c

e

d
0

2

-2

py (kg m/s)

px (kg m/s)
2

f. p2 = 0
u u

p1
u

0

2

-2

py (kg m/s)

FIGURE 11.29 A before-and-after pictorial 
representation of a rocket burning a small 
amount of fuel.

Before:

After:

Relative to rocket

m + dm
vex

mfuel vx + dvx

m
vx
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9.1 Energy Overview 
Energy. It’s a word you hear all the time, and everyone has some sense of what energy 
means. Moving objects have energy; energy is the ability to make things happen; 
energy is associated with heat and with electricity; we’re constantly told to conserve 
energy; living organisms need energy; and engineers harness energy to do useful 
things. Some scientists consider the law of conservation of energy to be the most 
important of all the laws of nature. But all that in due time—first we have to start 
with the basic ideas.

Just what is energy? The concept of energy has grown and changed with time, and 
it is not easy to define in a general way just what energy is. Rather than starting with 
a formal definition, we’re going to let the concept of energy expand slowly over the 
course of several chapters. Our goal is to understand the characteristics of energy, 
how energy is used, and how energy is transformed from one form into another. It’s a 
complex story, so we’ll take it step by step until all the pieces are in place.

The Energy Principle
❮❮ Section 7.1 introduced interaction diagrams and the very important distinction 
between the system, those objects whose motion and interactions we wish to 
analyze, and the environment, objects external to the system but exerting forces 
on the system. The most important step in an energy analysis is to clearly define the 
system. Why? Because energy is not some disembodied, ethereal substance; it’s the 
energy of something. Specifically, it’s the energy of a system.

FIGURE 9.1 illustrates the idea pictorially. The system has energy, the system energy, 
which we’ll designate Esys. There are many kinds or forms of energy: kinetic energy K,  
potential energy U, thermal energy Eth, chemical energy, and so on. We’ll introduce 
these one by one as we go along. Within the system, energy can be transformed  
without loss. Chemical energy can be transformed into kinetic energy, which is then 
transformed into thermal energy. As long as the system is not interacting with the  
environment, the total energy of the system is unchanged. You’ll recognize this idea 
as an initial statement of the law of conservation of energy.

But systems often do interact with their environment. Those interactions change 
the energy of the system, either increasing it (energy added) or decreasing it (energy 
removed). We say that interactions with the environment transfer energy into or 
out of the system. Interestingly, there are only two ways to transfer energy. One is 
by mechanical means, using forces to push and pull on the system. A process that 

Some important forms of energy

Kinetic energy K Potential energy U Thermal energy Eth

Kinetic energy is the energy of motion.  
All moving objects have kinetic energy.  
The more massive an object or the faster  
it moves, the larger its kinetic energy.

Potential energy is stored energy associated 
with an object’s position. The roller coaster’s 
gravitational potential energy depends on  
its height above the ground.

Thermal energy is the sum of the micro-
scopic kinetic and potential energies  
of all the atoms and bonds that make up 
the object. An object has more thermal 
energy when hot than when cold.

FIGURE 9.1 A system-environment  
perspective on energy.

System

Environment

EnvironmentHeat Work

Heat

Kinetic Potential

Thermal Chemical

Work
Energy removed

Energy added

Energy can be transformed

The system has energy Esys
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Built from the ground up on physics education research and 
crafted using key ideas from learning theory, Knight has set the 
standard for eff ective and accessible pedagogical materials in 
physics. In this fourth edition, Knight continues to refi ne and 
expand the instructional techniques to take students further.

NEW AND UPDATED LEARNING TOOLS PROMOTE DEEPER AND 
BETTER-CONNECTED UNDERSTANDING

NEW! MODEL BOXES enhance the text’s 
emphasis on modeling—analyzing a complex, 
real-world situation in terms of simple but 
reasonable idealizations that can be applied 
over and over in solving problems. These fun-
damental simplifications are developed in the 
text and then deployed more explicitly in the 
worked examples, helping students to recog-
nize when and how to use recurring models, a 
key critical-thinking skill.

REVISED! ENHANCED 
CHAPTER PREVIEWS, 
based on the educational 
psychology concept of an 
“advance organizer,” have 
been reconceived to address 
the questions students are 
most likely to ask themselves 
while studying the material 
for the first time. Questions 
cover the important ideas, 
and provide a big-picture 
overview of the chapter’s key 
principles. Each chapter con-
cludes with the visual Chapter 
Summary, consolidating and 
structuring understanding.

46 CHAPTER 2 Kinematics in One Dimension

a
u

Mathematically:

Limitations: Model fails if the particle’s
acceleration changes.

Model the object as a particle moving
in a straight line with constant acceleration.

For motion with constant acceleration.

v
u

Parabola

s

si t

The slope is vs.

Horizontal lineas

0 t

The acceleration is constant.

Straight linevs

vis t

The slope is as.
vfs = vis + as ∆t

vfs
2 = vis

2 + 2as ∆s

sf = si + vis ∆t + as1∆t221
2

Constant acceleration

MODEL 2.2 

Exercise 16
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142 CHAPTER 6 Dynamics I: Motion Along a Line 

MODEL 6.3 

Friction
The friction force is parallel to the surface.

■    Static friction: Acts as needed to prevent motion. 
Can have any magnitude up to fs max = ms n.

■   Kinetic friction: Opposes motion with fk = mk n.

■   Rolling friction: Opposes motion with fr = mr n.

■   Graphically:

Push or
pull

Friction

Motion is relative
to the surface.

f

Push or pull force

Static friction
increases to match
the push or pull.

Kinetic friction is constant
as the object moves.

KineticStatic

The object slips when static
friction reaches fs max.

Rest Moving

fs max = msn

mkn

0
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152 CHAPTER 6 Dynamics I: Motion Along a Line 

SUMMARY 

The goal of Chapter 6 has been to learn to solve linear force-and-motion problems.

GENERAL PRINCIPLES

Two Explanatory Models
An object on which there is 
no net force is in mechanical 
equilibrium.
• Objects at rest.
• Objects moving with constant 

velocity.
• Newton’s second law applies 

with au = 0
u
.

An object on which the net force  
is constant undergoes dynamics  
with constant force.
• The object accelerates.
• The kinematic model is that of  

constant acceleration.
• Newton’s second law applies.

A Problem-Solving Strategy
A four-part strategy applies to both equilibrium and 
dynamics problems.

MODEL Make simplifying assumptions.

VISUALIZE

• Translate words into symbols.
• Draw a sketch to define the situation.
• Draw a motion diagram.
• Identify forces.
• Draw a free-body diagram.

SOLVE Use Newton’s second law:

F
u

net = a
i

 F
u

i = mau

“Read” the vectors from the free-body diagram. Use 
kinematics to find velocities and positions.

ASSESS Is the result reasonable? Does it have correct 
units and significant figures?

equilibrium model
constant-force model
flat-earth approximation

weight
coefficient of static friction, ms

coefficient of kinetic friction, mk

rolling friction
coefficient of rolling  
 friction, mr

drag coefficient, C
terminal speed, vterm

TERMS AND NOTATION 

A falling object reaches 
terminal speed

vterm = B
2mg

CrA

APPLICATIONS

Mass is an intrinsic property of an object that describes the object’s 
inertia and, loosely speaking, its quantity of matter.

The weight of an object is the reading of a spring scale when the 
object is at rest relative to the scale. Weight is the result of weigh-
ing. An object’s weight depends on its mass, its acceleration, and the 
strength of gravity. An object in free fall is weightless.

IMPORTANT CONCEPTS

Specific information about three important descriptive models:

Gravity F
u

G = 1mg, downward2
Friction f 

u

s = 10 to ms n, direction as necessary to prevent motion2
 f 

u

k = 1mk n, direction opposite the motion2
 f

u

r = 1mr n, direction opposite the motion2
Drag F

u

drag = 11
2 CrAv2, direction opposite the motion2

Newton’s laws are vector  
expressions. You must write 
them out by components:

 1Fnet2x = aFx = max 

 1Fnet2y = aFy = may 

The acceleration is zero in equi-
librium and also along an axis 
perpendicular to the motion.

Fnet = 0
u u

a
u

Go back and forth
between these
steps as needed.

d

y

x

Fnet

u

F1

u

F3

u

F2

u

FG

Terminal speed is reached 
when the drag force exactly 
balances the gravitational 
force:  a = 0.

u

u

u

Fdrag

u
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6 
The powerful thrust of the jet engines 
accelerates this enormous plane to a 
speed of over 150 mph in less than  
a mile.

Dynamics I: Motion  
Along a Line

IN THIS CHAPTER, you will learn to solve linear force-and-motion problems.

How are Newton’s laws used to solve problems?
Newton’s first and second laws are  
vector equations. To use them,

■ Draw a free-body diagram.
■  Read the x- and y-components of the 

forces directly off the free-body diagram.
■ Use aFx = max and aFy = may.

How are dynamics problems solved?
A net force on an object causes the 
object to accelerate.

■  Identify the forces and draw a  
free-body diagram.

■  Use Newton’s second law to find the 
object’s acceleration.

■ Use kinematics for velocity and position.

❮❮ LOOKING BACK Sections 2.4–2.6 Kinematics

How are equilibrium problems solved?
An object at rest or moving with constant 
velocity is in equilibrium with no net force.

■  Identify the forces and draw a free-body 
diagram.

■  Use Newton’s second law with a = 0  
to solve for unknown forces.

❮❮ LOOKING BACK Sections 5.1–5.2 Forces

What are mass and weight?
Mass and weight are not the same.

■  Mass describes an object’s inertia. Loosely 
speaking, it is the amount of matter in an 
object. It is the same everywhere.

■  Gravity is a force.
■  Weight is the result of weighing an object 

on a scale. It depends on mass, gravity, and 
acceleration.

How do we model friction and drag?
Friction and drag are complex forces, but 
we will develop simple models of each.

■  Static, kinetic, and rolling friction  
depend on the coefficients of friction 
but not on the object’s speed.

■  Drag depends on the square of an object’s 
speed and on its cross-section area.

■  Falling objects reach terminal speed 
when drag and gravity are balanced.

How do we solve problems?
We will develop and use a four-part problem-solving strategy:

■ Model the problem, using information about objects and forces.
■ Visualize the situation with a pictorial representation.
■ Set up and solve the problem with Newton’s laws.
■ Assess the result to see if it is reasonable.

Fnet

u

y

x

a
u

Friction fs

u
Normal n

u

Gravity FG

u

FG

u

Fsp

u

v
u

Kinetic friction
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A research-driven approach, 
fine-tuned for even greater 
ease-of-use and student success

REVISED COVERAGE AND ORGANIZATION GIVE INSTRUCTORS 
GREATER CHOICE AND FLEXIBILITY

NEW! CHAPTER ORGANIZATION allows instructors to 
more easily present material as needed to complement labs, course 
schedules, and different teaching styles. Work and energy are now 
covered before momentum, oscillations are grouped with mechan-
ical waves, and optics appears after electricity and magnetism. 
Unchanged is Knight’s unique approach of working from concrete 
to abstract, using multiple representations, balancing qualitative 
with quantitative, and addressing misconceptions.

NEW! MORE CALCULUS-BASED 
PROBLEMS have been added, along with an 
icon to make these easy to identify. The sig-
nificantly revised end-of-chapter problem sets, 
extensively class-tested and both calibrated 
and improved using MasteringPhysics® data, 
expand the range of physics and math skills 
students will use to solve problems.

Exercises and Problems 259

55. ||| Protons and neutrons (together called nucleons) are held 
together in the nucleus of an atom by a force called the strong 
force. At very small separations, the strong force between two 
nucleons is larger than the repulsive electrical force between two 
protons—hence its name. But the strong force quickly weakens 
as the distance between the protons increases. A well-established 
model for the potential energy of two nucleons interacting via the 
strong force is

U = U031 - e-x/x04
where x is the distance between the centers of the two nucle-
ons, x0  is a constant having the value x0 = 2.0 * 10-15 m, and 
U0 = 6.0 * 10-11 J.

Quantum effects are essential for a proper understand-
ing of nucleons, but let us innocently consider two neutrons as 
if they were small, hard, electrically neutral spheres of mass 
1.67 * 10-27 kg and diameter 1.0 * 10-15 m. Suppose you hold 
two neutrons 5.0 * 10-15 m apart, measured between their 
 centers, then release them. What is the speed of each neutron 
as they crash together? Keep in mind that both neutrons are 
moving.

56. || A 2.6 kg block is attached to a horizontal rope that exerts a 
variable force Fx = 120 - 5x2 N, where x is in m. The coefficient 
of kinetic friction between the block and the floor is 0.25. 
 Initially the block is at rest at x = 0 m. What is the block’s speed 
when it has been pulled to x = 4.0 m?

57. || A system has potential energy

U1x2 = x + sin112 rad/m2x2
as a particle moves over the range 0 m … x … p m.
a. Where are the equilibrium positions in this range?
b. For each, is it a point of stable or unstable equilibrium?

58. || A particle that can move along the x-axis is part of a system 
with potential energy

U1x2 =
A

x2 -
B
x

where A and B are positive constants.
a. Where are the particle’s equilibrium positions?
b. For each, is it a point of stable or unstable equilibrium?

59. Suppose the particle is shot to the right from x = 1.0 m with 
a speed of 25 m/s. Where is its turning point?FIGURE P10.59  
 
 
 
 
 

60. || A clever engineer designs a “sprong” that obeys the force law 
Fx = -q1x - xeq23, where xeq is the equilibrium position of the 
end of the sprong and q is the sprong constant. For simplicity, 
we’ll let xeq = 0 m. Then Fx = -qx3.
a. What are the units of q?
b. Find an expression for the potential energy of a stretched or 

compressed sprong.
c. A sprong-loaded toy gun shoots a 20 g plastic ball. What 

is the launch speed if the sprong constant is 40,000, with  
the units you found in part a, and the sprong is compressed  
10 cm? Assume the barrel is frictionless.

61. || The potential energy for a particle that can move along the 
x-axis is U = Ax2 + B sin1px/L2, where A, B, and L are  constants. 
What is the force on the particle at (a) x = 0, (b) x = L/2, and (c) 
x = L?

62. || A particle that can move along the x-axis experiences an 
interaction force Fx = 13x2 - 5x2 N, where x is in m. Find an 
expression for the system’s potential energy.

63. || An object moving in the xy-plane is subjected to the force 
F
u

= 12xy in + x2 jn2 N, where x and y are in m.
a. The particle moves from the origin to the point with coordinates 

1a, b2 by moving first along the x-axis to 1a, 02, then parallel 
to the y-axis. How much work does the force do?

b. The particle moves from the origin to the point with coordinates 
1a, b2 by moving first along the y-axis to 10, b2, then parallel 
to the x-axis. How much work does the force do?

c. Is this a conservative force?
64. || An object moving in the xy-plane is subjected to the force 

F
u

= 12xy in + 3y jn2 N, where x and y are in m.
a. The particle moves from the origin to the point with coordinates 

1a, b2 by moving first along the x-axis to 1a, 02, then parallel to 
the y-axis. How much work does the force do?

b. The particle moves from the origin to the point with coordinates 
1a, b2 by moving first along the y-axis to 10, b2, then parallel to 
the x-axis. How much work does the force do?

c. Is this a conservative force?
65. Write a realistic problem for which the energy bar chart shown in 

FIGURE P10.65 correctly shows the energy at the beginning and end 
of the problem.

In Problems 66 through 68 you are given the equation used to solve a 
problem. For each of these, you are to

a. Write a realistic problem for which this is the correct equation.
b. Draw the before-and-after pictorial representation.
c. Finish the solution of the problem.

=

=

40

20

0

-20
Ki UGi USp i UGf

+ + + +

+ + + +USp fKf

E (J)

FIGURE P10.65 

66. 1
211500 kg215.0 m/s22 + 11500 kg219.80 m/s22110 m2 

  =  12 11500 kg2vi 

2 + 11500 kg219.80 m/s2210 m2
67. 1

210.20 kg212.0 m/s22 + 1
2 k10 m22 

  =  12 10.20 kg210 m/s22 + 1
2 k1-0.15 m22

68. 1
210.50 kg2vf 

2 + 10.50 kg219.80 m/s2210 m2 

  +  12 1400 N/m210 m22 = 1
2 10.50 kg210 m/s22 

  +  10.50 kg219.80 m/s2211-0.10 m2 sin 30°2 

  +  12 1400 N/m21-0.10 m22

Challenge Problems

69. ||| A pendulum is formed from a small ball of mass m on a string 
of length L. As FIGURE CP10.69 shows, a peg is height h = L /3 
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NEW! ADVANCED 
TOPICS as optional sections 
add even more flexibility 
for instructors’ individual 
courses. Topics include rocket 
propulsion, gyroscopes and 
precession, the wave equation 
(including for electromagnetic 
waves), the speed of sound in gases, and more 
details on the interference of light.

STOP TO THINK 11.6 An object trav-
eling to the right with pu = 2 in kg m/s 
suddenly explodes into two pieces. 
Piece 1 has the momentum pu1 shown in 
the figure. What is the momentum pu2 of 
the second piece?

11.6 advanced topic Rocket Propulsion 
Newton’s second law F

u
= mau applies to objects whose mass does not change. That’s 

an excellent assumption for balls and bicycles, but what about something like a rocket 
that loses a significant amount of mass as its fuel is burned? Problems of varying 
mass are solved with momentum rather than acceleration. We’ll look at one important 
example.

FIGURE 11.29 shows a rocket being propelled by the thrust of burning fuel but not 
influenced by gravity or drag. Perhaps it is a rocket in deep space where gravity is very 
weak in comparison to the rocket’s thrust. This may not be highly realistic, but ignoring 
gravity allows us to understand the essentials of rocket propulsion without making the 
mathematics too complicated. Rocket propulsion with gravity is a Challenge Problem 
in the end-of-chapter problems.

The system rocket +  exhaust gases is an isolated system, so its total momentum is 
conserved. The basic idea is simple: As exhaust gases are shot out the back, the rocket 
“recoils” in the opposite direction. Putting this idea on a mathematical footing is fairly 
straightforward—it’s basically the same as analyzing an explosion—but we have to be 
extremely careful with signs.

We’ll use a before-and-after approach, as we do with all momentum problems. The 
Before state is a rocket of mass m (including all onboard fuel) moving with velocity 
vx and having initial momentum Pix = mvx. During a small interval of time dt, the 
rocket burns a small mass of fuel mfuel and expels the resulting gases from the back of 
the rocket at an exhaust speed vex relative to the rocket. That is, a space cadet on the 
rocket sees the gases leaving the rocket at speed vex regardless of how fast the rocket 
is traveling through space.

After this little packet of burned fuel has been ejected, the rocket has new velocity 
vx + dvx and new mass m + dm. Now you’re probably thinking that this can’t be right; 
the rocket loses mass rather than gaining mass. But that’s our understanding of the 
physical situation. The mathematical analysis knows only that the mass changes, not 
whether it increases or decreases. Saying that the mass is m + dm at time t + dt is a 
formal statement that the mass has changed, and that’s how analysis of change is done 
in calculus. The fact that the rocket’s mass is decreasing means that dm has a negative 
value. That is, the minus goes with the value of dm, not with the statement that the 
mass has changed.

After the gas has been ejected, both the rocket and the gas have momentum. 
Conservation of momentum tells us that

 Pfx = mrocket1vx2rocket + mfuel1vx2fuel = Pix = mvx (11.35)

The mass of this little packet of burned fuel is the mass lost by the rocket: mfuel = -dm. 
Mathematically, the minus sign tells us that the mass of the burned fuel (the gases) and 
the rocket mass are changing in opposite directions. Physically, we know that dm 6 0, 
so the exhaust gases have a positive mass.

a

b

c

e

d
0

2

-2

py (kg m/s)

px (kg m/s)
2

f. p2 = 0
u u

p1
u

0

2

-2

py (kg m/s)

FIGURE 11.29 A before-and-after pictorial 
representation of a rocket burning a small 
amount of fuel.

Before:

After:

Relative to rocket

m + dm
vex

mfuel vx + dvx

m
vx
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9.1 Energy Overview  207

9.1 Energy Overview 
Energy. It’s a word you hear all the time, and everyone has some sense of what energy 
means. Moving objects have energy; energy is the ability to make things happen; 
energy is associated with heat and with electricity; we’re constantly told to conserve 
energy; living organisms need energy; and engineers harness energy to do useful 
things. Some scientists consider the law of conservation of energy to be the most 
important of all the laws of nature. But all that in due time—first we have to start 
with the basic ideas.

Just what is energy? The concept of energy has grown and changed with time, and 
it is not easy to define in a general way just what energy is. Rather than starting with 
a formal definition, we’re going to let the concept of energy expand slowly over the 
course of several chapters. Our goal is to understand the characteristics of energy, 
how energy is used, and how energy is transformed from one form into another. It’s a 
complex story, so we’ll take it step by step until all the pieces are in place.

The Energy Principle
❮❮ Section 7.1 introduced interaction diagrams and the very important distinction 
between the system, those objects whose motion and interactions we wish to 
analyze, and the environment, objects external to the system but exerting forces 
on the system. The most important step in an energy analysis is to clearly define the 
system. Why? Because energy is not some disembodied, ethereal substance; it’s the 
energy of something. Specifically, it’s the energy of a system.

FIGURE 9.1 illustrates the idea pictorially. The system has energy, the system energy, 
which we’ll designate Esys. There are many kinds or forms of energy: kinetic energy K,  
potential energy U, thermal energy Eth, chemical energy, and so on. We’ll introduce 
these one by one as we go along. Within the system, energy can be transformed  
without loss. Chemical energy can be transformed into kinetic energy, which is then 
transformed into thermal energy. As long as the system is not interacting with the  
environment, the total energy of the system is unchanged. You’ll recognize this idea 
as an initial statement of the law of conservation of energy.

But systems often do interact with their environment. Those interactions change 
the energy of the system, either increasing it (energy added) or decreasing it (energy 
removed). We say that interactions with the environment transfer energy into or 
out of the system. Interestingly, there are only two ways to transfer energy. One is 
by mechanical means, using forces to push and pull on the system. A process that 

Some important forms of energy

Kinetic energy K Potential energy U Thermal energy Eth

Kinetic energy is the energy of motion.  
All moving objects have kinetic energy.  
The more massive an object or the faster  
it moves, the larger its kinetic energy.

Potential energy is stored energy associated 
with an object’s position. The roller coaster’s 
gravitational potential energy depends on  
its height above the ground.

Thermal energy is the sum of the micro-
scopic kinetic and potential energies  
of all the atoms and bonds that make up 
the object. An object has more thermal 
energy when hot than when cold.

FIGURE 9.1 A system-environment  
perspective on energy.

System

Environment

EnvironmentHeat Work

Heat

Kinetic Potential

Thermal Chemical

Work
Energy removed

Energy added

Energy can be transformed

The system has energy Esys

M11_KNIG2651_04_SE_C09.indd   207 9/28/15   5:35 PM

A01_KNIG7429_04_GE_FM.indd   5 18/07/16   2:52 pm



A STRUCTURED AND CONSISTENT APPROACH BUILDS 
PROBLEM-SOLVING SKILLS AND CONFIDENCE

With a research-based 4-step problem-solving 
framework used throughout the text, students 
learn the importance of making assumptions 
(in the MODEL step) and gathering informa-
tion and making sketches (in the VISUALIZE 
step) before treating the problem mathemati-
cally (SOLVE) and then analyzing their results 
(ASSESS). 

The REVISED STUDENT WORKBOOK 
is tightly integrated with the main text–allowing 
students to practice skills from the text’s Tactics 
Boxes, work through the steps of Problem-Solv-
ing Strategies, and assess the applicability of the 
Models. The workbook is referenced throughout 
the text with the icon . 

Detailed PROBLEM-SOLVING 
STRATEGIES for different topics and 
categories of problems (circular-motion 
problems, calorimetry problems, etc.) 
are developed throughout, each one built 
on the 4-step framework and carefully 
illustrated in worked examples. 

TACTICS BOXES give step-by-step procedures for 
developing specific skills (drawing free-body diagrams, 
using ray tracing, etc.). 

10.4 Conservation of Energy 243

PROBLEM-SOLVING STRATEGY 10.1

Energy-conservation problems
MODEL Define the system so that there are no external forces or so that any 
external forces do no work on the system. If there’s friction, bring both surfaces 
into the system. Model objects as particles and springs as ideal.
VISUALIZE Draw a before-and-after pictorial representation and an energy bar 
chart. A free-body diagram may be needed to visualize forces.
SOLVE If the system is both isolated and nondissipative, then the mechanical 
energy is conserved:

Ki + Ui = Kf + Uf

where K is the total kinetic energy of all moving objects and U is the total 
potential energy of all interactions within the system. If there’s friction, then

Ki + Ui = Kf + Uf + ∆Eth

where the thermal energy increase due to friction is ∆Eth = fk ∆s.
ASSESS Check that your result has correct units and significant figures, is 
 reasonable, and answers the question.

Exercise 14
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716 CHAPTER 26 Potential and Field

TACTICS BOX 26.1

Finding the potential from the electric field

 ●1 Draw a picture and identify the point at which you wish to find the potential. 
Call this position f.

 ●2 Choose the zero point of the potential, often at infinity. Call this position i.
 ●3 Establish a coordinate axis from i to f along which you already know or can 

easily determine the electric field component Es.
 ●4 Carry out the integration of Equation 26.3 to find the potential.

Exercise 1
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 18. The graph shows how the magnetic field changes through  
a rectangular loop of wire with resistance R. Draw a graph  
of the current in the loop as a function of time. Let a  
counterclockwise current be positive, a clockwise  
current be negative.

 a. What is the magnetic flux through the loop at t = 0?  

 b. Does this flux change between t = 0 and t = t1?  

 c. Is there an induced current in the loop between t = 0 and t = t1? 

 d. What is the magnetic flux through the loop at t = t2? 

 e. What is the change in flux through the loop between t1 and t2? 

 f. What is the time interval between t1 and t2? 

 g. What is the magnitude of the induced emf between t1 and t2? 

 h. What is the magnitude of the induced current between t1 and t2? 

 i. Does the magnetic field point out of or into the loop? 

 j. Between t1 and t2, is the magnetic flux increasing or decreasing? 

 k. To oppose the change in the flux between t1 and t2, should the magnetic  
field of the induced current point out of or into the loop? 

 l. Is the induced current between t1 and t2 positive or negative? 

 m. Does the flux through the loop change after t2? 

 n. Is there an induced current in the loop after t2? 

 o. Use all this information to draw a graph of the induced current. Add appropriate labels on the 
vertical axis.

PSS
30.1
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THE ULTIMATE RESOURCE 
BEFORE, DURING, AND AFTER CLASS

BEFORE CLASS

DURING CLASS

AFTER CLASS

NEW! INTERACTIVE PRELECTURE VIDEOS 
address the rapidly growing movement toward pre-lecture 
teaching and flipped classrooms. These whiteboard-style 
animations provide an introduction to key topics with 
embedded assessment to help students prepare and profes-
sors identify student misconceptions before lecture.

NEW! LEARNING CATALYTICS™ is an interactive 
classroom tool that uses students’ devices to engage them in 
more sophisticated tasks and thinking. Learning Catalytics 
enables instructors to generate classroom discussion and 
promote peer-to-peer learning to help students develop 
critical-thinking skills. Instructors can take advantage of 
real-time analytics to find out where students are struggling 
and adjust their instructional strategy.

NEW! ENHANCED 
END-OF-CHAPTER 
QUESTIONS offer stu-
dents instructional support 
when and where they need 
it, including links to the 
eText, math remediation, 
and wrong-answer feedback 
for homework assignments. 

ADAPTIVE FOLLOW-UPS 
are personalized assignments 
that pair Mastering’s powerful 
content with Knewton’s adaptive 
learning engine to provide 
individualized help to students 
before misconceptions take hold. 
These adaptive follow-ups address 
topics students struggled with on 
assigned homework, including core 
prerequisite topics.

NEW! DYNAMIC STUDY MODULES (DSMs) con-
tinuously assess students’ performance in real time to provide 
personalized question and explanation content until students 
master the module with confidence. The DSMs cover basic 
math skills and key definitions and relationships for topics 
across all of mechanics and electricity and magnetism.

MasteringPhysics
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A STRUCTURED AND CONSISTENT APPROACH BUILDS 
PROBLEM-SOLVING SKILLS AND CONFIDENCE

With a research-based 4-step problem-solving 
framework used throughout the text, students 
learn the importance of making assumptions 
(in the MODEL step) and gathering informa-
tion and making sketches (in the VISUALIZE 
step) before treating the problem mathemati-
cally (SOLVE) and then analyzing their results 
(ASSESS). 

The REVISED STUDENT WORKBOOK 
is tightly integrated with the main text–allowing 
students to practice skills from the text’s Tactics 
Boxes, work through the steps of Problem-Solv-
ing Strategies, and assess the applicability of the 
Models. The workbook is referenced throughout 
the text with the icon . 

Detailed PROBLEM-SOLVING 
STRATEGIES for different topics and 
categories of problems (circular-motion 
problems, calorimetry problems, etc.) 
are developed throughout, each one built 
on the 4-step framework and carefully 
illustrated in worked examples. 

TACTICS BOXES give step-by-step procedures for 
developing specific skills (drawing free-body diagrams, 
using ray tracing, etc.). 
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Energy-conservation problems
MODEL Define the system so that there are no external forces or so that any 
external forces do no work on the system. If there’s friction, bring both surfaces 
into the system. Model objects as particles and springs as ideal.
VISUALIZE Draw a before-and-after pictorial representation and an energy bar 
chart. A free-body diagram may be needed to visualize forces.
SOLVE If the system is both isolated and nondissipative, then the mechanical 
energy is conserved:

Ki + Ui = Kf + Uf

where K is the total kinetic energy of all moving objects and U is the total 
potential energy of all interactions within the system. If there’s friction, then

Ki + Ui = Kf + Uf + ∆Eth

where the thermal energy increase due to friction is ∆Eth = fk ∆s.
ASSESS Check that your result has correct units and significant figures, is 
 reasonable, and answers the question.
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 18. The graph shows how the magnetic field changes through  
a rectangular loop of wire with resistance R. Draw a graph  
of the current in the loop as a function of time. Let a  
counterclockwise current be positive, a clockwise  
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 a. What is the magnetic flux through the loop at t = 0?  
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Preface to the Instructor

This fourth edition of Physics for Scientists and Engineers: A 
Strategic Approach continues to build on the research-driven 
instructional techniques introduced in the first edition and the 
extensive feedback from thousands of users. From the begin-
ning, the objectives have been:

■	 To produce a textbook that is more focused and coherent, 
less encyclopedic.

■	 To move key results from physics education research into 
the classroom in a way that allows instructors to use a range 
of teaching styles.

■	 To provide a balance of quantitative reasoning and con-
ceptual understanding, with special attention to concepts 
known to cause student difficulties.

■	 To develop students’ problem-solving skills in a systematic 
manner.

These goals and the rationale be-
hind them are discussed at length 
in the Instructor’s Guide and in my 
small paperback book, Five Easy 
Lessons: Strategies for Success-
ful Physics Teaching. Please re-
quest a copy if it is of interest to 
you (ISBN 978-0-805-38702-5). 

What’s New to This Edition
For this fourth edition, we continue to apply the best results 
from educational research and to tailor them for this course and 
its students. At the same time, the extensive feedback we’ve 
received from both instructors and students has led to many  
changes and improvements to the text, the figures, and the  
end-of-chapter problems. These include:

■	 Chapter ordering changes allow instructors to more easily 
organize content as needed to accommodate labs, schedules, 
and different teaching styles. Work and energy are now 
covered before momentum, oscillations are grouped with 
mechanical waves, and optics appears after electricity and 
magnetism.

■	 Addition of advanced topics as optional sections further 
expands instructors’ options. Topics include rocket propul-
sion, gyroscopes, the wave equation (for mechanical and 
electromagnetic waves), the speed of sound in gases, and 
more details on the interference of light.

■	 Model boxes enhance the text’s emphasis on modeling—
analyzing a complex, real-world situation in terms of simple  
but reasonable idealizations that can be applied over and 
over in solving problems. These fundamental simplifications 

are developed in the text and then deployed more explicitly 
in the worked examples, helping students to recognize when 
and how to use recurring models.

■	 Enhanced chapter previews have been redesigned, with 
student input, to address the questions students are most 
likely to ask themselves while studying the material for the 
first time. The previews provide a big-picture overview of 
the chapter’s key principles.

■	 Looking Back pointers enable students to look back at a 
previous chapter when it’s important to review concepts. 
Pointers provide the specific section to consult at the exact 
point in the text where they need to use this material.

■	 Focused Part Overviews and Knowledge Structures con-
solidate understanding of groups of chapters and give a tighter 
structure to the book as a whole. Reworked Knowledge Struc-
tures provide more targeted detail on overarching themes.

■	 Updated visual program that has been enhanced by revis-
ing over 500 pieces of art to increase the focus on key ideas.

■	 Significantly revised end-of-chapter problem sets in-
clude more challenging problems to expand the range of 
physics and math skills students will use to solve problems. 
A new icon for calculus-based problems has been added.

At the front of this book, you’ll find an illustrated walkthrough 
of the new pedagogical features in this fourth edition.

Textbook Organization
The 42-chapter edition of Physics for Scientists and Engineers 
is intended for a three-semester course. Most of the 36-chapter 
standard edition ending with relativity, can be covered in two 
semesters, although the judicious omission of a few chapters 
will avoid rushing through the material and give students more 
time to develop their knowledge and skills.

The full textbook is divided into eight parts: Part I: Newton’s 
Laws, Part II: Conservation Laws, Part III: Applications of 
Newtonian Mechanics, Part IV: Oscillations and Waves, Part V:  
Thermodynamics, Part VI: Electricity and Magnetism, Part VII:  
Optics, and Part VIII: Relativity and Quantum Physics. Note 
that covering the parts in this order is by no means essential. 
Each topic is self-contained, and Parts III–VII can be rear-
ranged to suit an instructor’s needs. Part VII: Optics does need 
to follow Part IV: Oscillations and Waves, but optics can be 
taught either before or after electricity and magnetism.

There’s a growing sentiment that quantum physics is quickly 
becoming the province of engineers, not just scientists, and 
that even a two-semester course should include a reasonable 
introduction to quantum ideas. The Instructor’s Guide outlines 
a couple of routes through the book that allow most of the 
quantum physics chapters to be included in a two-semester 
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course. I’ve written the book with the hope that an increasing 
number of instructors will choose one of these routes.

The Student Workbook
A key component of Physics for Scientists and Engineers: A 
Strategic Approach is the accompanying Student Workbook. 
The workbook bridges the gap between textbook and home-
work problems by providing students the opportunity to learn 
and practice skills prior to using those skills in quantitative  
end-of-chapter problems, much as a musician practices tech-
nique separately from performance pieces. The workbook exer-
cises, which are keyed to each section of the textbook, focus on 
developing specific skills, ranging from identifying forces and 
drawing free-body diagrams to interpreting wave functions.

The workbook exercises, which are generally qualitative and/
or graphical, draw heavily upon the physics education research 
literature. The exercises deal with issues known to cause student 
difficulties and employ techniques that have proven to be effec-

tive at overcoming those difficulties. 
New to the fourth edition workbook 
are exercises that provide guided prac-
tice for the textbook’s Model boxes. 
The workbook exercises can be used 
in class as part of an active-learning 
teaching strategy, in recitation sec-
tions, or as assigned homework. More 
information about effective use of the 
Student Workbook can be found in the 
Instructor’s Guide.

Force and Motion . C H A P T E R 5

9.

a. 2m b. 0.5m

Use triangles to show four points for the object of
mass 2m, then draw a line through the points. Use
squares for the object of mass 0.5m.

10. A constant force applied to object A causes A to
accelerate at 5 m/s2. The same force applied to object B
causes an acceleration of 3 m/s2. Applied to object C, it
causes an acceleration of 8 m/s2.

a. Which object has the largest mass? 

b. Which object has the smallest mass? 

c. What is the ratio of mass A to mass B? (mA/mB) = 

11. A constant force applied to an object causes the object to accelerate at 10 m/s2. What will the
acceleration of this object be if

a. The force is doubled? b. The mass is doubled? 

c. The force is doubled and the mass is doubled? 

d. The force is doubled and the mass is halved? 

12. A constant force applied to an object causes the object to accelerate at 8 m/s2. What will the
acceleration of this object be if

a. The force is halved? b. The mass is halved? 

c. The force is halved and the mass is halved? 

d. The force is halved and the mass is doubled? 

13. Forces are shown on two objects. For each:

a. Draw and label the net force vector. Do this right on the �gure.
b. Below the �gure, draw and label the object’s acceleration vector.
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The �gure shows an acceleration-versus-force graph for
an object of mass m. Data have been plotted as individual
points, and a line has been drawn through the points.

Draw and label, directly on the �gure, the acceleration-
versus-force graphs for objects of mass

Instructional Package
Physics for Scientists and Engineers: A Strategic Approach, fourth edition, provides an integrated teaching and learning package of support material  
for students and instructors. NOTE For convenience, most instructor supplements can be downloaded from the “Instructor Resources” area of  
MasteringPhysics® and the Instructor Resource Center (www.pearsonglobaleditions.com/knight).

Name of Supplement Print Online

Instructor 
or Student 
Supplement Description

MasteringPhysics with Pearson eText ✓ Instructor 
and Student 
Supplement

This product features all of the resources of MasteringPhysics in addition  
to the Pearson eText. Now available on smartphones and tablets, Pearson 
eText comprises the full text, including videos and other rich media. Students 
can take notes, and highlight, bookmark, and search the text.

Instructor’s Solutions Manual  ✓ Instructor 
Supplement

This comprehensive solutions manual contains complete solutions to all end-
of-chapter questions and problems. All problem solutions follow the Model/
Visualize/Solve/Assess problem-solving strategy used in the text.

Instructor’s Guide  ✓ Instructor 
Supplement

Written by Randy Knight, this resource provides chapter-by-chapter creative 
ideas and teaching tips for use in your class. It also contains an extensive 
review of results of what has been learned from physics education research and 
provides guidelines for using active-learning techniques in your classroom.

TestGen Test Bank ✓ Instructor 
Supplement

The Test Bank contains over 2,000 high-quality conceptual and multiple-choice 
questions. Test files are provided in both TestGen® and Word format.

Instructor’s Resource Material  ✓ ✓ Instructor 
Supplement

This cross-platform resource set includes an Image Library; editable content for 
Key Equations, Problem-Solving Strategies, Math Relationship Boxes, Model 
Boxes, and Tactic Boxes; PowerPoint Lecture Slides and Clicker Questions; 
Instructor’s Guide, and Instructor’s Solutions Manual; Solutions to Student 
Workbook exercises.

Student Workbook ✓ Student 
Supplement

For a more detailed description of the Student Workbook, see page 5.
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The most incomprehensible thing about the universe is that it is 
comprehensible.

—Albert Einstein

The day I went into physics class it was death.
—Sylvia Plath, The Bell Jar

Let’s have a little chat before we start. A rather one-sided chat, 
admittedly, because you can’t respond, but that’s OK. I’ve 
talked with many of your fellow students over the years, so I 
have a pretty good idea of what’s on your mind.

What’s your reaction to taking physics? Fear and loathing? 
Uncertainty? Excitement? All the above? Let’s face it, physics 
has a bit of an image problem on campus. You’ve probably heard 
that it’s difficult, maybe impossible unless you’re an Einstein. 
Things that you’ve heard, your experiences in other science 
courses, and many other factors all color your expectations  
about what this course is going to be like.

It’s true that there are many new ideas to be learned in physics 
and that the course, like college courses in general, is going to be 
much faster paced than science courses you had in high school. 
I think it’s fair to say that it will be an intense course. But we 
can avoid many potential problems and difficulties if we can 
establish, here at the beginning, what this course is about and 
what is expected of you—and of me!

Just what is physics, anyway? Physics is a way of think-
ing about the physical aspects of nature. Physics is not better 
than art or biology or poetry or religion, which are also ways 
to think about nature; it’s simply different. One of the things 
this course will emphasize is that physics is a human endeavor. 
The ideas presented in this book were not found in a cave or 
conveyed to us by aliens; they were discovered and developed 
by real people engaged in a struggle with real issues.

You might be surprised to hear that physics is not about 
“facts.” Oh, not that facts are unimportant, but physics is far 
more focused on discovering relationships and patterns than 
on learning facts for their own sake.

For example, the colors of the 
rainbow appear both when white 
light passes through a prism and—
as in this photo—when white light 
reflects from a thin film of oil on 
water. What does this pattern tell 
us about the nature of light? 

Our emphasis on relationships 
and patterns means that there’s not 
a lot of memorization when you 

study physics. Some—there are still definitions and equations 
to learn—but less than in many other courses. Our emphasis,  
instead, will be on thinking and reasoning. This is important to 
factor into your expectations for the course.

Perhaps most important of all, physics is not math! Physics 
is much broader. We’re going to look for patterns and relation-
ships in nature, develop the logic that relates different ideas, 
and search for the reasons why things happen as they do. In 
doing so, we’re going to stress qualitative reasoning, pictorial 
and graphical reasoning, and reasoning by analogy. And yes, 
we will use math, but it’s just one tool among many.

It will save you much frustration if you’re aware of this 
physics–math distinction up front. Many of you, I know, want 
to find a formula and plug numbers into it—that is, to do a math 
problem. Maybe that worked in high school science courses, 
but it is not what this course expects of you. We’ll certainly do 
many calculations, but the specific numbers are usually the last 
and least important step in the analysis.

As you study, you’ll sometimes be baffled, puzzled, 
and confused. That’s perfectly normal and to be expected. 
Making mistakes is OK too if you’re willing to learn from 
the experience. No one is born knowing how to do physics 
any more than he or she is born knowing how to play the 
piano or shoot basketballs. The ability to do physics comes 
from practice, repetition, and struggling with the ideas 
until you “own” them and can apply them yourself in new 
situations. There’s no way to make learning effortless, at least 
for anything worth learning, so expect to have some difficult 
moments ahead. But also expect to have some moments of 
excitement at the joy of discovery. There will be instants at 
which the pieces suddenly click into place and you know that 
you understand a powerful idea. There will be times when 
you’ll surprise yourself by successfully working a difficult 
problem that you didn’t think you could solve. My hope, as an 
author, is that the excitement and sense of adventure will far 
outweigh the difficulties and frustrations.

Getting the Most Out of Your Course
Many of you, I suspect, would like to know the “best” way to 
study for this course. There is no best way. People are different, 
and what works for one student is less effective for another. But 
I do want to stress that reading the text is vitally important. The 
basic knowledge for this course is written down on these pages, 
and your instructor’s number-one expectation is that you will 
read carefully to find and learn that knowledge.

Despite there being no best way to study, I will suggest one 
way that is successful for many students.

	 1.	 Read each chapter before it is discussed in class. I cannot 
stress too strongly how important this step is. Class atten-
dance is much more effective if you are prepared. When you 
first read a chapter, focus on learning new vocabulary, defi-
nitions, and notation. There’s a list of terms and notations at 
the end of each chapter. Learn them! You won’t understand 
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what’s being discussed or how the ideas are being used if 
you don’t know what the terms and symbols mean.

	 2.	 Participate actively in class. Take notes, ask and answer 
questions, and participate in discussion groups. There is 
ample scientific evidence that active participation is much 
more effective for learning science than passive listening.

	 3.	 After class, go back for a careful re-reading of the 
chapter. In your second reading, pay closer attention to 
the details and the worked examples. Look for the logic 
behind each example (I’ve highlighted this to make it 
clear), not just at what formula is being used. And use the 
textbook tools that are designed to help your learning, such 
as the problem-solving strategies, the chapter summaries, 
and the exercises in the Student Workbook.

	 4.	 Finally, apply what you have learned to the home-
work problems at the end of each chapter. I strongly 
encourage you to form a study group with two or three 
classmates. There’s good evidence that students who 
study regularly with a group do better than the rugged 
individualists who try to go it alone.

Did someone mention a workbook? The companion Stu-
dent Workbook is a vital part of the course. Its questions and 
exercises ask you to reason qualitatively, to use graphical in-
formation, and to give explanations. It is through these ex-
ercises that you will learn what the concepts mean and will 
practice the reasoning skills appropriate to the chapter. You 
will then have acquired the baseline knowledge and confi-
dence you need before turning to the end-of-chapter home-
work problems. In sports or in music, you would never think 
of performing before you practice, so why would you want 
to do so in physics? The workbook is where you practice and 
work on basic skills.

Many of you, I know, will be tempted to go straight to the 
homework problems and then thumb through the text looking 
for a formula that seems like it will work. That approach will 
not succeed in this course, and it’s guaranteed to make you 
frustrated and discouraged. Very few homework problems are 
of the “plug and chug” variety where you simply put numbers 
into a formula. To work the homework problems successfully, 
you need a better study strategy—either the one outlined above 
or your own—that helps you learn the concepts and the rela-
tionships between the ideas.

Getting the Most Out of Your Textbook
Your textbook provides many features designed to help you learn 
the concepts of physics and solve problems more effectively.

■	 TACTICS BOXES give step-by-step procedures for particu-
lar skills, such as interpreting graphs or drawing special  
diagrams. Tactics Box steps are explicitly illustrated in sub-
sequent worked examples, and these are often the starting 
point of a full Problem-Solving Strategy.

■	 Problem-Solving Strategies are provided for each 
broad class of problems—problems characteristic of a 
chapter or group of chapters. The strategies follow a con-
sistent four-step approach to help you develop confidence 
and proficient problem-solving skills: MODEL, VISUALIZE, 

SOLVE, ASSESS.
■	 Worked EXAMPLES illustrate good problem-solving practices 

through the consistent use of the four-step problem-solving 
approach The worked examples are often very detailed and 
carefully lead you through the reasoning behind the solution 
as well as the numerical calculations.

■	 Stop To Think questions embedded in the chapter allow 
you to quickly assess whether you’ve understood the main 
idea of a section. A correct answer will give you confidence 
to move on to the next section. An incorrect answer will 
alert you to re-read the previous section.

■ � Blue annotations on figures help you better understand what 
the figure is showing. 
They will help you to in-
terpret graphs; translate 
between graphs, math, 
and pictures; grasp dif-
ficult concepts through 
a visual analogy; and 
develop many other im-
portant skills.

■  Schematic Chapter Summaries help you organize what you 
have learned into a hierarchy, from general principles (top) to 
applications (bottom). Side-by-side pictorial, graphical, tex-
tual, and mathematical representations are used to help you 
translate between these key representations.

■	 Each part of the book ends with a KNOWLEDGE STRUCTURE 

designed to help you see the forest rather than just the trees.

Now that you know more about what is expected of you, 
what can you expect of me? That’s a little trickier because the 
book is already written! Nonetheless, the book was prepared 
on the basis of what I think my students throughout the years 
have expected—and wanted—from their physics textbook. 
Further, I’ve listened to the extensive feedback I have received 
from thousands of students like you, and their instructors, who 
used the first three editions of this book.

You should know that these course materials—the text and 
the workbook—are based on extensive research about how stu-
dents learn physics and the challenges they face. The effective-
ness of many of the exercises has been demonstrated through 
extensive class testing. I’ve written the book in an informal 
style that I hope you will find appealing and that will encour-
age you to do the reading. And, finally, I have endeavored to 
make clear not only that physics, as a technical body of knowl-
edge, is relevant to your profession but also that physics is an 
exciting adventure of the human mind.

I hope you’ll enjoy the time we’re going to spend together.

I

The current in a wire is
the same at all points.

I = constant
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OVERVIEW

Why Things Move
Each of the seven parts of this book opens with an overview to give you a 
look ahead, a glimpse at where your journey will take you in the next few 
chapters. It’s easy to lose sight of the big picture while you’re busy negotiating 
the terrain of each chapter. In Part I, the big picture, in a word, is motion.

There are two big questions we must tackle:

■ � How do we describe motion? It is easy to say that an object moves, but it’s 
not obvious how we should measure or characterize the motion if we want 
to analyze it mathematically. The mathematical description of motion is called 
kinematics, and it is the subject matter of Chapters 1 through 4.

■ � How do we explain motion? Why do objects have the particular motion 
they do? Why, when you toss a ball upward, does it go up and then come 
back down rather than keep going up? Are there “laws of nature” that allow 
us to predict an object’s motion? The explanation of motion in terms of its 
causes is called dynamics, and it is the topic of Chapters 5 through 8.

Two key ideas for answering these questions are force (the “cause”) and 
acceleration (the “effect”). A variety of pictorial and graphical tools will be 
developed in Chapters 1 through 5 to help you develop an intuition for the 
connection between force and acceleration. You’ll then put this knowledge to 
use in Chapters 5 through 8 as you analyze motion of increasing complexity.

Another important tool will be the use of models. Reality is extremely com-
plicated. We would never be able to develop a science if we had to keep track 
of every little detail of every situation. A model is a simplified description of reality—
much as a model airplane is a simplified version of a real airplane—used to 
reduce the complexity of a problem to the point where it can be analyzed and 
understood. We will introduce several important models of motion, paying close 
attention, especially in these earlier chapters, to where simplifying assumptions 
are being made, and why.

The “laws of motion” were discovered by Isaac Newton roughly 350 years 
ago, so the study of motion is hardly cutting-edge science. Nonetheless, it is 
still extremely important. Mechanics—the science of motion—is the basis for 
much of engineering and applied science, and many of the ideas introduced 
here will be needed later to understand things like the motion of waves and the 
motion of electrons through circuits. Newton’s mechanics is the foundation of 
much of contemporary science, thus we will start at the beginning.

Motion can be slow and steady, or fast and 
sudden. This rocket, with its rapid acceleration, 
is responding to forces exerted on it by thrust, 
gravity, and the air.

 Newton’s Laws
PART

I
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IN THIS CHAPTER, you will learn the fundamental concepts of motion.

What is a chapter preview?
Each chapter starts with an overview. Think of it as a roadmap  
to help you get oriented and make the most of your studying.
❮❮ LOOKING BACK  A Looking Back reference tells you what material 
from previous chapters is especially important for understanding the 
new topics. A quick review will help your learning. You will find  
additional Looking Back references within the chapter, right at the  
point they’re needed.

Why do we need vectors?
Many of the quantities used to describe 
motion, such as velocity, have both a 
size and a direction. We use vectors to 
represent these quantities. This chapter 
introduces graphical techniques to add and 
subtract vectors. Chapter 3 will explore 
vectors in more detail.

Why are units and significant  
figures important?
Scientists and engineers must communicate 
their ideas to others. To do so, we have to 
agree about the units in which quantities 
are measured. In physics we use metric 
units, called SI units. We also need rules 
for telling others how accurately a quantity 
is known. You will learn the rules for using 
significant figures correctly.

Why is motion important?
The universe is in motion, from the smallest scale of electrons  
and atoms to the largest scale of entire galaxies. We’ll start with 
the motion of everyday objects, such as cars and balls and people. 
Later we’ll study the motions of waves, of atoms in gases, and of 
electrons in circuits. Motion is the one theme that will be with us 
from the first chapter to the last.

Concepts of Motion
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Concepts of Motion

Motion takes many forms. 
The ski jumper seen here is 
an example of translational 
motion.

What is motion?
Before solving motion problems, we must 
learn to describe motion. We will use

■ Motion diagrams
■ Graphs
■ Pictures

Motion concepts introduced in this chapter 
include position, velocity, and acceleration.

a
u

v
u

x0 = v0x = t0 = 0

ax

x1

x
x0

Known

ax = 2.0 m/s2

Find
x1

A
u

A + B
u u

B
u

0.00620 = 6.20 * 10-3
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Before solving motion problems, we must 
learn to describe motion. We will use

■  Motion diagrams
■  Graphs
■  Pictures

Motion concepts introduced in this chapter 
include position, velocity, and acceleration.
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1.1  Motion Diagrams  25

1.1  Motion Diagrams
Motion is a theme that will appear in one form or another throughout this entire 
book. Although we all have intuition about motion, based on our experiences, some 
of the important aspects of motion turn out to be rather subtle. So rather than jumping  
immediately into a lot of mathematics and calculations, this first chapter focuses on 
visualizing motion and becoming familiar with the concepts needed to describe a 
moving object. Our goal is to lay the foundations for understanding motion.

FIGURE 1.1  Four basic types of motion.

Linear motion Circular motion Projectile motion Rotational motion

To begin, let’s define motion as the change of an object’s position with time. FIGURE 1.1  
shows four basic types of motion that we will study in this book. The first three—
linear, circular, and projectile motion—in which the object moves through  
space are called translational motion. The path along which the object moves,  
whether straight or curved, is called the object’s trajectory. Rotational motion 
is somewhat different because there’s movement but the object as a whole doesn’t 
change position. We’ll defer rotational motion until later and, for now, focus on 
translational motion.

Making a Motion Diagram
An easy way to study motion is to make a video of a moving object. A video camera, 
as you probably know, takes images at a fixed rate, typically 30 every second. Each 
separate image is called a frame. As an example, FIGURE 1.2 shows four frames from a 
video of a car going past. Not surprisingly, the car is in a somewhat different position 
in each frame. 

Suppose we edit the video by layering the frames on top of each other, creating the 
composite image shown in FIGURE 1.3. This edited image, showing an object’s position 
at several equally spaced instants of time, is called a motion diagram. As the 
examples below show, we can define concepts such as constant speed, speeding up, 
and slowing down in terms of how an object appears in a motion diagram.

NOTE  It’s important to keep the camera in a fixed position as the object moves by. 
Don’t “pan” it to track the moving object.

FIGURE 1.2  Four frames from a video.

FIGURE 1.3  A motion diagram of the car 
shows all the frames simultaneously.

The same amount of time elapses
between each image and the next.

Examples of motion diagrams

Images that are equally spaced indicate an 
object moving with constant speed.

An increasing distance between the images 
shows that the object is speeding up.

A decreasing distance between the images 
shows that the object is slowing down.
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26  CHAPTER 1  Concepts of Motion

NOTE  Each chapter will have several Stop to Think questions. These questions are 
designed to see if you’ve understood the basic ideas that have been presented. The 
answers are given at the end of the book, but you should make a serious effort to 
think about these questions before turning to the answers.

1.2  Models and Modeling
The real world is messy and complicated. Our goal in physics is to brush aside many of 
the real-world details in order to discern patterns that occur over and over. For example, 
a swinging pendulum, a vibrating guitar string, a sound wave, and jiggling atoms in 
a crystal are all very different—yet perhaps not so different. Each is an example 
of a system moving back and forth around an equilibrium position. If we focus on 
understanding a very simple oscillating system, such as a mass on a spring, we’ll auto-
matically understand quite a bit about the many real-world manifestations of oscillations.

Stripping away the details to focus on essential features is a process called modeling. 
A model is a highly simplified picture of reality, but one that still captures the essence 
of what we want to study. Thus “mass on a spring” is a simple but realistic model of 
almost all oscillating systems.

Models allow us to make sense of complex situations by providing a framework for 
thinking about them. One could go so far as to say that developing and testing models 
is at the heart of the scientific process. Albert Einstein once said, “Physics should 
be as simple as possible—but not simpler.” We want to find the simplest model that 
allows us to understand the phenomenon we’re studying, but we can’t make the model 
so simple that key aspects of the phenomenon get lost.

We’ll develop and use many models throughout this textbook; they’ll be one of our 
most important thinking tools. These models will be of two types:

■■ Descriptive models: What are the essential characteristics and properties of a 
phenomenon? How do we describe it in the simplest possible terms? For example, 
the mass-on-a-spring model of an oscillating system is a descriptive model.

■■ Explanatory models: Why do things happen as they do? Explanatory models, based on 
the laws of physics, have predictive power, allowing us to test—against experimental 
data—whether a model provides an adequate explanation of our observations.

The Particle Model
For many types of motion, such as that of balls, cars, and rockets, the motion of the 
object as a whole is not influenced by the details of the object’s size and shape. All we 
really need to keep track of is the motion of a single point on the object, so we can treat 
the object as if all its mass were concentrated into this single point. An object that can 
be represented as a mass at a single point in space is called a particle. A particle has 
no size, no shape, and no distinction between top and bottom or between front and back.

If we model an object as a particle, we can represent the object in each frame of a 
motion diagram as a simple dot rather than having to draw a full picture. FIGURE 1.4 
shows how much simpler motion diagrams appear when the object is represented as 
a particle. Note that the dots have been numbered 0, 1, 2, . . . to tell the sequence in 
which the frames were exposed.

STOP TO THINK 1.1  Which car is going faster, A or B? Assume there are equal intervals of time  
between the frames of both videos.

We can model an airplane’s takeoff as a  
particle (a descriptive model) undergoing 
constant acceleration (a descriptive  
model) in response to constant forces  
(an explanatory model).

FIGURE 1.4  Motion diagrams in which the 
object is modeled as a particle.

0
1

2

3

(a) Motion diagram of a rocket launch

(b) Motion diagram of a car stopping

Numbers show
the order in
which the frames
were exposed.

4

0

The same amount of time elapses
between each image and the next.

1 2 3 4

Car A Car B
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1.3  Position, Time, and Displacement  27

Treating an object as a particle is, of course, a simplification of reality—but that’s 
what modeling is all about. The particle model of motion is a simplification in 
which we treat a moving object as if all of its mass were concentrated at a single point. 
The particle model is an excellent approximation of reality for the translational motion 
of cars, planes, rockets, and similar objects.

Of course, not everything can be modeled as a particle; models have their limits. 
Consider, for example, a rotating gear. The center doesn’t move at all while each tooth is 
moving in a different direction. We’ll need to develop new models when we get to new 
types of motion, but the particle model will serve us well throughout Part I of this book.

STOP TO THINK 1.2  Three motion diagrams 
are shown. Which is a dust particle settling to  
the floor at constant speed, which is a ball dropped 
from the roof of a building, and which is a  
descending rocket slowing to make a soft landing 
on Mars?

1.3  Position, Time, and Displacement
To use a motion diagram, you would like to know where the object is (i.e., its position) 
and when the object was at that position (i.e., the time). Position measurements can 
be made by laying a coordinate-system grid over a motion diagram. You can then 
measure the 1x, y2 coordinates of each point in the motion diagram. Of course, the 
world does not come with a coordinate system attached. A coordinate system is an 
artificial grid that you place over a problem in order to analyze the motion. You place 
the origin of your coordinate system wherever you wish, and different observers of a 
moving object might all choose to use different origins.

Time, in a sense, is also a coordinate system, although you may never have thought of 
time this way. You can pick an arbitrary point in the motion and label it ;t = 0 seconds.” 
This is simply the instant you decide to start your clock or stopwatch, so it is the origin of your 
time coordinate. Different observers might choose to start their clocks at different moments. 
A video frame labeled ;t = 4 seconds” was taken 4 seconds after you started your clock.

We typically choose t = 0 to represent the “beginning” of a problem, but the object 
may have been moving before then. Those earlier instants would be measured as neg-
ative times, just as objects on the x-axis to the left of the origin have negative values of 
position. Negative numbers are not to be avoided; they simply locate an event in space 
or time relative to an origin.

To illustrate, FIGURE 1.5a shows a sled sliding down a snow-covered hill. FIGURE 1.5b is 
a motion diagram for the sled, over which we’ve drawn an xy-coordinate system. You 
can see that the sled’s position is 1x3, y32 = 115 m, 15 m2 at time t3 = 3 s. Notice how 
we’ve used subscripts to indicate the time and the object’s position in a specific frame 
of the motion diagram.

NOTE  The frame at t = 0 is frame 0. That is why the fourth frame is labeled 3.

Another way to locate the sled is to draw its position vector: an arrow from the 
origin to the point representing the sled. The position vector is given the symbol r u. 
Figure 1.5b shows the position vector r u

3 = 121 m, 45°2. The position vector r u does not tell 
us anything different than the coordinates 1x, y2. It simply provides the information 
in an alternative form.

FIGURE 1.5  Motion diagram of a sled with 
frames made every 1 s.

(a)

The sled’s position in frame 3
can be speci�ed with coordinates.

Alternatively, the position
can be speci�ed by the
position vector.

r3 = (21 m, 45°)

(x3, y3) = (15 m, 15 m)
t3 = 3 s

u

(b)

45°
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28  CHAPTER 1  Concepts of Motion

Scalars and Vectors
Some physical quantities, such as time, mass, and temperature, can be described com-
pletely by a single number with a unit. For example, the mass of an object is 6 kg and 
its temperature is 30°C. A single number (with a unit) that describes a physical quantity 
is called a scalar. A scalar can be positive, negative, or zero.

Many other quantities, however, have a directional aspect and cannot be described 
by a single number. To describe the motion of a car, for example, you must specify 
not only how fast it is moving, but also the direction in which it is moving. A quantity 
having both a size (the “How far?” or “How fast?”) and a direction (the “Which way?”) 
is called a vector. The size or length of a vector is called its magnitude. Vectors will 
be studied thoroughly in Chapter 3, so all we need for now is a little basic information.

We indicate a vector by drawing an arrow over the letter that represents the quantity. 
Thus r u and A

u
 are symbols for vectors, whereas r and A, without the arrows, are symbols 

for scalars. In handwritten work you must draw arrows over all symbols that represent 
vectors. This may seem strange until you get used to it, but it is very important because 
we will often use both r and r u, or both A and A

u
, in the same problem, and they mean 

different things! Note that the arrow over the symbol always points to the right, regardless 
of which direction the actual vector points. Thus we write r u or A

u
, never rz or A

z
.

Displacement
We said that motion is the change in an object’s position with time, but how do we 
show a change of position? A motion diagram is the perfect tool. FIGURE 1.6 is the 
motion diagram of a sled sliding down a snow-covered hill. To show how the sled’s 
position changes between, say, t3 = 3 s and t4 = 4 s, we draw a vector arrow between 
the two dots of the motion diagram. This vector is the sled’s displacement, which 
is given the symbol ∆  r u. The Greek letter delta 1∆2 is used in math and science to 
indicate the change in a quantity. In this case, as we’ll show, the displacement ∆  r u is 
the change in an object’s position.

NOTE  ∆ r u is a single symbol. You cannot cancel out or remove the ∆.

Notice how the sled’s position vector r u
4 is a combination of its early position r u

3 with 
the displacement vector ∆r u. In fact, r u

4 is the vector sum of the vectors r u
3 and ∆r u. This 

is written

	 r u
4 = r u

3 + ∆  r u	 (1.1)

Here we’re adding vector quantities, not numbers, and vector addition differs from 
“regular” addition. We’ll explore vector addition more thoroughly in Chapter 3, but for 
now you can add two vectors A

u
 and B

u
 with the three-step procedure shown in Tactics 

Box 1.1.

FIGURE 1.6  The sled undergoes a  
displacement ∆r u from position r u3  
to position r  

u
4. 

The sled’s displacement between
t3 = 3 s and t4 = 4 s is the vector 
drawn from one postion to the next.

t3 = 3 s

t4 = 4 s

r4
u

r3
u

∆r
u

y (m)

x (m)0

10

20

100 20 30

TACTICS BOX 1.1

Vector addition
1

2

3

To add B to A: Draw A.

Place the tail of
B at the tip of A.

Draw an arrow from
the tail of A to the
tip of B. This is
vector A + B. A + B

A
u

B
u

A
u

A
u

A
u

B
u
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u
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u

u

u

u u
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1.3  Position, Time, and Displacement  29

If you examine Figure 1.6, you’ll see that the steps of Tactics Box 1.1 are exactly 
how r u

3 and ∆r u are added to give r u
4.

NOTE  A vector is not tied to a particular location on the page. You can move a vector 
around as long as you don’t change its length or the direction it points. Vector B

u
 is 

not changed by sliding it to where its tail is at the tip of A
u

.

Equation 1.1 told us that r u
4 = r u

3 + ∆r u. This is easily rearranged to give a more pre-
cise definition of displacement: The displacement 𝚫r u of an object as it moves from 
an initial position r u

i to a final position r u
f is

	 ∆r u = r u
f - r u

i	 (1.2)

Graphically, 𝚫r u is a vector arrow drawn from position r  

u
i to position r u

f .

NOTE  To be more general, we’ve written Equation 1.2 in terms of an initial position 
and a final position, indicated by subscripts i and f. We’ll frequently use i and f when 
writing general equations, then use specific numbers or values, such as 3 and 4, when 
working a problem.

This definition of ∆r u involves vector subtraction. With numbers, subtraction is the 
same as the addition of a negative number. That is, 5 - 3 is the same as 5 + 1-32. Sim-
ilarly, we can use the rules for vector addition to find A

u
- B

u
= A

u
+ 1-B

u2 if we first 
define what we mean by -B

u
. As FIGURE 1.7 shows, the negative of vector B

u
 is a vector with 

the same length but pointing in the opposite direction. This makes sense because 
B
u

- B
u

= B
u

+ 1-B
u2 = 0

u
, where 0

u
, a vector with zero length, is called the zero vector.

FIGURE 1.7  The negative of a vector.

The zero vector 0 has no length.

B + (-B) = 0 because the sum 
returns to the starting point.

-B

u

uB
u

u u

u

Vector -B has the same length as
B but points in the opposite direction.

u

u

TACTICS BOX 1.2

Vector subtraction

Place the tail of
-B at the tip of A.

Draw an arrow from
the tail of A to the
tip of -B. This is
vector A - B.

A
u

u

u

u

A
u

A
u

A
u B

u

To subtract B from A: Draw A.1

2

3

-B

A - B

uuu

u

-B
u

u

u u u

u

FIGURE 1.8 uses the vector subtraction rules of Tactics Box 1.2 to prove that the 
displacement ∆r u is simply the vector connecting the dots of a motion diagram.

▼ FIGURE 1.8  Using vector subtraction to 
find ∆r u = r u

f - r u
i. 

rf

-ri

f

i

Position
vectors

Origin

(a) Initial and �nal position vectors

Two dots of
a motion diagram

ri

f

i

Draw -ri at the 
tip of rf. 

2

3 Draw rf - ri. This is ∆r. 

1 Draw rf.

f

i

rf - ri

Finally, slide ∆r back to the 
motion diagram. It is a vector 
from dot i to dot f.

(b) Procedure for �nding the particle’s displacement vector ∆r

u

u

-ri
u

u

rf
urf

u

u
ri
u

ri
u

u

u u u

u

u

u

u u
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Motion Diagrams with Displacement Vectors
The first step in analyzing a motion diagram is to determine all of the displacement 
vectors. As Figure 1.8 shows, the displacement vectors are simply the arrows connecting 
each dot to the next. Label each arrow with a vector symbol ∆r u

n  , starting with n = 0. 
FIGURE 1.9 shows the motion diagrams of Figure 1.4 redrawn to include the displacement 
vectors. You do not need to show the position vectors.

NOTE  When an object either starts from rest or ends at rest, the initial or final dots 
are as close together as you can draw the displacement vector arrow connecting 
them. In addition, just to be clear, you should write “Start” or “Stop” beside the 
initial or final dot. It is important to distinguish stopping from merely slowing down.

Now we can conclude, more precisely than before, that, as time proceeds:

■■ An object is speeding up if its displacement vectors are increasing in length.
■■ An object is slowing down if its displacement vectors are decreasing in length.

FIGURE 1.9  Motion diagrams with the 
displacement vectors.

(a) Rocket launch

(b) Car stopping 

Start

Stop

∆r3

∆r2

∆r1

∆r0

∆r1 ∆r2 ∆r3

u

u

u

u

∆r0
u u u u

A stopwatch is used to measure a time 
interval.

EXAMPLE 1.1  |  Headfirst into the snow
Alice is sliding along a smooth, icy road on her sled when she suddenly runs headfirst 
into a large, very soft snowbank that gradually brings her to a halt. Draw a motion 
diagram for Alice. Show and label all displacement vectors.

MODEL  The details of Alice and the sled—their size, shape, color, and so on—are not 
relevant to understanding their overall motion. So we can model Alice and the sled as 
one particle.

VISUALIZE  FIGURE 1.10 shows a motion diagram. The problem statement suggests that the 
sled’s speed is very nearly constant until it hits the snowbank. Thus the displacement vectors 
are of equal length as Alice slides along the icy road. She begins slowing when she hits the 
snowbank, so the displacement vectors then get shorter until the sled stops. We’re told that her 
stop is gradual, so we want the vector lengths to get shorter gradually rather than suddenly.

FIGURE 1.10  The motion diagram of Alice and the sled.

The displacement vectors
are getting shorter, so she’s
slowing down.

Stop

Hits snowbank

This is motion at constant speed
because the displacement vectors 
are a constant length.

∆r0 ∆r1 ∆r2 ∆r3
u u u u ∆r4

u ∆r5
u ∆r6

u

x

Time Interval
It’s also useful to consider a change in time. For example, the clock readings of two frames 
of film might be t1 and t2. The specific values are arbitrary because they are timed relative 
to an arbitrary instant that you chose to call t = 0. But the time interval ∆t = t2 - t1 is not 
arbitrary. It represents the elapsed time for the object to move from one position to the next.

The time interval 𝚫t ∙ tf ∙ ti measures the elapsed time as an object moves 
from an initial position r u

i at time ti to a final position r u
f at time tf . The value of 𝚫t 

is independent of the specific clock used to measure the times.
To summarize the main idea of this section, we have added coordinate systems 

and clocks to our motion diagrams in order to measure when each frame was exposed 
and where the object was located at that time. Different observers of the motion may 
choose different coordinate systems and different clocks. However, all observers find 
the same values for the displacements ∆ r u and the time intervals ∆t because these are 
independent of the specific coordinate system used to measure them.
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1.4  Velocity
It’s no surprise that, during a given time interval, a speeding bullet travels farther than 
a speeding snail. To extend our study of motion so that we can compare the bullet to 
the snail, we need a way to measure how fast or how slowly an object moves.

One quantity that measures an object’s fastness or slowness is its average speed, 
defined as the ratio

	 average speed =
distance traveled

time interval spent traveling
=

d
∆t

	 (1.3)

If you drive 15 miles (mi) in 30 minutes 11
2 h2, your average speed is

	 average speed =
15 mi

1
2 h

= 30 mph	 (1.4)

Although the concept of speed is widely used in our day-to-day lives, it is not a 
sufficient basis for a science of motion. To see why, imagine you’re trying to land a jet 
plane on an aircraft carrier. It matters a great deal to you whether the aircraft carrier is 
moving at 20 mph (miles per hour) to the north or 20 mph to the east. Simply knowing 
that the boat’s speed is 20 mph is not enough information!

It’s the displacement ∆r u, a vector quantity, that tells us not only the distance trav-
eled by a moving object, but also the direction of motion. Consequently, a more useful 
ratio than d /∆t is the ratio ∆r u/∆t. In addition to measuring how fast an object moves, 
this ratio is a vector that points in the direction of motion.

It is convenient to give this ratio a name. We call it the average velocity, and it 
has the symbol v 

u
avg. The average velocity of an object during the time interval 𝚫  t, 

in which the object undergoes a displacement 𝚫r u, is the vector

	 v 

u
avg =

∆r u

∆t
	 (1.5)

An object’s average velocity vector points in the same direction as the displacement 
vector 𝚫  r u. This is the direction of motion.

NOTE  In everyday language we do not make a distinction between speed and 
velocity, but in physics the distinction is very important. In particular, speed is simply 
“How fast?” whereas velocity is “How fast, and in which direction?” As we go along 
we will be giving other words more precise meanings in physics than they have in 
everyday language.

As an example, FIGURE 1.11a shows two ships that move 5 miles in 15 minutes. Using 
Equation 1.5 with ∆t = 0.25 h, we find

v 

u
avg  A = (20 mph, north)

v 

u
avg  B = (20 mph, east)	

(1.6)

Both ships have a speed of 20 mph, but their velocities are different. Notice how the 
velocity vectors in FIGURE 1.11b point in the direction of motion.

NOTE  Our goal in this chapter is to visualize motion with motion diagrams. Strictly 
speaking, the vector we have defined in Equation 1.5, and the vector we will show on 
motion diagrams, is the average velocity v 

u
avg. But to allow the motion diagram to be 

a useful tool, we will drop the subscript and refer to the average velocity as simply v 

u. 
Our definitions and symbols, which somewhat blur the distinction between average 
and instantaneous quantities, are adequate for visualization purposes, but they’re not 
the final word. We will refine these definitions in Chapter 2, where our goal will be 
to develop the mathematics of motion.

The victory goes to the runner with the 
highest average speed.

FIGURE 1.11  The displacement vectors 
and velocities of ships A and B.

vavg A = (20 mph, north)
u

(a)

vavg B = (20 mph, east)

(b)

A

B

∆rA = (5 mi, north)

∆rB = (5 mi, east)

The velocity vectors point
in the direction of motion.

u

u

u
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Motion Diagrams with Velocity Vectors
The velocity vector points in the same direction as the displacement ∆ r u, and the 
length of v 

u is directly proportional to the length of ∆ r u. Consequently, the vectors 
connecting each dot of a motion diagram to the next, which we previously labeled as 
displacements, could equally well be identified as velocity vectors.

This idea is illustrated in FIGURE 1.12, which shows four frames from the motion 
diagram of a tortoise racing a hare. The vectors connecting the dots are now labeled 
as velocity vectors v 

u. The length of a velocity vector represents the average speed 
with which the object moves between the two points. Longer velocity vectors indicate 
faster motion. You can see that the hare moves faster than the tortoise.

Notice that the hare’s velocity vectors do not change; each has the same length 
and direction. We say the hare is moving with constant velocity. The tortoise is also 
moving with its own constant velocity.

FIGURE 1.12  Motion diagram of the  
tortoise racing the hare.

v1
u

v2
u

v0
u

v1
u

v2
u

v0
u

The length of each arrow represents
the average speed. The hare moves
faster than the tortoise.

These are average velocity vectors.

Hare

Tortoise

EXAMPLE 1.2  |  Accelerating up a hill
The light turns green and a car accelerates, starting from rest, up a 20° hill. Draw a  
motion diagram showing the car’s velocity.

MODEL  Use the particle model to represent the car as a dot.

VISUALIZE  The car’s motion takes place along a straight line, but the line is neither 
horizontal nor vertical. A motion diagram should show the object moving with the 
correct orientation—in this case, at an angle of 20°. FIGURE 1.13 shows several frames 
of the motion diagram, where we see the car speeding up. The car starts from rest, so 
the first arrow is drawn as short as possible and the first dot is labeled “Start.” The 
displacement vectors have been drawn from each dot to the next, but then they are 
identified and labeled as average velocity vectors v 

u.

 

FIGURE 1.13  Motion diagram of a car accelerating up a hill.

v
u

This labels the whole row of
vectors as velocity vectors.

The velocity vectors
are getting longer, so
the car is speeding up.Start

EXAMPLE 1.3  |  A rolling soccer ball
Marcos kicks a soccer ball. It rolls along the ground until stopped 
by Jose. Draw a motion diagram of the ball.

MODEL  This example is typical of how many problems in 
science and engineering are worded. The problem does not 
give a clear statement of where the motion begins or ends. Are 
we interested in the motion of the ball just during the time it is 
rolling between Marcos and Jose? What about the motion as 
Marcos kicks it (ball rapidly speeding up) or as Jose stops it 
(ball rapidly slowing down)? The point is that you will often 
be called on to make a reasonable interpretation of a problem 
statement. In this problem, the details of kicking and stopping 
the ball are complex. The motion of the ball across the ground 
is easier to describe, and it’s a motion you might expect to learn 
about in a physics class. So our interpretation is that the motion  
diagram should start as the ball leaves Marcos’s foot (ball  
already moving) and should end the instant it touches Jose’s foot 

(ball still moving). In between, the ball will slow down a little. We 
will model the ball as a particle.

VISUALIZE  With this interpretation in mind, FIGURE 1.14 shows 
the motion diagram of the ball. Notice how, in contrast to the car 
of Figure 1.13, the ball is already moving as the motion diagram 
video begins. As before, the average velocity vectors are found by 
connecting the dots. You can see that the average velocity vectors 
get shorter as the ball slows. Each v 

u is different, so this is not 
constant-velocity motion.

 

FIGURE 1.14  Motion diagram of a soccer ball rolling from 
Marcos to Jose.

v
u

Marcos Jose

The velocity vectors are gradually getting shorter.
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STOP TO THINK 1.3  A particle moves from position 1 to position 2 during the time 
interval ∆t. Which vector shows the particle’s average velocity?

(e)(d)(c)(b)(a)

1

2

y

x

1.5  Linear Acceleration
Position, time, and velocity are important concepts, and at first glance they might appear 
to be sufficient to describe motion. But that is not the case. Sometimes an object’s 
velocity is constant, as it was in Figure 1.12. More often, an object’s velocity changes 
as it moves, as in Figures 1.13 and  1.14. We need one more motion concept to describe 
a change in the velocity.

Because velocity is a vector, it can change in two possible ways:

1.	 The magnitude can change, indicating a change in speed; or
2.	 The direction can change, indicating that the object has changed direction.

We will concentrate for now on the first case, a change in speed. The car accel-
erating up a hill in Figure 1.13 was an example in which the magnitude of the  
velocity vector changed but not the direction. We’ll return to the second case in 
Chapter 4.

When we wanted to measure changes in position, the ratio ∆r u/∆t was useful. 
This ratio is the rate of change of position. By analogy, consider an object whose 
velocity changes from an initial v 

u
i to a final v 

u
f during the time interval ∆t. Just 

as ∆r u = r u
f - r u

i is the change of position, the quantity ∆v 

u = v 

u
f - v 

u
i  is the change 

of velocity. The ratio ∆v 

u/∆t is then the rate of change of velocity. It has a large 
magnitude for objects that speed up quickly and a small magnitude for objects that 
speed up slowly.

The ratio ∆v 

u
 /∆t is called the average acceleration, and its symbol is auavg. The 

average acceleration of an object during the time interval 𝚫t, in which the object’s 
velocity changes by 𝚫v 

u, is the vector

	 auavg =
∆v 

u

∆t
	 (1.7)

The average acceleration vector points in the same direction as the vector 𝚫 v u.
Acceleration is a fairly abstract concept. Yet it is essential to develop a good  

intuition about acceleration because it will be a key concept for understanding why 
objects move as they do. Motion diagrams will be an important tool for developing 
that intuition.

NOTE  As we did with velocity, we will drop the subscript and refer to the average 
acceleration as simply au. This is adequate for visualization purposes, but not the 
final word. We will refine the definition of acceleration in Chapter 2.

The Audi TT accelerates from 0 to 60 mph  
in 6 s.
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Finding the Acceleration Vectors  
on a Motion Diagram
Let’s look at how we can determine the average acceleration vector au from a motion 
diagram. From its definition, Equation 1.7, we see that au points in the same direction 
as ∆vu, the change of velocity. This critical idea is the basis for a technique to find au.

Notice that the acceleration vector goes beside the middle dot, not beside the velocity 
vectors. This is because each acceleration vector is determined by the difference 
between the two velocity vectors on either side of a dot. The length of au does not have 
to be the exact length of ∆v 

u; it is the direction of au that is most important.
The procedure of Tactics Box 1.3 can be repeated to find au at each point in the 

motion diagram. Note that we cannot determine au at the first and last points because 
we have only one velocity vector and can’t find ∆v 

u.

The Complete Motion Diagram
You’ve now seen several Tactics Boxes that help you accomplish specific tasks. Tactics 
Boxes will appear in nearly every chapter in this book. We’ll also, where appropriate,  
provide Problem-Solving Strategies.

TACTICS BOX 1.3

Finding the acceleration vector

a
u

1

2

3

4 Return to the original motion 
diagram. Draw a vector at the 
middle dot in the direction of
∆v; label it a. This is the average
acceleration at the midpoint
between vi and vf. 

Draw the velocity vector vf.

To �nd the acceleration as the
velocity changes from vi to vf,
we must determine the change
of velocity ∆v = vf - vi.

vf

vi

vf

vf

-vi

vf

∆v

vf

vi

u

u

u

u

u

u

u

u

-vi
u

u

u

u

u

u u

Draw ∆v = vf - vi

 = vf + (-vi)
This is the direction of a.  

u u u

u u

u

Draw -vi at the tip of vf.
u u

u u

u u u

Exercises 21–24

Many Tactics Boxes will refer you to exercises in the 
Student Workbook where you can practice the new skill.
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Examples of Motion Diagrams
Let’s look at some examples of the full strategy for drawing motion diagrams.

PROBLEM-SOLVING STRATEGY 1.1

Motion diagrams
MODEL  Determine whether it is appropriate to model the moving object as a particle. 
Make simplifying assumptions when interpreting the problem statement.

VISUALIZE  A complete motion diagram consists of:

■■ The position of the object in each frame of the video, shown as a dot. Use five 
or six dots to make the motion clear but without overcrowding the picture. 
More complex motions may need more dots.

■■ The average velocity vectors, found by connecting each dot in the motion dia-
gram to the next with a vector arrow. There is one velocity vector linking each 
two position dots. Label the row of velocity vectors v 

u.
■■ The average acceleration vectors, found using Tactics Box 1.3. There is one 

acceleration vector linking each two velocity vectors. Each acceleration vector 
is drawn at the dot between the two velocity vectors it links. Use 0

u
 to indicate a 

point at which the acceleration is zero. Label the row of acceleration vectors au.

STOP TO THINK 1.4  The velocity of a particle changes from 
y 

u
1 to y 

u
2 as shown in the figure. Which of the following shows 

the correct representation of the acceleration vector a 

u?

(a)

a
u

(b)

a
u

(c)

a
u

(d)

a
u

EXAMPLE 1.4  |  The first astronauts land on Mars
A spaceship carrying the first astronauts to Mars descends safely 
to the surface. Draw a motion diagram for the last few seconds of 
the descent.

MODEL  The spaceship is small in comparison with the distance 
traveled, and the spaceship does not change size or shape, so it’s 
reasonable to model the spaceship as a particle. We’ll assume that 
its motion in the last few seconds is straight down. The problem 
ends as the spacecraft touches the surface.

VISUALIZE  FIGURE 1.15 shows a complete motion diagram as the 
spaceship descends and slows, using its rockets, until it comes 
to rest on the surface. Notice how the dots get closer together as 
it slows. The inset uses the steps of Tactics Box 1.3 (numbered  
circles) to show how the acceleration vector au is determined at one 
point. All the other acceleration vectors will be similar because 
for each pair of velocity vectors the earlier one is longer than the 
later one.

FIGURE 1.15  Motion diagram of a spaceship landing on Mars.

v and a point in opposite 
directions. The object is 
slowing down.

v
u

u

a
u

u

a
u

∆v

vi
u

-vi
u

vf
uvf

u

Stops

1

2 3

4
u

x

y1
u

y2
u
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Notice something interesting in Figures 1.15 and  1.16. Where the object is speeding 
up, the acceleration and velocity vectors point in the same direction. Where the object 
is slowing down, the acceleration and velocity vectors point in opposite directions. 
These results are always true for motion in a straight line. For motion along a line:

■■ An object is speeding up if and only if  v 

u and au point in the same direction.
■■ An object is slowing down if and only if  v 

u and au point in opposite directions.
■■ An object’s velocity is constant if and only if  au ∙ 0

u
.

NOTE  In everyday language, we use the word accelerate to mean “speed up” and 
the word decelerate to mean “slow down.” But speeding up and slowing down are both 
changes in the velocity and consequently, by our definition, both are accelerations. 
In physics, acceleration refers to changing the velocity, no matter what the change 
is, and not just to speeding up.

EXAMPLE 1.6  |  Tossing a ball
Draw the motion diagram of a ball tossed straight up in the air.

MODEL  This problem calls for some interpretation. Should we 
include the toss itself, or only the motion after the ball is released? 
Should we include the ball hitting the ground? It appears that this 
problem is really concerned with the ball’s motion through the air. 
Consequently, we begin the motion diagram at the instant that the 
tosser releases the ball and end the diagram at the instant the ball 
hits the ground. We will consider neither the toss nor the impact. 
And, of course, we will model the ball as a particle.

VISUALIZE  We have a slight difficulty here because the ball retraces 
its route as it falls. A literal motion diagram would show the upward 
motion and downward motion on top of each other, leading to 
confusion. We can avoid this difficulty by horizontally separating 
the upward motion and downward motion diagrams. This will not 
affect our conclusions because it does not change any of the vectors. 
FIGURE 1.17 shows the motion diagram drawn this way. Notice that 
the very top dot is shown twice—as the end point of the upward 
motion and the beginning point of the downward motion.

FIGURE 1.16  Motion diagram of a skier.

∆v = 0

0
u

0
u

u

v
u

a
u

a
u

a
u

vi
u

vi
u

vf
u

vf
u

vf
u

vf
u

v and a point in the same direction. 
The object is speeding up.

-vi
u

-vi
u

u ∆v
u

u u

EXAMPLE 1.5  |  Skiing through the woods
A skier glides along smooth, horizontal snow at constant speed, then speeds up going 
down a hill. Draw the skier’ motion diagram.

MODEL  Model the skier as a particle. It’s reasonable to assume that the downhill slope 
is a straight line. Although the motion as a whole is not linear, we can treat the skier’s 
motion as two separate linear motions.

VISUALIZE  FIGURE 1.16 shows a complete motion diagram of the skier. The dots are 
equally spaced for the horizontal motion, indicating constant speed; then the dots get 
farther apart as the skier speeds up going down the hill. The insets show how the average 
acceleration vector au is determined for the horizontal motion and along the slope. All the 
other acceleration vectors along the slope will be similar to the one shown because each 
velocity vector is longer than the preceding one. Notice that we’ve explicitly written 0

u
 

for the acceleration beside the dots where the velocity is constant. The acceleration at the 
point where the direction changes will be considered in Chapter 4.
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The ball slows down as it rises. You’ve learned that the  
acceleration vectors point opposite the velocity vectors for an object 
that is slowing down along a line, and they are shown accordingly.  
Similarly, au and v 

u point in the same direction as the falling ball 
speeds up. Notice something interesting: The acceleration vectors 
point downward both while the ball is rising and while it is falling. 
Both “speeding up” and “slowing down” occur with the same  
acceleration vector. This is an important conclusion, one worth 
pausing to think about.

Now let’s look at the top point on the ball’s trajectory. The 
velocity vectors point upward but are getting shorter as the ball  
approaches the top. As the ball starts to fall, the velocity vectors 
point downward and are getting longer. There must be a moment—
just an instant as v 

u switches from pointing up to pointing down—
when the velocity is zero. Indeed, the ball’s velocity is zero for an 
instant at the precise top of the motion!

But what about the acceleration at the top? The inset shows how 
the average acceleration is determined from the last upward velocity 
before the top point and the first downward velocity. We find that 
the acceleration at the top is pointing downward, just as it does 
elsewhere in the motion.

Many people expect the acceleration to be zero at the highest 
point. But the velocity at the top point is changing—from up to 
down. If the velocity is changing, there must be an acceleration. 
A downward-pointing acceleration vector is needed to turn the 
velocity vector from up to down. Another way to think about this 
is to note that zero acceleration would mean no change of velocity. 
When the ball reached zero velocity at the top, it would hang there 
and not fall if the acceleration were also zero!

FIGURE 1.17  Motion diagram of a ball tossed straight up in the air.
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Finding a while
going down

Finding a while
going up

u

u

For clarity, we displace the upward and downward 
motions. They really occur along the same line.

The topmost point is 
shown twice for clarity.

The acceleration at
the top is not zero.

Finding a at the top
u

u

u

u

x

1.6  Motion in One Dimension
An object’s motion can be described in terms of three fundamental quantities: its 
position r u, velocity v 

u, and acceleration au. These are vectors, but for motion in one 
dimension, the vectors are restricted to point only “forward” or “backward.” Conse-
quently, we can describe one-dimensional motion with the simpler quantities x, vx , and 
ax (or y, vy , and ay). However, we need to give each of these quantities an explicit sign, 
positive or negative, to indicate whether the position, velocity, or acceleration vector 
points forward or backward.

Determining the Signs of Position, Velocity,  
and Acceleration
Position, velocity, and acceleration are measured with respect to a coordinate system, 
a grid or axis that you impose on a problem to analyze the motion. We will find it 
convenient to use an x-axis to describe both horizontal motion and motion along an 
inclined plane. A y-axis will be used for vertical motion. A coordinate axis has two 
essential features:

1.	 An origin to define zero; and
2.	 An x or y label (with units) to indicate the positive end of the axis.

In this textbook, we will follow the convention that the positive end of an x-axis is to 
the right and the positive end of a y-axis is up. The signs of position, velocity, and 
acceleration are based on this convention.
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FIGURE 1.18  One of these objects is 
speeding up, the other slowing down, but 
they both have a positive acceleration ax. 

a
u

v
u

a
u

v
u

x
x 7 0 vx 6 0 ax 7 00

x
x 7 0 vx 7 0 ax 7 00

(a) Speeding up to the right

(b) Slowing down to the left

TACTICS BOX 1.4

Determining the sign of the position, velocity, and acceleration

a
u

a
u

a
u

a
u

v
u

v
u

v
u

v
u

x x 7 0

y 7 0 y 6 0

Position to right of origin.

Position above origin. Position below origin.

vy 7 0 vy 6 0

Direction of motion is up. Direction of motion is down.

ay 7 0 ay 6 0

Acceleration vector points up. Acceleration vector points down.

Position to left of origin.

Direction of motion is to the right.

Direction of motion is to the left.

Acceleration vector points to the right.

Acceleration vector points to the left.

x 6 0

vx 7 0

vx 6 0

ax 7 0

ax 6 0

0

y

0

y

0
x

0

The sign of position (x or y) tells us where an object is.

The sign of velocity (vx or vy) tells us which direction 
the object is moving.

The sign of acceleration (ax or ay) tells us which way 
the acceleration vector points, not whether the object 
is speeding up or slowing down.

Exercises 30–31

Acceleration is where things get a bit tricky. A natural tendency is to think that a 
positive value of ax or ay describes an object that is speeding up while a negative value 
describes an object that is slowing down (decelerating). However, this interpretation 
does not work.

Acceleration is defined as auavg = ∆v 

u
 /∆t. The direction of au can be determined by 

using a motion diagram to find the direction of ∆v 

u. The one-dimensional acceleration 
ax (or ay) is then positive if the vector au points to the right (or up), negative if au points 
to the left (or down).

FIGURE 1.18 shows that this method for determining the sign of a does not conform to 
the simple idea of speeding up and slowing down. The object in Figure 1.18a has a positive 
acceleration 1ax 7 02 not because it is speeding up but because the vector au points in the 
positive direction. Compare this with the motion diagram of Figure 1.18b. Here the object is 
slowing down, but it still has a positive acceleration 1ax 7 02 because au points to the right.

In the previous section, we found that an object is speeding up if v 

u and au point in the 
same direction, slowing down if they point in opposite directions. For one-dimensional 
motion this rule becomes:

■■ An object is speeding up if and only if vx and ax have the same sign.
■■ An object is slowing down if and only if vx and ax have opposite signs.
■■ An object’s velocity is constant if and only if ax = 0.

Notice how the first two of these rules are at work in Figure 1.18.

Position-versus-Time Graphs
FIGURE 1.19 is a motion diagram, made at 1 frame per minute, of a student walking to 
school. You can see that she leaves home at a time we choose to call t = 0 min and 
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makes steady progress for a while. Beginning at t = 3 min there is a period where the 
distance traveled during each time interval becomes less—perhaps she slowed down 
to speak with a friend. Then she picks up the pace, and the distances within each interval 
are longer.

Figure 1.19 includes a coordinate axis, and you can see that every dot in a motion 
diagram occurs at a specific position. TABLE 1.1 shows the student’s positions at differ-
ent times as measured along this axis. For example, she is at position x = 120 m at 
t = 2 min.

The motion diagram is one way to represent the student’s motion. Another is to 
make a graph of the measurements in Table 1.1. FIGURE 1.20a is a graph of x versus t 
for the student. The motion diagram tells us only where the student is at a few discrete 
points of time, so this graph of the data shows only points, no lines.

NOTE  A graph of “a versus b” means that a is graphed on the vertical axis and b 
on the horizontal axis. Saying “graph a versus b” is really a shorthand way of saying 
“graph a as a function of b.”

TABLE 1.1 Measured positions of a student 
walking to school

Time  
t (min)

Position  
x (m)

Time  
t (min)

Position 
x (m)

0     0 5 220

1   60 6 240

2 120 7 340

3 180 8 440

4 200 9 540

FIGURE 1.19  The motion diagram of a student walking to school and a coordinate axis for 
making measurements.

x (m)
0 100

1 frame per minute

200 300 400 500

t = 0 min

FIGURE 1.20  Position graphs of the student’s motion.

t (min) t (min)

x (m) x (m)

0 2 4 6 8 10

600

400

200

0
0 2 4 6 8 10

600

400

200

0

(a) (b)
Dots show the student’s position
at discrete instants of time.

A continuous line shows her
position at all instants of time.

However, common sense tells us the following. First, the student was somewhere 
specific at all times. That is, there was never a time when she failed to have a well-defined 
position, nor could she occupy two positions at one time. (As reasonable as this belief 
appears to be, it will be severely questioned and found not entirely accurate when 
we get to quantum physics!) Second, the student moved continuously through all 
intervening points of space. She could not go from x = 100 m to x = 200 m without 
passing through every point in between. It is thus quite reasonable to believe that 
her motion can be shown as a continuous line passing through the measured points, 
as shown in FIGURE 1.20b. A continuous line or curve showing an object’s position as 
a function of time is called a position-versus-time graph or, sometimes, just a 
position graph.

NOTE  A graph is not a “picture” of the motion. The student is walking along a 
straight line, but the graph itself is not a straight line. Further, we’ve graphed her 
position on the vertical axis even though her motion is horizontal. Graphs are abstract 
representations of motion. We will place significant emphasis on the process of 
interpreting graphs, and many of the exercises and problems will give you a chance 
to practice these skills.
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1.7  Solving Problems in Physics
Physics is not mathematics. Math problems are clearly stated, such as “What is 2 + 2?< 
Physics is about the world around us, and to describe that world we must use language. 
Now, language is wonderful—we couldn’t communicate without it—but language can 
sometimes be imprecise or ambiguous.

The challenge when reading a physics problem is to translate the words into 
symbols that can be manipulated, calculated, and graphed. The translation from 
words to symbols is the heart of problem solving in physics. This is the point 
where ambiguous words and phrases must be clarified, where the imprecise must 
be made precise, and where you arrive at an understanding of exactly what the 
question is asking.

Using Symbols
Symbols are a language that allows us to talk with precision about the relation-
ships in a problem. As with any language, we all need to agree to use words or 
symbols in the same way if we want to communicate with each other. Many of 
the ways we use symbols in science and engineering are somewhat arbitrary, often 
reflecting historical roots. Nonetheless, practicing scientists and engineers have 
come to agree on how to use the language of symbols. Learning this language is 
part of learning physics.

We will use subscripts on symbols, such as x3, to designate a particular point in the 
problem. Scientists usually label the starting point of the problem with the subscript 
“0,” not the subscript “1” that you might expect. When using subscripts, make sure 
that all symbols referring to the same point in the problem have the same numerical 
subscript. To have the same point in a problem characterized by position x1 but velocity 
v2x is guaranteed to lead to confusion!

EXAMPLE 1.7  |  Interpreting a position graph

The graph in FIGURE 1.21a represents the motion of a car along a 
straight road. Describe the motion of the car.

MODEL  We’ll model the car as a particle with a precise position  
at each instant.

VISUALIZE  As FIGURE 1.21b shows, the graph represents a car that 
travels to the left for 30 minutes, stops for 10 minutes, then travels 
back to the right for 40 minutes.

x

FIGURE 1.21  Position-versus-time graph of a car.

t (min)

x (km)

20 40 60 80

(a)

20

10

0

-10

-20

t (min)

x (km)

20 40 60 80

(b)

20

10

0

-10

-20

1. At t = 0 min, the car is 10 km
    to the right of the origin.

5. The car reaches the
 origin at t = 80 min.

4. The car starts moving back
 to the right at t = 40 min.

2. The value of x decreases for
 30 min, indicating that the car
 is moving to the left.

3. The car stops for 10 min at a position
    20 km to the left of the origin.

M02_KNIG7429_04_GE_C01.indd   40 11/07/16   1:45 pm
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Drawing Pictures
You may have been told that the first step in solving a physics problem is to “draw a 
picture,” but perhaps you didn’t know why, or what to draw. The purpose of drawing a 
picture is to aid you in the words-to-symbols translation. Complex problems have far 
more information than you can keep in your head at one time. Think of a picture as a 
“memory extension,” helping you organize and keep track of vital information.

Although any picture is better than none, there really is a method for drawing pictures 
that will help you be a better problem solver. It is called the pictorial representation 
of the problem. We’ll add other pictorial representations as we go along, but the following 
procedure is appropriate for motion problems.

TACTICS BOX 1.5

Drawing a pictorial representation

	●1	 Draw a motion diagram. The motion diagram develops your intuition for 
the motion.

	●2	 Establish a coordinate system. Select your axes and origin to match the 
motion. For one-dimensional motion, you want either the x-axis or the y-axis 
parallel to the motion. The coordinate system determines whether the signs 
of v and a are positive or negative.

	●3	 Sketch the situation. Not just any sketch. Show the object at the beginning 
of the motion, at the end, and at any point where the character of the motion 
changes. Show the object, not just a dot, but very simple drawings are adequate.

	●4	 Define symbols. Use the sketch to define symbols representing quantities such 
as position, velocity, acceleration, and time. Every variable used later in the 
mathematical solution should be defined on the sketch. Some will have known 
values, others are initially unknown, but all should be given symbolic names.

	●5	 List known information. Make a table of the quantities whose values you 
can determine from the problem statement or that can be found quickly with 
simple geometry or unit conversions. Some quantities are implied by the 
problem, rather than explicitly given. Others are determined by your choice 
of coordinate system.

	●6	 Identify the desired unknowns. What quantity or quantities will allow you 
to answer the question? These should have been defined as symbols in step 4. 
Don’t list every unknown, only the one or two needed to answer the question.

It’s not an overstatement to say that a well-done pictorial representation of the problem 
will take you halfway to the solution. The following example illustrates how to construct 
a pictorial representation for a problem that is typical of problems you will see in the 
next few chapters.

EXAMPLE 1.8  |  Drawing a pictorial representation
Draw a pictorial representation for the following problem: A rocket 
sled accelerates horizontally at 50 m/s2 for 5.0 s, then coasts for 
3.0 s. What is the total distance traveled?
VISUALIZE  FIGURE 1.22, on the next page, is the pictorial represen-
tation. The motion diagram shows an acceleration phase followed 
by a coasting phase. Because the motion is horizontal, the appro-
priate coordinate system is an x-axis. We’ve chosen to place the 
origin at the starting point. The motion has a beginning, an end, 
and a point where the motion changes from accelerating to coasting, 
and these are the three sled positions sketched in the figure. The 
quantities x, vx 

, and t are needed at each of three points, so these 

have been defined on the sketch and distinguished by subscripts. 
Accelerations are associated with intervals between the points, so 
only two accelerations are defined. Values for three quantities are  
given in the problem statement, although we need to use the motion 
diagram, where au points to the right, and our choice of coordinate 
system to know that a0x = +50 m/s2 rather than -50 m/s2. The 
values x0 = 0 m and t0 = 0 s are choices we made when setting 
up the coordinate system. The value v0x = 0 m/s is part of our 
interpretation of the problem. Finally, we identify x2 as the quantity 
that will answer the question. We now understand quite a bit about 
the problem and would be ready to start a quantitative analysis.

Continued
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42  CHAPTER 1  Concepts of Motion

A new building requires careful planning. 
The architect’s visualization and drawings 
have to be complete before the detailed 
procedures of construction get under 
way. The same is true for solving  
problems in physics.

We didn’t solve the problem; that is not the purpose of the pictorial representation. 
The pictorial representation is a systematic way to go about interpreting a problem and 
getting ready for a mathematical solution. Although this is a simple problem, and you 
probably know how to solve it if you’ve taken physics before, you will soon be faced 
with much more challenging problems. Learning good problem-solving skills at the 
beginning, while the problems are easy, will make them second nature later when you 
really need them.

Representations
A picture is one way to represent your knowledge of a situation. You could also 
represent your knowledge using words, graphs, or equations. Each representation 
of knowledge gives us a different perspective on the problem. The more tools you 
have for thinking about a complex problem, the more likely you are to solve it.

There are four representations of knowledge that we will use over and over:

1.	 The verbal representation. A problem statement, in words, is a verbal representation 
of knowledge. So is an explanation that you write.

2.	 The pictorial representation. The pictorial representation, which we’ve just 
presented, is the most literal depiction of the situation.

3.	 The graphical representation. We will make extensive use of graphs.
4.	 The mathematical representation. Equations that can be used to find the numerical 

values of specific quantities are the mathematical representation.

NOTE  The mathematical representation is only one of many. Much of physics is 
more about thinking and reasoning than it is about solving equations.

A Problem-Solving Strategy
One of the goals of this textbook is to help you learn a strategy for solving physics 
problems. The purpose of a strategy is to guide you in the right direction with minimal 
wasted effort. The four-part problem-solving strategy shown on the next page—Model, 
Visualize, Solve, Assess—is based on using different representations of knowledge. 
You will see this problem-solving strategy used consistently in the worked examples 
throughout this textbook, and you should endeavor to apply it to your own problem solving.

Throughout this textbook we will emphasize the first two steps. They are the physics 
of the problem, as opposed to the mathematics of solving the resulting equations. This 
is not to say that those mathematical operations are always easy—in many cases they 
are not. But our primary goal is to understand the physics.

x

FIGURE 1.22  A pictorial representation.
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1

a
u
v
u

0
u

0
u

y

x

a0x

x0, v0x , t0 x1, v1x , t1 x2, v2x , t2

a1x

Sketch the situation.

Establish a
coordinate system.

De�ne symbols.

List known information.

Identify desired unknown. Find

t0 = 0 s

x2

a0x = 50 m/s2

a1x = 0 m/s2

t1 = 5.0 s

t2 = t1 + 3.0 s = 8.0 s

Known
x0 = 0 m  v0x = 0 m/s

Draw a
motion diagram.

3

6
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Textbook  illustrations are obviously more sophisticated than what you would draw 
on your own paper. To show you a figure very much like what you should draw, the 
final example of this section is in a “pencil sketch” style. We will include one or more 
pencil-sketch examples in nearly every chapter  to illustrate exactly what a good problem 
solver would draw.

GENERAL PROBLEM-SOLVING STRATEGY

MODEL  It’s impossible to treat every detail of a situation. Simplify the situation 
with a model that captures the essential features. For example, the object in a 
mechanics problem is often represented as a particle.

VISUALIZE  This is where expert problem solvers put most of their effort.

■■ Draw a pictorial representation. This helps you visualize important aspects 
of the physics and assess the information you are given. It starts the process 
of translating the problem into symbols.

■■ Use a graphical representation if it is appropriate for the problem.
■■ Go back and forth between these representations; they need not be done in 

any particular order.

SOLVE  Only after modeling and visualizing are complete is it time to develop 
a mathematical representation with specific equations that must be solved. All 
symbols used here should have been defined in the pictorial representation.

ASSESS  Is your result believable? Does it have proper units? Does it make sense?

EXAMPLE 1.9  |  Launching a weather rocket
Use the first two steps of the problem-solving strategy to analyze 
the following problem: A small rocket, such as those used for mete-
orological measurements of the atmosphere, is launched vertically 
with an acceleration of 30 m/s2. It runs out of fuel after 30 s. What 
is its maximum altitude?

MODEL  We need to do some interpretation. Common sense tells us 
that the rocket does not stop the instant it runs out of fuel. Instead, 
it continues upward, while slowing, until it reaches its maximum 
altitude. This second half of the motion, after running out of fuel, is 
like the ball that was tossed upward in the first half of Example 1.6. 
Because the problem does not ask about the rocket’s descent, we 
conclude that the problem ends at the point of maximum altitude. 
We’ll model the rocket as a particle.

VISUALIZE  FIGURE 1.23 shows the pictorial representation in 
pencil-sketch style. The rocket is speeding up during the first half of 
the motion, so au0 points upward, in the positive y-direction. Thus the 
initial acceleration is a0y = 30 m/s2. During the second half, as the 
rocket slows, au1 points downward. Thus a1y is a negative number.

This information is included with the known information.  
Although the velocity v2y wasn’t given in the problem statement, it 
must—just like for the ball in Example 1.6—be zero at the very top 
of the trajectory. Last, we have identified y2 as the desired unknown. 
This, of course, is not the only unknown in the problem, but it is the 
one we are specifically asked to find.

ASSESS  If you’ve had a previous physics class, you may be tempted  
to assign a1y the value -9.8 m/s2, the free-fall acceleration.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, that would be true only if there is no air resistance 
on the rocket. We will need to consider the forces acting on the 
rocket during the second half of its motion before we can deter-
mine a value for a1y. For now, all that we can safely conclude is 
that a1y is negative.

x

FIGURE 1.23  Pictorial representation for the rocket.

M02_KNIG7429_04_GE_C01.indd   43 11/07/16   1:45 pm



44  CHAPTER 1  Concepts of Motion

TABLE 1.2 The basic SI units

Quantity Unit Abbreviation

time second s

length meter m

mass kilogram kg

An atomic clock at the National Institute 
of Standards and Technology is the primary 
standard of time.

Our task in this section is not to solve problems—all that in due time—but to focus 
on what is happening in a problem. In other words, to make the translation from words 
to symbols in preparation for subsequent mathematical analysis. Modeling and the 
pictorial representation will be our most important tools.

1.8  Units and Significant Figures
Science is based upon experimental measurements, and measurements require units. 
The system of units used in science is called le Système Internationale d’Unités. These 
are commonly referred to as SI units. In casual speaking we often refer to metric units.

All of the quantities needed to understand motion can be expressed in terms of the 
three basic SI units shown in TABLE 1.2. Other quantities can be expressed as a combi-
nation of these basic units. Velocity, expressed in meters per second or m/s, is a ratio 
of the length unit to the time unit.

Time
The standard of time prior to 1960 was based on the mean solar day. As time-keeping 
accuracy and astronomical observations improved, it became apparent that the earth’s  
rotation is not perfectly steady. Meanwhile, physicists had been developing a device  
called an atomic clock. This instrument is able to measure, with incredibly high 
precision, the frequency of radio waves absorbed by atoms as they move between two 
closely spaced energy levels. This frequency can be reproduced with great accuracy at 
many laboratories around the world. Consequently, the SI unit of time—the second—
was redefined in 1967 as follows:

�One second is the time required for 9,192,631,770 oscillations of the radio wave 
absorbed by the cesium-133 atom. The abbreviation for second is the letter s.

Several radio stations around the world broadcast a signal whose frequency is linked 
directly to the atomic clocks. This signal is the time standard, and any time-measuring 
equipment you use was calibrated from this time standard.

Length
The SI unit of length—the meter—was originally defined as one ten-millionth of the 
distance from the north pole to the equator along a line passing through Paris. There are 
obvious practical difficulties with implementing this definition, and it was later aban-
doned in favor of the distance between two scratches on a platinum-iridium bar stored in 
a special vault in Paris. The present definition, agreed to in 1983, is as follows:

�One meter is the distance traveled by light in vacuum during 1/299,792,458 of a 
second. The abbreviation for meter is the letter m.

This is equivalent to defining the speed of light to be exactly 299,792,458 m/s. Laser 
technology is used in various national laboratories to implement this definition and to 
calibrate secondary standards that are easier to use. These standards ultimately make 
their way to your ruler or to a meter stick. It is worth keeping in mind that any measuring 
device you use is only as accurate as the care with which it was calibrated.

Mass
The original unit of mass, the gram, was defined as the mass of 1 cubic centimeter of 
water. That is why you know the density of water as 1 g/cm3. This definition proved 
to be impractical when scientists needed to make very accurate measurements. The SI 
unit of mass—the kilogram—was redefined in 1889 as:

�One kilogram is the mass of the international standard kilogram, a polished platinum- 
iridium cylinder stored in Paris. The abbreviation for kilogram is kg.

By international agreement, this metal 
cylinder, stored in Paris, is the definition 
of the kilogram.
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The kilogram is the only SI unit still defined by a manufactured object. Despite the 
prefix kilo, it is the kilogram, not the gram, that is the SI unit.

Using Prefixes
We will have many occasions to use lengths, times, and masses that are either much 
less or much greater than the standards of 1 meter, 1 second, and 1 kilogram. We will 
do so by using prefixes to denote various powers of 10. TABLE 1.3 lists the common 
prefixes that will be used frequently throughout this book. Memorize it! Few things in 
science are learned by rote memory, but this list is one of them. A more extensive list 
of prefixes is shown inside the front cover of the book.

Although prefixes make it easier to talk about quantities, the SI units are meters, 
seconds, and kilograms. Quantities given with prefixed units must be converted to 
SI units before any calculations are done. Unit conversions are best done at the very 
beginning of a problem, as part of the pictorial representation.

Unit Conversions
Although SI units are our standard, we cannot entirely forget that the United States 
still uses English units. Thus it remains important to be able to convert back and forth 
between SI units and English units. TABLE 1.4 shows several frequently used conver-
sions, and these are worth memorizing if you do not already know them. While the 
English system was originally based on the length of the king’s foot, it is interesting 
to note that today the conversion 1 in = 2.54 cm is the definition of the inch. In other 
words, the English system for lengths is now based on the meter!

There are various techniques for doing unit conversions. One effective method is to 
write the conversion factor as a ratio equal to one. For example, using information in 
Tables 1.3 and 1.4, we have

10-6 m
1 mm

= 1  and  
2.54 cm

1 in
= 1

Because multiplying any expression by 1 does not change its value, these ratios are 
easily used for conversions. To convert 3.5 mm to meters we compute

3.5 mm *
10-6 m
1 mm

= 3.5 * 10-6 m

Similarly, the conversion of 2 feet to meters is

2.00 ft *
12 in
1 ft

*
2.54 cm

1 in
*

10-2 m
1 cm

= 0.610 m

Notice how units in the numerator and in the denominator cancel until only the desired 
units remain at the end. You can continue this process of multiplying by 1 as many 
times as necessary to complete all the conversions.

Assessment
As we get further into problem solving, you will need to decide whether or not the 
answer to a problem “makes sense.” To determine this, at least until you have more 
experience with SI units, you may need to convert from SI units back to the English 
units in which you think. But this conversion does not need to be very accurate. For 
example, if you are working a problem about automobile speeds and reach an answer 
of 35 m/s, all you really want to know is whether or not this is a realistic speed for a 
car. That requires a “quick and dirty” conversion, not a conversion of great accuracy.

TABLE 1.3 Common prefixes

Prefix Power of 10 Abbreviation

giga- 109 G

mega- 106 M

kilo- 103 k

centi- 10-2 c

milli- 10-3 m

micro- 10-6 m

nano- 10-9 n

TABLE 1.4 Useful unit conversions

1 in = 2.54 cm

1 mi = 1.609 km

1 mph = 0.447 m/s

1 m = 39.37 in

1 km = 0.621 mi

1 m/s = 2.24 mph
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TABLE 1.5 shows several approximate conversion factors that can be used to assess 
the answer to a problem. Using 1 m/s ≈ 2 mph, you find that 35 m/s is roughly 70 mph, 
a reasonable speed for a car. But an answer of 350 m/s, which you might get after 
making a calculation error, would be an unreasonable 700 mph. Practice with these 
will allow you to develop intuition for metric units.

NOTE  These approximate conversion factors are accurate to only one significant 
figure. This is sufficient to assess the answer to a problem, but do not use the 
conversion factors from Table 1.5 for converting English units to SI units at the start 
of a problem. Use Table 1.4.

Significant Figures
It is necessary to say a few words about a perennial source of difficulty: significant 
figures. Mathematics is a subject where numbers and relationships can be as precise as 
desired, but physics deals with a real world of ambiguity. It is important in science and 
engineering to state clearly what you know about a situation—no less and, especially, 
no more. Numbers provide one way to specify your knowledge.

If you report that a length has a value of 6.2 m, the implication is that the actual 
value falls between 6.15 m and 6.25 m and thus rounds to 6.2 m. If that is the case, 
then reporting a value of simply 6 m is saying less than you know; you are withholding 
information. On the other hand, to report the number as 6.213 m is wrong. Any person 
reviewing your work—perhaps a client who hired you—would interpret the number 
6.213 m as meaning that the actual length falls between 6.2125 m and 6.2135 m, thus 
rounding to 6.213 m. In this case, you are claiming to have knowledge and information 
that you do not really possess.

The way to state your knowledge precisely is through the proper use of significant 
figures. You can think of a significant figure as being a digit that is reliably known. A 
number such as 6.2 m has two significant figures because the next decimal place—the 
one-hundredths—is not reliably known. As FIGURE 1.24 shows, the best way to determine 
how many significant figures a number has is to write it in scientific notation.

TABLE 1.5 Approximate conversion 
factors. Use these for assessment, 
not in problem solving.

1 cm ≈ 1
2 in

10 cm ≈ 4 in

1 m ≈ 1 yard

1 m ≈ 3 feet

1 km ≈ 0.6 mile

1 m/s ≈ 2 mph

FIGURE 1.24  Determining significant figures.

c

A trailing zero after the
decimal place is reliably
known. It is signi�cant.

Leading zeros locate the decimal point.
They are not signi�cant.

The number of signi�cant
�gures is the number of
digits when written in
scienti�c notation.

The number of signi�cant �gures
≠ the number of decimal places.

Changing units shifts the decimal
point but does not change the
number of signi�cant �gures.

0.00620 = 6.20 * 10-3

What about numbers like 320 m and 20 kg? Whole numbers with trailing zeros 
are ambiguous unless written in scientific notation. Even so, writing 2.0 * 101 kg is 
tedious, and few practicing scientists or engineers would do so. In this textbook, we’ll 
adopt the rule that whole numbers always have at least two significant figures, even 
if one of those is a trailing zero. By this rule, 320 m, 20 kg, and 8000 s each have two 
significant figures, but 8050 s would have three.

Calculations with numbers follow the “weakest link” rule. The saying, which you prob-
ably know, is that “a chain is only as strong as its weakest link.” If nine out of ten links 
in a chain can support a 1000 pound weight, that strength is meaningless if the tenth link 
can support only 200 pounds. Nine out of the ten numbers used in a calculation might be 
known with a precision of 0.01%; but if the tenth number is poorly known, with a precision 
of only 10%, then the result of the calculation cannot possibly be more precise than 10%.
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NOTE  Be careful! Many calculators have a default setting that shows two decimal 
places, such as 5.23. This is dangerous. If you need to calculate 5.23/58.5, your 
calculator will show 0.09 and it is all too easy to write that down as an answer. By 
doing so, you have reduced a calculation of two numbers having three significant 
figures to an answer with only one significant figure. The proper result of this division 
is 0.0894 or 8.94 * 10-2. You will avoid this error if you keep your calculator set to 
display numbers in scientific notation with two decimal places.

TACTICS BOX 1.6

Using significant figures

	●1	 When multiplying or dividing several numbers, or taking roots, the number 
of significant figures in the answer should match the number of significant 
figures of the least precisely known number used in the calculation.

	●2	 When adding or subtracting several numbers, the number of decimal places 
in the answer should match the smallest number of decimal places of any 
number used in the calculation.

	●3	 Exact numbers are perfectly known and do not affect the number of significant 
figures an answer should have. Examples of exact numbers are the 2 and the 
p in the formula C = 2pr for the circumference of a circle.

	●4	 It is acceptable to keep one or two extra digits during intermediate steps of a 
calculation, to minimize rounding error, as long as the final answer is reported 
with the proper number of significant figures.

	●5	 Examples and problems in this textbook will normally provide data to either two 
or three significant figures, as is appropriate to the situation. The appropriate 
number of significant figures for the answer is determined by the data 
provided.

Exercises 38–39

Proper use of significant figures is part of the “culture” of science and engineering. 
We will frequently emphasize these “cultural issues” because you must learn to speak 
the same language as the natives if you wish to communicate effectively. Most 
students know the rules of significant figures, having learned them in high school, 
but many fail to apply them. It is important to understand the reasons for significant 
figures and to get in the habit of using them properly.

EXAMPLE 1.10  |  Using significant figures
An object consists of two pieces. The mass of one piece has been measured to be 6.47 kg. 
The volume of the second piece, which is made of aluminum, has been measured to be 
4.44 * 10-4 m3. A handbook lists the density of aluminum as 2.7 * 103 kg/m3. What is 
the total mass of the object?

SOLVE  First, calculate the mass of the second piece:

 m = 14.44 * 10-4 m3212.7 * 103 kg/m32
 = 1.199 kg = 1.2 kg

The number of significant figures of a product must match that of the least precisely known 
number, which is the two-significant-figure density of aluminum. Now add the two masses:

6.47 kg
+  1.2  kg

7.7  kg

The sum is 7.67 kg, but the hundredths place is not reliable because the second mass has 
no reliable information about this digit. Thus we must round to the one decimal place of 
the 1.2 kg. The best we can say, with reliability, is that the total mass is 7.7 kg.

x
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TABLE 1.6 Some approximate lengths

Length (m)

Altitude of jet planes 10,000

Distance across campus 1000

Length of a football field 100

Length of a classroom 10

Length of your arm 1

Width of a textbook 0.1

Length of a fingernail 0.01

TABLE 1.7 Some approximate masses

Mass (kg)

Small car 1000

Large human 100

Medium-size dog 10

Science textbook 1

Apple 0.1

Pencil 0.01

Raisin 0.001

Orders of Magnitude and Estimating
Precise calculations are appropriate when we have precise data, but there are many 
times when a very rough estimate is sufficient. Suppose you see a rock fall off a cliff 
and would like to know how fast it was going when it hit the ground. By doing a 
mental comparison with the speeds of familiar objects, such as cars and bicycles, you 
might judge that the rock was traveling at “about” 20 mph.

This is a one-significant-figure estimate. With some luck, you can distinguish 
20 mph from either 10 mph or 30 mph, but you certainly cannot distinguish 20 mph 
from 21 mph. A one-significant-figure estimate or calculation, such as this, is called 
an order-of-magnitude estimate. An order-of-magnitude estimate is indicated 
by the symbol ∙ , which indicates even less precision than the “approximately equal” 
symbol ≈ . You would say that the speed of the rock is v ∙ 20 mph.

A useful skill is to make reliable estimates on the basis of known information, 
simple reasoning, and common sense. This is a skill that is acquired by practice. 
Many chapters in this book will have homework problems that ask you to make order- 
of-magnitude estimates. The following example is a typical estimation problem.

TABLES 1.6 and 1.7 have information that will be useful for doing estimates.

STOP TO THINK 1.5  Rank the given options by the number of significant figures, 
from the most to the least. For example, if b has more significant figures than c, c 
has the same number as a, and a has more than d, you could give your answer as  
b 7 c = a 7 d.

a.  52          b.  0.0082          c.  0.630          d.  6.321 * 10-8

EXAMPLE 1.11  |  Estimating a sprinter’s speed
Estimate the speed with which an Olympic sprinter crosses the finish line of the 100 m 
dash.

SOLVE  We do need one piece of information, but it is a widely known piece of sports 
trivia. That is, world-class sprinters run the 100 m dash in about 10 s. Their average 
speed is vavg ≈ 1100 m2/110 s2 ≈ 10 m/s. But that’s only average. They go slower than 
average at the beginning, and they cross the finish line at a speed faster than average. 
How much faster? Twice as fast, 20 m/s, would be ≈40 mph. Sprinters don’t seem 
like they’re running as fast as a 40 mph car, so this probably is too fast. Let’s estimate 
that their final speed is 50% faster than the average. Thus they cross the finish line at 
v ∙15 m/s.

x
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SUMMARY

The goal of Chapter 1 has been to learn the fundamental concepts of motion.

GENERAL STRATEGY

Motion Diagrams

•	 Help visualize motion.
•	 Provide a tool for finding acceleration vectors.

▶  These are the average velocity and acceleration vectors.

Problem Solving
MODEL  Make simplifying assumptions.

VISUALIZE  Use:

•	 Pictorial representation

•	 Graphical representation

SOLVE  Use a mathematical representation to find 
numerical answers.

ASSESS  Does the answer have the proper units and 
correct significant figures? Does it make sense?

motion
translational motion
trajectory
motion diagram
model
particle

particle model
position vector, r u 
scalar
vector
displacement, ∆r u 
zero vector, 0

u
 

time interval, ∆t 
average speed
average velocity, v 

u 
average acceleration, au 
position-versus-time graph
pictorial representation

representation of knowledge
SI units
significant figures
order-of-magnitude estimate

TERMS AND NOTATION

Significant figures are reliably known digits. The number of  
significant figures for:

•	 Multiplication, division, powers is set by the value with the fewest 
significant figures.

•	 Addition, subtraction is set by the value with the smallest number of 
decimal places.

The appropriate number of significant figures in a calculation is  
determined by the data provided.

APPLICATIONS

For motion along a line:

•	 Speeding up: v 

u and au point in the same direction, vx and ax  
have the same sign.

•	 Slowing down: v 

u and au point in opposite directions, vx and ax 
have opposite signs.

•	 Constant speed: au = 0
u
, ax = 0.

Acceleration ax is positive if au points right, negative if au points 
left. The sign of ax does not imply speeding up or slowing down.

IMPORTANT CONCEPTS

The particle model represents a moving object as if all its mass 
were concentrated at a single point.

Pictorial Representation

6

5

4

3

1

a
u

v
u

x0 = v0x = t0 = 0

ax

x0, v0x, t0 x1, v1x, t1

x
0

Known

ax = 2.0 m/s2  t1 = 2.0 s

Find
x1

Draw a motion diagram.

Establish coordinates.

Sketch the situation.

De�ne symbols.

List knowns.

Identify desired
unknown.

2

-v0
u

v1
u

∆v
u

a
u

a
u

v1
u

v0
u

Dots show positions at
equal time intervals.

Velocity vectors go dot to dot.

The acceleration
vector points in the
direction of ∆v.

u

Position locates an object with respect to a chosen coordinate 
system. Change in position is called displacement.

Velocity is the rate of change of the position vector r u.

Acceleration is the rate of change of the velocity vector v 

u.

An object has an acceleration if it

•	 Changes speed and/or

•	 Changes direction.
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	 6.	 Determine the signs (positive, negative, or zero) of the position, 
velocity, and acceleration for the particle in FIGURE Q1.6.

CONCEPTUAL QUESTIONS

	 1.	 How many significant figures does each of the following numbers 
have?
a.	 9.90	 b. 0.99	 c. 0.099	 d. 99

	 2.	 How many significant figures does each of the following numbers 
have?
a.	 0.0044	 b. 4.40 * 10-4	 c. 440	 d. 2.90

	 3.	 Is the particle in FIGURE Q1.3 speeding up? Slowing down? Or 
can you tell? Explain.

	 4.	 Does the object represented in FIGURE Q1.4 have  
a positive or negative value of ax? Explain.

	 5.	 Does the object represented in FIGURE Q1.5  
have a positive or negative value of ay? Explain.

FIGURE Q1.3  

FIGURE Q1.4 

v
u

FIGURE Q1.5   

v
u

FIGURE Q1.6   0
x

	 7.	 Determine the signs (positive, negative, or zero) of the position, 
velocity, and acceleration for the particle in FIGURE Q1.7.

FIGURE Q1.7   

0

y

	 8.	 Determine the signs (positive, negative, or zero) of the position, 
velocity, and acceleration for the particle in FIGURE Q1.8.

FIGURE Q1.8   

0

y

EXERCISES AND PROBLEMS

Exercises

Section 1.1 Motion Diagrams

1.	 �|	 A car skids to a halt to avoid hitting an object in the road. 
Draw a basic motion diagram, using the images from the video, 
from the time the skid begins until the car is stopped.

	 2.	� |	 A rocket is launched straight up. Draw a basic motion diagram, 
using the images from the video, from the moment of liftoff until 
the rocket is at an altitude of 500 m.

	 3.	� |	 You are watching a jet ski race. A racer speeds up from rest 
to 70 mph in just a few seconds, then continues at a constant 
speed. Draw a basic motion diagram of the jet ski, using images 
from the video, from 10 s before reaching top speed until 10 s 
afterward.

Section 1.2 Models and Modeling

	 4.	 |	 a. � Write a paragraph describing the particle model. What is it, 
and why is it important?

	  		  b.  �Give two examples of situations, different from those  
described in the text, for which the particle model is appropriate.

	  		  c. � Give an example of a situation, different from those de-
scribed in the text, for which it would be inappropriate.

Section 1.3 Position, Time, and Displacement

Section 1.4 Velocity

	 5.	� |	 You drop a soccer ball from your third-story balcony. Use 
the particle model to draw a motion diagram showing the ball’s 
position and average velocity vectors from the time you release 
the ball until the instant it touches the ground.

	 6.	� |	 A baseball player starts running to the left to catch the ball as 
soon as the hit is made. Use the particle model to draw a motion 
diagram showing the position and average velocity vectors of the 
player during the first few seconds of the run.

	 7.	� |	 A softball player slides into second base. Use the particle 
model to draw a motion diagram showing his position and his 
average velocity vectors from the time he begins to slide until he 
reaches the base.

Section 1.5 Linear Acceleration

	 8.	 |	 a. � FIGURE EX1.8 shows the first three points of a motion 
diagram. Is the object’s average speed between points 1 
and 2 greater than, less than, or equal to its average speed 
between points 0 and 1? Explain how you can tell.

	  	 	 b. � Use Tactics Box 1.3 to find the average acceleration vector 
at point 1. Draw the completed motion diagram, showing 
the velocity vectors and acceleration vector.

FIGURE EX1.8

0

1

2

FIGURE EX1.9

2 3 410

	 9.	� |	  FIGURE EX1.9 shows five points of a motion diagram. Use 
Tactics Box 1.3 to find the average acceleration vectors at points 
1, 2, and 3. Draw the completed motion diagram showing velocity 
vectors and acceleration vectors.
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	10.	� ||	 FIGURE EX1.10 shows two dots of a motion diagram and vector 
v 

u
1. Copy this figure, then add dot 3 and the next velocity 

vector v 

u
2 if the acceleration vector au at dot 2 (a) points up and 

(b) points down.

	19.	� |	 Write a short description of the motion of a real object for 
which FIGURE EX1.19 would be a realistic position-versus-time 
graph.

FIGURE EX1.10

v1

1

2

u

FIGURE EX1.11

2 3

v2
u

	11.	� ||	 FIGURE EX1.11 shows two dots of a motion diagram and vector 
v 

u
2. Copy this figure, then add dot 4 and the next velocity vector 

vu3 if the acceleration vector au at dot 3 (a) points right and (b) 
points left.

	12.	� |	 A speed skater accelerates from rest and then keeps skating at 
a constant speed. Draw a complete motion diagram of the skater.

	13.	� |	 A car travels to the left at a steady speed for a few seconds, 
then brakes for a stop sign. Draw a complete motion diagram of 
the car.

	14.	� |	 A goose flies toward a pond. It lands on the water and slides 
for some distance before it comes to a stop. Draw the motion 
diagram of the goose, starting shortly before it hits the water and 
assuming the motion is entirely horizontal.

	15.	� |	 You use a long rubber band to launch a paper wad straight up. 
Draw a complete motion diagram of the paper wad from the 
moment you release the stretched rubber band until the paper 
wad reaches its highest point.

	16.	� |	 A roof tile falls straight down from a two-story building. It 
lands in a swimming pool and settles gently to the bottom. Draw 
a complete motion diagram of the tile.

	17.	� |	 Your roommate drops a tennis ball from a third-story balcony.  
It hits the sidewalk and bounces as high as the second story. 
Draw a complete motion diagram of the tennis ball from the 
time it is released until it reaches the maximum height on its 
bounce. Be sure to determine and show the acceleration at the 
lowest point.

Section 1.6 Motion in One Dimension

	18.	� ||	 FIGURE EX1.18 shows the motion diagram of a drag racer. The 
camera took one frame every 2 s.

FIGURE EX1.18

v
u

1 frame every 2 s

x (m)
0 200 400 600 800

		  a. � Measure the x-value of the racer at each dot. List your data in a 
table similar to Table 1.1, showing each position and the time 
at which it occurred.

		  b. � Make a position-versus-time graph for the drag racer. Because 
you have data only at certain instants, your graph should 
consist of dots that are not connected together.

FIGURE EX1.19

300

200

100

0

x (m)

t (s)
0 200 400 600

	20.	� |	 Write a short description of the motion of a real object for 
which FIGURE EX1.20 would be a realistic position-versus-time 
graph.

FIGURE EX1.20

120

80

40

0

x (mi)

t (h)
54321

Section 1.7 Solving Problems in Physics

	21.	� ||	 Draw a pictorial representation for the following problem. Do 
not solve the problem. The light turns green, and a bicyclist starts 
forward with an acceleration of 1.5 m/s2. How far must she travel 
to reach a speed of 7.5 m/s?

	22.	� ||	 Draw a pictorial representation for the following problem. Do 
not solve the problem. What acceleration does a rocket need to 
reach a speed of 200 m/s at a height of 1.0 km?

Section 1.8 Units and Significant Figures

	23.	� |	 How many significant figures are there in the following  
values?

		  a.  0.05 * 10-4	 b.  0.00340
		  c.  7.2 * 104	 d.  103.00
	24.	� ||	 Convert the following to SI units:
		  a.  4.0 in	 b.  33 ft/s
		  c.  30 mph	 d.  7 in2

	25.	� |	 Convert the following to SI units:
		  a.  60 in	 b.  1.45 * 106 yr
		  c.  50 ft/day	 d.  2.0 * 104 mi2

	26.	� ||	 Using the approximate conversion factors in Table 1.5, convert 
the following SI units to English units without using your calculator.

		  a.  30 cm	 b.  25 m/s
		  c.  5 km	 d.  0.5 cm
	27.	� |	 Using the approximate conversion factors in Table 1.5, convert 

the following to SI units without using your calculator.
		  a.  20 ft	 b.  60 mi
		  c.  60 mph	 d.  8 in
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	28.	� |	 Compute the following numbers, applying the significant figure 
rules adopted in this textbook.

		  a.  33.3 * 25.4	 b.  33.3 - 25.4
		  c.  133.3	 d.  333.3 , 25.4
	29.	� |	 Perform the following calculations with the correct number of 

significant figures.
		  a.  159.31 * 204.6	 b.  5.1125 + 0.67 + 3.2
		  c.  7.662 - 7.425	 d.  16.5/3.45
	30.	� |	 Estimate (don’t measure!) the length of a typical car. Give 

your answer in both feet and meters. Briefly describe how you 
arrived at this estimate.

	31.	� |	 Estimate the height of a telephone pole. Give your answer in 
both feet and meters. Briefly describe how you arrived at this 
estimate.

	32.	� |	 Estimate the average speed with which the hair on your head 
grows. Give your answer in both m/s and mm/hour. Briefly de-
scribe how you arrived at this estimate.

	33.	� |	 Motor neurons in mammals transmit signals from the brain 
to skeletal muscles at approximately 25 m/s. Estimate how long 
in ms it takes a signal to get from your brain to your hand.

	43.	� ||	 David is driving a steady 30 m/s when he passes Tina, who 
is sitting in her car at rest. Tina begins to accelerate at a steady 
2.0 m/s2 at the instant when David passes. How far does Tina 
drive before passing David?

Problems 44 through 48 show a motion diagram. For each of these 
problems, write a one or two sentence “story” about a real object 
that has this motion diagram. Your stories should talk about people or 
objects by name and say what they are doing. Problems 34 through 43 
are examples of motion short stories.

	44.	� |	

FIGURE P1.44 a
u

v
u

StopStart

FIGURE P1.45
a
uv

u

0
u

0
u

0
u

FIGURE P1.46

Start

a
u

v
u

	 45.	� |	

	46.	 �|	

	 47.	 �|

FIGURE P1.47

a
u

a
u

a
u

v
u

v
u

Start

Stop

Same
point

	48.	 �|

FIGURE P1.48

a
u

v
u

0
u

Problems

For Problems 34 through 43, draw a complete pictorial representation. 
Do not solve these problems or do any mathematics.
	34.	� |	 A Porsche accelerates from a stoplight at 5.0 m/s2 for five  

seconds, then coasts for three more seconds. How far has it  
traveled?

	35.	� |	 A jet plane is cruising at 300 m/s when suddenly the pilot turns 
the engines up to full throttle. After traveling 4.0 km, the jet is 
moving with a speed of 400 m/s. What is the jet’s acceleration as 
it speeds up?

	36.	� |	 Sam is recklessly driving 60 mph in a 30 mph speed zone 
when he suddenly sees the police. He steps on the brakes and 
slows to 30 mph in three seconds, looking nonchalant as he passes 
the officer. How far does he travel while braking?

	37.	� |	 You would like to stick a wet spit wad on the ceiling, so you 
toss it straight up with a speed of 10 m/s. How long does it take 
to reach the ceiling, 3.0 m above?

	38.	� |	 A speed skater moving across frictionless ice at 8.0 m/s hits 
a 5.0-m-wide patch of rough ice. She slows steadily, then con-
tinues on at 6.0 m/s. What is her acceleration on the rough ice?

	39.	� |	 Santa loses his footing and slides down a frictionless, 
snowy roof that is tilted at an angle of 30°. If Santa slides  
10 m before reaching the edge, what is his speed as he leaves  
the roof?

	40.	� |	 A motorist is traveling at 20 m/s. He is 60 m from a stoplight 
when he sees it turn yellow. His reaction time, before stepping on 
the brake, is 0.50 s. What steady deceleration while braking will 
bring him to a stop right at the light?

	41.	� |	 A car traveling at 30 m/s runs out of gas while traveling up a 
10° slope. How far up the hill will the car coast before starting to 
roll back down?

	42.	� ||	 Ice hockey star Bruce Blades is 5.0 m from the blue line and 
gliding toward it at a speed of 4.0 m/s. You are 20 m from the 
blue line, directly behind Bruce. You want to pass the puck to 
Bruce. With what speed should you shoot the puck down the 
ice so that it reaches Bruce exactly as he crosses the blue line?
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	57.	� ||	 The quantity called mass density is the mass per unit volume 
of a substance. What are the mass densities, in SI units, of the 
following objects?

		  a.  A 210 m3 solid with a mass of 0.15 kg.
		  b.  90 m3 of a liquid with a mass of 70 g.
	58.	� |	 FIGURE P1.58 shows a motion diagram of a car traveling down 

a street. The camera took one frame every 10 s. A distance scale 
is provided.

Problems 49 through 52 show a partial motion diagram. For each:
	 a.  �Complete the motion diagram by adding acceleration vectors.
	 b. � Write a physics problem for which this is the correct mo-

tion diagram. Be imaginative! Don’t forget to include enough 
information to make the problem complete and to state clearly 
what is to be found.

	 c.  Draw a pictorial representation for your problem.

	49.	�	

FIGURE P1.49

v
u

FIGURE P1.50

v
u

Stop

FIGURE P1.51

v
u

Stop

Top view of motion
in a horizontal plane

	50.	�	

	51.	�	

	52.	�	

FIGURE P1.52

vA
u
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u

Start

Start

	53.	� |	 A regulation soccer field for international play is a rectangle 
with a length between 50 m and 55 m and width between 32 m 
and 37.5 m. What are the smallest and largest areas that the field 
could be?

	54.	� |	 As an architect, you are designing a new house. A window 
has a height between 100 cm and 120 cm and width between 
70 cm and 60 cm. What are the smallest and largest areas that 
the window could be?

	55.	� ||	 A cylinder 5 cm in diameter has a length of 12 cm. What is 
the cylinder’s volume in SI units?

	56.	� |	 An intravenous saline drip has 9.0 g of sodium chloride per 
liter of water. By definition, 1 mL = 1 cm3. Express the salt 
concentration in kg/m3.

FIGURE P1.58
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		  a. � Measure the x-value of the car at each dot. Place your data in 
a table, similar to Table 1.1, showing each position and the 
instant of time at which it occurred.

		  b. � Make a position-versus-time graph for the car. Because you 
have data only at certain instants of time, your graph should 
consist of dots that are not connected together.

	59.	� |	 Write a short description of a real object for which FIGURE P1.59 
would be a realistic position-versus-time graph.

	60.	� |	 Write a short description of a real object for which FIGURE P1.60 
would be a realistic position-versus-time graph.
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2 

IN THIS CHAPTER, you will learn to solve problems about motion along a straight line.

What is kinematics?
Kinematics is the mathematical description  
of motion. We begin with motion along a 
straight line. Our primary tools will be an  
object’s position, velocity, and acceleration.
❮❮ LOOKING BACK  Sections 1.4–1.6  Velocity, 
acceleration, and Tactics Box 1.4 about signs

How are graphs used in kinematics?
Graphs are a very important visual 
representation of motion, and learning to 
“think graphically” is one of our goals. We’ll 
work with graphs showing how position, 
velocity, and acceleration change with time. 
These graphs are related to each other:

■ Velocity is the slope of the position graph.
■ Acceleration is the slope of the velocity  

graph.

How is calculus used in kinematics?
Motion is change, and calculus is the 
mathematical tool for describing a 
quantity’s rate of change. We’ll find that

■ Velocity is the time derivative of position.
■ Acceleration is the time derivative of  

velocity.

What are models?
A model is a simplified description  
of a situation that focuses on essential 
features while ignoring many details.  
Models allow us to make sense of complex 
situations by seeing them as variations 
on a common theme, all with the same 
underlying physics.

What is free fall?
Free fall is motion under the influence of 
gravity only. Free fall is not literally “falling” 
because it also applies to objects thrown 
straight up and to projectiles. Surprisingly, 
all objects in free fall, regardless of their 
mass, have the same acceleration. Motion 
on a frictionless inclined plane is closely 
related to free-fall motion.

How will I use kinematics?
The equations of motion that you learn in this chapter will be  
used throughout the entire book. In Part I, we’ll see how an  
object’s motion is related to forces acting on the object. We’ll  
later apply these kinematic equations to the motion of waves  
and to the motion of charged particles in electric and magnetic 
fields.

Kinematics in One Dimension

ax
u

vx
u

x

vx

t

t

Value

Slope

∆x = area

vx

t

Displacement is the
integral of velocity.

afree fall
u

v
u

MODEL 2.1 

Look for model boxes 
like this throughout the 
book.
■	 Key figures
■	 Key equations
■	 Model limitations

This Japanese “bullet train” 
accelerates slowly but  
steadily until reaching a  
speed of 300 km/h.
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2.1  Uniform Motion
The simplest possible motion is motion along a straight line at a constant, unvarying 
speed. We call this uniform motion. Because velocity is the combination of speed 
and direction, uniform motion is motion with constant velocity.

FIGURE 2.1 shows the motion diagram of an object in uniform motion. For example, 
this might be you riding your bicycle along a straight line at a perfectly steady 5 m/s  
(≈10 mph). Notice how all the displacements are exactly the same; this is a charac-
teristic of uniform motion.

If we make a position-versus-time graph—remember that position is graphed on the 
vertical axis—it’s a straight line. In fact, an alternative definition is that an object’s 
motion is uniform if and only if its position-versus-time graph is a straight line.

❮❮ Section 1.4 defined an object’s average velocity as ∆r u / ∆t. For one-dimensional 
motion, this is simply ∆x/ ∆t (for horizontal motion) or ∆y/ ∆t (for vertical motion). 
You can see in Figure 2.1 that ∆x and ∆t are, respectively, the “rise” and “run” of the 
position graph. Because rise over run is the slope of a line,

	 vavg K
∆x
∆t

  or  
∆y

∆t
= slope of the position@versus@time graph	 (2.1)

That is, the average velocity is the slope of the position-versus-time graph. Velocity 
has units of “length per time,” such as “miles per hour.” The SI units of velocity are 
meters per second, abbreviated m/s.

NOTE  The symbol K in Equation 2.1 stands for “is defined as.” This is a stronger 
statement than the two sides simply being equal.

The constant slope of a straight-line graph is another way to see that the velocity is 
constant for uniform motion. There’s no real need to specify “average” for a velocity that 
doesn’t change, so we will drop the subscript and refer to the average velocity as vx or vy.

An object’s speed v is how fast it’s going, independent of direction. This is simply 
v = � vx �  or v = � vy �, the magnitude or absolute value of the object’s velocity. Although 
we will use speed from time to time, our mathematical analysis of motion is based 
on velocity, not speed. The subscript in vx or vy is an essential part of the notation, 
reminding us that, even in one dimension, the velocity is a vector.

FIGURE 2.1  Motion diagram and position 
graph for uniform motion.

v
u

t

The position graph is a
straight line. Its slope
is ∆x/∆t. 

The displacements between
successive frames are the same.

x

∆x
∆t

EXAMPLE 2.1  |  Relating a velocity graph to a position graph
FIGURE 2.2 is the position-versus-time graph of a car. 

a.  Draw the car’s velocity-versus-time graph. 

b.  Describe the car’s motion.

MODEL  Model the car as a particle, with a well-defined position at 
each instant of time.

VISUALIZE  Figure 2.2 is the graphical representation.

SOLVE  a.  The car’s position-versus-time graph is a sequence of 
three straight lines. Each of these straight lines represents uniform 
motion at a constant velocity. We can determine the car’s velocity 
during each interval of time by measuring the slope of the line.

The position graph starts out sloping downward—a negative 
slope. Although the car moves a distance of 4.0 m during the first 
2.0 s, its displacement is

∆x = xat 2.0 s - xat 0.0 s = -4.0 m - 0.0 m = -4.0 m

The time interval for this displacement is ∆t = 2.0 s, so the velocity 
during this interval is

vx =
∆x
∆t

=
-4.0 m

2.0 s
= - 2.0 m/s

The car’s position does not change from t = 2 s to t = 4 s 1∆x = 02, 
so vx = 0. Finally, the displacement between t = 4 s and t = 6 s is 
∆x = 10.0 m. Thus the velocity during this interval is

vx =
10.0 m
2.0 s

= 5.0 m/s

These velocities are shown on the velocity-versus-time graph of 
FIGURE 2.3.

b.  The car backs up for 2 s at 2.0 m/s, sits at rest for 2 s, then drives 
forward at 5.0 m/s for at least 2 s. We can’t tell from the graph what 
happens for t 7 6 s.

ASSESS  The velocity graph and the position graph look completely  
different. The value of the velocity graph at any instant of time 
equals the slope of the position graph.

Continued
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56  CHAPTER 2  Kinematics in One Dimension

Example 2.1 brought out several points that are worth emphasizing.

TACTICS BOX 2.1 

Interpreting position-versus-time graphs

	●1	 Steeper slopes correspond to faster speeds.
	●2	 Negative slopes correspond to negative velocities and, hence, to motion to the 

left (or down).
	●3	 The slope is a ratio of intervals, ∆x / ∆t, not a ratio of coordinates. That is, the 

slope is not simply x /t.
Exercises 1–3

NOTE  We are distinguishing between the actual slope and the physically mean-
ingful slope. If you were to use a ruler to measure the rise and the run of the graph, 
you could compute the actual slope of the line as drawn on the page. That is not the 
slope to which we are referring when we equate the velocity with the slope of the 
line. Instead, we find the physically meaningful slope by measuring the rise and run 
using the scales along the axes. The “rise” ∆ x is some number of meters; the “run” 
∆t is some number of seconds. The physically meaningful rise and run include units, 
and the ratio of these units gives the units of the slope.

The Mathematics of Uniform Motion
The physics of the motion is the same regardless of whether an object moves along 
the x-axis, the y-axis, or any other straight line. Consequently, it will be convenient 
to write equations for a “generic axis” that we will call the s-axis. The position of an 
object will be represented by the symbol s and its velocity by vs.

NOTE  In a specific problem you should use either x or y rather than s.

Consider an object in uniform motion along the s-axis with the linear position-versus- 
time graph shown in FIGURE 2.4. The object’s initial position is si at time ti. The term 
initial position refers to the starting point of our analysis or the starting point in a 
problem; the object may or may not have been in motion prior to ti. At a later time tf, 
the ending point of our analysis, the object’s final position is sf.

The object’s velocity vs along the s-axis can be determined by finding the slope of 
the graph:

	 vs =
rise
run

=
∆s
∆t

=
sf - si

tf - ti
	 (2.2)

FIGURE 2.4  The velocity is found from the 
slope of the position-versus-time graph.

sf

ti tf

s

si
Initial
position

Final
position

∆t

∆s

t

The slope of the line is vs = ∆s /∆t.

We will use s as a generic label for position.
In practice, s could be either x or y.

 

FIGURE 2.2  Position-versus-time graph.
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FIGURE 2.3  The corresponding velocity-versus-time graph.

M03_KNIG7429_04_GE_C02.indd   56 12/07/16   1:29 pm



2.1  Uniform Motion  57

MODEL 2.1

Equation 2.2 is easily rearranged to give

	 sf = si + vs ∆t  (uniform motion)	 (2.3)

Equation 2.3 tells us that the object’s position increases linearly as the elapsed time ∆t 
increases—exactly as we see in the straight-line position graph.

The Uniform-Motion Model
Chapter 1 introduced a model as a simplified picture of reality, but one that still captures 
the essence of what we want to study. When it comes to motion, few real objects move with 
a precisely constant velocity. Even so, there are many cases in which it is quite reasonable 
to model their motion as being uniform. That is, uniform motion is a very good approx-
imation of their actual, but more complex, motion. The uniform-motion model is a 
coherent set of representations—words, pictures, graphs, and equations—that allows us to 
explain an object’s motion and to predict where the object will be at a future instant of time.

EXAMPLE 2.2  |  Lunch in Cleveland?
Bob leaves home in Chicago at 9:00 a.m. and drives east at  
60 mph. Susan, 400 miles to the east in Pittsburgh, leaves at the same 
time and travels west at 40 mph. Where will they meet for lunch?

MODEL  Here is a problem where, for the first time, we can really  
put all four aspects of our problem-solving strategy into play.  
To begin, we’ll model Bob’s and Susan’s cars as being in uniform 

motion. Their real motion is certainly more complex, but over a 
long drive it’s reasonable to approximate their motion as constant 
speed along a straight line.

VISUALIZE  FIGURE 2.5 shows the pictorial representation. The 
equal spacings of the dots in the motion diagram indicate that 
the motion is uniform. In evaluating the given information, we 

FIGURE 2.5   Pictorial representation for Example 2.2.

Continued

Exercise 4

vs = ∆s /∆t
sf = si + vs  ∆t Straight line

s

si
t

The slope is vs.

Horizontal linevs

vis

t

The velocity is constant.

Mathematically:

Limitations: Model fails if the particle has
a signi�cant change of speed or direction.

Model the object as a particle moving
in a straight line at constant speed:

For motion with constant velocity.

v
u

Uniform motion
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58  CHAPTER 2  Kinematics in One Dimension

recognize that the starting time of 9:00 a.m. is not relevant to 
the problem. Consequently, the initial time is chosen as simply 
t0 = 0 h. Bob and Susan are traveling in opposite directions, 
hence one of the velocities must be a negative number. We have 
chosen a coordinate system in which Bob starts at the origin and 
moves to the right (east) while Susan is moving to the left (west). 
Thus Susan has the negative velocity. Notice how we’ve assigned 
position, velocity, and time symbols to each point in the motion. 
Pay special attention to how subscripts are used to distinguish 
different points in the problem and to distinguish Bob’s symbols 
from Susan’s.

One purpose of the pictorial representation is to establish what 
we need to find. Bob and Susan meet when they have the same 
position at the same time t1. Thus we want to find 1x12B at the 
time when 1x12B = (x1)S. Notice that 1x12B and 1x12S are Bob’s and  
Susan’s positions, which are equal when they meet, not the dis-
tances they have traveled.

SOLVE  The goal of the mathematical representation is to proceed 
from the pictorial representation to a mathematical solution of the 
problem. We can begin by using Equation 2.3 to find Bob’s and 
Susan’s positions at time t1 when they meet:

 1x12B = 1x02B + 1vx 2B 1t1 - t02 = 1vx2B  t1

 1x12S = 1x02S + 1vx 2S 1t1 - t02 = 1x02S + 1vx2S  t1

Notice two things. First, we started by writing the full statement of 
Equation 2.3. Only then did we simplify by dropping those terms 
known to be zero. You’re less likely to make accidental errors if 
you follow this procedure. Second, we replaced the generic symbol 
s with the specific horizontal-position symbol x, and we replaced 
the generic subscripts i and f with the specific symbols 0 and 1 
that we defined in the pictorial representation. This is also good 
problem-solving technique.

The condition that Bob and Susan meet is

1x12B = 1x12S

By equating the right-hand sides of the above equations, we get

1vx2B  t1 = 1x02S + 1vx2S  t1

Solving for t1 we find that they meet at time

t1 =
1x02S

1vx2B - 1vx2S
=

400 miles
60 mph - 1-402 mph

= 4.0 hours

Finally, inserting this time back into the equation for 1x12B gives

1x12B = 160 
miles
hour 2 * 14.0 hours2 = 240 miles

As noted in Chapter 1, this textbook will assume that all data 
are good to at least two significant figures, even when one of those 
is a trailing zero. So 400 miles, 60 mph, and 40 mph each have two 
significant figures, and consequently we’ve calculated results to 
two significant figures.

While 240 miles is a number, it is not yet the answer to the 
question. The phrase “240 miles” by itself does not say anything 
meaningful. Because this is the value of Bob’s position, and 
Bob was driving east, the answer to the question is, “They meet  
240 miles east of Chicago.”

ASSESS  Before stopping, we should check whether or not this 
answer seems reasonable. We certainly expected an answer 
between 0 miles and 400 miles. We also know that Bob is driving 
faster than Susan, so we expect that their meeting point will be 
more than halfway from Chicago to Pittsburgh. Our assessment 
tells us that 240 miles is a reasonable answer.

x

FIGURE 2.6   Position-versus-time graphs 
for Bob and Susan.
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It is instructive to look at this example from a graphical perspective. FIGURE 2.6  
shows position-versus-time graphs for Bob and Susan. Notice the negative 
slope for Susan’s graph, indicating her negative velocity. The point of interest is  
the intersection of the two lines; this is where Bob and Susan have the same 
position at the same time. Our method of solution, in which we equated 1x12B and 
1x12S, is really just solving the mathematical problem of finding the intersection 
of two lines. This procedure is useful for many problems in which there are two 
moving objects.

STOP TO THINK 2.1  Which position-versus-time 
graph represents the motion shown in the motion 
diagram?
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2.2  Instantaneous Velocity  59

FIGURE 2.7   Motion diagram and position 
graph of a car speeding up.
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The position graph is
curved because the
velocity is changing.

The spacing between the dots
increases as the car speeds up.

2.2  Instantaneous Velocity
Uniform motion is simple, but objects rarely travel for long with a constant velocity. 
Far more common is a velocity that changes with time. For example, FIGURE 2.7 shows 
the motion diagram and position graph of a car speeding up after the light turns green. 
Notice how the velocity vectors increase in length, causing the graph to curve upward 
as the car’s displacements get larger and larger.

If you were to watch the car’s speedometer, you would see it increase from 0 mph to 
10 mph to 20 mph and so on. At any instant of time, the speedometer tells you how fast 
the car is going at that instant. If we include directional information, we can define an 
object’s instantaneous velocity—speed and direction—as its velocity at a single 
instant of time.

For uniform motion, the slope of the straight-line position graph is the object’s 
velocity. FIGURE 2.8 shows that there’s a similar connection between instantaneous 
velocity and the slope of a curved position graph.

FIGURE 2.8  Instantaneous velocity at time t is the slope of the tangent to the curve at that 
instant.

∆t

∆s
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t

s

t
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t t t

What is the velocity at time t? Zoom in on a very small segment of the
curve centered on the point of interest.
This little piece of the curve is essentially
a straight line. Its slope ∆s/∆t is the
average velocity during the interval ∆t.

The little segment of straight line,
when extended, is the tangent to
the curve at time t. Its slope is the
instantaneous velocity at time t.

What we see graphically is that the average velocity vavg = ∆s/ ∆t becomes a 
better and better approximation to the instantaneous velocity vs as the time interval 
∆t over which the average is taken gets smaller and smaller. We can state this idea 
mathematically in terms of the limit ∆t S 0:

	 vs K lim
∆tS0

 
∆s
∆t

=
ds
dt
  (instantaneous velocity)	 (2.4)

As ∆t continues to get smaller, the average velocity vavg = ∆s/ ∆t reaches a con-
stant or limiting value. That is, the instantaneous velocity at time t is the average 
velocity during a time interval ∆t, centered on t, as ∆t approaches zero. In 
calculus, this limit is called the derivative of s with respect to t, and it is denoted 
ds/dt.

Graphically, ∆s/ ∆t is the slope of a straight line. As ∆t gets smaller (i.e., more 
and more magnification), the straight line becomes a better and better approxima-
tion of the curve at that one point. In the limit ∆t S 0, the straight line is tangent 
to the curve. As Figure 2.8 shows, the instantaneous velocity at time t is the 
slope of the line that is tangent to the position-versus-time graph at time t. 
That is,

	 vs = slope of the position@versus@time graph at time t	 (2.5)

The steeper the slope, the larger the magnitude of the velocity.
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60  CHAPTER 2  Kinematics in One Dimension

A Little Calculus: Derivatives
Calculus—invented simultaneously in England by Newton and in Germany by Leibniz—
is designed to deal with instantaneous quantities. In other words, it provides us with the 
tools for evaluating limits such as the one in Equation 2.4.

The notation ds/dt is called the derivative of s with respect to t, and Equation 2.4 
defines it as the limiting value of a ratio. As Figure 2.8 showed, ds  /dt can be interpreted 
graphically as the slope of the line that is tangent to the position graph.

The most common functions we will use in Parts I and II of this book are powers 
and polynomials. Consider the function u1t2 = ctn, where c and n are constants. The 
symbol u is a “dummy name” to represent any function of time, such as x1t2 or y1t2.
The following result is proven in calculus:

	 The derivative of u = ctn is 
du
dt

= nctn-1	 (2.6)

For example, suppose the position of a particle as a function of time is s1t2 = 2t2 m, 
where t is in s. We can find the particle’s velocity vs = ds/dt by using Equation 2.6 
with c = 2 and n = 2 to calculate

vs =
ds
dt

= 2 # 2t2-1 = 4t

This is an expression for the particle’s velocity as a function of time.

Scientists and engineers must use calculus 
to calculate the orbits of satellites.

EXAMPLE 2.3  |  Finding velocity from position graphically
FIGURE 2.9 shows the position-versus-time graph of an elevator.

a.  At which labeled point or points does the elevator have the 
least velocity?

b.  At which point or points does the elevator have maximum velocity?
c.  Sketch an approximate velocity-versus-time graph for the elevator.

MODEL  Model the elevator as a particle.

VISUALIZE  Figure 2.9 is the graphical representation.

SOLVE  a. At any instant, an object’s velocity is the slope of its 
position graph. FIGURE 2.10a shows that the elevator has the least 
velocity—no velocity at all!—at points A and C where the slope is 
zero. At point A, the velocity is only instantaneously zero. At point 
C, the elevator has actually stopped and remains at rest.

b.  The elevator has maximum velocity at B, the point of steepest slope.

c.  Although we cannot find an exact velocity-versus-time graph, we 
can see that the slope, and hence vy, is initially negative, becomes 
zero at point A, rises to a maximum value at point B, decreases 
back to zero a little before point C, then remains at zero thereafter. 

Thus FIGURE 2.10b shows, at least approximately, the elevator’s 
velocity-versus-time graph.

ASSESS  Once again, the shape of the velocity graph bears no 
resemblance to the shape of the position graph. You must transfer 
slope information from the position graph to value information on 
the velocity graph.

A

B
0

C

t

y

FIGURE 2.10  The velocity-versus-time graph is 
found from the slope of the position graph.
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FIGURE 2.9  Position-versus-time graph.
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FIGURE 2.11 shows the particle’s position and velocity graphs. It is critically important 
to understand the relationship between these two graphs. The value of the velocity 
graph at any instant of time, which we can read directly off the vertical axis, is the 
slope of the position graph at that same time. This is illustrated at t = 3 s.

A value that doesn’t change with time, such as the position of an object at rest, can 
be represented by the function u = c = constant. That is, the exponent of t n is n = 0. 
You can see from Equation 2.6 that the derivative of a constant is zero. That is,

	
du
dt

= 0 if u = c = constant	 (2.7)

This makes sense. The graph of the function u = c is simply a horizontal line. The 
slope of a horizontal line—which is what the derivative du/dt measures—is zero.

The only other information we need about derivatives for now is how to evaluate 
the derivative of the sum of two functions. Let u and w be two separate functions of 
time. You will learn in calculus that

	
d
dt

 1u + w2 =
du
dt

+
dw
dt

	 (2.8)

That is, the derivative of a sum is the sum of the derivatives.

NOTE  You may have learned in calculus to take the derivative dy/dx, where y is a 
function of x. The derivatives we use in physics are the same; only the notation is 
different. We’re interested in how quantities change with time, so our derivatives are 
with respect to t instead of x.

FIGURE 2.11  Position-versus-time graph 
and the corresponding velocity-versus-
time graph.
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EXAMPLE 2.4  |  Using calculus to find the velocity
A particle’s position is given by the function x1t2 = 1- t 3 + 3t2 m, 
where t is in s.

a.  What are the particle’s position and velocity at t = 2 s?

b.  Draw graphs of x and vx during the interval -3 s … t … 3 s.

c.  Draw a motion diagram to illustrate this motion.

SOLVE 

a.  We can compute the position directly from the function x:

x1at t = 2 s2 = -1223 + 132122 = -8 + 6 = -2 m

The velocity is vx = dx/dt. The function for x is the sum of two  
polynomials, so

vx =
dx
dt

=
d
dt

 1- t 3 + 3t2 =
d
dt

 1-t 32 +
d
dt

 13t2

The first derivative is a power with c = -1 and n = 3; the second 
has c = 3 and n = 1. Using Equation 2.6, we have

vx = 1-3t2 + 32 m/s

where t is in s. Evaluating the velocity at t = 2 s gives

vx  1at t = 2 s2 = -31222 + 3 = -9 m/s

The negative sign indicates that the particle, at this instant of time, 
is moving to the left at a speed of 9 m/s.

b.  FIGURE 2.12 shows the position graph and the velocity graph. You 
can make graphs like these with a graphing calculator or graphing 
software. The slope of the position-versus-time graph at t = 2 s is 
-9 m/s; this becomes the value that is graphed for the velocity at 
t = 2 s. Continued

FIGURE 2.12  Position and velocity graphs.
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62  CHAPTER 2  Kinematics in One Dimension

STOP TO THINK 2.2  Which velocity-versus-time graph goes with the position-versus- 
time graph on the left?

2.3  Finding Position from Velocity
Equation 2.4 allows us to find the instantaneous velocity vs if we know the position  
s as a function of time. But what about the reverse problem? Can we use the object’s 
velocity to calculate its position at some future time t? Equation 2.3, sf = si + vs ∆t, 
does this for the case of uniform motion with a constant velocity. We need to find a 
more general expression that is valid when vs is not constant.

FIGURE 2.14a is a velocity-versus-time graph for an object whose velocity varies with 
time. Suppose we know the object’s position to be si at an initial time ti. Our goal is to 
find its position sf at a later time tf.

Because we know how to handle constant velocities, using Equation 2.3, let’s 
approximate the velocity function of Figure 2.14a as a series of constant-velocity steps 
of width ∆t. This is illustrated in FIGURE 2.14b. During the first step, from time ti to 
time ti + ∆t, the velocity has the constant value 1vs21. The velocity during step k has 
the constant value 1vs2k. Although the approximation shown in the figure is rather 
rough, with only 11 steps, we can easily imagine that it could be made as accurate as 
desired by having more and more ever-narrower steps.

The velocity during each step is constant (uniform motion), so we can apply 
Equation 2.3 to each step. The object’s displacement ∆s1 during the first step is simply 
∆s1 = 1vs21 ∆t. The displacement during the second step ∆s2 = 1vs22 ∆t, and during step  
k the displacement is ∆sk = 1vs2k ∆t.

s vsvsvsvs

t tttt

(a) (b) (c) (d)

FIGURE 2.14   Approximating a velocity-
versus-time graph with a series of 
constant-velocity steps.
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c.  Finally, we can interpret the graphs in Figure 2.12 to draw the 
motion diagram shown in FIGURE 2.13.

■■ The particle is initially to the right of the origin 1x 7 0 at t = -3 s2 
but moving to the left 1vx 6 02. Its speed is slowing 1v = � vx �  is 
decreasing2, so the velocity vector arrows are getting shorter.

■■ The particle passes the origin x = 0 m at t ≈ -1.5 s, but it is 
still moving to the left.

■■ The position reaches a minimum at t = -1 s; the particle is as 
far left as it is going. The velocity is instantaneously vx = 0 m/s 
as the particle reverses direction.

■■ The particle moves back to the right between t = -1 s and 
t = 1 s 1vx 7 02.

■■ The particle turns around again at t = 1 s and begins moving 
back to the left 1vx 6 02. It keeps speeding up, then disappears 
off to the left.

A point in the motion where a particle reverses direction is called a 
turning point. It is a point where the velocity is instantaneously 
zero while the position is a maximum or minimum. This particle 
has two turning points, at t = -1 s and again at t = +1 s. We will 
see many other examples of turning points.

x

FIGURE 2.13  Motion diagram for Example 2.4.

v
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2.3  Finding Position from Velocity  63

The total displacement of the object between ti and tf can be approximated as the sum 
of all the individual displacements during each of the N constant-velocity steps. That is,

	 ∆s = sf - si ≈ ∆s1 + ∆s2 + g + ∆sN = a
N

k=1
1vs2k ∆t	 (2.9)

where g  (Greek sigma) is the symbol for summation. With a simple rearrangement, 
the particle’s final position is

	 sf ≈ si + a
N

k=1
1vs2k ∆t	 (2.10)

Our goal was to use the object’s velocity to find its final position sf. Equation 2.10 
nearly reaches that goal, but Equation 2.10 is only approximate because the con-
stant-velocity steps are only an approximation of the true velocity graph. But if we 
now let ∆t S 0, each step’s width approaches zero while the total number of steps N 
approaches infinity. In this limit, the series of steps becomes a perfect replica of the 
velocity-versus-time graph and Equation 2.10 becomes exact. Thus

	 sf = si + lim
∆tS0a

N

k=1
1vs2k ∆t = si + 3

tf

ti

 vs dt	 (2.11)

The expression on the right is read, “the integral of vs dt from ti to tf.” Equation 2.11 is the 
result that we were seeking. It allows us to predict an object’s position sf at a future time tf.

We can give Equation 2.11 an important geometric interpretation. FIGURE 2.15 shows 
step k in the approximation of the velocity graph as a tall, thin rectangle of height 1vs2k 
and width ∆t. The product ∆sk = 1vs2k ∆t is the area 1base * height2 of this small 
rectangle. The sum in Equation 2.11 adds up all of these rectangular areas to give the 
total area enclosed between the t-axis and the tops of the steps. The limit of this sum 
as ∆  t S 0 is the total area enclosed between the t-axis and the velocity curve. This is 
called the “area under the curve.” Thus a graphical interpretation of Equation 2.11 is

	 sf = si + area under the velocity curve vs between ti and tf	 (2.12)

NOTE  Wait a minute! The displacement ∆s = sf - si is a length. How can a length 
equal an area? Recall earlier, when we found that the velocity is the slope of the 
position graph, we made a distinction between the actual slope and the physically 
meaningful slope? The same distinction applies here. We need to measure the 
quantities we are using, vs and ∆t, by referring to the scales on the axes. ∆t is 
some number of seconds while vs is some number of meters per second. When 
these are multiplied together, the physically meaningful area has units of meters.

FIGURE 2.15  The total displacement ∆s is 
the “area under the curve.”

vs

t
ti tf

∆t

During step k, the product
∆sk = (vs)k∆t is the area
of the shaded rectangle.

During the interval ti to tf,
the total displacement ∆s is
the “area under the curve.”

EXAMPLE 2.5  |  The displacement during a drag race
FIGURE 2.16 shows the velocity-versus-time graph of a drag racer. 
How far does the racer move during the first 3.0 s?

MODEL  Model the drag racer as a particle with a well-defined position 
at all times.

VISUALIZE  Figure 2.16 is the graphical representation.

SOLVE  The question “How far?” indicates that we need to find a dis-
placement ∆  x rather than a position x. According to Equation 2.12, 
the car’s displacement ∆  x = xf - xi between t = 0 s and t = 3 s is 
the area under the curve from t = 0 s to t = 3 s. The curve in this case 
is an angled line, so the area is that of a triangle:

 ∆x = area of triangle between t = 0 s and t = 3 s

 = 1
2 * base * height

 = 1
2 * 3 s * 12 m/s = 18 m

The drag racer moves 18 m during the first 3 seconds.

ASSESS  The “area” is a product of s with m/s, so ∆x has the proper 
units of m.

FIGURE 2.16  Velocity-versus-time graph for Example 2.5.
vx (m/s)

16

12

8

4

0
0 1 2 3 4

t (s)

The line is the function
vx = 4t m/s.

The displacement
∆x is the area of the
shaded triangle.

x
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64  CHAPTER 2  Kinematics in One Dimension

A Little More Calculus: Integrals
Taking the derivative of a function is equivalent to finding the slope of a graph of the 
function. Similarly, evaluating an integral is equivalent to finding the area under a 
graph of the function. The graphical method is very important for building intuition 
about motion but is limited in its practical application. Just as derivatives of standard 
functions can be evaluated and tabulated, so can integrals.

The integral in Equation 2.11 is called a definite integral because there are two 
definite boundaries to the area we want to find. These boundaries are called the lower 
1ti2 and upper 1tf2 limits of integration. For the important function u1t2 = ctn, the 
essential result from calculus is that

	 3
tf

ti

u dt = 3
tf

ti

ctn dt =
ctn+1

n + 1
  `

tf

ti

=
ctf 

n+1

n + 1
-

cti 

n+1

n + 1
    1n ≠ -12	 (2.13)

The vertical bar in the third step with subscript ti and superscript tf is a shorthand 
notation from calculus that means—as seen in the last step—the integral evaluated 
at the upper limit tf minus the integral evaluated at the lower limit ti. You also need to 
know that for two functions u and w,

	 3
tf

ti

1u + w2 dt = 3
tf

ti

u dt + 3
tf

ti

w dt	 (2.14)

That is, the integral of a sum is equal to the sum of the integrals.

EXAMPLE 2.6  |  Finding the turning point
FIGURE 2.17 is the velocity graph for a particle that starts at 
xi = 30 m at time ti = 0 s.

a.  Draw a motion diagram for the particle.

b.  Where is the particle’s turning point?

c.  At what time does the particle reach the origin?

VISUALIZE  The particle is initially 30 m to the right of the origin 
and moving to the right 1vx 7 02 with a speed of 10 m/s. But vx is 
decreasing, so the particle is slowing down. At t = 2 s the velocity, 
just for an instant, is zero before becoming negative. This is the 
turning point. The velocity is negative for t 7 2 s, so the particle 
has reversed direction and moves back toward the origin. At some 
later time, which we want to find, the particle will pass x = 0 m.

SOLVE  a.  FIGURE 2.18 shows the motion diagram. The distance scale 
will be established in parts b and c but is shown here for convenience.

b.  The particle reaches the turning point at t = 2 s. To learn where it 
is at that time we need to find the displacement during the first two 
seconds. We can do this by finding the area under the curve between 
t = 0 s and t = 2 s:

 x1at t = 2 s2 = xi + area under the curve between 0 s and 2 s

 = 30 m + 1
2 12 s - 0 s2110 m/s - 0 m/s2

 = 40 m

The turning point is at x = 40 m.

c.  The particle needs to move ∆x = -40 m to get from the turning 
point to the origin. That is, the area under the curve from t = 2 s to 
the desired time t needs to be -40 m. Because the curve is below 
the axis, with negative values of vx, the area to the right of t = 2 s 
is a negative area. With a bit of geometry, you will find that the 
triangle with a base extending from t = 2 s to t = 6 s has an area of 
-40 m. Thus the particle reaches the origin at t = 6 s.

FIGURE 2.17  Velocity-versus-time graph for the particle of 
Example 2.6.

vx (m/s)

t (s)

10

0

-10

-20

2 4 6

FIGURE 2.18  Motion diagram for the particle whose velocity graph 
was shown in Figure 2.17.
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2.4  Motion with Constant Acceleration  65

2.4  Motion with Constant Acceleration
We need one more major concept to describe one-dimensional motion: acceleration. 
Acceleration, as we noted in Chapter 1, is a rather abstract concept. Nonetheless,  
acceleration is the linchpin of mechanics. We will see very shortly that Newton’s laws 
relate the acceleration of an object to the forces that are exerted on it.

Let’s conduct a race between a Volkswagen Beetle and a Porsche to see which can 
achieve a velocity of 30 m/s 1≈60 mph2 in the shortest time. Both cars are equipped 
with computers that will record the speedometer reading 10 times each second. This 
gives a nearly continuous record of the instantaneous velocity of each car. TABLE 2.1 
shows some of the data. The velocity-versus-time graphs, based on these data, are 
shown in FIGURE 2.19 on the next page.

How can we describe the difference in performance of the two cars? It is not that 
one has a different velocity from the other; both achieve every velocity between 0 and 
30 m/s. The distinction is how long it took each to change its velocity from 0 to 30 m/s. 
The Porsche changed velocity quickly, in 6.0 s, while the VW needed 15 s to make 

EXAMPLE 2.7  |  Using calculus to find the position
Use calculus to solve Example 2.6.

SOLVE  Figure 2.17 is a linear graph. Its “y-intercept” is seen to 
be 10 m/s and its slope is -5 1m/s2/s. Thus the velocity can be 
described by the equation

vx = 110 - 5 t2 m/s

where t is in s. We can find the position x at time t by using  
Equation 2.11:

 x = xi + 3
t

0
vx dt = 30 m + 3

t

0
110 - 5 t2 dt

 = 30 m + 3
t

0
10 dt - 3

t

0
5 t dt

We used Equation 2.14 for the integral of a sum to get the final 
expression. The first integral is a function of the form u = ctn with 
c = 10 and n = 0; the second is of the form u = ctn with c = 5 and 
n = 1. Using Equation 2.13, we have

3
t

0
10 d t = 10 t `

t

0
= 10 # t - 10 # 0 = 10 t m

and      3
t

0
5t dt = 5

2 t 2
 `

t

0
= 5

2
# t 2 - 5

2
# 02 = 5

2 t 2 m

Combining the pieces gives

x = 130 + 10 t - 5
2 t 22  m

This is a general result for the position at any time t.
The particle’s turning point occurs at t = 2 s, and its position 

at that time is

x1at t = 2 s2 = 30 + 1102122 - 5
2 1222 = 40 m

The time at which the particle reaches the origin is found by setting 
x = 0 m:

30 + 10 t - 5
2 t 2 = 0

This quadratic equation has two solutions: t = -2 s or t = 6 s.
When we solve a quadratic equation, we cannot just arbitrarily  

select the root we want. Instead, we must decide which is the 
meaningful root. Here the negative root refers to a time before the 
problem began, so the meaningful one is the positive root, t = 6 s.

ASSESS  The results agree with the answers we found previously 
from a graphical solution.

x
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STOP TO THINK 2.3  Which position-versus-time graph goes with the velocity-versus-time graph on 
the left? The particle’s position at ti = 0 s is xi = -10 m.

TABLE 2.1  Velocities of a Porsche and a 
Volkswagen Beetle

t (s) v Porsche (m/s) v VW (m/s)

0.0 0.0 0.0

0.1 0.5 0.2

0.2 1.0 0.4

0.3 1.5 0.6

f f f
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66  CHAPTER 2  Kinematics in One Dimension

the same velocity change. Because the Porsche had a velocity change ∆vs = 30 m/s 
during a time interval ∆t = 6.0 s, the rate at which its velocity changed was

	 rate of velocity change =
∆vs

∆t
=

30 m/s
6.0 s

= 5.0 1m/s2/s	 (2.15)

Notice the units. They are units of “velocity per second.” A rate of velocity change 
of 5.0 “meters per second per second” means that the velocity increases by 5.0 m/s 
during the first second, by another 5.0 m/s during the next second, and so on. In fact, 
the velocity will increase by 5.0 m/s during any second in which it is changing at the 
rate of 5.0 1m/s2/s.

Chapter 1 introduced acceleration as “the rate of change of velocity.” That is, 
acceleration measures how quickly or slowly an object’s velocity changes. In parallel 
with our treatment of velocity, let’s define the average acceleration aavg during the 
time interval ∆t to be

	 aavg K
∆vs

∆t
  (average acceleration)	 (2.16)

Equations 2.15 and 2.16 show that the Porsche had the rather large acceleration of  
5.0 1m/s2/s.

Because ∆vs and ∆t are the “rise” and “run” of a velocity-versus-time graph, we see 
that aavg can be interpreted graphically as the slope of a straight-line velocity-versus- 
time graph. In other words,

	 aavg = slope of the velocity@versus@time graph	 (2.17)

Figure 2.19 uses this idea to show that the VW’s average acceleration is

aVW avg =
∆vs

∆t
=

10 m/s
5.0 s

= 2.0 1m/s2/s

This is less than the acceleration of the Porsche, as expected.
An object whose velocity-versus-time graph is a straight-line graph has a steady 

and unchanging acceleration. There’s no need to specify “average” if the acceleration 
is constant, so we’ll use the symbol as as we discuss motion along the s-axis with 
constant acceleration.

Signs and Units
An important aspect of acceleration is its sign. Acceleration au, like position r u  and 
velocity v 

u, is a vector. For motion in one dimension, the sign of ax (or ay) is positive if 
the vector au points to the right (or up), negative if it points to the left (or down). This 
was illustrated in ❮❮ Figure 1.18 and the very important ❮❮ Tactics Box 1.4, which you 
may wish to review. It’s particularly important to emphasize that positive and negative 
values of as do not correspond to “speeding up” and “slowing down.”

FIGURE 2.19  Velocity-versus-time graphs 
for the Porsche and the VW Beetle.

Porsche

The Porsche reaches 30 m/s
in 6 s. The VW takes 15 s.

VW
vs (m/s)

30

20
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0
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t (s)

Slope = aPorsche avg = 5.0 (m/s)/s

Slope = aVW avg = 2.0 (m/s)/s

∆t = 5.0 s

∆vs = 10 m/s

EXAMPLE 2.8  |  Relating acceleration to velocity
a.  A bicyclist has a velocity of 6 m/s and a constant acceleration 
of 2 1m/s2/s. What is her velocity 1 s later? 2 s later?

b.  A bicyclist has a velocity of -6 m/s and a constant acceleration 
of 2 1m/s2/s. What is his velocity 1 s later? 2 s later?

SOLVE 

a.  An acceleration of 2 1m/s2/s means that the velocity increases 
by 2 m/s every 1 s. If the bicyclist’s initial velocity is 6 m/s, 
then 1 s later her velocity will be 8 m/s. After 2 s, which is 1  

additional second later, it will increase by another 2 m /s to  
10 m/s. After 3 s it will be 12 m/s. Here a positive ax is causing 
the bicyclist to speed up.

b.  If the bicyclist’s initial velocity is a negative -6 m/s but the  
acceleration is a positive +2 1m/s2/s, then 1 s later his velocity will be 
-4 m/s. After 2 s it will be -2 m/s, and so on. In this case, a positive 
ax is causing the object to slow down (decreasing speed v). This agrees 
with the rule from Tactics Box 1.4: An object is slowing down if and 
only if vx and ax have opposite signs.

x
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2.4  Motion with Constant Acceleration  67

EXAMPLE 2.9  |  Running the court
A basketball player starts at the left end of the court and moves 
with the velocity shown in FIGURE 2.20. Draw a motion diagram 
and an acceleration-versus-time graph for the basketball player.

VISUALIZE  The velocity is positive (motion to the right) and  
increasing for the first 6 s, so the velocity arrows in the motion 
diagram are to the right and getting longer. From t = 6 s to 9 s the 
motion is still to the right (vx is still positive), but the arrows are 
getting shorter because vx is decreasing. There’s a turning point at 
t = 9 s, when vx = 0, and after that the motion is to the left (vx is 
negative) and getting faster. The motion diagram of FIGURE 2.21a 
shows the velocity and the acceleration vectors.

SOLVE  Acceleration is the slope of the velocity graph. For the first 
6 s, the slope has the constant value

ax =
∆vx

∆t
=

6.0  m/s
6.0 s

= 1.0  m/s2

The velocity then decreases by 12 m/s during the 6 s interval from 
t = 6 s to t = 12 s, so

ax =
∆vx

∆t
=

-12 m/s
6.0 s

= -2.0 m/s2

The acceleration graph for these 12 s is shown in FIGURE 2.21b. 
Notice that there is no change in the acceleration at t = 9 s, the 
turning point.

ASSESS  The sign of ax does not tell us whether the object is speed-
ing up or slowing down. The basketball player is slowing down 
from t = 6 s to t = 9 s, then speeding up from t = 9 s to t = 12 s. 
Nonetheless, his acceleration is negative during this entire interval 
because his acceleration vector, as seen in the motion diagram, always 
points to the left.

FIGURE 2.20  Velocity-versus-time graph for the basketball player 
of Example 2.9.
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FIGURE 2.21  Motion diagram and acceleration graph for  
Example 2.9.
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x

The Kinematic Equations of Constant Acceleration
Consider an object whose acceleration as remains constant during the time interval 
∆t = tf - ti. At the beginning of this interval, at time ti, the object has initial velocity 
vis and initial position si. Note that ti is often zero, but it does not have to be. We would 
like to predict the object’s final position sf and final velocity vfs at time tf.

The object’s velocity is changing because the object is accelerating. FIGURE 2.22a 
shows the acceleration-versus-time graph, a horizontal line between ti and tf. It is not 
hard to find the object’s velocity vfs at a later time tf. By definition,

	 as =
∆vs

∆t
=

vfs - vis

∆t
	 (2.18)

which is easily rearranged to give

	 vfs = vis + as ∆t	 (2.19)

The velocity-versus-time graph, shown in FIGURE 2.22b, is a straight line that starts at 
vis and has slope as.

FIGURE 2.22  Acceleration and velocity 
graphs for constant acceleration.

Acceleration Constant acceleration as

Velocity

Constant slope = as
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vfs
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0
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as∆t
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ti tf
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t

t

Displacement ∆s is the area
under the curve, consisting of
a rectangle and a triangle.

(a)

(b)

NOTE  It is customary to abbreviate the acceleration units (m/s)/s as m/s2. For example, 
the bicyclists in Example 2.8 had an acceleration of 2 m/s2. We will use this notation, 
but keep in mind the meaning of the notation as “(meters per second) per second.”
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68  CHAPTER 2  Kinematics in One Dimension

MODEL 2.2 

As you learned in the last section, the object’s final position is

	 sf = si + area under the velocity curve vs between ti and tf	 (2.20)

The shaded area in Figure 2.22b can be subdivided into a rectangle of area vis ∆t and 
a triangle of area 12 1as ∆t21∆t2 = 1

2 as1∆t22. Adding these gives

	 sf = si + vis ∆t + 1
2 as  1∆t22	 (2.21)

where ∆t = tf - ti is the elapsed time. The quadratic dependence on ∆t causes the  
position-versus-time graph for constant-acceleration motion to have a parabolic shape, 
as shown in Model 2.2.

Equations 2.19 and 2.21 are two of the basic kinematic equations for motion with 
constant acceleration. They allow us to predict an object’s position and velocity at a 
future instant of time. We need one more equation to complete our set, a direct relation  
between position and velocity. First use Equation 2.19 to write ∆t = 1vfs - vis2/as. 
Substitute this into Equation 2.21, giving

	 sf = si + vis  1vfs - vis

as
2 + 1

2 as  1vfs - vis

as
22

	 (2.22)

With a bit of algebra, this is rearranged to read

	 vfs 

2 = vis 

2 + 2as ∆s	 (2.23)

where ∆s = sf - si is the displacement (not the distance!). Equation 2.23 is the last of 
the three kinematic equations for motion with constant acceleration.

The Constant-Acceleration Model
Few objects with changing velocity have a perfectly constant acceleration, but it is 
often reasonable to model their acceleration as being constant. We do so by utilizing 
the constant-acceleration model. Once again, a model is a set of words, pictures, 
graphs, and equations that allows us to explain and predict an object’s motion.

a
u

Mathematically:

Limitations: Model fails if the particle’s
acceleration changes.

Model the object as a particle moving
in a straight line with constant acceleration.

For motion with constant acceleration.

v
u

Parabola

s

si t

The slope is vs.

Horizontal lineas

0 t

The acceleration is constant.

Straight linevs

vis t

The slope is as.
vfs = vis + as ∆t

vfs
2 = vis

2 + 2as ∆s

sf = si + vis ∆t + as1∆t221
2

Constant acceleration

In this text, we’ll usually model runners, cars, planes, and rockets as having con-
stant acceleration. Their actual acceleration is often more complicated (for example, a 
car’s acceleration gradually decreases rather than remaining constant until full speed 
is reached), but the mathematical complexity of dealing with realistic accelerations 
would detract from the physics we’re trying to learn.

The constant-acceleration model is the basis for a problem-solving strategy.

Exercise 16
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2.4  Motion with Constant Acceleration  69

NOTE  You are strongly encouraged to solve problems on the Dynamics Worksheets 
found at the back of the Student Workbook. These worksheets will help you use the 
Problem-Solving Strategy and develop good problem-solving skills.

PROBLEM-SOLVING STRATEGY 2.1 

Kinematics with constant acceleration
MODEL  Model the object as having constant acceleration.

VISUALIZE  Use different representations of the information in the problem.
■■ Draw a pictorial representation. This helps you assess the information you 

are given and starts the process of translating the problem into symbols.
■■ Use a graphical representation if it is appropriate for the problem.
■■ Go back and forth between these two representations as needed.

SOLVE  The mathematical representation is based on the three kinematic equations:

	  vfs = vis + as  ∆t
 sf = si + vis ∆t + 1

2 as  1∆t22

	  vfs 

2 = vis 

2 + 2as ∆s

■■ Use x or y, as appropriate to the problem, rather than the generic s.
■■ Replace i and f with numerical subscripts defined in the pictorial representation.

ASSESS  Check that your result has the correct units and significant figures, is 
reasonable, and answers the question.

EXAMPLE 2.10  |  The motion of a rocket sled
A rocket sled’s engines fire for 5.0 s, boosting the sled to a speed 
of 250 m/s. The sled then deploys a braking parachute, slowing by 
3.0 m/s per second until it stops. What is the total distance traveled?

MODEL  We’re not given the sled’s initial acceleration, while the 
rockets are firing, but rocket sleds are aerodynamically shaped to 
minimize air resistance and so it seems reasonable to model the 
sled as a particle undergoing constant acceleration.

VISUALIZE  FIGURE 2.23 shows the pictorial representation. We’ve 
made the reasonable assumptions that the sled starts from rest 
and that the braking parachute is deployed just as the rocket burn 
ends. There are three points of interest in this problem: the start, 
the change from propulsion to braking, and the stop. Each of these 
points has been assigned a position, velocity, and time. Notice 
that we’ve replaced the generic subscripts i and f of the kinematic 
equations with the numerical subscripts 0, 1, and 2. Accelerations 
are associated not with specific points in the motion but with the 

intervals between the points, so acceleration a0x is the acceleration 
between points 0 and 1 while acceleration a1x is the acceleration 
between points 1 and 2. The acceleration vector au1 points to the left, 
so a1x is negative. The sled stops at the end point, so v2x = 0 m/s.

SOLVE  We know how long the rocket burn lasts and the velocity 
at the end of the burn. Because we’re modeling the sled as having 
uniform acceleration, we can use the first kinematic equation of 
Problem-Solving Strategy 2.1 to write

v1x = v0x + a0x1t1 - t02 = a0xt1

We started with the complete equation, then simplified by noting which 
terms were zero. Solving for the boost-phase acceleration, we have

a0x =
v1x

t1
=

250 m/s
5.0 s

= 50 m/s2

Notice that we worked algebraically until the last step—a hallmark 
of good problem-solving technique that minimizes the chances of 

FIGURE 2.23  Pictorial representation of the rocket sled.

Continued
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70  CHAPTER 2  Kinematics in One Dimension

calculation errors. Also, in accord with the significant figure rules 
of Chapter 1, 50 m/s2 is considered to have two significant figures.

Now we have enough information to find out how far the sled 
travels while the rockets are firing. The second kinematic equation 
of Problem-Solving Strategy 2.1 is

 x1 = x0 + v0x1t1 - t02 + 1
2 a0x1t1 - t022 = 1

2 a0x t1 

2

 = 1
2 150 m/s2215.0 s22 = 625 m

The braking phase is a little different because we don’t know how 
long it lasts. But we do know both the initial and final velocities, 
so we can use the third kinematic equation of Problem-Solving 
Strategy 2.1:

v2x 

2 = v1x 

2 + 2a1x ∆x = v1x 

2 + 2a1x1x2 - x12

Notice that ∆x is not x2; it’s the displacement 1x2 - x12 during the 
braking phase. We can now solve for x2:

 x2 = x1 +
v2x 

2 - v1x 

2

2a1x

 = 625 m +
0 - 1250 m/s22

21-3.0 m/s22 = 11,000 m

We kept three significant figures for x1 at an intermediate stage of the 
calculation but rounded to two significant figures at the end.

ASSESS  The total distance is 11 km ≈ 7 mi. That’s large but  
believable. Using the approximate conversion factor 1 m/s ≈ 2 mph 
from Table 1.5, we see that the top speed is ≈ 500 mph. It will take a 
long distance for the sled to gradually stop from such a high speed.

 

EXAMPLE 2.11  |  A two-car race
Fred is driving his Volkswagen Beetle at a steady 20 m/s when he 
passes Betty sitting at rest in her Porsche. Betty instantly begins accel-
erating at 5.0 m/s2. How far does Betty have to drive to overtake Fred?

MODEL  Model the VW as a particle in uniform motion and the 
Porsche as a particle with constant acceleration.

VISUALIZE  FIGURE 2.24 is the pictorial representation. Fred’s motion 
diagram is one of uniform motion, while Betty’s shows uniform accel-
eration. Fred is ahead in frames 1, 2, and 3, but Betty catches up with 
him in frame 4. The coordinate system shows the cars with the same 
position at the start and at the end—but with the important difference 
that Betty’s Porsche has an acceleration while Fred’s VW does not.

SOLVE  This problem is similar to Example 2.2, in which Bob 
and Susan met for lunch. As we did there, we want to find Betty’s  
position 1x12B at the instant t1 when 1x12B = 1x12F. We know, from 
the models of uniform motion and uniform acceleration, that 
Fred’s position graph is a straight line but Betty’s is a parabola. 
The position graphs in Figure 2.24 show that we’re solving for the 
intersection point of the line and the parabola.

Fred’s and Betty’s positions at t1 are

 1x12F = 1x02F + 1v0x2F1t1 - t02 = 1v0x2F t1

 1x12B = 1x02B + 1v0x2B1t1 - t02 + 1
2 1a0x2 B1t1 - t022 = 1

2 1a0x2B t1 

2

By equating these,

1v0x2F t1 = 1
2 1a0x2B t1 

2

we can solve for the time when Betty passes Fred:

t131
2 

 

1a0x2B t1 - 1
  

v0x2F4 = 0

t1 = e0 s
21v0x2F /1a0x2B = 8.0 s

Interestingly, there are two solutions. That’s not surprising, when you 
think about it, because the line and the parabola of the position graphs 
have two intersection points: when Fred first passes Betty, and 8.0 s 
later when Betty passes Fred. We’re interested in only the second of 
these points. We can now use either of the distance equations to find 
1x12B = 1x12F = 160 m. Betty has to drive 160 m to overtake Fred.

ASSESS  160 m ≈ 160 yards. Because Betty starts from rest while 
Fred is moving at 20 m/s ≈ 40 mph, needing 160 yards to catch him 
seems reasonable.

NOTE  The purpose of the Assess step is not to prove that an 
answer must be right but to rule out answers that, with a little 
thought, are clearly wrong.

 

FIGURE 2.24  Pictorial representation for Example 2.11.
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2.5  Free Fall  71

STOP TO THINK 2.4  Which velocity-versus-time graph or graphs go with the  
acceleration-versus-time graph on the left? The particle is initially moving to the right.

2.5  Free Fall
The motion of an object moving under the influence of gravity only, and no other forces, 
is called free fall. Strictly speaking, free fall occurs only in a vacuum, where there is no 
air resistance. Fortunately, the effect of air resistance is small for “heavy objects,” so we’ll 
make only a very slight error in treating these objects as if they were in free fall. For very 
light objects, such as a feather, or for objects that fall through very large distances and gain 
very high speeds, the effect of air resistance is not negligible. Motion with air resistance is 
a problem we will study in Chapter 6. Until then, we will restrict our attention to “heavy 
objects” and will make the reasonable assumption that falling objects are in free fall.

Galileo, in the 17th century, was the first to make detailed measurements of falling 
objects. The story of Galileo dropping different weights from the leaning bell tower 
at the cathedral in Pisa is well known, although historians cannot confirm its truth. 
Based on his measurements, wherever they took place, Galileo developed a model for 
motion in the absence of air resistance:

■■ Two objects dropped from the same height will, if air resistance can be neglected, 
hit the ground at the same time and with the same speed.

■■ Consequently, any two objects in free fall, regardless of their mass, have the 
same acceleration aufree fall.

FIGURE 2.25a shows the motion diagram of an object that was released from rest and 
falls freely. FIGURE 2.25b shows the object’s velocity graph. The motion diagram and graph 
are identical for a falling pebble and a falling boulder. The fact that the velocity graph is a 
straight line tells us the motion is one of constant acceleration, and afree fall is found from 
the slope of the graph. Careful measurements show that the value of aufree fall varies ever so 
slightly at different places on the earth, due to the slightly nonspherical shape of the earth 
and to the fact that the earth is rotating. A global average, at sea level, is

	 aufree fall = (9.80 m/s2, vertically downward)	 (2.24)

Vertically downward means along a line toward the center of the earth.
The length, or magnitude, of aufree fall is known as the free-fall acceleration, and 

it has the special symbol g:

g = 9.80 m/s2 (free@fall acceleration)

Several points about free fall are worthy of note:

■■ g, by definition, is always positive. There will never be a problem that will use a 
negative value for g. But, you say, objects fall when you release them rather than 
rise, so how can g be positive?

■■ g is not the acceleration afree fall, but simply its magnitude. Because we’ve chosen 
the y-axis to point vertically upward, the downward acceleration vector aufree fall has 
the one-dimensional acceleration

	 ay = afree fall = -g	 (2.25)

It is ay that is negative, not g.

In a vacuum, the apple and feather fall at 
the same rate and hit the ground at the 
same time.

FIGURE 2.25  Motion of an object in free 
fall.
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72  CHAPTER 2  Kinematics in One Dimension

■■ We can model free fall as motion with constant acceleration, with ay = -g.
■■ g is not called “gravity.” Gravity is a force, not an acceleration. The symbol g  

recognizes the influence of gravity, but g is the free-fall acceleration.
■■ g = 9.80 m/s2 only on earth. Other planets have different values of g. You will learn 

in Chapter 13 how to determine g for other planets.

NOTE  Despite the name, free fall is not restricted to objects that are literally falling. 
Any object moving under the influence of gravity only, and no other forces, is in free 
fall. This includes objects falling straight down, objects that have been tossed or shot 
straight up, and projectile motion.

EXAMPLE 2.12  |  A falling rock
A rock is dropped from the top of a 20-m-tall building. What is its 
impact velocity?

MODEL  A rock is fairly heavy, and air resistance is probably not 
a serious concern in a fall of only 20 m. It seems reasonable to 
model the rock’s motion as free fall: constant acceleration with 
ay = afree fall = -g.

VISUALIZE  FIGURE 2.26 shows the pictorial representation. We 
have placed the origin at the ground, which makes y0 = 20 m.  
Although the rock falls 20 m, it is important to notice that the 
displacement is ∆y = y1 - y0 = -20 m.

SOLVE  In this problem we know the displacement but not the 
time, which suggests that we use the third kinematic equation from  
Problem-Solving Strategy 2.1:

v1y 

2 = v0y 

2 + 2ay   ∆y = -2g ∆y

We started by writing the general equation, then noted that 
v0y = 0 m/s and substituted ay = -g. Solving for v1y:

v1y = 2-2g∆y = 2-219.8 m/s221-20 m2 = {20 m/s

A common error would be to say, “The rock fell 20 m, so ∆y = 20 m.” 
That would have you trying to take the square root of a negative 
number. As noted above, ∆y is a displacement, not a distance, and 
in this case ∆y = -20 m.

The { sign indicates that there are two mathematical solutions; 
therefore, we have to use physical reasoning to choose between them. 
The rock does hit with a speed of 20 m/s, but the question asks for the 
impact velocity. The velocity vector points down, so the sign of v1y is 
negative. Thus the impact velocity is -20 m/s.

ASSESS  Is the answer reasonable? Well, 20 m is about 60 feet,  
or about the height of a five- or six-story building. Using 1 m/s ≈
2 mph, we see that 20 m/s ≈ 40 mph. That seems quite reasonable 
for the speed of an object after falling five or six stories. If we had 
misplaced a decimal point, though, and found 2.0 m/s, we would 
be suspicious that this was much too small after converting it  
to ≈ 4 mph.

FIGURE 2.26  Pictorial representation of a falling rock.
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EXAMPLE 2.13  |  Finding the height of a leap
The springbok, an antelope found in  
Africa, gets its name from its re- 
markable jumping ability. When  
startled, a springbok will leap 
straight up into the air—a maneuver 
called a “pronk.” A springbok goes 
into a crouch to perform a pronk. It 
then extends its legs forcefully, ac-
celerating at 35 m/s2 for 0.70 m as  

its legs straighten. Legs fully extended, it leaves the ground and 
rises into the air. How high does it go?

MODEL  The springbok is changing shape as it leaps, so can we 
reasonably model it as a particle? We can if we focus on the body 
of the springbok, treating the expanding legs like external springs. 
Initially, the body of the springbok is driven upward by its legs. 
We’ll model this as a particle—the body—undergoing constant  
acceleration. Once the springbok’s feet leave the ground, we’ll 
model the motion of the springbok’s body as a particle in free fall.
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2.6  Motion on an Inclined Plane
FIGURE 2.28a shows a problem closely related to free fall: that of motion down a straight, 
but frictionless, inclined plane, such as a skier going down a slope on frictionless snow. 
What is the object’s acceleration? Although we’re not yet prepared to give a rigorous 
derivation, we can deduce the acceleration with a plausibility argument.

FIGURE 2.28b shows the free-fall acceleration aufree fall the object would have if the 
incline suddenly vanished. The free-fall acceleration points straight down. This vector 
can be broken into two pieces: a vector au ‘ that is parallel to the incline and a vector au# 
that is perpendicular to the incline. The surface of the incline somehow “blocks” au#  , 
through a process we will examine in Chapter 6, but au ‘ is unhindered. It is this piece 
of aufree fall , parallel to the incline, that accelerates the object.

By definition, the length, or magnitude, of aufree fall is g. Vector au ‘ is opposite angle u  
(Greek theta), so the length, or magnitude, of au ‘ must be g sin u. Consequently, the 
one-dimensional acceleration along the incline is

	 as = {g sin u	 (2.26)

The correct sign depends on the direction in which the ramp is tilted. Examples will 
illustrate.

Equation 2.26 makes sense. Suppose the plane is perfectly horizontal. If you place 
an object on a horizontal surface, you expect it to stay at rest with no acceleration. 
Equation 2.26 gives as = 0 when u = 0°, in agreement with our expectations. Now 
suppose you tilt the plane until it becomes vertical, at u = 90°. Without friction, an  
object would simply fall, in free fall, parallel to the vertical surface. Equation 2.26 gives 
as = -g = afree fall when u = 90°, again in agreement with our expectations. Equation 2.26  
gives the correct result in these limiting cases.

VISUALIZE  FIGURE 2.27 shows the pictorial representation. This 
is a problem with a beginning point, an end point, and a point in 
between where the nature of the motion changes. We’ve identified 
these points with subscripts 0, 1, and 2. The motion from 0 to 1 
is a rapid upward acceleration until the springbok’s feet leave the 
ground at 1. Even though the springbok is moving upward from 1 
to 2, this is free-fall motion because the springbok is now moving 
under the influence of gravity only.

How do we put “How high?” into symbols? The clue is that 
the very top point of the trajectory is a turning point, and we’ve 
seen that the instantaneous velocity at a turning point is v2y = 0. 

This was not explicitly stated but is part of our interpretation of 
the problem.

SOLVE  For the first part of the motion, pushing off, we know a 
displacement but not a time interval. We can use

 v1y 

2 = v0y 

2 +  2a0y ∆y = 2135 m/s2210.70 m2 = 49 m2/s2

 v1y = 249 m2/s2 = 7.0 m/s

The springbok leaves the ground with a velocity of 7.0 m/s. This is 
the starting point for the problem of a projectile launched straight 
up from the ground. One possible solution is to use the velocity 
equation to find how long it takes to reach maximum height, then 
the position equation to calculate the maximum height. But that 
takes two separate calculations. It is easier to make another use of 
the velocity-displacement equation:

v2y 

2 = 0 = v1y 

2 + 2a1y ∆y = v1y 

2 - 2g1y2 - y12
where now the acceleration is a1y = -g. Using y1 = 0, we can solve 
for y2, the height of the leap:

y2 =
v1y 

2

2g
=

17.0 m/s22

219.80 m/s22 = 2.5 m

ASSESS  2.5 m is a bit over 8 feet, a remarkable vertical jump. But 
these animals are known for their jumping ability, so the answer 
seems reasonable. Note that it is especially important in a multipart 
problem like this to use numerical subscripts to distinguish different 
points in the motion.

FIGURE 2.27  Pictorial representation of a startled springbok.

 

FIGURE 2.28  Acceleration on an inclined 
plane.
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EXAMPLE 2.14  |  Measuring acceleration
In the laboratory, a 2.00-m-long track has been inclined as shown 
in FIGURE 2.29. Your task is to measure the acceleration of a cart 
on the ramp and to compare your result with what you might have 
expected. You have available five “photogates” that measure the 
cart’s speed as it passes through. You place a gate every 30 cm from 
a line you mark near the top of the track as the starting line. One 
run generates the data shown in the table. The first entry isn’t a 
photogate, but it is a valid data point because you know the cart’s 
speed is zero at the point where you release it.

Distance (cm) Speed (m/s)

    0 0.00

  30 0.75

  60 1.15

  90 1.38

120 1.56

150 1.76

NOTE  Physics is an experimental science. Our knowledge of 
the universe is grounded in observations and measurements. 
Consequently, some examples and homework problems 
throughout this book will be based on data. Data-based 
homework problems require the use of a spreadsheet, graphing 
software, or a graphing calculator in which you can “fit” data 
with a straight line.

MODEL  Model the cart as a particle.

VISUALIZE  FIGURE 2.30 shows the pictorial representation. The 
track and axis are tilted at angle u = tan-1 120.0 cm /180 cm2 = 6.34°. 
This is motion on an inclined plane, so you might expect the cart’s 
acceleration to be ax = g sin u = 1.08 m/s2.

SOLVE  In analyzing data, we want to use all the data. Further, 
we almost always want to use graphs when we have a series of 
measurements. We might start by graphing speed versus distance 
traveled. This is shown in FIGURE 2.31a, where we’ve converted  
distances to meters. As expected, speed increases with distance, but 
the graph isn’t linear and that makes it hard to analyze.

Rather than proceeding by trial and error, let’s be guided by 
theory. If the cart has constant acceleration—which we don’t yet 
know and need to confirm—the third kinematic equation tells us 
that velocity and displacement should be related by

vx 

2 = v0x 

2 +  2ax ∆x = 2ax  x

The last step was based on starting from rest 1v0x = 02 at the origin 
1∆x = x - x0 = x2.

Rather than graphing vx versus x, suppose we graph vx 

2 versus x. 
If we let y = vx 

2, the kinematic equation reads

y = 2ax  x

This is in the form of a linear equation: y = mx + b, where m is the 
slope and b is the y-intercept. In this case, m = 2ax and b = 0. So if 
the cart really does have constant acceleration, a graph of vx 

2 versus 
x should be linear with a y-intercept of zero. This is a prediction 
that we can test.

Thus our analysis has three steps:

1.	Graph vx 

2 versus x. If the graph is a straight line with a y-intercept 
of zero (or very close to zero), then we can conclude that the cart 
has constant acceleration on the ramp. If not, the acceleration 
is not constant and we cannot use the kinematic equations for 
constant acceleration.

2.	 If the graph has the correct shape, we can determine its slope m.
3.	Because kinematics predicts m = 2ax, the acceleration must be 

ax = m/2.

FIGURE 2.31b is the graph of vx 

2 versus x. It does turn out to be 
a straight line with a y-intercept of zero, and this is the evidence 
we need that the cart has a constant acceleration on the ramp. To 
proceed, we want to determine the slope by finding the straight 
line that is the “best fit” to the data. This is a statistical technique, 
justified in a statistics class, but one that is implemented in 
spreadsheets and graphing calculators. The solid line in Figure 
2.31b is the best-fit line for this data, and its equation is shown. 
We see that the slope is m = 2.06 m /s2. Slopes have units, and 
the units come not from the fitting procedure but by looking at 
the axes of the graph. Here the vertical axis is velocity squared, 
with units of 1m /s22, while the horizontal axis is position, 
measured in m. Thus the slope, rise over run, has units of m/s2.

Finally, we can determine that the cart’s acceleration was

ax =
m
2

= 1.03 m/s2

This is about 5% less than the 1.08 m/s2 we expected. Two pos-
sibilities come to mind. Perhaps the distances used to find the tilt 
angle weren’t measured accurately. Or, more likely, the cart rolls 
with a small bit of friction. The predicted acceleration ax = g sin u 
is for a frictionless inclined plane; any friction would decrease the 
acceleration.

ASSESS  The acceleration is just slightly less than predicted for a 
frictionless incline, so the result is reasonable.

FIGURE 2.29  The experimental 
setup.
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Thinking Graphically
A good way to solidify your intuitive understanding of motion is to consider the 
problem of a hard, smooth ball rolling on a smooth track. The track is made up of 
several straight segments connected together. Each segment may be either horizontal 
or inclined. Your task is to analyze the ball’s motion graphically.

There are a small number of rules to follow:

1.	 Assume that the ball passes smoothly from one segment of the track to the next, 
with no abrupt change of speed and without ever leaving the track.

2.	 The graphs have no numbers, but they should show the correct relationships. For 
example, the position graph should be steeper in regions of higher speed.

3.	 The position s is the position measured along the track. Similarly, vs and as are 
the velocity and acceleration parallel to the track.

EXAMPLE 2.15  |  From track to graphs
Draw position, velocity, and acceleration graphs for the ball on the 
smooth track of FIGURE 2.32.

VISUALIZE  It is often easiest to begin with the velocity. There is 
no acceleration on the horizontal surface 1as = 0 if u = 0°2, so the 
velocity remains constant at v0s until the ball reaches the slope. The 
slope is an inclined plane where the ball has constant acceleration. 
The velocity increases linearly with time during constant- 
acceleration motion. The ball returns to constant-velocity motion 
after reaching the bottom horizontal segment. The middle graph 
of FIGURE 2.33 shows the velocity.

We can easily draw the acceleration graph. The acceleration 
is zero while the ball is on the horizontal segments and has a 
constant positive value on the slope. These accelerations are 
consistent with the slope of the velocity graph: zero slope, then 
positive slope, then a return to zero. The acceleration cannot 

really change instantly from 
zero to a nonzero value, but 
the change can be so quick 
that we do not see it on the 
time scale of the graph. That 
is what the vertical dotted 
lines imply.

Finally, we need to find the 
position-versus-time graph. 
The position increases linearly 
with time during the first 
segment at constant velocity. 
It also does so during the third 
segment of motion, but with a 
steeper slope to indicate a faster 
velocity. In between, while the 
acceleration is nonzero but 
constant, the position graph 
has a parabolic shape. Notice 
that the parabolic section blends smoothly into the straight lines on 
either side. An abrupt change of slope (a “kink”) would indicate an 
abrupt change in velocity and would violate rule 1.

FIGURE 2.32  A ball rolling along a track.

v0s 7 0

 

EXAMPLE 2.16  |  From graphs to track
FIGURE 2.34 shows a set of motion graphs for a ball moving on 
a track. Draw a picture of the track and describe the ball’s initial 
condition. Each segment of the track is straight, but the segments 
may be tilted.

VISUALIZE  The ball starts with initial velocity v0s 7 0 and 
maintains this velocity for awhile; there’s no acceleration. Thus the 
ball must start out rolling to the right on a horizontal track. At the 
end of the motion, the ball is again rolling on a horizontal track (no 
acceleration, constant velocity), but it’s rolling to the left because vs 
is negative. Further, the final speed 1 0 vs 0 2 is greater than the initial 
speed. The middle section of the graph shows us what happens. 
The ball starts slowing with constant acceleration (rolling uphill), 
reaches a turning point 1s is maximum, vs = 02, then speeds up in 
the opposite direction (rolling downhill). This is still a negative 
acceleration because the ball is speeding up in the negative  
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The position graph changes
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FIGURE 2.33  Motion graphs for  
the ball in Example 2.15.

FIGURE 2.34  Motion graphs 
of a ball rolling on a track of 
unknown shape.
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2.7  �advanced topic  Instantaneous 
Acceleration

Although the constant-acceleration model is very useful, real moving objects only 
rarely have constant acceleration. For example, FIGURE 2.36a is a realistic velocity- 
versus-time graph for a car leaving a stop sign. The graph is not a straight line, so this 
is not motion with constant acceleration.

We can define an instantaneous acceleration much as we defined the instantaneous 
velocity. The instantaneous velocity at time t is the slope of the position-versus-time 
graph at that time or, mathematically, the derivative of the position with respect to 
time. By analogy: The instantaneous acceleration as is the slope of the line that 
is tangent to the velocity-versus-time curve at time t. Mathematically, this is

	 as =
dvs

dt
= slope of the velocity@versus@time graph at time t	 (2.27)

FIGURE 2.36b applies this idea by showing the car’s acceleration graph. At each instant of 
time, the value of the car’s acceleration is the slope of its velocity graph. The initially 
steep slope indicates a large initial acceleration. The acceleration decreases to zero as 
the car reaches cruising speed.

The reverse problem—to find the velocity vs if we know the acceleration as at all 
instants of time—is also important. Again, with analogy to velocity and position, 
we have

	 vfs = vis + 3
tf

ti

as dt	 (2.28)

The graphical interpretation of Equation 2.28 is

	 vfs = vis + area under the acceleration curve as between ti and tf	 (2.29)

s-direction. It must roll farther downhill than it had rolled uphill 
before reaching a horizontal section of track. FIGURE 2.35 shows 
the track and the initial conditions that are responsible for the 
graphs of Figure 2.34.

FIGURE 2.35  Track responsible for the motion 
graphs of Figure 2.34.

v0s 7 0

This track has a “switch.”  A ball 
moving to the right goes up the incline, 
but a ball rolling downhill goes
straight through.

 

STOP TO THINK 2.5  The ball rolls up the ramp, then back down. Which is the correct acceleration graph?

FIGURE 2.36  Velocity and acceleration 
graphs of a car leaving a stop sign.

vx

t

The car speeds up from rest until
it reaches a steady cruising speed.

ax

t

The slope of the velocity
graph is the value of the
acceleration.

(a)

(b)

(a) (b) (c) (d) (e)

as as as as as

t t t t t
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EXAMPLE 2.17  |  Finding velocity from acceleration
FIGURE 2.37 shows the acceleration graph for a particle with an 
initial velocity of 10 m/s. What is the particle’s velocity at t = 8 s?

MODEL  We’re told this is the motion of a particle.

VISUALIZE  Figure 2.37 is a graphical representation of the motion.

SOLVE  The change in velocity is found as the area under the ac-
celeration curve:

vfs = vis + area under the acceleration curve as between ti and  tf

The area under the curve between ti = 0 s and tf = 8 s can be subdi-
vided into a rectangle 10 s … t … 4 s2 and a triangle 14 s …  t … 8 s2. 
These areas are easily computed. Thus

 vs1at t = 8 s2 = 10 m/s + 14 (m/s)/s214 s2
 + 1

2 14 (m/s)/s214 s2
 = 34 m/s

FIGURE 2.37  Acceleration graph for Example 2.17.

as (m/s2)

t (s)
2 4 6 8 10

∆vs is the area
under the curve.4

2

0

-2

 

EXAMPLE 2.18  |  A realistic car acceleration
Starting from rest, a car takes T seconds to reach its cruising speed 
vmax. A plausible expression for the velocity as a function of time is

vx1t2 = c vmax12t
T

-
t 2

T 22 t … T

vmax t Ú T

a.  Demonstrate that this is a plausible function by drawing velocity 
and acceleration graphs.

b.  Find an expression for the distance traveled at time T in terms  
of T and the maximum acceleration a max.

c.  What are the maximum acceleration and the distance traveled 
for a car that reaches a cruising speed of 15 m/s in 8.0 s?

MODEL  Model the car as a particle.

VISUALIZE  FIGURE 2.38a shows the velocity graph. It’s an inverted 
parabola that reaches vmax at time T and then holds that value. From 
the slope, we see that the acceleration should start at a maximum 
value amax, steadily decrease until T, and be zero for t 7 T.

SOLVE

a.  We can find an expression for ax by taking the derivative of vx. 
Starting with t … T, and using Equation 2.6 for the derivatives of 
polynomials, we find

ax =
dvx

dt
= vmax12

T
-

2t

T 22 =
2vmax

T 11 -
t
T2 = amax11 -

t
T2

where amax = 2vmax/T. For t Ú T, ax = 0. Altogether,

ax1t2 = c amax11 -
t
T2 t … T

0 t Ú T

This expression for the acceleration is graphed in FIGURE 2.38b. The 
acceleration decreases linearly from amax to 0 as the car accelerates 
from rest to its cruising speed.

b.  To find the position as a function of time, we need to integrate 
the velocity (Equation 2.11) using Equation 2.13 for the integrals 
of polynomials. At time T, when cruising speed is reached,

 xT = x0 + 3
T

0
vx  dt = 0 +

2vmax

T 3
T

0
t dt -

vmax

T 2 3
T

0
t 2 dt

 =
2vmax 

T
 
t 2

2
`
T

0
-

vmax

T 2  
 t 3

3
`
T

0

 = vmaxT - 1
3 vmaxT = 2

3 vmaxT

Recalling that amax = 2vmax/T, we can write the distance traveled as

xT = 2
3 vmaxT = 1

312vmax

T 2T 2 = 1
3 amaxT

2

If the acceleration stayed constant, the distance would be 1
2 aT 2.  

We have found a similar expression but, because the acceleration is 
steadily decreasing, a smaller fraction in front.

c.  With vmax = 15 m /s and T = 8.0 s, realistic values for city driving, 
we find

 amax =
2vmax

T
=

2115 m/s2
8.0 s

= 3.75  m/s2

 xT = 1
3 amaxT

2 = 1
3 13.75 m /s2218.0 s22 = 80 m

ASSESS  80 m in 8.0 s to reach a cruising speed of 15 m /s ≈ 30 mph  
is very reasonable. This gives us good reason to believe that a car’s 
initial acceleration is ≈ 1

3 g.

FIGURE 2.38  Velocity and acceleration graphs for Example 2.18.

ax

t
T0

vx

0

vmax

0

amax

t
T0

(a)

(b)
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STOP TO THINK 2.6  Rank in order, from most 
positive to least positive, the accelerations at 
points A to C.

a.	aA 7 aB 7 aC 

b.	aC 7 aA 7 aB 

c.	aC 7 aB 7 aA 

d.	aB 7 aA 7 aC 

CHALLENGE EXAMPLE 2.19  |  Rocketing along
A rocket sled accelerates along a long, horizontal rail. Starting from 
rest, two rockets burn for 10 s, providing a constant acceleration. 
One rocket then burns out, halving the acceleration, but the other 
burns for an additional 5 s to boost the sled’s speed to 625 m/s. How 
far has the sled traveled when the second rocket burns out?

MODEL  Model the rocket sled as a particle with constant acceleration.

VISUALIZE  FIGURE 2.39 shows the pictorial representation. This is 
a two-part problem with a beginning, an end (the second rocket 
burns out), and a point in between where the motion changes (the 
first rocket burns out).

SOLVE  The difficulty with this problem is that there’s not enough 
information to completely analyze either the first or the second 
part of the motion. A successful solution will require combining 
information about both parts of the motion, and that can be done 
only by working algebraically, not worrying about numbers until 
the end of the problem. A well-drawn pictorial representation and 
clearly defined symbols are essential.

The first part of the motion, with both rockets firing, has accel-
eration a0x. The sled’s position and velocity when the first rocket 
burns out are

 x1 = x0 + v0x ∆t + 1
2 a0x1∆t22 = 1

2 a0x  t1 

2

 v1x = v0x + a0x ∆t = a0x  t1

where we simplified as much as possible by knowing that the sled 
started from rest at the origin at t0 = 0 s. We can’t compute numerical 
values, but these are valid algebraic expressions that we can carry 
over to the second part of the motion.

From t1 to t2, the acceleration is a smaller a1x. The velocity when 
the second rocket burns out is

v2x = v1x + a1x ∆t = a0x  t1 + a1x1t2 - t12
where for v1x we used the algebraic result from the first part of the 
motion. Now we have enough information to complete the solution. 
We know that the acceleration is halved when the first rocket burns 
out, so a1x = 1

2 a0x. Thus

v2 x = 625 m/s = a0 x110 s2 + 1
2 a0x15 s2 = 112.5 s2a0x  

Solving, we find a0x = 50 m/s2.
With the acceleration now known, we can calculate the position 

and velocity when the first rocket burns out:

 x1 = 1
2 a0x  t1 

2 = 1
2 150 m/s22110 s22 = 2500 m

 v1x = a0x  t1 = 150 m/s22110 s2 = 500 m/s

Finally, the position when the second rocket burns out is

 x2 = x1 + v1x ∆t + 1
2 a1x1∆t22

 = 2500 m + 1500 m/s215 s2 + 1
2 125 m/s2215 s22 = 5300 m

The sled has traveled 5300 m when it reaches 625 m/s at the burnout 
of the second rocket.

ASSESS  5300 m is 5.3 km, or roughly 3 miles. That’s a long way 
to travel in 15 s! But the sled reaches incredibly high speeds. At the 
final speed of 625 m/s, over 1200 mph, the sled would travel nearly 
10 km in 15 s. So 5.3 km in 15 s for the accelerating sled seems 
reasonable.

FIGURE 2.39  The pictorial representation of the rocket sled.
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SUMMARY 

The goal of Chapter 2 has been to learn to solve problems about motion along a straight line.

GENERAL PRINCIPLES

Kinematics describes motion in terms of position, velocity, and acceleration.

General kinematic relationships are given mathematically by:

Instantaneous velocity 	  vs = ds/dt = slope of position graph

Instantaneous acceleration	 as = dvs/dt = slope of velocity graph

Final position 	  sf = si + 3
tf

ti

vs dt = si + e area under the velocity
curve from ti to tf

Final velocity	 vfs = vis + 3
tf

ti

as dt = vis + e area under the acceleration
curve from ti to tf

Solving Kinematics Problems
MODEL  Uniform motion or constant acceleration.

VISUALIZE  Draw a pictorial representation.

SOLVE

•	 Uniform motion sf = si + vs  ∆t
•	 Constant acceleration vfs = vis + as  ∆t

                    sf = si + vs  ∆t + 1
2 as1∆t22

                   vfs 

2 = vis 

2 + 2as  ∆s

ASSESS  Is the result reasonable?

IMPORTANT CONCEPTS

Position, velocity, and acceleration are 
related graphically.

•	 The slope of the position-versus-time 
graph is the value on the velocity graph.

•	 The slope of the velocity graph is the 
value on the acceleration graph.

•	 s is a maximum or minimum at a turning 
point, and vs = 0.

s

vs

as

t

t

t

Turning
point

vs

Area

s

t

t

•	 Displacement is the area under the 
velocity curve.

APPLICATIONS

The sign of vs indicates the direction of motion.

•	 vs 7 0 is motion to the right or up.

•	 vs 6 0 is motion to the left or down.

The sign of as indicates which way au points, not whether the  
object is speeding up or slowing down.

•	 as 7 0 if au points to the right or up.

•	 as 6 0 if au points to the left or down.

•	 The direction of au is found with a motion diagram.

An object is speeding up if and only if vs and as have the same sign. 

An object is slowing down if and only if vs and as have opposite signs.

Free fall is constant-acceleration motion with

	 ay = -g = -9.80 m/s2

Motion on an inclined plane has as = {g sin u.  
The sign depends on the direction of the tilt.

u

kinematics
uniform motion
average velocity, vavg
speed, v

initial position, si
final position, sf

uniform-motion model
instantaneous velocity, vs

turning point
average acceleration, aavg

constant-acceleration model
free fall

free-fall acceleration, g 
instantaneous acceleration, as

TERMS AND NOTATION 
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80  CHAPTER 2  Kinematics in One Dimension

7.	 FIGURE Q2.7 shows the position-versus-time graph for a moving 
object. At which lettered point or points:
a.	 Is the object moving the fastest?
b.	 Is the object moving to the left?
c.	 Is the object speeding up?
d.	 Is the object turning around?

Conceptual Questions

For Questions 1 through 3, interpret the position graph given in each 
figure by writing a very short “story” of what is happening. Be cre-
ative! Have characters and situations! Simply saying that “a car moves 
100 meters to the right” doesn’t qualify as a story. Your stories should 
make specific reference to information you obtain from the graph, such 
as distance moved or time elapsed.

1.	  2.	  

Figure Q2.1 
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x (mi)

80604020

5

0

10

0

Figure Q2.2 

t (s)
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0

100
80
60
40
20

0 2 4 6 108

Figure Q2.3 
t (s)

y (ft)

0
0

50

100

10 20

3.	   

4.	 FIGURE Q2.4 shows a position-versus-time graph for the motion of 
objects A and B as they move along the same axis.
a.	 At the instant t = 1 s, is the speed of A greater than, less than, 

or equal to the speed of B? Explain.
b.	 Do objects A and B ever have the same speed? If so, at what 

time or times? Explain.

Figure Q2.4 

t (s)

x

0 1 2 3 4 5

A

B

Figure Q2.5 

t (s)

x

0 1 2 3 4 5

A

B

5.	 FIGURE Q2.5 shows a position-versus-time graph for the motion of 
objects A and B as they move along the same axis.
a.	 At the instant t = 1 s, is the speed of A greater than, less than, 

or equal to the speed of B? Explain.
b.	 Do objects A and B ever have the same speed? If so, at what 

time or times? Explain.
6.	 FIGURE Q2.6 shows the position-versus-time graph for a moving 

object. At which lettered point or points:
a.	 Is the object moving the slowest?
b.	 Is the object moving the fastest?
c.	 Is the object at rest?
d.	 Is the object moving to the left?

Figure Q2.6 

t

x

A

B

C

D

E

Figure Q2.7 

t

x
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D

C

B
A

Figure Q2.8 

1
A

B

6

1 6

8.	 FIGURE Q2.8 shows six frames from the motion diagrams of two 
moving cars, A and B.
a.	 Do the two cars ever have the same position at one instant of 

time? If so, in which frame number (or numbers)?
b.	 Do the two cars ever have the same velocity at one instant of 

time? If so, between which two frames?

9.	 You want to pass on a note to your friend who is traveling by a bus 
that does not stop in front of your house. You start jogging toward the 
bus the moment you see it at a distance. As the bus passes by you, do 
you think you can pass the note to your friend’s outstretched hand?

10.	 When a space shuttle lands on a runway, it immediately deploys para-
chutes to reduce its tremendous speed. At this point, do the velocity 
and acceleration of the shuttle have the same direction? Explain.

11.	 Give an example of a motion
a.	 where there is a positive acceleration, yet zero velocity.
b.	 with zero acceleration but positive velocity.

	12.	 You travel by car at a constant 90 km/h for 90 km. Then, due to 
heavy traffic, you need to reduce your speed to 50 km/h for anoth-
er 100 km. What is your car’s average speed for the 190-km trip?

	13.	 A rock is thrown (not dropped) straight down from a bridge into the 
river below. At each of the following instants, is the magnitude of the 
rock’s acceleration greater than g, equal to g, less than g, or 0? Explain.
a.	 Immediately after being released.
b.	 Just before hitting the water.

	14.	 FIGURE Q2.14 shows the velocity-versus-time graph for a moving 
object. At which lettered point or points:
a.	 Is the object speeding up?
b.	 Is the object slowing down?
c.	 Is the object moving to the left?
d.	 Is the object moving to the right?

Figure Q2.14 0

A
B

C

t

vx
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EXERCISES AND PROBLEMS

Exercises

Section 2.1 Uniform Motion

1.	 ||	 Alan leaves Los Angeles at 9:00 a.m. to drive to San Francisco, 
400 miles away. He travels at a steady speed of 55 mph. Beth leaves 
Los Angeles at 9:30 a.m. and drives at a steady speed of 60 mph.
a.	 Who gets to San Francisco first?
b.	 How long does the first person to reach have to wait for the 

second to arrive?
2.	 ||	 Julie drives 120 miles to her grandmother’s house. She covers 

half the distance at 40 mph and the other half at 60 mph. On her re-
turn trip, she drives half the time at 40 mph and the rest at 60 mph.
a.	 What is Julie’s average speed on the way to her grandmother’s 

house?
b.	 What is her average speed on the return trip?

3.	 ||	 Larry leaves home at 9:05 and runs at constant speed to the lamp-
post seen in FIGURE EX2.3. He reaches the lamppost at 9:07, immedi-
ately turns, and runs to the tree. Larry arrives at the tree at 9:10.
a.	 What is Larry’s average velocity, in m/min, during each of 

these two intervals?
b.	 What is Larry’s average velocity for the entire run?

7.	 ||	 FIGURE EX2.7 is a somewhat idealized graph of the velocity of 
blood in the ascending aorta during one beat of the heart. Approx-
imately how far, in cm, does the blood move during one beat?

FIGURE EX2.3
x (m)

0 200 400 600 800 1000 1200

FIGURE EX2.4
t (s)

x (m)

50

25

0
0 10 20 30 40

4.	 ||	 FIGURE EX2.4 is the position-versus-time graph of a jog-
ger. What is the jogger’s velocity at t = 10 s, at t = 25 s, and at 
t = 35 s?

Section 2.2 Instantaneous Velocity

Section 2.3 Finding Position from Velocity

5.	 |	 FIGURE EX2.5 shows the position graph of a particle.
a.	 Draw the particle’s velocity graph for the interval 0 s … t … 4 s.
b.	 Does this particle have a turning point or points? If so, at what 

time or times?

FIGURE EX2.5
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0
0
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FIGURE EX2.6
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6.	 ||	 A particle starts from x0 = 10 m at t0 = 0 s and moves with 
the velocity graph shown in FIGURE EX2.6.
a.	 Does this particle have a turning point? If so, at what time?
b.	 What is the object’s position at t = 2 s and 4 s?

FIGURE EX2.7
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FIGURE EX2.9
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FIGURE EX2.11
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8.	 |	 FIGURE EX2.8 shows the velocity graph for a particle having 
initial position x0 = 0 m at t0 = 0 s. At what time or times is the 
particle found at x = 35 m?

Section 2.4 Motion with Constant Acceleration

9.	 ||	 FIGURE EX2.9 shows the velocity graph of a particle. Draw the 
particle’s acceleration graph for the interval 0 s … t … 4 s.

10.	 ||	 FIGURE EX2.7 showed the velocity graph of blood in the aorta. 
What is the blood’s acceleration during each phase of the motion, 
speeding up and slowing down?

11.	 ||	 FIGURE EX2.11 shows the velocity graph of a particle moving 
along the x-axis. Its initial position is x0 = 2.0 m at t0 = 0 s. At 
t = 2.0 s, what are the particle’s (a) position, (b) velocity, and (c) 
acceleration?
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23.	 ||	 When jumping, a flea accelerates at an astounding 1000 m/s2, 
but over only the very short distance of 0.50 mm. If a flea jumps 
straight up, and if air resistance is neglected (a rather poor ap-
proximation in this situation), how high does the flea go?

24.	 ||	 A science project involves dropping a watermelon from the 
Empire State Building to the sidewalk below from a height of 
350 m. It so happens that Superman is flying by at the instant the 
watermelon is dropped. He is headed straight down at a speed 
of 40 m/s. How fast is the watermelon falling when it passes 
Superman?

25.	 |||	 A rock is dropped from the top of a tall building. Its displace-
ment in the last second before it hits the ground is 45% of the 
entire distance it falls. How tall is the building?

Section 2.6 Motion on an Inclined Plane

26.	 ||	 A skier is gliding along at 3.0 m/s on horizontal, frictionless 
snow. He suddenly starts down a 10° incline. His speed at the 
bottom is 15 m/s.
a.	 What is the length of the incline?
b.	 How long does it take him to reach the bottom?

27.	 ||	 A car traveling at 30 m/s runs out of gas while traveling up a 
10° slope. How far up the hill will it coast before starting to roll 
back down?

28.	 ||	 Santa loses his footing and slides down a frictionless, snowy 
roof that is tilted at an angle of 30°. If Santa slides 10 m before 
reaching the edge, what is his speed as he leaves the roof?

29.	 ||	 A snowboarder glides down a 50-m-long, 15° hill. She then 
glides horizontally for 10 m before reaching a 25° upward slope. 
Assume the snow is frictionless.
a.	 What is her velocity at the bottom of the hill?
b.	 How far can she travel up the 25° slope?

30.	 ||	 A small child gives a plastic frog a big push at the bottom of 
a slippery 2.0-m-long, 1.0-m-high ramp, starting it with a speed 
of 5.0 m/s. What is the frog’s speed as it flies off the top of the 
ramp?

Section 2.7 Instantaneous Acceleration

31.	 ||	 FIGURE EX2.31 shows the acceleration-versus-time graph of 
a particle moving along the x-axis. Its initial velocity is v0x =
8.0 m/s at t0 = 0 s. What is the particle’s velocity at t = 4.0 s?

12.	 ||	 FIGURE EX2.12 shows the velocity-versus-time graph for a 
particle moving along the x-axis. Its initial position is x0 = 2.0 m 
at t0 = 0 s.
a.	 What are the particle’s position, velocity, and acceleration at 

t = 1.0 s?
b.	 What are the particle’s position, velocity, and acceleration at 

t = 3.0 s?

FIGURE EX2.12
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13.	 |	 a. � What constant acceleration, in SI units, must a car have to 
go from zero to 60 mph in 10 s?

		 b. � How far has the car traveled when it reaches 60 mph? Give 
your answer both in SI units and in feet.

14.	 ||	 A jet plane is cruising at 280 m/s when suddenly the pilot 
turns the engines to full throttle. After traveling 4 km, the jet 
moves at a speed of 380 m/s. What is the jet’s acceleration,  
assuming it to be a constant acceleration?

15.	 ||	 a. � How many days will it take a spaceship to accelerate to the 
speed of light 13.0 * 108 m/s2 with the acceleration g?

		 b.  How far will it travel during this interval?
		 c. � What fraction of a light year is your answer to part b? A light 

year is the distance light travels in one year.

Note  We know, from Einstein’s theory of relativity, that no ob-
ject can travel at the speed of light. So this problem, while interest-
ing and instructive, is not realistic.

16.	 ||	 When you sneeze, the air in your lungs accelerates from rest 
to 175 km/h in approximately 0.6 s. What is the acceleration of 
the air in m/s2?

17.	 ||	 A speed skater moving across frictionless ice at 8 m/s hits a 
10-m-wide patch of rough ice. She then slows down steadily, and 
continues at 5 m/s. What is her acceleration on the rough ice?

18.	 ||	 A Porsche challenges a Honda to a 400 m race. Because the 
Porsche’s acceleration of 3.5 m/s2 is larger than the Honda’s 
3.0 m/s2, the Honda gets a 1.0 s head start. Who wins? By how 
many seconds?

19.	 ||	 A car starts from rest at a stop sign. It accelerates at 8 m/s2 for 
5 s coasts for 3 s and then slows down at the rate of 4 m/s2 for the 
next stop sign. How far apart are the stop signs?

Section 2.5 Free Fall

20.	 |	 Ball bearings are made by letting spherical drops of molten 
metal fall inside a tall tower—called a “shot tower”—and solidify 
as they fall.
a.	 If a bearing needs 5 s to solidify enough for impact, how high 

must the tower be?
b.	 What is the bearing’s impact velocity

21.	 ||	 A student standing on the ground throws a ball straight up. The 
ball leaves the student’s hand with a speed of 15 m/s when the hand 
is 2.0 m above the ground. How long is the ball in the air before it 
hits the ground? (The student moves her hand out of the way.)

22.	 ||	 A rock is tossed straight up from ground level with a speed of 
20 m/s. When it returns, it falls into a hole 10 m deep.
a.	 What is the rock’s velocity as it hits the bottom of the hole?
b.	 How long is the rock in the air, from the instant it is released 

until it hits the bottom of the hole?

FIGURE EX2.31
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32.	 ||	 FIGURE EX2.32 shows the acceleration graph for a particle 
that starts from rest at t = 0 s. What is the particle’s velocity at 
t = 6 s?

33.	 |	 A particle moving along the x-axis has its position described 
by the function x = (3.00t 3 − 3.00t + 5.00) m, where t is time (in 
seconds). At t = 2.00, what is 
a.	 the position of the particle;
b.	 its velocity;
c.	 its acceleration?
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41.	 ||	 A particle’s acceleration is described by the function 
ax = 110 - t2 m/s2, where t is in s. Its initial conditions are 
x0 = 0 m and v0x = 0 m/s at t = 0 s.
a.	 At what time is the velocity again zero?
b.	 What is the particle’s position at that time?

42.	 ||	 A particle’s velocity is given by the function 
vx = 12.0 m/s2sin1pt2,where t is in s.
a.	 What is the first time after t = 0 s when the particle reaches 

a turning point?
b.	 What is the particle’s acceleration at that time?

43.	 ||	 A ball rolls along the smooth track shown in FIGURE P2.43. 
Each segment of the track is straight, and the ball passes smoothly 
from one segment to the next without changing speed or leaving 
the track. Draw three vertically stacked graphs showing posi-
tion, velocity, and acceleration versus time. Each graph should 
have the same time axis, and the proportions of the graph should 
be qualitatively correct. Assume that the ball has enough speed 
to reach the top.

34.	 ||	 A particle moving along the x-axis has its velocity described 
by the function, vx = 2t 2 m/s, where t is time (in seconds). Its 
initial position is x0 = 1 m at t0 = 0 s. At t = 1 s, what is 
a.	 the position of the particle; 
b.	 its velocity;
c.	 its acceleration?

35.	 |	 The position of a particle is given by the function 
x = 12t 3 - 9t 2 + 122 m, where t is in s.
a.	 At what time or times is vx = 0 m/s?
b.	 What are the particle’s position and its acceleration at this time(s)?

36.	 ||	 The position of a particle is given by the function 
x = 12t 3 - 6t 2 + 122 m, where t is in s.
a.	 At what time does the particle reach its minimum velocity? 

What is 1vx2min?
b.	 At what time is the acceleration zero?

Problems

37.	 ||	 Particles A, B, and C move along the x-axis. Particle C has 
an initial velocity of 10 m/s. In FIGURE P2.37, the graph for A is a 
position-versus-time graph; the graph for B is a velocity-versus- 
time graph; the graph for C is an acceleration-versus-time graph. 
Find each particle’s velocity at t = 7.0 s.

FIGURE P2.38

t (s)
1 2 3 4

y

0

38.	 |	 A block is suspended from a spring, pulled down, and released. 
The block’s position-versus-time graph is shown in FIGURE P2.38.
a.	 At what times is the velocity zero? At what times is the veloc-

ity most positive? Most negative?
b.	 Draw a reasonable velocity-versus-time graph.

39.	 ||	 A particle’s velocity is described by the function 
vx = 1t 2 - 7t + 102 m/s, where t is in s.
a.	 At what times does the particle reach its turning points?
b.	 What is the particle’s acceleration at each of the turning points?

40.	 |||	 A particle’s velocity is described by the function vx = k t 2 m/s, 
where k is a constant and t is in s. The particle’s position at t0 = 0 s 
is x0 = - 9.0 m. At t1 = 3.0 s, the particle is at x1 = 9.0 m.  
Determine the value of the constant k. Be sure to include the 
proper units.

44.	 ||	 Draw position, velocity, and acceleration graphs for the ball 
shown in FIGURE P2.44. See Problem 43 for more information.

FIGURE P2.43

v0s 7 0

FIGURE P2.44

v0s = 0

FIGURE P2.45
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FIGURE P2.46
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45.	 ||	 FIGURE P2.45 shows a set of kinematic graphs for a ball rolling 
on a track. All segments of the track are straight lines, but some 
may be tilted. Draw a picture of the track and also indicate the 
ball’s initial condition.

46.	 ||	 FIGURE P2.46 shows a set of kinematic graphs for a ball rolling 
on a track. All segments of the track are straight lines, but some 
may be tilted. Draw a picture of the track and also indicate the 
ball’s initial condition.

FIGURE P2.37
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84  CHAPTER 2  Kinematics in One Dimension

47.	 ||	 The takeoff speed for an Airbus A320 jetliner is 80 m/s. Ve-
locity data measured during takeoff are as shown.

t 1s2 vx 1m/s2
  0   0

10 23

20 46

30 69

a.	 Is the jetliner’s acceleration constant during takeoff?  
Explain.

b.	 At what time do the wheels leave the ground?
c.	 For safety reasons, in case of an aborted takeoff, the runway 

must be three times the takeoff distance. Can an A320 take 
off safely on a 2.5-mi-long runway?

48.	 |	 You are driving to the grocery store at 20 m/s. You are 110 m  
from an intersection when the traffic light turns red. Assume 
that your reaction time is 0.50 s and that your car brakes with 
constant acceleration. What magnitude braking acceleration will 
bring you to a stop exactly at the intersection?

49.	 ||	 You’re driving down the highway late one night at 20 m/s 
when a deer steps onto the road 35 m in front of you. Your reac-
tion time before stepping on the brakes is 0.50 s, and the maxi-
mum deceleration of your car is 10 m/s2.
a.	 How much distance is between you and the deer when you 

come to a stop?
b.	 What is the maximum speed you could have and still not hit 

the deer?
50.	 ||	 Two cars are driving at the same constant speed on a 

straight road, with car 1 in front of car 2. Car 1 suddenly starts 
to brake with constant acceleration and stops in 10 m. At the 
instant car 1 comes to a stop, car 2 begins to brake with the 
same acceleration. It comes to a halt just as it reaches the back 
of car 1. What was the separation between the cars before they 
starting braking?

51.	 ||	 You are playing miniature golf at the golf course shown in 
FIGURE P2.51. Due to the fake plastic grass, the ball decelerates at 
1.0 m/s2 when rolling horizontally and at 6.0 m/s2 on the slope. 
What is the slowest speed with which the ball can leave your golf 
club if you wish to make a hole in one?

54.	 ||	 You are at a train station, standing next to the train at the front 
of the first car. The train starts moving with constant accelera-
tion, and 5.0 s later the back of the first car passes you. How long 
does it take after the train starts moving until the back of the 
seventh car passes you? All cars are the same length.

55.	 |||	 A 200 kg weather rocket is loaded with 100 kg of fuel and 
fired straight up. It accelerates upward at 30 m/s2 for 30 s, then 
runs out of fuel. Ignore any air resistance effects.
a.	 What is the rocket’s maximum altitude?
b.	 How long is the rocket in the air before hitting the ground?

56.	 |||	 A 1000 kg weather rocket is launched straight up. The rocket 
motor provides a constant acceleration for 16 s, then the motor 
stops. The rocket altitude 20 s after launch is 5100 m. You can 
ignore any effects of air resistance. What was the rocket’s accel-
eration during the first 16 s?

57.	 |||	 A lead ball is dropped into a lake from a diving board 5.0 m 
above the water. After entering the water, it sinks to the bottom 
with a constant velocity equal to the velocity with which it hit the 
water. The ball reaches the bottom 3.0 s after it is released. How 
deep is the lake?

58.	 ||	 A hotel elevator ascends 200 m with a maximum speed of  
5.0 m/s. Its acceleration and deceleration both have a magnitude 
of 1.0 m/s2.
a.	 How far does the elevator move while accelerating to full 

speed from rest?
b.	 How long does it take to make the complete trip from bottom 

to top?
59.	 ||	 A basketball player can jump to a height of 55 cm. How far 

above the floor can he jump in an elevator that is descending at a 
constant 1.0 m/s?

60.	 ||	 You are 9.0 m from the door of your bus, behind the bus, when 
it pulls away with an acceleration of 1.0 m/s2. You instantly start 
running toward the still-open door at 4.5 m/s.
a.	 How long does it take for you to reach the open door and  

jump in?
b.	 What is the maximum time you can wait before starting to run 

and still catch the bus?
61.	 ||	 Ann and Carol are driving their cars along the same straight 

road. Carol is located at x = 2.4 mi at t = 0 h and drives at a 
steady 36 mph. Ann, who is traveling in the same direction, is 
located at x = 0.0 mi at t = 0.50 h and drives at a steady 50 mph.
a.	 At what time does Ann overtake Carol?
b.	 What is their position at this instant?
c.	 Draw a position-versus-time graph showing the motion of 

both Ann and Carol.
62.	 ||	 Amir starts riding his bike up a 200-m-long slope at a speed 

of 18 km/h, decelerating at 0.20 m/s2 as he goes up. At the same 
instant, Becky starts down from the top at a speed of 6.0 km/h, 
accelerating at 0.40 m/s2 as she goes down. How far has Amir 
ridden when they pass?

63.	 ||	 A very slippery block of ice slides down a smooth ramp tilted 
at angle u. The ice is released from rest at vertical height h above 
the bottom of the ramp. Find an expression for the speed of the 
ice at the bottom.

64.	 ||	 Bob is driving the getaway car after the big bank robbery. He’s 
going 50 m/s when his headlights suddenly reveal a nail strip that 
the cops have placed across the road 150 m in front of him. If Bob 
can stop in time, he can throw the car into reverse and escape. But 
if he crosses the nail strip, all his tires will go flat and he will be 
caught. Bob’s reaction time before he can hit the brakes is 0.60 s, and 
his car’s maximum deceleration is 10 m/s2. Does Bob stop before or 
after the nail strip? By what distance?

FIGURE P2.51

1.0 m
2.0 m

3.0 m

52.	 ||	 The minimum stopping distance for a car traveling at a speed 
of 30 m/s is 60 m, including the distance traveled during the 
driver’s reaction time of 0.50 s. What is the minimum stopping 
distance for the same car traveling at a speed of 40 m/s?

53.	 ||	 A cheetah spots a Thomson’s gazelle, its preferred prey, and 
leaps into action, quickly accelerating to its top speed of 30 m/s, 
the highest of any land animal. However, a cheetah can maintain 
this extreme speed for only 15 s before having to let up. The 
cheetah is 170 m from the gazelle as it reaches top speed, and the 
gazelle sees the cheetah at just this instant. With negligible reac-
tion time, the gazelle heads directly away from the cheetah,  
accelerating at 4.6 m/s2 for 5.0 s, then running at constant speed. 
Does the gazelle escape? If so, by what distance is the gazelle in 
front when the cheetah gives up?
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65.	 ||	 One game at the amusement park has you push a puck up a 
long, frictionless ramp. You win a stuffed animal if the puck, at 
its highest point, comes to within 10 cm of the end of the ramp 
without going off. You give the puck a push, releasing it with a 
speed of 5.0 m/s when it is 8.5 m from the end of the ramp. The 
puck’s speed after traveling 3.0 m is 4.0 m/s. How far is it from 
the end when it stops?

66.	 ||	 A motorist is driving at 20 m/s when she sees that a traffic 
light 200 m ahead has just turned red. She knows that this light 
stays red for 15 s, and she wants to reach the light just as it turns 
green again. It takes her 1.0 s to step on the brakes and begin 
slowing. What is her speed as she reaches the light at the instant 
it turns green?

67.	 ||	 Nicole throws a ball straight up. Chad watches the ball from a 
window 5.0 m above the point where Nicole released it. The ball 
passes Chad on the way up, and it has a speed of 10 m/s as it passes 
him on the way back down. How fast did Nicole throw the ball?

68.	 ||	 David is driving a steady 30 m/s when he passes Tina, who 
is sitting in her car at rest. Tina begins to accelerate at a steady 
2.0 m/s2 at the instant when David passes.
a.	 How far does Tina drive before passing David?
b.	 What is her speed as she passes him?

69.	 ||	 A cat is sleeping on the floor in the middle of a 3.0-m-wide 
room when a barking dog enters with a speed of 1.50 m/s. As the 
dog enters, the cat (as only cats can do) immediately accelerates 
at 0.85 m/s2 toward an open window on the opposite side of the 
room. The dog (all bark and no bite) is a bit startled by the cat and 
begins to slow down at 0.10 m/s2 as soon as it enters the room. 
How far is the cat in front of the dog as it leaps through the win-
dow?

70.	 |||	 Water drops fall from the edge of a roof at a steady rate. A fifth 
drop starts to fall just as the first drop hits the ground. At this in-
stant, the second and third drops are exactly at the bottom and top 
edges of a 1.00-m-tall window. How high is the edge of the roof?

71.	 |||	 I was driving along at 20 m/s, trying to change a CD and not 
watching where I was going. When I looked up, I found myself 
45 m from a railroad crossing. And wouldn’t you know it, a train 
moving at 30 m/s was only 60 m from the crossing. In a split sec-
ond, I realized that the train was going to beat me to the crossing 
and that I didn’t have enough distance to stop. My only hope was 
to accelerate enough to cross the tracks before the train arrived. 
If my reaction time before starting to accelerate was 0.50 s, what 
minimum acceleration did my car need for me to be here today 
writing these words?

72.	 ||	 As an astronaut visiting Planet X, you’re assigned to measure 
the free-fall acceleration. Getting out your meter stick and stop 
watch, you time the fall of a heavy ball from several heights. 
Your data are as follows:

Height (m) Fall time (s)

0.0 0.00

1.0 0.54

2.0 0.72

3.0 0.91

4.0 1.01

5.0 1.17

Analyze these data to determine the free-fall acceleration on  
Planet X. Your analysis method should involve fitting a straight line 
to an appropriate graph, similar to the analysis in Example 2.14.

73.	 ||	 Your goal in laboratory is to launch a ball of mass m straight up 
so that it reaches exactly height h above the top of the launching tube. 
You and your lab partners will earn fewer points if the ball goes too 
high or too low. The launch tube uses compressed air to accelerate 
the ball over a distance d, and you have a table of data telling you how 
to set the air compressor to achieve a desired acceleration. Find an 
expression for the acceleration that will earn you maximum points.

74.	 ||	 When a 1984 Alfa Romeo Spider sports car accelerates at  
the maximum possible rate, its motion during the first 20 s is 
extremely well modeled by the simple equation

vx 

2 =
2P
m

 t

where P = 3.6 * 104 watts is the car’s power output, m = 1200 kg 
is its mass, and vx is in m/s. That is, the square of the car’s velocity 
increases linearly with time.
a.	 Find an algebraic expression in terms of P, m, and t for the 

car’s acceleration at time t.
b.	 What is the car’s speed at t = 2 s and t = 10 s?
c.	 Evaluate the acceleration at t = 2 s and t = 10 s.

75.	 ||	 The two masses in FIGURE P2.75 slide on frictionless wires. 
They are connected by a pivoting rigid rod of length L. Prove that 
v2x = - v1y tan u.

FIGURE P2.75

u

1

2

L

In Problems 76 through 79, you are given the kinematic equation or 
equations that are used to solve a problem. For each of these, you are to:

a.	 Write a realistic problem for which this is the correct equation(s). 
Be sure that the answer your problem requests is consistent with 
the equation(s) given.

b.	 Draw the pictorial representation for your problem.
c.	 Finish the solution of the problem.

76.	 64 m = 0 m + 132 m/s214 s - 0 s2 + 1
2 ax14 s - 0 s22

77.	 110 m/s22 = v0y 

2 - 219.8 m/s22110 m - 0 m2
78.	 10 m/s22 = 15 m/s22 - 219.8 m/s221sin 10°21x1 - 0 m2
79.	 v1x = 0 m/s + 120 m/s2215 s - 0 s2

x1 = 0 m + 10 m/s215 s - 0 s2 + 1
2 120 m/s2215 s - 0 s22

x2 = x1 + v1x110 s - 5 s2

Challenge Problems

80.	 |||	 A rocket is launched straight up with constant acceleration. 
Four seconds after liftoff, a bolt falls off the side of the rocket. The 
bolt hits the ground 6.0 s later. What was the rocket’s acceleration?

81.	 |||	 Careful measurements have been made of Olympic sprinters 
in the 100 meter dash. A simple but reasonably accurate model 
is that a sprinter accelerates at 3.6 m/s2 for 31

3 s, then runs at con-
stant velocity to the finish line.
a.	 What is the race time for a sprinter who follows this model?
b.	 A sprinter could run a faster race by accelerating faster at the 

beginning, thus reaching top speed sooner. If a sprinter’s top 
speed is the same as in part a, what acceleration would he 
need to run the 100 meter dash in 9.9 s?

c.	 By what percent did the sprinter need to increase his acceler-
ation in order to decrease his time by 1%?

M03_KNIG7429_04_GE_C02.indd   85 12/07/16   1:29 pm



86  CHAPTER 2  Kinematics in One Dimension

82.	 |||	 Careful measurements have been made of Olympic sprinters 
in the 100 meter dash. A quite realistic model is that the sprint-
er’s velocity is given by

vx = a11 - e-bt2
		  where t is in s, vx is in m/s, and the constants a and b are char-

acteristic of the sprinter. Sprinter Carl Lewis’s run at the 1987 
World Championships is modeled with a = 11.81 m/s and  
b = 0.6887 s-1.
a.	 What was Lewis’s acceleration at t = 0 s, 2.00 s, and 4.00 s?
b.	 Find an expression for the distance traveled at time t.
c.	 Your expression from part b is a transcendental equation, 

meaning that you can’t solve it for t. However, it’s not hard to 
use trial and error to find the time needed to travel a specific 
distance. To the nearest 0.01 s, find the time Lewis needed to 
sprint 100.0 m. His official time was 0.01 s more than your 
answer, showing that this model is very good, but not perfect.

83.	 |||	 A sprinter can accelerate with constant acceleration for 4.0 s 
before reaching top speed. He can run the 100 meter dash in 10.0 s.  
What is his speed as he crosses the finish line?

84.	 |||	 A rubber ball is shot straight up from the ground with speed v0 .  
Simultaneously, a second rubber ball at height h directly above 
the first ball is dropped from rest.

a.	 At what height above the ground do the balls collide? Your an-
swer will be an algebraic expression in terms of h, v0, and g.

b.	 What is the maximum value of h for which a collision occurs 
before the first ball falls back to the ground?

c.	 For what value of h does the collision occur at the instant 
when the first ball is at its highest point?

85.	 |||	 The Starship Enterprise returns from warp drive to ordinary 
space with a forward speed of 50 km/s. To the crew’s great sur-
prise, a Klingon ship is 100 km directly ahead, traveling in the 
same direction at a mere 20 km/s. Without evasive action, the 
Enterprise will overtake and collide with the Klingons in just 
slightly over 3.0 s. The Enterprise’s computers react instantly to 
brake the ship. What magnitude acceleration does the Enterprise 
need to just barely avoid a collision with the Klingon ship?  
Assume the acceleration is constant.
Hint:  Draw a position-versus-time graph showing the motions 
of both the Enterprise and the Klingon ship. Let x0 = 0 km be 
the location of the Enterprise as it returns from warp drive. How 
do you show graphically the situation in which the collision is 
“barely avoided”? Once you decide what it looks like graphically,  
express that situation mathematically.

M03_KNIG7429_04_GE_C02.indd   86 12/07/16   1:29 pm



3 

IN THIS CHAPTER, you will learn how vectors are represented and used.

What is a vector?
A vector is a quantity with both a size— 
its magnitude—and a direction. Vectors 
you’ll meet in the next few chapters  
include position, displacement, velocity, 
acceleration, force, and momentum.
❮❮ LOOKING BACK  Tactics Boxes 1.1 
and 1.2 Vector addition and subtraction

How are vectors added and subtracted?
Vectors are added “tip to tail.” The order 
of addition does not matter. To subtract 
vectors, turn the subtraction into addition 
by writing A

u
- B

u
= A

u
+ 1- B

u2. The vector 
- B

u
 is the same length as B

u
 but points in 

the opposite direction.

What are unit vectors?
Unit vectors define what we mean by  
the +x@ and +y@directions in space.

■  A unit vector has magnitude 1.
■  A unit vector has no units.

Unit vectors simply point.

What are components?
Components of vectors are the pieces of 
vectors parallel to the coordinate axes— 
in the directions of the unit vectors.  
We write 

E
u

= Ex dn + Ey  en 

Components simplify vector math.

How are components used?
Components let us do vector math with 
algebra, which is easier and more precise 
than adding and subtracting vectors using 
geometry and trigonometry. Multiplying  
a vector by a number simply multiplies  
all of the vector’s components by that 
number.

Vectors and Coordinate  
Systems

Magnitude

Name

v = 5 m/s

Direction
v
u

A
u

B
u

A + B
u u

x

y

en

dn

E
u

Ey

Exen

dn
x

y
Components

C
u

= 2A
u

+ 3B
u

means

Cx = 2Ax + 3Bx

Cy = 2Ay + 3By
e   

How will I use vectors?
Vectors appear everywhere in physics and engineering—from  
velocities to electric fields and from forces to fluid flows. The 
tools and techniques you learn in this chapter will be used 
throughout your studies and your professional career.

Wind has both a speed and a 
direction, hence the motion 
of the wind is described by a 
vector.
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88  CHAPTER 3  Vectors and Coordinate Systems 

3.1 Scalars and Vectors
A quantity that is fully described by a single number (with units) is called a scalar. 
Mass, temperature, volume and energy are all scalars. We will often use an algebraic 
symbol to represent a scalar quantity. Thus m will represent mass, T temperature, V 
volume, E energy, and so on.

Our universe has three dimensions, so some quantities also need a direction for a 
full description. If you ask someone for directions to the post office, the reply “Go 
three blocks” will not be very helpful. A full description might be, “Go three blocks 
south.” A quantity having both a size and a direction is called a vector.

The mathematical term for the length, or size, of a vector is magnitude, so we can 
also say that a vector is a quantity having a magnitude and a direction.

FIGURE 3.1 shows that the geometric representation of a vector is an arrow, with 
the tail of the arrow (not its tip!) placed at the point where the measurement is made. 
An arrow makes a natural representation of a vector because it inherently has both a 
length and a direction. As you’ve already seen, we label vectors by drawing a small 
arrow over the letter that represents the vector: r u for position, v 

u for velocity, au for 
acceleration.

NOTE  Although the vector arrow is drawn across the page, from its tail to its tip, 
this does not indicate that the vector “stretches” across this distance. Instead, the 
vector arrow tells us the value of the vector quantity only at the one point where the 
tail of the vector is placed.

The magnitude of a vector can be written using absolute value signs or, more 
frequently, as the letter without the arrow. For example, the magnitude of the velocity 
vector in Figure 3.1 is v = 0 v u 0 = 5 m/s. This is the object’s speed. The magnitude of 
the acceleration vector au is written a. The magnitude of a vector is a scalar. Note 
that magnitude of a vector cannot be a negative number; it must be positive or zero, 
with appropriate units.

It is important to get in the habit of using the arrow symbol for vectors. If you omit 
the vector arrow from the velocity vector v 

u and write only v, then you’re referring only 
to the object’s speed, not its velocity. The symbols r u and r, or v 

u and v, do not represent 
the same thing.

3.2 Using Vectors
Suppose Sam starts from his front door, walks across the street, and ends up 200 ft  
to the northeast of where he started. Sam’s displacement, which we will label S

u
, is 

shown in FIGURE 3.2a. The displacement vector is a straight-line connection from his 
initial to his final position, not necessarily his actual path.

To describe a vector we must specify both its magnitude and its direction. We can write 
Sam’s displacement as S

u
= 1200 ft, northeast2. The magnitude of Sam’s displacement 

is S = 0 Su 0 = 200 ft, the distance between his initial and final points.
Sam’s next-door neighbor Bill also walks 200 ft to the northeast, starting from his 

own front door. Bill’s displacement B
u

= 1200 ft, northeast2 has the same magnitude 
and direction as Sam’s displacement S

u
. Because vectors are defined by their magni-

tude and direction, two vectors are equal if they have the same magnitude and 
direction. Thus the two displacements in FIGURE 3.2b are equal to each other, and we 
can write B

u
= S

u
.

NOTE  A vector is unchanged if you move it to a different point on the page as long 
as you don’t change its length or the direction it points.

FIGURE 3.1  The velocity vector v 

u has 
both a magnitude and a direction.

Magnitude
of vector

Name of vector
v = 5 m/s

Direction
of vector

The vector is drawn across
the page, but it represents
the particle’s velocity at
this one point.

v
u

FIGURE 3.2  Displacement vectors.

B
u

S
u

S
u

B and S have the
same magnitude
and direction, so
B = S. 

u u

u u

Sam’s actual path

(a)

(b)

Bill

Sam

Sam
Displacement is the
straight-line connection
from the initial to
the �nal position.

20
0 f

t
Sam’s
displacement

N

M04_KNIG7429_04_GE_C03.indd   88 11/07/16   5:00 pm



3.2 Using Vectors  89

Vector Addition
If you earn $50 on Saturday and $60 on Sunday, your net income for the weekend is 
the sum of $50 and $60. With numbers, the word net implies addition. The same is 
true with vectors. For example, FIGURE 3.3 shows the displacement of a hiker who first 
hikes 4 miles to the east, then 3 miles to the north. The first leg of the hike is described by  
the displacement A

u
= 14 mi, east2. The second leg of the hike has displacement 

B
u

= 13 mi, north2. Vector C
u

 is the net displacement because it describes the net result 
of the hiker’s first having displacement A

u
, then displacement B

u
.

The net displacement C
u

 is an initial displacement A
u

 plus a second displacement B
u
, or

	 C
u

= A
u

+ B
u

	 (3.1)

The sum of two vectors is called the resultant vector. It’s not hard to show that vector  
addition is commutative: A

u
+ B

u
= B

u
+ A

u
. That is, you can add vectors in any order you wish.

❮❮ Tactics Box 1.1 on page 28 showed the three-step procedure for adding two vec-
tors, and it’s highly recommended that you turn back for a quick review. This tip-to-tail  
method for adding vectors, which is used to find C

u
= A

u
+ B

u
 in Figure 3.3, is called 

graphical addition. Any two vectors of the same type—two velocity vectors or two 
force vectors—can be added in exactly the same way.

The graphical method for adding vectors is straightforward, but we need to do a little 
geometry to come up with a complete description of the resultant vector C

u
. Vector C

u
 

of Figure 3.3 is defined by its magnitude C and by its direction. Because the three 
vectors A

u
, B

u
, and C

u
 form a right triangle, the magnitude, or length, of C

u
 is given by 

the Pythagorean theorem:

	 C = 2A2 + B2 = 214 mi22 + 13 mi22 = 5 mi	 (3.2)

Notice that Equation 3.2 uses the magnitudes A and B of the vectors A
u

 and B
u
. The 

angle u, which is used in Figure 3.3 to describe the direction of C
u

, is easily found for 
a right triangle:

	 u = tan-11B
A2 = tan-113 mi

4 mi2 = 37°	 (3.3)

Altogether, the hiker’s net displacement is C
u

= A
u

+ B
u

= (5 mi, 37° north of east).

NOTE  Vector mathematics makes extensive use of geometry and trigonometry. 
Appendix A, at the end of this book, contains a brief review of these topics.

FIGURE 3.3  The net displacement C
u
 

resulting from two displacements A
u
 

and B
u
.

Start

Net displacement

Individual
displacements

End

4 mi

3 mi

N

u A
u

B
uC

u

EXAMPLE 3.1  |  Using graphical addition to find a displacement

FIGURE 3.4  The bird’s net displacement is C
u

= A
u

+ B
u
.

The bird’s net
displacement is
C = A + B. A

u
B
uC

u

u uu
f

End

Start 100 m

50 m

45°

N

A bird flies 100 m due east from a tree, then 50 m northwest (that 
is, 45° north of west). What is the bird’s net displacement?

VISUALIZE  FIGURE 3.4 shows the two individual displacements, 
which we’ve called A

u
 and B

u
. The net displacement is the vector 

sum C
u

= A
u

+ B
u
, which is found graphically.

SOLVE  The two displacements are A
u

= 1100 m, east2 and B
u

=  
150 m, northwest2. The net displacement C

u
= A

u
+ B

u
 is found 

by drawing a vector from the initial to the final position. But 

describing C
u

 is a bit trickier than the example of the hiker because 
A
u

 and B
u

 are not at right angles. First, we can find the magnitude of 
C
u

 by using the law of cosines from trigonometry:

 C 2 = A2 + B2 - 2AB cos 45°

 = 1100 m22 + 150 m22 - 21100 m2150 m2 cos 45°

 = 5430 m2

Thus C = 25430 m2 = 74 m. Then a second use of the law of 
cosines can determine angle f (the Greek letter phi):

B2 = A2 + C 2 - 2AC cos f

f = cos-1 c A2 + C 2 - B2

2AC
d = 29°

The bird’s net displacement is

C
u

= 174 m, 29° north of east2
x
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It is often convenient to draw two vectors with their tails together, as shown in 
FIGURE 3.5a. To evaluate D

u
+ E

u
, you could move vector E

u
 over to where its tail is 

on the tip of D
u

, then use the tip-to-tail rule of graphical addition. That gives vector 
F = D

u
+ E

u
 in FIGURE 3.5b. Alternatively, FIGURE 3.5c shows that the vector sum D

u
+ E

u
 

can be found as the diagonal of the parallelogram defined by D
u

 and E
u
. This method 

for vector addition is called the parallelogram rule of vector addition.
▶ FIGURE 3.5  Two vectors can be  
added using the tip-to-tail rule or  
the parallelogram rule.

D
u

D
u

D
u

E
u

E
u

E
u

(c)(b)(a)

What is D + E? Parallelogram rule:
Find the diagonal of
the parallelogram
formed by D and E.

Tip-to-tail rule:
Slide the tail of E 
to the tip of D.

F = D
 + E

F = D
 + Eu

u

u
u

u

u

u u

u

u

u u

Vector addition is easily extended to more than two vectors. FIGURE 3.6 shows the 
path of a hiker moving from initial position 0 to position 1, then position 2, then 
position 3, and finally arriving at position 4. These four segments are described by 
displacement vectors D

u

1, D
u

2, D
u

3, and D
u

4. The hiker’s net displacement, an arrow from 
position 0 to position 4, is the vector D

u

net. In this case,

	 D
u

net = D
u

1 + D
u

2 + D
u

3 + D
u

4	 (3.4)

The vector sum is found by using the tip-to-tail method three times in succession.

FIGURE 3.6  The net displacement after 
four individual displacements.

Start

Net displacement
End

4
2

1

0

3

Dnet

D1

D4

D2

D3

u

u

u

u

u

More Vector Mathematics
In addition to adding vectors, we will need to subtract vectors (❮❮ Tactics Box 1.2 

on page 29), multiply vectors by scalars, and understand how to interpret the negative 
of a vector. These operations are illustrated in FIGURE 3.7.

FIGURE 3.7  Working with vectors.

The length of B is “stretched”
by the factor c. That is, B = cA.

B = cA = (cA, u)

A = (A, u)

-A
-2A

Vector -A is 
equal in magnitude
but opposite in
direction to A.

Multiplication by a scalar The negative of a vector Multiplication by a negative scalar

A - C

A - C-C

-C
Parallelogram subtraction using -C

u

u

B points in the same direction as A.

Vector subtraction: What is A - C?
Write it as A + (-C ) and add!

u

A
u

A
u

u

u

A
u

A
u

A
u

u

u

u

u

u

u

u

u

C
u

u

u

u

u

Tip-to-tail subtraction using -C

u

u

u

u

u
A + (-A) = 0. The tip of -A
returns to the starting point.

u u uu

The zero vector 0 has zero length
u

u u

 

STOP TO THINK 3.1  Which figure shows A
u

1 + A
u

2 + A
u

3?

(a) (b) (c) (d) (e)

A1

A3 A2

u

u
u
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STOP TO THINK 3.2  Which of the figures shows 2 A
i + B

u
?

3.3 �Coordinate Systems and  
Vector Components

Vectors do not require a coordinate system. We can add and subtract vectors graphically, 
and we will do so frequently to clarify our understanding of a situation. But the graphical 
addition of vectors is not an especially good way to find quantitative results. In this 
section we will introduce a coordinate representation of vectors that will be the basis 
of an easier method for doing vector calculations.

Coordinate Systems
The world does not come with a coordinate system attached to it. A coordinate system 
is an artificially imposed grid that you place on a problem in order to make quantitative 
measurements. You are free to choose:

■■ Where to place the origin, and
■■ How to orient the axes.

Different problem solvers may choose to use different coordinate systems; that is 
perfectly acceptable. However, some coordinate systems will make a problem easier 

EXAMPLE 3.2  |  Velocity and displacement
Carolyn drives her car north at 30 km/h for 1 hour, east at 60 km/h 
for 2 hours, then north at 50 km/h for 1 hour. What is Carolyn’s net 
displacement?

SOLVE  Chapter 1 defined average velocity as

v 

u =
∆r u

∆t

so the displacement ∆r u during the time interval ∆t is ∆r u = 1∆t2 v 

u. 
This is multiplication of the vector v 

u by the scalar ∆t. Carolyn’s 
velocity during the first hour is v 

u
1 = 130 km/h, north2, so her 

displacement during this interval is

 ∆r u
1 = 11 hour2130 km/h, north2 = 130 km, north2

Similarly,

 ∆r u
2 = 12 hours2160 km/h, east2 = 1120 km, east2

   ∆r u
3 = 11 hour2150 km/h, north2 = 150 km, north2

In this case, multiplication by a scalar changes not only the length 
of the vector but also its units, from km/h to km. The direction, 
however, is unchanged. Carolyn’s net displacement is

∆r u
net = ∆r u

1 + ∆r u
2 + ∆r u

3

This addition of the three vectors is shown in FIGURE 3.8, using the 
tip-to-tail method. ∆r u

net stretches from Carolyn’s initial position to 
her final position. The magnitude of her net displacement is found 
using the Pythagorean theorem:

rnet = 21120 km22 + 180 km22 = 144 km

The direction of ∆r u
net is described by angle u, which is

u = tan-11 80 km
120 km2 = 34°

Thus Carolyn’s net displacement is ∆r u
net = 1144 km, 34° north 

of east2.

FIGURE 3.8  The net displacement is the vector sum 
∆r u

net = ∆r u
1 + ∆r u

2 + ∆r u
3 .

u

80 km

120 km
Start

EndN

∆rnet ∆r3

∆r2∆r1

u
u

uu

x

 

A GPS uses satellite signals to find your 
position in the earth’s coordinate system 
with amazing accuracy.

A
u

B
u

(a) (b) (c) (d) (e)
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to solve. Part of our goal is to learn how to choose an appropriate coordinate system 
for each problem.

FIGURE 3.9 shows the xy-coordinate system we will use in this book. The placement 
of the axes is not entirely arbitrary. By convention, the positive y-axis is located 90° 
counterclockwise (ccw) from the positive x-axis. Figure 3.9 also identifies the four 
quadrants of the coordinate system, I through IV.

Coordinate axes have a positive end and a negative end, separated by zero at the 
origin where the two axes cross. When you draw a coordinate system, it is important 
to label the axes. This is done by placing x and y labels at the positive ends of the axes, 
as in Figure 3.9. The purpose of the labels is twofold:

■■ To identify which axis is which, and
■■ To identify the positive ends of the axes.

This will be important when you need to determine whether the quantities in a problem 
should be assigned positive or negative values.

Component Vectors
FIGURE 3.10 shows a vector A

u
 and an xy-coordinate system that we’ve chosen. Once the 

directions of the axes are known, we can define two new vectors parallel to the axes 
that we call the component vectors of A

u
. You can see, using the parallelogram 

rule, that A
u

 is the vector sum of the two component vectors:

	 A
u

= A
u

x + A
u

y	 (3.5)

In essence, we have broken vector A
u

 into two perpendicular vectors that are parallel 
to the coordinate axes. This process is called the decomposition of vector A

u
 into its 

component vectors.

NOTE  It is not necessary for the tail of A
u

 to be at the origin. All we need to know 
is the orientation of the coordinate system so that we can draw A

u

x and A
u

y parallel 
to the axes.

Components
You learned in Chapters 1 and  2 to give the kinematic variable vx a positive sign if the 
velocity vector v 

u points toward the positive end of the x-axis, a negative sign if v 

u points in 
the negative x-direction. We need to extend this idea to vectors in general.

Suppose vector A
u

 has been decomposed into component vectors A
u

x and A
u

y parallel 
to the coordinate axes. We can describe each component vector with a single number 
called the component. The x-component and y-component of vector A

u
, denoted Ax 

and Ay , are determined as follows:

FIGURE 3.9  A conventional xy-coordinate 
system and the quadrants of the  
xy-plane.

III

IVIII

y

x
90°

FIGURE 3.10  Component vectors A
u

x and 
A
u

y are drawn parallel to the coordinate 
axes such that A

u
= A

u

x + A
u

y.

x

y

The x-component
vector is parallel
to the x-axis.

The y-component
vector is parallel
to the y-axis.

A = Ax + Ay
Ay A

Ax

u u u

u
u

u

TACTICS BOX 3.1 

Determining the components of a vector

●1		 The absolute value 0Ax 0  of the x-component Ax is the magnitude of the  
component vector A

u

x .
●2		 The sign of Ax is positive if A

u

x points in the positive x-direction (right), negative 
if A

u

x points in the negative x-direction (left).
●3		 The y-component Ay is determined similarly.

Exercises 10–18

In other words, the component Ax tells us two things: how big A
u

x is and, with its sign, 
which end of the axis A

u

x points toward. FIGURE 3.11 shows three examples of determining 
the components of a vector.
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NOTE  Beware of the somewhat confusing terminology. A
u

x and A
u

y are called 
component vectors, whereas Ax and Ay are simply called components. The components 
Ax and Ay are just numbers (with units), so make sure you do not put arrow symbols 
over the components.

We will frequently need to decompose a vector into its components. We will also 
need to “reassemble” a vector from its components. In other words, we need to move 
back and forth between the geometric and the component representations of a vector. 
FIGURE 3.12 shows how this is done.

◀ FIGURE 3.12  Moving between the  
geometric representation and the  
component representation.

A
u

B
u

x
y

x

y

Ax = A cosu

Ay = A sinu

Bx = B sinf

By = -B cosf

Bfu

A = 2Ax
2 + Ay

2 B = 2Bx
2 + By

2 

A

The components of A are found from the
magnitude and direction.

u = tan-1 1Ay /Ax2 f = tan-1 1Bx / 0By 02

The angle is de�ned differently. In this
example, the magnitude and direction are

Minus signs must be inserted manually,
depending on the vector’s direction.

The magnitude and direction of A are found
from the components. In this example,

u

u

Each decomposition requires that you pay close attention to the direction in which 
the vector points and the angles that are defined.

■■ If a component vector points left (or down), you must manually insert a minus sign 
in front of the component, as was done for By in Figure 3.12.

■■ The role of sines and cosines can be reversed, depending upon which angle is used 
to define the direction. Compare Ax and Bx.

■■ The angle used to define direction is almost always between 0° and 90°, so you must 
take the inverse tangent of a positive number. Use absolute values of the components, 
as was done to find angle f (Greek phi) in Figure 3.12.

EXAMPLE 3.3  |  Finding the components of an acceleration vector
Seen from above, a hummingbird’s acceleration is (6.0 m/s2, 30° south 
of west). Find the x- and y-components of the acceleration vector au.

VISUALIZE  It’s important to draw vectors. FIGURE 3.13 establishes 
a map-like coordinate system with the x-axis pointing east and the 
y-axis north. Vector au is then decomposed into components parallel 
to the axes. Notice that the axes are “acceleration axes” with units of 
acceleration, not xy-axes, because we’re measuring an acceleration 
vector.

▶ FIGURE 3.13  Decomposition of au.

ay is negative.

ax is negative.

N

Continued

FIGURE 3.11  Determining the components of a vector.

Ay

Ax

A
uu

u

x (m)

y (m)

1

1

-1-2 2 3 4
-1

-2

2

3

Ax points in the positive
x-direction, so Ax = +3 m.

Ay points in
the positive
y-direction, so 
Ay = +2 m.

u

u

By points in the 
positive y-direction, 
so By = +2 m.

Cx

Cy C
u

u

u

u

x (m)

y (m)

1-1-2 2 3 4
-1

-2

2

3

x (m)

y (m)

1

1

-2 2 3 4
-1

-2

3
By

Bx

Bx points in the negative
x-direction, so Bx = -2 m.

The x-component
of C is Cx = +4 m.The y-compo-

nent of C is 
Cy = -3 m.B

u

u

u

u

u

u
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EXAMPLE 3.4  |  Finding the direction of motion
FIGURE 3.14 shows a car’s velocity vector v 

u. Determine the car’s 
speed and direction of motion.

VISUALIZE  FIGURE 3.15 shows the components vx and vy and de-
fines an angle u with which we can specify the direction of motion.

SOLVE  We can read the components of v 

u directly from the axes: 
vx = -6.0 m/s and vy = 4.0 m/s. Notice that vx is negative. This is 
enough information to find the car’s speed v, which is the magnitude 
of v 

u:

v = 2vx 

2 + vy 

2 = 21-6.0 m/s22 + 14.0 m/s22 = 7.2 m/s

From trigonometry, angle u is

u = tan-11 vy

0 vx 0 2 = tan-114.0 m/s
6.0 m/s2 = 34°

The absolute value signs are necessary because vx is a negative 
number. The velocity vector v 

u can be written in terms of the speed 
and the direction of motion as

v 

u = 17.2 m/s, 34° above the negative x@axis2

FIGURE 3.14  The velocity vector v u of Example 3.4.

v
u

vx (m/s)

vy (m/s)

-2-4-6

2

4

FIGURE 3.15  Decomposition of v u.

-6
vx (m/s)

vy (m/s)

Direction u = tan-11vy / 0 vx 02
-2-4

2

4

Magnitude

v = 2vx
2 + vy

2

vy = 4.0 m/s

vx = -6.0 m/s

u

x

STOP TO THINK 3.3   What are the x- and y-components Cx and Cy of vector C
u
?

 

C
u

x (cm)

y (cm)

1

-3-4 -1-2 1
-1

2

FIGURE 3.16  The unit vectors in and jn.

x

y

1

1

2

2 The unit vectors have 
magnitude 1, no units, and 
point in the + x-direction 
and + y-direction.

en

dn

SOLVE  The acceleration vector points to the left (negative x-direction) 
and down (negative y-direction), so the components ax and ay are 
both negative:

ax = -a cos 30° = -16.0 m/s22 cos 30° = -5.2 m/s2

ay = -a sin 30° = -16.0 m/s22 sin 30° = -3.0 m/s2

ASSESS  The units of ax and ay are the same as the units of vector au. 
Notice that we had to insert the minus signs manually by observing 
that the vector points left and down.

x

3.4 Unit Vectors and Vector Algebra
The vectors (1, +x-direction) and (1, +y-direction), shown in FIGURE 3.16, have some 
interesting and useful properties. Each has a magnitude of 1, has no units, and is parallel 
to a coordinate axis. A vector with these properties is called a unit vector. These unit 
vectors have the special symbols

 in K 11, positive x@direction2
 jn K 11, positive y@direction2

The notation in (read “i hat”) and jn (read “j hat”) indicates a unit vector with a magnitude 
of 1. Recall that the symbol K means “is defined as.”

Unit vectors establish the directions of the positive axes of the coordinate system. 
Our choice of a coordinate system may be arbitrary, but once we decide to place a 
coordinate system on a problem we need something to tell us “That direction is the 
positive x-direction.” This is what the unit vectors do.
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The unit vectors provide a useful way to write component vectors. The component 
vector A

u

x is the piece of vector A
u

 that is parallel to the x-axis. Similarly, A
u

y is parallel 
to the y-axis. Because, by definition, the vector in points along the x-axis and jn points 
along the y-axis, we can write

	  A
u

x = Ax in
	  A

u

y = Ay jn	
(3.6)

Equations 3.6 separate each component vector into a length and a direction. The full 
decomposition of vector A

u
 can then be written

	 A
u

= A
u

x + A
u

y = Ax in + Ay jn	 (3.7)

FIGURE 3.17 shows how the unit vectors and the components fit together to form vector A
u

.

NOTE  In three dimensions, the unit vector along the +z@direction is called kn, and 
to describe vector A

u
 we would include an additional component vector A

u

z = Az  kn.

FIGURE 3.17  The decomposition  
of vector A

u
 is Ax  in + Ay  jn.

x

y

Unit vectors
identify the x-
and y-directions.

A = Axd + Aye
Ay = Aye

Ax = Axden

n

dn

n

nn

u

u

u

Vector Ax d has length 
Ax  and points in the 
direction of d.

n

n

EXAMPLE 3.5  |  Run rabbit run!
A rabbit, escaping a fox, runs 40.0° north of west at 10.0 m/s. A 
coordinate system is established with the positive x-axis to the east 
and the positive y-axis to the north. Write the rabbit’s velocity in 
terms of components and unit vectors.

VISUALIZE  FIGURE 3.18 shows the rabbit’s velocity vector and the 
coordinate axes. We’re showing a velocity vector, so the axes are 
labeled vx and vy rather than x and y.

SOLVE  10.0 m/s is the rabbit’s speed, not its velocity. The velocity, 
which includes directional information, is

v 

u = 110.0 m/s, 40.0° north of west2
Vector v 

u points to the left and up, so the components vx and vy 
are negative and positive, respectively. The components are

 vx = -110.0 m/s2 cos 40.0° = -7.66 m/s

 vy = +110.0 m/s2 sin 40.0° = 6.43 m/s

With vx and vy now known, the rabbit’s velocity vector is

v 

u = vx  in + vy  jn = 1-7.66in + 6.43jn2 m /s

Notice that we’ve pulled the units to the end, rather than writing 
them with each component.

ASSESS  Notice that the minus sign for vx was inserted manually. 
Signs don’t occur automatically; you have to set them after 
checking the vector’s direction.

FIGURE 3.18  The velocity vector v 

u is decomposed into  
components vx and vy  .

v
u

vy = v sin40.0°

vx

vy

vx = -v cos40.0°

v = 10.0 m/s

40.0°

N

x

Vector Math
You learned in Section 3.2 how to add vectors graphically, but it is a tedious problem 
in geometry and trigonometry to find precise values for the magnitude and direction 
of the resultant. The addition and subtraction of vectors become much easier if we use 
components and unit vectors.

To see this, let’s evaluate the vector sum D
u

= A
u

+ B
u

+ C
u
. To begin, write this sum 

in terms of the components of each vector:

	  D
u

= Dx in + Dy jn = A
u

+ B
u

+ C
u

	  = 1Ax in + Ay jn2 + 1Bx in + By jn2 + 1Cx in + Cy jn2	
(3.8)

We can group together all the x-components and all the y-components on the right 
side, in which case Equation 3.8 is

	 1Dx2 in + 1Dy2 jn = 1Ax + Bx + Cx2 in + 1Ay + By + Cy2 jn	 (3.9)

Comparing the x- and y-components on the left and right sides of Equation 3.9, we find:

	  Dx = Ax + Bx + Cx

	  Dy = Ay + By + Cy	
(3.10)
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Stated in words, Equation 3.10 says that we can perform vector addition by adding the 
x-components of the individual vectors to give the x-component of the resultant and 
by adding the y-components of the individual vectors to give the y-component of the 
resultant. This method of vector addition is called algebraic addition.

EXAMPLE 3.6  |  Using algebraic addition to find a displacement
Example 3.1 was about a bird that flew 100 m to the east, then 50 m 
to the northwest. Use the algebraic addition of vectors to find the 
bird’s net displacement.

VISUALIZE  FIGURE 3.19 shows displacement vectors A
u

= 1100 m, 
east2 and B

u
= (50 m, northwest). We draw vectors tip-to-tail to 

add them graphically, but it’s usually easier to draw them all from 
the origin if we are going to use algebraic addition.

SOLVE  To add the vectors algebraically we must know their com-
ponents. From the figure these are seen to be

 A
u

= 100 in m

 B
u

= 1-50 cos 45° in + 50 sin 45°jn2 m = 1-35.3in + 35.3jn2 m

Notice that vector quantities must include units. Also notice, as 
you would expect from the figure, that B

u
 has a negative x-component. 

Adding A
u

 and B
u
 by components gives

  C
u

= A
u

 + B
u

= 100 in m + 1-35.3in + 35.3jn2 m

 = 1100 m - 35.3 m2in + 135.3 m2jn = 164.7in + 35.3jn2 m

This would be a perfectly acceptable answer for many purposes. 
However, we need to calculate the magnitude and direction of C

u
 if 

we want to compare this result to our earlier answer. The magnitude 
of C

u
 is

C = 2Cx 

2 + Cy 

2 = 2164.7 m22 + 135.3 m22 = 74 m

The angle f, as defined in Figure 3.19, is

f = tan-11 Cy

0Cx 0 2 = tan-1135.3 m
64.7 m2 = 29°

Thus C
u

= 174 m, 29° north of west2, in perfect agreement with 
Example 3.1.

FIGURE 3.19  The net displacement is C
u

= A
u

+ B
u
.
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B
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f
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N

The net displacement C = A + B is drawn
according to the parallelogram rule.
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x

FIGURE 3.20  A coordinate system with 
tilted axes.
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nn

Vector subtraction and the multiplication of a vector by a scalar, using components, 
are very much like vector addition. To find R

u
= P

u
- Q

u
 we would compute

	  Rx = Px - Qx

	  Ry = Py - Qy	
(3.11)

Similarly, T 
u

= cS
u
 would be

	  Tx = cSx

	  Ty = cSy	
(3.12)

In other words, a vector equation is interpreted as meaning: Equate the x-components  
on both sides of the equals sign, then equate the y-components, and then the z-components. 
Vector notation allows us to write these three equations in a much more compact form.

Tilted Axes and Arbitrary Directions
As we’ve noted, the coordinate system is entirely your choice. It is a grid that you impose 
on the problem in a manner that will make the problem easiest to solve. As you’ve 
already seen in Chapter 2, it is often convenient to tilt the axes of the coordinate system, 
such as those shown in FIGURE 3.20. The axes are perpendicular, and the y-axis is 
oriented correctly with respect to the x-axis, so this is a legitimate coordinate system. 
There is no requirement that the x-axis has to be horizontal.

Finding components with tilted axes is no harder than what we have done so far. 
Vector C

u
 in Figure 3.20 can be decomposed into C

u
= Cx in + Cy jn, where Cx = C cos u 

and Cy = C sin u. Note that the unit vectors in and jn correspond to the axes, not to 
“horizontal” and “vertical,” so they are also tilted.

Tilted axes are useful if you need to determine component vectors “parallel to” and 
“perpendicular to” an arbitrary line or surface. This is illustrated in the following example.
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EXAMPLE 3.7  |  Muscle and bone
The deltoid—the rounded muscle across the top of your upper 
arm—allows you to lift your arm away from your side. It does so 
by pulling on an attachment point on the humerus, the upper arm 
bone, at an angle of 15° with respect to the humerus. If you hold 
your arm at an angle 30° below horizontal, the deltoid must pull 
with a force of 720 N to support the weight of your arm, as shown 
in FIGURE 3.21a. (You’ll learn in Chapter 5 that force is a vector

quantity measured in units of newtons, abbreviated N.) What are 
the components of the muscle force parallel to and perpendicular 
to the bone?

VISUALIZE  FIGURE 3.21b shows a tilted coordinate system with 
the x-axis parallel to the humerus. The force F

u
 is shown 15° 

from the x-axis. The component of force parallel to the bone, 
which we can denote F ‘ , is equivalent to the x-component: 
F ‘ = Fx. Similarly, the component of force perpendicular to the 
bone is F# = Fy.

SOLVE  From the geometry of Figure 3.21b, we see that

  F ‘ = F cos 15° = 1720 N2 cos 15° = 695 N

 F# = F sin 15° = 1720 N2 sin 15° = 186 N

ASSESS  The muscle pulls nearly parallel to the bone, so we expected 
F ‘ ≈ 720 N and F# V F ‘. Thus our results seem reasonable.

FIGURE 3.21  Finding the components of force parallel and 
perpendicular to the humerus.

(a) (b)

Deltoid muscle

Humerus

720 N

72
0 N

Shoulder
socket

30°

15° 30°

15°

F#

F ‘

y

x

u

u

F
u

x

STOP TO THINK 3.4  In the figure, angle Φ specifies the direction  
of C

u
. It is given by

C
u

£
x

y

a.  tan-11 ∙ Cx ∙
∙ Cy ∙ 2 b.  tan-11 ∙ Cy ∙

∙ Cx ∙ 2 c.  tan-11 Cx

∙ Cy ∙ 2

CHALLENGE EXAMPLE 3.8  |  Finding the net force
FIGURE 3.22 shows three forces acting at one point. What is the net 
force F

u

net = F
u

1 + F
u

2 + F
u

3?

VISUALIZE  Figure 3.22 shows the forces and a tilted coordinate 
system.

SOLVE  The vector equation F
u

net = F
u

1 + F
u

2 + F
u

3 is really two simul-
taneous equations:

 1Fnet2x = F1x + F2x + F3x

 1Fnet2y = F1y + F2y + F3y

The components of the forces are determined with respect to the 
axes. Thus

 F1x = F1 cos 45° = 150 N2 cos 45° = 35 N

 F1y = F1 sin 45° = 150 N2 sin 45° = 35 N

F
u

2 is easier. It is pointing along the y-axis, so F2x = 0 N and 
F2y = 20 N. To find the components of F

u

3, we need to recognize—
because F

u

3 points straight down—that the angle between F
u

3 and 
the x-axis is 75°. Thus

 F3x = F3 cos 75° = 157 N2 cos 75° = 15 N

 F3y = -F3 sin 75° = -157 N2 sin 75° = -55 N

The minus sign in F3y is critical, and it appears not from some formula 
but because we recognized—from the figure—that the y-component 
of F

u

3, points in the -y-direction. Combining the pieces, we have

 1Fnet2x = 35 N + 0 N + 15 N = 50 N

 1Fnet2y = 35 N + 20 N + 1-55 N2 = 0 N

Thus the net force is F
u

net = 50in N. It points along the x-axis of the 
tilted coordinate system.

ASSESS  Notice that all work was done with reference to the axes 
of the coordinate system, not with respect to vertical or horizontal.

FIGURE 3.22  Three forces.

45°

15°

F3

F2
F1

y

x

20 N 50 N

57 N

u u

u

x

 

d.  tan-11 Cy

∙ Cx ∙ 2 e.  tan-11Cx

Cy2  
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98  CHAPTER 3  Vectors and Coordinate Systems 

SUMMARY 

The goals of Chapter 3 have been to learn how vectors are represented and used.

IMPORTANT CONCEPTS

A vector is a quantity described by both a magnitude and a direction. Unit Vectors
Unit vectors have magnitude 1 
and no units. Unit vectors in and jn 
define the directions of the x- and 
y-axes.

scalar
vector
magnitude

resultant vector
graphical addition
zero vector, 0

u

quadrants
component vector
decomposition

component
unit vector, in or jn
algebraic addition

TERMS AND NOTATION 

Working Algebraically

Vector calculations are done component by component: C
u

= 2A
u

+ B
u
 means bCx = 2Ax + Bx

Cy = 2Ay + By

The magnitude of C
u

 is then C = 2Cx 

2 + Cy 

2 and its direction is found using tan-1.

USING VECTORS

Working Graphically

Components
The component vectors are parallel to the x- and y-axes:

A
u

= A
u

x + A
u

y = Ax  in + Ay  jn

In the figure at the right, for example:

Ax = A cos u  A = 2Ax 

2 + Ay 

2

Ay = A sin u  u = tan-11Ay /Ax2

▶ � Minus signs need to be included if the vector points  
down or left.

The components Ax and Ay are 
the magnitudes of the component 
vectors A

u

x and A
u

y and a plus or 
minus sign to show whether the 
component vector points toward 
the positive end or the negative 
end of the axis.

A
uThe vector

describes the
situation at
this point.

Direction

The length or magnitude is
denoted A. Magnitude is a scalar.

A x

y

en

dn

u

x

y

x

y

Ax 6 0

Ay 7 0

Ax 7 0

Ay 7 0

Ax 6 0

Ay 6 0

Ax 7 0

Ay 6 0

Ay = Aye

Ax = Axdn

n

A
u

u

u

cA
A + B

A
u

A
u

A
u

A
u u

u B
u

u

A + B
u u

B
u

B
u

B
u

A - B

-B
u

-B
u

u u

Addition Negative Subtraction Multiplication
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7.	 Can a vector have zero magnitude if one of its components is 
nonzero? Explain.

8.	 Two vectors of unequal magnitudes can never add up to a zero 
vector. Does this hold true for three unequal vectors? Explain 
with an example.

9.	 Are the following statements true or false? Explain your answer.
a.	 The magnitude of a vector can be different in different coor-

dinate systems.
b.	 The direction of a vector can be different in different coordinate 

systems.
c.	 The components of a vector can be different in different 

coordinate systems.

CONCEPTUAL QUESTIONS

1.	 Can the magnitude of the displacement vector be more than the 
distance traveled? Less than the distance traveled? Explain.

2.	 If C
u

= A
u

+ B
u
, can C = A + B? Can C 7 A + B? For each, show 

how or explain why not.
3.	 If C

u
= A

u
+ B

u
, can C = 0? Can C 6 0? For each, show how or 

explain why not.
4.	 Is it possible to produce a vector quantity by adding, subtracting, 

multiplying, or dividing two scalar quantities?
5.	 How would you define the zero vector 0

u
?

6.	 Two vectors have lengths of 4 units each. What is the range of 
possible lengths obtainable for the vector representing the sum 
of the two?

EXERCISES AND PROBLEMS

Exercises

Section 3.1 Scalars and Vectors

Section 3.2 Using Vectors

1.	 |	 Trace the vectors in FIGURE EX3.1 onto your paper. Then find  
(a) A

u
+ B

u
 and (b) A

u
- B

u
.

9.	 |	 A runner is training for an upcoming marathon by sprinting 
around a circular track 80 m in diameter at a constant speed. Let 
a coordinate system have its origin at the center of the circle, with 
the x-axis pointing east and the y-axis, north. The runner starts at 
(x, y) = (40 m, 0 m) and runs 1.5 times around the track in a clock-
wise direction. What is his displacement vector? Specify magni-
tude and direction in your answer. 

Section 3.4 Unit Vectors and Vector Algebra

10.	 ||	 Draw each of the following vectors, label an angle that specifies 
the vector’s direction, then find its magnitude and direction.
a.	 B

u
= -4.0in + 4.0jn

b.	 r u = 1-2.0in - 1.0jn2 cm
c.	 v 

u = 1-10in - 100jn2 m/s
d.	 au = 120in + 10jn2 m/s2

11.	 ||	 Draw each of the following vectors, label an angle that spec-
ifies the vector’s direction, and then find the vector’s magnitude 
and direction.
a.	 A

u
= 3.0in + 7.0jn

b.	 au = 1-2.0in + 4.5jn2 m/s2

c.	 v 

u = 114in - 11jn2 m/s
d.	 r u = 1-2.2in - 3.3jn2 m

12.	 ||	 Let A
u

= 2in + 3jn, B
u

= 2in - 4jn, and C
u

= A
u

+ B
u
.

a.	 Write vector C
u
 in component form.

b.	 Draw a coordinate system and on it show vectors A
u

, B
u
, and C

u
.

c.	 What are the magnitude and direction of vector C
u
?

13.	 |	 Let A
u

= 4in - 2jn, B
u

= -3in + 5jn, and C
u

= A
u

+ B
u
.

a.	 Write vector C 
u
 in component form.

b.	 Draw a coordinate system and on it show vectors A
u

, B
u
, and C

u
.

c.	 What are the magnitude and direction of vector C
u
?

14.	 |	 Let A
u

= 4in - 2jn, B
u

= -3in + 5jn, and D
u

= A
u

- B
u
.

a.	 Write vector D
u

 in component form.
b.	 Draw a coordinate system and on it show vectors A

u
, B

u
, and D

u
.

c.	 What are the magnitude and direction of vector D
u

?
15.	 |	 Let A

u
= 4in - 2jn, B

u
= -3in + 5jn, and E

u
= 2 A

u
+ 3B

u
.

a.	 Write vector E
u

 in component form.
b.	 Draw a coordinate system and on it show vectors A

u
, B

u
, and E

u
.

c.	 What are the magnitude and direction of vector E
u
?

2.	 |	 Trace the vectors in FIGURE EX3.2 onto your paper. Then find 
(a) A

u
+ B

u
 and (b) A

u
- B

u
.

Section 3.3 Coordinate Systems and Vector Components

3.	 |	 a. � What are the x- and y-components of vector E
u

 shown in 
FIGURE EX3.3 in terms of the angle u 
and the magnitude E?

b. � For the same vector, what are the 
x- and y-components in terms of 
the angle f and the magnitude E?

4.	 ||	 A velocity vector 40° below the posi-
tive x-axis has a y-component of -10 m/s. 
What is the value of its x-component?

5.	 |	 A position vector in the first quadrant has an x-component of 10 m 
and a magnitude of 12 m. What is the value of its y-component?

6.	 |	 Draw each of the following vectors. Then find its x- and y- 
components.
a.	 au = 13.5 m/s2, negative x@direction2
b.	 v 

u = 1440 m/s, 30° below the positive x@axis2
c.	 r u = 112 m, 40° above the positive x@axis2

7.	 ||	 Draw each of the following vectors. Then find its x- and y- 
components.
a.	 v 

u = 17.5 m/s, 30° clockwise from the positive y@axis2
b.	 au = 11.5 m/s2, 30° above the negative x@axis2
c.	 F

u
= 150.0 N, 36.9° counterclockwise from the positive y@axis2

8.	 |	 Let C
u

= 13.15 m, 15° above the negative x-axis) and D
u

=
125.6 m, 30° to the right of the negative y-axis2. Find the x- and 
y-components of each vector.

FIGURE EX3.1

A
u

B
u

FIGURE EX3.2

A
u

B
u

E
u

u

f
x

y

FIGURE EX3.3
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100  CHAPTER 3  Vectors and Coordinate Systems 

16.	 |	 Let A
u

= 4in - 2jn, B
u

= -3in + 5jn, and F
u

= A
u

- 4B
u
.

a.	 Write vector F
u
 in component form.

b.	 Draw a coordinate system and on it show vectors A
u

, B
u
, and F

u
.

c.	 What are the magnitude and direction of vector F
u
?

17.	 |	 Let E
u

= 2in + 3jn and F
u

= 2in - 2jn. Find the magnitude of
a.	 E

u
 and F

u
      b.   E

u
+ F

u
      c.   - E

u
- 2F

u

18.	 |	 Let B
u

= (5.0 m, 30° counterclockwise from vertical). Find the 
x- and y-components of B

u
 in each of the two coordinate systems 

shown in FIGURE EX3.18.
25.	 ||	 FIGURE P3.25 shows vectors A

u
 and B

u
. Find vector C

u
 such that 

A
u

+ B
u

+ C
u

= 0
u
. Write your answer in component form.

26.	 |||	 FIGURE P3.26 shows vectors A
u

 and B
u
. Find D

u
= 2A

u
+ B

u
. Write 

your answer in component form.

FIGURE EX3.18

x

x

y y

30°

(a) (b)

FIGURE EX3.19

N

30°
x

y

v = (100 m/s,
south)

u

19.	 |	 What are the x- and y-components of the velocity vector shown 
in FIGURE EX3.19?

20.	 ||	 For the three vectors shown in FIGURE EX3.20, A
u

+ B
u

+ C
u

= 1jn. 
What is vector B

u
?

a.	 Write B
u

 in component form.
b.	 Write B

u
 as a magnitude and a direction.

FIGURE EX3.20

A
u

B
u

C
u

x

y

4

3

21.	 |	 The magnetic field inside an instrument is B
u

= 12.0in - 1.0jn2 
T where B

u
 represents the magnetic field vector and T stands for 

tesla, the unit of the magnetic field. What are the magnitude and 
direction of the magnetic field?

Problems

22.	 ||	 Let A
u

= 13.0 m, 20° south of east2, B
u

= 12.0 m, north2, and 
C
u

= 15.0 m, 70° south of west2.
a.	 Draw and label A

u
, B

u
, and C

u
 with their tails at the origin. Use 

a coordinate system with the x-axis to the east.
b.	 Write A

u
, B

u
, and C

u
 in component form, using unit vectors.

c.	 Find the magnitude and the direction of D
u

= A
u

+ B
u

+ C
u
.

23.	 ||	 The position of a particle as a function of time is given by 
r u = 15.0in + 4.0jn2t 2 m, where t is in seconds.
a.	 What is the particle’s distance from the origin at t = 0, 2, and 

5 s?
b.	 Find an expression for the particle’s velocity v 

u as a function 
of time.

c.	 What is the particle’s speed at t = 0, 2, and 5 s?
24.	 ||	 a.   What is the angle f between vectors E

u
 and F

u
 in FIGURE P3.24?

b.	 Use geometry and trigonometry to determine the magnitude 
and direction of G

u
= E

u
+ F

u
.

c.	 Use components to determine the magnitude and direction of 
G
u

= E
u

+ F
u
.

FIGURE P3.24

E
u

F
u

f

x

y

1

1

-1

2 A
u

B
u

x

y

4 m

3 m

60°

20°

FIGURE P3.25

FIGURE P3.26

A
u

B
u15°

15° 2 m

4 m

x

y

27.	 ||	 Find a vector that points in the same direction as the vector 
1in + jn2 and whose magnitude is 1.

28.	 ||	 While vacationing in the mountains you do some hiking. In the 
morning, your displacement is S

u

morning = 12000 m, east2 +  13000
 m, north2 + 1200 m, vertical2. After lunch, your displacement is 
S
u

afternoon = 11500 m, west2 + 12000 m, north2 -  1300 m, vertical2.
a.	 At the end of the hike, how much higher or lower are you 

compared to your starting point?
b.	 What is the magnitude of your net displacement for the day?

29.	 ||	 The minute hand on a watch is 1.5 cm in length. What is the 
displacement vector of the tip of the hand
a.	 from 8:00 a.m. to 8:20 a.m.?
b.	 from 8:00 a.m. to 9:00 a.m.?

30.	 ||	 You go to an amusement park with your friend Betty, who 
wants to ride the 30-m-diameter Ferris wheel. She starts the ride 
at the lowest point of a wheel that, as you face it, rotates counter-
clockwise. What is her displacement vector when the wheel has 
rotated by an angle of 60°? Give your answer as a magnitude and 
direction.

31.	 ||	 Ruth sets out to visit her friend Ward, who lives 50 mi north 
and 100 mi east of her. She starts by driving east, but after 30 mi 
she comes to a detour that takes her 15 mi south before going east 
again. She then drives east for 8 mi and runs out of gas, so Ward 
flies there in his small plane to get her. What is Ward’s displace-
ment vector? Give your answer (a) in component form, using a 
coordinate system in which the y-axis points north, and (b) as a 
magnitude and direction.

32.	 |	 A cannon tilted upward at 30° fires a cannonball with a speed 
of 100 m/s. What is the component of the cannonball’s velocity 
parallel to the ground?

33.	 |	 You are fixing the roof of your house when the head of your 
hammer breaks loose and slides down. The roof makes an angle of 
30° with the horizontal, and the head is moving at 3.5 m/s when it 
reaches the edge. What are the horizontal and vertical components 
of the head’s velocity just as it leaves the roof?

34.	 |	 Jack and Jill ran up the hill at 4 m/s. The horizontal component 
of Jill’s velocity vector was 3.5 m/s.
a.	 What was the angle of the hill?
b.	 What was the vertical component of Jill’s velocity?
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35.	 |	 A pine cone falls straight down from a pine tree growing on a 
20° slope. The pine cone hits the ground with a speed of 10 m/s. 
What is the component of the pine cone’s impact velocity (a) parallel 
to the ground and (b) perpendicular to the ground?

36.	 |	 Kami is walking through the airport with her two-wheeled 
suitcase. The suitcase handle is tilted 40° from vertical, and 
Kami pulls parallel to the handle with a force of 120 N. (Force is 
measured in newtons, abbreviated N.) What are the horizontal and 
vertical components of her applied force?

37.	 ||	 Dee is on a swing in the playground. The chains are 2.5 m long, 
and the tension in each chain is 450 N when Dee is 55 cm above 
the lowest point of her swing. Tension is a vector directed along the 
chain, measured in newtons, abbreviated N. What are the horizon-
tal and vertical components of the tension at this point in the swing?

38.	 ||	 Your neighbor Paul has rented a truck with a loading ramp. The 
ramp is tilted upward at 25°, and Paul is pulling a large crate up the 
ramp with a rope that angles 10° above the ramp. If Paul pulls with 
a force of 550 N, what are the horizontal and vertical components 
of his force? (Force is measured in newtons, abbreviated N.)

39.	 ||	 Tom is climbing a 3.0-m-long ladder that leans against a vertical 
wall, contacting the wall 2.5 m above the ground. His weight of 
680 N is a vector pointing vertically downward. (Weight is measured 
in newtons, abbreviated N.) What are the components of Tom’s 
weight parallel and perpendicular to the ladder?

40.	 ||	 The treasure map in FIGURE P3.40 gives the following directions 
to the buried treasure: “Start at the old oak tree, walk due north for 
500 paces, then due east for 100 paces. Dig.” But when you arrive, 
you find an angry dragon just north of the tree. To avoid the dragon, 
you set off along the yellow brick road at an angle 60° east of north. 
After walking 300 paces you see an opening through the woods. 
Which direction should you go, and how far, to reach the treasure?

42.	 ||	 A flock of ducks is trying to migrate south for the winter, but 
they keep being blown off course by a wind blowing from the west 
at 6.0 m/s. A wise elder duck finally realizes that the solution is to 
fly at an angle to the wind. If the ducks can fly at 8.0 m/s relative to 
the air, what direction should they head in order to move directly 
south?

43.	 ||	 FIGURE P3.43 shows three ropes tied together in a knot. One 
of your friends pulls on a rope with 3.0 units of force and another 
pulls on a second rope with 5.0 units of force. How hard and in 
what direction must you pull on the third rope to keep the knot 
from moving?

FIGURE P3.40

Tree

Yellow brick road

Treasure

60°

N

41.	 |||	 The bacterium E. coli is a single-cell organism that lives in the 
gut of healthy animals, including humans. When grown in a uni-
form medium in the laboratory, these bacteria swim along zig-zag 
paths at a constant speed of 20 mm/s. FIGURE P3.41 shows the 
trajectory of an E. coli as it moves from point A to point E. What 
are the magnitude and direction of the bacterium’s average velocity 
for the entire trip?

FIGURE P3.43

120°

5.0 units of force

3.0 units of force

Knot

?

FIGURE P3.44

20°
6.0 N

5.0 N

F2

F1

F3
u

u

F4

u

u

x

y

FIGURE P3.45

A B

C D

141 cm

100 cm

44.	 ||	 Four forces are exerted on the object shown in FIGURE P3.44. 
(Forces are measured in newtons, abbreviated N.) The net force on 
the object is F

u

net = F
u

1 + F
u

2 + F
u

3 + F
u

4 = 4.0in N. What are (a) F
u

3 
and (b) F

u

4? Give your answers in component form.

45.	 ||	 FIGURE P3.45 shows four electric charges located at the corners 
of a rectangle. Like charges, you will recall, repel each other while 
opposite charges attract. Charge B exerts a repulsive force (directly 
away from B) on charge A of 3.0 N. Charge C exerts an attractive 
force (directly toward C) on charge A of 6.0 N. Finally, charge 
D exerts an attractive force of 2.0 N on charge A. Assuming that 
forces are vectors, what are the magnitude and direction of the net 
force F

u

net exerted on charge A?
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FIGURE P3.41
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4

IN THIS CHAPTER, you will learn how to solve problems about motion in a plane.

How do objects accelerate in two dimensions?
An object accelerates when it changes 
velocity. In two dimensions, velocity can 
change by changing magnitude (speed) or by 
changing direction. These are represented  
by acceleration components tangent to and 
perpendicular to an object’s trajectory.
❮❮ LOOKING BACK  Section 1.5  Finding 
acceleration vectors on a motion diagram

What is projectile motion?
Projectile motion is two-dimensional  
free-fall motion under the influence of  
only gravity. Projectile motion follows a 
parabolic trajectory. It has uniform motion 
in the horizontal direction and ay = -g in 
the vertical direction.
❮❮ LOOKING BACK  Section 2.5  Free fall

What is relative motion?
Coordinate systems that move relative  
to each other are called reference frames. 
If object C has velocity vuCA relative to a 
reference frame A, and if A moves with 
velocity vuAB relative to another reference 
frame B, then the velocity of C in reference 
frame B is vuCB = vuCA + vuAB.

What is circular motion?
An object moving in a circle (or rotating) 
has an angular displacement instead of a 
linear displacement. Circular motion is  
described by angular velocity v (analogous 
to velocity vs) and angular acceleration a 
(analogous to acceleration as). We’ll study 
both uniform and accelerated circular motion.

What is centripetal acceleration?
An object in circular motion is always 
changing direction. The acceleration of 
changing direction—called centripetal 
acceleration—points to the center of the 
circle. All circular motion has a centripetal 
acceleration. An object also has a tangential 
acceleration if it is changing speed.

Where is two-dimensional motion used?
Linear motion allowed us to introduce the concepts of motion,  
but most real motion takes place in two or even three dimensions. 
Balls move along curved trajectories, cars turn corners, planets 
orbit the sun, and electrons spiral in the earth’s magnetic field. 
Where is two-dimensional motion used? Everywhere!

Kinematics in Two  
Dimensions
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4.1  Motion in Two Dimensions  103

4.1  Motion in Two Dimensions
Motion diagrams are an important tool for visualizing motion, and we’ll continue to 
use them, but we also need to develop a mathematical description of motion in two 
dimensions. For convenience, we’ll say that any two-dimensional motion is in the  
xy-plane regardless of whether the plane of motion is horizontal or vertical.

FIGURE 4.1 shows a particle moving along a curved path—its trajectory—in the xy-
plane. We can locate the particle in terms of its position vector r u = xin + yjn.

NOTE  In Chapter 2 we made extensive use of position-versus-time graphs, either x 
versus t or y versus t. Figure 4.1, like many of the graphs we’ll use in this chapter, is 
a graph of y versus x. In other words, it’s an actual picture of the trajectory, not an 
abstract representation of the motion.

FIGURE 4.2a shows the particle moving from position r u
1 at time t1 to position r u

2 at a later 
time t2 . The average velocity—pointing in the direction of the displacement ∆r u—is

	 v 

u
avg =

∆r u

∆t
=

∆x
∆t

 in +
∆y

∆t
 jn	 (4.1)

You learned in Chapter 2 that the  instantaneous velocity is the limit of v 

u
avg as ∆t S 0. 

As ∆t decreases, point 2 moves closer to point 1 until, as FIGURE 4.2b shows, the 
displacement vector becomes tangent to the curve. Consequently, the instantaneous 
velocity vector vu is tangent to the trajectory.

Mathematically, the limit of Equation 4.1 gives

	 v 

u = lim
∆tS0

 
∆r u

∆t
=

d r u

dt
=

dx
dt

 in +
dy

dt
 jn	 (4.2)

We can also write the velocity vector in terms of its x- and y-components as

	 v 

u = vx dn + vyen	 (4.3)

Comparing Equations 4.2 and 4.3, you can see that the velocity vector v 

u has x- and 
y-components

	 vx =
dx
dt
  and  vy =

dy

dt
	 (4.4)

That is, the x-component vx of the velocity vector is the rate dx/dt at which the particle’s 
x-coordinate is changing. The y-component is similar.

FIGURE 4.2c illustrates another important feature of the velocity vector. If the vector’s 
angle u is measured from the positive x-direction, the velocity vector components are

	  vx = v cos u	
(4.5)

	  vy = v sin u	

where

	 v = 2vx 

2 + vy 

2	 (4.6)

is the particle’s speed at that point. Speed is always a positive number (or zero), whereas 
the components are signed quantities (i.e., they can be positive or negative) to convey 
information about the direction of the velocity vector. Conversely, we can use the two 
velocity components to determine the direction of motion:

	 u = tan-11vy

vx
2	 (4.7)

NOTE  In Chapter 2, you learned that the value of the velocity is the slope of the 
position-versus-time graph. Now we see that the direction of the velocity vector v 

u is the 
tangent to the y-versus-x graph of the trajectory. FIGURE 4.3, on the next page, reminds 
you that these two graphs use different interpretations of the tangent lines. The tangent 
to the trajectory does not tell us anything about how fast the particle is moving.

FIGURE 4.1  A particle moving along a 
trajectory in the xy-plane.
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FIGURE 4.2   The instantaneous velocity 
vector is tangent to the trajectory.
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104  CHAPTER 4  Kinematics in Two Dimensions

FIGURE 4.3  Two different uses of tangent lines.
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EXAMPLE 4.1  |  Finding velocity
A sports car’s position on a winding road is given by

 r u = 16.0t - 0.10t 2 + 0.00048t 32in + 18.0t + 0.060t 2 - 0.00095t 32jn

where the y-axis points north, t is in s, and r is in m. What are the 
car’s speed and direction at t = 120 s?

MODEL  Model the car as a particle.

SOLVE  Velocity is the derivative of position, so

 vx =
dx
dt

= 6.0 - 2  10.10t) + 3  10.00048t 22

 vy =
dy

dt
= 8.0 + 2  10.060t2 - 3  10.00095t 22

Written as a vector, the velocity is

 v 

u = 16.0 - 0.20t + 0.00144t 22in + 18.0 + 0.120t - 0.00285t22jn
where t is in s and v is in m/s. At t = 120 s, we can calculate v 

u =
12.7 in - 18.6jn2 m/s. The car’s speed at this instant is

v = 2vx 

2 + vy 

2 = 212.7 m/s22 + 1-18.6 m/s22 = 19 m/s

The velocity vector has a negative y-component, so the direction 
of motion is to the right (east) and down (south). The angle below 
the x-axis is

u =  tan-11 ∙ -18.6 m/s ∙
2.7 m/s 2 = 82°

So, at this instant, the car is headed 82° south of east at a speed of 19 m/s.
x

STOP TO THINK 4.1  During which time interval or intervals is the particle described 
by these position graphs at rest? More than one may be correct.

a.	0–1 s

b.	1–2 s

c.	2–3 s

d.	3–4 s

Acceleration Graphically
In ❮❮ Section 1.5 we defined  the average acceleration auavg of a moving object to be

	 auavg =
∆v 

u

∆t
	 (4.8)

From its definition, we see that au points in the same direction as ∆v 

u, the change of 
velocity. As an object moves, its velocity vector can change in two possible ways:

1.	 The magnitude of v 

u can change, indicating a change in speed, or
2.	 The direction of v 

u can change, indicating that the object has changed direction.

The kinematics of Chapter 2 considered only the acceleration due to changing 
speed. Now it’s time to look at the acceleration associated with changing direction. 
Tactics Box 4.1 shows how we can use the velocity vectors on a motion diagram to 
determine the direction of the average acceleration vector. This is an extension of 
Tactics Box 1.3, which showed how to find au for one-dimensional motion.

10 0
0

32 4
t (s)

x

1 32 4
t (s)

y

0
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4.1  Motion in Two Dimensions  105

Our everyday use of the word “accelerate” means “speed up.” The mathematical 
definition of acceleration—the rate of change of velocity—also includes slowing 
down, as you learned in Chapter 2, as well as changing direction. All these are motions 
that change the velocity.

EXAMPLE 4.2  |  Through the valley
A ball rolls down a long hill, through the valley, and back up the 
other side. Draw a complete motion diagram of the ball.

MODEL  Model the ball as a particle.

VISUALIZE  FIGURE 4.4 is the motion diagram. Where the particle 
moves along a straight line, it speeds up if au and v 

u point in 
the same direction and slows down if au and v 

u point in opposite  

directions. This important idea was the basis for the one- 
dimensional kinematics we developed in Chapter 2. When the 
direction of v 

u changes, as it does when the ball goes through the 
valley, we need to use vector subtraction to find the direction of 
∆v 

u and thus of au. The procedure is shown at two points in the 
motion diagram.

FIGURE 4.4   The motion diagram of the ball of Example 4.2.
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TACTICS BOX 4.1 

Finding the acceleration vector

Exercises 1–4
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106  CHAPTER 4  Kinematics in Two Dimensions

FIGURE 4.5 shows that an object’s acceleration vector can be decomposed into a 
component parallel to the velocity—that is, parallel to the direction of motion—and 
a component perpendicular to the velocity. au ‘ is the piece of the acceleration that 
causes the object to change speed, speeding up if au ‘ points in the same direction as v 

u, 
slowing down if they point in opposite directions. au# is the piece of the acceleration 
that causes the object to change direction. An object changing direction always has 
a component of acceleration perpendicular to the direction of motion.

Looking back at Example 4.2, we see that au is parallel to v 

u on the straight portions 
of the hill where only speed is changing. At the very bottom, where the ball’s direction 
is changing but not its speed, au is perpendicular to v 

u. The acceleration is angled with 
respect to velocity—having both parallel and perpendicular components—at those 
points where both speed and direction are changing.

STOP TO THINK 4.2  This acceleration will cause the  
particle to

	 a.	Speed up and curve upward.
	 c.	Slow down and curve upward.
	 e.	Move to the right and down.

	 b.	Speed up and curve downward.
	 d.	Slow down and curve downward.
	 f.	Reverse direction.

Acceleration Mathematically
In Tactics Box 4.1, the average acceleration is found from two velocity vectors separated 
by the time interval ∆t. If we let ∆t get smaller and smaller, the two velocity vectors 
get closer and closer. In the limit ∆t S 0, we have the instantaneous acceleration au 
at the same point on the trajectory (and the same instant of time) as the instantaneous 
velocity v 

u. This is shown in FIGURE 4.6.
By definition, the acceleration vector au is the rate at which the velocity v 

u is chang-
ing at that instant. To show this, Figure 4.6a decomposes au into components au ‘ and au# 
that are parallel and perpendicular to the trajectory. As we just showed, au ‘ is associated 
with a change of speed, and au# is associated with a change of direction. Both kinds 
of changes are accelerations. Notice that au# always points toward the “inside” of the 
curve because that is the direction in which v 

u is changing.
Although the parallel and perpendicular components of au convey important ideas 

about acceleration, it’s often more practical to write au in terms of the x- and y-components 
shown in Figure 4.6b. Because v 

u = vx in + vy jn, we find

	 au = ax in + ay jn =
dv 

u

dt
=

dvx

dt
 in +

dvy

dt
 jn	 (4.9)

from which we see that

	 ax =
dvx

dt
  and  ay =

dvy

dt
	 (4.10)

That is, the x-component of au is the rate dvx /dt at which the x-component of velocity 
is changing.

Notice that Figures 4.6a and 4.6b show the same acceleration vector; all that 
differs is how we’ve chosen to decompose it. For motion with constant acceleration, 
which includes projectile motion, the decomposition into x- and y-components is 
most convenient. But we’ll find that the parallel and perpendicular components are 
especially suited to an analysis of circular motion.

Constant Acceleration
If the acceleration au = ax in + ay jn is constant, then the two components ax and ay are both 
constant. In this case, everything you learned about constant-acceleration kinematics 
in ❮❮ Section 2.4 carries over to two-dimensional motion. 
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FIGURE 4.5  Analyzing the acceleration 
vector.
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4.2  Projectile Motion    107

Consider a particle that moves with constant acceleration from an initial position 
r u

i = xi in + yi jn, starting with initial velocity v 

u
i = vix in + viy jn. Its position and velocity at 

a final point f are

	  xf = xi + vix ∆t + 1
2 ax 1∆t22    yf = yi + viy ∆t + 1

2 ay 1
 

∆t22

	 vfx = vix + ax ∆t	  vfy = viy + ay ∆t	 (4.11)

There are many quantities to keep track of in two-dimensional kinematics, making the 
pictorial representation all the more important as a problem-solving tool.

NOTE  For constant acceleration, the x-component of the motion and the y-component 
of the motion are independent of each other. However, they remain connected 
through the fact that ∆t must be the same for both.

EXAMPLE 4.3  |  Plotting a spacecraft trajectory
In the distant future, a small spacecraft is drifting “north” 
through the galaxy at 680 m/s when it receives a command to 
return to the starship. The pilot rotates the spacecraft until the 
nose is pointed 25° north of east, then engages the ion engine. The 
spacecraft accelerates at 75 m/s2. Plot the spacecraft’s trajectory for 
the first 20 s.

MODEL  Model the spacecraft as a particle with constant acceleration.

VISUALIZE  FIGURE 4.7 shows a pictorial representation in which 
the y-axis points north and the spacecraft starts at the origin. Notice 
that each point in the motion is labeled with two positions 1x and y2, 
two velocity components 1vx and vy2, and the time t. This will be our 
standard labeling scheme for trajectory problems.

SOLVE  The acceleration vector has both x- and y-components; 
their values have been calculated in the pictorial representation. But 
it is a constant acceleration, so we can write

 x1 = x0 + v0x1t1 - t02 + 1
2 a x1t1 - t022

 = 34.0 t1 

2 m

 y1 = y0 + v0y1t1 - t02 + 1
2 ay1t1 - t022

 = 680t1 + 15.8t1 

2 m

where t1 is in s. Graphing software produces the trajectory shown in 
FIGURE 4.8. The trajectory is a parabola, which is characteristic of 
two-dimensional motion with constant acceleration.

FIGURE 4.7  Pictorial representation of the spacecraft.
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y

Known
x0 = y0 = 0 m   v0x = 0 m/s     v0y = 680 m/s

ay = (75 m/s2) sin25° = 31.6 m/s2

ax = (75 m/s2) cos25° = 68.0 m/s2

x1, y1, t1

v1x, v1y 

x0, y0, t0

v0x, v0y

t0 = 0 s  t1 = 0 s to 20 s
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x1 and y1

v0
u
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a
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FIGURE 4.8  The spacecraft trajectory.
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4.2  Projectile Motion 
Baseballs and tennis balls flying through the air, Olympic divers, and daredevils shot 
from cannons all exhibit what we call projectile motion. A projectile is an object 
that moves in two dimensions under the influence of only gravity. Projectile motion 
is an extension of the free-fall motion we studied in Chapter 2. We will continue to 
neglect  the influence of air resistance, leading to results that are a good approximation 
of reality for relatively heavy objects moving relatively slowly over relatively short 
distances. As we’ll see, projectiles in two dimensions follow a parabolic trajectory 
like the one seen in FIGURE 4.9.

The start of a projectile’s motion, be it thrown by hand or shot from a gun, is called 
the launch, and the angle u of the initial velocity v 

u
0 above the horizontal (i.e., above 

FIGURE 4.9  A parabolic trajectory.

The ball’s trajectory
between bounces is
a parabola.
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108  CHAPTER 4  Kinematics in Two Dimensions

the x-axis) is called the launch angle. FIGURE 4.10 illustrates the relationship between 
the initial velocity vector v 

u
0 and the initial values of the components v0x and v0y . You 

can see that

	  v0x = v0 cos u	
(4.12)	  v0y = v0 sin u	

where v0 is the initial speed.

NOTE  A projectile launched at an angle below the horizontal (such as a ball thrown 
downward from the roof of a building) has negative values for u and v0y . However, 
the speed v0 is always positive.

Gravity acts downward, and we know that objects released from rest fall straight 
down, not sideways. Hence a projectile has no horizontal acceleration, while its vertical 
acceleration is simply that of free fall. Thus

	  ax = 0 		 (projectile motion)	 (4.13)
	  ay = -g 	

In other words, the vertical component of acceleration ay is just the familiar ∙g of free 
fall, while the horizontal component ax is zero. Projectiles are in free fall.

To see how these conditions influence the motion, FIGURE 4.11 shows a projectile 
launched from 1x0, y02 = 10 m, 0 m2 with an initial velocity v 

u
0 = 19.8 in + 19.6jn2 m/s. 

The value of vx never changes because there’s no horizontal acceleration, but vy decreases 
by 9.8 m/s every second. This is what it means to accelerate at ay = -9.8 m/s2 =  
1-9.8 m/s2 per second.

You can see from Figure 4.11 that projectile motion is made up of two independent  
motions: uniform motion at constant velocity in the horizontal direction and free-
fall motion in the vertical direction. The kinematic equations that describe these two 
motions are simply Equations 4.11 with ax = 0 and ay = -g.

FIGURE 4.10  A projectile launched with 
initial velocity v 
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FIGURE 4.11  The velocity and acceleration 
vectors of a projectile.
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throughout the motion.

EXAMPLE 4.4  |  Don’t try this at home!
A stunt man drives a car off a 10.0-m-high cliff at a speed of 
20.0 m/s. How far does the car land from the base of the cliff?

MODEL  Model the car as a particle in free fall. Assume that the car 
is moving horizontally as it leaves the cliff.

VISUALIZE  The pictorial representation, shown in FIGURE 4.12, is 
very important because the number of quantities to keep track of is 
quite large. We have chosen to put the origin at the base of the cliff. 
The assumption that the car is moving horizontally as it leaves the 
cliff leads to v0x = v0 and v0y = 0 m/s.

SOLVE  Each point on the trajectory has x- and y-components of 
position, velocity, and acceleration but only one value of time. The 
time needed to move horizontally to x1 is the same time needed to 
fall vertically through distance y0. Although the horizontal and 
vertical motions are independent, they are connected through the 
time t. This is a critical observation for solving projectile motion 
problems. The kinematics equations with  ax = 0 and ay = -g are

 x1 = x0 + v0x  1t1 - t02 = v0 t1

 y1 = 0 = y0 + v0y  1t1 - t02 - 1
2 g1t1 - t022 = y0 - 1

2 gt1 

2

We can use the vertical equation to determine the time t1 needed to 
fall distance y0:

t1 = B
2y0

g
= B

2110.0 m2
9.80 m/s2 = 1.43 s

We then insert this expression for t into the horizontal equation to 
find the distance traveled:

x1 = v0  t1 = 120.0 m/s211.43 s2 = 28.6 m

ASSESS  The cliff height is ≈  33 ft and the initial speed is 
v0 ≈ 40 mph. Traveling x1 = 29 m ≈ 95 ft before hitting the ground 
seems reasonable.

x

FIGURE 4.12  Pictorial representation for the car of Example 4.4.

a
u

x0, y0, t0

v0x, v0y

x1, y1, t1

v1x, v1y

0
0

x

y

Known
x0 = 0 m    v0y = 0 m/s    t0 = 0 s
y0 = 10.0 m  v0x = v0 = 20.0 m/s
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4.2  Projectile Motion    109

FIGURE 4.13  A projectile launched 
horizontally falls in the same time as a 
projectile that is released from rest.

The x- and y-equations of Example 4.4 are parametric equations. It’s not hard to 
eliminate t and write an expression for y as a function of x. From the x1 equation, 
t1 = x1/v0 . Substituting this into the y1 equation, we find

	 y = y0 -
g

2v0 

2 x2	 (4.14)

The graph of y = cx2 is a parabola, so Equation 4.14 represents an inverted parabola 
that starts from height y0. This proves, as we asserted previously, that a projectile 
follows a parabolic trajectory.

Reasoning About Projectile Motion
Suppose a heavy ball is launched exactly horizontally at height h above a horizontal 
field. At the exact instant that the ball is launched, a second ball is simply dropped 
from height h. Which ball hits the ground first?

It may seem hard to believe, but—if air resistance is neglected—the balls hit the 
ground simultaneously. They do so because the horizontal and vertical components of 
projectile motion are independent of each other. The initial horizontal velocity of the 
first ball has no influence over its vertical motion. Neither ball has any initial motion 
in the vertical direction, so both fall distance h in the same amount of time. You can 
see this in FIGURE 4.13.

FIGURE 4.14a shows a useful way to think about the trajectory of a projectile. Without 
gravity, a projectile would follow a straight line. Because of gravity, the particle at 
time t has “fallen” a distance 12 gt2 below this line. The separation grows as 12 gt2, giving 
the trajectory its parabolic shape.

Use this idea to think about the following “classic” problem in physics:

A hungry bow-and-arrow hunter in the jungle wants to shoot down a coconut that 
is hanging from the branch of a tree. He points his arrow directly at the coconut, 
but as luck would have it, the coconut falls from the branch at the exact instant the 
hunter releases the string. Does the arrow hit the coconut?

You might think that the arrow will miss the falling coconut, but it doesn’t. Al-
though the arrow travels very fast, it follows a slightly curved parabolic trajectory, not 
a straight line. Had the coconut stayed on the tree, the arrow would have curved under 
its target as gravity caused it to fall a distance 12 gt2 below the straight line. But 12 gt2 is 
also the distance the coconut falls while the arrow is in flight. Thus, as FIGURE 4.14b 
shows, the arrow and the coconut fall the same distance and meet at the same point!

FIGURE 4.14  A projectile follows a parabolic trajectory because it “falls” a distance 1
2 gt 2 

below a straight-line trajectory.

1
21

2

1
2

x

y
Trajectory
without
gravity

Actual trajectory

The distance between
the gravity-free trajectory
and the actual trajectory 
grows as the particle
“falls” gt 2.

gt 2

(a) (b)

Actual trajectory
of arrow x

y

Trajectory
without gravity

gt 2
1
2gt 2

The Projectile Motion Model
Projectile motion is an ideal that’s rarely achieved by real objects. Nonetheless, the 
projectile motion model is another important simplification of reality that we can 
add to our growing list of models.
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110  CHAPTER 4  Kinematics in Two Dimensions

MODEL 4.1 

Projectile motion

PROBLEM-SOLVING STRATEGY 4.1 

Projectile motion problems
MODEL  Is it reasonable to ignore air resistance? If so, use the projectile motion 
model.

VISUALIZE  Establish a coordinate system with the x-axis horizontal and the 
y-axis vertical. Define symbols and identify what the problem is trying to find.
For a launch at angle u, the initial velocity components are vix = v0 cos u and 
viy = v0 sin u.

SOLVE  The acceleration is known: ax = 0 and ay = -g. Thus the problem is one 
of two-dimensional kinematics. The kinematic equations are

	 Horizontal	 Vertical

	 xf = xi + vix ∆t	 yf = yi + viy ∆t - 1
2 g1∆t22

	 vfx = vix = constant	 vfy = viy - g ∆t

∆t is the same for the horizontal and vertical components of the motion. Find ∆t  
from one component, then use that value for the other component.

ASSESS  Check that your result has correct units and significant figures, is 
reasonable, and answers the question.

EXAMPLE 4.5  |  Jumping frog contest
Frogs, with their long, strong legs, are excellent jumpers. And 
thanks to the good folks of Calaveras County, California, who have 
a jumping frog contest every year in honor of a Mark Twain story, 
we have very good data on how far a determined frog can jump.

High-speed cameras show that a good jumper goes into a 
crouch, then rapidly extends his legs by typically 15 cm during a 
65 ms push off, leaving the ground at a 30° angle. How far does 
this frog leap?

MODEL  Model the push off as linear motion with uniform acceler-
ation. A bullfrog is fairly heavy and dense, so ignore air resistance 
and model the leap as projectile motion.

VISUALIZE  This is a two-part problem: linear acceleration followed 
by projectile motion. A key observation is that the final velocity 
for pushing off the ground becomes the initial velocity of the 
projectile motion. FIGURE 4.15 shows a separate pictorial repre-
sentation for each part. Notice that we’ve used different coordinate 
systems for the two parts; coordinate systems are our choice, and 
for each part of the motion we’ve chosen the coordinate system that 
makes the problem easiest to solve.

SOLVE  While pushing off, the frog travels 15 cm = 0.15 m in 
65 ms = 0.065 s. We could find his speed at the end of pushing off 
if we knew the acceleration. Because the initial velocity is zero, 

Exercise 9

A projectile follows a 
parabolic trajectory.

Uniform motion in the horizontal
direction with vx = v0 cosu.

Mathematically:

Model the object as a particle launched
with speed v0 at angle u:

For motion under the in�uence of only gravity.

Projectile motion

Constant acceleration in the vertical
direction with ay = -g.
Same ∆t for both motions.

Limitations: Model fails if air resistance is signi�cant.
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4.2  Projectile Motion    111

we can find the acceleration from the position-acceleration-time 
kinematic equation:

 x1 = x0 + v0x ∆t + 1
2 ax 1∆t22 = 1

2 ax 1∆t22

 ax =
2x1

1∆t22 =
210.15 m2
10.065 s22 = 71 m/s2

This is a substantial acceleration, but it doesn’t last long. At the end 
of the 65 ms push off, the frog’s velocity is

v1x = v0x + ax ∆t = 171 m/s2210.065 s) = 4.62 m/s

We’ll keep an extra significant figure here to avoid round-off error 
in the second half of the problem.

The end of the push off is the beginning of the projectile 
motion, so the second part of the problem is to find the distance  
of a projectile launched with velocity v 

u
0 = 14.62 m/s, 30°2. The 

initial x- and y-components of the launch velocity are

v0x = v0 cos u    v0y = v0 sin u

The kinematic equations of projectile motion, with ax = 0 and 
ay = -g, are

 x1 = x0 + v0x ∆t	  y1 = y0 + v0y ∆t - 1
2 g1∆t22

    = 1v0 cos u2∆t	          = 1v0 sin u2∆t - 1
2 g1∆t22

We can find the time of flight from the vertical equation by setting 
y1 = 0:

0 = 1v0 sin u2∆t - 1
2 g1∆t2 

2 = 1v0 sin u - 1
2 g ∆t2∆t

and thus

∆t = 0  or  ∆t =
2v0 sin u

g

Both are legitimate solutions. The first corresponds to the instant 
when y = 0 at the launch, the second to when y = 0 as the frog hits 
the ground. Clearly, we want the second solution. Substituting this 
expression for ∆t into the equation for x1 gives

x1 = 1v0 cos u2 
2v0 sin u

g
=

2v0 

2 sin u cos u

g

We can simplify this result with the trigonometric identity 
2 sin u cos u = sin12u2. Thus the distance traveled by the frog is

x1 =
v0 

2 sin12u2
g

Using v0 = 4.62 m/s and u = 30°, we find that the frog leaps a dis-
tance of 1.9 m.

ASSESS  1.9 m is about 6 feet, or about 10 times the frog’s body 
length. That’s pretty amazing, but true. Jumps of 2.2 m have been 
recorded in the lab. And the Calaveras County record holder, Rosie 
the Ribeter, covered 6.5 m—21 feet—in three jumps!

x

FIGURE 4.15  Pictorial representations of the jumping frog.

The distance a projectile travels is called its range. As Example 4.5 found, a projectile 
that lands at the same elevation from which it was launched has

	 range =
v0 

2 sin12u2
g

	 (4.15)

The maximum range occurs for u = 45°, where sin12u2 = 1. But there’s more that 
we can learn from this equation. Because sin1180° - x2 = sin x, it follows that 
sin12190° - u22 = sin12u2. Consequently, a projectile launched either at angle u or 
at angle 190° - u2 will travel the same distance over level ground. FIGURE 4.16 shows 
several trajectories of projectiles launched with the same initial speed.

NOTE  Equation 4.15 is not a general result. It applies only in situations where the 
projectile lands at the same elevation from which it was fired.

FIGURE 4.16  Trajectories of a projectile 
launched at different angles with a speed 
of 99 m/s.

x (m)

y (m)

2000

100

0
400 600 800 1000

200

300

400

500 75°

60°

45°
30°
15°

Maximum range
is achieved at 45°.

Launch angles of u and
90° - u give the same range.

v0 = 99 m/s

M05_KNIG7429_04_GE_C04.indd   111 12/07/16   1:44 pm



112  CHAPTER 4  Kinematics in Two Dimensions

Stop to Think 4.3  A 20 g marble rolls off a table and hits the ground 1 m from the 
base of the table. A 50 g marble rolls off the same table with the same speed. At what 
distance from the base of the table does it hit the ground?

	 a.	Less than 1 m	 b.  1 m	 c.  Between 1 m and 2 m
	 d.	2 m	 e.  Between 2 m and 4 m	 f.  4 m

4.3  Relative Motion 
FIGURE 4.17 shows Amy and Bill watching Carlos on his bicycle. According to Amy, 
Carlos’s velocity is vx = 5 m/s. Bill sees the bicycle receding in his rearview mirror, in 
the negative x-direction, getting 10 m farther away from him every second. According 
to Bill, Carlos’s velocity is vx = -10 m/s. Which is Carlos’s true velocity?

Velocity is not a concept that can be true or false. Carlos’s velocity relative to Amy 
is 1vx2CA = 5 m/s, where the subscript notation means “C relative to A.” Similarly, 
Carlos’s velocity relative to Bill is 1vx2CB = -10 m/s. These are both valid descriptions 
of Carlos’s motion.

It’s not hard to see how to combine the velocities for one-dimensional motion:

	
(vx)CB = (vx)CA + (vx)AB

The �rst subscript is the
same on both sides.

The inner subscripts “cancel.”

The last subscript is the
same on both sides.

	 (4.16)

We’ll justify this relationship later in this section and then extend it to two-dimensional 
motion.

Equation 4.16 tells us that the velocity of C relative to B is the velocity of C relative 
to A plus the velocity of A relative to B. Note that

	 1vx2AB = -1vx2BA	 (4.17)

because if B is moving to the right relative to A, then A is moving to the left relative 
to B. In Figure 4.17, Bill is moving to the right relative to Amy with 1vx2BA = 15 m/s, 
so 1vx2AB = -15 m/s. Knowing that Carlos’s velocity relative to Amy is 5 m/s, we 
find that Carlos’s velocity relative to Bill is, as expected, 1vx2CB = 1vx2CA + 1vx2AB =  
5 m/s + 1-152 m/s = -10 m/s.

Figure 4.17  Velocities in Amy’s reference 
frame.

5 m/s
Carlos

Amy

15 m/s

Bill

Reference Frames
A coordinate system in which an experimenter (possibly with the assistance of helpers) 
makes position and time measurements of physical events is called a reference 
frame. In Figure 4.17, Amy and Bill each had their own reference frame (where they 
were at rest) in which they measured Carlos’s velocity.

Example 4.6   |  A speeding bullet
The police are chasing a bank robber. While driving at 50 m/s, they 
fire a bullet to shoot out a tire of his car. The police gun shoots 
bullets at 300 m/s. What is the bullet’s speed as measured by a TV 
camera crew parked beside the road?

Model  Assume that all motion is in the positive x-direction. The 
bullet is the object that is observed from both the police car and 
the ground.

Solve  The bullet B’s velocity relative to the gun G is 1vx2BG =  
300 m/s. The gun, inside the car, is traveling relative to the TV crew 
C at 1vx2GC = 50 m/s. We can combine these values to find that the 
bullet’s velocity relative to the TV crew on the ground is

1vx2BC = 1vx2BG + 1vx2GC = 300 m/s + 50 m/s = 350 m/s

Assess  It should be no surprise in this simple situation that we 
simply add the velocities.

x
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4.3  Relative Motion    113

More generally, FIGURE 4.18 shows two reference frames, A and B, and an object 
C. It is assumed that the reference frames are moving with respect to each other. At 
this instant of time, the position vector of C in reference frame A is r u

CA, meaning “the 
position of C relative to the origin of frame A.” Similarly, r u

CB is the position vector of 
C in reference frame B. Using vector addition, you can see that

	 r u
CB = r u

CA + r u
AB	 (4.18)

where ruAB locates the origin of A relative to the origin of B.
In general, object C is moving relative to both reference frames. To find its velocity 

in each reference frame, take the time derivative of Equation 4.18:

	
d r u

CB

dt
=

d r u
CA

dt
+

d r u
AB

dt
	 (4.19)

By definition, d r u/dt is a velocity. The first derivative is v 

u
CB, the velocity of C relative to B. 

Similarly, the second derivative is the velocity of C relative to A, v 

u
CA. The last derivative is 

slightly different because it doesn’t refer to object C. Instead, this is the velocity v 

u
AB of ref-

erence frame A relative to reference frame B. As we noted in one dimension, v 

u
AB = -v 

u
BA.

Writing Equation 4.19 in terms of velocities, we have

	 v 

u
CB = v 

u
CA+v 

u
AB	 (4.20)

This relationship between velocities in different reference frames was recognized 
by Galileo in his pioneering studies of motion, hence it is known as the Galilean 
transformation of velocity. If you know an object’s velocity in one reference 
frame, you can transform it into the velocity that would be measured in a different 
reference frame. Just as in one dimension, the velocity of C relative to B is the velocity 
of C relative to A plus the velocity of A relative to B, but you must add the velocities 
as vectors for two-dimensional motion.

As we’ve seen, the Galilean velocity transformation is pretty much common sense 
for one-dimensional motion. The real usefulness appears when an object travels in a 
medium moving with respect to the earth. For example, a boat moves relative to the 
water. What is the boat’s net motion if the water is a flowing river? Airplanes fly relative 
to the air, but the air at high altitudes often flows at high speed. Navigation of boats 
and planes requires knowing both the motion of the vessel in the medium and the 
motion of the medium relative to the earth.

FIGURE 4.18   Two reference frames.
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EXAMPLE 4.7  |  Flying to Cleveland I
Cleveland is 300 miles east of Chicago. A plane leaves Chicago 
flying due east at 500 mph. The pilot forgot to check the weather 
and doesn’t know that the wind is blowing to the south at 50 mph. 
What is the plane’s ground speed? Where is the plane 0.60 h later, 
when the pilot expects to land in Cleveland?

MODEL  Establish a coordinate system with the x-axis pointing east 
and the y-axis north. The plane P flies in the air, so its velocity rel-
ative to the air A is v 

u
PA = 500 in mph. Meanwhile, the air is moving 

relative to the ground G at v 

u
AG = -50 jn mph.

SOLVE  The velocity equation v 

u
PG = v 

u
PA + v 

u
AG is a vector-addition 

equation. FIGURE 4.19 shows graphically what happens. Although 
the nose of the plane points east, the wind carries the plane in a 
direction somewhat south of east. The plane’s velocity relative to 
the ground is

v 

u
PG = v 

u
PA + v 

u
AG = 1500in - 50jn2 mph

The plane’s ground speed is

v = 21vx2PG 

2 + 1vy2PG 

2 = 502 mph

After flying for 0.60 h at this velocity, the plane’s location (relative 
to Chicago) is

 x = 1vx2PG 
 

t = 1500 mph210.60 h2 = 300 mi

 y = 1vy2PG 
 

t = 1-50 mph210.60 h2 = -30 mi

The plane is 30  mi due south of Cleveland! Although the pilot 
thought he was flying to the east, his actual heading has been 
tan-1150 mph/500 mph2 = tan-110.102 = 5.71° south of east.

x

FIGURE 4.19   The wind causes a plane flying due east in the air to  
move to the southeast relative to the ground.

Chicago Cleveland

vAG of air

vPG of plane
relative to ground

vPA of plane relative to air
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M05_KNIG7429_04_GE_C04.indd   113 12/07/16   1:44 pm



114  CHAPTER 4  Kinematics in Two Dimensions

Stop to Think 4.4  A plane traveling horizontally at 50 m/s flies past the right-
hand side of a helicopter that is going straight up at 10 m/s. From the helicopter’s 
perspective, the plane’s direction and speed are

	 a.	Right and up, less than 50 m/s	 b.	Right and up, 50 m/s
	 c.	Right and up, more than 50 m/s	 d.	Right and down, less than 50 m/s
	 e.	Right and down, 50 m/s	 f.	 Right and down, more than 50 m/s

4.4  Uniform Circular Motion 
FIGURE 4.21 shows a particle moving around a circle of radius r. The particle might be a 
satellite in an orbit, a ball on the end of a string, or even just a dot painted on the side 
of a rotating wheel. Circular motion is another example of motion in a plane, but it is 
quite different from projectile motion.

To begin the study of circular motion, consider a particle that moves at  
constant speed around a circle of radius r. This is called uniform circular 
motion. Regardless of what the particle represents, its velocity vector v 

u is always 
tangent to the circle. The particle’s speed v is constant, so vector v 

u is always the 
same length.

The time interval it takes the particle to go around the circle once, completing 
one revolution (abbreviated rev), is called the period of the motion. Period is repre-
sented by the symbol T. It’s easy to relate the particle’s period T to its speed v. For a 
particle moving with constant speed, speed is simply distance/time. In one period, 
the particle moves once around a circle of radius r and travels the circumference 
2pr. Thus

	 v =
1 circumference

1 period
=

2pr
T

	 (4.21)

Example 4.8  |  Flying to Cleveland II
A wiser pilot flying from Chicago to Cleveland on the same day 
plots a course that will take her directly to Cleveland. In which 
direction does she fly the plane? How long does it take to reach 
Cleveland?

Model  Establish a coordinate system with the x-axis pointing east 
and the y-axis north. The air is moving relative to the ground at 
v 

u
AG = -50 jn mph.

Solve  The objective of navigation is to move between two points 
on the earth’s surface. The wiser pilot, who knows that the wind 
will affect her plane, draws the vector picture of FIGURE 4.20. She  
sees that she’ll need 1vy2PG = 0, in order to fly due east to Cleveland. 
This will require turning the nose of the plane at an angle u  
north of east, making v 

u
PA = 1500 cos u  in +  500 sin u  jn2 mph.

The velocity equation is v 

u
PG = v 

u
PA+v 

u
AG. The desired heading is 

found from setting the y-component of this equation to zero:

1vy2PG = 1vy2PA + 1vy2AG = 1500 sin u - 502 mph = 0 mph

u = sin-11 50 mph

500 mph2 = 5.74°

The plane’s velocity relative to the ground is then v 

u
PG =  

1500 mph2 * cos 5.74° in = 497 in mph. This is slightly slower than 
the speed relative to the air. The time needed to fly to Cleveland at 
this speed is

t =
300 mi

497 mph
= 0.604 h

It takes 0.004 h = 14 s longer to reach Cleveland than it would on 
a day without wind.

Assess  A boat crossing a river or an ocean current faces the same 
difficulties. These are exactly the kinds of calculations performed 
by pilots of boats and planes as part of navigation.

x

Figure 4.20  To travel due east in a south wind, a pilot has to point 
the plane somewhat to the northeast.
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Figure 4.21   A particle in uniform 
circular motion.
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4.4  Uniform Circular Motion    115

Angular Position
Rather than using xy-coordinates, it will be more convenient to describe the position 
of a particle in circular motion by its distance r from the center of the circle and 
its angle u from the positive x-axis. This is shown in FIGURE 4.22. The angle u is the 
angular position of the particle.

We can distinguish a position above the x-axis from a position that is an equal 
angle below the x-axis by defining u to be positive when measured counterclockwise 
(ccw) from the positive x-axis. An angle measured clockwise (cw) from the positive 
x-axis has a negative value. “Clockwise” and “counterclockwise” in circular motion 
are analogous, respectively, to “left of the origin” and “right of the origin” in linear 
motion, which we associated with negative and positive values of x. A particle 30° 
below the positive x-axis is equally well described by either u = -30° or u = +330°. 
We could also describe this particle by u = 11

12 rev, where revolutions are another way 
to measure the angle.

Although degrees and revolutions are widely used measures of angle, mathemati-
cians and scientists usually find it more useful to measure the angle u in Figure 4.22 
by using the arc length s that the particle travels along the edge of a circle of radius 
r. We define the angular unit of radians such that

	 u1radians2 K
s
r
	 (4.22)

The radian, which is abbreviated rad, is the SI unit of angle. An angle of 1 rad has an 
arc length s exactly equal to the radius r.

The arc length completely around a circle is the circle’s circumference 2pr. Thus 
the angle of a full circle is

ufull circle =
2pr

r
= 2p rad

This relationship is the basis for the well-known conversion factors

1 rev = 360° = 2p rad

As a simple example of converting between radians and degrees, let’s convert an angle 
of 1 rad to degrees:

1 rad = 1 rad *
360°

2p rad
= 57.3°

EXAMPLE 4.9  | A rotating crankshaft
A 4.0-cm-diameter crankshaft turns at 2400 rpm (revolutions per minute). What is the 
speed of a point on the surface of the crankshaft?

SOLVE  We need to determine the time it takes the crankshaft to make 1 rev. First, we 
convert 2400 rpm to revolutions per second:

2400 rev
1 min

*
1 min
60 s

= 40 rev/s

If the crankshaft turns 40 times in 1 s, the time for 1 rev is

T =
1
40

 s = 0.025 s

Thus the speed of a point on the surface, where r = 2.0 cm = 0.020 m, is

v =
2pr

T
=

2p10.020 m2
0.025 s

= 5.0 m/s

x

FIGURE 4.22  A particle’s position is 
described by distance r and angle u.
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Circular motion is one of the most  
common types of motion.
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116  CHAPTER 4  Kinematics in Two Dimensions

Thus a rough approximation is 1 rad ≈ 60°. We will often specify angles in degrees, 
but keep in mind that the SI unit is the radian.

An important consequence of Equation 4.22 is that the arc length spanning  
angle u is

	 s = r  u  1with u in rad2	 (4.23)

This is a result that we will use often, but it is valid only if u is measured in radians 
and not in degrees. This very simple relationship between angle and arc length is one 
of the primary motivations for using radians.

NOTE  Units of angle are often troublesome. Unlike the kilogram or the second, for 
which we have standards, the radian is a defined unit. It’s really just a name to remind 
us that we’re dealing with an angle. Consequently, the radian unit sometimes appears 
or disappears without warning. This seems rather mysterious until you get used to it. 
This textbook will call your attention to such behavior the first few times it occurs. 
With a little practice, you’ll soon learn when the rad unit is needed and when it’s not.

Angular Velocity
FIGURE 4.23 shows a particle moving in a circle from an initial angular position ui at 
time ti to a final angular position uf at a later time tf . The change ∆u = uf - ui is called 
the angular displacement. We can measure the particle’s circular motion in terms 
of the rate of change of u, just as we measured the particle’s linear motion in terms of 
the rate of change of its position s.

In analogy with linear motion, let’s define the average angular velocity to be

	 average angular velocity K
∆u

∆t
	 (4.24)

As the time interval ∆t becomes very small, ∆t S 0, we arrive at the definition of the 
instantaneous angular velocity:

	 v K lim
∆tS0

 
∆u

∆t
=

du
dt
  1angular velocity2	 (4.25)

The symbol v is a lowercase Greek omega, not an ordinary w. The SI unit of angular 
velocity is rad/s, but °/s, rev/s, and rev/min are also common units. Revolutions per 
minute is abbreviated rpm.

Angular velocity is the rate at which a particle’s angular position is changing as it 
moves around a circle. A particle that starts from u = 0 rad with an angular velocity 
of 0.5 rad/s will be at angle u = 0.5 rad after 1 s, at u = 1.0 rad after 2 s, at u = 1.5 
rad after 3 s, and so on. Its angular position is increasing at the rate of 0.5 radian per 
second. A particle moves with uniform circular motion if and only if its angular 
velocity V is constant and unchanging.

Angular velocity, like the velocity vs of one-dimensional motion, can be positive or 
negative. The signs shown in FIGURE 4.24 are based on the fact that u was defined to be 
positive for a counterclockwise rotation. Because the definition v = du/dt for circular 
motion parallels the definition vs = ds/dt for linear motion, the graphical relationships 
we found between vs and s in Chapter 2  apply equally well to v and u:

	  v = slope of the u@versus@t graph at time t

	  uf = ui + area under the v@versus@t curve between ti and tf	 (4.26)

	  = ui + v
 

∆t

You will see many more instances where circular motion is analogous to linear motion 
with angular variables replacing linear variables. Thus much of what you learned 
about linear kinematics carries over to circular motion.

FIGURE 4.23   A particle moves with 
angular velocity v.
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FIGURE 4.24  Positive and negative angular 
velocities.
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4.4  Uniform Circular Motion    117

NOTE  In physics, we nearly always want to give results as numerical values. 
Example 4.9 had a p in the equation, but we used its numerical value to compute 
v = 5.0 m/s. However, angles in radians are an exception to this rule. It’s okay to 
leave a p in the value of u or v, and we have done so in Example 4.10.

Not surprisingly, the angular velocity v is closely related to the period and speed 
of the motion. As a particle goes around a circle one time, its angular displacement 
is ∆u = 2p rad during the interval ∆t = T. Thus, using the definition of angular 
velocity, we find

	 0v 0 =
2p rad

T
  or  T =

2p rad

0v 0 	 (4.27)

The period alone gives only the absolute value of 0v 0 . You need to know the direction 
of motion to determine the sign of v.

EXAMPLE 4.10  | A graphical representation of circular motion
FIGURE 4.25 shows the angular position of a painted dot on the 
edge of a rotating wheel. Describe the wheel’s motion and draw an 
v@versus@t graph.

SOLVE  Although circular motion seems to “start over” every revo-
lution (every 2p rad), the angular position u continues to increase. 
u = 6p rad corresponds to three revolutions. This wheel makes  
3 ccw rev (because u is getting more positive) in 3 s, immediately 
reverses direction and makes 1 cw rev in 2 s, then stops at t = 5 s 

and holds the position u = 4p rad. The angular velocity is found by 
measuring the slope of the graph:

 t = 093 s   slope = ∆u/∆t = 6p rad/3 s = 2p rad/s

 t = 395 s  slope = ∆u/∆t = -2p rad/2 s = -p rad/s

 t 7 5 s  slope = ∆u/∆t = 0 rad/s

These results are shown as an v@versus@t graph in FIGURE 4.26. 
For the first 3 s, the motion is uniform circular motion with v =  
2p rad/s. The wheel then changes to a different uniform circular 
motion with v = -p rad/s for 2 s, then stops.

x

FIGURE 4.25  Angular position graph for the 
wheel of Example 4.10.
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FIGURE 4.26  v@versus-t graph for the wheel 
of Example 4.10.
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EXAMPLE 4.11  | At the roulette wheel
A small steel roulette ball rolls ccw around the inside of a 30-cm- 
diameter roulette wheel. The ball completes 2.0 rev in 1.20 s.

a.  What is the ball’s angular velocity?

b.  What is the ball’s position at t = 2.0 s? Assume ui = 0.

MODEL  Model the ball as a particle in uniform circular motion.

SOLVE  a.  The period of the ball’s motion, the time for 1 rev, is 
T = 0.60 s. Angular velocity is positive for ccw motion, so

v =
2p rad

T
=

2p rad
0.60 s

= 10.47 rad/s

b.  The ball starts at ui = 0 rad. After ∆t = 2.0 s, its position is

uf = 0 rad + 110.47 rad/s212.0 s2 = 20.94 rad

where we’ve kept an extra significant figure to avoid round-off 
error. Although this is a mathematically acceptable answer, an 
observer would say that the ball is always located somewhere 
between 0° and 360°. Thus it is common practice to subtract an 
integer number of 2p rad, representing the completed revolutions. 
Because 20.94/2p = 3.333, we can write

 uf = 20.94 rad = 3.333 * 2p rad

 = 3 * 2p rad + 0.333 * 2p rad

 = 3 * 2p rad + 2.09 rad

In other words, at t = 2.0 s the ball has completed 3 rev and is 
2.09 rad = 120° into its fourth revolution. An observer would say 
that the ball’s position is uf = 120°.

x
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118  CHAPTER 4  Kinematics in Two Dimensions

As Figure 4.21 showed, the velocity vector v 

u is always tangent to the circle. In other 
words, the velocity vector has only a tangential component, which we will designate 
vt. The tangential velocity is positive for ccw motion, negative for cw motion.

Combining v = 2pr/T  for the speed with v = 2p/T  for the angular velocity—but 
keeping the sign of v to indicate the direction of motion—we see that the tangential 
velocity and the angular velocity are related by

	 vt = vr  1with v in rad/s2	 (4.28)

Because vt is the only nonzero component of v 

u, the particle’s speed is v = 0 vt 0 = 0v 0 r. 
We’ll sometimes write this as v = vr if there’s no ambiguity about the sign of v.

NOTE  While it may be convenient in some problems to measure v in rev/s or rpm, 
you must convert to SI units of rad/s before using Equation 4.28.

As a simple example, a particle moving cw at 2.0 m/s in a circle of radius 40 cm 
has angular velocity

v =
vt

r
=

-2.0 m/s
0.40 m

= -5.0 rad/s

where vt and v are negative because the motion is clockwise. Notice the units. Velocity 
divided by distance has units of s-1. But because the division, in this case, gives us an 
angular quantity, we’ve inserted the dimensionless unit rad to give v the appropriate 
units of rad/s.

STOP TO THINK 4.5  A particle moves clockwise around a circle at constant speed 
for 1 s. It then reverses its direction and moves counterclockwise at half the original 
speed until it has traveled through the same angle. Which of the following accurately 
depicts the particle’s angle-versus-time graph?

FIGURE 4.27  Using Tactics Box 4.1 to find 
Maria’s acceleration on the Ferris wheel.
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u
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All acceleration
vectors point to the
center of the circle.

Maria’s acceleration is an acceleration of
changing direction, not of changing speed.

Velocity 
vectors

u∆v

Whichever dot is 
selected, this method 
will show that ∆v 
points to the center 
of the circle.

u

u u u u

t t t t

(a) (b) (c) (d)

4.5  Centripetal Acceleration 
FIGURE 4.27 shows a motion diagram of Maria riding a Ferris wheel at the amusement 
park. Maria has constant speed but not constant velocity because her velocity vector 
is changing direction. She may not be speeding up, but Maria is accelerating because 
her velocity is changing. The inset to Figure 4.27 applies the rules of Tactics Box 4.1 
to find that—at every point—Maria’s acceleration vector points toward the center 
of the circle. This is an acceleration due to changing direction rather than changing 
speed. Because the instantaneous velocity is tangent to the circle, vu and au are perpen-
dicular to each other at all points on the circle.

The acceleration of uniform circular motion is called centripetal acceleration, 
a term from a Greek root meaning “center seeking.” Centripetal acceleration is not a 
new type of acceleration; all we are doing is naming an acceleration that corresponds 
to a particular type of motion. The magnitude of the centripetal acceleration is constant 
because each successive ∆v 

u in the motion diagram has the same length.
The motion diagram tells us the direction of au, but it doesn’t give us a value for a. 

To complete our description of uniform circular motion, we need to find a quantitative 
relationship between a and the particle’s speed v. FIGURE 4.28 shows the velocity v 

u
i 
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4.5  Centripetal Acceleration    119

FIGURE 4.28  Finding the acceleration of 
circular motion.

vi
u

vf
u

vi
uvf

u

These are the velocities 
at times t and t + dt. 

Same
angle

ds

du

du
r

u
dv is the arc of a circle 
with arc length dv = vdu.

dv
u

at one instant of motion and the velocity v 

u
f an infinitesimal amount of time dt later. 

During this small interval of time, the particle has moved through the infinitesimal 
angle du and traveled distance ds = r du.

By definition, the acceleration is au = d v 

u/dt. We can see from the inset to Figure 4.28 
that d v 

u points toward the center of the circle—that is, au is a centripetal acceleration. 
To find the magnitude of au, we can see from the isosceles triangle of velocity vectors 
that, if du is in radians,

	 dv = 0 d v 

u 0 = v du	 (4.29)

For uniform circular motion at constant speed, v = ds/dt = r du/dt and thus the time 
to rotate through angle du is

	 dt =
r du

v
	 (4.30)

Combining Equations 4.29 and 4.30, we see that the acceleration has magnitude

a = 0 au 0 =
0 d v 

u 0
dt

=
v du

r du/v
=

v 2

r

In vector notation, we can write

	 au = 1v 2

r
 , toward center of circle2  (centripetal acceleration)	 (4.31)

Using Equation 4.28, v = vr, we can also express the magnitude of the centripetal 
acceleration in terms of the angular velocity v as

	 a = v2r	 (4.32)

NOTE  Centripetal acceleration is not a constant acceleration. The magnitude of the 
centripetal acceleration is constant during uniform circular motion, but the direction 
of au is constantly changing. Thus the constant-acceleration kinematics equations 
of Chapter 2 do not apply to circular motion.

The Uniform Circular Motion Model
The uniform circular motion model is especially important because it applies 
not only to particles moving in circles but also to the uniform rotation of solid objects.

The velocity is tangent to the circle.
The acceleration points to the center.

The tangential velocity is vt = vr.
Mathematically:

Applies to a particle moving along a circular
trajectory at constant speed or to points on
a solid object rotating at a steady rate.

For motion with constant angular velocity v.

The centripetal acceleration is v2/r or v2r.
v and vt are positive for ccw rotation,
negative for cw rotation.

Limitations: Model fails if rotation isn’t steady.

a
u

a
u

a
u

r

v
u

v
u

v
u

v

Uniform circular motion

MODEL 4.2 

Exercise 20

M05_KNIG7429_04_GE_C04.indd   119 12/07/16   1:44 pm



120  CHAPTER 4  Kinematics in Two Dimensions

EXAMPLE 4.12  | The acceleration of a Ferris wheel
A typical carnival Ferris wheel has a radius of 9.0 m and rotates 
4.0 times per minute. What speed and acceleration do the riders 
experience?

MODEL  Model the rider as a particle in uniform circular motion.

SOLVE  The period is T = 1
4 min = 15 s. From Equation 4.21, a 

rider’s speed is

v =
2pr

T
=

2p19.0 m2
15 s

= 3.77 m/s

Consequently, the centripetal acceleration has magnitude

a =
v2

r
=

13.77 m/s22

9.0 m
= 1.6 m/s2

ASSESS  This was not intended to be a profound problem, merely 
to illustrate how centripetal acceleration is computed. The acceler-
ation is enough to be noticed and make the ride interesting, but not 
enough to be scary.

x

STOP TO THINK 4.6  Rank in order, from largest to smallest, the centripetal acceler-
ations aa to ae of particles a to e.

r

(a)

v

2r

(d)

v

2r

(e)

r

(c)

vr

(b)

2v

2v

FIGURE 4.29   Circular motion with a 
changing angular velocity.

v

v

The angular velocity is changing.

4.6  Nonuniform Circular Motion 
A roller coaster car doing a loop-the-loop slows down as it goes up one side, speeds up as 
it comes back down the other. The ball in a roulette wheel gradually slows until it stops. 
Circular motion with a changing speed is called nonuniform circular motion. As 
you’ll see, nonuniform circular motion is analogous to accelerated linear motion.

FIGURE 4.29 shows a point speeding up as it moves around a circle. This might be a 
car speeding up around a curve or simply a point on a solid object that is rotating faster 
and faster. The key feature of the motion is a changing angular velocity. For linear 
motion, we defined acceleration as ax = dvx /dt. By analogy, let’s define the angular 
acceleration a (Greek alpha) of a rotating object, or a point on the object, to be

	 a K
dv
dt
  (angular acceleration)	 (4.33)

Angular acceleration is the rate at which the angular velocity v changes, just as linear 
acceleration is the rate at which the linear velocity vx changes. The units of angular 
acceleration are rad/s2.

For linear acceleration, you learned that ax and vx have the same sign when an object 
is speeding up, opposite signs when it is slowing down. The same rule applies to circular 
and rotational motion: v and a have the same sign when the rotation is speeding up, 
opposite signs if it is slowing down. These ideas are illustrated in FIGURE 4.30.

NOTE  Be careful with the sign of a. You learned in Chapter 2 that positive  and 
negative values of the acceleration can’t be interpreted as simply “speeding up” and 
“slowing down.” Similarly, positive and negative values of angular acceleration can’t 
be interpreted as a rotation that is speeding up or slowing down.
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4.6  Nonuniform Circular Motion    121

FIGURE 4.30   The signs of angular velocity and acceleration. The rotation is speeding up if 
v and a have the same sign, slowing down if they have opposite signs.

v 7 0

a 7 0

Speeding up ccw

v 7 0

a 6 0

Slowing down ccw

v 6 0

a 7 0

Slowing down cw

v 6 0

a 6 0

Speeding up cw

Initial angular velocity

Angular position, angular velocity, and angular acceleration are defined exactly 
the same as linear position, velocity, and acceleration—simply starting with an 
angular rather than a linear measurement of position. Consequently, the graphical 
interpretation and the kinematic equations of circular/rotational motion with 
constant angular acceleration are exactly the same as for linear motion with 
constant acceleration. This is shown in the constant angular acceleration model 
below. All the problem-solving techniques you learned in Chapter 2 for linear motion 
carry over to circular and rotational motion.

MODEL 4.3

EXAMPLE 4.13  | A rotating wheel
FIGURE 4.31a is a graph of angular velocity versus time for a rotating 
wheel. Describe the motion and draw a graph of angular acceleration 
versus time.

SOLVE  This is a wheel that starts from rest, gradually speeds up 
counterclockwise until reaching top speed at t1, maintains a constant 
angular velocity until t2, then gradually slows down until stopping 
at t3. The motion is always ccw because v is always positive. The 
angular acceleration graph of FIGURE 4.32b is based on the fact that 
a is the slope of the v@versus@t graph.

Conversely, the initial linear increase of v can be seen as the 
increasing area under the a@versus@t graph as t increases from 0 to 
t1 . The angular velocity doesn’t change from t1  to t2  when the area 
under the a@versus@t is zero.

x

▶ FIGURE 4.31   v-versus-t graph and the corresponding  
a-versus-t graph for a rotating wheel.

t
0 t1 t2 t3

Constant positive
slope, so a is positive.

Zero slope,
so a is zero.

Constant negative
slope, so a is negative.

t
0 t1

t2 t3

(a)

(b) a

v

Analogs: s S u  vs S v  as S a

Mathematically: The graphs and equations for this
circular/rotational motion are analogous to linear
motion with constant acceleration.

Applies to particles with
circular trajectories and
to rotating solid objects.

For motion with constant angular acceleration a.

Rotational kinematics Linear kinematics

Constant angular acceleration

a

u

v

t
v is the
slope of u 

a is the
slope of v

v

vfs = vis + as ∆t
sf = si + vis ∆t +   as(∆t)2

vfs
2 = vis

2 + 2as ∆s

1
2

vf = vi + a∆t
uf = ui + vi ∆t +   a(∆t)2

vf
2 = vi

2 + 2a∆u

1
2

t

t
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122  CHAPTER 4  Kinematics in Two Dimensions

Tangential Acceleration
FIGURE 4.32 shows a particle in nonuniform circular motion. Any circular motion, 
whether uniform or nonuniform, has a centripetal acceleration because the particle is 
changing direction; this was the acceleration component au# of Figure 4.6. As a vector 
component, the centripetal acceleration, which points radially toward the center of the 
circle, is the radial acceleration ar. The expression ar = vt 

2/r = v2r is still valid in 
nonuniform circular motion.

For a particle to speed up or slow down as it moves around a circle, it needs—
in addition to the centripetal acceleration—an acceleration parallel to the trajectory  
or, equivalently, parallel to vu. This is the acceleration component au ‘ associated  
with changing speed. We’ll call this the tangential acceleration at because, like 
the velocity vt 

, it is always tangent to the circle. Because of the tangential acceleration, 
the acceleration vector au of a particle in nonuniform circular motion does not 
point toward the center of the circle. It points “ahead” of center for a particle that is 
speeding up, as in Figure 4.32, but it would point “behind” center for a particle slowing 
down. You can see from Figure 4.32 that the magnitude of the acceleration is

	 a = 2ar 

2 + at 

2	 (4.34)

If at is constant, then the arc length s traveled by the particle around the circle and the 
tangential velocity vt are found from constant-acceleration kinematics:

	  sf = si + vit ∆t + 1
2 at 1∆t22	

(4.35)
	    vft = vit + at ∆t

Because tangential acceleration is the rate at which the tangential velocity changes, 
at = dvt /dt, and we already know that the tangential velocity is related to the angular 
velocity by vt = vr, it follows that

	 at =
dvt

dt
=

d1vr2
dt

=
dv
dt

 r = ar	 (4.36)

Thus vt = vr and at = ar are analogous equations for the tangential velocity and 
acceleration. In Example 4.14, where we found the fan to have angular acceleration 
a = -0.25 rad/s2, a blade tip 65 cm from the center would have tangential acceleration

at = ar = 1-0.25 rad/s2210.65 m2 = -0.16 m/s2

FIGURE 4.32   Acceleration in nonuniform 
circular motion.
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The velocity is always tangent to the circle,
so the radial component vr is always zero.

The tangential acceleration 
causes the particle to 
change speed.

v
u

v

EXAMPLE 4.14  | A slowing fan
A ceiling fan spinning at 60 rpm coasts to a stop 25 s after being 
turned off. How many revolutions does it make while stopping?

MODEL  Model the fan as a rotating object with constant angular 
acceleration.

SOLVE  We don’t know which direction the fan is rotating, but the 
fact that the rotation is slowing tells us that v and a have opposite 
signs. We’ll assume that v is positive. We need to convert the initial 
angular velocity to SI units:

vi = 60 
rev

 min 
*

1 min
60 s

*
2p rad
1 rev

= 6.28 rad/s

We can use the first rotational kinematics equation in Model 4.3 to 
find the angular acceleration:

a =
vf - vi

∆t
=

0 rad/s - 6.28 rad/s
25 s

= -0.25 rad/s2

Then, from the second rotational kinematic equation, the angular 
displacement during these 25 s is

 ∆u = vi ∆t + 1
2 a1∆t22

 = 16.28 rad/s2125 s2 + 1
2 1-0.25 rad/s22125 s22

 = 78.9 rad *
1 rev

2p rad
= 13 rev

The kinematic equation returns an angle in rad, but the question 
asks for revolutions, so the last step was a unit conversion.

ASSESS  Turning through 13 rev in 25 s while stopping seems reason-
able. Notice that the problem is solved just like the linear kinematics 
problems you learned to solve in Chapter 2.

x
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4.6  Nonuniform Circular Motion    123

STOP TO THINK 4.7  The fan blade is slowing down. What are  
the signs of v and a?

a.	v is positive and a is positive.
b.	v is positive and a is negative.
c.	v is negative and a is positive.
d.	v is negative and a is negative.

EXAMPLE 4.15  | Analyzing rotational data
You’ve been assigned the task of measuring the start-up character-
istics of a large industrial motor. After several seconds, when the 
motor has reached full speed, you know that the angular acceleration  
will be zero, but you hypothesize that the angular acceleration 
may be constant during the first couple of seconds as the motor 
speed increases. To find out, you attach a shaft encoder to the 
3.0-cm-diameter axle. A shaft encoder is a device that converts the 
angular position of a shaft or axle to a signal that can be read by a 
computer. After setting the computer program to read four values a 
second, you start the motor and acquire the following data:

Time (s) Angle (°) Time (s) Angle (°)
0.00     0 1.00 267
0.25   16 1.25 428
0.50   69 1.50 620
0.75 161

a.  Do the data support your hypothesis of a constant angular  
acceleration? If so, what is the angular acceleration? If not, is the 
angular acceleration increasing or decreasing with time?
b.  A 76-cm-diameter blade is attached to the motor shaft. At what 
time does the acceleration of the tip of the blade reach 10 m/s2?

MODEL  The axle is rotating with nonuniform circular motion. 
Model the tip of the blade as a particle.

VISUALIZE  FIGURE 4.33 shows that the blade tip has both a 
tangential and a radial acceleration.

FIGURE 4.33  Pictorial representation of the axle and blade.

best-fit line, found using a spreadsheet, gives a slope of 274.6°/s2. 
The units come not from the spreadsheet but by looking at the units 
of rise 1°2 over run (s2 because we’re graphing t 2 on the x-axis). 
Thus the angular acceleration is

a = 2m = 549.2°/s2 *
p rad
180°

= 9.6 rad/s2

where we used 180° = p rad to convert to SI units of rad/s2.
c.	 The magnitude of the linear acceleration is

a = 2ar 

2 + at 

2

The tangential acceleration of the blade tip is

at = ar = 19.6 rad/s2210.38 m2 = 3.65 m/s2

We were careful to use the blade’s radius, not its diameter, and we 
kept an extra significant figure to avoid round-off error. The radial 
(centripetal) acceleration increases as the rotation speed increases, 
and the total acceleration reaches 10 m/s2 when

ar = 2a2 - at 

2 = 2110 m/s222 - 13.65 m/s222 = 9.31 m/s2

Radial acceleration is ar = v2r, so the corresponding angular  
velocity is

v = A
ar

r
= B

9.31 m/s2

0.38 m
= 4.95 rad/s

For constant angular acceleration, v = at, so this angular velocity 
is achieved at

t =
v

a
=

4.95 rad/s

9.6 rad/s2 = 0.52 s

Thus it takes 0.52 s for the acceleration of the blade tip to reach 10 m/s2.

ASSESS  The acceleration at the tip of a long blade is likely to be large. 
It seems plausible that the acceleration would reach 10 m/s2 in ≈ 0.5 s.

FIGURE 4.34  Graph of u versus t 2 for the motor shaft.
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SOLVE  a.  If the motor starts up with constant angular acceleration, 
with ui = 0 and vi = 0 rad/s, the angle-time equation of rotation-
al kinematics is u = 1

2 at 2. This can be written as a linear equation  
y = mx + b if we let u = y and t 2 = x. That is, constant angular 
acceleration predicts that a graph of u versus t 2 should be a straight 
line with slope m = 1

2 a and y-intercept b = 0. We can test this.
FIGURE 4.34 is the graph of u versus t 2, and it confirms our hypoth-

esis that the motor starts up with constant angular acceleration. The 
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CHALLENGE EXAMPLE 4.16  | Hit the target!
One day when you come into lab, you see a spring-loaded wheel that 
can launch a ball straight up. To do so, you place the ball in a cup on 
the rim of the wheel, turn the wheel to stretch the spring, then release. 
The wheel rotates through an angle ∆u, then hits a stop when the cup 
is level with the axle and pointing straight up. The cup stops, but the 
ball flies out and keeps going. You’re told that the wheel has been 
designed to have constant angular acceleration as it rotates through 
∆u. The lab assignment is first to measure the wheel’s angular  
acceleration. Then the lab instructor is going to place a target at 
height h above the point where the ball is launched. Your task will be 
to launch the ball so that it just barely hits the target.

a.  Find an expression in terms of quantities that you can measure 
for the angle ∆u that launches the ball at the correct speed.

b.  Evaluate ∆u if the wheel’s diameter is 62 cm, you’ve determined 
that its angular acceleration is 200 rad/s2, the mass of the ball is 25 g, 
and the instructor places the target 190 cm above the launch point.

MODEL  Model the ball as a particle. It first undergoes circular motion 
that we’ll model as having constant angular acceleration. We’ll then 
ignore air resistance and model the vertical motion as free fall.

VISUALIZE  FIGURE 4.35 is a pictorial representation. This is a two-
part problem, with the speed at the end of the angular acceleration 
being the launch speed for the vertical motion. We’ve chosen to call 
the wheel radius R and the target height h. These and the angular

acceleration a are considered “known” because we will measure 
them, but we don’t have numerical values at this time.

SOLVE

a.  The circular motion problem and the vertical motion problem 
are connected through the ball’s speed: The final speed of the  
angular acceleration is the launch speed of the vertical motion. We 
don’t know anything about time intervals, which suggests using 
the kinematic equations that relate distance and acceleration (for 
the vertical motion) and angle and angular acceleration (for the 
circular motion). For the angular acceleration, with v0 = 0 rad/s,

v1 

2 = v0 

2 + 2a  ∆u = 2a  ∆u

The final speed of the ball and cup, when the wheel hits the stop, is

v1 = v1 R = R12a  ∆u

Thus the vertical-motion problem begins with the ball being shot 
upward with velocity v1y =  R12a  ∆u. How high does it go? The 
highest point is the point where v2y = 0, so the free-fall equation is

v2y 

2 = 0 = v1y 

2 - 2g ∆y = R2 # 2a  ∆u - 2gh

Rather than solve for height h, we need to solve for the angle that 
produces a given height. This is

∆u =
gh

aR2

Once we’ve determined the properties of the wheel and then  
measured the height at which our instructor places the target, we’ll 
quickly be able to calculate the angle through which we should pull 
back the wheel to launch the ball.

b.  For the values given in the problem statement, ∆u = 0.969 rad =  
56°. Don’t forget that equations involving angles need values in 
radians and return values in radians.

ASSESS  The angle needed to be less than 90° or else the ball 
would fall out of the cup before launch. And an angle of only 
a few degrees would seem suspiciously small. Thus 56° seems 
to be reasonable. Notice that the mass was not needed in this 
problem. Part of becoming a better problem solver is evaluating 
the information you have to see what is relevant. Some homework 
problems will help you develop this skill by providing information 
that isn’t necessary.

FIGURE 4.35  Pictorial representation of the ball launcher.

x
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Summary   125

SUMMARY 

The goal of Chapter 4 has been to learn how to solve problems about motion in a plane.

GENERAL PRINCIPLES

The instantaneous velocity

v 

u = d r u/dt

is a vector tangent to the trajectory.

The instantaneous acceleration is

au = d v 

u/dt

au ‘, the component of au parallel to v 

u, is responsible for change of 
speed. au#, the component of au perpendicular to v 

u, is responsible 
for change of direction.

Relative Motion
If object C moves relative to reference 
frame A with velocity v 

u
CA, then it moves 

relative to a different reference frame B 
with velocity

v 

u
CB = v 

u
CA + v 

u
AB

where v 

u
AB is the velocity of A relative 

to B. This is the Galilean transformation  
of velocity.

v
u

x

y

a ‘

a#

a
u

u

u

A

y

x

B

y

x

Reference
frame A

Reference frame B

C

Object C moves relative
to both A and B.

 

APPLICATIONS

Kinematics in two dimensions

If au is constant, then the x- and y-components of motion are 
independent of each other.

 xf = xi + vix ∆t + 1
2 ax  1∆t22

 yf = yi + viy ∆t + 1
2 ay  1∆t22

 vfx = vix + ax ∆t

 vfy = viy + ay ∆t

Projectile motion is motion under the 
influence of only gravity.

MODEL  Model as a particle launched with 
speed v0 at angle u.

VISUALIZE  Use coordinates with the  
x-axis horizontal and the y-axis vertical.

SOLVE  The horizontal motion is uniform with vx = v0 cos u. The 
vertical motion is free fall with ay = -g. The x and y kinematic 
equations have the same value for ∆t.

IMPORTANT CONCEPTS

Uniform Circular Motion
Angular velocity v = du/dt.
vt and v are constant:

vt = vr

The centripetal acceleration points toward the  
center of the circle:

a =
v2

r
= v2r

It changes the particle’s direction but not its speed.

Nonuniform Circular Motion
Angular acceleration a = dv/dt.
The radial acceleration

ar =
v2

r
= v2r

changes the particle’s direction. The tangential component

at = ar

changes the particle’s speed.

a
u

v
u

v a
u

v
u

v

ar

at

Circular motion kinematics

Period T =
2pr

v
=

2p
v

Angular position u =
s
r

Constant angular acceleration

vf = vi + a ∆t

uf = ui + vi ∆t + 1
2 a1∆t22

vf 

2 = vi 

2 + 2a ∆u

Circular motion graphs and  
kinematics are analogous to linear motion 
with constant acceleration.

Angle, angular velocity, and angular 
acceleration are related graphically.

•	 The angular velocity is the slope of the 
angular position graph.

•	 The angular acceleration is the slope of 
the angular velocity graph.

u
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y

v0
u

The trajectory
is a parabola.

a

u

v

t

t

t

v
u
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126  CHAPTER 4  Kinematics in Two Dimensions

9.	 An electromagnet on the ceiling of an airplane holds a steel ball. 
When a button is pushed, the magnet releases the ball. First, 
the button is pushed while the plane is parked on the ground. The 
point where the ball hits the floor is marked with an X. Next, the 
experiment is repeated while the plane is flying horizontally at 
a steady speed of 620 mph. Does the ball land in front of the X 
(toward the nose of the plane), on the X, or behind the X (toward 
the tail of the plane)? Explain.

10.	 Zack is driving past his house in FIGURE Q4.10. He wants to toss 
his physics book out the window and have it land in his drive-
way. If he lets go of the book exactly as he passes the end of the 
driveway, should he direct his throw outward and toward the front 
of the car (throw 1), straight outward (throw 2), or outward and 
toward the back of the car (throw 3)? Explain.

projectile
launch angle, u
projectile motion model
reference frame
Galilean transformation 
  of velocity

uniform circular motion
period, T 
angular position, u
arc length, s 
radians
angular displacement, ∆u

angular velocity, v
centripetal acceleration
uniform circular motion  
  model
nonuniform circular  
  motion

angular acceleration, a
constant angular acceleration  
  model
radial acceleration, ar

tangential acceleration, at

TERMS AND NOTATION 

Which ball was thrown at a faster speed? Or were they thrown 
with the same speed? Explain.

CONCEPTUAL QUESTIONS

1.	 a.  � At this instant, is the particle in FIGURE Q4.1 speeding up, 
slowing down, or traveling at constant speed?

b.	 Is this particle curving to the right, curving to the left, or 
traveling straight?

FIGURE Q4.1 

a
u

v
u

FIGURE Q4.2 

a
u

v
u

FIGURE Q4.8 

5 m/s

1 2

FIGURE Q4.10 

Zack

13
2

FIGURE Q4.11 

Zack

Yvette

13

2

2.	 a.  � At this instant, is the particle in FIGURE Q4.2 speeding up, 
slowing down, or traveling at constant speed?

b.	 Is this particle curving upward, curving downward, or 
traveling straight?

3.	 �Three cricket balls are thrown from a tall tower—the first one is 
released from rest; the second one is thrown with a horizontal 
velocity of 7 m/s eastward; and the last one is thrown with a hori-
zontal velocity of 10 m/s westward. Which of the balls will be the 
first to touch the ground?

4.	 A projectile is launched at an angle of 30°.
a.	 Is there any point on the trajectory where v 

u and au are parallel 
to each other? If so, where?

b.	 Is there any point where v 

u and au are perpendicular to one 
other? If so, where?

5.	 For a projectile, which of the following quantities are constant 
during the flight: x, y, r, vx  , vy  , v, ax  , ay  ? Which of these quantities 
are zero throughout the flight?

6.	 A cart that is rolling at constant velocity on a level table fires a 
ball straight up.
a.	 When the ball comes back down, will it land in front of the 

launching tube, behind the launching tube, or directly in the 
tube? Explain.

b.	 Will your answer change if the cart is accelerating in the 
forward direction? If so, how?

7.	 A rock is thrown from a bridge at an angle 45° below the horizon-
tal. Is the magnitude of acceleration, immediately after the rock is 
released, greater than, less than, or equal to g? Explain.

8.	 Anita is running to the right at 5 m/s in FIGURE Q4.8. Balls 1 
and 2 are thrown toward her by friends standing on the ground.  
According to Anita, both balls are approaching her at 10 m/s. 

11.	 In FIGURE Q4.11, Yvette and Zack are driving down the freeway 
side by side with their windows down. Zack wants to toss his 
physics book out the window and have it land in Yvette’s front 
seat. Ignoring air resistance, should he direct his throw out-
ward and toward the front of the car (throw 1), straight outward 
(throw 2), or outward and toward the back of the car (throw 3)? 
Explain.
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15.	 FIGURE Q4.15 shows a pendulum at one end 
point of its arc.
a.	 At this point, is v positive, negative, or 

zero? Explain.
b.	 At this point, is a positive, negative, or 

zero? Explain.

5.	 ||	 At this instant, the particle is speeding up and 
curving downward. What is the direction of its 
acceleration?

14.	 FIGURE Q4.14 shows four rotating wheels. For each, determine the 
signs 1+  or -2 of v and a.

12.	 You tie a cricket ball to a string and hang it from a tall pole. The 
ball is then struck with a cricket bat. Ignoring the mass of the 
string, what should be the direction of the acceleration if it attains 
a constant speed along a circular path centering the pole? Which 
force is responsible for this acceleration?

13.	 FIGURE Q4.13 shows three points on a 
steadily rotating wheel.
a.	 Rank in order, from largest to 

smallest, the angular velocities 
v1, v2, and v3 of these points. Ex-
plain.

b.	 Rank in order, from largest to 
smallest, the speeds v1, v2, and v3 of 
these points. Explain.

1 2

3

Figure Q4.13 

Figure Q4.14 

Speeding
up

Slowing
down

Slowing
down

Speeding
up

(a) (b) (c) (d)

Figure Q4.15 

Exercises and Problems

Exercises

Section 4.1 Motion in Two Dimensions

Problems 1 and 2 show a partial motion diagram. For each:
a.	 Complete the motion diagram by adding acceleration vectors.
b.	 Write a physics problem for which this is the correct motion  

diagram. Be imaginative! Don’t forget to include enough infor-
mation to make the problem complete and to state clearly what 
is to be found.

1.	 |	

Figure EX4.1

v
u

2.	 |	

Figure EX4.2 v
u

Top view of motion in
a horizontal plane

Circular arc

Answer Problems 3 through 5 by choosing one 
of the eight labeled acceleration vectors or se-
lecting option I: au = 0

u
.

3.	 ||	 At this instant, the particle has steady 
speed and is curving to the right. What is 
the direction of its acceleration?

4.	 ||	 At this instant, the particle is speeding 
up and curving upward. What is the di-
rection of its acceleration?

Figure EX4.3

A.

E.

B.

C.G.

D.

H.

F.

I. a = 0
u u

v
u

Figure EX4.4

v
u

Figure EX4.5

v
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Figure EX4.6
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7.	 ||	 A rocket-powered hockey puck moves on a horizontal fric-
tionless table. FIGURE EX4.7 shows graphs of vx and vy, the x- and 
y-components of the puck’s velocity. The puck starts at the origin. 
What is the magnitude of the puck’s acceleration at t = 5 s?

Figure EX4.7

t (s)

vx (m/s)

10

-10

5
0

10

t (s)

vy (m/s)

10

-10

5
0

10

6.	 ||	 A rocket-powered hockey puck moves on a horizontal friction-
less table. FIGURE EX4.6 shows graphs of vx and vy, the x- and y-com-
ponents of the puck’s velocity. The puck starts at the origin.
a.	 In which direction is the puck moving at t = 2 s? Give your 

answer as an angle from the x-axis.
b.	 How far from the origin is the puck at t = 5 s?
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128  CHAPTER 4  Kinematics in Two Dimensions

8.	 ||	 A particle’s trajectory is described by x = 11
2 t 3 - 2t 22m and 

y = 11
2 t 2 - 2t2m, where t is in s.

a.	 What are the particle’s position and speed at t = 0 s and t = 4 s?
b.	 What is the particle’s direction of motion, measured as an  

angle from the x-axis, at t = 0 s and t = 4 s?
9.	 |	 A particle moving in the xy-plane has velocity vu  =  

12tin + 13 - t 22jn2 m/s, where t is in s. What is the particle’s accel-
eration vector at t = 4 s?

10.	 ||	 You have a remote-controlled car that has been programmed to 
have velocity v 

u = 1-3tin + 2t 2jn2 m/s, where t is in s. At t = 0 s, the 
car is at r u

0 = 13.0in + 2.0jn2 m. What are the car’s (a) position vector 
and (b) acceleration vector at t = 2.0 s?

Section 4.2 Projectile Motion

11.	 ||	 A ball thrown horizontally at 20 m/s travels a horizontal dis-
tance of 40 m before hitting the ground. From what height was 
the ball thrown?

12.	 |	 A physics student on Planet Exidor throws a ball, and it follows 
the parabolic trajectory shown in FIGURE EX4.12. The ball’s  
position is shown at 1 s intervals until t = 3 s. At t = 1 s, the ball’s 
velocity is v 

u = 12.0 in + 2.0 jn2 m/s.
a.	 Determine the ball’s velocity at t = 0 s, 2 s, and 3 s.
b.	 What is the value of g on Planet Exidor?
c.	 What was the ball’s launch angle?

19.	 ||	 When the moving sidewalk at the airport is broken, as it often 
seems to be, it takes you 50 s to walk from your gate to baggage 
claim. When it is working and you stand on the moving sidewalk 
the entire way, without walking, it takes 75 s to travel the same dis-
tance. How long will it take you to travel from the gate to baggage 
claim if you walk while riding on the moving sidewalk?

20.	 |	 Mary needs to row her boat across a river 100 m wide that is 
flowing to the east at a speed of 2 m/s. Mary can row with a speed 
of 4 m/s.
a.	 If Mary points her boat due north, how far will she be from her 

intended landing spot when she reaches the opposite shore?
b.	 What is her speed with respect to the shore?

21.	 |	 A kayaker needs to paddle north across an 80-m-wide harbor. 
The tide is going out, creating a current that flows to the east at  
3 m/s. The kayaker can paddle with a speed of 4 m/s.
a.	 In which direction should he paddle in order to travel straight 

across the harbor?
b.	 How long will it take him to cross the harbor?

22.	 ||	 Susan, driving north at 60 mph, and Trent, driving east at  
45 mph, are approaching an intersection. What is Trent’s speed 
relative to Susan’s reference frame?

Section 4.4 Uniform Circular Motion

23.	 ||	 FIGURE EX4.23 shows the angular-velocity-versus-time graph 
for a particle moving in a circle. How many revolutions does the 
object make during the first 4 s?

Figure EX4.12
x

y

0 s

1 s 3 s

2 s

v = (2.0d + 2.0e ) m/s
u

nn

13.	 ||	 A supply plane needs to drop a package of food to scientists 
working on a glacier in Greenland. The plane flies 80 m above the 
glacier at a speed of 100 m/s. How far short of the target should it 
drop the package?

14.	 ||	 A rifle is aimed horizontally at a target 50 m away. The bullet hits 
2 cm below the target.
a.	 What was the bullet’s flight time?
b.	 What was the bullet’s speed as it left the barrel?

15.	 ||	 In the Olympic shotput event, an athlete throws the shot with an 
initial speed of 12.0 m/s at a 40.0° angle from the horizontal. The 
shot leaves her hand at a height of 1.80 m above the ground. How 
far does the shot travel?

16.	 ||	 On the Apollo 14 mission to the moon, astronaut Alan Shepard 
hit a golf ball with a 6 iron. The free-fall acceleration on the moon 
is 1/6 of its value on earth. Suppose he hit the ball with a speed of 
25 m/s at an angle 30° above the horizontal.
a.	 How much farther did the ball travel on the moon than it 

would have on earth?
b.	 For how much more time was the ball in flight?

17.	 |||	 A friend of yours is a baseball player and wants to determine his 
pitching speed. You have him stand on a ledge and throw the ball 
horizontally from an elevation of 6 m above the ground. The ball 
lands 40 m away. What is his pitching speed?

Section 4.3 Relative Motion

18.	 ||	 A boat takes 2 hours to travel 20 km down a river, and 4 hours 
to return. How fast is the river flowing?

Figure EX4.23
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26.	 ||	 The earth’s radius is about 4000 miles. Kampala, the capital 
of Uganda, and Singapore are both nearly on the equator. The 
distance between them is 5000 miles. The flight from Kampala 
to Singapore takes 9.0 hours. What is the plane’s angular velocity 
with respect to the earth’s surface? Give your answer in °/h.

27.	 |	 An old-fashioned single-play vinyl record rotates on a turntable 
at 72 rotations per minute. 
a.	 What is the angular velocity in rad/s?
b.	 What is the period of the motion?

24.	 |	 FIGURE EX4.24 shows the angular-position-versus-time graph 
for a particle moving in a circle. What is the particle’s angular  
velocity at (a) t = 1 s, (b) t = 4 s, and (c) t = 7 s?

25.	 ||	 FIGURE EX4.25 shows the angular-velocity-versus-time graph 
for a particle moving in a circle, starting from u0 = 0 rad at t = 0 s. 
Draw the angular-position-versus-time graph. Include an appropri-
ate scale on both axes.
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39.	 ||	 A wheel initially rotating at  
60 rpm experiences the angular 
acceleration shown in FIGURE 

EX4.39. What is the wheel’s angu-
lar velocity, in rpm, at t = 3.0 s?

28.	 ||	 As the earth rotates, what is the speed of (a) a physics student 
in Miami, Florida, at latitude 26°, and (b) a physics student in 
Fairbanks, Alaska, at latitude 65°? Ignore the revolution of the 
earth around the sun. The radius of the earth is 6400 km.

29.	 |	 How fast must a plane fly along the earth’s equator so that the 
sun stands still relative to the passengers? In which direction must 
the plane fly, east to west or west to east? Give your answer in 
both km/h and mph. The earth’s radius is 6400 km.

30.	 ||	 A mountain 3200 m high is located on the equator. How much 
faster does a mountaineer at the peak move because of the earth’s 
rotation relative to a sunbather at a nearby beach? The earth’s radius 
is 6400 km.

Section 4.5 Centripetal Acceleration

31.	 |	 Peregrine falcons are known for their maneuvering ability. In a 
tight circular turn, a falcon can attain a centripetal acceleration 1.5 
times the free-fall acceleration. What is the radius of the turn if the 
falcon is flying at 25 m/s?

32.	 |	 To withstand “g-forces” of up to 10 g’s, caused by suddenly 
pulling out of a steep dive, fighter jet pilots train on a “human 
centrifuge.” 10 g’s is an acceleration of 98 m/s2. If the length of the 
centrifuge arm is 12 m, at what speed is the rider moving when she 
experiences 10 g’s?

33.	 ||	 The radius of the earth’s very nearly circular orbit around the 
sun is 1.5 * 1011 m. Find the magnitude of the earth’s (a) velocity, 
(b) angular velocity, and (c) centripetal acceleration as it travels 
around the sun. Assume a year of 365 days.

34.	 ||	 A speck of dust on a spinning DVD has a centripetal accelera-
tion of 20 m/s2.
a.	 What is the acceleration of a different speck of dust that is 

twice as far from the center of the disk?
b.	 What would be the acceleration of the first speck of dust if the 

disk’s angular velocity was doubled?
35.	 ||	 Your roommate is working on his bicycle and has the bike up-

side down. He spins the 60-cm-diameter wheel, and you notice 
that a pebble stuck in the tread goes by three times every second. 
What are the pebble’s speed and acceleration?

Section 4.6 Nonuniform Circular Motion

36.	 |	 FIGURE EX4.36 shows the angular velocity graph of the crank-
shaft in a car. What is the crankshaft’s angular acceleration at  
(a) t = 1 s, (b) t = 3 s, and (c) t = 5 s?

FIGURE EX4.36
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40.	 ||	 A 5.0-m-diameter merry-go-round is initially turning with a  
4.0 s period. It slows down and stops in 20 s.
a.	 Before slowing, what is the speed of a child on the rim?
b.	 How many revolutions does the merry-go-round make as it 

stops?
41.	 ||	 An electric fan goes from rest to 1800 rpm in 4.0 s. What is its 

angular acceleration?
42.	 ||	 A bicycle wheel is rotating at 50 rpm when the cyclist begins to 

pedal harder, giving the wheel a constant angular acceleration of 
0.50 rad/s2.
a.	 What is the wheel’s angular velocity, in rpm, 10 s later?
b.	 How many revolutions does the wheel make during this time?

43.	 ||	 Starting from rest, a DVD steadily accelerates to 500 rpm in 
1.0 s, rotates at this angular speed for 3.0 s, then steadily deceler-
ates to a halt in 2.0 s. How many revolutions does it make?

Problems

44.	 |||	 A spaceship maneuvering near Planet Zeta is located at 
r u = 1600in - 400jn + 200kn2 * 103 km, relative to the planet, and 
traveling at v 

u = 9500in m/s. It turns on its thruster engine and 
accelerates with au = 140in - 20kn2 m/s2 for 35 min. What is the 
spaceship’s position when the engine shuts off? Give your answer 
as a position vector measured in km.

45.	 |||	 A particle moving in the xy-plane has velocity v 

u
0 = v0x in + v0yjn 

at t = 0. It undergoes acceleration au = btin - cvyjn, where b and c 
are constants. Find an expression for the particle’s velocity at a 
later time t.

46.	 ||	 A projectile’s horizontal range over level ground is v0 

2 sin 2u/g. 
At what launch angle or angles will the projectile land at half of its 
maximum possible range?

47.	 ||	 a.	� A projectile is launched with speed v0 and angle u. Derive an 
expression for the projectile’s maximum height h.

		  b.	� A baseball is hit with a speed of 33.6 m/s. Calculate its 
height and the distance traveled if it is hit at angles of 
30.0°, 45.0°, and 60.0°.

48.	 |||	 A projectile is launched from ground level at angle u and speed 
v0 into a headwind that causes a constant horizontal acceleration  
of magnitude a opposite the direction of motion.
a.	 Find an expression in terms of a and g for the launch angle 

that gives maximum range.
b.	 What is the angle for maximum range if a is 10% of g?

49.	 |||	 A gray kangaroo can bound across level ground with each jump 
carrying it 10 m from the takeoff point. Typically the kangaroo 
leaves the ground at a 20° angle. If this is so:
a.	 What is its takeoff speed?
b.	 What is its maximum height above the ground?

50.	 ||	 A ball is thrown toward a cliff of height h with a speed of 
30 m/s and an angle of 60° above horizontal. It lands on the edge 
of the cliff 4.0 s later.
a.	 How high is the cliff?
b.	 What was the maximum height of the ball?
c.	 What is the ball’s impact speed?

37.	 ||	 FIGURE EX4.37 shows the angular acceleration graph of a turn-
table that starts from rest. What is the turntable’s angular velocity 
at (a) t = 1 s, (b) t = 2 s, and (c) t = 3 s?

38.	 ||	 FIGURE EX4.38 shows the angu-
lar-velocity-versus-time graph for 
a particle moving in a circle. How 
many revolutions does the object 
make during the first 4 s?
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right of its first bounce. What is the ball’s rebound speed on its first 
bounce?

51.	 ||	 A tennis player hits a ball 2.0 m above the ground. The ball 
leaves his racquet with a speed of 20.0 m/s at an angle 5.0° above 
the horizontal. The horizontal distance to the net is 7.0 m, and the 
net is 1.0 m high. Does the ball clear the net? If so, by how much? 
If not, by how much does it miss?

52.	 ||	 You are target shooting using a toy gun that fires a small ball at 
a speed of 15 m/s. When the gun is fired at an angle of 30° above 
horizontal, the ball hits the bull’s-eye of a target at the same height 
as the gun. Then the target distance is halved. At what angle must 
you aim the gun to hit the bull’s-eye in its new position? (Mathe-
matically there are two solutions to this problem; the physically 
reasonable answer is the smaller of the two.)

53.	 ||	 A 35 g steel ball is held by a ceiling-mounted electromagnet 
3.5 m above the floor. A compressed-air cannon sits on the floor, 
4.0 m to one side of the point directly under the ball. When a 
button is pressed, the ball drops and, simultaneously, the cannon 
fires a 25 g plastic ball. The two balls collide 1.0 m above the floor. 
What was the launch speed of the plastic ball?

54.	 ||	 You are watching an archery tournament when you start won-
dering how fast an arrow is shot from the bow. Remembering your 
physics, you ask one of the archers to shoot an arrow parallel to 
the ground. You find the arrow stuck in the ground 60 m away, 
making a 3.0° angle with the ground. How fast was the arrow shot?

55.	 ||	 You’re 6.0 m from one wall of the house seen in FIGURE P4.55. 
You want to toss a ball to your friend who is 6.0 m from the oppo-
site wall. The throw and catch each occur 1.0 m above the ground.
a.	 What minimum speed will allow the ball to clear the roof?
b.	 At what angle should you toss the ball?

FIGURE P4.55
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FIGURE P4.56

15°

6.0 m/s

3.0 m
d

56.	 ||	 Sand moves without slipping at 6.0 m/s down a conveyer that 
is tilted at 15°. The sand enters a pipe 3.0 m below the end of the 
conveyer belt, as shown in FIGURE P4.56. What is the horizontal 
distance d between the conveyer belt and the pipe?

57.	 ||	 A stunt man drives a car at a speed of 20 m/s off a 30-m-high 
cliff. The road leading to the cliff is inclined upward at an angle of 
20°.
a.	 How far from the base of the cliff does the car land?
b.	 What is the car’s impact speed?

58.	 |||	 A javelin thrower standing at rest holds the center of the javelin 
behind her head, then accelerates it through a distance of 70 cm as 
she throws. She releases the javelin 2.0 m above the ground 
traveling at an angle of 30° above the horizontal. Top-rated javelin 
throwers do throw at about a 30° angle, not the 45° you might have 
expected, because the biomechanics of the arm allow them to 
throw the javelin much faster at 30° than they would be able to at 
45°. In this throw, the javelin hits the ground 62 m away. What was 
the acceleration of the javelin during the throw? Assume that it has 
a constant acceleration.

59.	 ||	 A rubber ball is dropped onto a ramp that is tilted at 20°, as 
shown in FIGURE P4.59. A bouncing ball obeys the “law of reflec-
tion,” which says that the ball leaves the surface at the same angle 
it approached the surface. The ball’s next bounce is 3.0 m to the 

FIGURE P4.59

20°3.0 m

FIGURE P4.60
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Acceleration plates
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60.	 |||	 You are asked to consult for the city’s research hospital, where 
a group of doctors is investigating the bombardment of cancer  
tumors with high-energy ions. As FIGURE P4.60 shows, ions are 
fired directly toward the center of the tumor at speeds of 
5.0 * 106 m/s. To cover the entire tumor area, the ions are deflected 
sideways by passing them between two charged metal plates that 
accelerate the ions perpendicular to the direction of their initial 
motion. The acceleration region is 5.0 cm long, and the ends of the 
acceleration plates are 1.5 m from the target. What sideways accel-
eration is required to deflect an ion 2.0 cm to one side?

61.	 ||	 Ships A and B leave port together. For the next two hours, ship 
A travels at 20 mph in a direction 30° west of north while ship B 
travels 20° east of north at 25 mph.
a.	 What is the distance between the two ships two hours after 

they depart?
b.	 What is the speed of ship A as seen by ship B?

62.	 ||	 While driving north at 25 m/s during a rainstorm you notice 
that the rain makes an angle of 38° with the vertical. While 
driving back home moments later at the same speed but in the 
opposite direction, you see that the rain is falling straight down. 
From these observations, determine the speed and angle of the 
raindrops relative to the ground.

63.	 ||	 You’ve been assigned the task of using a shaft encoder—a 
device that measures the angle of a shaft or axle and provides a 
signal to a computer—to analyze the rotation of an engine crank-
shaft under certain conditions. The table lists the crankshaft’s 
angles over a 0.6 s interval.

Time (s) Angle (rad)

0.0 0.0

0.1 2.0

0.2 3.2

0.3 4.3

0.4 5.3

0.5 6.1

0.6 7.0

  Is the crankshaft rotating with uniform circular motion? If 
so, what is its angular velocity in rpm? If not, is the angular 
acceleration positive or negative?

64.	 ||	 A circular track has several concentric rings where people can 
run at their leisure. Phil runs on the outermost track with radius rP 
while Annie runs on an inner track with radius rA = 0.80rP. The 
runners start side by side, along a radial line, and run at the same 
speed in a counterclockwise direction. How many revolutions has 
Annie made when Annie’s and Phil’s velocity vectors point in  
opposite directions for the first time?
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