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Preface

This book has grown out of an undergraduate course developed and taught
by us in MIT’s Department of Electrical Engineering and Computer Science.
Our course is typically taken by third- and fourth-year undergraduate students
from many engineering branches, as well as undergraduate and graduate stu-
dents from applied science. There are two formal prerequisites for the course,
and for this book: an introductory subject in time- and frequency-domain anal-
ysis of signals and systems, and an introductory subject in probability. These
two subjects are typically taken by most engineering students early in their
degree programs. The signals and systems subject almost invariably builds
on an earlier course in differential equations, ideally with some basic linear
algebra folded into it.

In many engineering departments, students with a strong interest in
applied mathematics have then traditionally gone on to a more specialized
undergraduate subject in control, signal processing, or communication. In
addition to being specialized, such subjects often focus on deterministic signals
and systems. Our aim instead was to build broadly on the prerequisite mate-
rial, folding together signals, systems, and probability in ways that could make
our course relevant and interesting to a wider range of students. The course
could then serve both as a terminal undergraduate subject and as a sufficiently
rigorous basis for more advanced undergraduate subjects or introductory
graduate subjects in many engineering and applied science departments.

The course that gave rise to this book teaches students about signals
and signal descriptions that are typically new to them, for example, random
signals and their characterization through correlation functions and power
spectral densities. It introduces them to new kinds of systems and system
properties, such as state-space models, reachability and observability, opti-
mum filters, and group delay. And it highlights model-based approaches to
inference, particularly in the context of state estimation, signal estimation, and
signal detection.

11



12 Preface

Although some parts of our course are well covered by existing text-
books, we did not find one that fit our needs across the range of topics. This
led to lecture notes, which was the easier part, and then eventually this book.
In the process, we continually experimented with and refined the content and
order of presentation. Along the way we also at times included other mate-
rial or excluded some that is now back in the book. Among the conclusions
of these experiments was that we did not have time in a one-semester class to
fold in even basic notions of information theory, despite its central importance
to communication systems and, more generally, to inference.

As suggested in the Prologue to this book, signals, systems and prob-
ability have been and will continue to be usefully combined in studying
fields such as signal processing, control, communication, financial engineer-
ing, biomedicine, and many others that involve dynamically varying processes
operating in continuous or discrete time, and affected by disturbances, noise,
or uncertainty. This premise forms the basis for the overall organization and
content of our course and this text.

The book can be thought of as comprising four parts, outlined below. A
more detailed overview of the individual chapters is captured in the table of
contents. Chapters 1 and 2 present a brief review of the assumed prerequisites
in signals and linear time-invariant (LTI) systems, though some portions of
the material may be less familiar. A key intent in these chapters is to establish
uniform notation and concepts on which to build in the chapters that follow.
Chapter 3 discusses the application of some of this prerequisite material in the
setting of digital communication by pulse amplitude modulation.

Chapters 4–6 are devoted to state-space models, concentrating on the
single-input single-output LTI case. The development is largely built around
the eigenmodes of such systems, under the simplifying assumption of distinct
natural frequencies. This part of the book introduces the idea of model-based
inference in the context of state observers for LTI systems, and examines
associated feedback control strategies.

Chapters 7–9 provide a brief review of the assumed probability prerequi-
sites, including estimation and hypothesis testing for static random variables.
As with Chapters 1 and 2, we felt it important to set out our notation and
perspectives on the concepts while making contact with what students might
have encountered in their earlier probability subject. Again, some parts of
this material, particularly on hypothesis testing, may be previously unfamiliar
to some students.

In Chapters 10–13, we characterize wide-sense stationary random sig-
nals, and the outputs that result from LTI filtering of such signals. The
associated properties and interpretations of correlation functions and power
spectral densities are then used to study canonical signal estimation and
signal detection problems. The focus in Chapter 12 is on linear minimum
mean square error signal estimation, i.e., Wiener filtering. In Chapter 13, the
emphasis is on signal detection for which optimum solutions involve matched
filtering.

As is often said, the purpose of a course is to uncover rather than to
cover a subject. In this spirit, each chapter includes a final section with some
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suggestions for further reading. Our intent in these brief sections is not to be
exhaustive but rather to suggest the wealth of learning opened up by the mate-
rial in this text. We have pointed exclusively to books rather than to papers in
the research literature, and have in each case listed only a fraction of the books
that could have been listed.

Each chapter contains a rich set of problems, which have been divided
into Basic, Advanced, and Extension. Basic problems are likely to be easy
for most students, while the Advanced problems may be more demanding.
The Extension problems often involve material somewhat beyond what is
developed in the chapter. Certain problems require simulation or computa-
tion using some appropriate computational package. Given the variety and
ubiquity of such packages, we have intentionally not attempted to structure
the computational exercises around any specific platform.

There is more material in this book than can be taught comfortably in a
one-semester course. This allows the instructor or self-learner to choose dif-
ferent routes through the text, and over the years we have experimented with
various paths. For a course that is more oriented towards communication or
signal processing, Chapters 4, 5 and 6 (state-space models) can be omitted,
or addressed only briefly. For a course with more of a control orientation,
Chapter 3 (pulse amplitude modulation), Chapter 9 (hypothesis testing) and
Chapter 13 (signal detection) can perhaps be considered optional.

A third version of the course, and the one that we currently teach, is out-
lined in a little more detail below. This version involves two weekly lectures
over a semester of approximately thirteen weeks. The lectures are interleaved
with an equal number of small-group recitation sections, devoted to more
interactive discussion of specific problems that illustrate the lectures and help
address the weekly homework. In addition, we staff optional small-group
tutorials. Finally an optional evening “common room” that we run several
times each week allows students in the class to congregate and interact with
each other and with a member of the teaching staff while they work on their
homework.

In our teaching in general, we like to emphasize that the homework is
intended to provide an occasion for learning and engaging with the concepts
and mechanics, rather than being an exam. We recommend that the end-of-
chapter problems in this book be approached in the same spirit. In particular,
we encourage students to work constructively together, sharing insights and
approaches. Our grading of the problems is primarily for feedback to the stu-
dents and to provide some accountability and motivation. The course does
typically have a midterm quiz and a final exam, and many of the end-of-
chapter problems in this text were first created as quiz or exam problems.
There are also many possibilities for term projects that can grow out of the
material in the class, if desired.

An introductory lecture in the same spirit as the Prologue to this text is
followed by a brief review of the signals and systems material in Chapter 1.
The focus in class is on what might be less familiar from the prerequisite sub-
ject, and students are tasked with reviewing the rest on their own, guided by
appropriate homework problems. We then move directly to the state-space
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material in Chapters 4, 5 and 6. Even if students have had some prior expo-
sure to state-space models, there is much that is likely to be new to them here,
though they generally relate easily to the material. We have not held students
responsible for the more detailed proofs, such as those on eigenvalue place-
ment for LTI observers or state feedback, but do expect them to develop an
understanding of the relevant results and how to apply them to small exam-
ples. An important lesson from the state-space observer framework is the role
of a system model in going from measured signals to inferences about the
system.

Our course then turns to probabilistic models and random signals. The
probability review in Chapter 7 is mostly woven into lectures covering mini-
mum mean square error (MMSE) and linear MMSE (LMMSE) estimation,
which are dealt with in Chapter 8. In order to move more quickly to ran-
dom signals rather than linger on review of material from the prerequisite
probability course, we defer the study of hypothesis testing in Chapter 9 to
the end of the course, using it as a lead-in to the signal detection material in
Chapter 13. Part of the rationale is also that Chapters 9 and 13 are devoted
to making inferences about discrete random quantities, namely the hypothe-
ses, whereas Chapters 8 and 12 on (L)MMSE estimation deal with infer-
ences about continuous random variables. We therefore move directly from
Chapter 8 to Chapter 10, studying random signals, i.e., stochastic processes,
focusing on the time-domain analysis of wide-sense stationary (WSS) pro-
cesses, and LTI filtering of such processes.

The topic of power spectral density in Chapter 11 connects back to the
development of transforms and energy spectral density in Chapter 1, and
also provides the opportunity to refer to relevant sections of Chapter 2 on
all-pass filters and spectral factorization. These topics are again important in
Chapter 12, on LMMSE (or Wiener) filtering for WSS processes. In most
offerings of the course, we omit the full causal Wiener filter development,
instead only treating the case of prediction of future values of a process from
past values of the same process.

The last part of the course refers strongly back to Chapter 3, using
the context of digital communication via pulse amplitude modulation to moti-
vate the hypothesis testing problem. The return to Chapter 3 can also involve
reference to the material in Chapter 2 on channel distortions and group delay.
The hypothesis testing paradigm is then treated as in Chapter 9. This serves as
the foundation for the study of signal detection in the last chapter, Chapter 13.

The breadth of this book, and the different backgrounds we brought to
the project, meant that we had much to learn from each other. We also learn
each term from the very engaged students, teaching assistants and faculty col-
leagues who are involved in the course, as well as from the literature on the
subjects treated here. This book will have amply met its objectives if it sparks
and supports a similar voyage of discovery in its readers, as they construct their
own individual re-synthesis of the themes of signals, systems and inference.

Alan V. Oppenheim & George C. Verghese
Cambridge, Massachusetts



The Cover

The choice of images for the front and back covers of both the North
American Edition and this Global Edition originated in our desire to suggest
some of the book’s themes in a visually pleasing and striking way. Our explo-
rations began with images of sundials, clocks, and astrolabes. The astrolabe
(www.astrolabes.org), invented over two thousand years ago and used well
into the 17th century, was an important instrument for astronomy and naviga-
tion. Our search for the front cover of this Global Edition eventually led to the
photograph by Frans Lemmens (www.franslemmens.com), taken inside the
Eisinga Planetarium (www.planetarium-friesland.nl/en) in Franeker, Holland.
This exquisite scale model of the solar system was meticulously built by the
amateur astronomer Eise Eisinga in the ceiling of his living room, during the
period 1774–1781, and is considered the oldest functioning planetarium.

The image of the dwarf planet Ceres on the back cover of this
edition is derived from photographs taken by NASA’s spacecraft Dawn
(www.dawn.jpl.nasa.gov), which entered into orbit around Ceres in March
2015, after an eight-year journey from our planet. The mastery of signals, sys-
tems and inference that humankind has attained in the four centuries since
the astrolabe faded from use is represented here: in the precisely controlled
launch and trajectory of the Dawn spacecraft – which first included a ren-
dezvous with the asteroid Vesta before moving on to Ceres – and in the
subsequent recording, retrieval, and processing of data from it to yield such
revealing and awe-inspiring images. But the image also evokes the boundless
opportunities for new advances and horizons.
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SIGNALS, SYSTEMS AND INFERENCE

Signals, in the sense that we refer to them in this book, have been of inter-
est at least since the time when human societies began to record and analyze
numerical data, for example to track climate, commerce, population, disease,
and the movements of celestial bodies. We are continually immersed in signals,
registering them through our senses, measuring them through instruments,
and analyzing, modifying, and interrelating them.

Systems and signals are intimately connected. In many contexts, it is
important to understand the behavior of the underlying systems that generate
the signals of interest. Furthermore, the challenges of collecting, interpret-
ing, modeling, transforming, and utilizing signals motivate us to design and
implement systems for these purposes, and to generate signals to control and
manipulate systems.

Inference, as the term is used in this text, refers to combining prior
knowledge and available measurements of signals to draw conclusions in
the presence of uncertainty. The prior knowledge may take the form of par-
tially specified models for the measured signals. Inference may be associated
with the construction and refinement of such models. The implementation
of algorithms for inference can also require designing systems to process the
measured signals.

The application of concepts and methods involving signals, systems,
and inference in combination is pervasive in science, engineering, medicine,
and the social sciences. However, the mathematical, algorithmic, and com-
putational underpinnings often evolve to become largely independent of the
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specific application. It is this common foundational material that is the focus
of this text.

A LITTLE HISTORY

An example of the sophistication attained centuries ago in signals, systems
and inference is the astrolabe1, the most popular astronomical instrument of
the medieval world, used for navigation and time keeping in addition to chart-
ing the positions of celestial objects. Around 150 AD, Ptolemy of Alexandria
described in detail the stereographic projection that forms the basis for the
astrolabe; the trigonometric framework for this was developed even earlier,
by Hipparchus of Rhodes around 180 BC. The instrument itself made its
appearance around 400 AD, and was in widespread use well into the 1600s.

The interplay of signals, systems and inference is also nicely illustrated
by Carl Friedrich Gauss’s celebrated prediction2 of the location of the aster-
oid Ceres, almost a full year after it had been lost to view. Ceres, whose image
is on the back cover of this book, is now known to be the largest object in
the asteroid belt, and – along with Pluto – is classified as a dwarf planet. The
astronomer Giuseppe Piazzi in Palermo discovered the object on New Year’s
Day of 1801, but was only able to track its motion across the sky for a few
degrees of arc before it faded six weeks later in the glare of the sun. There
was at the time major interest in the possibility of this being a new planet
that had been suspected to exist between Mars and Jupiter. The 24-year-old
Gauss, using just three of Piazzi’s observations, along with strategic combi-
nations and simplifications of equations derived from Kepler’s model of the
trajectories of celestial objects, and with many days of hand calculation, was
able to generate an estimate of the orbit of Ceres. The predictions made by
other astronomers, who had typically assumed circular rather than elliptical
orbits, failed to yield sightings of the asteroid. However, successful observa-
tions using Gauss’s specifications were recorded in early December that year,
and again on New Year’s Eve. As Gauss put it, he had “restored the fugitive
to observation.” In later refinements of his method to account for all nineteen
of Piazzi’s observations rather than just three, and to apply to the motions
of other celestial objects, Gauss also brought into play the method of least
squares, which he had developed several years earlier. Chapter 8 of this text
is devoted to the closely related topic of minimum mean square error esti-
mation of random variables, while Chapter 12 extends this to estimation of
random signals.

By 1805, and still motivated by the problem of interpolating mea-
surements of asteroid orbits, Gauss had developed an efficient algorithm
to compute the coefficients of finite trigonometric series3. He unfortunately
never published his algorithm, though it was included in his posthumous
collected works sixty years later. Variants of this algorithm were then indepen-
dently rediscovered by others, as the problem of fitting harmonic series arose
in diverse settings, for example to represent variations in barometric pres-
sure or underground temperature, to calculate corrections to compasses on
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ships, or to model X-ray diffraction data from crystals. The most well known of
these variants, commonly referred to collectively as the Fast Fourier Transform
(FFT), was published by James Cooley and John Tukey4 in 1965. Coming at
a time when programmable electronic digital computers were beginning to
enter routine use in science and engineering, the FFT soon found widespread
application, and has had a profound impact.

Many of the foundational concepts and analytical tools discussed
throughout this text for both deterministic and probabilistic systems, such
as those reviewed in Chapters 1 and 7, have their origins in the work of
mathematicians and scientists who lived around the time of Gauss, including
Pierre-Simon Laplace and Jean-Baptiste Joseph Fourier, though later con-
tributions also feature prominently, of course. Laplace today is most often
associated with the transform that bears his name, but his place in probabil-
ity theory is considerably more significant, for his 1812 treatise on the subject,
and as the “discoverer” of the central limit theorem. Other parts of our text
derive more directly from advances made in engineering and applied science
since 1800.

The invention of the telegraph in the 1830s sparked a revolution5 in com-
munication, with subsequent major impact on theory and practice related to
all of the topics in this book. It also led to advances in other areas such as trans-
portation and weather prediction, in part because messages could now travel
faster than horses, trains, and storms. Within a few years the dots and dashes of
Morse code were being transmitted over electrical cables extended between
and across continents. Telephony followed in the 1870s, wireless telegraphy
and AM radio in the early 1900s, FM radio and television in the 1930s, and
radar in the 1940s. Today we have satellite communication, wireless internet,
and GPS navigation.

All these transformative technologies exploited and enhanced our abil-
ity to work with signals, systems and inference, and were significant catalysts
for the creative development of electrical engineering in general. They pre-
sented the need to effectively generate electrical signals or electromagnetic
waves, to characterize transmission media so that these signals could be prop-
agated through them in predictable ways, to design any necessary filtering and
amplification at various intermediate stages, and to develop appropriate signal
processing circuits and systems for embedding information at the transmitter
and extracting the intended information at the receiver. The modern study
of signals and systems in engineering degree programs, with circuits as prime
examples of systems, began to take root in the 1930s and ’40s. Some of the
notions that we describe in Chapter 2 arose primarily in the context of circuits
and transmission lines for communication.

Occurring in parallel with advances in communication were develop-
ments relevant to the analysis and design of control systems. Among these
were analog computation aimed at the simulation of differential equations
that modeled various systems of interest. Though the concepts were described
over fifty years earlier, the first practical mechanical implementation was
the Differential Analyzer of Vannevar Bush and collaborators around 1930.
More flexible and powerful electronic versions, namely analog computers



26 Prologue

using operational amplifiers, were widely used from the 1950s until they were
supplanted by digital computers in the 1980’s.

The design of self-regulating devices that utilize feedback dates back to
at least around 250 BC, with the water clock of Ctesibius of Alexandria. One
of the earliest and most important applications of feedback in the industrial
age was James Watt’s 1788 centrifugal governor for regulating the speed of
steam engines, but it was only in 1868 that James Clerk Maxwell6 showed
how to analyze the dynamic stability of such governors. Feedback control
began to be routinely incorporated in engineered systems from the begin-
ning of the 20th century. Much of the associated mathematical theory that
is in widespread application today – associated with people such as Harold
Black, Harry Nyquist, and Hendrik Bode at Bell Labs in the 1920s and ’30s –
was actually developed in the context of designing stable and robust elec-
tronic amplifiers and oscillators for communication and signal processing.
Other work on feedback control was motivated by servomechanism design
for regulation in industrial manufacturing, chemical processes, power gen-
eration, transportation, and similar settings. Aleksandr Lyapunov’s work in
the 1890s on the stability of linear and nonlinear dynamic systems that were
described in state-space form was not widely known till the 1960s, but is now
an essential part of systems and control theory. These state-space models
and methods, including the study of equilibrium, stability, measurement-
driven simulations for state estimation, and feedback control, are treated in
Chapters 4, 5, and 6.

Feedback mechanisms also play an essential role in living systems, as
was explicitly described in 1865 by the physiologist Claude Bernard. As the
mathematical study of communication and control developed in the early
20th century, Norbert Wiener and colleagues in such diverse fields as psycho-
logy, physiology, biology and the social sciences recognized the commonal-
ity and importance of feedback in these various disciplines. Their interactions
in the 1940’s eventually led to Wiener’s definition and elaboration in 1948
of cybernetics as the study of control and communication in the animal and
machine7.

The treatment of signals, systems and inference in communication, con-
trol and signal processing inherently has to address distortion and errors
introduced by non-ideal and poorly characterized components. Feedback is
often introduced to overcome precisely such difficulties. A related issue, which
inserts uncertainty in the behavior of the system, is that of random distur-
bances. These can corrupt the signal on a communication channel or at the
receiver; can affect the performance of a feedback control system; and can
affect the reliability of an inferred outcome. By showing how to model ran-
dom disturbances in probabilistic terms, and characterizing them in the time
and frequency domains, mathematical theory has made a significant impact
on these applications. The work of Wiener8 from the 1920’s onward helped to
set the foundations for engineering applications in these and related areas. A
famous report of his on the extrapolation, interpolation and smoothing of time
series9 was a major advance in bringing the notions of Fourier analysis and
stochastic processes into the setting of practical problems in signal processing
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and inference. Chapter 12, building on Chapters 8, 10 and 11, treats a class
of filtering problems associated with Wiener’s name, and shows how having a
model for a random process provides a basis for filtering and prediction.

Claude Shannon went a step further in his revolutionary 1948 papers10

that essentially gave birth to information theory. He modeled the communi-
cation source itself as a discrete random process, and introduced notions of
information, entropy, channel capacity and coding that still form the frame of
reference for the field. As noted in the Preface, a treatment of information
theory is beyond the scope of this text. However, Shannon’s work launched
the era of digital communication, and the material we study in Chapter 3 on
pulse amplitude modulation, including Nyquist’s key contributions, is of con-
siderable practical importance in digital communication. The task of signal
detection in noise, addressed in Chapters 9 and 13, is also fundamental in this
and many other applications.

As indicated at the beginning of this Prologue, another domain of inves-
tigation that has a long history and relationship to the material in this text
is the study of time series, carried out not only in the natural sciences –
astronomy and climatology, for example – and engineering but also in eco-
nomics and elsewhere in the social sciences. A typical objective in time series
analysis is to use measured noisy data to construct causal dynamic models,
which can then be used to infer future values of these signals. There is partic-
ular interest in detecting and exploiting any trends or periodicities that might
exist in the data. The considerations here are similar to those that motivated
the work of Wiener and others, and the mathematical tools overlap, though the
time-series literature tends to be more application driven and data centered.
For example, the notion of a periodogram, which we encounter in Chapter 11,
first appears in this literature, as a tool for detecting underlying periodicity in
a random process11.

The emergence over the past half-century of real-time digital computa-
tion capabilities has had major impact on the applications of signals, systems
and inference, and has also given rise to new theoretical formulations. An
important early example of how real-time computation can fundamentally
change the approach to a central problem in signal processing and control
is the Kalman filter, which generalized Wiener filtering in several respects
and greatly extended its application. The seminal state-space formulation12

introduced by Rudolf Kalman in 1960 for problems of signal filtering involves
recursive least squares estimation of the state of a system whose output rep-
resents the signal of interest. The filter runs a computational algorithm in
parallel with the operation of the system, with the results of the computation
also available for incorporation into a feedback control law. The initial use of
the Kalman filter was for navigation applications in the space program, but it is
now much more widely applied. The treatment of state observers in Chapter 6
of this text makes connections with the Kalman filter, and the relation to the
Wiener filter is outlined in Chapter 12.



28 Prologue

A GLANCE AHEAD

Among the most striking developments that the transition to the 21st century
has brought to signals, systems and inference is vast distributed and networked
computational power, including in small, inexpensive, and mobile packages.
Advances in computing, communication, control, and signal processing have
resulted in connection and action on scales that were imagined by only a few
in the 1960s, at the dawn of the Internet, among them J. C. R. Licklider13. A
transformational event on the path to making this vision a reality today for so
much of humanity was Tim Berners-Lee’s invention of the World Wide Web
in 1989.

The close coupling of continuous- and discrete-time technologies is of
growing importance. Digital signals, communication, and computation com-
monly mediate interactions among analog physical objects – in automotive
systems, entertainment, robotics, human-computer interfaces, avionics, smart-
grids, medical instrumentation, and elsewhere. It is also increasingly the case
that a given engineered device or component is not easily classified as being
intended specifically for communication or control or signal processing or
something else; these aspects come together in different combinations at dif-
ferent times. The term “cyber-physical system”14 is sometimes used to describe
the combination of a networked interconnection of embedded computers and
the distributed physical processes that they jointly monitor and control.

Our continuing exploration of the universe at both the smallest and
largest scales relies in many ways on understanding how to work with signals,
systems and inference. The invention of the microscope at the end of the 16th
century had profound implications for the development of science at the cel-
lular level and smaller. The invention of the telescope a few years later, at the
beginning of the 17th century, similarly enlarged our view of the heavens, and
had equally revolutionary consequences. The launch of the Hubble telescope
in 1990 has led to our current ability to observe the cosmos at distances of
hundreds of millions of light-years. The processing of images from the Hubble
telescope incorporates sophisticated extensions of the basic concepts in this
text. As one illustration, the techniques of deconvolution, an example of which
is examined in Chapter 12, have played an important role in processing of
Hubble telescope images, and most critically in initially helping to correct the
distortions caused by spherical aberrations in the mirror until it was repaired.
In 2003 and 2004, the Hubble telescope captured intriguing images of Ceres.
And in March 2015, NASA’s Dawn spacecraft, after a journey that lasted eight
years, entered the orbit of Ceres, obtaining the most detailed and striking pic-
tures yet of this dwarf planet, including the one that is incorporated into the
back cover of this book. We imagine Gauss would be pleased.

Our intention in this book is to address foundational material for appli-
cations to signals, systems and inference across a broad set of domains in
today’s world. These applications are deeply embedded in so many of the
systems that we see and use in our everyday lives, and yet are virtually
invisible to, and taken for granted by, the casual observer or user. Automotive
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and entertainment systems, for example, are currently among the largest mar-
kets for specialized signal processing systems. Without question, this material
will remain foundational for many years to come.

Speculations about the future are always subject to surprises. However,
it is certain that new implementation platforms will continue to emerge
from advances in such disciplines as quantum physics, materials science, pho-
tonics, and biology. And new mathematics will also emerge that will impact the
study and application of signals, systems and inference. The novel directions
that are opened up by these advances will undoubtedly still derive in part from
concepts studied in this book, just as so much of what we use today is rooted
in very specific ways on contributions from past centuries. The basic principles
and concepts central to this text have a rich historical importance and an even
richer future.
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1 Signals and Systems

This text assumes a basic background in the representation of linear, time-
invariant systems and the associated continuous-time and discrete-time
signals, through convolution, Fourier analysis, Laplace transforms, and z-
transforms. In this chapter, we briefly summarize and review this assumed
background, in part to establish the notation that we will use throughout the
text, and also as a convenient reference for the topics in later chapters.

1.1 SIGNALS, SYSTEMS, MODELS, AND
PROPERTIES

Throughout this text we will be considering various classes of signals and
systems, developing models for them, and studying their properties.

Signals are represented by real- or complex-valued functions of one or more
independent variables. They may be one-dimensional, that is, functions of
only one independent variable, or multidimensional. The independent vari-
able may be continuous or discrete. For many of the one-dimensional signals,
the independent variable is naturally associated with time although it may
not correspond to “real time.” When the independent variable is continuous,
it is enclosed in curved parentheses, and when discrete in square parenthe-
ses to denote an integer variable. For example, x(t) would correspond to a
continuous-time (CT) signal and x[n] to a discrete-time (DT) signal. The nota-
tions x(·) and x[·] will also be used to refer to the entire signal, suppressing the
particular variable t or n used to denote time.

31
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In the first six chapters, we focus entirely on deterministic signals.
Starting with Chapter 7, we incorporate stochastic signals, that is, signals
drawn from an ensemble of signals, any one of which can be the outcome
of a given probabilistic process. To distinguish a signal ensemble representing
a random process from a deterministic signal, we will typically use uppercase.
For example, X(t) would represent a CT random process whereas x(t) would
denote a specific signal in the ensemble. Similarly, X[n] would correspond to
a DT random process.

Systems are collections of software or hardware elements, components, or
subsystems. A system can be viewed as mapping a set of input signals to a set of
output or response signals. A more general view (which we don’t incorporate
in this text) is that a system is an entity imposing constraints on a designated
set of signals without distinguishing specific ones as inputs or outputs. Any
particular set of signals that satisfies the constraints is termed a behavior of
the system.

Models are (usually approximate) mathematical, software, hardware, lin-
guistic, or other representations of the constraints imposed on a designated
set of signals by a system. A model is itself a system because it imposes
constraints on the set of signals represented in the model, so we often use
the words system and model interchangeably. However, it can sometimes be
important to preserve the distinction between something truly physical and
our representations of it mathematically or in a computer simulation.

The difference between representation as a mapping or in behavioral
form can be illustrated by considering, for example, Ohm’s law for a resistor.
Expressed as v(t) = R i(t), it suggests current i(t) as an input signal and voltage
v(t) as the response, whereas expressed as

R i(t)/v(t) = 1 (1.1)

it is more suggestive of a constraint relating these two signals. Similarly, the
resistor-capacitor circuit in Figure 1.1 has constraints among the signals v(t),
iR(t), and vC(t) imposed by Kirchhoff’s laws but does not identify which
of the variables are input variables and which are output variables. More
broadly, a behavioral representation comprises a listing of the constraints that
the signals must satisfy. For example, if a particular system imposed a time-
shift constraint between two signals without preference as to which would

iR(t)

v(t) vC(t)-
+

-
+

Figure 1.1 Resistor-capacitor circuit.
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correspond to the input and which to the output, then a behavioral interpreta-
tion would be more appropriate. In this text, we will typically express systems
as mappings from inputs to outputs.

The representation of a system or model as a mapping comprises the
following: a set of input signals {x(·)}, each of which can vary within some
specified range of possibilities; similarly, a set of output signals {y(·)}, each of
which can vary; and a description of the mapping that uniquely defines the
output signals as a function of the input signals.

One way of depicting a system as a mapping is shown in Figure 1.2 for the
single-input, single-output CT case, with the interpretation that for each signal
in the input set, T{ · } specifies a mapping to a signal in the output set. Given
the input x(·) and the mapping T{ · }, the output y(·) is unique. More com-
monly, the representation in Figure 1.3 is used to show the input and output
signals at some arbitrary time t. With the notation in Figure 1.3, it is important
to understand that the mapping T{ · } is in general a mapping between sets of
signals and not a memoryless mapping between a signal value x(t) at a specific
time instant to the signal value y(t) at that same time instant. For example, if
the system delays the input by t0, then

y(t) = x(t − t0) . (1.2)

x(·) y(·)mapping T { · } Figure 1.2 Representation of a system
as an input-output mapping.

x(t) y(t)T { · } Figure 1.3 Alternative representation
of a system as an input-output mapping.

1.1.1 System Properties

For a system specified as a mapping, we use the following definitions of var-
ious properties, all of which we assume are familiar. They are stated here
for the DT case but are easily modified for the CT case. We also assume a
single-input, single-output system in our mathematical representation of the
definitions that follow, for notational convenience.

• Memoryless: The output at any time instant does not depend on values of
the input at any other time instant. The CT delay-by-t0 system described
in Eq. (1.2) is not memoryless. A simple example of a memoryless DT
system is one for which

y[n] = x2[n] (1.3)

for every n.

• Linear: The response to an arbitrary linear combination (or “superpo-
sition”) of input signals is always the same linear combination of the
individual responses to these signals.
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• Time-Invariant: The response to any set of inputs translated arbitrarily
in time is always the response to the original set, but translated by the
same amount.

• Linear and Time-Invariant (LTI): The system is both linear and time-
invariant.

• Causal: The output at any instant does not depend on future inputs: for
all n0, y[n0] does not depend on x[n] for n > n0. Said another way, if
x̂ [n], ŷ [n] denotes another input-output pair of the system, with x̂ [n] =
x[n] for n ≤ n0 where n0 is fixed but arbitrary, then it must be also true
that ŷ [n] = y[n] for n ≤ n0.

• Bounded-Input, Bounded-Output (BIBO) Stable: The output response
to a bounded input is always bounded: |x[n]| ≤ Mx < ∞ for all n implies
that |y[n]| ≤ My < ∞ for all n.

Example 1.1 System Properties

As an example of these system properties, consider the system with input x[n] and
output y[n] defined by the relationship

y[n] = x[4n + 1] (1.4)

for all n. We would like to determine whether the system is memoryless, linear, time-
invariant, causal, and/or BIBO stable.

Memoryless: A simple counterexample suffices to show that this system is not
memoryless. Consider for example y[n] at n = 0. From Eq. (1.4), y[0] = x[1] and there-
fore depends on the value of the input at a time other than at n = 0. Consequently it is
not memoryless.

Linearity: To check for linearity, we consider two arbitrary input signals, xA[n]
and xB[n], and compare the output of their linear combination to the linear combina-
tion of their individual outputs. From Eq. (1.4), the response yA[n] to xA[n] and the
response yB[n] to xB[n] are respectively (for all n):

yA[n] = xA[4n + 1] (1.5)

and

yB[n] = xB[4n + 1] . (1.6)

If with xC[n] = axA[n] + bxB[n] for arbitrary a and b the output is yC[n] = ayA[n] +
byB[n], then the system is linear. Applying Eq. (1.4) to xC[n] shows that this holds.

Time Invariance: To check for time invariance, we need to compare the output
due to a time-shifted version of x[n] to the time-shifted version of the output due to
x[n]. The output y[n] resulting from any specific input x[n] is given in Eq. (1.4). The
output ŷ [n] results from an input x̂ [n] that is a time-shifted (by n0) version of the
signal x[n]. Consequently

ŷ [n] = x̂ [4n + 1] = x[4n + 1 + n0] . (1.7)

If the system were time-invariant, then ŷ[n] would correspond to shifting y[n] in
Eq. (1.4) by n0, resulting in replacing n by (n + n0) in Eq. (1.4), which yields

y[n + n0] = x[4n + 4n0 + 1] . (1.8)
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Since the expressions on the right side of Eqs. (1.7) and (1.8) are not equal, the system is
not time-invariant. To illustrate with a specific input, suppose that x[n] is a unit impulse
δ[n], which has the value 1 at n = 0 and the value 0 elsewhere. The output y[n] of
the system Eq. (1.4) would be δ[4n + 1], which is zero for all values of n, and y[n +
n0] would likewise always be zero. However, if we consider x[n + n0] = δ[n + n0], the
output will be δ[4n + 1 + n0], which for n0 = 3 will be 1 at n = −1 and zero otherwise.

Causality: Since the output at time n = 0 is the input value at n = 1, the system
is not causal.

BIBO Stability: Since |y[n]| = |x[4n + 1]| and the bound on |x[n]| also bounds
|x[4n + 1]|, the system is BIBO stable.

1.2 LINEAR, TIME-INVARIANT SYSTEMS

Linear, time-invariant (LTI) systems form the basis for engineering design in
many contexts. This class of systems has the advantage of a rich and well-
established theory for analysis and design. Furthermore, in many systems
that are nonlinear, small deviations from some nominal steady operation are
approximately governed by LTI models, so the tools of LTI system anal-
ysis and design can be applied incrementally around a nominal operating
condition.

1.2.1 Impulse-Response Representation
of LTI Systems

A very general way of representing an LTI mapping from an input signal to
an output signal is through convolution of the input with the system impulse
response. In CT the relationship is

y(t) =
∫ ∞

−∞
x(v)h(t − v) dv =

∫ ∞

−∞
x(t − τ )h(τ ) dτ (1.9)

where x(t) is the input, y(t) is the output, and h(t) is the unit impulse response
of the system. In DT, the corresponding relationship is

y[n] =
∞∑

k=−∞
x[k] h[n − k] =

∞∑
m=−∞

x[n − m] h[m] (1.10)

where h[n] is the unit sample (or unit “impulse”) response of the system.
The common shorthand notations for the convolution integral in

Eq. (1.9) and the convolution sum in Eq. (1.10) are

y(t) = x(t) ∗ h(t) (1.11)

y[n] = x[n] ∗ h[n] . (1.12)

While these notations can be convenient, they can also easily lead to misinter-
pretation if not well understood. Alternative notations such as

y(t) = (x ∗ h)(t) (1.13)
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have their advantages and disadvantages. We shall use the notations indi-
cated in Eqs. (1.11) and (1.12) as shorthand for Eqs. (1.9) and (1.10), with
the understanding that Eqs. (1.9) and (1.10) are the correct interpretations.

The characterization of LTI systems through convolution is obtained by
representing the input signal as a superposition of weighted impulses. In the
DT case, suppose we are given an LTI mapping whose impulse response is
h[n], that is, when its input is the unit sample or unit “impulse” function δ[n],
its output is h[n]. A general input x[n] can be assembled as a sum of scaled
and shifted impulses, specifically:

x[n] =
∞∑

k=−∞
x[k] δ[n − k] . (1.14)

As a consequence of linearity and time invariance, the response y[n] to this
input is the sum of the similarly scaled and shifted impulse responses, and is
therefore given by Eq. (1.10). What linearity and time invariance have allowed
us to do is write the response to a general input in terms of the response to a
special input. A similar derivation holds for the CT case.

It may seem that the preceding derivation indicates that all LTI map-
pings from an input signal to an output signal can be represented through
a convolution sum. However, the use of infinite integrals or sums like
those in Eqs. (1.9) and (1.10) actually involves some assumptions about the
corresponding mapping. We make no attempt here to elaborate on these
assumptions. Nevertheless, it is not hard to find “pathological” examples of
LTI mappings—not significant for us in this text, or indeed in most engineer-
ing models—where the convolution relationship does not hold because these
assumptions are violated.

It follows from Eqs. (1.9) and (1.10) that a necessary and sufficient con-
dition for an LTI system to be BIBO stable is that the impulse response be
absolutely integrable (CT) or absolutely summable (DT):

BIBO stable (CT) ⇐⇒
∫ ∞

−∞
|h(t)| dt < ∞ (1.15)

BIBO stable (DT) ⇐⇒
∞∑

n=−∞
|h[n]| < ∞ . (1.16)

It also follows from Eqs. (1.9) and (1.10) that a necessary and sufficient con-
dition for an LTI system to be causal is that the impulse response be zero for
t < 0 (CT) or for n < 0 (DT).

1.2.2 Eigenfunction and Transform
Representation of LTI Systems

Exponentials are eigenfunctions of LTI mappings, that is, when the input is
an exponential for all time, which we refer to as an “everlasting” exponential,
the output is simply a scaled version of the input. Therefore, computing the
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response to an everlasting exponential reduces to simply multiplying by the
appropriate scale factor. Specifically, in the CT case, suppose

x(t) = es0t (1.17)

for some possibly complex value s0 (termed the complex frequency). Then
from Eq. (1.9)

y(t) =
∫ ∞

−∞
h(τ )x(t − τ ) dτ

=
∫ ∞

−∞
h(τ )es0(t−τ )dτ

= H(s0)es0t , (1.18)

where

H(s) =
∫ ∞

−∞
h(τ )e−sτ dτ , (1.19)

provided the above integral has a finite value for s = s0 (otherwise the
response to the exponential is not well defined). Equation (1.18) demonstrates
that x(t) in the form of Eq. (1.17) is an eigenfunction with associated eigen-
value given by H(s0). Note that Eq. (1.19) is precisely the bilateral Laplace
transform of the impulse response, or the transfer function of the system, and
the set of values of s in the complex plane for which the above integral takes
a finite value constitutes the region of convergence (ROC) of the transform.
We discuss the Laplace transform further in Section 1.4.

The fact that the everlasting exponential is an eigenfunction of an LTI
system derives directly from the fact that time shifting an everlasting exponen-
tial produces the same result as scaling it by a constant factor. In contrast, the
one-sided exponential es0tu(t), where u(t) denotes the unit step, is in general
not an eigenfunction of an LTI mapping: time shifting a one-sided exponen-
tial does not produce the same result as scaling this exponential, as indicated
in Example 1.2.

Example 1.2 Eigenfunctions of LTI Systems

As demonstrated above, the everlasting complex exponential ejωt is an eigenfunction
of any LTI system for which the integral in Eq. (1.19) converges at s = jω, while ejωtu(t)
is not. Consider, as a simple example, a time delay:

y(t) = x(t − t0) . (1.20)

The output due to the input ejωtu(t) is

e−jωt0 ejωtu(t − t0) .

This is not a simple scaling of the input, so ejωtu(t) is not in general an eigenfunction of
LTI systems.
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When x(t) = ejωt , corresponding to having s0 take the purely imaginary
value jω in Eq. (1.17), the input is bounded for all positive and negative time,
and the corresponding output is of the form

y(t) = H( jω)ejωt (1.21)

provided that H(s) in Eq. (1.19) converges for s = jω. Here ω is the (real-
valued) frequency of the input. From Eq. (1.19), H( jω) is given by

H( jω) =
∫ ∞

−∞
h(t)e−jωt dt . (1.22)

The function H( jω) in Eq. (1.22) is referred to as the system frequency
response, and is also the continuous-time Fourier transform (CTFT) of the
impulse response. The integral that defines the CTFT has a finite value for
each ω (and can be shown to be a continuous function of ω) if h(t) is absolutely
integrable, in other words if ∫ +∞

−∞
|h(t)| dt < ∞ . (1.23)

This condition ensures that s = jω is in the ROC of H(s). Comparing Eq. (1.23)
and Eq. (1.15), we note that this condition is equivalent to the system being
BIBO stable. The CTFT can also be defined for certain classes of signals that
are not absolutely integrable, as for h(t) = (sin t)/t whose CTFT is a rectangle
in the frequency domain, but we defer examination of conditions for existence
of the CTFT to Section 1.3.

Knowing the response to ejωt allows us to also determine the response to
a general (real) sinusoidal input of the form

x(t) = A cos(ωt + θ) = A
2

[
ej(ωt+θ) + e−j(ωt+θ)

]
. (1.24)

Invoking superposition, and assuming h(t) is real so H(jω) is conjugate
symmetric, some algebra shows that the corresponding output is

y(t) = ∣∣H( jω)
∣∣A cos(ωt + θ + � H( jω)) . (1.25)

Thus the output is again a sinusoid at the same frequency, but scaled in magni-
tude by the magnitude of the frequency response at the input frequency, and
shifted in phase by the angle of the frequency response at the input frequency.

We can similarly examine the eigenfunction property in the DT case. A
DT everlasting exponential is a geometric sequence or signal of the form

x[n] = zn
0 (1.26)

for some possibly complex value z0, termed the complex frequency. With this
DT exponential input, the output of a convolution mapping follows by a sim-
ple computation that is analogous to what we showed above for the CT case.
Specifically,

y[n] = h[n] ∗ x[n] = H(z0)zn
0 , (1.27)

where

H(z) =
∞∑

k=−∞
h[k]z−k , (1.28)
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provided the above sum has a finite value when z = z0. Note that this sum is
precisely the bilateral z-transform of the impulse response, and the set of val-
ues of z in the complex plane for which the sum takes a finite value constitutes
the ROC of the z-transform. As in the CT case, the one-sided exponential
zn

0u[n] is not in general an eigenfunction. We discuss the z-transform further
in Section 1.4.

Again, an important case is when x[n] = (ej�)n = ej�n, corresponding to
z0 in Eq. (1.26) having unit magnitude and taking the value ej�, where �—
the (real) “frequency”—denotes the angular position (in radians) around the
unit circle in the z-plane. Such an x[n] is bounded for all positive and negative
time. Although we use a different symbol, �, for frequency in the DT case,
to distinguish it from the frequency ω in the CT case, it is not unusual in the
literature to find ω used in both CT and DT cases for notational convenience.
The corresponding output is

y[n] = H(ej�)ej�n (1.29)

provided that ej� is in the ROC of H(z). From Eq. (1.28), H(ej�) is given by

H(ej�) =
∞∑

n=−∞
h[n]e−j�n . (1.30)

The function H(ej�) in Eq. (1.30) is the frequency response of the DT sys-
tem, and is also the discrete-time Fourier transform (DTFT) of the impulse
response. The sum that defines the DTFT has a finite value (and can be shown
to be a continuous function of �) if h[n] is absolutely summable, in other
words provided

∞∑
n=−∞

| h[n] | < ∞ . (1.31)

This condition ensures that ej� is in the ROC of H(z). As in continuous time,
this condition is equivalent to the system being BIBO stable. As with the
CTFT, the DTFT can be defined for signals that are not absolutely summable;
we will elaborate on this in Section 1.3.

Using Eq. (1.29), assuming h[n] is real, and proceeding as in the CT case,
it follows that the response to the sinusoidal input

x[n] = A cos(�n + θ) (1.32)

is

y[n] =
∣∣∣H(ej�)

∣∣∣A cos(�n + θ + � H(ej�)) . (1.33)

Note from Eq. (1.30) that the frequency response for DT systems is always
periodic, with period 2π. The “low-frequency” response is found in the vicinity
of � = 0, corresponding to an input signal that is constant for all n. The “high-
frequency” response is found in the vicinity of � = ±π , corresponding to an
input signal e±jπn = (−1)n that is the most rapidly varying DT signal possible.
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When the input of an LTI system can be expressed as a linear combina-
tion of eigenfunctions, for instance (in the CT case)

x(t) =
∑

�

a�ejω�t , (1.34)

then, by linearity, the output is the same linear combination of the responses
to the individual exponentials. By the eigenfunction property of exponentials
in LTI systems, the response to each exponential involves only scaling by the
system’s frequency response at the frequency of the exponential. Thus

y(t) =
∑

�

a�H( jω�)ejω�t . (1.35)

Similar expressions can be written for the DT case.

1.2.3 Fourier Transforms

A broad class of input signals can be represented as linear combinations of
bounded exponentials through the Fourier transform. The synthesis/analysis
formulas for the continuous-time Fourier transform (CTFT) are

x(t) = 1
2π

∫ ∞

−∞
X( jω) ejωtdω (synthesis) (1.36)

X( jω) =
∫ ∞

−∞
x(t) e−jωtdt (analysis). (1.37)

Note that Eq. (1.36) expresses x(t) as a linear combination of exponentials, but
this weighted combination involves a continuum of exponentials rather than a
finite or countable number. If this signal x(t) is the input to an LTI system with
frequency response H( jω), then by linearity and the eigenfunction property
of exponentials the output is the same weighted combination of the responses
to these exponentials, that is,

y(t) = 1
2π

∫ ∞

−∞
H( jω)X( jω) ejωtdω . (1.38)

By viewing this equation as a CTFT synthesis equation, it follows that the
CTFT of y(t) is

Y( jω) = H( jω)X( jω) . (1.39)
The convolution relationship Eq. (1.9) in the time domain therefore becomes
multiplication in the transform domain. Thus, to determine Y( jω) at any par-
ticular frequency ω0, we only need to know the Fourier transform of the input
at that single frequency, and the frequency response of the system at that fre-
quency. This simple fact serves, in large measure, to explain why the frequency
domain is virtually indispensable in the analysis of LTI systems.

The corresponding DTFT synthesis/analysis pair is defined by

x[n] = 1
2π

∫
〈2π〉

X(ej�) ej�nd� (synthesis) (1.40)

X(ej�) =
∞∑

n=−∞
x[n] e−j�n (analysis) (1.41)
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where the notation 〈2π〉 on the integral in the synthesis formula denotes inte-
gration over any contiguous interval of length 2π. This is because the DTFT is
always periodic in � with period 2π, a simple consequence of the fact that ej�

is periodic with period 2π. Note that Eq. (1.40) expresses x[n] as a weighted
combination of a continuum of exponentials.

As in the CT case, it is straightforward to show that if x[n] is the input to
an LTI mapping, then the output y[n] has the DTFT

Y(ej�) = H(ej�)X(ej�) . (1.42)

1.3 DETERMINISTIC SIGNALS AND THEIR
FOURIER TRANSFORMS

In this section, we review the DTFT of deterministic DT signals in more detail
and highlight classes of signals that can be guaranteed to have well-defined
DTFTs. We shall also devote some attention to the energy density spectrum
of signals that have DTFTs. The section will bring out aspects of the DTFT
that may not have been emphasized in your earlier signals and systems course.
A similar development can be carried out for CTFTs.

1.3.1 Signal Classes and Their Fourier Transforms

The DTFT synthesis and analysis pair in Eqs. (1.40) and (1.41) hold for at least
the three large classes of DT signals described below.

Finite-Action Signals

Finite-action signals, which are also called absolutely summable signals or �1

(“ell-one”) signals, are defined by the condition
∞∑

k=−∞

∣∣∣x[k]
∣∣∣ < ∞ . (1.43)

The sum on the left is often called the action of the signal. For these signals,
the infinite sum that defines the DTFT is well behaved and the DTFT can
be shown to be a continuous function for all �. In particular, the values at
� = +π and � = −π are well defined and equal to each other, which need
not be the case when signals are not �1.

Finite-Energy Signals

Finite-energy signals, which are also referred to as square summable or �2

(“ell-two”) signals, are defined by the condition
∞∑

k=−∞

∣∣∣x[k]
∣∣∣2 < ∞ . (1.44)

The sum on the left is called the energy of the signal.
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In discrete time, an absolutely summable (i.e., �1) signal is always square
summable (i.e., �2). However, the reverse is not true. For example, consider
the signal (sin �cn)/πn for 0 < �c < π , with the value at n = 0 taken to be
�c/π, or consider the signal (1/n)u[n − 1], both of which are �2 but not �1. If
x[n] is such a signal, its DTFT X(ej�) can be thought of as the limit for N → ∞
of the quantity

XN(ej�) =
N∑

k=−N

x[k]e−j�k (1.45)

and the resulting limit will typically have discontinuities at some values of �.
For instance, the transform of (sin �cn)/πn has discontinuities at � = ±�c.

Signals of Slow Growth

Signals of slow growth are signals whose magnitude grows no faster than poly-
nomially with the time index, for example, x[n] = n for all n. In this case
XN(ej�) in Eq. (1.45) does not converge in the usual sense, but the DTFT
still exists as a generalized (or singularity) function; for example, if x[n] = 1
for all n, then X(ej�) = 2πδ(�) for |�| ≤ π .

Within the class of signals of slow growth, those of most interest to us
are bounded (or �∞) signals defined by∣∣∣x[k]

∣∣∣ ≤ M < ∞ (1.46)

that is, signals whose amplitude has a fixed and finite bound for all time.
Bounded everlasting exponentials of the form ej�0n, for instance, play a key
role in Fourier transform theory. Such signals need not have finite energy, but
will have finite average power over any time interval, where average power is
defined as total energy over total time.

Similar classes of signals are defined in continuous time. Finite-action
(or L1) signals comprise those that are absolutely integrable, that is,∫ ∞

−∞

∣∣∣x(t)
∣∣∣ dt < ∞ . (1.47)

Finite-energy (or L2) signals comprise those that are square integrable, that is,∫ ∞

−∞

∣∣∣x(t)
∣∣∣2 dt < ∞ . (1.48)

In continuous time, an absolutely integrable signal (i.e., L1) may not be square
integrable (i.e., L2), as is the case, for example, with the signal

x(t) =
{

1/
√

t 0 < t ≤ 1
0 elsewhere.

(1.49)

However, an L1 signal that is bounded will also be L2. As in discrete time, a CT
signal that is L2 is not necessarily L1, as is the case, for example, with the signal

x(t) = sin ωct
π t

. (1.50)



Section 1.3 Deterministic Signals and Their Fourier Transforms 43

In both continuous time and discrete time, there are many important Fourier
transform pairs and Fourier transform properties developed and tabulated in
basic texts on signals and systems. For convenience, we include here a brief
table of DTFT pairs (Table 1.1) and one of CTFT pairs (Table 1.2). Other pairs
are easily derived from these by applying various Fourier transform proper-
ties. Note that δ[·] in the left column in Table 1.1 denotes unit sample functions,
while δ(·) in the right column are unit impulses. Also, the DTFTs in Table 1.1
repeat periodically outside the interval −π < � ≤ π .

In general, it is important and useful to be fluent in deriving and utilizing
the main transform pairs and properties. In the following subsection we discuss
Parseval’s identity, a transform property that is of particular significance in our
later discussion.

There are, of course, other classes of signals that are of interest to us in
applications, for instance growing one-sided exponentials. To deal with such

TABLE 1.1 BRIEF TABLE OF DTFT PAIRS

DT Signal ←→ DTFT for −π < � ≤ π

δ[n] ←→ 1

δ[n − n0] ←→ e−j�n0

1 (for all n) ←→ 2πδ(�)

e j�0n (−π < �0 ≤ π) ←→ 2πδ(� − �0)

anu[n], |a| < 1 ←→ 1
1 − ae−j�

u[n] ←→ 1
1 − e−j� + πδ(�)

sin �cn
πn

←→
{

1, −�c < � < �c
0, otherwise

1, −M ≤ n ≤ M
0, otherwise

}
←→ sin[�(2M + 1)/2]

sin(�/2)

TABLE 1.2 BRIEF TABLE OF CTFT PAIRS

CT Signal ←→ CTFT

δ(t) ←→ 1

δ(t − t0) ←→ e−jωt0

1 (for all t) ←→ 2πδ(ω)

e jω0 t ←→ 2πδ(ω − ω0)

e−atu(t),Re{a} > 0 ←→ 1
a + jω

u(t) ←→ 1
jω

+ πδ(ω)

sin ωct
π t

←→
{

1, −ωc < ω < ωc
0, otherwise

1, −M ≤ t ≤ M
0, otherwise

}
←→ sin ωM

ω/2
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signals, we make use of z-transforms in discrete time and Laplace transforms
in continuous time.

1.3.2 Parseval’s Identity, Energy Spectral Density,
and Deterministic Autocorrelation

An important property of the Fourier transform is Parseval’s identity for �2

signals. For discrete time, this identity takes the general form
∞∑

n=−∞
x[n]y∗[n] = 1

2π

∫
<2π>

X(ej�)Y∗(ej�) d� (1.51)

and for continuous time,∫ ∞

−∞
x(t)y∗(t) dt = 1

2π

∫ ∞

−∞
X( jω)Y∗( jω) dω (1.52)

where the superscript symbol ∗ denotes the complex conjugate. Specializing
to the case where y[n] = x[n] or y(t) = x(t), we obtain

∞∑
n=−∞

|x[n]|2 = 1
2π

∫
<2π>

|X(ej�)|2 d� (1.53)

∫ ∞

−∞
|x(t)|2 dt = 1

2π

∫ ∞

−∞
|X( jω)|2 dω . (1.54)

Parseval’s identity allows us to evaluate the energy of a signal by integrating
the squared magnitude of its transform. What the identity tells us, in effect, is
that the energy of a signal equals the energy of its transform (scaled by 1/2π).

The right-hand sides of Eqs. (1.53) and (1.54) integrate the quantities
|X(ej�)|2 and |X( jω)|2. We denote these quantities by Sxx(ej�) and Sxx( jω):

Sxx(ej�) = |X(ej�)|2 (1.55)

or
Sxx( jω) = |X( jω)|2 . (1.56)

These are referred to as the energy spectral density (ESD) of the associated
signal because they describe how the energy of the signal is distributed over
frequency. To justify this interpretation more concretely, for discrete time,
consider applying x[n] to the input of an ideal bandpass filter of frequency
response H(ej�) that has narrow passbands of unit gain and width 	 centered
at ±�0, as indicated in Figure 1.4.The energy ofthe output signalmustthen be
the energy of x[n] that is contained in the passbands of the filter. To calculate
the energy of the output signal, note that this output y[n] has the transform

Y(ej�) = H(ej�)X(ej�) . (1.57)
Consequently, by Parseval’s identity, the output energy is

∞∑
n=−∞

|y[n]|2 = 1
2π

∫
〈2π〉

|Y(ej�)|2 d�

= 1
2π

∫
〈2π〉

|H(ej�)|2 |X(ej�)|2 d� . (1.58)
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x[n] H(e jÆ)

H(e jÆ)

y[n]

1
¢ ¢

-Æ0 Æ0 Æ Figure 1.4 Ideal bandpass filter.

Since |H(ej�)| is unity in the passband and zero otherwise, Eq. (1.58) re-
duces to

∞∑
n=−∞

|y[n]|2 = 1
2π

∫
passband

|X(ej�)|2 d�

= 1
2π

∫
passband

Sxx(ej�) d� . (1.59)

Thus the energy of x[n] in any frequency band is given by integrating Sxx(ej�)
over that band (and scaling by 1/2π). In other words, the energy density of x[n]
as a function of � is Sxx(�)/(2π) per radian. An exactly analogous discussion
can be carried out for CT signals.

Since the ESD Sxx(ej�) is a real function of �, an alternate notation for
it might be Exx(�). However, we use the notation Sxx(ej�) in order to make
explicit that it is the squared magnitude of X(ej�) and also the fact that the
ESD for a DT signal is periodic with period 2π .

The ESD also has an important interpretation in the time domain. In
discrete time, for example, and assuming x[n] is real, we obtain

Sxx(ej�) = |X(ej�)|2 = X(ej�)X(e−j�) . (1.60)

Note that X(e−j�) is the transform of the time-reversed signal ←−x [k] = x[−k].
Thus, since multiplication of transforms in the frequency domain corresponds
to convolution of signals in the time domain, we have

Sxx(ej�) = |X(ej�)|2 ⇐⇒ x[k] ∗ ←−x [k] =
∞∑

n=−∞
x[n + k]x[n] = Rxx[k] .

(1.61)
The function Rxx[k] is referred to as the deterministic autocorrelation func-
tion of the signal x[n], and we have just established that the transform of the
deterministic autocorrelation function is the energy spectral density Sxx(ej�).
A basic Fourier transform property tells us that Rxx[0], which is the signal
energy

∑∞
n=−∞ x2[n], is the area under the Fourier transform of Rxx[k], scaled

by 1/(2π), namely the scaled area under Sxx(ej�) = |X(ej�)|2; this, of course,
corresponds directly to Eq. (1.53).

The deterministic autocorrelation function measures how alike a signal
and its time-shifted version are in a total-squared-error sense. More specif-
ically, in discrete time the total squared error between the signal and its
time-shifted version is given by
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∞∑
n=−∞

(x[n + k] − x[n])2 =
∞∑

n=−∞
x2[n + k]

+
∞∑

n=−∞
x2[n] − 2

∞∑
n=−∞

x[n + k]x[n]

= 2(Rxx[0] − Rxx[k]) . (1.62)

Since the total squared error is always nonnegative, it follows that Rxx[k] ≤
Rxx[0], and that the larger the deterministic autocorrelation Rxx[k] is, the
closer the signal x[n] and its time-shifted version x[n + k] are.

Corresponding results hold in continuous time, and in particular

Sxx( jω) = |X( jω)|2 ⇐⇒ x(τ ) ∗ ←−x (τ ) =
∫ ∞

−∞
x(t + τ )x(t)dt = Rxx(τ )

(1.63)
where Rxx(t) is the deterministic autocorrelation function of x(t).

1.4 BILATERAL LAPLACE AND z-TRANSFORMS

Laplace and z-transforms can be thought of as extensions of Fourier trans-
forms and are useful for a variety of reasons. They permit a transform
treatment of certain classes of signals for which the Fourier transform does
not converge. They also augment our understanding of Fourier transforms by
moving us into the complex plane, where we can apply the theory of com-
plex functions. We begin in Section 1.4.1 with a detailed review of the bilateral
z- transform. In Section 1.4.2, we give a short review of the bilateral Laplace
transform, paralleling the discussion in Section 1.4.1.

1.4.1 The Bilateral z -Transform

The bilateral z-transform is defined as

X(z) =
∞∑

n=−∞
x[n]z−n . (1.64)

Here z is a complex variable, which we can also represent in polar form as

z = rej�, r ≥ 0, −π < � ≤ π (1.65)

so

X(z) =
∞∑

n=−∞
x[n]r−ne−j�n . (1.66)

The DTFT corresponds to setting r = 1, in which case z takes values on the
unit circle. However, there are many useful signals for which the infinite sum
does not converge (even in the sense of generalized functions) for z confined
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to the unit circle. The term z−n in the definition of the z-transform introduces
a factor r−n into the infinite sum, which permits the sum to converge (provided
r is appropriately restricted) for interesting classes of signals, many of which
do not have DTFTs.

More specifically, note from Eq. (1.66) that X(z) can be viewed as
the DTFT of x[n]r−n. If r > 1, then r−n decays geometrically for positive
n and grows geometrically for negative n. For 0 < r < 1, the opposite hap-
pens. Consequently, there are many sequences for which x[n] is not absolutely
summable, but x[n]r−n is for some range of values of r.

For example, consider x1[n] = anu[n]. If |a| > 1, this sequence does not
have a DTFT. However, for any a, x[n]r−n is absolutely summable provided
r > |a|. In particular, for example,

X1(z) = 1 + az−1 + a2z−2 + · · · (1.67)

= 1
1 − az−1

, |z| = r > |a| . (1.68)

As a second example, consider x2[n] = −anu[−n − 1]. This signal does not
have a DTFT if |a| < 1. However, provided r < |a|,

X2(z) = −a−1z − a−2z2 − · · · (1.69)

= −a−1z
1 − a−1z

, |z| = r < |a| (1.70)

= 1
1 − az−1

, |z| = r < |a| . (1.71)

The z-transforms of the two distinct signals x1[n] and x2[n] above get con-
densed to the same rational expressions, but for different regions of conver-
gence. Hence the ROC is a critical part of the specification of the transform.

When x[n] is a sum of left-sided and/or right-sided DT exponentials, with
each term of the form illustrated in the examples above, then X(z) will be
rational in z (or equivalently, in z−1):

X(z) = Q(z)
P(z)

(1.72)

with Q(z) and P(z) being polynomials in z or, equivalently, z−1.
Rational z-transforms are typically depicted by a pole-zero plot in the

z-plane, with the ROC appropriately indicated. This information uniquely
specifies the signal, apart from a constant amplitude scaling. Note that there
can be no poles in the ROC, since the transform is required to be finite in the
ROC. z-transforms are often written as ratios of polynomials in z−1. However,
the pole-zero plot in the z-plane refers to the roots of the polynomials in
z. Also note that if poles or zeros at z = ∞ are counted, then any ratio of
polynomials always has exactly the same number of poles as zeros.
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Region of Convergence

To understand the complex-function properties of the z-transform, we split the
infinite sum that defines it into nonnegative-time and negative-time portions.
The nonnegative-time or one-sided z-transform is defined by

∞∑
n=0

x[n]z−n (1.73)

and is a power series in z−1. The convergence of the finite sum
∑N

n=0 x[n]z−n as
N → ∞ is governed by the radius of convergence R1 ≥ 0 of the power series.
The series converges (absolutely) for each z such that |z| > R1. The resulting
function of z is an analytic function in this region, that is, it has a well-defined
derivative with respect to the complex variable z at each point in this region,
which is what gives the function its nice properties. The series diverges for
|z| < R1. The behavior of the sum on the circle |z| = R1 requires closer exami-
nation and depends on the particular series; the series may converge (but may
not converge absolutely) at all points, some points, or no points on this cir-
cle. The region |z| > R1 is referred to as the ROC of the power series for the
nonnegative-time part.

Next consider the negative-time part:

−1∑
n=−∞

x[n]z−n =
∞∑

m=1

x[−m]zm (1.74)

which is a power series in z, and has a radius of convergence R2. The series
converges (absolutely) for |z| < R2, which constitutes its ROC; the series is an
analytic function in this region. The series diverges for |z| > R2. The behavior
on the circle |z| = R2 takes closer examination, and depends on the particular
series; and the series may converge (but may not converge absolutely) at
all points, some points, or no points on this circle. If R1 < R2, then the
z-transform of x[n] converges (absolutely) for R1 < |z| < R2; this annular
region is its ROC. The transform is analytic in this region. The series that
defines the transform diverges for |z| < R1 and |z| > R2. If R1 > R2, then the
z-transform does not exist (for example, for x[n] = 0.5nu[−n − 1] + 2nu[n]). If
R1 = R2, then the transform may exist in a technical sense, but is not useful as
a z-transform because it has no ROC. However, if R1 = R2 = 1, then we may
still be able to compute and use a DTFT. For example, for x[n] = 3 for all n, or
for x[n] = (sin �0n)/(πn), the DTFT can be used by incorporating generalized
functions such as impulses and step functions in the frequency domain.

Relating the ROC to Signal Properties

For an absolutely summable sequence (such as the impulse response of a
BIBO-stable system), that is, an �1-signal, the unit circle must lie in the ROC
or must be a boundary of the ROC. Conversely, we can conclude that a signal
is �1 if the ROC contains the unit circle because the transform converges abso-
lutely in its ROC. If the unit circle constitutes a boundary of the ROC, then
further analysis is generally needed to determine if the signal is �1. Rational
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transforms always have a pole on the boundary of the ROC, as elaborated
on below, so if the unit circle is on the boundary of the ROC of a rational
transform, then there is a pole on the unit circle and the signal cannot be �1.

For a right-sided signal, it is the case that R2 = ∞, that is, the ROC
extends everywhere in the complex plane outside the circle of radius R1, up
to (and perhaps including) ∞. The ROC includes ∞ if the signal is zero for
negative time.

We can state a converse result if, for example, we know the signal com-
prises only sums of one-sided exponentials of the form obtained when inverse
transforming a rational transform. In this case, if R2 = ∞, then the signal must
be right-sided; if the ROC includes ∞, then the signal must be causal, that is,
zero for n < 0.

For a left-sided signal, R1 = 0, that is, the ROC extends inward from the
circle of radius R2, up to (and perhaps including) zero. The ROC includes
z = 0 if the signal is zero for positive time.

In the case of signals that are sums of one-sided exponentials, we have
the converse: if R1 = 0, then the signal must be left-sided; if the ROC includes
z = 0, then the signal must be anticausal, that is, zero for n > 0.

As indicated earlier, the ROC cannot contain poles of the z-transform
because poles are values of z where the transform has infinite magnitude,
while the ROC comprises values of z where the transform converges. For
signals with rational transforms, one can use the fact that such signals are
sums of one-sided exponentials to show that the possible boundaries of
the ROC are in fact precisely determined by the locations of the poles.
Specifically:

(a) The outer bounding circle of the ROC in the rational case contains a
pole and/or has radius ∞. If the outer bounding circle is at infinity, then
(as we have already noted) the signal is right-sided, and is in fact causal
if there is no pole at ∞.

(b) The inner bounding circle of the ROC in the rational case contains a pole
and/or has radius 0. If the inner bounding circle reduces to the point 0,
then (as we have already noted) the signal is left-sided, and is in fact
anticausal if there is no pole at 0.

The Inverse z-Transform

One method for inverting a rational z-transform is using a partial fraction
expansion, then either directly recognizing the inverse transform of each term
in the partial fraction representation or expanding the term in a power series
that converges for z in the specified ROC. For example, a term of the form

1
1 − az−1

(1.75)

can be expanded in a power series in az−1 if |a| < |z| for z in the ROC, and
expanded in a power series in a−1z if |a| > |z| for z in the ROC. Carrying
out this procedure for each term in a partial fraction expansion, we find
that the signal x[n] is a sum of left-sided and/or right-sided exponentials. For



50 Chapter 1 Signals and Systems

nonrational transforms, where there may not be a partial fraction expansion to
simplify the process, it is still reasonable to attempt the inverse transformation
by expansion into a power series consistent with the given ROC.

Although we will generally use partial fraction or power series methods
to invert z-transforms, there is an explicit formula that is similar to that of the
inverse DTFT, specifically,

x[n] = 1
2π

∫ π

−π

X(z)zn d�

∣∣∣
z=rej�

(1.76)

where the constant r is chosen to place z in the ROC. This is not the most gen-
eral inversion formula, but is sufficient for us, and shows that x[n] is expressed
as a weighted combination of DT exponentials.

As is the case for Fourier transforms, there are many useful z-transform
pairs and properties developed and tabulated in basic texts on signals and sys-
tems. Appropriate use of transform pairs and properties is often the basis for
obtaining the z-transform or the inverse z-transform of many other signals.

1.4.2 The Bilateral Laplace Transform

As with the z-transform, the Laplace transform is introduced in part to handle
important classes of signals that do not have CTFTs, but it also enhances our
understanding of the CTFT. The definition of the Laplace transform is

X(s) =
∫ ∞

−∞
x(t) e−st dt (1.77)

where s is a complex variable, s = σ + jω. The Laplace transform can thus be
thought of as the CTFT of x(t) e−σ t . With σ appropriately chosen, the integral
in Eq. (1.77) can exist even for signals that have no CTFT.

The development of the Laplace transform parallels closely that of the
z-transform in the preceding section, but with eσ playing the role that r did
in Section 1.4.1. The interior of the set of values of s for which the defining
integral converges, as the limits on the integral approach ±∞, comprises the
ROC for the transform X(s). The ROC is now determined by the minimum
and maximum allowable values of σ , say σ1 and σ2 respectively. We refer to
σ1, σ2 as abscissas of convergence. The corresponding ROC is a vertical strip
between σ1 and σ2 in the complex plane, σ1 < Re{s} < σ2. Equation (1.77)
converges absolutely within the ROC; convergence at the left and right bound-
ing vertical lines of the strip has to be separately examined. Furthermore, the
transform is analytic (that is, differentiable as a complex function) throughout
the ROC. The strip may extend to σ1 = −∞ on the left, and to σ2 = +∞ on
the right. If the strip collapses to a line (so that the ROC vanishes), then the
Laplace transform is not useful (except if the line happens to be the jω axis, in
which case a CTFT analysis may perhaps be recovered).

For example, consider x1(t) = eatu(t); the integral in Eq. (1.77) eval-
uates to X1(s) = 1/(s − a) provided Re{s} > a. On the other hand, for
x2(t) = −eatu(−t), the integral in Eq. (1.77) evaluates to X2(s) = 1/(s − a)
provided Re{s} < a. As with the z-transform, note that the expressions for the
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transforms above are identical; they are distinguished by their distinct regions
of convergence.

The ROC may be associated with properties of the signal. For example,
for absolutely integrable signals, also referred to as L1 signals, the integrand in
the definition of the Laplace transform is absolutely integrable on the jω axis,
so the jω axis is in the ROC or on its boundary. In the other direction, if the jω
axis is strictly in the ROC, then the signal is L1, because the integral converges
absolutely in the ROC. Recall that a system has an L1 impulse response if and
only if the system is BIBO stable, so the result here is relevant to discussions
of stability: if the jω axis is strictly in the ROC of the system function, then the
system is BIBO stable.

For right-sided signals, the ROC is some right half-plane (i.e., all s such
that Re{s} > σ1). Thus the system function of a causal system will have an
ROC that is some right half-plane. For left-sided signals, the ROC is some left
half-plane. For signals with rational transforms, the ROC contains no poles,
and the boundaries of the ROC will have poles. Since the location of the ROC
of a transfer function relative to the imaginary axis relates to BIBO stability,
and since the poles identify the boundaries of the ROC, the poles relate to
stability. In particular, a system with a right-sided impulse response (e.g., a
causal system) will be stable if and only if all its poles are finite and in the
left half-plane, because this is precisely the condition that allows the ROC
to contain the entire imaginary axis. Also note that a signal with a rational
transform and no poles at infinity is causal if and only if it is right-sided.

A further property worth recalling is connected to the fact that exponen-
tials are eigenfunctions of LTI systems. If we denote the Laplace transform
of the impulse response h(t) of an LTI system by H(s), then es0t at the input
of the system yields H(s0) es0t at the output, provided s0 is in the ROC of the
transfer function.

1.5 DISCRETE-TIME PROCESSING OF
CONTINUOUS-TIME SIGNALS

Many modern systems for applications such as communication, entertain-
ment, navigation, and control are a combination of CT and DT subsystems,
exploiting the inherent properties and advantages of each. In particular,
the DT processing of CT signals is common in such applications, and we
describe the essential ideas behind such processing here. As with the ear-
lier sections, we assume that this discussion is primarily a review of familiar
material, included here to establish notation and for convenient reference
from later chapters in this text. In this section, and throughout this text,
we will often relate the CTFT of a CT signal and the DTFT of a DT sig-
nal obtained from samples of the CT signal. We will use the subscripts c
and d when necessary to help keep clear which signals are CT and which
are DT.
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1.5.1 Basic Structure for DT Processing
of CT Signals

Figure 1.5 depicts the basic structure of this processing, which involves
continuous-to-discrete (C/D) conversion to obtain a sequence of samples of
the CT input signal; followed by DT filtering to produce a sequence of sam-
ples of the desired CT output; then discrete-to-continuous (D/C) conversion
to reconstruct this desired CT output signal from the sequence of samples. We
will often restrict ourselves to conditions such that the overall system in Figure
1.5 is equivalent to an LTI CT system. The necessary conditions for this typ-
ically include restricting the DT filtering to LTI processing by a system with
frequency response Hd(ej�), and also requiring that the input xc(t) be appro-
priately bandlimited. To satisfy the latter requirement, it is typical to precede
the structure in the figure by a filter whose purpose is to ensure that xc(t) is
essentially bandlimited. While this filter is often referred to as an anti-aliasing
filter, we can often allow some aliasing in the C/D conversion if the DT system
removes the aliased components; the overall system can then still be a CT LTI
system.

The ideal C/D converter in Figure 1.5 has as its output a sequence of
samples of xc(t) with a specified sampling interval T1, so that the DT sig-
nal is xd[n] = xc(nT1). Conceptually, therefore, the ideal C/D converter is
straightforward. A practical analog-to-digital (A/D) converter also quantizes
the signal to one of a finite set of output levels. However, in this text we do not
consider the additional effects of quantization.

In the frequency domain, the CTFT of xc(t) and the DTFT of xd[n] can
be shown to be related by

Xd(ej�)

∣∣∣∣∣
�=ωT1

= 1
T1

∑
k

Xc

(
jω − jk

2π

T1

)
. (1.78)

When xc(t) is sufficiently bandlimited so that

Xc( jω) = 0, |ω| ≥ π

T1
(1.79)

xd[n]xc(t)

T1

yc( t)
C/D

T2

D/CHd(e jÆ)

Hc( jv)

yd[n]

Figure 1.5 DT processing of CT signals.
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that is, when the sampling is at or above the Nyquist rate, then Eq. (1.78) can
be rewritten as

Xd(ej�)

∣∣∣∣∣
�=ωT1

= 1
T1

Xc( jω) , |ω| < π/T1 (1.80a)

or equivalently

Xd(ej�) = 1
T1

Xc

(
j
�

T1

)
, |�| < π . (1.80b)

Note that Xd(ej�) is extended periodically outside the interval |�| < π .
The ideal D/C converter in Figure 1.5 is defined through the interpola-

tion relation

yc(t) =
∑

n

yd[n]
sin (π (t − nT2) /T2)

π(t − nT2)/T2
, (1.81)

which shows that yc(nT2) = yd[n]. Since each term in the above sum is band-
limited to |ω| < π/T2, the CT signal yc(t) is also bandlimited to this frequency
range, so this D/C converter is more completely referred to as the ideal band-
limited interpolating converter. The C/D converter in Figure 1.5, under the
assumption Eq. (1.79), is similarly characterized by the fact that the CT signal
xc(t) is the ideal bandlimited interpolation of the DT sequence xd[n].

Because yc(t) is bandlimited and yc(nT2) = yd[n], analogous relations to
Eq. (1.80) hold between the DTFT of yd[n] and the CTFT of yc(t):

Yd(ej�)

∣∣∣∣∣
�=ωT2

= 1
T2

Yc( jω) , |ω| < π/T2 (1.82a)

or equivalently

Yd(ej�) = 1
T2

Yc

(
j
�

T2

)
, |�| < π . (1.82b)

Figure 1.6 shows one conceptual representation of the ideal D/C
converter. This figure interprets Eq. (1.81) to be the result of evenly spacing
a sequence of impulses at intervals of T2—the reconstruction interval—with
impulse strengths given by the yd[n], then filtering the result by an ideal
low-pass filter L( jω) with gain T2 in the passband |ω| < π/T2. This operation

yd[n] yp(t)

D/C

yc(t)
L(jv)

@[n - k] S
@(t - kT2)

T2

Figure 1.6 Conceptual representation
of processes that yield ideal D/C
conversion, interpolating a DT sequence
into a bandlimited CT signal using
reconstruction interval T2.
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produces the bandlimited CT signal yc(t) that interpolates the specified
sequence values yd[n] at the instants t = nT2, that is, yc(nT2) = yd[n].

1.5.2 DT Filtering and Overall CT Response

We now assume, unless stated otherwise, that T1 = T2 = T. If in Figure 1.5 the
bandlimiting constraint of Eq. (1.79) is satisfied, and if we set yd[n] = xd[n],
then yc(t) = xc(t). More generally, when the DT system in Figure 1.5 is an LTI
DT filter with frequency response Hd(ej�), so

Yd(ej�) = Hd(ej�)Xd(ej�) , (1.83)

and provided any aliased components of xc(t) are eliminated by Hd(ej�), then
assembling Eqs. (1.80), (1.82), and (1.83) yields

Yc( jω) = Hd(ej�)

∣∣∣∣∣
�=ωT

Xc( jω) , |ω| < π/T . (1.84)

The action of the overall system is thus equivalent to that of a CT filter whose
frequency response is

Hc( jω) = Hd(ej�)

∣∣∣∣∣
�=ωT

, |ω| < π/T . (1.85)

In other words, under the bandlimiting and sampling rate constraints men-
tioned above, the overall system behaves as an LTI CT filter, and the response
of this filter is related to that of the embedded DT filter through a simple fre-
quency scaling. The sampling rate can be lower than the Nyquist rate, provided
that the DT filter eliminates any aliased components.

If we wish to use the system in Figure 1.5 to implement a CT LTI filter
with frequency response Hc( jω), we choose Hd

(
ej�
)

according to Eq. (1.85),
provided that xc(t) is appropriately bandlimited. If we define Hc( jω) = 0 for
|ω| ≥ π/T, then Eq. (1.85) also corresponds to the following relation between
the DT and CT impulse responses:

hd[n] = T hc(nT) . (1.86)

The DT filter is therefore a sampled version of the CT filter. When xc(t) and
Hd(ej�) are not sufficiently bandlimited to avoid aliased components in yd[n],
then the overall system in Figure 1.5 is no longer time-invariant. It is, however,
still linear since it is a cascade of linear subsystems.

The following two examples illustrate the use of Eq. (1.85) as well as
Figure 1.5, both for DT processing of CT signals and for interpretation of two
important DT systems.
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Example 1.3 Digital Differentiator

In this example we wish to implement a CT differentiator using a DT system in the
configuration of Figure 1.5. We need to choose Hd

(
ej�
)

so that yc(t) = dxc(t)
dt , assuming

that xc(t) is bandlimited to π/T. The desired overall CT frequency response is therefore

Hc( jω) = Yc( jω)
Xc( jω)

= jω . (1.87)

Consequently, using Eq. (1.85) we choose Hd(ej�) such that

Hd(ej�)

∣∣∣∣∣
�=ωT

= jω , |ω| <
π

T
(1.88a)

or equivalently

Hd(ej�) = j�/T , |�| < π . (1.88b)

A DT system with the frequency response in Eq. (1.88b) is commonly referred to as
a digital differentiator. To understand the relation between the input xd[n] and output
yd[n] of the digital differentiator, note that yc(t)—which is the bandlimited interpola-
tion of yd[n]—is the derivative of xc(t), and xc(t) in turn is the bandlimited interpolation
of xd[n]. It follows that yd[n] can, in effect, be thought of as the result of sampling the
derivative of the bandlimited interpolation of xd[n].

Example 1.4 Half-Sample Delay

In designing DT systems, a phase factor of the form e−jα�, |�| < π , is often included or
required. When α is an integer, this has a straightforward interpretation: it corresponds
simply to an integer shift of the time sequence by α. When α is not an integer, the
interpretation is not as immediate, since a DT sequence can only be directly shifted by
integer amounts.

In this example we consider the case of α = 1
2 , referred to as a half-sample delay.

To provide an interpretation, we consider the implications of choosing the DT system
in Figure 1.5 to have frequency response

Hd(ej�) = e−j�/2 , |�| < π . (1.89)

Whether or not xd[n] explicitly arose by sampling a CT signal, we can associate xd[n]
with its bandlimited interpolation xc(t) for any specified sampling or reconstruction
interval T. Similarly, we can associate yd[n] with its bandlimited interpolation yc(t)
using the reconstruction interval T. With Hd

(
ej�
)

given by Eq. (1.89), the equivalent
CT frequency response relating yc(t) to xc(t) is

Hc( jω) = e−jωT/2 (1.90)

representing a time delay of T/2, which is half the sample spacing; consequently,
yc(t) = xc(t − T/2). We therefore conclude that for a DT system with frequency
response given by Eq. (1.89), the DT output yd[n] corresponds to samples of the half-
sample delay of the bandlimited interpolation of the input sequence xd[n]. Note that
in this interpretation the choice for the value of T is immaterial.
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The preceding interpretation allows us to find the unit sample (or impulse)
response of the half-sample delay system through a simple argument. If xd[n] = δ[n],
then xc(t) must be the bandlimited interpolation of this (with some T that we could
have specified to take any particular value), so

xc(t) = sin(π t/T)
π t/T

(1.91)

and therefore

yc(t) =
sin
(
π(t − (T/2))/T

)
π(t − (T/2))/T

(1.92)

which shows that the desired unit sample response is

yd[n] = hd[n] =
sin
(
π(n − (1/2))

)
π(n − (1/2))

. (1.93)

This discussion of a half-sample delay also generalizes in a straightforward way to any
integer or non-integer choice for the value of α.

1.5.3 Nonideal D/C Converters

In Section 1.5.1 we defined the ideal D/C converter through the bandlimited
interpolation formula Eq. (1.81), also illustrated in Figure 1.6, which corre-
sponds to processing a train of impulses with strengths equal to the sequence
values yd[n] through an ideal low-pass filter. A more general class of D/C con-
verters, which includes the ideal converter as a particular case, creates a CT
signal yc(t) from a DT signal yd[n] according to the following:

yc(t) =
∞∑

n=−∞
yd[n] p(t − nT) (1.94)

where p(t) is some selected basic pulse and T is the reconstruction interval or
pulse repetition interval. This too can be seen as the result of processing an
impulse train of sequence values through a filter, but a filter that has impulse
response p(t) rather than that of the ideal low-pass filter. The CT signal yc(t)
is thus constructed by adding together shifted and scaled versions of the basic
pulse; the number yd[n] scales p(t − nT), which is the basic pulse delayed by
nT. Note that the ideal bandlimited interpolating converter of Eq. (1.81) is
obtained by choosing

p(t) = sin(π t/T)
π t/T

. (1.95)

In Chapter 3, we will discuss the interpretation of Eq. (1.94) as pulse-
amplitude modulation (PAM) for communicating DT information over a CT
channel.

The relationship in Eq. (1.94) can also be described quite simply in the
frequency domain. Taking the CTFT of both sides, denoting the CTFT of p(t)
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by P( jω), and using the fact that delaying a signal by t0 in the time domain
corresponds to multiplication by e−jωt0 in the frequency domain, we get

Yc( jω) =
( ∞∑

n=−∞
yd[n] e−jnωT

)
P( jω)

= Yd(ej�)

∣∣∣∣∣
�=ωT

P( jω) . (1.96)

In the particular case where p(t) is the sinc pulse in Eq. (1.95), with transform
P( jω) that has the constant value T for |ω| < π/T and 0 outside this band, we
recover the relation in Eq. (1.82).

In practice, the ideal frequency characteristic can only be approximated,
with the accuracy of the approximation often related to cost of implemen-
tation. A commonly used simple approximation is the (centered) zero-order
hold (ZOH), specified by the choice

pz(t) =
{

1 for |t| < (T/2)
0 elsewhere. (1.97)

This D/C converter holds the value of the DT signal at time n, namely the
value yd[n], for an interval of length T centered at nT in the CT domain, as
illustrated in Figure 1.7. The centered ZOH is of course noncausal, but is easily
replaced with the noncentered causal ZOH, for which the basic pulse is

pz′(t) =
{

1 for 0 ≤ t < T
0 elsewhere.

(1.98)

Such ZOH converters are commonly used.
Another common choice is a centered first-order hold (FOH), for which

the basic pulse pf (t) is triangular as shown in Figure 1.8. Use of the FOH rep-
resents linear interpolation between the sequence values. Of course, the use of
the ZOH and FOH will not be equivalent to exact bandlimited interpolation
as required by the Nyquist sampling theorem. The transform of the centered
ZOH pulse is

Pz( jω) = T
sin(ωT/2)

ωT/2
(1.99)

yd(n)

n1 2

3

0-1

(a) (b)

yc(t)

tT0-T 2T

Figure 1.7 A centered zero-order hold (ZOH): (a) DT sequence;
(b) the result of applying the centered ZOH to (a).
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p(t)

t
T-T

1

Figure 1.8 Basic pulse pf (t) for
centered first-order hold (FOH).

T

ZOH

FOH

Ideal bandlimited

interpolator

-6p/T -4p/T -2p/T 2p/T 4p/T 6p/T-p/T p/T v

Figure 1.9 The Fourier transform amplitudes of the ideal bandlimited
interpolator, the ZOH, and the FOH.

and that of the centered FOH pulse is

Pf ( jω) = T
(

sin(ωT/2)
ωT/2

)2

. (1.100)

The Fourier transform amplitudes of the ideal bandlimited interpolator, the
ZOH, and the FOH are shown in Figure 1.9.

1.6 FURTHER READING

As noted in the Preface, we assume a background in the foundations of signals
and systems analysis in both continuous and discrete time. Chapters 1 and 2,
which follow the development in [Op1] quite closely, are primarily intended to
review and summarize basic concepts and establish notation. Computational
explorations of this material are found in [Buc] and [McC]. Other texts on
the basics of signals and systems include [Ch1], [Ha1], [Kwa], [La1], [Phi],
and [Rob]. A rich set of perspectives is found in [Sie], which emphasizes
continuous-time signals and systems. A somewhat more advanced develop-
ment for discrete-time signals and systems is in [Op2], see also [Mit], [Ma1],
[Pra] and [Pr1]. The geometric treatment in [Vet] exploits the view of sig-
nals as Hilbert-space vectors. Classic and fairly advanced books on signal
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analysis and Fourier transforms are [Bra], [Gui], [Pa1], [Pa2], [Pa3], all of
which offer useful viewpoints. The treatment of Fourier theory in [Cha] is
concise and illuminating.

Problems

Basic Problems

1.1. A simple physical model for the motion of a certain electric vehicle along a track
is given by the following differential equation, with the position of the vehicle
denoted by y(t):

d2y(t)
dt2

= −
( cf

m

) dy(t)
dt

−
( cb

m

) dy(t)
dt

xb(t) + xa(t) ,

where xb(t) is the braking force applied to the wheels; xa(t) is the acceleration
provided by the electric motor; m is the mass of the car; and cf and cb are fric-
tional constants for the vehicle and brakes, respectively. Assume that we have
the constraint xb ≥ 0, but that xa can be positive or negative.

(a) Is the model linear? That is, do its nonzero solutions obey the superposition
principle? Is the model time-invariant?

(b) How do your answers change if the braking force xb(t) is identically zero?

1.2. (a) Suppose the input signal to a stable LTI system with system function H(s) is
constant at some value α for all time t. What is the corresponding output at
each t?

(b) Denote by y(t) the output signal obtained from the system in (a) when
the input to it is the signal x(t) = t for all time. Now obtain two dis-
tinct expressions for the output corresponding to the input t − α, where
α is an arbitrary constant. Hint: Invoke the linearity and time invariance
of the system, and use your result from (a). By choosing α appropri-
ately, deduce that y(t) = bt + y(0) for some constant b. Express b in terms
of H(s).

1.3. Indicate whether the systems below satisfy the following system properties:
linearity, time invariance, causality, and BIBO stability.

(a) A system with input x(t) and output y(t), with input-output relation

y(t) = x4(t), −∞ < t < ∞ .

(b) A system with input x[n] and output y[n], and input-output relation

y[n] =
{

0 n ≤ 0
y[n − 1] + x[n] n > 0 .

(c) A system with input x(t) and output y(t), with input-output relation

y(t) = x(4t + 3) − ∞ < t < ∞ .

(d) A system with input x(t) and output y(t), with input-output relation

y(t) =
∫ ∞

−∞
x(τ) dτ − ∞ < t < +∞ .
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1.4. We are given a certain LTI system with impulse response h0(t), and are told that
when the input is x0(t), the output y0(t) is the waveform shown in Figure P1.4.

y0(t)

1

0 2 t Figure P1.4

We are then given the following set of inputs x(t) to LTI systems with the
indicated impulse responses h(t):

Input x(t) Impulse response h(t)

(a) x(t) = 2x0(t) h(t) = h0(t)
(b) x(t) = x0(t) − x0(t − 2) h(t) = h0(t)
(c) x(t) = x0(t − 2) h(t) = h0(t + 1)
(d) x(t) = x0(−t) h(t) = h0(t)
(e) x(t) = x0(−t) h(t) = h0(−t)
(f) x(t) = dx0(t)

dt h(t) = dh0(t)
dt

In each of these cases, determine whether or not we have enough informa-
tion available to determine the output y(t) uniquely. If it is possible to determine
y(t) uniquely, provide an analytical expression for it and a sketch of it. In those
cases where you believe it is not possible to find y(t) uniquely, see if you can
prove that this is not possible.

1.5. (a) Consider an LTI system with input x(t) and output y(t) related through the
equation

y(t) =
∫ t

−∞
e−(t−τ )x(τ − 2) dτ .

What is the impulse response h(t) for this system?
(b) Determine the response of this system when the input x(t) is as shown in

Figure P1.5-1.

x(t)

t2-1

1

Figure P1.5-1

(c) Consider the interconnection of LTI systems shown in Figure P1.5-2. Here
h(t) is as in part (a). Determine the output w(t) when the input x(t) is the


