

h

D I G I TA L R E S O U R C E S F O R S T U D E N T S

Your new textbook provides 12-month access to digital resources that may include
source code, web chapters and more. Refer to the preface in the textbook for
a detailed list of resources.

Follow the instructions below to register for the Companion Website for Paul Deitel
and Harvey Deitel’s Visual C# How to Program, Sixth Edition, Global Edition.

1 Go to www.pearsonglobaleditions.com

2 Enter the title of your textbook or browse by author name.

3 Click Companion Website.

4 Click Register and follow the on-screen instructions to create a login name and password.

Use this student access code to register for the Companion Website.

Use the login name and password you created during registration to start
using the digital resources that accompany your textbook.

I M P O R TA N T

This access code can only be used once. This subscription is valid for 12 months
upon activation and is not transferable.

For technical support go to https://support.pearson.com/getsupport

ISSDCH-NEUSS-WAXEN-PISTE-GNASH-WWRSE

This page intentionally left blank

h

Paul Deitel
Harvey Deitel
Deitel & Associates, Inc.

Vice President, Editorial Director: Marcia Horton
Acquisitions Editor: Tracy Johnson
Editorial Assistant: Kristy Alaura
Acquisitions Editor, Global Editions: Sourabh Maheshwari
VP of Marketing: Christy Lesko
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Director of Product Management: Erin Gregg
Team Lead, Program and Project Management: Scott Disanno
Program Manager: Carole Snyder
Project Manager: Robert Engelhardt
Project Editor, Global Editions: K.K. Neelakantan
Manufacturing Buyer, Higher Ed | RR Donnelley: Maura Zaldivar-Garcia
Senior Manufacturing Controller, Global Editions: Trudy Kimber
Media Production Manager, Global Editions: Vikram Kumar
Cover Design: Lumina Datamatics
R&P Manager: Ben Ferrini
Inventory Manager: Ann Lam
Cover Photo Credit: © Pichugin Dmitry/Shutterstock.com

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on
page 6.

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the devel-
opment, research, and testing of the theories and programs to determine their effectiveness. The authors and publisher
make no warranty of any kind, expressed or implied, with regard to these programs or to the documentation contained in
this book. The authors and publisher shall not be liable in any event for incidental or consequential damages in connection
with, or arising out of, the furnishing, performance, or use of these programs.

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2018

The rights of Paul Deitel and Harvey Deitel to be identified as the authors of this work have been asserted by them in
accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Visual C# How to Program,6th Edition,
ISBN 978-0-13-460154-0 by Paul Deitel and Harvey Deitel published by Pearson Education © 2017.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permis-
sion of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing
Agency Ltd, Saffron House, 6-10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest
in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply
any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

ISBN-10: 1-292-15346-6

ISBN-13: 978-1-292-15346-9

Typeset by GEX Publishing Services

Printed and bound in Malaysia

In memory of William Siebert, Professor Emeritus of
Electrical Engineering and Computer Science at MIT:

Your use of visualization techniques in
your Signals and Systems lectures inspired
the way generations of engineers, computer
scientists, educators and authors present
their work.

Harvey and Paul Deitel

Trademarks
DEITEL and the double-thumbs-up bug are registered trademarks of Deitel and Associates, Inc.

Microsoft® Windows®, and Microsoft Visual C#® are registered trademarks of the Microsoft Corporation
in the U.S.A. And other countries. This book is not sponsored or endorsed by or affiliated with the Micro-
soft Corporation.

UNIX is a registered trademark of The Open Group.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

Contents

Preface 23

Before You Begin 37

1 Introduction to Computers, the Internet
and Visual C# 41

1.1 Introduction 42
1.2 Computers and the Internet in Industry and Research 42
1.3 Hardware and Software 45

1.3.1 Moore’s Law 45
1.3.2 Computer Organization 46

1.4 Data Hierarchy 47
1.5 Machine Languages, Assembly Languages and High-Level Languages 50
1.6 Object Technology 51
1.7 Internet and World Wide Web 53
1.8 C# 55

1.8.1 Object-Oriented Programming 56
1.8.2 Event-Driven Programming 56
1.8.3 Visual Programming 56
1.8.4 Generic and Functional Programming 56
1.8.5 An International Standard 57
1.8.6 C# on Non-Windows Platforms 57
1.8.7 Internet and Web Programming 57
1.8.8 Asynchronous Programming with async and await 57
1.8.9 Other Key Programming Languages 58

1.9 Microsoft’s .NET 60
1.9.1 .NET Framework 60
1.9.2 Common Language Runtime 60
1.9.3 Platform Independence 61
1.9.4 Language Interoperability 61

1.10 Microsoft’s Windows® Operating System 61
1.11 Visual Studio Integrated Development Environment 63
1.12 Painter Test-Drive in Visual Studio Community 63

8 Contents

2 Introduction to Visual Studio and
Visual Programming 73

2.1 Introduction 74
2.2 Overview of the Visual Studio Community 2015 IDE 74

2.2.1 Introduction to Visual Studio Community 2015 74
2.2.2 Visual Studio Themes 75
2.2.3 Links on the Start Page 75
2.2.4 Creating a New Project 76
2.2.5 New Project Dialog and Project Templates 77
2.2.6 Forms and Controls 78

2.3 Menu Bar and Toolbar 79
2.4 Navigating the Visual Studio IDE 82

2.4.1 Solution Explorer 83
2.4.2 Toolbox 84
2.4.3 Properties Window 84

2.5 Help Menu and Context-Sensitive Help 86
2.6 Visual Programming: Creating a Simple App that Displays Text

and an Image 87
2.7 Wrap-Up 96
2.8 Web Resources 97

3 Introduction to C# App Programming 105
3.1 Introduction 106
3.2 Simple App: Displaying a Line of Text 106

3.2.1 Comments 107
3.2.2 using Directive 108
3.2.3 Blank Lines and Whitespace 109
3.2.4 Class Declaration 109
3.2.5 Main Method 111
3.2.6 Displaying a Line of Text 111
3.2.7 Matching Left ({) and Right (}) Braces 112

3.3 Creating a Simple App in Visual Studio 112
3.3.1 Creating the Console App 112
3.3.2 Changing the Name of the App File 114
3.3.3 Writing Code and Using IntelliSense 114
3.3.4 Compiling and Running the App 116
3.3.5 Errors, Error Messages and the Error List Window 117

3.4 Modifying Your Simple C# App 117
3.4.1 Displaying a Single Line of Text with Multiple Statements 118
3.4.2 Displaying Multiple Lines of Text with a Single Statement 118

3.5 String Interpolation 120
3.6 Another C# App: Adding Integers 121

3.6.1 Declaring the int Variable number1 122
3.6.2 Declaring Variables number2 and sum 123

Contents 9

3.6.3 Prompting the User for Input 123
3.6.4 Reading a Value into Variable number1 123
3.6.5 Prompting the User for Input and Reading a Value into number2 124
3.6.6 Summing number1 and number2 124
3.6.7 Displaying the sum with string Interpolation 125
3.6.8 Performing Calculations in Output Statements 125

3.7 Memory Concepts 125
3.8 Arithmetic 126

3.8.1 Arithmetic Expressions in Straight-Line Form 127
3.8.2 Parentheses for Grouping Subexpressions 127
3.8.3 Rules of Operator Precedence 127
3.8.4 Sample Algebraic and C# Expressions 128
3.8.5 Redundant Parentheses 129

3.9 Decision Making: Equality and Relational Operators 129
3.10 Wrap-Up 134

4 Introduction to Classes, Objects, Methods
and strings 146

4.1 Introduction 147
4.2 Test-Driving an Account Class 148

4.2.1 Instantiating an Object—Keyword new 148
4.2.2 Calling Class Account’s GetName Method 149
4.2.3 Inputting a Name from the User 149
4.2.4 Calling Class Account’s SetName Method 150

4.3 Account Class with an Instance Variable and Set and Get Methods 150
4.3.1 Account Class Declaration 150
4.3.2 Keyword class and the Class Body 151
4.3.3 Instance Variable name of Type string 151
4.3.4 SetName Method 152
4.3.5 GetName Method 154
4.3.6 Access Modifiers private and public 154
4.3.7 Account UML Class Diagram 155

4.4 Creating, Compiling and Running a Visual C# Project with Two Classes 156
4.5 Software Engineering with Set and Get Methods 157
4.6 Account Class with a Property Rather Than Set and Get Methods 158

4.6.1 Class AccountTest Using Account’s Name Property 158
4.6.2 Account Class with an Instance Variable and a Property 160
4.6.3 Account UML Class Diagram with a Property 162

4.7 Auto-Implemented Properties 162
4.8 Account Class: Initializing Objects with Constructors 163

4.8.1 Declaring an Account Constructor for Custom Object
Initialization 163

4.8.2 Class AccountTest: Initializing Account Objects When
They’re Created 164

10 Contents

4.9 Account Class with a Balance; Processing Monetary Amounts 166
4.9.1 Account Class with a decimal balance Instance Variable 166
4.9.2 AccountTest Class That Uses Account Objects with Balances 169

4.10 Wrap-Up 173

5 Algorithm Development and Control
Statements: Part 1 182

5.1 Introduction 183
5.2 Algorithms 184
5.3 Pseudocode 184
5.4 Control Structures 185

5.4.1 Sequence Structure 185
5.4.2 Selection Statements 186
5.4.3 Iteration Statements 187
5.4.4 Summary of Control Statements 187

5.5 if Single-Selection Statement 187
5.6 if…else Double-Selection Statement 188

5.6.1 Nested if…else Statements 189
5.6.2 Dangling-else Problem 191
5.6.3 Blocks 191
5.6.4 Conditional Operator (?:) 192

5.7 Student Class: Nested if…else Statements 193
5.8 while Iteration Statement 196
5.9 Formulating Algorithms: Counter-Controlled Iteration 197

5.9.1 Pseudocode Algorithm with Counter-Controlled Iteration 197
5.9.2 Implementing Counter-Controlled Iteration 198
5.9.3 Integer Division and Truncation 200

5.10 Formulating Algorithms: Sentinel-Controlled Iteration 201
5.10.1 Top-Down, Stepwise Refinement: The Top and First Refinement 201
5.10.2 Second Refinement 202
5.10.3 Implementing Sentinel-Controlled Iteration 204
5.10.4 Program Logic for Sentinel-Controlled Iteration 205
5.10.5 Braces in a while Statement 206
5.10.6 Converting Between Simple Types Explicitly and Implicitly 206
5.10.7 Formatting Floating-Point Numbers 207

5.11 Formulating Algorithms: Nested Control Statements 208
5.11.1 Problem Statement 208
5.11.2 Top-Down, Stepwise Refinement: Pseudocode Representation

of the Top 209
5.11.3 Top-Down, Stepwise Refinement: First Refinement 209
5.11.4 Top-Down, Stepwise Refinement: Second Refinement 209
5.11.5 Complete Second Refinement of the Pseudocode 210
5.11.6 App That Implements the Pseudocode Algorithm 211

5.12 Compound Assignment Operators 213

Contents 11

5.13 Increment and Decrement Operators 213
5.13.1 Prefix Increment vs. Postfix Increment 214
5.13.2 Simplifying Increment Statements 215
5.13.3 Operator Precedence and Associativity 216

5.14 Simple Types 216
5.15 Wrap-Up 217

6 Control Statements: Part 2 232
6.1 Introduction 233
6.2 Essentials of Counter-Controlled Iteration 233
6.3 for Iteration Statement 235

6.3.1 A Closer Look at the for Statement’s Header 236
6.3.2 General Format of a for Statement 236
6.3.3 Scope of a for Statement’s Control Variable 236
6.3.4 Expressions in a for Statement’s Header Are Optional 237
6.3.5 Placing Arithmetic Expressions in a for Statement’s Header 237
6.3.6 Using a for Statement’s Control Variable in the Statement’s Body 238
6.3.7 UML Activity Diagram for the for Statement 238

6.4 Examples Using the for Statement 238
6.5 App: Summing Even Integers 239
6.6 App: Compound-Interest Calculations 240

6.6.1 Performing the Interest Calculations with Math Method pow 241
6.6.2 Formatting with Field Widths and Alignment 242
6.6.3 Caution: Do Not Use float or double for Monetary Amounts 243

6.7 do…while Iteration Statement 244
6.8 switch Multiple-Selection Statement 245

6.8.1 Using a switch Statement to Count A, B, C, D and F Grades 245
6.8.2 switch Statement UML Activity Diagram 249
6.8.3 Notes on the Expression in Each case of a switch 250

6.9 Class AutoPolicy Case Study: strings in switch Statements 251
6.10 break and continue Statements 253

6.10.1 break Statement 253
6.10.2 continue Statement 254

6.11 Logical Operators 255
6.11.1 Conditional AND (&&) Operator 256
6.11.2 Conditional OR (||) Operator 256
6.11.3 Short-Circuit Evaluation of Complex Conditions 257
6.11.4 Boolean Logical AND (&) and Boolean Logical OR (|) Operators 257
6.11.5 Boolean Logical Exclusive OR (^) 258
6.11.6 Logical Negation (!) Operator 258
6.11.7 Logical Operators Example 259

6.12 Structured-Programming Summary 261
6.13 Wrap-Up 266

12 Contents

7 Methods: A Deeper Look 277
7.1 Introduction 278
7.2 Packaging Code in C# 279

7.2.1 Modularizing Programs 279
7.2.2 Calling Methods 280

7.3 static Methods, static Variables and Class Math 280
7.3.1 Math Class Methods 281
7.3.2 Math Class Constants PI and E 282
7.3.3 Why Is Main Declared static? 282
7.3.4 Additional Comments About Main 283

7.4 Methods with Multiple Parameters 283
7.4.1 Keyword static 285
7.4.2 Method Maximum 285
7.4.3 Assembling strings with Concatenation 285
7.4.4 Breaking Apart Large string Literals 286
7.4.5 When to Declare Variables as Fields 287
7.4.6 Implementing Method Maximum by Reusing Method Math.Max 287

7.5 Notes on Using Methods 287
7.6 Argument Promotion and Casting 288

7.6.1 Promotion Rules 289
7.6.2 Sometimes Explicit Casts Are Required 289

7.7 The .NET Framework Class Library 290
7.8 Case Study: Random-Number Generation 292

7.8.1 Creating an Object of Type Random 292
7.8.2 Generating a Random Integer 292
7.8.3 Scaling the Random-Number Range 293
7.8.4 Shifting Random-Number Range 293
7.8.5 Combining Shifting and Scaling 293
7.8.6 Rolling a Six-Sided Die 293
7.8.7 Scaling and Shifting Random Numbers 296
7.8.8 Repeatability for Testing and Debugging 297

7.9 Case Study: A Game of Chance; Introducing Enumerations 297
7.9.1 Method RollDice 300
7.9.2 Method Main’s Local Variables 300
7.9.3 enum Type Status 301
7.9.4 The First Roll 301
7.9.5 enum Type DiceNames 301
7.9.6 Underlying Type of an enum 301
7.9.7 Comparing Integers and enum Constants 302

7.10 Scope of Declarations 302
7.11 Method-Call Stack and Activation Records 305

7.11.1 Method-Call Stack 305
7.11.2 Stack Frames 305
7.11.3 Local Variables and Stack Frames 306
7.11.4 Stack Overflow 306
7.11.5 Method-Call Stack in Action 306

Contents 13

7.12 Method Overloading 309
7.12.1 Declaring Overloaded Methods 309
7.12.2 Distinguishing Between Overloaded Methods 310
7.12.3 Return Types of Overloaded Methods 311

7.13 Optional Parameters 311
7.14 Named Parameters 312
7.15 C# 6 Expression-Bodied Methods and Properties 313
7.16 Recursion 314

7.16.1 Base Cases and Recursive Calls 314
7.16.2 Recursive Factorial Calculations 314
7.16.3 Implementing Factorial Recursively 315

7.17 Value Types vs. Reference Types 317
7.18 Passing Arguments By Value and By Reference 318

7.18.1 ref and out Parameters 319
7.18.2 Demonstrating ref, out and Value Parameters 320

7.19 Wrap-Up 322

8 Arrays; Introduction to Exception Handling 339
8.1 Introduction 340
8.2 Arrays 341
8.3 Declaring and Creating Arrays 342
8.4 Examples Using Arrays 343

8.4.1 Creating and Initializing an Array 343
8.4.2 Using an Array Initializer 344
8.4.3 Calculating a Value to Store in Each Array Element 345
8.4.4 Summing the Elements of an Array 347
8.4.5 Iterating Through Arrays with foreach 347
8.4.6 Using Bar Charts to Display Array Data Graphically;

Introducing Type Inference with var 349
8.4.7 Using the Elements of an Array as Counters 352

Exception Handling 353
8.5.1 Summarizing the Results 354
8.5.2 Exception Handling: Processing the Incorrect Response 355
8.5.3 The try Statement 355
8.5.4 Executing the catch Block 355
8.5.5 Message Property of the Exception Parameter 356

8.6 Case Study: Card Shuffling and Dealing Simulation 356
8.6.1 Class Card and Getter-Only Auto-Implemented Properties 356
8.6.2 Class DeckOfCards 357
8.6.3 Shuffling and Dealing Cards 360

8.7 Passing Arrays and Array Elements to Methods 361
8.8 Case Study: GradeBook Using an Array to Store Grades 363
8.9 Multidimensional Arrays 369

8.9.1 Rectangular Arrays 369

8.5 Using Arrays to Analyze Survey Results; Intro to

14 Contents

8.9.2 Jagged Arrays 370
8.9.3 Two-Dimensional Array Example: Displaying Element Values 371

8.10 Case Study: GradeBook Using a Rectangular Array 374
8.11 Variable-Length Argument Lists 380
8.12 Using Command-Line Arguments 382
8.13 (Optional) Passing Arrays by Value and by Reference 384
8.14 Wrap-Up 388

9 Introduction to LINQ and the List Collection 410
9.1 Introduction 411
9.2 Querying an Array of int Values Using LINQ 412

9.2.1 The from Clause 414
9.2.2 The where Clause 415
9.2.3 The select Clause 415
9.2.4 Iterating Through the Results of the LINQ Query 415
9.2.5 The orderby Clause 415
9.2.6 Interface IEnumerable<T> 416

9.3 Querying an Array of Employee Objects Using LINQ 416
9.3.1 Accessing the Properties of a LINQ Query’s Range Variable 420
9.3.2 Sorting a LINQ Query’s Results by Multiple Properties 420
9.3.3 Any, First and Count Extension Methods 420
9.3.4 Selecting a Property of an Object 420
9.3.5 Creating New Types in the select Clause of a LINQ Query 420

9.4 Introduction to Collections 421
9.4.1 List<T> Collection 421
9.4.2 Dynamically Resizing a List<T> Collection 422

9.5 Querying the Generic List Collection Using LINQ 426
9.5.1 The let Clause 428
9.5.2 Deferred Execution 428
9.5.3 Extension Methods ToArray and ToList 428
9.5.4 Collection Initializers 428

9.6 Wrap-Up 429
9.7 Deitel LINQ Resource Center 429

10 Classes and Objects: A Deeper Look 434
10.1 Introduction 435
10.2 Time Class Case Study; Throwing Exceptions 435

10.2.1 Time1 Class Declaration 436
10.2.2 Using Class Time1 437

10.3 Controlling Access to Members 439
10.4 Referring to the Current Object’s Members with the this Reference 440
10.5 Time Class Case Study: Overloaded Constructors 442

10.5.1 Class Time2 with Overloaded Constructors 442
10.5.2 Using Class Time2’s Overloaded Constructors 446

Contents 15

10.6 Default and Parameterless Constructors 448
10.7 Composition 449

10.7.1 Class Date 449
10.7.2 Class Employee 451
10.7.3 Class EmployeeTest 452

10.8 Garbage Collection and Destructors 453
10.9 static Class Members 453
10.10 readonly Instance Variables 457
10.11 Class View and Object Browser 458

10.11.1 Using the Class View Window 458
10.11.2 Using the Object Browser 459

10.12 Object Initializers 460
10.13 Operator Overloading; Introducing struct 460

10.13.1 Creating Value Types with struct 461
10.13.2 Value Type ComplexNumber 461
10.13.3 Class ComplexTest 463

10.14 Time Class Case Study: Extension Methods 464
10.15 Wrap-Up 467

11 Object-Oriented Programming: Inheritance 475
11.1 Introduction 476
11.2 Base Classes and Derived Classes 477
11.3 protected Members 479
11.4 Relationship between Base Classes and Derived Classes 480

11.4.1 Creating and Using a CommissionEmployee Class 481
11.4.2 Creating a BasePlusCommissionEmployee Class without

Using Inheritance 485
11.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy 490
11.4.4 CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy Using protected Instance Variables 493
11.4.5 CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy Using private Instance Variables 496
11.5 Constructors in Derived Classes 500
11.6 Software Engineering with Inheritance 500
11.7 Class object 501
11.8 Wrap-Up 502

12 OOP: Polymorphism and Interfaces 508
12.1 Introduction 509
12.2 Polymorphism Examples 511
12.3 Demonstrating Polymorphic Behavior 512
12.4 Abstract Classes and Methods 515
12.5 Case Study: Payroll System Using Polymorphism 517

12.5.1 Creating Abstract Base Class Employee 518

16 Contents

12.5.2 Creating Concrete Derived Class SalariedEmployee 520
12.5.3 Creating Concrete Derived Class HourlyEmployee 522
12.5.4 Creating Concrete Derived Class CommissionEmployee 523
12.5.5 Creating Indirect Concrete Derived Class

BasePlusCommissionEmployee 525
12.5.6 Polymorphic Processing, Operator is and Downcasting 526
12.5.7 Summary of the Allowed Assignments Between Base-Class

and Derived-Class Variables 531
12.6 sealed Methods and Classes 532
12.7 Case Study: Creating and Using Interfaces 533

12.7.1 Developing an IPayable Hierarchy 534
12.7.2 Declaring Interface IPayable 536
12.7.3 Creating Class Invoice 536
12.7.4 Modifying Class Employee to Implement Interface IPayable 538
12.7.5 Using Interface IPayable to Process Invoices and Employees

Polymorphically 539
12.7.6 Common Interfaces of the .NET Framework Class Library 541

12.8 Wrap-Up 542

13 Exception Handling: A Deeper Look 547
13.1 Introduction 548
13.2 Example: Divide by Zero without Exception Handling 549

13.2.1 Dividing By Zero 550
13.2.2 Enter a Non-Numeric Denominator 551
13.2.3 Unhandled Exceptions Terminate the App 552

13.3 Example: Handling DivideByZeroExceptions and FormatExceptions 552
13.3.1 Enclosing Code in a try Block 554
13.3.2 Catching Exceptions 554
13.3.3 Uncaught Exceptions 555
13.3.4 Termination Model of Exception Handling 556
13.3.5 Flow of Control When Exceptions Occur 556

13.4 .NET Exception Hierarchy 557
13.4.1 Class SystemException 557
13.4.2 Which Exceptions Might a Method Throw? 558

13.5 finally Block 559
13.5.1 Moving Resource-Release Code to a finally Block 559
13.5.2 Demonstrating the finally Block 560
13.5.3 Throwing Exceptions Using the throw Statement 564
13.5.4 Rethrowing Exceptions 564
13.5.5 Returning After a finally Block 565

13.6 The using Statement 566
13.7 Exception Properties 567

13.7.1 Property InnerException 567
13.7.2 Other Exception Properties 568
13.7.3 Demonstrating Exception Properties and Stack Unwinding 568

Contents 17

13.7.4 Throwing an Exception with an InnerException 570
13.7.5 Displaying Information About the Exception 571

13.8 User-Defined Exception Classes 571
13.9 Checking for null References; Introducing C# 6’s ?. Operator 575

13.9.1 Null-Conditional Operator (?.) 575
13.9.2 Revisiting Operators is and as 576
13.9.3 Nullable Types 576
13.9.4 Null Coalescing Operator (??) 577

13.10 Exception Filters and the C# 6 when Clause 577
13.11 Wrap-Up 578

14 Graphical User Interfaces with
Windows Forms: Part 1 584

14.1 Introduction 585
14.2 Windows Forms 586
14.3 Event Handling 588

14.3.1 A Simple Event-Driven GUI 589
14.3.2 Auto-Generated GUI Code 591
14.3.3 Delegates and the Event-Handling Mechanism 593
14.3.4 Another Way to Create Event Handlers 594
14.3.5 Locating Event Information 595

14.4 Control Properties and Layout 596
14.4.1 Anchoring and Docking 597
14.4.2 Using Visual Studio To Edit a GUI’s Layout 599

14.5 Labels, TextBoxes and Buttons 600
14.6 GroupBoxes and Panels 603
14.7 CheckBoxes and RadioButtons 606

14.7.1 CheckBoxes 606
14.7.2 Combining Font Styles with Bitwise Operators 608
14.7.3 RadioButtons 609

14.8 PictureBoxes 614
14.9 ToolTips 617
14.10 NumericUpDown Control 618
14.11 Mouse-Event Handling 621
14.12 Keyboard-Event Handling 623
14.13 Wrap-Up 627

15 Graphical User Interfaces with
Windows Forms: Part 2 637

15.1 Introduction 638
15.2 Menus 638
15.3 MonthCalendar Control 648
15.4 DateTimePicker Control 649

18 Contents

15.5 LinkLabel Control 652
15.6 ListBox Control 655
15.7 CheckedListBox Control 660
15.8 ComboBox Control 663
15.9 TreeView Control 667
15.10 ListView Control 673
15.11 TabControl Control 679
15.12 Multiple Document Interface (MDI) Windows 683
15.13 Visual Inheritance 691
15.14 User-Defined Controls 696
15.15 Wrap-Up 699

16 Strings and Characters: A Deeper Look 707
16.1 Introduction 708
16.2 Fundamentals of Characters and Strings 709
16.3 string Constructors 710
16.4 string Indexer, Length Property and CopyTo Method 711
16.5 Comparing strings 712
16.6 Locating Characters and Substrings in strings 716
16.7 Extracting Substrings from strings 719
16.8 Concatenating strings 720
16.9 Miscellaneous string Methods 720
16.10 Class StringBuilder 722
16.11 Length and Capacity Properties, EnsureCapacity Method and

Indexer of Class StringBuilder 723
16.12 Append and AppendFormat Methods of Class StringBuilder 725
16.13 Insert, Remove and Replace Methods of Class StringBuilder 727
16.14 Char Methods 730
16.15 Introduction to Regular Expressions (Online) 732
16.16 Wrap-Up 732

17 Files and Streams 739
17.1 Introduction 740
17.2 Files and Streams 740
17.3 Creating a Sequential-Access Text File 741
17.4 Reading Data from a Sequential-Access Text File 750
17.5 Case Study: Credit-Inquiry Program 754
17.6 Serialization 759
17.7 Creating a Sequential-Access File Using Object Serialization 760
17.8 Reading and Deserializing Data from a Binary File 764
17.9 Classes File and Directory 767

17.9.1 Demonstrating Classes File and Directory 768
17.9.2 Searching Directories with LINQ 771

17.10 Wrap-Up 775

Contents 19

18 Searching and Sorting 782
18.1 Introduction 783
18.2 Searching Algorithms 784

18.2.1 Linear Search 784
18.2.2 Binary Search 788

18.3 Sorting Algorithms 792
18.3.1 Selection Sort 793
18.3.2 Insertion Sort 796
18.3.3 Merge Sort 800

18.4 Summary of the Efficiency of Searching and Sorting Algorithms 806
18.5 Wrap-Up 807

19 Custom Linked Data Structures 812
19.1 Introduction 813
19.2 Simple-Type structs, Boxing and Unboxing 813
19.3 Self-Referential Classes 814
19.4 Linked Lists 815
19.5 Stacks 828
19.6 Queues 832
19.7 Trees 835

19.7.1 Binary Search Tree of Integer Values 836
19.7.2 Binary Search Tree of IComparable Objects 843

19.8 Wrap-Up 849

20 Generics 855
20.1 Introduction 856
20.2 Motivation for Generic Methods 857
20.3 Generic-Method Implementation 859
20.4 Type Constraints 862

20.4.1 IComparable<T> Interface 862
20.4.2 Specifying Type Constraints 862

20.5 Overloading Generic Methods 865
20.6 Generic Classes 865
20.7 Wrap-Up 875

21 Generic Collections; Functional Programming
with LINQ/PLINQ 881

21.1 Introduction 882
21.2 Collections Overview 884
21.3 Class Array and Enumerators 886

21.3.1 C# 6 using static Directive 888
21.3.2 Class UsingArray’s static Fields 889
21.3.3 Array Method Sort 889

20 Contents

21.3.4 Array Method Copy 889
21.3.5 Array Method BinarySearch 889
21.3.6 Array Method GetEnumerator and Interface IEnumerator 889
21.3.7 Iterating Over a Collection with foreach 890
21.3.8 Array Methods Clear, IndexOf, LastIndexOf and Reverse 890

21.4 Dictionary Collections 890
21.4.1 Dictionary Fundamentals 891
21.4.2 Using the SortedDictionary Collection 892

21.5 Generic LinkedList Collection 896
21.6 C# 6 Null Conditional Operator ?[] 900
21.7 C# 6 Dictionary Initializers and Collection Initializers 901
21.8 Delegates 901

21.8.1 Declaring a Delegate Type 903
21.8.2 Declaring a Delegate Variable 903
21.8.3 Delegate Parameters 904
21.8.4 Passing a Method Name Directly to a Delegate Parameter 904

21.9 Lambda Expressions 904
21.9.1 Expression Lambdas 906
21.9.2 Assigning Lambdas to Delegate Variables 907
21.9.3 Explicitly Typed Lambda Parameters 907
21.9.4 Statement Lambdas 907

21.10 Introduction to Functional Programming 907
21.11 Functional Programming with LINQ Method-Call Syntax and Lambdas 909

21.11.1 LINQ Extension Methods Min, Max, Sum and Average 912
21.11.2 Aggregate Extension Method for Reduction Operations 912
21.11.3 The Where Extension Method for Filtering Operations 914
21.11.4 Select Extension Method for Mapping Operations 915

21.12 PLINQ: Improving LINQ to Objects Performance with Multicore 915
21.13 (Optional) Covariance and Contravariance for Generic Types 919
21.14 Wrap-Up 921

22 Databases and LINQ 933
22.1 Introduction 934
22.2 Relational Databases 935
22.3 A Books Database 936
22.4 LINQ to Entities and the ADO.NET Entity Framework 940
22.5 Querying a Database with LINQ 941

22.5.1 Creating the ADO.NET Entity Data Model Class Library 943
22.5.2 Creating a Windows Forms Project and Configuring It to

Use the Entity Data Model 947
22.5.3 Data Bindings Between Controls and the Entity Data Model 949

22.6 Dynamically Binding Query Results 955
22.6.1 Creating the Display Query Results GUI 956
22.6.2 Coding the Display Query Results App 957

22.7 Retrieving Data from Multiple Tables with LINQ 959

Contents 21

22.8 Creating a Master/Detail View App 965
22.8.1 Creating the Master/Detail GUI 965
22.8.2 Coding the Master/Detail App 967

22.9 Address Book Case Study 968
22.9.1 Creating the Address Book App’s GUI 970
22.9.2 Coding the Address Book App 971

22.10 Tools and Web Resources 975
22.11 Wrap-Up 975

23 Asynchronous Programming with
async and await 982

23.1 Introduction 983
23.2 Basics of async and await 985

23.2.1 async Modifier 985
23.2.2 await Expression 985
23.2.3 async, await and Threads 985

23.3 Executing an Asynchronous Task from a GUI App 986
23.3.1 Performing a Task Asynchronously 986
23.3.2 Method calculateButton_Click 988
23.3.3 Task Method Run: Executing Asynchronously in a Separate Thread 989
23.3.4 awaiting the Result 989
23.3.5 Calculating the Next Fibonacci Value Synchronously 989

23.4 Sequential Execution of Two Compute-Intensive Tasks 990
23.5 Asynchronous Execution of Two Compute-Intensive Tasks 992

23.5.1 awaiting Multiple Tasks with Task Method WhenAll 995
23.5.2 Method StartFibonacci 996
23.5.3 Modifying a GUI from a Separate Thread 996
23.5.4 awaiting One of Several Tasks with Task Method WhenAny 996

23.6 Invoking a Flickr Web Service Asynchronously with HttpClient 997
23.6.1 Using Class HttpClient to Invoke a Web Service 1001
23.6.2 Invoking the Flickr Web Service’s flickr.photos.search Method 1001
23.6.3 Processing the XML Response 1002
23.6.4 Binding the Photo Titles to the ListBox 1003
23.6.5 Asynchronously Downloading an Image’s Bytes 1004

23.7 Displaying an Asynchronous Task’s Progress 1004
23.8 Wrap-Up 1008

Chapters on the Web 1015

A Operator Precedence Chart 1016

B Simple Types 1018

22 Contents

C ASCII Character Set 1020

Appendices on the Web 1021

Index 1023

Online Topics
PDFs presenting additional topics for advanced college courses and professionals are avail-
able through the book’s Companion Website:
 http://www.pearsonglobaleditions.com/deitel

New copies of this book come with a Companion Website access code that’s located on
the book’s inside front cover. If the access code is already visible or there is no card, you
purchased a used book or an edition that does not come with an access code.

Web App Development with ASP.NET
XML and LINQ to XML
Universal Windows Platform (UWP) GUI, Graphics,
Multimedia and XAML
REST Web Services
Cloud Computing with Microsoft Azure™
Windows Presentation Foundation (WPF) GUI, Graph-
ics, Multimedia and XAML
ATM Case Study, Part 1: Object-Oriented Design with
the UML
ATM Case Study, Part 2: Implementing an Object-
Oriented Design in C#
Using the Visual Studio Debugger

Welcome to the world of desktop, mobile and web app development with Microsoft’s®

Visual C#® programming language. Visual C# How to Program, 6/e is based on C# 61 and
related Microsoft software technologies. You’ll be using the .NET platform and the Visual
Studio® Integrated Development Environment on which you’ll conveniently write, test
and debug your applications and run them on Windows® devices. The Windows operat-
ing system runs on desktop and notebook computers, mobile phones and tablets, game
systems and a great variety of devices associated with the emerging “Internet of Things.”

We believe that this book and its supplements for students and instructors will give
you an informative, engaging, challenging and entertaining introduction to Visual C#.
The book presents leading-edge computing technologies in a friendly manner appropriate
for introductory college course sequences, based on the curriculum recommendations of
two key professional organizations—the ACM and the IEEE.2

You’ll study four of today’s most popular programming paradigms:

• object-oriented programming,

• structured programming,

• generic programming and

• functional programming (new in this edition).

At the heart of the book is the Deitel signature live-code approach—rather than using
code snippets, we generally present concepts in the context of complete working programs
followed by sample executions. We include a broad range of example programs and exer-
cises selected from computer science, business, education, social issues, personal utilities,
sports, mathematics, puzzles, simulation, game playing, graphics, multimedia and many
other areas. We also provide abundant tables, line drawings and UML diagrams for a more
visual learning experience.

1. At the time of this writing, Microsoft has not yet released the official C# 6 Specification. To view an
unofficial copy, visit https://github.com/ljw1004/csharpspec/blob/gh-pages/README.md

2. These recommendations include Computer Science Curricula 2013 Curriculum Guidelines for Under-
graduate Degree Programs in Computer Science, December 20, 2013, The Joint Task Force on Com-
puting Curricula, Association for Computing Machinery (ACM), IEEE Computer Society.

Preface

24 Preface

Read the Before You Begin section after this Preface for instructions on setting up
your computer to run the hundreds of code examples and to enable you to develop your
own C# apps. The source code for all of the book’s examples is available at

Use the source code we provide to compile and run each program as you study it—this
will help you master Visual C# and related Microsoft technologies faster and at a deeper
level. Most of the book’s examples work in Visual Studio on Windows 7, 8 or 10 (there is
no 9). The code examples for the online presentation of the Universal Windows Platform
(UWP) and XAML specifically require Windows 10.

Contacting the Authors
As you read the book, if you have a question, we’re easy to reach at

We’ll respond promptly.

Join the Deitel & Associates, Inc. Social Media Communities
Subscribe to the Deitel® Buzz Online newsletter

and join the Deitel social media communities on

• Facebook®—http://facebook.com/DeitelFan

• LinkedIn®—http://linkedin.com/company/deitel-&-associates

• YouTube®—http://youtube.com/DeitelTV

• Twitter®—http://twitter.com/Deitel

• Instagram®—http://instagram.com/DeitelFan

• Google+™—http://google.com/+DeitelFan

Object-Oriented Programming with an Early Objects Approach
The book introduces the basic concepts and terminology of object-oriented programming
in Chapter 1. In Chapter 2, you’ll visually manipulate objects, such as labels and images.
In Chapter 3, Introduction to C# App Programming, you’ll write Visual C# program
code that manipulates preexisting objects. You’ll develop your first customized classes and
objects in Chapter 4. Presenting objects and classes early gets you “thinking about objects”
immediately and mastering these concepts more thoroughly.

Our early objects presentation continues in Chapters 5–9 with a variety of straight-
forward case studies. In Chapters 10–12, we take a deeper look at classes and objects,

http://www.pearsonglobaleditions.com/deitel

deitel@deitel.com

http://www.deitel.com/newsletter/subscribe.html

 New C# 6 Features 25

present inheritance, interfaces and polymorphism, then use those concepts throughout the
remainder of the book.

New C# 6 Features
We introduce key new C# 6 language features throughout the book (Fig. 1)—each defin-
ing occurrence is marked with a “6” margin icon as shown next to this paragraph.

Interesting, Entertaining and Challenging Exercises
The book contains hundreds of exercises to practice the skills you learn. Extensive self-
review exercises and answers are included for self-study. Also, each chapter concludes with
a substantial set of exercises, which generally include

• simple recall of important terminology and concepts,

• identifying the errors in code samples,

• writing individual program statements,

• writing methods to perform specific tasks,

• writing C# classes,

• writing complete programs and

• implementing major projects.

Figure 2 lists only a sample of the book’s hundreds of exercises, including selections from
our Making-a-Difference exercises set, which encourage you to use computers and the In-
ternet to research and work on significant social problems. We hope you’ll approach these
exercises in the context of your own values, politics and beliefs. The solutions to most of
the book’s exercises are available only to college instructors who have adopted the book for
their courses. See “Instructor Supplements” later in this Preface.

C# 6 new language feature First introduced in

string interpolation Section 3.5

expression bodied methods and get accessors Section 7.15

auto-implemented property initializers Section 8.6.1

getter-only auto-implemented properties Section 8.6.1

nameof operator Section 10.5.1

null-conditional operator (?.) Section 13.9.1

when clause for exception filtering Section 13.10

using static directive Section 21.3.1

null conditional operator (?[]) Section 21.6

collection initializers for any collection with
an Add extension method

Section 21.7

index initializers Section 21.7

Fig. 1 | C# 6 new language features.

26 Preface

A sampling of the book’s exercises

Carbon Footprint Calculator
Body-Mass-Index Calculator
Attributes of Hybrid Vehicles
Gender Neutrality
Stopwatch GUI
Login Form GUI
Calculator GUI
Alarm Clock GUI
Radio GUI
Displaying Shapes
Odd or Even?
Is a Number a Multiple of

Another?
Separating an Integer’s Digits
Multiplication Table of a

Number
Account Class
Student Record Class
Asset Class
Coaching Class
Removing Duplicated Code
Target-Heart-Rate Calculator
Computerizing Health

Records
Inventory Level Calculator
Sales-Commission Calculator
Discount Calculator
Find the Two Largest

Numbers
Dangling-else Problem
Expanded Form
Decimal Equivalent of a

Binary Number
Type of Parallelogram
Permutations
Infinite Series: Mathematical

Constant e
World Population Growth
Enforcing Privacy with

Cryptography
Bar Chart Display
Prime Numbers
Calculating Sales
Car-Pool Savings Calculator
Gas Mileage Calculator

Calculating the Value of log (x)
Pythagorean Triples
Global Warming Facts Quiz
Tax Plan Alternative: The

“FairTax”
Rounding to a Specific

Decimal Place
Hypotenuse of a Right Triangle
Displaying a Hollow Right-

Isosceles Triangle of Any
Character

Separating Digits
Temperature Conversions
Amicable Numbers
Prime Numbers
Reversing Digits
Letter Grades to a Four-Point

Scale
Coin Tossing
Guess-the-Number Game
Distance Between Two Points
Craps Game with Betting
Towers of Hanoi
Computer-Assisted Instruction
Wages Rate
Identifying Multiples of Eight
Dice Game of Craps
Airline Reservations System
Knight’s Tour Chess Puzzle
Eight Queens Chess Puzzle
Sieve of Eratosthenes
Tortoise and the Hare
Merging Arrays
Building Your Own Computer

(Virtual Machine)
Polling
Querying an Array of Invoice

Objects
Name Connector
Hemisphere Class
Depreciating-Value Class
Set of Integers
RationalNumber Class
HugeInteger Class
Tic-Tac-Toe

ComplexNumber Class
Vehicle Inheritance Hierarchy
Payroll System
Accounts Payable System
Polymorphic Banking

Program
CarbonFootprint Interface:

Polymorphism
Length Conversions
Painter
Guess the Number Game
Ecofont
Typing Tutor
Restaurant Bill Calculator
Story Writer
Pig Latin
Cooking with Healthier

Ingredients
Spam Elimination
SMS Language
File of Product Details
Telephone-Number Words
Student Poll
Phishing Scanner
Bucket Sort
Palindromes
Evaluating Expressions with a

Stack
Building Your Own Compiler
Generic Linear Search
SortedDictionary of Colors
Prime Factorization
Bucket Sort with

LinkedList<int>
Sieve of Eratosthenes with

BitArray
Credit-Inquiry Program
Rolling a Die 60,000,000

Times
Baseball Database App
Parsing with LINQ to XML
I/O-Bound vs. Compute-

Bound Apps
Recursive Fibonacci

Fig. 2 | A sampling of the book’s exercises.

 A Tour of the Book 27

A Tour of the Book
This section discusses the book’s modular organization to help instructors plan their syllabi.

Introduction to Computing, Visual C# and Visual Studio 2015 Community Edition
The chapters in this module of the book

• Chapter 1, Introduction to Computers, the Internet and Visual C#

• Chapter 2, Introduction to Visual Studio and Visual Programming

introduce hardware and software fundamentals, Microsoft’s .NET platform and Visual
Programming. The vast majority of the book’s examples will run on Windows 7, 8 and 10
using the Visual Studio 2015 Community edition with which we test-drive a fun Painter
app in Section 1.12. Chapter 1’s introduction to object-oriented programming defines
key terminology and discusses important concepts on which the rest of the book depends.

Introduction to C# Fundamentals
The chapters in this module of the book

• Chapter 3, Introduction to C# App Programming

• Chapter 4, Introduction to Classes, Objects, Methods and Strings

• Chapter 5, Algorithm Development and Control Statements: Part 1

• Chapter 6, Control Statements: Part 2

• Chapter 7, Methods: A Deeper Look

• Chapter 8, Arrays; Introduction to Exception Handling

present rich coverage of C# programming fundamentals (data types, operators, control
statements, methods and arrays) and introduce object-oriented programming through a
series of case studies. These chapters should be covered in order. Chapters 5 and 6 present
a friendly treatment of control statements and problem solving. Chapters 7 and 8 present
rich treatments of methods and arrays, respectively. Chapter 8 briefly introduces exception
handling with an example that demonstrates attempting to access an element outside an
array’s bounds.

Object-Oriented Programming: A Deeper Look
The chapters in this module of the book

• Chapter 9, Introduction to LINQ and the List Collection

• Chapter 10, Classes and Objects: A Deeper Look

• Chapter 11, Object-Oriented Programming: Inheritance

• Chapter 12, OOP: Polymorphism and Interfaces

• Chapter 13, Exception Handling: A Deeper Look

provide a deeper look at object-oriented programming, including classes, objects, inheri-
tance, polymorphism, interfaces and exception handling. An optional online two-chapter
case study on designing and implementing the object-oriented software for a simple ATM
is described later in this preface.

Chapter 9 introduces Microsoft’s Language Integrated Query (LINQ) technology,
which provides a uniform syntax for manipulating data from various data sources, such as

28 Preface

arrays, collections and, as you’ll see in later chapters, databases and XML. Chapter 9 is
intentionally simple and brief to encourage instructors to begin covering LINQ tech-
nology early. Section 9.4 introduces the List collection, which we use in Chapter 12.
Later in the book, we take a deeper look at LINQ, using LINQ to Entities (for querying
databases) and LINQ to XML. Chapter 9’s LINQ coverage can be deferred if you’re in a
course which either skips LINQ or defers coverage until later in the book—it’s required
for one example in Chapter 17 (Fig. 17.6) and many of the later chapters starting with
Chapter 22, Databases and LINQ.

Windows Forms Graphical User Interfaces (GUIs)
The chapters in this module of the book

• Chapter 14, Graphical User Interfaces with Windows Forms: Part 1

• Chapter 15, Graphical User Interfaces with Windows Forms: Part 2

present a detailed introduction to building GUIs using Windows Forms—instructors
teaching Visual C# still largely prefer Windows Forms for their classes. Many of the exam-
ples in GUI Chapters 14–15 can be presented after Chapter 4. We also use Windows
Forms GUIs in several other print and online chapters.

There are two other GUI technologies in Windows—Windows Presentation Foun-
dation (WPF) and Universal Windows Platform (UWP). We provide optional online
treatments of both.3

Strings and Files
The chapters in this module of the book

• Chapter 16, Strings and Characters: A Deeper Look

• Chapter 17, Files and Streams

present string processing and file processing, respectively. We introduce strings beginning
in Chapter 4 and use them throughout the book. Chapter 16 investigates strings in more
detail. Most of Chapter 16’s examples can be presented at any point after Chapter 4.
Chapter 17 introduces text-file processing and object-serialization for inputting and output-
ting entire objects. Chapter 17 requires Windows Forms concepts presented in Chapter 14.

Searching, Sorting and Generic Data Structures
The chapters in this module of the book:

• Chapter 18, Searching and Sorting

• Chapter 19, Custom Linked Data Structures

• Chapter 20, Generics

• Chapter 21, Generic Collections; Functional Programming with LINQ/PLINQ

introduce searching, sorting and data structures. Most C# programmers should use .NET’s
built-in searching, sorting and generic collections (prepackaged data structures) capabilities,
which are discussed in Chapter 21. For instructors who wish to present how to implement
customized searching, sorting and data structures capabilities, we provide Chapters 18–20,
which require the concepts presented in Chapters 3–8 and 10–13. Chapter 18 presents sev-

3. As of Summer 2016, Windows Forms, WPF and UWP apps all can be posted for distribution via the
Windows Store. See http://bit.ly/DesktopToUWP for more information.

 A Tour of the Online Content 29

eral searching and sorting algorithms and uses Big O notation to help you compare how hard
each algorithm works to do its job—the code examples use especially visual outputs to show
how the algorithms work. In Chapter 19, we show how to implement your own custom data
structures, including lists, stacks, queues and binary trees. The data structures in Chapter 19
store references to objects. Chapter 20 introduces C# generics and demonstrates how to
create type-safe generic methods and a type-safe generic stack data structure.

Functional Programming with LINQ, PLINQ, Lambdas, Delegates and Immutability
In addition to generic collections, Chapter 21 now introduces functional programming,
showing how to use it with LINQ to Objects to write code more concisely and with fewer
bugs than programs written using previous techniques. In Section 21.12, with one addi-
tional method call, we’ll demonstrate how PLINQ (Parallel LINQ) can improve LINQ to
Objects performance substantially on multicore systems. The chapter’s exercises also ask
you to reimplement earlier examples using functional-programming techniques.

Database with LINQ to Entities and SQL Server
The chapter in this module

• Chapter 22, Databases and LINQ

presents a novice-friendly introduction to database programming with the ADO.NET
Entity Framework, LINQ to Entities and Microsoft’s free version of SQL Server that’s in-
stalled with the Visual Studio 2015 Community edition. The chapter’s examples require
C#, object-oriented programming and Windows Forms concepts presented in Chapters 3–
14. Several online chapters require the techniques presented in this chapter.

Asynchronous Programming
The chapter in this module

• Chapter 23, Asynchronous Programming with async and await

shows how to take advantage of multicore architectures by writing applications that can
process tasks asynchronously, which can improve app performance and GUI responsive-
ness in apps with long-running or compute-intensive tasks. The async modifier and await
operator greatly simplify asynchronous programming, reduce errors and enable your apps
to take advantage of the processing power in today’s multicore computers, smartphones
and tablets. In this edition, we added a case study that uses the Task Parallel Library (TPL),
async and await in a GUI app—we keep a progress bar moving along in the GUI thread
in parallel with a lengthy, compute-intensive calculation in another thread.

A Tour of the Online Content
The printed book contains the core content (Chapters 1–23) for introductory and inter-
mediate course sequences. Several optional online topics for advanced courses and profes-
sionals are available on the book’s password-protected Companion Website

New copies of this book come with a Companion Website access code that’s located on
the book’s inside front cover. If the access code is already visible or there isn’t an access
code, you purchased a used book or an edition that does not come with an access code.
Figure 3 lists the online topics, and Figure 4 lists a sample of the associated exercises.

http://www.pearsonglobaleditions.com/deitel

30 Preface

Web App Development with ASP.NET
Microsoft’s .NET server-side technology, ASP.NET, enables you to create robust, scalable
web-based apps. You’ll build several apps, including a web-based guestbook that uses
ASP.NET and the ADO .NET Entity Framework to store data in a database and display
data in a web page.

Extensible Markup Language (XML)
The Extensible Markup Language (XML) is pervasive in the software-development indus-
try, e-business and throughout the .NET platform. It’s used in most of this book’s online
topics. XML is required to understand XAML—a Microsoft XML vocabulary that’s used
to describe graphical user interfaces, graphics and multimedia for Universal Windows
Platform (UWP) GUI, graphics and multimedia apps, Windows 10 Mobile apps and
Windows Presentation Foundation (WPF) apps. We present XML fundamentals, then
discuss LINQ to XML, which allows you to query XML content using LINQ syntax.

Universal Windows Platform (UWP) for Desktop and Mobile Apps
The Universal Windows Platform (UWP) is designed to provide a common platform and
user experience across all Windows devices, including personal computers, smartphones,

Online topics

Web App Development with ASP.NET

XML and LINQ to XML

Universal Windows Platform (UWP) GUI, Graphics, Multimedia and XAML

REST Web Services

Cloud Computing with Microsoft Azure™

Using the Visual Studio Debugger

(Optional) Windows Presentation Foundation (WPF) GUI, Graphics, Multimedia and XAML

(Optional) ATM Case Study, Part 1: Object-Oriented Design with the UML

(Optional) ATM Case Study, Part 2: Implementing an OO Design in C#

Fig. 3 | Online topics on the Visual C# How to Program, 6/e Companion Website.

A sampling of the online chapters’ exercises

Guestbook App
Web-Based Address Book
Enhanced Painter App
PhotoViewer App
Data Bindings to LINQ queries
Snake PolyLine App
Drawing App
Enhanced Tip Calculator App
Mortgage Calculator App

College Loan Payoff
Calculator App

Car Payment Calculator App
Mileage Calculator App
Body Mass Index Calculator

App
Target-Heart-Rate Calculator

App
Phone-Book Web Service

Favorite Flickr Searches App
Flag Quiz App
Phone Book App with Data

Binding
Enhanced UsingGradients App
Enhanced DrawStars app
Image Reflector App
Accessibility: Speech-

Controlled Drawing App

Fig. 4 | A sampling of the online chapters’ exercises.

 Teaching Approach 31

tablets, Xbox and even Microsoft’s new HoloLens virtual reality and augmented reality ho-
lographic headset—all using nearly identical code. We present GUI, graphics and multi-
media apps, and demonstrate them on both personal computers and the smartphone
emulator that comes with Visual Studio 2015 Community edition.

REST Web Services
Web services enable you to package app functionality in a manner that turns the web into
a library of reusable services. We include a case study on building a math question gener-
ator web service that’s called by a math tutor app.

Building a Microsoft Azure™ Cloud Computing App
Microsoft Azure’s web services enable you to develop, manage and distribute your apps in
“the cloud.” We’ll demonstrate how to use Azure web services to store an app’s data online.

Windows Presentation Foundation (WPF) GUI, Graphics and Multimedia
Windows Presentation Foundation (WPF)—created after Windows Forms and before
UWP—is another Microsoft technology for building robust GUI, graphics and multimedia
desktop apps. WPF provides you with complete control over all aspects of a GUI’s look-and-
feel and includes multimedia capabilities that are not available in Windows Forms. We dis-
cuss WPF in the context of a painting app, a text editor, a color chooser, a book-cover viewer,
a television video player, various animations, and speech synthesis and recognition apps.

We’re moving away from WPF in favor of UWP for creating apps that can run on
desktop, mobile and other Windows devices. For this reason, the WPF introduction is
provided as is from the previous edition—we will no longer evolve this material.

Optional Case Study: Using the UML to Develop an Object-Oriented Design and C#
Implementation of an ATM (Automated Teller Machine)
The UML™ (Unified Modeling Language™) is the industry-standard graphical language
for visually modeling object-oriented systems. We introduce the UML in the early chapters
and provide an optional online object-oriented design case study in which we use the UML
to design and implement the software for a simple ATM. We analyze a typical requirements
document that specifies the details of the system to be built. We determine the classes needed
to implement that system, the attributes the classes need to have, the behaviors the classes’
methods need to exhibit and we specify how the classes must interact with one another to
meet the system requirements. From the design, we produce a complete working C# imple-
mentation. Students often report a “light bulb moment”—the case study helps them “tie it
all together” and truly understand object orientation.

Teaching Approach
Visual C# How to Program, 6/e contains a rich collection of examples. We concentrate on
building well-engineered software and stress program clarity.

Live-Code Approach. The book is loaded with “live-code” examples—most new concepts
are presented in the context of complete working Visual C# apps, followed by one or more
executions showing program inputs and outputs. In the few cases where we show a code
snippet, to ensure correctness first we tested it in a complete working program then copied
the code from the program and pasted it into the book.

32 Preface

Syntax Shading. For readability, we syntax shade the code, similar to the way Visual Stu-
dio colors the code. Our syntax-shading conventions are:

Code Highlighting. We emphasize key code segments by placing them in gray rectangles.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in colored bold text for easy reference. We show on-screen compo-
nents in the bold Helvetica font (for example, the File menu) and Visual C# program text
in the Lucida font (for example, int count = 5;). We use italics for emphasis.

Objectives. The chapter objectives preview the topics covered in the chapter.

Programming Tips. We include programming tips to help you focus on important as-
pects of program development. These tips and practices represent the best we’ve gleaned
from a combined nine decades of programming and teaching experience.

Summary Bullets. We present a detailed bullet-list summary of each chapter.

Terminology. We include an alphabetized list of the important terms defined in each chapter.

comments appear like this
keywords appear like this
constants and literal values appear like this
all other code appears in black

Good Programming Practices
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Errors
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

Error-Prevention Tips
These tips contain suggestions for exposing and removing bugs from your programs; many
of the tips describe aspects of Visual C# that prevent bugs from getting into programs.

Performance Tips
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tips
These tips help you write code that will run on a variety of platforms.

Software Engineering Observations
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

Look-and-Feel Observation 3.1
These observations help you design attractive, user-friendly graphical user interfaces that
conform to industry norms.

 Obtaining the Software Used in Visual C# How to Program, 6/e 33

Index. We’ve included an extensive index for reference. Defining occurrences of key terms
in the index are highlighted with a colored bold page number.

Obtaining the Software Used in Visual C# How to Program, 6/e
We wrote the code examples in Visual C# How to Program, 6/e using Microsoft’s free
Visual Studio 2015 Community edition. See the Before You Begin section that follows
this preface for download and installation instructions.

Instructor Supplements
The following supplements are available to qualified instructors only through Pearson
Education’s online Instructor Resource Center at www.pearsonglobaleditions.com/deitel:

• Solutions Manual contains solutions to most of the end-of-chapter exercises. We’ve
included many Making-a-Difference exercises, most with solutions. Please do not
write to us requesting access to the Pearson Instructor’s Resource Center. Access
is restricted to college instructors who have adopted the book for their courses.
Instructors can obtain access through their Pearson representatives. If you’re not
a registered faculty member, contact your Pearson representative or visit http://
www.pearsonglobaleditions.com/deitel. Exercise Solutions are not provided for
“project” exercises. Check out our Programming Projects Resource Center for lots
of additional exercise and project possibilities:

• Test Item File of multiple-choice questions (approximately two per top-level
book section)

• Customizable PowerPoint® slides containing all the code and figures in the text,
plus bulleted items that summarize the key points in the text.

Microsoft DreamSpark™
Microsoft provides many of its professional developer tools to students for free via a pro-
gram called DreamSpark (http://www.dreamspark.com). See the website for details on
verifying your student status so you take advantage of this program. To compile, test, de-
bug and run this book’s examples, you need only Windows 10 and the free Visual Studio
2015 Community edition. With the exception of the online UWP examples, the book’s
examples also will compile and run on Windows 7 and higher.

Acknowledgments
We’d like to thank Barbara Deitel of Deitel & Associates, Inc. She painstakingly re-
searched the new capabilities of Visual C#, Visual Studio, .NET and other key technolo-
gies. We’d also like to acknowledge Frank McCown, Ph.D., Associate Professor of
Computer Science, Harding University for his suggestion to include an example that used
a ProgressBar with async and await in Chapter 23—so we ported to C# a similar exam-
ple from our textbook Java How to Program, 10/e.

 http://www.deitel.com/ProgrammingProjects

34 Preface

We’re fortunate to have worked with the dedicated team of publishing professionals
at Pearson Higher Education. We appreciate the guidance, wisdom, energy and mentor-
ship of Tracy Johnson, Executive Editor, Computer Science. Kristy Alaura did an extraor-
dinary job recruiting the book’s reviewers and managing the review process. Bob
Engelhardt did a wonderful job bringing the book to publication.

Reviewers
The book was scrutinized by academics teaching C# courses and industry C# experts.
They provided countless suggestions for improving the presentation. Any remaining flaws
in the book are our own.

Sixth Edition Reviewers: Qian Chen (Department of Engineering Technology: Com-
puter Science Technology Program, Savannah State University), Octavio Hernandez
(Microsoft Certified Solutions Developer, Principal Software Engineer at Advanced
Bionics), José Antonio González Seco (Parliament of Andalusia, Spain), Bradley Sward
(College of Dupage) and Lucian Wischik (Microsoft Visual C# Team).

Fifth Edition Post-Publication Reviewers: To help us prepare to write 6/e, the fol-
lowing academics reviewed 5/e and provided many helpful suggestions: Qian Chen
(Savannah State University), Hongmei Chi (Florida A&M University), Kui Du (Univer-
sity of Massachusetts, Boston), James Leasure (Cuyahoga Community College West),
Victor Miller (Ramapo College), Gary Savard (Champlain College) and Mohammad
Yusuf (New Hampshire Technical Institute).

Other recent edition reviewers: Douglas B. Bock (MCSD.NET, Southern Illinois
University Edwardsville), Dan Crevier (Microsoft), Shay Friedman (Microsoft Visual C#
MVP), Amit K. Ghosh (University of Texas at El Paso), Marcelo Guerra Hahn (Micro-
soft), Kim Hamilton (Software Design Engineer at Microsoft and co-author of Learning
UML 2.0), Huanhui Hu (Microsoft Corporation), Stephen Hustedde (South Mountain
College), James Edward Keysor (Florida Institute of Technology), Narges Kasiri (Okla-
homa State University), Helena Kotas (Microsoft), Charles Liu (University of Texas at San
Antonio), Chris Lovett (Software Architect at Microsoft), Bashar Lulu (INETA Country
Leader, Arabian Gulf), John McIlhinney (Spatial Intelligence; Microsoft MVP Visual
Developer, Visual Basic), Ged Mead (Microsoft Visual Basic MVP, DevCity.net), Anand
Mukundan (Architect, Polaris Software Lab Ltd.), Dr. Hamid R. Nemati (The University
of North Carolina at Greensboro), Timothy Ng (Microsoft), Akira Onishi (Microsoft),
Jeffrey P. Scott (Blackhawk Technical College), Joe Stagner (Senior Program Manager,
Developer Tools & Platforms, Microsoft), Erick Thompson (Microsoft), Jesús Ubaldo
Quevedo-Torrero (University of Wisconsin–Parkside, Department of Computer Sci-
ence), Shawn Weisfeld (Microsoft MVP and President and Founder of UserGroup.tv) and
Zijiang Yang (Western Michigan University).

As you read the book, we’d sincerely appreciate your comments, criticisms, correc-
tions and suggestions for improving the text. Please address all correspondence to:

We’ll respond promptly. It was fun writing Visual C# How to Program, 6/e—we hope you
enjoy reading it!

Paul Deitel
Harvey Deitel

deitel@deitel.com

 About the Authors 35

About the Authors
Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., has over 35
years of experience in computing. He is a graduate of MIT, where he studied Information
Technology. Through Deitel & Associates, Inc., he has delivered hundreds of program-
ming courses worldwide to clients, including Cisco, IBM, Boeing, Siemens, Sun Micro-
systems (now Oracle), Dell, Fidelity, NASA at the Kennedy Space Center, the National
Severe Storm Laboratory, NOAA (National Oceanic and Atmospheric Administration),
White Sands Missile Range, Rogue Wave Software, SunGard, Nortel Networks, Puma,
iRobot, Invensys and many more. He and his co-author, Dr. Harvey Deitel, are the
world’s best-selling programming-language textbook/professional book/video authors.

Paul was named as a Microsoft® Most Valuable
Professional (MVP) for C# in 2012–2014. According
to Microsoft, “the Microsoft MVP Award is an annual
award that recognizes exceptional technology commu-
nity leaders worldwide who actively share their high
quality, real-world expertise with users and Micro-
soft.” He also holds the Java Certified Programmer
and Java Certified Developer designations and is an Oracle Java Champion.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has over 55 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston
University—he studied computing in each of these programs before they spun off Com-
puter Science programs. He has extensive college teaching experience, including earning
tenure and serving as the Chairman of the Computer Science Department at Boston Col-
lege before founding Deitel & Associates, Inc., in 1991 with his son, Paul. The Deitels’
publications have earned international recognition, with translations published in Japa-
nese, German, Russian, Spanish, French, Polish, Italian, Simplified Chinese, Traditional
Chinese, Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hun-
dreds of programming courses to academic, corporate, government and military clients.

Acknowledgments for the Global Edition
Pearson would like to thank and acknowledge Komal Arora for contributing to the Global
Edition, and Ela Kashyap, Amity University Noida, Siddharth Nair, and Sandeep Singh,
Jaypee Institute of Information Technology for reviewing the Global Edition.

C# MVP 2012–2014

This page intentionally left blank

h

Before You
Begin

Please read this section before using the book to ensure that your computer is set up properly.

Font and Naming Conventions
We use fonts to distinguish between features, such as menu names, menu items, and other
elements that appear in the program-development environment. Our convention is

• to emphasize Visual Studio features in a sans-serif bold font (e.g., Properties win-
dow) and

• to emphasize program text in a fixed-width sans-serif font (e.g., bool x = true).

Visual Studio 2015 Community Edition
This textbook uses Windows 10 and the free Microsoft Visual Studio 2015 Community
edition—Visual Studio also can run on various older Windows versions. Ensure that your
system meets Visual Studio 2015 Community edition’s minimum hardware and software
requirements listed at:

Next, download the installer from

then execute it and follow the on-screen instructions to install Visual Studio.
Though we developed the book’s examples on Windows 10, the examples will run on

Windows 7 and higher—with the exception of those in our online Universal Windows
Platform (UWP) presentation. Most examples without graphical user interfaces (GUIs)
also will run on other C# and .NET implementations—see “If You’re Not Using Micro-
soft Visual C#…” later in this Before You Begin for more information.

Viewing File Extensions
Several screenshots in Visual C# How to Program, 6/e display file names with file-name ex-
tensions (e.g., .txt, .cs, .png, etc.). You may need to adjust your system’s settings to dis-
play file-name extensions. If you’re using Windows 7:

1. Open Windows Explorer.

2. Press the Alt key to display the menu bar, then select Folder Options… from the
Tools menu.

3. In the dialog that appears, select the View tab.

https://www.visualstudio.com/en-us/visual-studio-2015-system-
requirements-vs

https://www.visualstudio.com/products/visual-studio-express-vs

38 Before You Begin

4. In the Advanced settings pane, uncheck the box to the left of the text Hide exten-
sions for known file types.

5. Click OK to apply the setting and close the dialog.

If you’re using Windows 8 or higher:

1. Open File Explorer.

2. Click the View tab.

3. Ensure that the File name extensions checkbox is checked.

Obtaining the Source Code
Visual C# How to Program, 6/e’s source-code examples are available for download at

Click the Examples link to download the ZIP archive file to your computer—most brows-
ers will save the file into your user account’s Downloads folder. You can extract the ZIP
file’s contents using built-in Windows capabilities, or using a third-party archive-file tool
such as WinZip (www.winzip.com) or 7-zip (www.7-zip.org).

Throughout the book, steps that require you to access our example code on your com-
puter assume that you’ve extracted the examples from the ZIP file and placed them in your
user account’s Documents folder. You can extract them anywhere you like, but if you
choose a different location, you’ll need to update our steps accordingly. To extract the ZIP
file’s contents using the built-in Windows capabilities:

1. Open Windows Explorer (Windows 7) or File Explorer (Windows 8 and higher).

2. Locate the ZIP file on your system, typically in your user account’s Downloads
folder.

3. Right click the ZIP file and select Extract All….

4. In the dialog that appears, navigate to the folder where you’d like to extract the
contents, then click the Extract button.

Configuring Visual Studio for Use with This Book
In this section, you’ll use Visual Studio’s Options dialog to configure several Visual Studio
options. Setting these options is not required, but will make your Visual Studio match
what we show in the book’s Visual Studio screen captures.

Visual Studio Theme
Visual Studio has three color themes—Blue, Dark and Light. We used the Blue theme with
light colored backgrounds to make the book’s screen captures easier to read. To switch
themes:

1. In the Visual Studio Tools menu, select Options… to display the Options dialog.

2. In the left column, select Environment.

3. Select the Color theme you wish to use.

Keep the Options dialog open for the next step.

http://www.pearsonglobaleditions.com/deitel

 If You’re Not Using Microsoft Visual C#… 39

Line Numbers
Throughout the book’s discussions, we refer to code in our examples by line number. Many
programmers find it helpful to display line numbers in Visual Studio as well. To do so:

1. Expand the Text Editor node in the Options dialog’s left pane.

2. Select All Languages.

3. In the right pane, check the Line numbers checkbox.

Keep the Options dialog open for the next step.

Tab Size for Code Indents
Microsoft recommends four-space indents in source code, which is the Visual Studio de-
fault. Due to the fixed and limited width of code lines in print, we use three-space in-
dents—this reduces the number of code lines that wrap to a new line, making the code a
bit easier to read. If you wish to use three-space indents:

1. Expand the C# node in the Options dialog’s left pane and select Tabs.

2. Ensure that Insert spaces is selected.

3. Enter 3 for both the Tab size and Indent size fields.

4. Click OK to save your settings.

If You’re Not Using Microsoft Visual C#…
C# can be used on other platforms via two open-source projects managed by the .NET
Foundation (http://www.dotnetfoundation.org)—the Mono Project and .NET Core.

Mono Project
The Mono Project is an open source, cross-platform C# and .NET Framework imple-
mentation that can be installed on Linux, OS X (soon to be renamed as macOS) and Win-
dows. The code for most of the book’s console (non-GUI) apps will compile and run using
the Mono Project. Mono also supports Windows Forms GUI, which is used in Chapters
14–15 and several later examples. For more information and to download Mono, visit:

.NET Core

.NET Core is a new cross-platform .NET implementation for Windows, Linux, OS X and
FreeBSD. The code for most of the book’s console (non-GUI) apps will compile and run
using .NET Core. At the time of this writing, a .NET Core version for Windows was avail-
able and versions were still under development for other platforms. For more information
and to download .NET Core, visit:

You’re now ready to learn C# and the .NET platform with Visual C# How to Program,
6/e. We hope you enjoy the book!

http://www.mono-project.com/

https://dotnet.github.io/

This page intentionally left blank

h

1Introduction to Computers,
the Internet and Visual C#

O b j e c t i v e s
In this chapter you’ll:

■ Learn basic computer
hardware, software and data
concepts.

■ Be introduced to the different
types of computer
programming languages.

■ Understand the history of the
Visual C# programming
language and the Windows
operating system.

■ Learn what cloud computing
with Microsoft Azure is.

■ Understand the basics of
object technology.

■ Be introduced to the history
of the Internet and the World
Wide Web.

■ Understand the parts that
Windows, .NET, Visual
Studio and C# play in the C#
ecosystem.

■ Test-drive a Visual C#
drawing app.

42 Chapter 1 Introduction to Computers, the Internet and Visual C#

1.1 Introduction
Welcome to C#1—a powerful computer-programming language that’s easy for novices to
learn and that professionals use to build substantial computer applications. Using this book,
you’ll write instructions commanding computers to perform powerful tasks. Software (i.e.,
the instructions you write) controls hardware (i.e., computers and related devices).

There are billions of personal computers in use and an even larger number of mobile
devices with computers at their core. Since it was released in 2001, C# has been used pri-
marily to build applications for personal computers and systems that support them. The
explosive growth of mobile phones, tablets and other devices also is creating significant
opportunities for programming mobile apps. With this new sixth edition of Visual C#
How to Program, you’ll be able to use Microsoft’s new Universal Windows Platform
(UWP) with Windows 10 to build C# apps for both personal computers and Windows
10 Mobile devices. With Microsoft’s purchase of Xamarin, you also can develop C#
mobile apps for Android devices and for iOS devices, such as iPhones and iPads.

1.2 Computers and the Internet in Industry and Research
These are exciting times in the computer field! Many of the most influential and successful
businesses of the last two decades are technology companies, including Apple, IBM, Hew-
lett Packard, Dell, Intel, Motorola, Cisco, Microsoft, Google, Amazon, Facebook, Twit-
ter, eBay and many more. These companies are major employers of people who study
computer science, computer engineering, information systems or related disciplines. At
the time of this writing, Google’s parent company, Alphabet, and Apple were the two most

1.1 Introduction
1.2 Computers and the Internet in

Industry and Research
1.3 Hardware and Software

1.3.1 Moore’s Law
1.3.2 Computer Organization

1.4 Data Hierarchy
1.5 Machine Languages, Assembly

Languages and High-Level Languages
1.6 Object Technology
1.7 Internet and World Wide Web
1.8 C#

1.8.1 Object-Oriented Programming
1.8.2 Event-Driven Programming
1.8.3 Visual Programming
1.8.4 Generic and Functional Programming

1.8.5 An International Standard
1.8.6 C# on Non-Windows Platforms
1.8.7 Internet and Web Programming
1.8.8 Asynchronous Programming with

async and await
1.8.9 Other Key Programming Languages

1.9 Microsoft’s .NET
1.9.1 .NET Framework
1.9.2 Common Language Runtime
1.9.3 Platform Independence
1.9.4 Language Interoperability

1.10 Microsoft’s Windows® Operating
System

1.11 Visual Studio Integrated
Development Environment

1.12 Painter Test-Drive in Visual Studio
Community

Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making-a-Difference Exercises |
Making-a-Difference Resources

1. The name C#, pronounced “C-sharp,” is based on the musical # notation for “sharp” notes.

1.2 Computers and the Internet in Industry and Research 43

valuable companies in the world. Figure 1.1 provides a few examples of the ways in which
computers are improving people’s lives in research, industry and society.

Name Description

Electronic
health records

These might include a patient's medical history, prescriptions, immunizations, lab
results, allergies, insurance information and more. Making these available to health-
care providers across a secure network improves patient care, reduces the probability
of error and increases the health-care system’s overall efficiency, helping control costs.

Human
Genome
Project

The Human Genome Project was founded to identify and analyze the 20,000+
genes in human DNA. The project used computer programs to analyze complex
genetic data, determine the sequences of the billions of chemical base pairs that
make up human DNA and store the information in databases, which have been
made available over the Internet to researchers in many fields.

AMBER™
Alert

The AMBER (America’s Missing: Broadcast Emergency Response) Alert System
helps find abducted children. Law enforcement notifies TV and radio broadcasters
and state transportation officials, who then broadcast alerts on TV, radio, comput-
erized highway signs, the Internet and wireless devices. AMBER Alert partners
with Facebook, whose users can “Like” AMBER Alert pages by location to receive
alerts in their news feeds.

World
Community
Grid

People worldwide can donate their unused computer processing power by install-
ing a free secure software program that allows the World Community Grid
(http://www.worldcommunitygrid.org) to harness unused capacity. This comput-
ing power, accessed over the Internet, is used in place of expensive supercomputers
to conduct scientific research projects that are making a difference—providing
clean water to third-world countries, fighting cancer, growing more nutritious rice
for regions fighting hunger and more.

Cloud
computing

Cloud computing allows you to use software, hardware and information stored in
the “cloud”—i.e., accessed on remote computers via the Internet and available on
demand—popular examples are Dropbox, Google Drive and Microsoft OneDrive.
You can increase or decrease resources incrementally to meet your needs at any given
time, so cloud services can be more cost effective than purchasing expensive hard-
ware to ensure that you have enough storage and processing power to meet peak-
level needs. Using cloud-computing services shifts the burden of managing these
applications from the business to the service provider, saving businesses time, effort
and money. In an online chapter, you’ll use Microsoft Azure—a cloud-computing
platform that allows you to develop, manage and distribute your apps in the cloud.
With Microsoft Azure, your apps can store their data in the cloud so that it’s available
at all times from any of your desktop computers and mobile devices. For information
on Microsoft Azure’s free and paid services visit https://azure.microsoft.com.

Medical
imaging

X-ray computed tomography (CT) scans, also called CAT (computerized axial
tomography) scans, take X-rays of the body from hundreds of different angles.
Computers are used to adjust the intensity of the X-rays, optimizing the scan for
each type of tissue, then to combine all of the information to create a 3D image.
MRI scanners use a technique called magnetic resonance imaging to produce
internal images noninvasively.

Fig. 1.1 | Improving people’s lives with computers. (Part 1 of 2.)

44 Chapter 1 Introduction to Computers, the Internet and Visual C#

GPS Global Positioning System (GPS) devices use a network of satellites to retrieve loca-
tion-based information. Multiple satellites send time-stamped signals to the GPS
device, which calculates the distance to each satellite, based on the time the signal
left the satellite and the time the signal arrived. This information helps determine
the device’s exact location. GPS devices can provide step-by-step directions and help
you locate nearby businesses (restaurants, gas stations, etc.) and points of interest.
GPS is used in numerous location-based Internet services such as check-in apps to
help you find your friends (e.g., Foursquare and Facebook), exercise apps such as
Map My Ride+, Couch to 5K and RunKeeper that track the time, distance and
average speed of your outdoor ride or jog, dating apps that help you find a match
nearby and apps that dynamically update changing traffic conditions.

Robots Robots can be used for day-to-day tasks (e.g., iRobot’s Roomba vacuuming robot),
entertainment (e.g., robotic pets), military combat, deep sea and space exploration
(e.g., NASA’s Mars rover Curiosity) and more. Researchers, such as those at Robo-
How (http://robohow.eu), are working to create autonomous robots that perform
complex human manipulation tasks (such as cooking) and that can learn addi-
tional tasks both from the robots’ own experiences and from observing humans
performing other tasks.

E-mail,
Instant
Messaging
and
Video Chat

Internet-based servers support all of your online messaging. E-mail messages go
through a mail server that also stores the messages. Instant Messaging (IM) and
Video Chat apps, such as Facebook Messenger, WhatsApp, AIM, Skype, Yahoo!
Messenger, Google Hangouts, Trillian and others, allow you to communicate with
others in real time by sending your messages and live video through servers.

E-commerce This technology has exploded with companies like Amazon, eBay, Alibaba, Walmart
and many others, causing a major shift away from brick-and-mortar retailers.

Internet TV Internet TV set-top boxes (such as Apple TV, Android TV, Roku, Chromecast and
TiVo) allow you to access an enormous amount of content on demand, such as
games, news, movies, television shows and more, and they help ensure that the
content is streamed to your TV smoothly.

Streaming
music services

Streaming music services (such as Apple Music, Pandora, Spotify and more) allow
you to listen to large catalogues of music over the web, create customized “radio
stations” and discover new music based on your feedback.

Self-driving
cars and
smart homes

These are two enormous markets. Self-driving cars are under development by
many technology companies and car manufacturers—they already have an impres-
sive safety record and soon could be widely used saving lives and reducing injuries.
Smart homes use computers for security, climate control, minimizing energy costs,
automated lighting systems, fire detection, window control and more.

Game
programming

Global video-game revenues are expected to reach $107 billion by 2017 (http://
www.polygon.com/2015/4/22/8471789/worldwide-video-games-market-value-

2015). The most sophisticated games can cost over $100 million to develop, with
the most expensive costing half a billion dollars (http://www.gamespot.com/
gallery/20-of-the-most-expensive-games-ever-made/2900-104/). Bethesda’s
Fallout 4 earned $750 million in its first day of sales (http://fortune.com/2015/
11/16/fallout4-is-quiet-best-seller/)!

Name Description

Fig. 1.1 | Improving people’s lives with computers. (Part 2 of 2.)

1.3 Hardware and Software 45

1.3 Hardware and Software
Computers can perform calculations and make logical decisions phenomenally faster than
human beings can. Many of today’s personal computers can perform billions of calcula-
tions in one second—more than a human can perform in a lifetime. Supercomputers are
already performing thousands of trillions (quadrillions) of instructions per second! China’s
National University of Defense Technology’s Tianhe-2 supercomputer can perform over
33 quadrillion calculations per second (33.86 petaflops)!2 To put that in perspective, the
Tianhe-2 supercomputer can perform in one second about 3 million calculations for every per-
son on the planet! And supercomputing upper limits are growing quickly.

Computers (i.e., hardware) process data under the control of sequences of instructions
called computer programs. These programs guide the computer through actions specified by
people called computer programmers. The programs that run on a computer are referred to
as software. In this book, you’ll learn several key programming methodologies that are
enhancing programmer productivity, thereby reducing software development costs—object-
oriented programming, generic programming, functional programming and structured program-
ming. You’ll build C# apps (short for applications) for a variety of environments including
the desktop, mobile devices like smartphones and tablets, and even “the cloud.”

Computers consist of devices referred to as hardware (e.g., the keyboard, screen, mouse,
hard disks, memory, DVD drives and processing units). Computing costs are dropping dra-
matically, due to rapid developments in hardware and software technologies. Computers that
filled large rooms and cost millions of dollars decades ago are now inscribed on silicon chips
smaller than a fingernail, costing perhaps a few dollars each. Ironically, silicon is one of the
most abundant materials on Earth—it’s an ingredient in common sand. Silicon-chip tech-
nology has made computing so economical that computers have become a commodity.

1.3.1 Moore’s Law
Every year, you probably expect to pay at least a little more for most products and services.
The opposite has been the case in the computer and communications fields, especially
with regard to the hardware supporting these technologies. For many decades, hardware
costs have fallen rapidly.

Every year or two, the capacities of computers have approximately doubled inexpen-
sively. This remarkable trend often is called Moore’s Law, named for the person who iden-
tified it in the 1960s, Gordon Moore, co-founder of Intel—a leading manufacturer of the
processors in today’s computers and embedded systems. Moore’s Law and related obser-
vations apply especially to the amount of memory that computers have for programs, the
amount of secondary storage (such as disk storage) they have to hold programs and data
over longer periods of time, and their processor speeds—the speeds at which they execute
their programs (i.e., do their work). These increases make computers more capable, which
puts greater demands on programming-language designers to innovate.

Similar growth has occurred in the communications field—costs have plummeted as
enormous demand for communications bandwidth (i.e., information-carrying capacity)
has attracted intense competition. We know of no other fields in which technology
improves so quickly and costs fall so rapidly. Such phenomenal improvement is truly fos-
tering the Information Revolution.

2. http://www.top500.org.

46 Chapter 1 Introduction to Computers, the Internet and Visual C#

1.3.2 Computer Organization
Regardless of differences in physical appearance, computers can be envisioned as divided
into various logical units or sections (Fig. 1.2).

Logical unit Description

Input unit This “receiving” section obtains information (data and computer programs) from
input devices and places it at the disposal of the other units for processing. Most
user input is entered into computers through keyboards, touch screens and mouse
devices. Other forms of input include receiving voice commands, scanning images
and barcodes, reading from secondary storage devices (such as hard drives, DVD
drives, Blu-ray Disc™ drives and USB flash drives—also called “thumb drives” or
“memory sticks”), receiving video from a webcam and having your computer
receive information from the Internet (such as when you stream videos from You-
Tube® or download e-books from Amazon). Newer forms of input include posi-
tion data from a GPS device, motion and orientation information from an
accelerometer (a device that responds to up/down, left/right and forward/backward
acceleration) in a smartphone or game controller (such as Microsoft® Kinect® for
Xbox®, Wii™ Remote and Sony® PlayStation® Move) and voice input from
devices like Amazon Echo and the forthcoming Google Home.

Output unit This “shipping” section takes information the computer has processed and places
it on various output devices to make it available for use outside the computer.
Most information that’s output from computers today is displayed on screens
(including touch screens), printed on paper (“going green” discourages this),
played as audio or video on PCs and media players (such as Apple’s iPods) and
giant screens in sports stadiums, transmitted over the Internet or used to control
other devices, such as robots and “intelligent” appliances. Information is also
commonly output to secondary storage devices, such as solid-state drives (SSDs),
hard drives, DVD drives and USB flash drives. Popular recent forms of output
are smartphone and game-controller vibration, virtual reality devices like Oculus
Rift and Google Cardboard and mixed reality devices like Microsoft’s HoloLens.

Memory unit This rapid-access, relatively low-capacity “warehouse” section retains information
that has been entered through the input unit, making it immediately available for
processing when needed. The memory unit also retains processed information
until it can be placed on output devices by the output unit. Information in the
memory unit is volatile—it’s typically lost when the computer’s power is turned
off. The memory unit is often called either memory, primary memory or RAM
(Random Access Memory). Main memories on desktop and notebook computers
contain as much as 128 GB of RAM, though 2 to 16 GB is most common. GB
stands for gigabytes; a gigabyte is approximately one billion bytes. A byte is eight
bits. A bit is either a 0 or a 1.

Arithmetic
and logic unit
(ALU)

This “manufacturing” section performs calculations, such as addition, subtrac-
tion, multiplication and division. It also contains the decision mechanisms that
allow the computer, for example, to compare two items from the memory unit to
determine whether they’re equal. In today’s systems, the ALU is implemented as
part of the next logical unit, the CPU.

Fig. 1.2 | Logical units of a computer. (Part 1 of 2.)

1.4 Data Hierarchy 47

1.4 Data Hierarchy
Data items processed by computers form a data hierarchy that becomes larger and more
complex in structure as we progress from the simplest data items (called “bits”) to richer
data items, such as characters, fields, and so on. Figure 1.3 illustrates a portion of the data
hierarchy.

Bits
The smallest data item in a computer can assume the value 0 or the value 1. It’s called a
bit (short for “binary digit”—a digit that can assume one of two values). Remarkably, the
impressive functions performed by computers involve only the simplest manipulations of
0s and 1s—examining a bit’s value, setting a bit’s value and reversing a bit’s value (from 1 to
0 or from 0 to 1).

Characters
It’s tedious for people to work with data in the low-level form of bits. Instead, they prefer to
work with decimal digits (0–9), letters (A–Z and a–z), and special symbols (e.g., $, @, %, &, *,
(,), –, +, ", :, ? and /). Digits, letters and special symbols are known as characters. The com-
puter’s character set is the set of all the characters used to write programs and represent data
items. Computers process only 1s and 0s, so a computer’s character set represents every char-
acter as a pattern of 1s and 0s. C# supports various character sets (including Unicode®), with

Central
processing
unit (CPU)

This “administrative” section coordinates and supervises the operation of the
other sections. The CPU tells the input unit when information should be read
into the memory unit, tells the ALU when information from the memory unit
should be used in calculations and tells the output unit when to send information
from the memory unit to certain output devices. Many of today’s computers have
multiple CPUs and, hence, can perform many operations simultaneously. A mul-
ticore processor implements multiple processors on a single integrated-circuit
chip—a dual-core processor has two CPUs, a quad-core processor has four and an
octa-core processor has eight. Today’s desktop computers have processors that can
execute billions of instructions per second. Chapter 23 explores how to write
apps that can take full advantage of multicore architecture.

Secondary
storage unit

This is the long-term, high-capacity “warehousing” section. Programs or data not
actively being used by the other units normally are placed on secondary storage
devices (e.g., your hard drive) until they’re again needed, possibly hours, days,
months or even years later. Information on secondary storage devices is persis-
tent—it’s preserved even when the computer’s power is turned off. Secondary
storage information takes much longer to access than information in primary
memory, but its cost per unit is much less. Examples of secondary storage devices
include solid-state drives (SSDs), hard drives, DVD drives and USB flash drives,
some of which can hold over 2 TB (TB stands for terabytes; a terabyte is approx-
imately one trillion bytes). Typical hard drives on desktop and notebook comput-
ers hold up to 2 TB, and some desktop hard drives can hold up to 6 TB.

Logical unit Description

Fig. 1.2 | Logical units of a computer. (Part 2 of 2.)

48 Chapter 1 Introduction to Computers, the Internet and Visual C#

some requiring more than one byte per character. Unicode supports many of the world’s lan-
guages, as well as emojis. See Appendix B for more information on the ASCII (American
Standard Code for Information Interchange) character set—the popular subset of Unicode
that represents uppercase and lowercase letters of the English alphabet, digits and some com-
mon special characters. We also provide an online appendix describing Unicode.

Fields
Just as characters are composed of bits, fields are composed of characters or bytes. A field
is a group of characters or bytes that conveys meaning. For example, a field consisting of
uppercase and lowercase letters can be used to represent a person’s name, and a field con-
sisting of decimal digits could represent a person’s age.

Records
Several related fields can be used to compose a record. In a payroll system, for example,
the record for an employee might consist of the following fields (possible types for these
fields are shown in parentheses):

• Employee or student identification number (a whole number).

• Name (a string of characters).

• Address (a string of characters).

Fig. 1.3 | Data hierarchy.

Tom Blue

Sally Black

Judy Green File

J u d y Field

Byte (ASCII character J)

Record

Iris Orange

Randy Red

01001010

1 Bit

Judy Green

1.4 Data Hierarchy 49

• Hourly pay rate (a number with a decimal point).

• Year-to-date earnings (a number with a decimal point).

• Amount of taxes withheld (a number with a decimal point).

Thus, a record is a group of related fields. In the preceding example, all the fields belong
to the same employee. A company might have many employees and a payroll record for
each.

To facilitate the retrieval of specific records from a file, at least one field in each record
is chosen as a record key, which identifies a record as belonging to a particular person or
entity and distinguishes that record from all others. For example, in a payroll record, the
employee identification number normally would be the record key.

Files
A file is a group of related records. More generally, a file contains arbitrary data in arbitrary
formats. In some operating systems, a file is viewed simply as a sequence of bytes—any or-
ganization of the bytes in a file, such as organizing the data into records, is a view created
by the application programmer. It’s not unusual for an organization to have many files,
some containing billions, or even trillions, of characters of information.

Database
A database is a collection of data organized for easy access and manipulation. The most
popular model is the relational database, in which data is stored in simple tables. A table
includes records and fields. For example, a table of students might include first name, last
name, major, year, student ID number and grade-point-average fields. The data for each
student is a record, and the individual pieces of information in each record are the fields.
You can search, sort and otherwise manipulate the data based on its relationship to multiple
tables or databases. For example, a university might use data from the student database in
combination with data from databases of courses, on-campus housing, meal plans, etc.

Big Data
The amount of data being produced worldwide is enormous and growing quickly. Accord-
ing to IBM, approximately 2.5 quintillion bytes (2.5 exabytes) of data are created daily,3

and according to Salesforce.com, as of October 2015 90% of the world’s data was created
in just the prior 12 months!4 According to an IDC study, the global data supply will reach
40 zettabytes (equal to 40 trillion gigabytes) annually by 2020.5 Figure 1.4 shows some
common byte measurements. Big data applications deal with massive amounts of data and
this field is growing quickly, creating lots of opportunity for software developers. Accord-
ing to a study by Gartner Group, over four million IT jobs globally were expected to sup-
port big data in 2015.6

3. http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html.
4. https://www.salesforce.com/blog/2015/10/salesforce-channel-ifttt.html.
5. http://recode.net/2014/01/10/stuffed-why-data-storage-is-hot-again-really/.
6. http://fortune.com/2013/09/04/the-big-data-employment-boom/.

50 Chapter 1 Introduction to Computers, the Internet and Visual C#

1.5 Machine Languages, Assembly Languages and High-
Level Languages
Programmers write instructions in various programming languages, some directly under-
standable by computers and others requiring intermediate translation steps.

Machine Languages
Any computer can directly understand only its own machine language (also called ma-
chine code), defined by its hardware architecture. Machine languages generally consist of
numbers (ultimately reduced to 1s and 0s). Such languages are cumbersome for humans.

Assembly Languages
Programming in machine language was simply too slow and tedious for most program-
mers. Instead, they began using English-like abbreviations to represent elementary opera-
tions. These abbreviations formed the basis of assembly languages. Translator programs
called assemblers were developed to convert assembly-language programs to machine lan-
guage. Although assembly-language code is clearer to humans, it’s incomprehensible to
computers until translated to machine language. Assembly languages are still popular to-
day in applications where minimizing memory use and maximizing execution efficiency is
crucial.

High-Level Languages
To speed up the programming process further, high-level languages were developed in
which single statements could be written to accomplish substantial tasks. High-level lan-
guages, such as C#, Visual Basic, C, C++, Java and Swift, allow you to write instructions
that look more like everyday English and contain commonly used mathematical notations.
Translator programs called compilers convert high-level language programs into machine
language.

The process of compiling a large high-level-language program into machine language
can take a considerable amount of computer time. Interpreter programs were developed
to execute high-level language programs directly (without the need for compilation),
although more slowly than compiled programs. Scripting languages such as the popular
web languages JavaScript and PHP are processed by interpreters.

Unit Bytes Which is approximately

 1 kilobyte (KB) 1024 bytes 103 (1024) bytes exactly

 1 megabyte (MB) 1024 kilobytes 106 (1,000,000) bytes

 1 gigabyte (GB) 1024 megabytes 109 (1,000,000,000) bytes

 1 terabyte (TB) 1024 gigabytes 1012 (1,000,000,000,000) bytes

 1 petabyte (PB) 1024 terabytes 1015 (1,000,000,000,000,000) bytes

 1 exabyte (EB) 1024 petabytes 1018 (1,000,000,000,000,000,000) bytes

 1 zettabyte (ZB) 1024 exabytes 1021 (1,000,000,000,000,000,000,000) bytes

Fig. 1.4 | Byte measurements.

1.6 Object Technology 51

1.6 Object Technology
C# is an object-oriented programming language. In this section we’ll introduce the basics
of object technology.

Building software quickly, correctly and economically remains an elusive goal at a
time when demands for new and more powerful software are soaring. Objects, or more
precisely—as we’ll see in Chapter 4—the classes objects come from, are essentially reusable
software components. There are date objects, time objects, audio objects, video objects,
automobile objects, people objects, etc. Almost any noun can be reasonably represented as
a software object in terms of attributes (e.g., name, color and size) and behaviors (e.g.,
calculating, moving and communicating). Software developers have discovered that using
a modular, object-oriented design-and-implementation approach can make software-
development groups much more productive than was possible with earlier techniques—
object-oriented programs are often easier to understand, correct and modify.

The Automobile as an Object
Let’s begin with a simple analogy. Suppose you want to drive a car and make it go faster by
pressing its accelerator pedal. What must happen before you can do this? Well, before you
can drive a car, someone has to design it. A car typically begins as engineering drawings,
similar to the blueprints that describe the design of a house. These drawings include the
design for an accelerator pedal. The pedal hides from the driver the complex mechanisms
that actually make the car go faster, just as the brake pedal hides the mechanisms that slow
the car, and the steering wheel hides the mechanisms that turn the car. This enables people
with little or no knowledge of how engines, braking and steering mechanisms work to
drive a car easily.

Before you can drive a car, it must be built from the engineering drawings that
describe it. A completed car has an actual accelerator pedal to make the car go faster, but
even that’s not enough—the car won’t accelerate on its own (hopefully!), so the driver
must press the pedal to accelerate the car.

Methods and Classes
Let’s use our car example to introduce some key object-oriented programming concepts. Per-
forming a task in a program requires a method. The method houses the program statements
that actually perform the task. It hides these statements from its user, just as a car’s accelerator
pedal hides from the driver the mechanisms of making the car go faster. In C#, we create a
program unit called a class to house the set of methods that perform the class’s tasks. For ex-
ample, a class that represents a bank account might contain one method to deposit money to
an account and another to withdraw money from an account. A class is similar in concept to
a car’s engineering drawings, which house the design of an accelerator pedal, steering wheel,
and so on.

Performance Tip 1.1
Interpreters have an advantage over compilers in Internet scripting. An interpreted pro-
gram can begin executing as soon as it’s downloaded to the client’s machine, without need-
ing to be compiled before it can execute. On the downside, interpreted scripts generally run
slower and consume more memory than compiled code. With a technique called JIT (just-
in-time) compilation, interpreted languages can often run almost as fast as compiled ones.

52 Chapter 1 Introduction to Computers, the Internet and Visual C#

Making Objects from Classes
Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object from a class before a program can perform the tasks
that the class’s methods define. The process of doing this is called instantiation. An object
is then referred to as an instance of its class.

Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and
effective systems, because existing classes and components often have gone through exten-
sive testing (to locate problems), debugging (to correct those problems) and performance
tuning. Just as the notion of interchangeable parts was crucial to the Industrial Revolution,
reusable classes are crucial to the software revolution that’s been spurred by object tech-
nology.

Messages and Method Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is implemented
as a method call that tells a method of the object to perform its task. For example, a pro-
gram might call a particular bank-account object’s deposit method to increase the account’s
balance.

Attributes and Instance Variables
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank-account object has
a balance attribute that represents the amount of money in the account. Each bank-
account object knows the balance in the account it represents, but not the balances of the
other accounts in the bank. Attributes are specified by the class’s instance variables.

Properties, get Accessors and set Accessors
Attributes are not necessarily accessible directly. The car manufacturer does not want driv-
ers to take apart the car’s engine to observe the amount of gas in its tank. Instead, the driver
can check the fuel gauge on the dashboard. The bank does not want its customers to walk
into the vault to count the amount of money in an account. Instead, the customers talk to
a bank teller or check personalized online bank accounts. Similarly, you do not need to
have access to an object’s instance variables in order to use them. You should use the prop-
erties of an object. Properties contain get accessors for reading the values of variables, and
set accessors for storing values into them.

1.7 Internet and World Wide Web 53

Encapsulation
Classes encapsulate (i.e., wrap) attributes and methods into objects created from those
classes—an object’s attributes and methods are intimately related. Objects may commu-
nicate with one another, but they’re normally not allowed to know how other objects are
implemented—implementation details are hidden within the objects themselves. This in-
formation hiding, as we’ll see, is crucial to good software engineering.

Inheritance
A new class of objects can be created quickly and conveniently by inheritance—the new
class absorbs the characteristics of an existing class, possibly customizing them and adding
unique characteristics of its own. In our car analogy, an object of class “convertible” cer-
tainly is an object of the more general class “automobile,” but more specifically, the roof can
be raised or lowered.

Object-Oriented Analysis and Design (OOAD)
Soon you’ll be writing programs in C#. How will you create the code (i.e., the program
instructions) for your programs? Perhaps, like many programmers, you’ll simply turn on
your computer and start typing. This approach may work for small programs (like the ones
we present in the early chapters of the book), but what if you were asked to create a soft-
ware system to control thousands of automated teller machines for a major bank? Or sup-
pose you were asked to work on a team of thousands of software developers building the
next generation of the U.S. air traffic control system? For projects so large and complex,
you should not simply sit down and start writing programs.

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining what the system is supposed to do) and
developing a design that satisfies them (i.e., deciding how the system should do it). Ideally,
you’d go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis and design (OOAD) process. Languages like C# are object ori-
ented—programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

The UML (Unified Modeling Language)
Although many different OOAD processes exist, a single graphical language for commu-
nicating the results of any OOAD process has come into wide use. This language, known
as the Unified Modeling Language (UML), is now the most widely used graphical scheme
for modeling object-oriented systems. We present our first UML diagrams in Chapters 4
and 5, then use them in our deeper treatment of object-oriented programming through
Chapter 12. In our optional ATM Software Engineering Case Study in the online chapters,
we present a simple subset of the UML’s features as we guide you through an object-ori-
ented design and implementation experience.

1.7 Internet and World Wide Web
In the late 1960s, ARPA—the Advanced Research Projects Agency of the United States
Department of Defense—rolled out plans for networking the main computer systems of

54 Chapter 1 Introduction to Computers, the Internet and Visual C#

approximately a dozen ARPA-funded universities and research institutions. The comput-
ers were to be connected with communications lines operating at speeds on the order of
50,000 bits per second, a stunning rate at a time when most people (of the few who even
had networking access) were connecting over telephone lines to computers at a rate of 110
bits per second. Academic research was about to take a giant leap forward. ARPA proceed-
ed to implement what quickly became known as the ARPANET, the precursor to today’s
Internet. Today’s fastest Internet speeds are on the order of billions of bits per second with
trillion-bits-per-second speeds on the horizon!

Things worked out differently from the original plan. Although the ARPANET
enabled researchers to network their computers, its main benefit proved to be the capa-
bility for quick and easy communication via what came to be known as electronic mail (e-
mail). This is true even on today’s Internet, with e-mail, instant messaging, file transfer
and social media such as Facebook and Twitter enabling billions of people worldwide to
communicate quickly and easily.

The protocol (set of rules) for communicating over the ARPANET became known as
the Transmission Control Protocol (TCP). TCP ensured that messages, consisting of
sequentially numbered pieces called packets, were properly routed from sender to receiver,
arrived intact and were assembled in the correct order.

The Internet: A Network of Networks
In parallel with the early evolution of the Internet, organizations worldwide were imple-
menting their own networks for both intraorganization (that is, within an organization)
and interorganization (that is, between organizations) communication. A huge variety of
networking hardware and software appeared. One challenge was to enable these different
networks to communicate with each other. ARPA accomplished this by developing the In-
ternet Protocol (IP), which created a true “network of networks,” the current architecture
of the Internet. The combined set of protocols is now called TCP/IP.

Businesses rapidly realized that by using the Internet, they could improve their oper-
ations and offer new and better services to their clients. Companies started spending large
amounts of money to develop and enhance their Internet presence. This generated fierce
competition among communications carriers and hardware and software suppliers to meet
the increased infrastructure demand. As a result, bandwidth—the information-carrying
capacity of communications lines—on the Internet has increased tremendously, while
hardware costs have plummeted.

The World Wide Web: Making the Internet User-Friendly
The World Wide Web (simply called “the web”) is a collection of hardware and software
associated with the Internet that allows computer users to locate and view multimedia-
based documents (documents with various combinations of text, graphics, animations, au-
dios and videos) on almost any subject. In 1989, Tim Berners-Lee of CERN (the Europe-
an Organization for Nuclear Research) began developing HyperText Markup Language
(HTML)—the technology for sharing information via “hyperlinked” text documents. He
also wrote communication protocols such as HyperText Transfer Protocol (HTTP) to
form the backbone of his new hypertext information system, which he referred to as the
World Wide Web.

In 1994, Berners-Lee founded the World Wide Web Consortium (W3C, http://
www.w3.org), devoted to developing web technologies. One of the W3C’s primary goals

1.8 C# 55

is to make the web universally accessible to everyone regardless of disabilities, language or
culture.

Web Services
Web services are software components stored on one computer that can be accessed by an
app (or other software component) on another computer over the Internet. With web ser-
vices, you can create mashups, which enable you to rapidly develop apps by combining com-
plementary web services, often from multiple organizations, and possibly other forms of
information feeds. For example, 100 Destinations (http://www.100destinations.co.uk)
combines the photos and tweets from Twitter with the mapping capabilities of Google Maps
to allow you to explore countries around the world through the photos of others.

ProgrammableWeb (http://www.programmableweb.com/) provides a directory of over
15,000 APIs and 6,200 mashups, plus how-to guides and sample code for creating your own
mashups. According to Programmableweb, the three most widely used APIs for mashups are
Google Maps, Twitter and YouTube.

Ajax
Ajax technology helps Internet-based applications perform like desktop applications—a
difficult task, given that such applications suffer transmission delays as data is shuttled
back and forth between your computer and server computers on the Internet. Using Ajax,
applications like Google Maps have achieved excellent performance, approaching the
look-and-feel of desktop applications.

The Internet of Things
The Internet is no longer just a network of computers—it’s an Internet of Things. A thing
is any object with an IP address—a unique identifier that helps locate that thing on the
Internet—and the ability to send data automatically over the Internet. Such things in-
clude:

• a car with a transponder for paying tolls,

• monitors for parking-space availability in a garage,

• a heart monitor implanted in a human,

• monitors for drinkable water quality,

• a smart meter that reports energy usage,

• radiation detectors,

• item trackers in a warehouse,

• mobile apps that can track your movement and location,

• smart thermostats that adjust room temperatures based on weather forecasts and
activity in the home

• and many more.

1.8 C#
In 2000, Microsoft announced the C# programming language. C# has roots in the C, C++
and Java programming languages. It has similar capabilities to Java and is appropriate for

56 Chapter 1 Introduction to Computers, the Internet and Visual C#

the most demanding app-development tasks, especially for building today’s desktop apps,
large-scale enterprise apps, and web-based, mobile and cloud-based apps.

1.8.1 Object-Oriented Programming
C# is object oriented—we’ve discussed the basics of object technology and we present a rich
treatment of object-oriented programming throughout the book. C# has access to the
powerful .NET Framework Class Library—a vast collection of prebuilt classes that enable
you to develop apps quickly (Fig. 1.5). We’ll say more about .NET in Section 1.9.

1.8.2 Event-Driven Programming
C# graphical user interfaces (GUIs) are event driven. You can write programs that respond
to user-initiated events such as mouse clicks, keystrokes, timer expirations and touches and
finger swipes—gestures that are widely used on smartphones and tablets.

1.8.3 Visual Programming
Microsoft’s Visual Studio enables you to use C# as a visual programming language—in
addition to writing program statements to build portions of your apps, you’ll also use
Visual Studio to conveniently drag and drop predefined GUI objects like buttons and text-
boxes into place on your screen, and label and resize them. Visual Studio will write much
of the GUI code for you.

1.8.4 Generic and Functional Programming
Generic Programming
It’s common to write a program that processes a collection of things—e.g., a collection of
numbers, a collection of contacts, a collection of videos, etc. Historically, you had to pro-
gram separately to handle each type of collection. With generic programming, you write code
that handles a collection “in the general” and C# handles the specifics for each different type
of collection, saving you a great deal of work. We’ll study generics and generic collections in
Chapters 20 and 21.

Some key capabilities in the .NET Framework Class Library

Database Debugging

Building web apps Multithreading

Graphics File processing

Input/output Security

Computer networking Web communication

Permissions Graphical user interface

Mobile Data structures

String processing Universal Windows Platform GUI

Fig. 1.5 | Some key capabilities in the .NET Framework Class Library.

1.8 C# 57

Functional Programming
With functional programming, you specify what you want to accomplish in a task, but not
how to accomplish it. For example, with Microsoft’s LINQ—which we introduce in
Chapter 9, then use in many later chapters—you can say, “Here’s a collection of numbers,
give me the sum of its elements.” You do not need to specify the mechanics of walking
through the elements and adding them into a running total one at a time—LINQ handles
all that for you. Functional programming speeds application development and reduces
errors. We take a deeper look at functional programming in Chapter 21.

1.8.5 An International Standard
C# has been standardized through ECMA International:

This enables other implementations of the language besides Microsoft’s Visual C#. At the
time of this writing, the C# standard document—ECMA-334—was still being updated
for C# 6. For information on ECMA-334, visit

Visit the Microsoft download center to find the latest version of Microsoft’s C# 6 specifi-
cation, other documentation and software downloads.

1.8.6 C# on Non-Windows Platforms
Though C# was originally developed by Microsoft for the Windows platform, the lan-
guage can be used on other platforms via the Mono Project and .NET Core—both are
managed by the .NET Foundation

For more information, see the Before You Begin section after the Preface.

1.8.7 Internet and Web Programming
Today’s apps can be written with the aim of communicating among the world’s comput-
ers. As you’ll see, this is the focus of Microsoft’s .NET strategy. In online chapters, you’ll
build web-based apps with C# and Microsoft’s ASP.NET technology.

1.8.8 Asynchronous Programming with async and await
In most programming today, each task in a program must finish executing before the next
task can begin. This is called synchronous programming and is the style we use for most of this
book. C# also allows asynchronous programming in which multiple tasks can be performed at
the same time. Asynchronous programming can help you make your apps more responsive
to user interactions, such as mouse clicks and keystrokes, among many other uses.

Asynchronous programming in early versions of Visual C# was difficult and error prone.
C#’s async and await capabilities simplify asynchronous programming by enabling the
compiler to hide much of the associated complexity from the developer. In Chapter 23, we
provide an introduction to asynchronous programming with async and await.

http://www.ecma-international.org

http://www.ecma-international.org/publications/standards/Ecma-
334.htm

http://www.dotnetfoundation.org/

58 Chapter 1 Introduction to Computers, the Internet and Visual C#

1.8.9 Other Key Programming Languages
Figure 1.6 provides brief comments on several popular programming languages.

Programming
language Description

Ada Ada, based on Pascal, was developed under the sponsorship of the U.S. Depart-
ment of Defense (DOD) during the 1970s and early 1980s. The DOD wanted a
single language that would fill most of its needs. The Pascal-based language was
named after Lady Ada Lovelace, daughter of the poet Lord Byron. She’s credited
with writing the world’s first computer program in the early 1800s (for the Ana-
lytical Engine mechanical computing device designed by Charles Babbage). Ada
also supports object-oriented programming.

Basic Basic was developed in the 1960s at Dartmouth College to familiarize novices
with programming techniques. Many of its latest versions are object oriented.

C C was developed in the early 1970s by Dennis Ritchie at Bell Laboratories. It ini-
tially became widely known as the UNIX operating system’s development language.
Today, most code for general-purpose operating systems is written in C or C++.

C++ C++, which is based on C, was developed by Bjarne Stroustrup in the early 1980s at
Bell Laboratories. C++ provides several features that “spruce up” the C language, but
more important, it provides capabilities for object-oriented programming.

COBOL COBOL (COmmon Business Oriented Language) was developed in the late
1950s by computer manufacturers, the U.S. government and industrial computer
users, based on a language developed by Grace Hopper, a career U.S. Navy officer
and computer scientist. COBOL is still widely used for commercial applications
that require precise and efficient manipulation of large amounts of data. Its latest
version supports object-oriented programming.

Fortran Fortran (FORmula TRANslator) was developed by IBM Corporation in the mid-
1950s to be used for scientific and engineering applications that require complex
mathematical computations. It’s still widely used, and its latest versions support
object-oriented programming.

Java Sun Microsystems in 1991 funded an internal corporate research project led by
James Gosling, which resulted in the C++-based object-oriented programming
language called Java. A key goal of Java is to enable developers to write programs
that will run on a great variety of computer systems and computer-controlled
devices. This is sometimes called “write once, run anywhere.” Java is used to
develop large-scale enterprise applications, to enhance the functionality of web
servers (the computers that provide the content we see in our web browsers), to
provide applications for consumer devices (e.g., smartphones, tablets, television
set-top boxes, appliances, automobiles and more) and for many other purposes.
Java is also the key language for developing Android smartphone and tablet apps.

Objective-C Objective-C is an object-oriented language based on C. It was developed in the
early 1980s and later acquired by NeXT, which in turn was acquired by Apple. It
became the key programming language for the OS X operating system and all
iOS-powered devices (such as iPods, iPhones and iPads).

Fig. 1.6 | Some other programming languages. (Part 1 of 2.)

1.8 C# 59

JavaScript JavaScript is the most widely used scripting language. It’s primarily used to add
programmability to web pages—for example, animations and interactivity with
the user. All major web browsers support it.

Pascal Research in the 1960s resulted in structured programming—a disciplined approach
to writing programs that are clearer, easier to test and debug and easier to modify
than programs produced with previous techniques. The Pascal language, devel-
oped by Professor Niklaus Wirth in 1971, grew out of this research. It was popu-
lar for teaching structured programming for several decades.

PHP PHP is an object-oriented, open-source “scripting” language supported by a com-
munity of developers and used by numerous websites. PHP is platform indepen-
dent—implementations exist for all major UNIX, Linux, Mac and Windows
operating systems.

Python Python, another object-oriented scripting language, was released publicly in 1991.
Developed by Guido van Rossum of the National Research Institute for Mathe-
matics and Computer Science in Amsterdam (CWI), Python draws heavily from
Modula-3—a systems programming language. Python is “extensible”—it can be
extended through classes and programming interfaces.

Swift Swift, which was introduced in 2014, is Apple’s programming language of the
future for developing iOS and OS X applications (apps). Swift is a contemporary
language that includes popular programming-language features from languages
such as Objective-C, Java, C#, Ruby, Python and others. In 2015, Apple released
Swift 2 with new and updated features. According to the Tiobe Index, Swift has
already become one of the most popular programming languages. Swift is now
open source, so it can be used on non-Apple platforms as well.

Ruby on Rails Ruby—created in the mid-1990s by Yukihiro Matsumoto—is an open-source,
object-oriented programming language with a simple syntax that’s similar to
Python. Ruby on Rails combines the scripting language Ruby with the Rails web-
application framework developed by the company 37Signals. Their book, Getting
Real (free at http://gettingreal.37signals.com/toc.php), is a must-read for
web developers. Many Ruby on Rails developers have reported productivity gains
over other languages when developing database-intensive web applications.

Scala Scala (http://www.scala-lang.org/what-is-scala.html)—short for “scalable
language”—was designed by Martin Odersky, a professor at École Polytechnique
Fédérale de Lausanne (EPFL) in Switzerland. Released in 2003, Scala uses both
the object-oriented programming and functional programming paradigms and is
designed to integrate with Java. Programming in Scala can reduce the amount of
code in your applications significantly.

Visual Basic Microsoft’s Visual Basic language was introduced in the early 1990s to simplify
the development of Microsoft Windows applications. Its latest versions support
object-oriented programming.

Programming
language Description

Fig. 1.6 | Some other programming languages. (Part 2 of 2.)

60 Chapter 1 Introduction to Computers, the Internet and Visual C#

1.9 Microsoft’s .NET
In 2000, Microsoft announced its .NET initiative (www.microsoft.com/net), a broad vi-
sion for using the Internet and the web in the development, engineering, distribution and
use of software. Rather than forcing you to use a single programming language, .NET per-
mits you to create apps in any .NET-compatible language (such as C#, Visual Basic, Visual
C++ and others). Part of the initiative includes Microsoft’s ASP.NET technology for
building web-based applications.

1.9.1 .NET Framework
The .NET Framework Class Library provides many capabilities that you’ll use to build
substantial C# apps quickly and easily. It contains thousands of valuable prebuilt classes
that have been tested and tuned to maximize performance. You’ll learn how to create your
own classes, but you should re-use the .NET Framework classes whenever possible to speed
up the software-development process, while enhancing the quality and performance of the
software you develop.

1.9.2 Common Language Runtime
The Common Language Runtime (CLR), another key part of the .NET Framework, ex-
ecutes .NET programs and provides functionality to make them easier to develop and de-
bug. The CLR is a virtual machine (VM)—software that manages the execution of
programs and hides from them the underlying operating system and hardware. The source
code for programs that are executed and managed by the CLR is called managed code. The
CLR provides various services to managed code, such as

• integrating software components written in different .NET languages,

• error handling between such components,

• enhanced security,

• automatic memory management and more.

Unmanaged-code programs do not have access to the CLR’s services, which makes un-
managed code more difficult to write.7 Managed code is compiled into machine-specific
instructions in the following steps:

1. First, the code is compiled into Microsoft Intermediate Language (MSIL). Code
converted into MSIL from other languages and sources can be woven together by
the CLR—this allows programmers to work in their preferred .NET program-
ming language. The MSIL for an app’s components is placed into the app’s exe-
cutable file—the file that causes the computer to perform the app’s tasks.

2. When the app executes, another compiler (known as the just-in-time compiler
or JIT compiler) in the CLR translates the MSIL in the executable file into ma-
chine-language code (for a particular platform).

3. The machine-language code executes on that platform.

7. http://msdn.microsoft.com/library/8bs2ecf4.

1.10 Microsoft’s Windows® Operating System 61

1.9.3 Platform Independence
If the .NET Framework exists and is installed for a platform, that platform can run any
.NET program. The ability of a program to run without modification across multiple plat-
forms is known as platform independence. Code written once can be used on another type
of computer without modification, saving time and money. In addition, software can tar-
get a wider audience. Previously, companies had to decide whether converting their pro-
grams to different platforms—a process called porting—was worth the cost. With .NET,
porting programs is no longer an issue, at least once .NET itself has been made available
on the platforms.

1.9.4 Language Interoperability
The .NET Framework provides a high level of language interoperability. Because soft-
ware components written in different .NET languages (such as C# and Visual Basic) are
all compiled into MSIL, the components can be combined to create a single unified pro-
gram. Thus, MSIL allows the .NET Framework to be language independent.

The .NET Framework Class Library can be used by any .NET language. The latest
release of .NET includes .NET 4.6 and .NET Core:

• NET 4.6 introduces many improvements and new features, including ASP.NET
5 for web-based applications, improved support for today’s high-resolution 4K
screens and more.

• .NET Core is the cross-platform subset of .NET for Windows, Linux, OS X and
FreeBSD.

1.10 Microsoft’s Windows® Operating System
Microsoft’s Windows is the most widely personal-computer, desktop operating system
worldwide. Operating systems are software systems that make using computers more con-
venient for users, developers and system administrators. They provide services that allow
each app to execute safely, efficiently and concurrently (i.e., in parallel) with other apps.
Other popular desktop operating systems include Mac OS X and Linux. Mobile operating
systems used in smartphones and tablets include Microsoft’s Windows Phone, Google’s
Android, Apple’s iOS (for iPhone, iPad and iPod Touch devices) and BlackBerry OS.
Figure 1.7 presents the evolution of the Windows operating system.

Version Description

Windows in the 1990s In the mid-1980s, Microsoft developed the Windows operating
system based on a graphical user interface with buttons, textboxes,
menus and other graphical elements. The various versions released
throughout the 1990s were intended for personal computing.
Microsoft entered the corporate operating systems market with the
1993 release of Windows NT.

Fig. 1.7 | The evolution of the Windows operating system. (Part 1 of 2.)

62 Chapter 1 Introduction to Computers, the Internet and Visual C#

Windows XP and
Windows Vista

Windows XP was released in 2001 and combined Microsoft’s cor-
porate and consumer operating-system lines. At the time of this
writing, it still holds more than 10% of the operating-systems
market (https://www.netmarketshare.com/operating-system-
market-share.aspx). Windows Vista, released in 2007, offered the
attractive new Aero user interface, many powerful enhancements
and new apps and enhanced security. But Vista never caught on.

Windows 7 Windows 7 is currently the world’s most widely used desktop oper-
ating system with over 47% of the operating-systems market
(https://www.netmarketshare.com/operating-system-market-
share.aspx). Windows added enhancements to the Aero user
interface, faster startup times, further refinement of Vista’s security
features, touch-screen with multitouch support, and more.

Windows 8 for
Desktops and
Tablets

Windows 8, released in 2012, provided a similar platform (the
underlying system on which apps run) and user experience across a
wide range of devices including personal computers, smartphones,
tablets and the Xbox Live online game service. Its new look-and-
feel featured a Start screen with tiles representing each app, similar
to that of Windows Phone—Microsoft’s smartphone operating sys-
tem. Windows 8 featured multitouch support for touchpads and
touchscreen devices, enhanced security features and more.

Windows 8 UI
(User Interface)

Windows 8 UI (previously called “Metro”) introduced a clean
look-and-feel with minimal distractions to the user. Windows 8
apps featured a chromeless window with no borders, title bars and
menus. These elements were hidden, allowing apps to fill the entire
screen—particularly helpful on smaller screens such as tablets and
smartphones. The interface elements were displayed in the app bar
when the user swiped the top or bottom of the screen by holding
down the mouse button, moving the mouse in the swipe direction
and releasing the mouse button; or using a finger swipe on a touch-
screen device.

Windows 10 and the
Universal Windows
Platform

Windows 10, released in 2015, is the current version of Windows
and currently holds a 15% (and growing) share of the operating-
systems market (https://www.netmarketshare.com/operating-
system-market-share.aspx). In addition to many user-interface
and other updates, Windows 10 introduced the Universal Win-
dows Platform (UWP), which is designed to provide a common
platform (the underlying system on which apps run) and user
experience across all Windows devices including personal comput-
ers, smartphones, tablets, Xbox and even Microsoft’s new
HoloLens augmented reality holographic headset—all using nearly
identical code.

Version Description

Fig. 1.7 | The evolution of the Windows operating system. (Part 2 of 2.)

1.11 Visual Studio Integrated Development Environment 63

Windows Store
You can sell apps or offer them for free in the Windows Store. At the time of this writing,
the fee to become a registered developer is $19 for individuals and $99 for companies. Mi-
crosoft retains 30% of the purchase price (more in some markets). See the App Developer
Agreement for more information:

The Windows Store offers several business models for monetizing your app. You can
charge full price for your app before download, with prices starting at $1.49. You also can
offer a time-limited trial or feature-limited trial that allows users to try the app before pur-
chasing the full version, sell virtual goods (such as additional app features) using in-app pur-
chases and more. To learn more about the Windows Store and monetizing your apps, visit

1.11 Visual Studio Integrated Development
Environment
C# programs can be created using Microsoft’s Visual Studio—a collection of software tools
called an Integrated Development Environment (IDE). The Visual Studio Community
edition IDE enables you to write, run, test and debug C# programs quickly and conveniently.
It also supports Microsoft’s Visual Basic, Visual C++ and F# programming languages and
more. Most of this book’s examples were built using Visual Studio Community, which runs
on Windows 7, 8 and 10. A few of the book’s examples require Windows 10.

1.12 Painter Test-Drive in Visual Studio Community
You’ll now use Visual Studio Community to “test-drive” an existing app that enables you
to draw on the screen using the mouse. The Painter app allows you to choose among sev-
eral brush sizes and colors. The elements and functionality you see in this app are typical
of what you’ll learn to program in this text. The following steps walk you through test-
driving the app. For this test drive, we assume that you placed the book’s examples in your
user account’s Documents folder in a subfolder named examples.

Step 1: Checking Your Setup
Confirm that you’ve set up your computer and the software properly by reading the book’s
Before You Begin section that follows the Preface.

Step 2: Locating the Painter App’s Directory
Open a File Explorer (Windows 8 and 10) or Windows Explorer (Windows 7) window and
navigate to

Double click the Painter folder to view its contents (Fig. 1.8), then double click the
Painter.sln file to open the app’s solution in Visual Studio. An app’s solution contains all
of the app’s code files, supporting files (such as images, videos, data files, etc.) and configura-
tion information. We’ll discuss the contents of a solution in more detail in the next chapter.

https://msdn.microsoft.com/en-us/library/windows/apps/hh694058.aspx

https://msdn.microsoft.com/windows/uwp/monetize/index

C:\Users\yourUserName\Documents\examples\ch01

64 Chapter 1 Introduction to Computers, the Internet and Visual C#

Depending on your system configuration, File Explorer or Windows Explorer might
display Painter.sln simply as Painter, without the filename extension .sln. To display
the filename extensions in Windows 8 and higher:

1. Open File Explorer.

2. Click the View tab, then ensure that the File name extensions checkbox is checked.

To display them in Windows 7:

1. Open Windows Explorer.

2. Press Alt to display the menu bar, then select Folder Options… from Windows Ex-
plorer’s Tools menu.

3. In the dialog that appears, select the View tab.

4. In the Advanced settings: pane, uncheck the box to the left of the text Hide ex-
tensions for known file types. [Note: If this item is already unchecked, no action
needs to be taken.]

5. Click OK to apply the setting and close the dialog.

Step 3: Running the Painter App
To see the running Painter app, click the Start button (Fig. 1.9)

or press the F5 key.
Figure 1.10 shows the running app and labels several of the app’s graphical elements—

called controls. These include GroupBoxes, RadioButtons, Buttons and a Panel. These con-
trols and many others are discussed throughout the text. The app allows you to draw with
a Red, Blue, Green or Black brush of Small, Medium or Large size. As you drag the mouse
on the white Panel, the app draws circles of the specified color and size at the mouse
pointer’s current position. The slower you drag the mouse, the closer the circles will be.
Thus, dragging slowly draws a continuous line (as in Fig. 1.11) and dragging quickly draws
individual circles with space in between. You also can Undo your previous operation or
Clear the drawing to start from scratch by pressing the Buttons below the RadioButtons in
the GUI. By using existing controls—which are objects—you can create powerful apps much
faster than if you had to write all the code yourself. This is a key benefit of software reuse.

Fig. 1.8 | Contents of C:\examples\ch01\Painter.

Double click Painter.sln to
open the project in Visual Studio

1.12 Painter Test-Drive in Visual Studio Community 65

The brush’s properties, selected in the RadioButtons labeled Black and Medium, are
default settings—the initial settings you see when you first run the app. Programmers
include default settings to provide reasonable choices that the app will use if the user does
not change the settings. Default settings also provide visual cues for users to choose their
own settings. Now you’ll choose your own settings as a user of this app.

Step 4: Changing the Brush Color
Click the RadioButton labeled Red to change the brush color, then click the RadioButton
labeled Small to change the brush size. Position the mouse over the white Panel, then drag
the mouse to draw with the brush. Draw flower petals, as shown in Fig. 1.11.

Fig. 1.9 | Running the Painter app.

Fig. 1.10 | Painter app running in Windows 10.

Press the Start button to begin executing the Painter app

GroupBoxes

RadioButtons

Panel

Buttons

66 Chapter 1 Introduction to Computers, the Internet and Visual C#

Step 5: Changing the Brush Color and Size
Click the Green RadioButton to change the brush color. Then, click the Large RadioBut-
ton to change the brush size. Draw grass and a flower stem, as shown in Fig. 1.12.

Step 6: Finishing the Drawing
Click the Blue and Medium RadioButtons. Draw raindrops, as shown in Fig. 1.13, to com-
plete the drawing.

Step 7: Stopping the App
When you run an app from Visual Studio, you can terminate it by clicking the stop button

Fig. 1.11 | Drawing flower petals with a small red brush.

Fig. 1.12 | Drawing the flower stem and grass with a large green brush.

 Self-Review Exercises 67

on the Visual Studio toolbar or by clicking the close box

on the running app’s window.
Now that you’ve completed the test-drive, you’re ready to begin developing C# apps.

In Chapter 2, Introduction to Visual Studio and Visual Programming, you’ll use Visual
Studio to create your first C# program using visual programming techniques. As you’ll see,
Visual Studio will generate for you the code that builds the app’s GUI. In Chapter 3,
Introduction to C# App Programming, you’ll begin writing C# programs containing con-
ventional program code that you write.

Fig. 1.13 | Drawing rain drops with a medium blue brush.

Self-Review Exercises
1.1 Fill in the blanks in each of the following statements:

a) Computers process data under the control of sequences of instructions called .
b) A computer consists of various devices referred to as , such as the keyboard,

screen, mouse, hard disks, memory, DVD drives and processing units.
c) Data items processed by computers form a(n) that becomes larger and more

complex in structure as we progress from the simplest data items (called “bits”) to richer
data items, such as characters, fields, and so on.

d) Computers can directly understand only their language, which is composed
only of 1s and 0s.

e) The three types of computer programming languages discussed in the chapter are ma-
chine languages, and .

f) Programs that translate high-level-language programs into machine language are called
.

g) A(n) processor implements several processors on a single “microchip”—a
dual-core processor has two CPUs and a quad-core processor has four CPUs.

h) Windows 10 introduced the for building Windows apps that run on desktop
computers, notebook computers, tablets, phones, Xbox and even Microsoft’s new
HoloLens augmented reality holographic headset—all using nearly identical code.

68 Chapter 1 Introduction to Computers, the Internet and Visual C#

1.2 Fill in the blanks in each of the following statements:
a) Objects, or more precisely the that objects come from, are essentially reusable

software components.
b) You send messages to an object. Each message is implemented as a method that

tells a method of the object to perform its task.
c) A new class of objects can be created quickly and conveniently by ; the new

class absorbs the characteristics of an existing class, possibly customizing them and add-
ing unique characteristics of its own.

d) To create the best solutions, you should follow a detailed analysis process for determin-
ing your project’s (i.e., defining what the system is supposed to do) and de-
veloping a design that satisfies them (i.e., deciding how the system should do it).

e) Visual C# is driven. You’ll write programs that respond to mouse clicks, key-
strokes, timer expirations and touches and finger swipes.

f) A key goal of Java is to be able to write programs that will run on a great variety of com-
puter systems and computer-control devices. This is sometimes called .

1.3 Fill in the blanks in each of the following statements:
a) The executes .NET programs.
b) The CLR provides various services to code, such as integrating software com-

ponents written in different .NET languages, error handling between such components,
enhanced security and more.

c) The ability of a program to run without modification across multiple platforms is
known as platform .

d) Visual Studio is a(n) in which C# programs are developed.
e) You can sell your own Windows Phone apps in the .

1.4 State whether each of the following is true or false. If false, explain why.
a) Software objects model both abstract and real-world things.
b) The most popular database model is the relational database in which data is stored in

simple tables. A table includes records and fields.
c) A database is a collection of data that’s organized for easy access and manipulation.
d) Secondary storage data takes much longer to access than data in primary memory, but

the cost per unit of secondary storage is much higher than that of primary memory.
e) High-level languages allow you to write instructions that look almost like everyday Eng-

lish and contain commonly used mathematical expressions.
f) An object has attributes that it carries along as it’s used in a program.
g) The Transmission Control Protocol (TCP) ensures that messages, consisting of sequen-

tially numbered pieces called bytes, were properly routed from sender to receiver, ar-
rived intact and were assembled in the correct order

h) The information-carrying capacity of communications lines on the Internet has in-
creased tremendously, while hardware costs have increased.

i) You can build web-based apps with C# and Microsoft’s ASP.NET technology.
j) Java has become the key programming language for the Mac OS X desktop operating

system and all iOS-based devices, such as iPods, iPhones and iPads.
k) Microsoft’s ASP.WEB technology is used to create web apps.
l) Microsoft’s Windows operating system is the most widely used desktop operating sys-

tem worldwide.

1.5 Arrange these byte measurements in order from smallest to largest: terabyte, megabyte,
petabyte, gigabyte and kilobyte.

1.6 Describe the two-step translation process for preparing your C# code to execute on your
particular computer.

 Answers to Self-Review Exercises 69

Answers to Self-Review Exercises
1.1 a) computer programs. b) hardware. c) data hierarchy. d) machine. e) assembly languages,
high-level languages. f) compilers. g) multicore. h) Universal Windows Platform (UWP).

1.2 a) classes. b) call. c) inheritance. d) requirements. e) event. f) write once, run anywhere.

1.3 a) Common Language Runtime (CLR) of the .NET Framework. b) managed. c) indepen-
dence. d) IDE. e) Windows Store.

1.4 a) True. b) True. c) True. d) False: The cost per unit of secondary storage is much lower
than that of primary memory. e) True. f) True. g) False. The pieces are called packets, not bytes. h)
False. Hardware costs have decreased. i) True. j) False. The language is Swift, not Java. k) False. It’s
ASP.NET technology. l) True.

1.5 kilobyte, megabyte, gigabyte, terabyte, petabyte.

1.6 C# code is first compiled into MSIL and placed in an executable file. When the app exe-
cutes, another compiler called the JIT (just-in-time) compiler in the CLR translates the MSIL in
the executable file into machine-language code (for a particular platform).

Exercises
1.7 Fill in the blanks in each of the following statements:

a) Regardless of differences in physical appearance, computers can be envisioned as divided
into various .

b) Systems such as smartphones, appliances, game controllers, cable set-top boxes and au-
tomobiles that contain small computers are called .

c) Just as characters are composed of bits, are composed of characters or bytes.
d) Information on secondary storage devices is ; it’s preserved even when the

computer’s power is turned off.
e) provide services that allow each app to execute safely, efficiently and concurrently

with other apps.
f) In object-oriented programming languages, we create a program unit called a(n)

 to house the set of methods that perform its tasks.
g) Use a building-block approach to creating your programs. Avoid reinventing the

wheel—use existing pieces wherever possible. Such software is a key benefit
of object-oriented programming.

1.8 Fill in the blanks in each of the following statements:
a) Although many different OOAD processes exist, a single graphical language for com-

municating the results of any OOAD process has come into wide use. This language,
known as the , is now the most widely used graphical scheme for modeling ob-
ject-oriented systems.

b) Tim Berners-Lee developed the for sharing information via “hyperlinked”
text documents on the web.

c) The CLR is a(n) machine. It is software that manages the execution of pro-
grams and hides from them the underlying operating system and hardware.

d) Converting a program to run on a different platform from which it was originally in-
tended is called .

e) Microsoft’s Windows is a cloud-computing platform that allows you to de-
velop, manage and distribute your apps in the cloud.

f) By using existing controls—which are objects—you can create powerful apps much
faster than if you had to write all the code yourself. This is a key benefit of software

.

70 Chapter 1 Introduction to Computers, the Internet and Visual C#

1.9 State whether each of the following is true or false. If false, explain why.
a) The smallest data item in a computer can assume the value 1 or the value 2. Such a data

item is called a bit (short for “binary digit”—a digit that can assume either of two val-
ues).

b) The Unicode character set is a popular subset of ASCII that represents uppercase and
lowercase letters, digits and some common special characters.

c) The Central Processing Unit acts like an “administrative” section that coordinates and
supervises the operation of the other sections like input unit, output unit, ALU etc.

d) Reuse helps you build more reliable and effective systems, because existing classes and
components often have gone through extensive testing, debugging and performance
tuning.

e) One of the W3C’s primary goals is to make the web universally accessible to everyone
regardless of disabilities, language or culture.

f) C# is available only on Microsoft Windows.
g) C# apps can be developed only for desktop environments.
h) .NET programs can run on any platform.
i) The Universal Windows Platform (UWP) is designed to provide a common platform

(the underlying system on which apps run) and user experience across all of your devices
including personal computers, smartphones, tablets and Xbox Live.

1.10 What is a key advantage of interpreters over compilers? What is a key disadvantage?

1.11 What is the key advantage of using the new async feature in preference to using old-style
multithreading?

1.12 How has Moore’s Law made computers more capable?

1.13 Why is using cloud-computing resources sometimes preferable to purchasing all the hard-
ware you need for your own computer?

1.14 Which of the following falls under the class of hardware, software or a combination of both?
a) Memory Unit
b) World Wide Web
c) .NET Framework class library
d) ALU
e) OS

1.15 .NET apps can be created using any .NET-compatible language such as C#, Visual Basic,
Visual C++ and others. State the following statements as True or False in the context:

a) The .NET Framework Class Library has many capabilities which can be used to build
many C# apps quickly and easily.

b) The .NET framework class library contains very few valuable prebuilt classes that have
been tested and tuned to maximize performance.

c) The .NET has JIT Compiler that executes .NET programs and provides functionality
to make them easier to develop and debug.

d) .NET Framework classes are reused to speed up the software-development process.

1.16 Write the expanded forms of the following abbreviations:
a) ASCII
b) JITC
c) TCP/IP
d) OOAD
e) UWP
f) GPS

1.17 What are the key benefits of the .NET Framework and the CLR? What are the drawbacks?

 Making-a-Difference Exercises 71

1.18 How does OOAD help in designing large and complex systems?

1.19 While observing a real-life car, you decide to link it with the concepts of the object oriented
programming paradigm. Discuss the notion of a car using this analogy–the class it belongs to,
objects of the same type, the attributes and the behaviors associated with objects.

1.20 What is the key accomplishment of the UML?

1.21 What did the chief benefit of the early Internet prove to be?

1.22 What is the key capability of the web?

1.23 What is the key vision of Microsoft’s .NET initiative?

1.24 How does the .NET Framework Class Library facilitate the development of .NET apps?

1.25 Besides the obvious benefits of reuse made possible by OOP, what do many organizations
report as another key benefit of OOP?

Making-a-Difference Exercises
The Making-a-Difference exercises will ask you to work on problems that really matter to individ-
uals, communities, countries and the world.

1.26 (Test Drive: Carbon Footprint Calculator) Some scientists believe that carbon emissions,
especially from the burning of fossil fuels, contribute significantly to global warming and that this
can be combatted if individuals take steps to limit their use of carbon-based fuels. Various organi-
zations and individuals are increasingly concerned about their “carbon footprints.” Websites such
as TerraPass

http://www.terrapass.com/carbon-footprint-calculator-2/

and Carbon Footprint

http://www.carbonfootprint.com/calculator.aspx

provide carbon-footprint calculators. Test drive these calculators to determine your carbon foot-
print. Exercises in later chapters will ask you to program your own carbon-footprint calculator. To
prepare for this, research the formulas for calculating carbon footprints.

1.27 (Test Drive: Body-Mass-Index Calculator) By recent estimates, two-thirds of the people in
the United States are overweight and about half of those are obese. This causes significant increases
in illnesses such as diabetes and heart disease. To determine whether a person is overweight or obese,
you can use a measure called the body mass index (BMI). The United States Department of Health
and Human Services provides a BMI calculator at http://www.nhlbi.nih.gov/guidelines/
obesity/BMI/bmicalc.htm. Use it to calculate your own BMI. An exercise in Chapter 3 will ask you
to program your own BMI calculator. To prepare for this, research the formulas for calculating BMI.

1.28 (Attributes of Hybrid Vehicles) In this chapter you learned the basics of classes. Now you’ll
begin “fleshing out” aspects of a class called “Hybrid Vehicle.” Hybrid vehicles are becoming increas-
ingly popular, because they often get much better mileage than purely gasoline-powered vehicles.
Browse the web and study the features of four or five of today’s popular hybrid cars, then list as many
of their hybrid-related attributes as you can. For example, common attributes include city-miles-per-
gallon and highway-miles-per-gallon. Also list the attributes of the batteries (type, weight, etc.).

1.29 (Gender Neutrality) Some people want to eliminate sexism in all forms of communication.
You’ve been asked to create a program that can process a paragraph of text and replace gender-spe-
cific words with gender-neutral ones. Assuming that you’ve been given a list of gender-specific
words and their gender-neutral replacements (e.g., replace “wife” with “spouse,” “man” with “per-
son,” “daughter” with “child” and so on), explain the procedure you’d use to read through a para-

72 Chapter 1 Introduction to Computers, the Internet and Visual C#

graph of text and manually perform these replacements. How might your procedure generate a
strange term like “woperchild,” which is actually listed in the Urban Dictionary (www.urbandic-
tionary.com)? In Chapter 5, you’ll learn that a more formal term for “procedure” is “algorithm,”
and that an algorithm specifies the steps to be performed and the order in which to perform them.

Making-a-Difference Resources
The Microsoft Imagine Cup is a global competition in which students use technology to try to solve
some of the world’s most difficult problems, such as environmental sustainability, ending hunger,
emergency response, literacy and more. For more information about the competition and to learn
about previous winners’ projects, visit https://www.imaginecup.com/Custom/Index/About. You
can also find several project ideas submitted by worldwide charitable organizations. For additional
ideas for programming projects that can make a difference, search the web for “making a differ-
ence” and visit the following websites:
http://www.un.org/millenniumgoals

The United Nations Millennium Project seeks solutions to major worldwide issues such as environ-
mental sustainability, gender equality, child and maternal health, universal education and more.
http://www.ibm.com/smarterplanet

The IBM® Smarter Planet website discusses how IBM is using technology to solve issues related to
business, cloud computing, education, sustainability and more.
http://www.gatesfoundation.org

The Bill and Melinda Gates Foundation provides grants to organizations that work to alleviate hun-
ger, poverty and disease in developing countries.
http://nethope.org

NetHope is a collaboration of humanitarian organizations worldwide working to solve technology
problems such as connectivity, emergency response and more.
http://www.rainforestfoundation.org

The Rainforest Foundation works to preserve rainforests and to protect the rights of the indigenous
people who call the rainforests home. The site includes a list of things you can do to help.
http://www.undp.org

The United Nations Development Programme (UNDP) seeks solutions to global challenges such
as crisis prevention and recovery, energy and the environment, democratic governance and more.
http://www.unido.org

The United Nations Industrial Development Organization (UNIDO) seeks to reduce poverty, give
developing countries the opportunity to participate in global trade, and promote energy efficiency
and sustainability.
http://www.usaid.gov/

USAID promotes global democracy, health, economic growth, conflict prevention, humanitarian
aid and more.

2Introduction to Visual Studio
and Visual Programming

O b j e c t i v e s
In this chapter you’ll:

■ Learn the basics of the Visual
Studio Community 2015
Integrated Development
Environment (IDE) for
writing, running and
debugging your apps.

■ Create a new project using
Visual Studio’s Windows
Forms Application
template.

■ Be introduced to Windows
Forms and the controls you’ll
use to build graphical user
interfaces.

■ Use key commands
contained in the IDE’s menus
and toolbars.

■ Understand the purpose of
the various windows in the
Visual Studio.

■ Use Visual Studio’s help
features.

■ Use visual app development
to conveniently create,
compile and execute a simple
Visual C# app that displays
text and an image.

74 Chapter 2 Introduction to Visual Studio and Visual Programming

2.1 Introduction
Visual Studio is Microsoft’s Integrated Development Environment (IDE) for creating,
running and debugging apps (also called applications) written in C# and various other
.NET programming languages. In this chapter, we overview the Visual Studio Communi-
ty 2015 IDE, then show how to create a simple Visual C# app by dragging and dropping
predefined building blocks into place—a technique known as visual app development.

2.2 Overview of the Visual Studio Community 2015 IDE
There are several versions of Visual Studio. This book’s examples, screen captures and dis-
cussions are based on the free Visual Studio Community 2015 running on Windows 10.
See the Before You Begin section that follows the Preface for information on installing the
software. With few exceptions, this book’s examples can be created and run on Windows
7, 8.x or 10—we’ll point out any examples that require Windows 10.

The examples will work on full versions of Visual Studio as well—though some
options, menus and instructions might differ. From this point forward, we’ll refer to Visual
Studio Community 2015 simply as “Visual Studio” or “the IDE.” We assume that you have
some familiarity with Windows.

2.2.1 Introduction to Visual Studio Community 2015
[Note: We use the > character to indicate when you should select a menu item from a menu.
For example, notation File > Save All means that you should select the Save All menu item
from the File menu.]

To begin, open Visual Studio. On Windows 10, click

then select All Apps > Visual Studio 2015. On Windows 7, click

2.1 Introduction
2.2 Overview of the Visual Studio

Community 2015 IDE
2.2.1 Introduction to Visual Studio

Community 2015
2.2.2 Visual Studio Themes
2.2.3 Links on the Start Page
2.2.4 Creating a New Project
2.2.5 New Project Dialog and Project

Templates
2.2.6 Forms and Controls

2.3 Menu Bar and Toolbar

2.4 Navigating the Visual Studio IDE
2.4.1 Solution Explorer
2.4.2 Toolbox
2.4.3 Properties Window

2.5 Help Menu and Context-Sensitive
Help

2.6 Visual Programming: Creating a
Simple App that Displays Text and an
Image

2.7 Wrap-Up
2.8 Web Resources

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

2.2 Overview of the Visual Studio Community 2015 IDE 75

then select All Programs > Visual Studio 2015. On Windows 8’s Start screen, locate and
click the Visual Studio 2015 tile, which will contain the following icon:

Initially, Visual Studio displays the Start Page (Fig. 2.1). Depending on your version
of Visual Studio, your Start Page may look different. The Start Page contains a list of links
to Visual Studio resources and web-based resources. At any time, you can return to the
Start Page by selecting View > Start Page.

2.2.2 Visual Studio Themes
Visual Studio supports three themes that specify the IDE’s color scheme:

• a dark theme (with dark window backgrounds and light text)

• a light theme (with light window backgrounds and dark text) and

• a blue theme (with light window backgrounds and dark text).

We use the blue theme throughout this book. The Before You Begin section after the Pref-
ace explains how to set this option.

2.2.3 Links on the Start Page
The Start Page links are organized into two columns. The left column’s Start section con-
tains options for building new apps or working on existing ones. The left column’s Recent
section contains links to projects you’ve recently created or modified.

Fig. 2.1 | Start Page in Visual Studio Community 2015.

Start Page linksCollapsed Toolbox window

Solution Explorer (no projects open)New Project button Start Page tab

Recent projects will be listed here

76 Chapter 2 Introduction to Visual Studio and Visual Programming

The Start Page’s right column—with Discover Visual Studio Community 2015 at the
top—contains links to various online documentation and resources to help you get started
with Visual Studio and learn about Microsoft programming technologies. An Internet
connection is required for the IDE to access most of this information.

To access more extensive information on Visual Studio, you can browse the MSDN
(Microsoft Developer Network) Library at

The MSDN site contains articles, downloads and tutorials on technologies of interest to
Visual Studio developers. You also can browse the web from the IDE by selecting View >
Other Windows > Web Browser. To request a web page, type its URL into the location bar
(Fig. 2.2) and press the Enter key—your computer, of course, must be connected to the
Internet. The web page that you wish to view appears as another tab in the IDE—
Figure 2.2 shows the browser tab after entering http://msdn.microsoft.com/library.

2.2.4 Creating a New Project
To begin app development in Visual C#, you must create a new project or open an existing
one. A project is a group of related files, such as the Visual C# code and any images that
might make up an app. Visual Studio organizes apps into projects and solutions, which
contain one or more projects. Multiple-project solutions are used to create large-scale apps.
Most apps we create in this book consist of a solution containing a single project. You se-
lect File > New > Project… to create a new project or File > Open > Project/Solution… to

https://msdn.microsoft.com/library/dd831853

Fig. 2.2 | MSDN Library web page in Visual Studio.

Location bar Web browser window tab

2.2 Overview of the Visual Studio Community 2015 IDE 77

open an existing one. You also can click the corresponding links in the Start Page’s Start
section.

2.2.5 New Project Dialog and Project Templates
For the discussions in the next several sections, we’ll create a new project. Select File >
New > Project… to display the New Project dialog (Fig. 2.3). Dialogs are windows that
facilitate user–computer communication.

Visual Studio provides many templates (left column of Fig. 2.3)—the project types
that users can create in Visual C# and other languages. The templates include Windows
Forms apps, WPF apps and others—full versions of Visual Studio provide additional tem-
plates. In this chapter, you’ll build a Windows Forms Application—an app that executes
within a Windows operating system (such as Windows 7, 8 or 10) and typically has a
graphical user interface (GUI). Users interact with this visual part of the app. GUI apps
include Microsoft software products like Microsoft Word, Internet Explorer and Visual
Studio, software products created by other vendors, and customized software that you and
other app developers create. You’ll create many Windows apps in this book.

To create a Windows Forms Application, under Templates select Visual C# > Windows >
Classic Desktop, then in the middle column select Windows Forms Application. By default,
Visual Studio assigns the name WindowsFormsApplication1 to a new Windows Forms Appli-
cation project and solution (Fig. 2.3). Click OK to display the IDE in Design view
(Fig. 2.4), which contains the features that enable you to create an app’s GUI.

Fig. 2.3 | New Project dialog.

Visual C# Windows Forms
Application (selected)

Default project name
(provided by Visual Studio)

Description of selected project
(provided by Visual Studio)

78 Chapter 2 Introduction to Visual Studio and Visual Programming

2.2.6 Forms and Controls
The rectangle in the Design area titled Form1 (called a Form) represents the main window
of the Windows Forms app that you’re creating. Each Form is an object of class Form in the
.NET Framework Class Library. Apps can have multiple Forms (windows)—however, the
app you’ll create in Section 2.6 and most other Windows Forms app you’ll create later in
this book will contain a single Form. You’ll learn how to customize the Form by adding
GUI controls—in Section 2.6, you’ll add a Label and a PictureBox. A Label typically
contains descriptive text (for example, "Welcome to Visual C#!"), and a PictureBox dis-
plays an image. Visual Studio has many preexisting controls and other components you
can use to build and customize your apps. Many of these controls are discussed and used
throughout the book. Other controls are available from third parties.

In this chapter, you’ll work with preexisting controls from the .NET Framework Class
Library. As you place controls on the Form, you’ll be able to modify their properties (dis-
cussed in Section 2.4).

Collectively, the Form and controls make up the app’s GUI. Users enter data into the
app by typing at the keyboard, by clicking the mouse buttons and in a variety of other
ways. Apps use the GUI to display instructions and other information for users to view.
For example, the New Project dialog in Fig. 2.3 presents a GUI where the user clicks the
mouse button to select a template type, then inputs a project name from the keyboard (the
figure shows the default project name WindowsFormsApplication1).

Fig. 2.4 | Design view of the IDE.

Menu in the
menu bar Form

Solution Explorer
windowActive tab

2.3 Menu Bar and Toolbar 79

Each open document’s name is listed on a tab. To view a document when multiple
documents are open, click its tab. The active tab (the tab of the currently displayed doc-
ument) is highlighted (for example, Form1.cs [Design] in Fig. 2.4). The active tab’s high-
light color depends on the Visual Studio theme—the blue theme uses a yellow highlight
and the light and dark themes use a blue highlight.

2.3 Menu Bar and Toolbar
Commands for managing the IDE and for developing, maintaining and executing apps
are contained in menus, which are located on the menu bar of the IDE (Fig. 2.5). The set
of menus displayed depends on what you’re currently doing in the IDE.

Menus contain groups of related commands called menu items that, when selected,
cause the IDE to perform specific actions—for example, open a window, save a file, print
a file and execute an app. For example, selecting File > New > Project… tells the IDE to
display the New Project dialog. The menus depicted in Fig. 2.5 are summarized in Fig. 2.6.

Fig. 2.5 | Visual Studio menu bar.

Menu Contains commands for

File Opening, closing, adding and saving projects, as well as printing project data
and exiting Visual Studio.

Edit Editing apps, such as cut, copy, paste, undo, redo, delete, find and select.
View Displaying IDE windows (for example, Solution Explorer, Toolbox, Properties

window) and for adding toolbars to the IDE.
Project Managing projects and their files.
Build Turning your app into an executable program.
Debug Compiling, debugging (that is, identifying and correcting problems in apps) and

running apps.
Team Connecting to a Team Foundation Server—used by development teams that

typically have multiple people working on the same app.
Format Arranging and modifying a Form’s controls. The Format menu appears only when

a GUI component is selected in Design view.
Tools Accessing additional IDE tools and options for customizing the IDE.
Test Performing various types of automated testing on your app.
Analyze Locating and reporting violations of the .NET Framework Design Guidelines

(https://msdn.microsoft.com/library/ms229042).

Fig. 2.6 | Summary of Visual Studio menus that are displayed when a Form is in Design
view. (Part 1 of 2.)

80 Chapter 2 Introduction to Visual Studio and Visual Programming

You can access many common menu commands from the toolbar (Fig. 2.7), which
contains icons that graphically represent commands. By default, the standard toolbar is
displayed when you run Visual Studio for the first time—it contains icons for the most
commonly used commands, such as opening a file, saving files and running apps
(Fig. 2.7). The icons that appear on the standard toolbar may vary, depending on the ver-
sion of Visual Studio you’re using. Some commands are initially disabled (grayed out or
unavailable to use). These commands are enabled by Visual Studio only when you can use
them. For example, Visual Studio enables the command for saving a file once you begin
editing a file.

You can customize which toolbars are displayed by selecting View > Toolbars then
selecting a toolbar from the list in Fig. 2.8. Each toolbar you select is displayed with the
other toolbars at the top of the Visual Studio window. You move a toolbar by dragging its
handle

at the left side of the toolbar. To execute a command via the toolbar, click its icon.

Window Hiding, opening, closing and displaying IDE windows.
Help Accessing the IDE’s help features.

Fig. 2.7 | Standard Visual Studio toolbar.

Menu Contains commands for

Fig. 2.6 | Summary of Visual Studio menus that are displayed when a Form is in Design
view. (Part 2 of 2.)

New
Project

Navigate
Forward

Navigate
Backward Undo Save

Open File Save All

Solution
Platforms

Redo

StartSolution
Configurations

Find In Files

2.3 Menu Bar and Toolbar 81

 It can be difficult to remember what each toolbar icon represents. Hovering the mouse
pointer over an icon highlights it and, after a brief pause, displays a description of the icon
called a tool tip (Fig. 2.9)—these tips help you become familiar with the IDE’s features
and serve as useful reminders for each toolbar icon’s functionality.

Fig. 2.8 | List of toolbars that can be added to the top of the IDE.

Fig. 2.9 | Tool tip for the New Project button.

Tool tip appears when
you place the mouse
pointer on an icon

82 Chapter 2 Introduction to Visual Studio and Visual Programming

2.4 Navigating the Visual Studio IDE
The IDE provides windows for accessing project files and customizing controls. This sec-
tion introduces several windows that you’ll use frequently when developing Visual C#
apps. Each of the IDE’s windows can be accessed by selecting its name in the View menu.

Auto-Hide
Visual Studio provides an auto-hide space-saving feature. When auto-hide is enabled for
a window, a tab containing the window’s name appears along the IDE window’s left, right
or bottom edge (Fig. 2.10). Clicking the name of an auto-hidden window displays that
window (Fig. 2.11). Clicking the name again (or clicking outside) hides the window. To
“pin down” a window (that is, to disable auto-hide and keep the window open), click the
pin icon. When auto-hide is enabled, the pin icon is horizontal

as shown in Fig. 2.11. When a window is “pinned down,” the pin icon is vertical

as shown in Fig. 2.12.

Fig. 2.10 | Auto-hide feature demonstration.

Fig. 2.11 | Displaying the hidden Toolbox window when auto-hide is enabled.

Auto-hidden
Toolbox and

Data Sources
windows

Auto-hidden
Solution
Explorer and
Properties
windows

Expanded
Toolbox
window

Horizontal
orientation for
pin icon when
auto-hide is
enabled

2.4 Navigating the Visual Studio IDE 83

The next few sections present three Visual Studio’s windows that you’ll use fre-
quently—the Solution Explorer, the Properties window and the Toolbox. These windows
display project information and include tools that help you build your apps.

2.4.1 Solution Explorer

The Solution Explorer window (Fig. 2.13) provides access to all of a solution’s files. If it’s
not shown in the IDE, select View > Solution Explorer. When you open a new or existing
solution, the Solution Explorer displays the solution’s contents.

The solution’s startup project (shown in bold in the Solution Explorer) is the one that
runs when you select Debug > Start Debugging (or press F5) or select Debug > Start Without
Debugging (or press Ctrl + F5 key). For a single-project solution like the examples in this
book, the startup project is the only project (in this case, WindowsFormsApplication1).
When you create an app for the first time, the Solution Explorer window appears as shown
in Fig. 2.13. The Visual C# file that corresponds to the Form shown in Fig. 2.4 is named
Form1.cs (selected in Fig. 2.13). Visual C# files use the .cs file-name extension, which is
short for “C#.”

By default, the IDE displays only files that you may need to edit—other files that the
IDE generates are hidden. The Solution Explorer window includes a toolbar that contains
several icons. Clicking the Show All Files icon (Fig. 2.13) displays all the solution’s files,
including those generated by the IDE. Clicking the arrow to the left of a node expands or
collapses that node. Click the arrow to the left of References to display items grouped

Fig. 2.12 | Disabling auto-hide—“pinning down” a window.

Fig. 2.13 | Solution Explorer window showing the WindowsFormsApplication1 project.

Toolbox
“pinned down”

Vertical
orientation for
pin icon when
window is
“pinned down”

Show All Files icon
Toolbar

Startup project

84 Chapter 2 Introduction to Visual Studio and Visual Programming

under that heading (Fig. 2.14). Click the arrow again to collapse the tree. Other Visual
Studio windows also use this convention.

2.4.2 Toolbox
To display the Toolbox window, select View > Toolbox. The Toolbox contains the controls
used to customize Forms (Fig. 2.15). With visual app development, you can “drag and
drop” controls onto the Form and the IDE will write the code that creates the controls for
you. This is faster and simpler than writing this code yourself. Just as you do not need to
know how to build an engine to drive a car, you do not need to know how to build controls
to use them. Reusing preexisting controls saves time and money when you develop apps.
You’ll use the Toolbox when you create your first app later in the chapter.

The Toolbox groups the prebuilt controls into categories—All Windows Forms,
Common Controls, Containers, Menus & Toolbars, Data, Components, Printing, Dialogs,
Reporting, WPF Interoperability and General are listed in Fig. 2.15. Again, note the use of
arrows for expanding or collapsing a group of controls. We discuss many of the Toolbox’s
controls and their functionality throughout the book.

2.4.3 Properties Window
If the Properties window is not displayed below the Solution Explorer, select View > Prop-
erties Window to display it—if the window is in auto-hide mode, pin down the window
by clicking its horizontal pin icon

The Properties window contains the properties for the currently selected Form, control or
file in the IDE. Properties specify information about the Form or control, such as its size,

Fig. 2.14 | Solution Explorer with the References node expanded.

Click to collapse node

Click to expand node

2.4 Navigating the Visual Studio IDE 85

color and position. Each Form or control has its own set of properties. When you select a
property, its description is displayed at the bottom of the Properties window.

Figure 2.16 shows Form1’s Properties window—you can view by clicking anywhere in
the Form1.cs [Design] window. The left column lists the Form’s properties—the right
column displays the current value of each property. You can sort the properties either

• alphabetically (by clicking the Alphabetical icon) or

• categorically (by clicking the Categorized icon).

Depending on the Properties window’s size, some properties may be hidden from
your view. You can scroll through the list of properties by dragging the scrollbox up or
down inside the scrollbar, or by clicking the arrows at the top and bottom of the scrollbar.
We show how to set individual properties later in this chapter.

Fig. 2.15 | Toolbox window displaying controls for the Common Controls group.

Group names

Controls

86 Chapter 2 Introduction to Visual Studio and Visual Programming

The Properties window is crucial to visual app development—it allows you to quickly
modify a control’s properties and, rather than writing code yourself, lets the IDE write
code for you “behind the scenes.” You can see which properties are available for modifica-
tion and, in many cases, can learn the range of acceptable values for a given property. The
Properties window displays a brief description of the selected property, helping you under-
stand its purpose.

2.5 Help Menu and Context-Sensitive Help
Microsoft provides extensive help documentation via the Help menu, which is an excellent
way to get information quickly about Visual Studio, Visual C# and more. Visual Studio
provides context-sensitive help pertaining to the “current content” (that is, the items
around the location of the mouse cursor). To use context-sensitive help, click an item,
then press the F1 key. The help documentation is displayed in a web browser window. To
return to the IDE, either close the browser window or select the IDE’s icon in your Win-
dows task bar.

Fig. 2.16 | Properties window.

Selected property’s
description

Categorized icon

Alphabetical icon

Component selection
drop-down list

Scrollbox

Scrollbar

Toolbar

Properties in the
Behavior category

Property values

2.6 Visual Programming: Creating a Simple App that Displays Text and an Image 87

2.6 Visual Programming: Creating a Simple App that
Displays Text and an Image
Next, we create an app that displays the text "Welcome to C# Programming!" and an image
of the Deitel & Associates bug mascot. The app consists of a Form that uses a Label and a
PictureBox. Figure 2.17 shows the final app executing. The app and the bug image are
available with this chapter’s examples—see the Before You Begin section following the
Preface for download instructions. We assume you placed the examples in your user ac-
count’s Documents folder in a subfolder named examples.

In this example, you won’t write any C# code. Instead, you’ll use visual app-develop-
ment techniques. Visual Studio processes your actions (such as mouse clicking, dragging
and dropping) to generate app code. Chapter 3 begins our discussion of writing app code.
Throughout the book, you’ll produce increasingly substantial and powerful apps that will
include code written by you and code generated by Visual Studio. The generated code can
be difficult for novices to understand—but you’ll rarely need to look at it.

Visual app development is useful for building GUI-intensive apps that require a sig-
nificant amount of user interaction. To create, save, run and terminate this first app, per-
form the following steps.

Step 1: Closing the Open Project
If the project you were working with earlier in this chapter is still open, close it by selecting
File > Close Solution.

Step 2: Creating the New Project
To create a new Windows Forms app:

1. Select File > New > Project… to display the New Project dialog (Fig. 2.18).

2. Select Windows Forms Application. Name the project ASimpleApp, specify the Lo-
cation where you want to save it and click OK. We stored the app in the IDE’s
default location—in your user account’s Documents folder under the Visual Stu-
dio 2015\Projects.

Fig. 2.17 | Simple app executing.

PictureBox control
displays an image

Label control
displays text

88 Chapter 2 Introduction to Visual Studio and Visual Programming

As you saw earlier in this chapter, when you first create a new Windows Forms app, the
IDE opens in Design view (that is, the app is being designed and is not executing). The
text Form1.cs [Design] in the tab containing the Form means that we’re designing the Form
visually rather than programmatically. An asterisk (*) at the end of the text in a tab indicates
that you’ve changed the file and the changes have not yet been saved.

Step 3: Setting the Text in the Form’s Title Bar
The text in the Form’s title bar is determined by the Form’s Text property (Fig. 2.19). If the
Properties window is not open, select View > Properties Window and pin down the window
so it doesn’t auto hide. Click anywhere in the Form to display the Form’s properties in the
Properties window. In the textbox to the right of the Text property, type "A Simple App",
as in Fig. 2.19. Press the Enter key—the Form’s title bar is updated immediately (Fig. 2.20).

Fig. 2.18 | New Project dialog.

Fig. 2.19 | Setting the Form’s Text property in the Properties window.

Type the project
name here

Select the Windows Forms
Application template

Selected
property Property value

Name and type of object

Property
description

2.6 Visual Programming: Creating a Simple App that Displays Text and an Image 89

Step 4: Resizing the Form
The Form’s size is specified in pixels (that is, dots on the screen). By default, a Form is 300
pixels wide and 300 pixels tall. You can resize the Form by dragging one of its sizing handles
(the small white squares that appear around the Form, as shown in Fig. 2.20). Using the
mouse, select the bottom-right sizing handle and drag it down and to the right to make the
Form larger. As you drag the mouse (Fig. 2.21), the IDE’s status bar (at the bottom of the
IDE) shows the current width and height in pixels. We set the Form to 400 pixels wide by
360 pixels tall. You also can do this via the Form’s Size property in the Properties window.

Fig. 2.20 | Form with updated title-bar text and enabled sizing handles.

Fig. 2.21 | Resizing the Form.

Enabled sizing
handles

Title bar

Form’s current
width and height
while resizing

Mouse cursor when
resizing the Form

90 Chapter 2 Introduction to Visual Studio and Visual Programming

Step 5: Changing the Form’s Background Color
The BackColor property specifies a Form’s or control’s background color. Clicking Back-
Color in the Properties window causes a down-arrow button to appear next to the value
of the property (Fig. 2.22). Clicking the down-arrow button displays other options, which
vary depending on the property. In this case, the arrow displays tabs for Custom, Web and
System (the default). Click the Custom tab to display the palette (a grid of colors). Select
the box that represents light blue. Once you select the color, the palette closes and the
Form’s background color changes to light blue (Fig. 2.23).

Step 6: Adding a Label Control to the Form
For the app we’re creating in this chapter, the typical controls we use are located in the
Toolbox’s Common Controls group, and also can be found in the All Windows Forms group.
If the Toolbox is not already open, select View > Toolbox to display the set of controls you’ll
use for creating your apps. If either group name is collapsed, expand it by clicking the ar-

Fig. 2.22 | Changing the Form’s BackColor property.

Fig. 2.23 | Form with new BackColor property applied.

Down-arrow button

Current color

Custom palette
Light blue

New light blue
background color

2.6 Visual Programming: Creating a Simple App that Displays Text and an Image 91

row to the left of the group name (the All Windows Forms and Common Controls groups
are shown in Fig. 2.15). Next, double click the Label control in the Toolbox to add a La-
bel in the Form’s upper-left corner (Fig. 2.24)—each Label you add to the Form is an ob-
ject of class Label from the .NET Framework Class Library. [Note: If the Form is behind
the Toolbox, you may need to hide or pin down the Toolbox to see the Label.] Although
double clicking any Toolbox control places the control on the Form, you also can “drag”
controls from the Toolbox to the Form—you may prefer dragging the control because you
can position it wherever you want. The Label displays the text label1 by default. By de-
fault, the Label’s BackColor is the same as the Form’s.

Step 7: Customizing the Label’s Appearance
Click the Label’s text in the Form to select it and display its properties in the Properties win-
dow. The Label’s Text property determines the text that the Label displays. The Form and
Label each have their own Text property—Forms and controls can have the same property
names (such as Text, BackColor etc.) without conflict. Each common properties purpose
can vary by control. Perform the following steps:

1. Set the Label’s Text property to Welcome to C# Programming!. The Label resizes
to fit all the typed text on one line.

2. By default, the AutoSize property of the Label is set to True so the Label can up-
date its own size to fit all of its text. Set the AutoSize property to False so that you
can change the Label’s size, then resize the Label (using the sizing handles) so that
the text fits.

3. Move the Label to the top center of the Form by dragging it or by using the key-
board’s left and right arrow keys to adjust its position (Fig. 2.25). Alternatively,
when the Label is selected, you can center it horizontally by selecting Format >
Center In Form > Horizontally.

Step 8: Setting the Label’s Font Size
To change the font type and appearance of the Label’s text:

1. Select the value of the Font property, which causes an ellipsis button to appear
next to the value (Fig. 2.26)—you can click this button to display a dialog of op-

Fig. 2.24 | Adding a Label to the Form.

Fig. 2.25 | GUI after the Form and Label have been customized.

Label control

Label centered with
updated Text
property

Sizing
handles

92 Chapter 2 Introduction to Visual Studio and Visual Programming

tions for the property. Click the ellipsis button to display the Font dialog
(Fig. 2.27).

2. You can select the font name (the font options may be different, depending on
your system), font style (Regular, Italic, Bold, etc.) and font size (16, 18, 20, etc.)
in this dialog. The Sample text shows the selected font settings. Under Font, se-
lect Segoe UI, Microsoft’s recommended font for user interfaces. Under Size, se-
lect 24 points and click OK.

3. If the Label’s text does not fit on a single line, it wraps to the next line. Resize the
Label so that the words "Welcome to" appear on the Label’s first line and the
words "C# Programming!" appear on the second line.

4. Re-center the Label horizontally.

Step 9: Aligning the Label’s Text
Select the Label’s TextAlign property, which determines how the text is aligned within
the Label. A three-by-three grid of buttons representing alignment choices is displayed
(Fig. 2.28). The position of each button corresponds to where the text appears in the La-
bel. For this app, set the TextAlign property to MiddleCenter in the three-by-three
grid—this selection centers the text horizontally and vertically within the Label. The other
TextAlign values, such as TopLeft, TopRight, and BottomCenter, can be used to position

Fig. 2.26 | Properties window displaying the Label’s Font property.

Fig. 2.27 | Font dialog for selecting fonts, styles and sizes.

Ellipsis button

Selected font

Font sample

2.6 Visual Programming: Creating a Simple App that Displays Text and an Image 93

the text anywhere within a Label. Certain alignment values may require that you resize
the Label to fit the text better.

Step 10: Adding a PictureBox to the Form
The PictureBox control displays images. Locate the PictureBox in the Toolbox
(Fig. 2.15) and double click it to add it to the Form—each PictureBox you add to the Form
is an object of class PictureBox from the .NET Framework Class Library. When the Pic-
tureBox appears, move it underneath the Label, either by dragging it or by using the ar-
row keys (Fig. 2.29).

Step 11: Inserting an Image
Click the PictureBox to display its properties in the Properties window (Fig. 2.30), then:

1. Locate and select the Image property, which displays a preview of the selected im-
age or (none) if no image is selected.

2. Click the ellipsis button to display the Select Resource dialog (Fig. 2.31), which
is used to import files, such as images, for use in an app.

Fig. 2.28 | Centering the Label’s text.

Fig. 2.29 | Inserting and aligning a PictureBox.

Text alignment
options

Middle-center
alignment option

Updated
Label

PictureBox

94 Chapter 2 Introduction to Visual Studio and Visual Programming

3. Click the Import… button to browse for an image, select the image file and click
OK to add it to your project. We used bug.png from this chapter’s examples fold-
er. Supported image formats include PNG (Portable Network Graphics), GIF
(Graphic Interchange Format), JPEG (Joint Photographic Experts Group) and
BMP (Windows bitmap). Depending image’s size, it’s possible that only a por-
tion of the image will be previewed in the Select Resource dialog—you can resize
the dialog to see more of the image (Fig. 2.32). Click OK to use the image.

4. To scale the image to fit in the PictureBox, change the SizeMode property to
StretchImage (Fig. 2.33). Resize the PictureBox, making it larger (Fig. 2.34),
then re-center the PictureBox horizontally.

Step 12: Saving the Project
Select File > Save All to save the entire solution. The solution file (which has the filename
extension .sln) contains the name and location of its project, and the project file (which
has the filename extension .csproj) contains the names and locations of all the files in the
project. If you want to reopen your project at a later time, simply open its .sln file.

Fig. 2.30 | Image property of the PictureBox.

Fig. 2.31 | Select Resource dialog to select an image for the PictureBox.

Image property value
(no image selected)

2.6 Visual Programming: Creating a Simple App that Displays Text and an Image 95

Fig. 2.32 | Select Resource dialog displaying a preview of selected image.

Fig. 2.33 | Scaling an image to the size of the PictureBox.

Fig. 2.34 | PictureBox displaying an image.

Image resource name

SizeMode
property

SizeMode
property set to
StretchImage

Newly
inserted
image

96 Chapter 2 Introduction to Visual Studio and Visual Programming

Step 13: Running the Project
Recall that up to this point we have been working in the IDE design mode (that is, the
app being created is not executing). In run mode, the app is executing, and you can inter-
act with only a few IDE features—features that are not available are disabled (grayed out).
Select Debug > Start Debugging to execute the app (or press the F5 key). The IDE enters
run mode and displays “(Running)” next to the app’s name in the IDE’s title bar.
Figure 2.35 shows the running app, which appears in its own window outside the IDE.

Step 14: Terminating the App
You can terminate the app by clicking its close box

in the top-right corner of the running app’s window. This action stops the app’s execution
and returns the IDE to design mode. You also can select Debug > Stop Debugging to ter-
minate the app.

2.7 Wrap-Up
In this chapter, we introduced key features of the Visual Studio IDE. You visually designed
a working Visual C# app without writing any code. Visual C# app development is a mix-
ture of the two styles—visual app development allows you to develop GUIs easily and
avoid tedious GUI programming and “conventional” programming (which we introduce
in Chapter 3) allows you to specify the behavior of your apps.

You created a Visual C# Windows Forms app with one Form. You worked with the
IDE’s Solution Explorer, Toolbox and Properties windows, which are essential to devel-
oping Visual C# apps. We also demonstrated context-sensitive help, which displays help
topics related to selected controls or text.

You used visual app development to design an app’s GUI by adding a Label and a
PictureBox control onto a Form. You used the Properties window to set a Form’s Text and
BackColor properties. You learned that Label controls display text and that PictureBoxes
display images. You displayed text in a Label and added an image to a PictureBox. You
also worked with the Label’s AutoSize, TextAlign and Font properties and the Pic-
tureBox’s Image and SizeMode properties.

Fig. 2.35 | IDE in run mode, with the running app in the foreground.

Close box

2.8 Web Resources 97

In the next chapter, we discuss “nonvisual,” or “conventional,” programming—you’ll
create your first apps with C# code that you write, instead of having Visual Studio write
the code. You’ll learn memory concepts and write code that displays information on the
screen, receives inputs from the user at the keyboard, performs arithmetic operations and
makes decisions.

2.8 Web Resources
Please take a moment to visit each of these sites.
https://www.visualstudio.com/

The home page for Microsoft Visual Studio. The site includes news, documentation, downloads and
other resources.
https://social.msdn.microsoft.com/Forums/vstudio/en-US/home?forum=csharpgeneral

This site provides access to the Microsoft Visual C# forums, which you can use to get your Visual
C# language and IDE questions answered.
https://msdn.microsoft.com/magazine/default.aspx

This is the Microsoft Developer Network Magazine site. This site provides articles and code on
many Visual C# and .NET app development topics. There is also an archive of past issues.
http://stackoverflow.com/

In addition to the Microsoft forums, StackOverflow is an excellent site for getting your program-
ming questions answered for most programming languages and technologies.

Summary
Section 2.1 Introduction
• Visual Studio is Microsoft’s Integrated Development Environment (IDE) for creating, running

and debugging apps written in a variety of .NET programming languages.

• Creating simple apps by dragging and dropping predefined building blocks into place is called
visual app development.

Section 2.2 Overview of the Visual Studio Community 2015 IDE
• The Start Page contains links to Visual Studio IDE resources and web-based resources.

• A project is a group of related files that compose a app.

• Visual Studio organizes apps into projects and solutions. A solution may contain one or more
projects.

• Dialogs are windows that facilitate user–computer communication.

• Visual Studio provides templates for the project types you can create.

• A Form represents the main window of the Windows Forms app that you’re creating.

• Collectively, the Form and controls constitute the app’s graphical user interface (GUI), which is
the visual part of the app with which the user interacts.

Section 2.3 Menu Bar and Toolbar
• Commands for managing the IDE and for developing, maintaining and executing apps are con-

tained in the menus, which are located on the menu bar.

98 Chapter 2 Introduction to Visual Studio and Visual Programming

• Menus contain groups of commands (menu items) that, when selected, cause the IDE to perform
actions (for example, open a window, save a file, print a file and execute an app).

• Tool tips help you become familiar with the IDE’s features.

Section 2.4 Navigating the Visual Studio IDE
• The Solution Explorer window lists all the files in the solution.

• The Toolbox contains controls for customizing Forms.

• By using visual app development, you can place predefined controls onto the Form instead of
writing the code yourself.

• Clicking an auto-hidden window’s name opens that window. Clicking the name again hides it.
To “pin down” a window (that is, to disable auto-hide), click its pin icon.

• The Properties window displays the properties for a Form, control or file (in Design view). Prop-
erties are information about a Form or control, such as size, color and position. The Properties

window allows you to modify Forms and controls visually, without writing code.

• Each control has its own set of properties. The left column of the Properties window shows the
property names and the right column displays the property values. This window’s toolbar con-
tains options for organizing properties alphabetically when the Alphabetical icon is selected or cat-
egorically (for example, Appearance, Behavior, Design) when the Categorized icon is selected.

Section 2.5 Help Menu and Context-Sensitive Help
• Extensive help documentation is available via the Help menu.

• Context-sensitive help brings up a list of relevant help articles. To use context-sensitive help, se-
lect an item and press the F1 key.

Section 2.6 Visual Programming: Creating a Simple App that Displays Text and an
Image
• Visual C# app development usually involves a combination of writing a portion of the app code

and having Visual Studio generate the remaining code.

• The text that appears at the top of the Form (the title bar) is specified in the Form’s Text property.

• To resize the Form, click and drag one of the Form’s enabled sizing handles (the small squares
around the Form). Enabled sizing handles appear as white boxes.

• The BackColor property specifies the background color of a Form. The Form’s background color
is the default background color for any controls added to the Form.

• Double clicking any Toolbox control icon places a control of that type on the Form. Alternatively,
you can drag and drop controls from the Toolbox to the Form.

• The Label’s Text property determines the text (if any) that the Label displays. The Form and La-
bel each have their own Text property.

• A property’s ellipsis button, when clicked, displays a dialog containing additional options.

• In the Font dialog, you can select the font for text in the user interface.

• The TextAlign property determines how the text is aligned within a Label’s boundaries.

• The PictureBox control displays images. The Image property specifies the image to displayed.

• An app that is in design mode is not executing.

• In run mode, the app is executing—you can interact with only a few IDE features.

• When designing an app visually, the name of the Visual C# file appears in the project tab, fol-
lowed by [Design].

• Terminate an app’s execution by clicking its close box.

 Terminology 99

Terminology
active tab
Alphabetical icon
auto-hide
AutoSize property of Label
BackColor property of Form
Categorized icon
component selection drop-down list
context-sensitive help
control
Custom tab
Design view
dialog
dragging
ellipsis button
Font dialog
Font property of Label
Form
graphical user interface (GUI)
Help menu
icon
Image property of PictureBox
Label
New Project dialog
palette

PictureBox
project
Properties window
property of a Form or control
run mode
scrollbar
scrollbox
Select Resource dialog
Show All Files icon
SizeMode property of PictureBox
sizing handle
solution
Solution Explorer in Visual Studio
Start Page
startup project
StretchImage value
templates for projects
Text property
TextAlign property of Label
tool tip
toolbar
visual app development
Visual Studio
Windows Forms app

Self-Review Exercises
2.1 Fill in the blanks in each of the following statements:

a) The technique of allows you to create GUIs without writing any code.
b) A(n) is a group of one or more projects that collectively form a Visual C# app.
c) The feature hides a window in the IDE.
d) A(n) appears when the mouse pointer hovers over an icon.
e) The window allows you to browse solution files.
f) The properties in the Properties window can be sorted or .
g) A Form’s property specifies the text displayed in the Form’s title bar.
h) The contains the controls that you can add to a Form.
i) displays relevant help articles, based on the current context.
j) The property specifies how text is aligned within a Label’s boundaries.

2.2 State whether each of the following is true or false. If false, explain why.
a) toggles auto-hide for a window.
b) The toolbar icons represent various menu commands.
c) The toolbar contains icons that represent controls you can drag onto a Form.
d) Both Forms and Labels have a title bar.
e) Control properties can be modified only by writing code.
f) PictureBoxes typically display images.
g) Visual C# files use the file extension .csharp.
h) A Form’s background color is set using the BackColor property.

100 Chapter 2 Introduction to Visual Studio and Visual Programming

Answers to Self-Review Exercises
2.1 a) visual app development. b) solution. c) auto-hide. d) tool tip. e) Solution Explorer. f) al-
phabetically, categorically. g) Text. h) Toolbox. i) context-sensitive help. j) TextAlign.

2.2 a) False. The pin icon () toggles auto-hide. closes a window. b) True. c) False. The
Toolbox contains icons that represent such controls. d) False. Forms have a title bar but Labels do
not (although they do have Label text). e) False. Control properties can be modified using the Prop-

erties window. f) True. g) False. Visual C# files use the file extension .cs. h) True.

Exercises
2.3 Fill in the blanks in each of the following statements:

a) When an ellipsis button is clicked, a(n) is displayed.
b) Using help immediately displays a relevant help article.
c) When you select a property, its description is displayed at the bottom of the

 window.
d) The property specifies which image a PictureBox displays.
e) The menu contains commands for arranging and displaying windows.

2.4 State whether each of the following is true or false. If false, explain why.
a) You can add a control to a Form by double clicking its control icon in the Toolbox.
b) The Form, Label and PictureBox have identical properties.
c) If your machine is connected to the Internet, you can browse websites from the Visual

Studio IDE.
d) Visual C# app developers usually create complex apps without writing any code.
e) Clicking the arrow to the left of a node expands or collapses that node.

2.5 Some features that appear throughout Visual Studio perform similar actions in different
contexts. Explain and give examples of how the ellipsis buttons, down-arrow buttons and tool tips
act in this manner. Why do you think the Visual Studio IDE was designed this way?

2.6 Briefly describe each of the following terms:
a) Project
b) IDE
c) Debug
d) Properties window
e) Dialogs
f) Visual Studio

Note Regarding Exercises 2.7–2.11
In the following exercises, you’re asked to create GUIs using controls that we have not yet discussed
in this book. These exercises give you practice with visual app development only—the apps do not
perform any actions. You place controls from the Toolbox on a Form to familiarize yourself with
what each control looks like. If you follow the step-by-step instructions, you should be able to rec-
reate the sample GUIs we show.

2.7 (Stop Watch GUI) Create the GUI for the Stop Watch as shown in Fig. 2.36.
a) Manipulating the Form’s properties. Change the Text property of the Form to

Stop_Watch_Form.
b) Adding a MenuStrip control to the Form. Add a MenuStrip to the Form. After inserting

the MenuStrip, add items by clicking the Type Here section, typing a menu name (for
example, Start, Stop, Lap, Reset and Exit) and then pressing Enter.

 Exercises 101

c) Adding Labels to the Form. Add 7 Labels each for the display of main stop watch timer
and for the Lap timer. Set the Font property as Segoe UI, 18pt, style=Regular for main
timer and Segoe UI, 11pt, style=Regular for lap timer. Set the Text properties accordingly.

d) Adding Buttons to the Form. Add Three Buttons with Text property Start, Stop and Lap.
Change their BackColor and ForeColor properties as shown.

e) Adding a RichTextBox to the Form. Drag this control onto the Form. Use the sizing han-
dles to resize and position the RichTextBox as shown in Fig. 2.36. Change the Text prop-
erty to Lap Details.

2.8 (Login Form GUI) Create the GUI for the login screen as shown in Fig. 2.37.

a) Manipulating the Form’s properties. Change the Text property of the Form to User Login
Form. Set the BackColor property as shown in figure 2.37.

b) Adding Labels to the Form. Add three Labels to the Form. Set the Label’s Text, Font
and BackColor properties to match Fig. 2.37. Use Bookman Old Style, 14.25pt font
size for User ID and Password.

c) Adding TextBoxes to the Form. Add two TextBox controls to the Form, for entering
userID and password. Set the suitable BackColor and ‘*’ as the PasswordChar property.

Fig. 2.36 | Notepad GUI.

Fig. 2.37 | Calendar and appointments GUI.

102 Chapter 2 Introduction to Visual Studio and Visual Programming

d) Adding Buttons to the Form. Add Three Buttons with Text property New User, Login
and Forgot password. Change their BackColor and ForeColor properties as shown.

2.9 (Calculator GUI) Create the GUI for the calculator as shown in Fig. 2.38.

a) Manipulating the Form’s properties. Change the Text property of the Form to Calcula-
tor. Change the Font property to 9pt Segoe UI. Change the Size property of the Form
to 258, 210.

b) Adding a TextBox to the Form. Set the TextBox’s Text property in the Properties window
to 0. Stretch the TextBox and position it as shown in Fig. 2.38. Set the TextAlign prop-
erty to Right—this right aligns text displayed in the TextBox.

c) Adding the first Panel to the Form. Panel controls are used to group other controls. Add
a Panel to the Form. Change the Panel’s BorderStyle property to Fixed3D to make the
inside of the Panel appear recessed. Change the Size property to 90, 120. This Panel
will contain the calculator’s numeric keys.

d) Adding the second Panel to the Form. Change the Panel’s BorderStyle property to
Fixed3D. Change the Size property to 62, 120. This Panel will contain the calculator’s
operator keys.

e) Adding the third (and last) Panel to the Form. Change the Panel’s BorderStyle property
to Fixed3D. Change the Size property to 54, 62. This Panel contains the calculator’s C
(clear) and C/A (clear all) keys.

f) Adding Buttons to the Form. There are 20 Buttons on the calculator. Add a Button to
the Panel by dragging and dropping it on the Panel. Change the Text property of each
Button to the calculator key it represents. The value you enter in the Text property will
appear on the face of the Button. Finally, resize the Buttons, using their Size properties.
Each Button labeled 0–9, *, /, -, = and . should have a size of 23, 23. The 00 Button has
size 52, 23. The OFF Button has size 54, 23. The + Button is sized 23, 81. The C (clear)
and C/A (clear all) Buttons are sized 44, 23.

2.10 (Alarm Clock GUI) Create the GUI for the alarm clock as shown in Fig. 2.39.

Fig. 2.38 | Calculator GUI.

Fig. 2.39 | Alarm clock GUI.

Panels

TextBox

Buttons

GroupBox

RadioButtons

 Exercises 103

a) Manipulating the Form’s properties. Change the Text property of the Form to Alarm
Clock. Change the Font property to 9pt Segoe UI. Change the Size property of the Form
to 438, 170.

b) Adding Buttons to the Form. Add seven Buttons to the Form. Change the Text property
of each Button to the appropriate text. Align the Buttons as shown.

c) Adding a GroupBox to the Form. GroupBoxes are like Panels, except that GroupBoxes dis-
play a title. Change the Text property to AM/PM, and set the Size property to 100, 50.
Center the GroupBox horizontally on the Form.

d) Adding AM/PM RadioButtons to the GroupBox. Place two RadioButtons in the GroupBox.
Change the Text property of one RadioButton to AM and the other to PM. Align the Ra-
dioButtons as shown.

e) Adding the time Label to the Form. Add a Label to the Form and change its Text property
to 00:00:00. Change the BorderStyle property to Fixed3D and the BackColor to Black.
Use the Font property to make the time bold and 12pt. Change the ForeColor to Sil-
ver (located in the Web tab) to make the time stand out against the black background.
Position the Label as shown.

2.11 (Radio GUI) Create the GUI for the radio as shown in Fig. 2.40. [Note: The image used in
this exercise is located in this chapter’s examples folder.]

a) Manipulating the Form’s properties. Change the Font property to 9pt Segoe UI. Change
the Form’s Text property to Radio and the Size to 427, 194.

b) Adding the Pre-set Stations GroupBox and Buttons. Set the GroupBox’s Size to 180, 55
and its Text to Pre-set Stations. Add six Buttons to the GroupBox. Set each one’s Size
to 23, 23. Change the Buttons’ Text properties to 1, 2, 3, 4, 5, 6, respectively.

c) Adding the Speakers GroupBox and CheckBoxes. Set the GroupBox’s Size to 120, 55 and
its Text to Speakers. Add two CheckBoxes to the GroupBox. Set the Text properties for
the CheckBoxes to Rear and Front.

d) Adding the Power On/Off Button. Add a Button to the Form. Set its Text to Power On/
Off and its Size to 75, 55.

e) Adding the Volume Control GroupBox, the Mute CheckBox and the Volume TrackBar.
Add a GroupBox to the Form. Set its Text to Volume Control and its Size to 180, 70. Add
a CheckBox to the GroupBox. Set its Text to Mute. Add a TrackBar to the GroupBox.

Fig. 2.40 | Radio GUI.

PictureBox

CheckBoxes

RadioButtonTrackBar

GroupBox

GroupBoxes

104 Chapter 2 Introduction to Visual Studio and Visual Programming

f) Adding the Tuning GroupBox, the radio station Label and the AM/FM RadioButtons.
Add a GroupBox to the Form. Set its Text to Tuning and its Size to 120, 70. Add a Label
to the GroupBox. Set its AutoSize to False, its Size to 50, 44, its BackColor to Black,
its ForeColor to Silver, its font to 12pt bold and its TextAlign to MiddleCenter. Set
its Text to 92.9. Place the Label as shown in the figure. Add two RadioButtons to the
GroupBox. Set the Text of one to AM and of the other to FM.

g) Adding the image. Add a PictureBox to the Form. Set its SizeMode to StretchImage and
its Size to 55, 70. Set the Image property to MusicNote.gif (located in this chapter’s ex-
amples folder).

