

C++

Brief Vers ion
e ighth ed it ion
gloBal ed it ion

Starting Out With

C++
From Control Structures

through Objects

This page intentionally left blank

C++

Brief Vers ion
e ighth ed it ion
gloBal ed it ion

Starting Out With

C++
From Control Structures

through Objects

tony gaddis
haywood Community College

Boston Columbus Indianapolis New York San Francisco Hoboken Amsterdam
Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi

Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Marcia Horton
Acquisitions Editor: Matt Goldstein
Assistant Acquisitions Editor, Global Editions: Aditee
 Agarwal
Program Manager: Carole Snyder
Product Marketing Manager: Bram
 van Kempen
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Senior Managing Editor: Scott Disanno
Senior Project Manager: Camille Trentacoste
Project Editor, Global Editions: K.K. Neelakantan
Operations Supervisor: Vincent Scelta
Operations Specialist: Maura Zaldivar-Garcia

Senior Manufacturing Controller, Global Editions:
 Trudy Kimber
Text Designer: Joyce Cosentino Wells
Cover Designer: Joyce Cosentino Wells
Manager, Visual Research: Karen Sanatar
Permissions Supervisor: Michael Joyce
Permission Administrator: Jenell Forschler
Cover Image: © Anthony Ricci/Shutterstock
Media Project Manager: Renata Butera
Media Production Manager, Global Editions:
 Vikram Kumar
Full-Service Project Manager: Rashmi Tickyani
 Aptara®, Inc.
Full-Service Vendor: Aptara®, Inc.

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2016

The right of Tony Gaddis to be identified as the authors of this work has been asserted by him in accordance
with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Starting Out With C++ : From Control
Structures Through Objects, Brief Version, 8th Edition, ISBN 978-0-13-403732-5, by Tony Gaddis published
by Pearson Education © 2016.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either
the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom
issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text
does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use
of such trademarks imply any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

ISBN 10: 1-292-11942-X
ISBN 13: 978-1-292-11942-7

Typeset by Aptara®, Inc.

Printed in Malaysia.

http://www.pearsonglobaleditions.com

5

Contents at a glance

 Preface 15

ChaPter 1 introduction to Computers and Programming 31

ChaPter 2 introduction to C++ 57

ChaPter 3 expressions and interactivity 113

ChaPter 4 Making decisions 179

ChaPter 5 loops and files 257

ChaPter 6 functions 329

ChaPter 7 arrays 405

ChaPter 8 searching and sorting arrays 487

ChaPter 9 Pointers 525

ChaPter 10 Characters, C-strings, and More about the string Class 577

ChaPter 11 structured data 629

ChaPter 12 advanced file operations 687

ChaPter 13 introduction to Classes 741

ChaPter 14 More about Classes 841

ChaPter 15 inheritance, Polymorphism, and Virtual functions 921

appendix a: getting started with alice 1001

appendix B: the asCii Character set 1027

appendix C: operator Precedence and associativity 1029

Quick references 1031

index 1033

Credit 1049

online the following appendices are available at www.pearsonglobaleditions.com/gaddis.

appendix d: introduction to flowcharting

appendix e: Using UMl in Class design

appendix f: namespaces

http://www.pearsonglobaleditions.com/gaddis

appendix g: Passing Command line arguments

appendix h: header file and library function reference

appendix i: Binary numbers and Bitwise operations

appendix J: Multi-source file Programs

appendix K: stream Member functions for formatting

appendix l: answers to Checkpoints

appendix M: solutions to odd-numbered review Questions

6 Contents at a glance

 Preface 15

ChaPter 1 introduction to Computers and Programming 31

1.1 Why Program? 31
1.2 Computer Systems: Hardware and Software 32
1.3 Programs and Programming Languages 38
1.4 What Is a Program Made of? 44
1.5 Input, Processing, and Output 47
1.6 The Programming Process 48
1.7 Procedural and Object-Oriented Programming 52

ChaPter 2 introduction to C++ 57

2.1 The Parts of a C++ Program 57
2.2 The cout Object 61
2.3 The #include Directive 66
2.4 Variables and Literals 67
2.5 Identifiers 71
2.6 Integer Data Types 72
2.7 The char Data Type 78
2.8 The C++ string Class 82
2.9 Floating-Point Data Types 84
2.10 The bool Data Type 87
2.11 Determining the Size of a Data Type 88
2.12 Variable Assignments and Initialization 89
2.13 Scope 91
2.14 Arithmetic Operators 91
2.15 Comments 99
2.16 Named Constants 101
2.17 Programming Style 103

7

Contents

8 Contents

ChaPter 3 expressions and interactivity 113

3.1 The cin Object 113
3.2 Mathematical Expressions 119
3.3 When You Mix Apples and Oranges: Type Conversion 128
3.4 Overflow and Underflow 130
3.5 Type Casting 131
3.6 Multiple Assignment and Combined Assignment 134
3.7 Formatting Output 138
3.8 Working with Characters and string Objects 148
3.9 More Mathematical Library Functions 154
3.10 Focus on Debugging: Hand Tracing a Program 160
3.11 Focus on Problem Solving: A Case Study 162

ChaPter 4 Making decisions 179

4.1 Relational Operators 179
4.2 The if Statement 184
4.3 Expanding the if Statement 192
4.4 The if/else Statement 196
4.5 Nested if Statements 199
4.6 The if/else if Statement 206
4.7 Flags 211
4.8 Logical Operators 212
4.9 Checking Numeric Ranges with Logical Operators 219
4.10 Menus 220
4.11 Focus on Software Engineering: Validating User Input 223
4.12 Comparing Characters and Strings 225
4.13 The Conditional Operator 229
4.14 The switch Statement 232
4.15 More About Blocks and Variable Scope 241

ChaPter 5 loops and files 257

5.1 The Increment and Decrement Operators 257
5.2 Introduction to Loops: The while Loop 262
5.3 Using the while Loop for Input Validation 269
5.4 Counters 271
5.5 The do-while Loop 272
5.6 The for Loop 277
5.7 Keeping a Running Total 287
5.8 Sentinels 290
5.9 Focus on Software Engineering: Deciding Which Loop to Use 291
5.10 Nested Loops 292
5.11 Using Files for Data Storage 295
5.12 Optional Topics: Breaking and Continuing a Loop 314

ChaPter 6 functions 329

6.1 Focus on Software Engineering: Modular Programming 329
6.2 Defining and Calling Functions 330
6.3 Function Prototypes 339
6.4 Sending Data into a Function 341

 Contents 9

6.5 Passing Data by Value 346
6.6 Focus on Software Engineering: Using Functions in a

 Menu-Driven Program 348
6.7 The return Statement 352
6.8 Returning a Value from a Function 354
6.9 Returning a Boolean Value 362
6.10 Local and Global Variables 364
6.11 Static Local Variables 372
6.12 Default Arguments 375
6.13 Using Reference Variables as Parameters 378
6.14 Overloading Functions 384
6.15 The exit() Function 388
6.16 Stubs and Drivers 391

ChaPter 7 arrays 405

7.1 Arrays Hold Multiple Values 405
7.2 Accessing Array Elements 407
7.3 No Bounds Checking in C++ 414
7.4 Array Initialization 417
7.5 The Range-Based for Loop 422
7.6 Processing Array Contents 426
7.7 Focus on Software Engineering: Using Parallel Arrays 434
7.8 Arrays as Function Arguments 437
7.9 Two-Dimensional Arrays 448
7.10 Arrays with Three or More Dimensions 455
7.11 Focus on Problem Solving and Program Design: A Case Study 457
7.12 If You Plan to Continue in Computer Science: Introduction to the

 STL vector 459

ChaPter 8 searching and sorting arrays 487

8.1 Focus on Software Engineering: Introduction to Search Algorithms 487
8.2 Focus on Problem Solving and Program Design: A Case Study 493
8.3 Focus on Software Engineering: Introduction to Sorting Algorithms 500
8.4 Focus on Problem Solving and Program Design: A Case Study 507
8.5 If You Plan to Continue in Computer Science: Sorting and

 Searching vectors 515

ChaPter 9 Pointers 525

9.1 Getting the Address of a Variable 525
9.2 Pointer Variables 527
9.3 The Relationship Between Arrays and Pointers 534
9.4 Pointer Arithmetic 538
9.5 Initializing Pointers 540
9.6 Comparing Pointers 541
9.7 Pointers as Function Parameters 543
9.8 Focus on Software Engineering: Dynamic Memory Allocation 552
9.9 Focus on Software Engineering: Returning Pointers from Functions 556
9.10 Using Smart Pointers to Avoid Memory Leaks 563
9.11 Focus on Problem Solving and Program Design: A Case Study 566

10 Contents

ChaPter 10 Characters, C-strings, and More about the string Class 577

10.1 Character Testing 577
10.2 Character Case Conversion 581
10.3 C-Strings 584
10.4 Library Functions for Working with C-Strings 588
10.5 C-String/Numeric Conversion Functions 599
10.6 Focus on Software Engineering: Writing Your Own

 C-String-Handling Functions 605
10.7 More About the C++ string Class 611
10.8 Focus on Problem Solving and Program Design: A Case Study 620

ChaPter 11 structured data 629

11.1 Abstract Data Types 629
11.2 Focus on Software Engineering: Combining Data into Structures 631
11.3 Accessing Structure Members 634
11.4 Initializing a Structure 638
11.5 Arrays of Structures 641
11.6 Focus on Software Engineering: Nested Structures 643
11.7 Structures as Function Arguments 647
11.8 Returning a Structure from a Function 650
11.9 Pointers to Structures 653
11.10 Focus on Software Engineering: When to Use ., When to Use ->,

 and When to Use * 656
11.11 Unions 658
11.12 Enumerated Data Types 662

ChaPter 12 advanced file operations 687

12.1 File Operations 687
12.2 File Output Formatting 693
12.3 Passing File Stream Objects to Functions 695
12.4 More Detailed Error Testing 697
12.5 Member Functions for Reading and Writing Files 700
12.6 Focus on Software Engineering: Working with Multiple Files 708
12.7 Binary Files 710
12.8 Creating Records with Structures 715
12.9 Random-Access Files 719
12.10 Opening a File for Both Input and Output 727

ChaPter 13 introduction to Classes 741

13.1 Procedural and Object-Oriented Programming 741
13.2 Introduction to Classes 748
13.3 Defining an Instance of a Class 753
13.4 Why Have Private Members? 766
13.5 Focus on Software Engineering: Separating Class Specification

 from Implementation 767
13.6 Inline Member Functions 773
13.7 Constructors 776
13.8 Passing Arguments to Constructors 780

 Contents 11

13.9 Destructors 788
13.10 Overloading Constructors 792
13.11 Private Member Functions 795
13.12 Arrays of Objects 797
13.13 Focus on Problem Solving and Program Design: An OOP Case Study 801
13.14 Focus on Object-Oriented Programming: Simulating Dice with Objects 808
13.15 Focus on Object-Oriented Programming: Creating an Abstract Array

 Data Type 812
13.16 Focus on Object-Oriented Design: The Unified Modeling Language (UML) 815
13.17 Focus on Object-Oriented Design: Finding the Classes and Their

 Responsibilities 818

ChaPter 14 More about Classes 841

14.1 Instance and Static Members 841
14.2 Friends of Classes 849
14.3 Memberwise Assignment 854
14.4 Copy Constructors 855
14.5 Operator Overloading 861
14.6 Object Conversion 888
14.7 Aggregation 890
14.8 Focus on Object-Oriented Design: Class Collaborations 895
14.9 Focus on Object-Oriented Programming: Simulating the Game

of Cho-Han 899

ChaPter 15 inheritance, Polymorphism, and Virtual functions 921

15.1 What Is Inheritance? 921
15.2 Protected Members and Class Access 930
15.3 Constructors and Destructors in Base and Derived Classes 936
15.4 Redefining Base Class Functions 948
15.5 Class Hierarchies 953
15.6 Polymorphism and Virtual Member Functions 959
15.7 Abstract Base Classes and Pure Virtual Functions 975
15.8 Multiple Inheritance 982

appendix a: getting started with alice 1001

appendix B: the asCii Character set 1027

appendix C: operator Precedence and associativity 1029

Quick references 1031

index 1033

Credit 1049

online the following appendices are available at www.pearsonglobaleditions.com/gaddis.

appendix d: introduction to flowcharting

appendix e: Using UMl in Class design

appendix f: namespaces

appendix g: Passing Command line arguments

http://www.pearsonglobaleditions.com/gaddis

12 Contents

appendix h: header file and library function reference

appendix i: Binary numbers and Bitwise operations

appendix J: Multi-source file Programs

appendix K: stream Member functions for formatting

appendix l: answers to Checkpoints

appendix M: solutions to odd-numbered review Questions

loCation of Videonotes in the teXt
VideoNote

Chapter 1 introduction to Flowcharting, p. 50
 Designing a Program with Pseudocode, p. 50
 Designing the account Balance Program, p. 55
 Predicting the result of Problem 33, p. 56

Chapter 2 using cout, p. 61
 Variabe Definitions, p. 67
 assignment Statements and Simple Math Expressions, p. 92
 Solving the restaurant Bill Problem, p. 110

Chapter 3 reading input with cin, p. 113
 Formatting numbers with setprecision, p. 141
 Solving the Stadium Seating Problem, p. 172

Chapter 4 the if Statement, p. 184
 the if/else statement, p. 196
 the if/else if Statement, p. 206
 Solving the time Calculator Problem, p. 251

Chapter 5 the while Loop, p. 262
 the for Loop, p. 277
 reading Data from a File, p. 304
 Solving the Calories Burned Problem, p. 323

Chapter 6 Functions and arguments, p. 341
 Value-returnlng Functions, p. 354
 Solving the Markup Problem, p. 396

Chapter 7 accessing array Elements With a Loop, p. 410
 Passing an array to a Function, p. 437
 Solving the Chips and Salsa Problem, p. 478

Chapter 8 the Binary Search, p. 490
 the Selection Sort, p. 504
 Solving the Charge account Validation Modification Problem, p. 522

Chapter 9 Dynamically allocating an array, p. 553
 Solving the Pointer rewrite Problem, p. 575

Chapter 10 Writing a C-String-handling Function, p. 605
 More about the string Class, p. 611
 Solving the Backward String Problem, p. 624

(continued on the next page)

loCation of Videonotes in the teXt (continued)
VideoNote

Chapter 11 Creating a Structure, p. 631
 Passing a Structure to a Function, p. 647
 Solving the Weather Statistics Problem, p. 682

Chapter 12 Passing File Stream Objects to Functions, p. 695
 Working with Multiple Files, p. 708
 Solving the File Encryption Filter Problem, p. 738

Chapter 13 Writing a Class, p. 748
 Defining an instance of a Class, p. 753
 Solving the Employee Class Problem, p. 832

Chapter 14 Operator Overloading, p. 861
 Class aggregation, p. 890
 Solving the NumDays Problem, p. 915

Chapter 15 redefining a Base Class Function in a Derived Class, p. 948
 Polymorphism, p. 959
 Solving the Employee and Production-Worker Classes Problem, p. 993

Welcome to the Brief Version of Starting Out with C++: From Control Structures through
Objects, 8th edition. This book is intended for use in a one or two-semester C++ programming
sequence, or an accelerated one-semester course. Students new to programming, as well as
those with prior course work in other languages, will find this text beneficial. The funda-
mentals of programming are covered for the novice, while the details, pitfalls, and nuances
of the C++ language are explored in-depth for both the beginner and more experienced
student. The book is written with clear, easy-to-understand language, and it covers all the
necessary topics for an introductory programming course. This text is rich in example pro-
grams that are concise, practical, and real-world oriented, ensuring that the student not only
learns how to implement the features and constructs of C++, but why and when to use them.

Changes in the eighth edition
C++11 is the latest standard version of the C++ language. In previous years, while the stan-
dard was being developed, it was known as C++0x. In August 2011, it was approved by
the International Standards Organization (ISO), and the name of the standard was officially
changed to C++11. Most of the popular compilers now support the C++11 standard.

The new C++11 standard was the primary motivation behind this edition. Although this
edition introduces many of the new language features, a C++11 compiler is not strictly
required to use the book. As you progress through the book, you will see C++11 icons in the
margins, next to the new features that are introduced. Programs appearing in sections that
are not marked with this icon will still compile using an older compiler.

Here is a summary of the new C++11 topics that are introduced in this edition:

l The auto key word is introduced as a way to simplify complex variable definitions.
The auto key word causes the compiler to infer a variable’s data type from its initial-
ization value.

l The long long int and unsigned long long int data types, and the LL literal
suffix are introduced.

l Chapter 5 shows how to pass a string object directly to a file stream object’s open
member function, without the need to call the c_str() member function. (A discus-
sion of the c_str()function still exists for anyone using a legacy compiler.)

Preface

15

16 Preface

l The range-based for loop is introduced in Chapter 7. This new looping mechanism
automatically iterates over each element of an array, vector, or other collection,
without the need of a counter variable or a subscript.

l Chapter 7 shows how a vector can be initialized with an initialization list.

l The nullptr key word is introduced as the standard way of representing a null
pointer.

l Smart pointers are introduced in Chapter 9, with an example of dynamic memory
allocation using unique_ptr.

l Chapter 10 discusses the new, overloaded to_string functions for converting numeric
values to string objects.

l The string class’s new back() and front() member functions are included in
Chapter 10’s overview of the string class.

l Strongly typed enums are discussed in Chapter 11.

l Chapter 13 shows how to use the smart pointer unique_ptr to dynamically allocate
an object.

l Chapter 15 discusses the override key word and demonstrates how it can help prevent
subtle overriding errors. The final key word is discussed as a way of preventing a virtual
member function from being overridden.

In addition to the C++11 topics, the following general improvements were made:

l Several new programming problems have been added to the text, and many of the
existing programming problems have been modified to make them unique from previ-
ous editions.

l The discussion of early, historic computers in Chapter 1 is expanded.

l The discussion of literal values in Chapter 2 is improved.

l The introduction of the char data type in Chapter 2 is reorganized to use character
literals in variable assignments before using ASCII values in variable assignments.

l The discussion of random numbers in Chapter 3 is expanded and improved, with the
addition of a new In the Spotlight section.

l A new Focus on Object-Oriented Programming section has been added to Chapter 13,
showing how to write a class that simulates dice.

l A new Focus on Object-Oriented Programming section has been added to Chapter 14,
showing an object-oriented program that simulates the game of Cho-Han. The program
uses objects for the dealer, two players, and a pair of dice.

organization of the text
This text teaches C++ in a step-by-step fashion. Each chapter covers a major set of topics
and builds knowledge as the student progresses through the book. Although the chapters
can be easily taught in their existing sequence, some flexibility is provided. The diagram
shown in Figure P-1 suggests possible sequences of instruction.

 Preface 17

Chapter 8
Searching and
Sorting Arrays

Chapter 9
Pointers

Chapter 10
Characters, Strings,

and the string Class

Chapter 12
Advanced File
Operations*

Chapters 2–7
Basic Language

Elements

Chapter 11
Structures

Chapter 13
Introduction to

Classes

Chapter 14
More About Classes

Chapter 15
Inheritance and
Polymorphism

*A few subtopics in
Chapter 12 require
Chapters 9 and 11.

Chapter 1
Introduction

figure P-1

Chapter 1 covers fundamental hardware, software, and programming concepts. You may
choose to skip this chapter if the class has already mastered those topics. Chapters 2 through
7 cover basic C++ syntax, data types, expressions, selection structures, repetition structures,
functions, and arrays. Each of these chapters builds on the previous chapter and should be
covered in the order presented.

After Chapter 7 has been covered, you may proceed to Chapter 8, or jump to either Chapter
9 or Chapter 12. (If you jump to Chapter 12 at this point, you will need to postpone sections
12.7, 12.8, and 12.10 until Chapters 9 and 11 have been covered.)

After Chapter 9 has been covered, either of Chapters 10 or 11 may be covered. After
 Chapter 11, you may cover Chapters 13 through 15 in sequence.

This text’s approach starts with a firm foundation in structured, procedural programming
before delving fully into object-oriented programming.

18 Preface

Brief overview of each Chapter

Chapter 1: introduction to Computers and Programming

This chapter provides an introduction to the field of computer science and covers the fun-
damentals of programming, problem solving, and software design. The components of pro-
grams, such as key words, variables, operators, and punctuation are covered. The tools of
the trade, such as pseudocode, flow charts, and hierarchy charts are also presented.

Chapter 2: introduction to C++

This chapter gets the student started in C++ by introducing data types, identifiers, vari-
able declarations, constants, comments, program output, simple arithmetic operations, and
C-strings. Programming style conventions are introduced and good programming style
is modeled here, as it is throughout the text. An optional section explains the difference
between ANSI standard and pre-standard C++ programs.

Chapter 3: expressions and interactivity

In this chapter the student learns to write programs that input and handle numeric, char-
acter, and string data. The use of arithmetic operators and the creation of mathematical
expressions are covered in greater detail, with emphasis on operator precedence. Debug-
ging is introduced, with a section on hand tracing a program. Sections are also included on
simple output formatting, on data type conversion and type casting, and on using library
functions that work with numbers.

Chapter 4: Making decisions

Here the student learns about relational operators, relational expressions and how to con-
trol the flow of a program with the if, if/else, and if/else if statements. The condi-
tional operator and the switch statement are also covered. Crucial applications of these
constructs are covered, such as menu-driven programs and the validation of input.

Chapter 5: loops and files

This chapter covers repetition control structures. The while loop, do-while loop, and for
loop are taught, along with common uses for these devices. Counters, accumulators, run-
ning totals, sentinels, and other application-related topics are discussed. Sequential file I/O
is also introduced. The student learns to read and write text files, and use loops to process
the data in a file.

Chapter 6: functions

In this chapter the student learns how and why to modularize programs, using both void
and value returning functions. Argument passing is covered, with emphasis on when argu-
ments should be passed by value versus when they need to be passed by reference. Scope of
variables is covered, and sections are provided on local versus global variables and on static
local variables. Overloaded functions are also introduced and demonstrated.

 Preface 19

Chapter 7: arrays

In this chapter the student learns to create and work with single and multidimensional
arrays. Many examples of array processing are provided including examples illustrating
how to find the sum, average, highest, and lowest values in an array and how to sum the
rows, columns, and all elements of a two-dimensional array. Programming techniques using
parallel arrays are also demonstrated, and the student is shown how to use a data file as
an input source to populate an array. STL vectors are introduced and compared to arrays.

Chapter 8: sorting and searching arrays

Here the student learns the basics of sorting arrays and searching for data stored in them.
The chapter covers the Bubble Sort, Selection Sort, Linear Search, and Binary Search algo-
rithms. There is also a section on sorting and searching STL vector objects.

Chapter 9: Pointers

This chapter explains how to use pointers. Pointers are compared to and contrasted with
reference variables. Other topics include pointer arithmetic, initialization of pointers, rela-
tional comparison of pointers, pointers and arrays, pointers and functions, dynamic mem-
ory allocation, and more.

Chapter 10: Characters, C-strings, and More about the string Class

This chapter discusses various ways to process text at a detailed level. Library functions for
testing and manipulating characters are introduced. C-strings are discussed, and the tech-
nique of storing C-strings in char arrays is covered. An extensive discussion of the string
class methods is also given.

Chapter 11: structured data

The student is introduced to abstract data types and taught how to create them using struc-
tures, unions, and enumerated data types. Discussions and examples include using pointers
to structures, passing structures to functions, and returning structures from functions.

Chapter 12: advanced file operations

This chapter covers sequential access, random access, text, and binary files. The various
modes for opening files are discussed, as well as the many methods for reading and writing
file contents. Advanced output formatting is also covered.

Chapter 13: introduction to Classes

The student now shifts focus to the object-oriented paradigm. This chapter covers the fun-
damental concepts of classes. Member variables and functions are discussed. The student
learns about private and public access specifications, and reasons to use each. The topics of
constructors, overloaded constructors, and destructors are also presented. The chapter pres-
ents a section modeling classes with UML and how to find the classes in a particular problem.

20 Preface

Chapter 14: More about Classes

This chapter continues the study of classes. Static members, friends, memberwise assign-
ment, and copy constructors are discussed. The chapter also includes in-depth sections on
operator overloading, object conversion, and object aggregation. There is also a section on
class collaborations and the use of CRC cards.

Chapter 15: inheritance, Polymorphism, and Virtual functions

The study of classes continues in this chapter with the subjects of inheritance, polymor-
phism, and virtual member functions. The topics covered include base and derived class con-
structors and destructors, virtual member functions, base class pointers, static and dynamic
binding, multiple inheritance, and class hierarchies.

appendix a: getting started with alice

This appendix gives a quick introduction to Alice. Alice is free software that can be used to
teach fundamental programming concepts using 3D graphics.

appendix B: asCii Character set

A list of the ASCII and Extended ASCII characters and their codes.

appendix C: operator Precedence and associativity

A chart showing the C++ operators and their precedence.

The following appendices are available online at www.pearsonglobaleditions.com/gaddis.

appendix d: introduction to flowcharting

A brief introduction to flowcharting. This tutorial discusses sequence, selection, case, repeti-
tion, and module structures.

appendix e: Using UMl in Class design

This appendix shows the student how to use the Unified Modeling Language to design
classes. Notation for showing access specification, data types, parameters, return values,
overloaded functions, composition, and inheritance are included.

appendix f: namespaces

This appendix explains namespaces and their purpose. Examples showing how to define a
namespace and access its members are given.

appendix g: Passing Command line arguments

Teaches the student how to write a C++ program that accepts arguments from the command
line. This appendix will be useful to students working in a command line environment, such
as Unix, Linux, or the Windows command prompt.

appendix h: header file and library function reference

This appendix provides a reference for the C++ library functions and header files discussed
in the book.

http://www.pearsonglobaleditions.com/gaddis

 Preface 21

appendix i: Binary numbers and Bitwise operations

A guide to the C++ bitwise operators, as well as a tutorial on the internal storage of integers.

appendix J: Multi-source file Programs

Provides a tutorial on creating programs that consist of multiple source files. Function
header files, class specification files, and class implementation files are discussed.

appendix K: stream Member functions for formatting

Covers stream member functions for formatting such as setf.

appendix l: answers to Checkpoints

Students may test their own progress by comparing their answers to the checkpoint exer-
cises against this appendix. The answers to all Checkpoints are included.

appendix M: solutions to odd-numbered review Questions

Another tool that students can use to gauge their progress.

features of the text
Concept Each major section of the text starts with a concept statement.
statements This statement summarizes the ideas of the section.

example Programs The text has hundreds of complete example programs, each
designed to highlight the topic currently being studied. In most
cases, these are practical, real-world examples. Source code for
these programs is provided so that students can run the programs
themselves.

Program output After each example program there is a sample of its screen
output. This immediately shows the student how the program
should function.

in the spotlight Each of these sections provides a programming problem and a
detailed, step-by-step analysis showing the student how to
solve it.

Videonotes A series of online videos, developed specifically for this book, is avail-
able for viewing at www.pearsonglobaleditions.com/gaddis.
Icons appear throughout the text alerting the student to videos about
specific topics.

Checkpoints Checkpoints are questions placed throughout each chapter as
a self-test study aid. Answers for all Checkpoint questions can
be downloaded from the book’s Companion Web site at www.
pearsonglobaleditions.com/gaddis. This allows students to check
how well they have learned a new topic.

notes Notes appear at appropriate places throughout the text. They are
short explanations of interesting or often misunderstood points
relevant to the topic at hand.

VideoNote

http://www.pearsonglobaleditions.com/gaddis
http://www.pearsonglobaleditions.com/gaddis
http://www.pearsonglobaleditions.com/gaddis

22 Preface

Warnings Warnings are notes that caution the student about certain C++
features, programming techniques, or practices that can lead to
malfunctioning programs or lost data.

Case studies Case studies that simulate real-world applications appear in
many chapters throughout the text. These case studies are de-
signed to highlight the major topics of the chapter in which they
appear.

review Questions Each chapter presents a thorough and diverse set of review
and exercises questions, such as fill-in-the-blank and short answer, that check

the student’s mastery of the basic material presented in the chap-
ter. These are followed by exercises requiring problem solving
and analysis, such as the Algorithm Workbench, Predict the Out-
put, and Find the Errors sections. Answers to the odd-numbered
review questions and review exercises can be downloaded from
the book’s Companion Web site at www.pearsonglobaleditions.
com/gaddis.

Programming Each chapter offers a pool of programming exercises designed
Challenges to solidify the student’s knowledge of the topics currently being

studied. In most cases the assignments present real-world prob-
lems to be solved. When applicable, these exercises include input
validation rules.

group Projects There are several group programming projects throughout the
text, intended to be constructed by a team of students. One
student might build the program’s user interface, while another
student writes the mathematical code, and another designs and
implements a class the program uses. This process is similar to
the way many professional programs are written and encourages
team work within the classroom.

software Available for download from the book’s Companion Web site at
development www.pearsonglobaleditions.com/gaddis. This is an ongoing project
Project: that instructors can optionally assign to teams of students. It
serendipity systematically develops a “real-world” software package: a
Booksellers point-of-sale program for the fictitious Serendipity Booksellers

organization. The Serendipity assignment for each chapter adds
more functionality to the software, using constructs and tech-
niques covered in that chapter. When complete, the program will
act as a cash register, manage an inventory database, and produce
a variety of reports.

C++ Quick For easy access, a quick reference guide to the C++ language is
reference guide printed on the last two pages of Appendix C in the book.

C++11 Throughout the text, new C++11 language features are
 introduced. Look for the C++11 icon to find these new features.

1111

http://www.pearsonglobaleditions.com/gaddis
http://www.pearsonglobaleditions.com/gaddis
http://www.pearsonglobaleditions.com/gaddis

 Preface 23

supplements
student online resources

Many student resources are available for this book from the publisher. The following items are
available on the Gaddis Series Companion Web site at www.pearsonglobaleditions.com/gaddis:

l The source code for each example program in the book

l Access to the book’s companion VideoNotes

l A full set of appendices, including answers to the Checkpoint questions and answers
to the odd-numbered review questions

l A collection of valuable Case Studies

l The complete Serendipity Booksellers Project

online Practice and assessment with MyProgramminglab

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of pro-
gramming. Through practice exercises and immediate, personalized feedback, MyProgram-
mingLab improves the programming competence of beginning students who often struggle
with the basic concepts and paradigms of popular high-level programming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hundreds of
small practice exercises organized around the structure of this textbook. For students, the
system automatically detects errors in the logic and syntax of their code submissions and
offers targeted hints that enable students to figure out what went wrong—and why. For
instructors, a comprehensive gradebook tracks correct and incorrect answers and stores the
code inputted by students for review.

MyProgrammingLab is offered to users of this book in partnership with Turing’s Craft, the
makers of the CodeLab interactive programming exercise system. For a full demonstration,
to see feedback from instructors and students, or to get started using MyProgrammingLab
in your course, visit www.myprogramminglab.com.

instructor resources

The following supplements are available to qualified instructors only:

• Answers to all Review Questions in the text

• Solutions for all Programming Challenges in the text

• PowerPoint presentation slides for every chapter

• Computerized test bank

• Answers to all Student Lab Manual questions

• Solutions for all Student Lab Manual programs

Visit the Pearson Instructor Resource Center ((www.pearsonglobaleditions.com/gaddis))
for information on how to access instructor resources.

http://www.pearsonglobaleditions.com/gaddis:
http://www.myprogramminglab.com
http://www.pearsonglobaleditions.com/gaddis

24 Preface

textbook Web site

Student and instructor resources, including links to download Microsoft® Visual Studio
Express and other popular IDEs, for all the books in the Gaddis Starting Out With series
can be accessed at the following URL:

http://www.pearsonglobaleditions.com/gaddis

Which gaddis C++ book is right for you?
The Starting Out with C++ Series includes three books, one of which is sure to fit your course:

l Starting Out with C++: From Control Structures through Objects

l Starting Out with C++: Early Objects

l Starting Out with C++: Brief Version

The following chart will help you determine which book is right for your course.

■ froM Control strUCtUres
throUgh oBJeCts

■ Brief Version

■ earlY oBJeCts

late introdUCtion of oBJeCts
Classes are introduced in Chapter 13 of the stan-
dard text and Chapter 11 of the brief text, after
control structures, functions, arrays, and pointers.
Advanced OOP topics, such as inheritance and
polymorphism, are covered in the following two
chapters.

earlier introdUCtion of oBJeCts
Classes are introduced in Chapter 7, after
control structures and functions, but before
arrays and pointers. Their use is then
integrated into the remainder of the text.
Advanced OOP topics, such as inheritance
and polymorphism, are covered in Chapters
11 and 15.

introdUCtion of data strUCtUres
and reCUrsion
Linked lists, stacks and queues, and binary trees
are introduced in the final chapters of the standard
text. Recursion is covered after stacks and queues,
but before binary trees. These topics are not
covered in the brief text, though it does have
appendices dealing with linked lists and recursion.

introdUCtion of data strUCtUres
and reCUrsion
Linked lists, stacks and queues, and binary
trees are introduced in the final chapters of
the text, after the chapter on recursion.

http://www.pearsonglobaleditions.com/gaddis

 Preface 25

acknowledgments
There have been many helping hands in the development and publication of this text. We
would like to thank the following faculty reviewers for their helpful suggestions and expertise.

Reviewers for the 8th Edition

Robert Burn
Diablo Valley College

Michael Dixon
Sacramento City College

Qiang Duan
Penn State University—Abington

Daniel Edwards
Ohlone College

Xisheng Fang
Ohlone College

Ken Hang
Green River Community College

Kay Johnson
Community College of Rhode Island

Michelle Levine
Broward College

Cindy Lindstrom
Lakeland College

Susan Reeder
Seattle University

Sandra Roberts
Snead College

Lopa Roychoudhuri
Angelo State University

Richard Snyder
Lehigh Carbon Community College

Donald Southwell
Delta College

Chadd Williams
Pacific University

Reviewers for Previous Editions

Ahmad Abuhejleh
University of Wisconsin–River Falls

David Akins
El Camino College

Steve Allan
Utah State University

Vicki Allan
Utah State University

Karen M. Arlien
Bismark State College

Mary Astone
Troy University

Ijaz A. Awan
Savannah State University

Robert Baird
Salt Lake Community College

Don Biggerstaff
Fayetteville Technical Community College

Michael Bolton
Northeastern Oklahoma State University

Bill Brown
Pikes Peak Community College

Charles Cadenhead
Richland Community College

Randall Campbell
Morningside College

Wayne Caruolo
Red Rocks Community College

Cathi Chambley-Miller
Aiken Technical College

C.C. Chao
Jacksonville State University

26 Preface

Joseph Chao
Bowling Green State University

Royce Curtis
Western Wisconsin Technical College

Joseph DeLibero
Arizona State University

Jeanne Douglas
University of Vermont

Michael Dowell
Augusta State U

William E. Duncan
Louisiana State University

Judy Etchison
Southern Methodist University

Dennis Fairclough
Utah Valley State College

Mark Fienup
University of Northern Iowa

Richard Flint
North Central College

Ann Ford Tyson
Florida State University

Jeanette Gibbons
South Dakota State University

James Gifford
University of Wisconsin–Stevens Point

Leon Gleiberman
Touro College

Barbara Guillott
Louisiana State University

Ranette Halverson, Ph.D.
Midwestern State University

Carol Hannahs
University of Kentucky

Dennis Heckman
Portland Community College

Ric Heishman
George Mason University

Michael Hennessy
University of Oregon

Ilga Higbee
Black Hawk College

Patricia Hines
Brookdale Community College

Mike Holland
Northern Virginia Community College

Mary Hovik
Lehigh Carbon Community College

Richard Hull
Lenoir-Rhyne College

Chris Kardaras
North Central College

Willard Keeling
Blue Ridge Community College

A.J. Krygeris
Houston Community College

Sheila Lancaster
Gadsden State Community College

Ray Larson
Inver Hills Community College

Jennifer Li
Ohlone College

Norman H. Liebling
San Jacinto College

Zhu-qu Lu
University of Maine, Presque Isle

Heidar Malki
University of Houston

Debbie Mathews
J. Sargeant Reynolds Community College

Rick Matzen
Northeastern State University

Robert McDonald
East Stroudsburg University

James McGuffee
Austin Community College

 Preface 27

Dean Mellas
Cerritos College

Lisa Milkowski
Milwaukee School of Engineering

Marguerite Nedreberg
Youngstown State University

Lynne O’Hanlon
Los Angeles Pierce College

Frank Paiano
Southwestern Community College

Theresa Park
Texas State Technical College

Mark Parker
Shoreline Community College

Tino Posillico
SUNY Farmingdale

Frederick Pratter
Eastern Oregon University

Susan L. Quick
Penn State University

Alberto Ramon
Diablo Valley College

Bazlur Rasheed
Sault College of Applied Arts and Technology

Farshad Ravanshad
Bergen Community College

Dolly Samson
Weber State University

Ruth Sapir
SUNY Farmingdale

Jason Schatz
City College of San Francisco

Dr. Sung Shin
South Dakota State University

Bari Siddique
University of Texas at Brownsville

William Slater
Collin County Community College

Shep Smithline
University of Minnesota

Caroline St. Claire
North Central College

Kirk Stephens
Southwestern Community College

Cherie Stevens
South Florida Community College

Dale Suggs
Campbell University

Mark Swanson
Red Wing Technical College

Ann Sudell Thorn
Del Mar College

Martha Tillman
College of San Mateo

Ralph Tomlinson
Iowa State University

David Topham
Ohlone College

Robert Tureman
Paul D. Camp Community College

Arisa K. Ude
Richland College

Peter van der Goes
Rose State College

Stewart Venit
California State University, Los Angeles

Judy Walters
North Central College

John H. Whipple
Northampton Community College

Aurelia Williams
Norfolk State University

Vida Winans
Illinois Institute of Technology

28 Preface

I would like to thank my family for their love and support in all of my many projects. I am
extremely fortunate to have Matt Goldstein as my editor. He and Kelsey Loanes, Editorial
Assistant, guided me through the delicate process of revising the book. I am also fortunate
to have Demetrius Hall and Bram Van Kempen as marketing managers. They do a great
job getting my books out to the academic community. I had a great production team led by
Camille Trentacoste. Thanks to you all!

Pearson would like to thank and acknowledge the following people for their work on the
Global Edition.

Contributor
Moumita Mitra Manna
Bangabasi College

Reviewers
Shaligram Prajapat
Devi Ahilya University

Vikas Saxena
Jaypee Institute of Information Technology

Andres Baravelle
University of East London

about the author
Tony Gaddis is the principal author of the Starting Out with series of textbooks. He has
nearly two decades of experience teaching computer science courses, primarily at Haywood
Community College. Tony is a highly acclaimed instructor who was previously selected as
the North Carolina Community College Teacher of the Year and has received the Teaching
Excellence award from the National Institute for Staff and Organizational Development.
The Starting Out With series includes introductory textbooks covering Programming Logic
and Design, Alice, C++, Java™, Microsoft® Visual Basic®, Microsoft® Visual C#, Python,
and App Inventor, all published by Pearson.

Through the power of practice and immediate personalized

feedback, MyProgrammingLab improves your performance.

Learn more at www.myprogramminglab.com

get with the programming

MyProgrammingLab™

http://www.myprogramminglab.com

This page intentionally left blank

31

1.1 Why Program?

ConCePt: Computers can do many different jobs because they are programmable.

Think about some of the different ways that people use computers. In school, students use
computers for tasks such as writing papers, searching for articles, sending e-mail, and partici-
pating in online classes. At work, people use computers to analyze data, make presentations,
conduct business transactions, communicate with customers and coworkers, control machines
in manufacturing facilities, and do many other things. At home, people use computers for
tasks such as paying bills, shopping online, social networking, and playing computer games.
And don’t forget that smart phones, iPods®, car navigation systems, and many other devices
are computers as well. The uses of computers are almost limitless in our everyday lives.

Computers can do such a wide variety of things because they can be programmed. This
means that computers are not designed to do just one job, but any job that their programs
tell them to do. A program is a set of instructions that a computer follows to perform a
task. For example, Figure 1-1 shows screens using Microsoft Word and PowerPoint, two
commonly used programs.

Programs are commonly referred to as software. Software is essential to a computer because
without software, a computer can do nothing. All of the software that we use to make our
computers useful is created by individuals known as programmers or software developers.
A programmer, or software developer, is a person with the training and skills necessary
to design, create, and test computer programs. Computer programming is an exciting and
rewarding career. Today, you will find programmers working in business, medicine, govern-
ment, law enforcement, agriculture, academics, entertainment, and almost every other field.

Introduction to Computers
and Programming1

toPiCs

 1.1 Why Program?
 1.2 Computer Systems: Hardware

and Software
 1.3 Programs and Programming

Languages

 1.4 What Is a Program Made of?
 1.5 Input, Processing, and Output
 1.6 The Programming Process
 1.7 Procedural and Object-Oriented

Programming

C
H

A
P

T
E

R

32 Chapter 1 Introduction to Computers and Programming

Computer programming is both an art and a science. It is an art because every aspect of
a program should be carefully designed. Listed below are a few of the things that must be
designed for any real-world computer program:

•	 The	logical	flow	of	the	instructions
•	 The	mathematical	procedures
•	 The	appearance	of	the	screens
•	 The	way	information	is	presented	to	the	user
•	 The	program’s	“user-friendliness”
•	 Manuals	and	other	forms	of	written	documentation

There is also a scientific, or engineering, side to programming. Because programs rarely
work right the first time they are written, a lot of testing, correction, and redesigning is
required. This demands patience and persistence from the programmer. Writing software
demands discipline as well. Programmers must learn special languages like C++ because
computers do not understand English or other human languages. Languages such as C++
have strict rules that must be carefully followed.

Both the artistic and scientific nature of programming make writing computer software like
designing a car: Both cars and programs should be functional, efficient, powerful, easy to
use, and pleasing to look at.

1.2 Computer systems: Hardware and software

ConCePt: All computer systems consist of similar hardware devices and software
components. This section provides an overview of standard computer
hardware and software organization.

Figure 1-1 A word processing program and a presentation program

 1.2 Computer Systems: Hardware and Software 33

Hardware
Hardware refers to the physical components that a computer is made of. A computer, as
we generally think of it, is not an individual device, but a system of devices. Like the instru-
ments in a symphony orchestra, each device plays its own part. A typical computer system
consists of the following major components:

•	 The	central	processing	unit	(CPU)
•	 Main	memory
•	 Secondary	storage	devices
•	 Input	devices
•	 Output	devices

The organization of a computer system is depicted in Figure 1-2.

Input
Devices

Output
Devices

Secondary
Storage Devices

Central Processing
Unit

Main Memory
(RAM)

Figure 1-2

the CPU

When a computer is performing the tasks that a program tells it to do, we say that the
computer is running or executing the program. The central processing unit, or CPU, is the
part	of	a	computer	that	actually	runs	programs.	The	CPU	is	the	most	important	component	
in a computer because without it, the computer could not run software.

In	the	earliest	computers,	CPUs	were	huge	devices	made	of	electrical	and	mechanical	compo-
nents such as vacuum tubes and switches. Figure 1-3 shows such a device. The two women in

34 Chapter 1 Introduction to Computers and Programming

Figure 1-3

the photo are working with the historic ENIAC computer. The ENIAC, considered by many
to be the world’s first programmable electronic computer, was built in 1945 to calculate
artillery	ballistic	tables	for	the	U.S.	Army.	This	machine,	which	was	primarily	one	big	CPU,	
was 8 feet tall, 100 feet long, and weighed 30 tons.

Today,	CPUs	are	small	chips	known	as	microprocessors. Figure 1-4 shows a photo of a lab tech-
nician holding a modern-day microprocessor. In addition to being much smaller than the old
electro-mechanical	CPUs	in	early	computers,	microprocessors	are	also	much	more	powerful.

Figure 1-4

 1.2 Computer Systems: Hardware and Software 35

The	CPU’s	 job	 is	 to	 fetch	 instructions,	 follow	 the	 instructions,	and	produce	 some	result.	
Internally, the central processing unit consists of two parts: the control unit and the arith-
metic and logic unit (ALU). The control unit coordinates all of the computer’s operations.
It is responsible for determining where to get the next instruction and regulating the other
major components of the computer with control signals. The arithmetic and logic unit, as
its name suggests, is designed to perform mathematical operations. The organization of the
CPU	is	shown	in	Figure	1-5.

Central Processing Unit

Instruction
(Input)

Arithmetic and
Logic Unit

Control Unit

Result
(Output)

Figure 1-5

A program is a sequence of instructions stored in the computer’s memory. When a computer
is	running	a	program,	the	CPU	is	engaged	in	a	process	known	formally	as	the	fetch/decode/
execute cycle. The steps in the fetch/decode/execute cycle are as follows:

Fetch	 	The	CPU’s	control	unit	fetches,	from	main	memory,	the	next	instruc-
tion in the sequence of program instructions.

Decode The instruction is encoded in the form of a number. The control unit
decodes the instruction and generates an electronic signal.

Execute The signal is routed to the appropriate component of the computer
(such	as	the	ALU,	a	disk	drive,	or	some	other	device).	The	signal	causes	
the component to perform an operation.

These steps are repeated as long as there are instructions to perform.

Main Memory

You can think of main memory as the computer’s work area. This is where the computer
stores a program while the program is running, as well as the data that the program is
working with. For example, suppose you are using a word processing program to write an
essay for one of your classes. While you do this, both the word processing program and the
essay are stored in main memory.

Main memory is commonly known as random-access memory or RAM. It is called this
because	 the	CPU	 is	able	 to	quickly	access	data	 stored	at	any	 random	 location	 in	RAM.	
RAM	is	usually	a	volatile type of memory that is used only for temporary storage while
a	program	is	running.	When	the	computer	is	turned	off,	the	contents	of	RAM	are	erased.	
Inside	your	computer,	RAM	is	stored	in	small	chips.

A	computer’s	memory	is	divided	into	tiny	storage	 locations	known	as	bytes.	One	byte is
enough memory to store only a letter of the alphabet or a small number. In order to do

36 Chapter 1 Introduction to Computers and Programming

anything meaningful, a computer must have lots of bytes. Most computers today have mil-
lions, or even billions, of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term bit stands
for binary digit. Computer scientists usually think of bits as tiny switches that can be either
on	or	off.	Bits	aren’t	actual	“switches,”	however,	at	least	not	in	the	conventional	sense.	In	
most computer systems, bits are tiny electrical components that can hold either a positive
or a negative charge. Computer scientists think of a positive charge as a switch in the on
position and a negative charge as a switch in the off position.

Each byte is assigned a unique number known as an address. The addresses are ordered
from lowest to highest. A byte is identified by its address in much the same way a post
office box is identified by an address. Figure 1-6 shows a group of memory cells with their
addresses. In the illustration, sample data is stored in memory. The number 149 is stored in
the cell with the address 16, and the number 72 is stored at address 23.

0

10

20

1

11

21

2

12

22

3

13

23

4

14

24

5

15

25

6

16

26

7

17

27

8

18

28

9

19

29

149

72

Figure 1-6

secondary storage

Secondary storage is a type of memory that can hold data for long periods of time—even
when there is no power to the computer. Frequently used programs are stored in secondary
memory and loaded into main memory as needed. Important information, such as word pro-
cessing documents, payroll data, and inventory figures, is saved to secondary storage as well.

The most common type of secondary storage device is the disk drive. A disk drive stores
data by magnetically encoding it onto a circular disk. Most computers have a disk drive
mounted inside their case. External disk drives, which connect to one of the computer’s
communication ports, are also available. External disk drives can be used to create backup
copies of important data or to move data to another computer.

In addition to external disk drives, many types of devices have been created for copying
data and for moving it to other computers. For many years floppy disk drives were popular.
A floppy disk drive records data onto a small floppy disk, which can be removed from the
drive. The use of floppy disk drives has declined dramatically in recent years, in favor of
superior	devices	such	as	USB	drives.	USB drives are small devices that plug into the com-
puter’s	USB	(universal	serial	bus)	port	and	appear	to	the	system	as	a	disk	drive.	USB	drives,	
which use flash memory to store data, are inexpensive, reliable, and small enough to be
carried in your pocket.

Optical	 devices	 such	 as	 the	CD	 (compact	 disc)	 and	 the	DVD	 (digital	 versatile	 disc)	 are	
also popular for data storage. Data is not recorded magnetically on an optical disc, but is
encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect the
pits	and	thus	read	the	encoded	data.	Optical	discs	hold	large	amounts	of	data,	and	because	
recordable CD and DVD drives are now commonplace, they are good mediums for creating
backup copies of data.

 1.2 Computer Systems: Hardware and Software 37

input Devices

Input is any information the computer collects from the outside world. The device that
collects the information and sends it to the computer is called an input device. Common
input devices are the keyboard, mouse, scanner, digital camera, and microphone. Disk
drives,	CD/DVD	drives,	and	USB	drives	can	also	be	considered	input	devices	because	pro-
grams and information are retrieved from them and loaded into the computer’s memory.

output Devices

Output	 is	 any	 information	 the	 computer	 sends	 to	 the	outside	world.	 It	might	be	a	 sales	
report, a list of names, or a graphic image. The information is sent to an output device,
which formats and presents it. Common output devices are monitors, printers, and speak-
ers.	Disk	drives,	USB	drives,	and	CD/DVD	recorders	can	also	be	considered	output	devices	
because	the	CPU	sends	them	information	to	be	saved.

software
If a computer is to function, software is not optional. Everything that a computer does,
from the time you turn the power switch on until you shut the system down, is under the
control of software. There are two general categories of software: system software and
application software. Most computer programs clearly fit into one of these two categories.
Let’s take a closer look at each.

system software

The programs that control and manage the basic operations of a computer are generally referred
to as system software. System software typically includes the following types of programs:

•	 Operating Systems
 An operating system is the most fundamental set of programs on a computer. The

operating system controls the internal operations of the computer’s hardware, man-
ages all the devices connected to the computer, allows data to be saved to and retrieved
from storage devices, and allows other programs to run on the computer.

•	 Utility Programs
 A utility program performs a specialized task that enhances the computer’s operation

or safeguards data. Examples of utility programs are virus scanners, file-compression
programs, and data-backup programs.

•	 Software Development Tools
 The software tools that programmers use to create, modify, and test software are

referred to as software development tools. Compilers and integrated development
environments, which we discuss later in this chapter, are examples of programs that
fall into this category.

Application software

Programs that make a computer useful for everyday tasks are known as application soft-
ware. These are the programs that people normally spend most of their time running on
their computers. Figure 1-1, at the beginning of this chapter, shows screens from two com-
monly used applications—Microsoft Word, a word processing program, and Microsoft

38 Chapter 1 Introduction to Computers and Programming

PowerPoint, a presentation program. Some other examples of application software are
spreadsheet programs, e-mail programs, Web browsers, and game programs.

Checkpoint
1.1 Why is the computer used by so many different people, in so many different

professions?

1.2 List the five major hardware components of a computer system.

1.3	 Internally,	the	CPU	consists	of	what	two	units?

1.4 Describe the steps in the fetch/decode/execute cycle.

1.5 What is a memory address? What is its purpose?

1.6 Explain why computers have both main memory and secondary storage.

1.7 What are the two general categories of software?

1.8 What fundamental set of programs control the internal operations of the
computer’s hardware?

1.9 What do you call a program that performs a specialized task, such as a virus
scanner, a file-compression program, or a data-backup program?

1.10 Word processing programs, spreadsheet programs, e-mail programs, Web
browsers, and game programs belong to what category of software?

1.3 Programs and Programming Languages

ConCePt: A program is a set of instructions a computer follows in order to perform
a task. A programming language is a special language used to write
computer programs.

What is a Program?
Computers are designed to follow instructions. A computer program is a set of instructions that
tells the computer how to solve a problem or perform a task. For example, suppose we want
the computer to calculate someone’s gross pay. Here is a list of things the computer should do:

	 1.	 Display	a	message	on	the	screen	asking	“How	many	hours	did	you	work?”
	 2.	 	Wait	for	the	user	to	enter	the	number	of	hours	worked.	Once	the	user	enters	a	number,	

store it in memory.
	 3.	 Display	a	message	on	the	screen	asking	“How	much	do	you	get	paid	per	hour?”
	 4.	 	Wait	for	the	user	to	enter	an	hourly	pay	rate.	Once	the	user	enters	a	number,	store	it	

in memory.
 5. Multiply the number of hours by the amount paid per hour, and store the result in

memory.
 6. Display a message on the screen that tells the amount of money earned. The message

must include the result of the calculation performed in Step 5.

Collectively, these instructions are called an algorithm. An algorithm is a set of well-defined
steps for performing a task or solving a problem. Notice these steps are sequentially ordered.
Step 1 should be performed before Step 2, and so forth. It is important that these instruc-
tions be performed in their proper sequence.

 1.3 Programs and Programming Languages 39

Although you and I might easily understand the instructions in the pay-calculating algo-
rithm,	it	is	not	ready	to	be	executed	on	a	computer.	A	computer’s	CPU	can	only	process	
instructions that are written in machine language. If you were to look at a machine lan-
guage program, you would see a stream of binary numbers	(numbers	consisting	of	only	1s	
and	0s).	The	binary	numbers	form	machine	language	instructions,	which	the	CPU	interprets	
as commands. Here is an example of what a machine language instruction might look like:

1011010000000101

As you can imagine, the process of encoding an algorithm in machine language is very
tedious	and	difficult.	In	addition,	each	different	type	of	CPU	has	its	own	machine	language.	
If you wrote a machine language program for computer A and then wanted to run it on
computer B,	which	has	a	different	type	of	CPU,	you	would	have	to	rewrite	the	program	in	
computer B’s machine language.

Programming languages, which use words instead of numbers, were invented to ease the task
of programming. A program can be written in a programming language, such as C++, which
is much easier to understand than machine language. Programmers save their programs in
text files, and then use special software to convert their programs to machine language.

Program 1-1 shows how the pay-calculating algorithm might be written in C++.

The	“Program	Output	with	Example	Input”	shows	what	the	program	will	display	on	the	
screen when it is running. In the example, the user enters 10 for the number of hours
worked and 15 for the hourly pay rate. The program displays the earnings, which are $150.

note: The line numbers that are shown in Program 1-1 are not part of the program.
This book shows line numbers in all program listings to help point out specific parts
of the program.

Program 1-1

 1 // This program calculates the user's pay.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 double hours, rate, pay;
 8
 9 // Get the number of hours worked.
10 cout << "How many hours did you work? ";
11 cin >> hours;
12
13 // Get the hourly pay rate.
14 cout << "How much do you get paid per hour? ";
15 cin >> rate;
16
17 // Calculate the pay.
18 pay = hours * rate;

(program continues)

40 Chapter 1 Introduction to Computers and Programming

Program 1-1 (continued)

19
20 // Display the pay.
21 cout << "You have earned $" << pay << endl;
22 return 0;
23 }

Program output with example input shown in Bold
How many hours did you work? 10 [enter]
How much do you get paid per hour? 15 [enter]
You have earned $150

Programming Languages
In a broad sense, there are two categories of programming languages: low-level and high-
level. A low-level language is close to the level of the computer, which means it resembles
the numeric machine language of the computer more than the natural language of humans.
The easiest languages for people to learn are high-level languages.	They	are	called	“high-
level”	because	they	are	closer	to	the	level	of	human-readability	than	computer-readability.	
Figure 1-7 illustrates the concept of language levels.

Low level (machine language)
10100010 11101011

cout << "Enter the number ";
cout << "of hours worked: ";
cin >> hours;cout << "Enter the hourly ";
cout << "pay rate: ";cin >> payRate;

High level (Easily understood by humans)

Figure 1-7

Many high-level languages have been created. Table 1-1 lists a few of the well-known ones.

In addition to the high-level features necessary for writing applications such as payroll
systems and inventory programs, C++ also has many low-level features. C++ is based on
the C language, which was invented for purposes such as writing operating systems and
compilers. Since C++ evolved from C, it carries all of C’s low-level capabilities with it.

 1.3 Programs and Programming Languages 41

table 1-1

Language Description

BASIC Beginners All-purpose Symbolic Instruction Code. A general programming language
originally designed to be simple enough for beginners to learn.

FORTRAN Formula Translator. A language designed for programming complex mathematical
algorithms.

COBOL Common	Business-Oriented	Language.	A	language	designed	for	business	applications.

Pascal A structured, general-purpose language designed primarily for teaching programming.

C A structured, general-purpose language developed at Bell Laboratories. C offers
both high-level and low-level features.

C++ Based on the C language, C++ offers object-oriented features not found in C. Also
invented at Bell Laboratories.

C# Pronounced	“C	sharp.”	A	language	invented	by	Microsoft	for	developing	applications	
based on the Microsoft .NET platform.

Java An object-oriented language invented at Sun Microsystems. Java may be used to
develop programs that run over the Internet, in a Web browser.

JavaScript JavaScript can be used to write small programs that run in Web pages. Despite its
name, JavaScript is not related to Java.

Python Python is a general-purpose language created in the early 1990s. It has become
popular in both business and academic applications.

Ruby Ruby	is	a	general-purpose	language	that	was	created	in	the	1990s.	It	is	increas-
ingly becoming a popular language for programs that run on Web servers.

Visual
Basic

A Microsoft programming language and software development environment that
allows programmers to quickly create Windows-based applications.

C++ is popular not only because of its mixture of low- and high-level features, but also
because of its portability. This means that a C++ program can be written on one type of
computer and then run on many other types of systems. This usually requires the program
to be recompiled on each type of system, but the program itself may need little or no change.

note: Programs written for specific graphical environments often require significant
changes when moved to a different type of system. Examples of such graphical environ-
ments	are	Windows,	the	X-Window	System,	and	the	Mac	OS	operating	system.

source Code, object Code, and executable Code
When a C++ program is written, it must be typed into the computer and saved to a file. A
text editor, which is similar to a word processing program, is used for this task. The state-
ments written by the programmer are called source code, and the file they are saved in is
called the source file.

After the source code is saved to a file, the process of translating it to machine language
can begin. During the first phase of this process, a program called the preprocessor reads
the source code. The preprocessor searches for special lines that begin with the # symbol.
These lines contain commands that cause the preprocessor to modify the source code in

42 Chapter 1 Introduction to Computers and Programming

some way. During the next phase the compiler steps through the preprocessed source code,
translating each source code instruction into the appropriate machine language instruction.
This process will uncover any syntax errors that may be in the program. Syntax errors are
illegal uses of key words, operators, punctuation, and other language elements. If the pro-
gram is free of syntax errors, the compiler stores the translated machine language instruc-
tions, which are called object code, in an object file.

Although an object file contains machine language instructions, it is not a complete pro-
gram. Here is why: C++ is conveniently equipped with a library of prewritten code for
performing common operations or sometimes-difficult tasks. For example, the library con-
tains hardware-specific code for displaying messages on the screen and reading input from
the keyboard. It also provides routines for mathematical functions, such as calculating the
square root of a number. This collection of code, called the run-time library, is extensive.
Programs almost always use some part of it. When the compiler generates an object file,
however, it does not include machine code for any run-time library routines the program-
mer might have used. During the last phase of the translation process, another program
called the linker	 combines	 the	 object	 file	with	 the	 necessary	 library	 routines.	Once	 the	
linker has finished with this step, an executable file is created. The executable file contains
machine language instructions, or executable code, and is ready to run on the computer.

Figure 1-8 illustrates the process of translating a C++ source file into an executable file.

The entire process of invoking the preprocessor, compiler, and linker can be initiated with
a single action. For example, on a Linux system, the following command causes the C++
program named hello.cpp to be preprocessed, compiled, and linked. The executable code
is stored in a file named hello.

g++ −o hello hello.cpp

Source Code

Preprocessor

Modified
Source Code

Compiler

Object Code

Executable Code

Linker

Source code is entered
with a text editor by
the programmer.

#include <iostream>
using namespace std;

int main()
{
 cout<<"Hello World\n";
 return 0;
}

Figure 1-8

 1.3 Programs and Programming Languages 43

Appendix G explains how compiling works in .Net. You can download Appendix G from
the book’s companion Web site at www.pearsonglobaleditions.com/gaddis.

Many development systems, particularly those on personal computers, have integrated
development environments (IDEs). These environments consist of a text editor, com-
piler, debugger, and other utilities integrated into a package with a single set of menus.
Preprocessing, compiling, linking, and even executing a program is done with a single click
of a button, or by selecting a single item from a menu. Figure 1-9 shows a screen from the
Microsoft Visual Studio IDE.

Figure 1-9

Checkpoint
1.11 What is an algorithm?

1.12 Why were computer programming languages invented?

1.13 What is the difference between a high-level language and a low-level language?

1.14 What does portability mean?

1.15 Explain the operations carried out by the preprocessor, compiler, and linker.

1.16 Explain what is stored in a source file, an object file, and an executable file.

1.17 What is an integrated development environment?

http://www.pearsonglobaleditions.com/gaddis

44 Chapter 1 Introduction to Computers and Programming

1.4 What is a Program Made of?

ConCePt: There are certain elements that are common to all programming languages.

Language elements
All programming languages have a few things in common. Table 1-2 lists the common ele-
ments you will find in almost every language.

table 1-2

Language Element Description

Key Words Words that have a special meaning. Key words may only be used for
their intended purpose. Key words are also known as reserved words.

Programmer-Defined
Identifiers

Words or names defined by the programmer. They are symbolic names
that refer to variables or programming routines.

Operators Operators	perform	operations	on	one	or	more	operands.	An	operand	is	
usually a piece of data, like a number.

Punctuation Punctuation characters that mark the beginning or ending of a statement,
or separate items in a list.

Syntax Rules	that	must	be	followed	when	constructing	a	program.	Syntax	dictates	
how key words and operators may be used, and where punctuation
symbols must appear.

Let’s	look	at	some	specific	parts	of	Program	1-1	(the	pay-calculating	program)	to	see	examples	
of each element listed in the table above. For your convenience, Program 1-1 is listed again.

Program 1-1

 1 // This program calculates the user's pay.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 double hours, rate, pay;
 8
 9 // Get the number of hours worked.
10 cout << "How many hours did you work? ";
11 cin >> hours;
12
13 // Get the hourly pay rate.
14 cout << "How much do you get paid per hour? ";
15 cin >> rate;
16
17 // Calculate the pay.

 1.4 What Is a Program Made of? 45

18 pay = hours * rate;
19
20 // Display the pay.
21 cout << "You have earned $" << pay << endl;
22 return 0;
23 }

Key Words (Reserved Words)

Three of C++’s key words appear on lines 3 and 5: using, namespace, and int. The word
double, which appears on line 7, is also a C++ key word. These words, which are always
written in lowercase, each have a special meaning in C++ and can only be used for their
intended purposes. As you will see, the programmer is allowed to make up his or her own
names for certain things in a program. Key words, however, are reserved and cannot be
used for anything other than their designated purposes. Part of learning a programming
language is learning what the key words are, what they mean, and how to use them.

note: The #include <iostream> statement in line 2 is a preprocessor directive.

note: In C++, key words are written in all lowercase.

Programmer-Defined identifiers

The words hours, rate, and pay that appear in the program on lines 7, 11, 15, 18, and
21 are programmer-defined identifiers. They are not part of the C++ language but rather
are names made up by the programmer. In this particular program, these are the names of
variables. As you will learn later in this chapter, variables are the names of memory loca-
tions that may hold data.

operators

On	line	18	the	following	code	appears:

pay = hours * rate;

The = and * symbols are both operators. They perform operations on pieces of data known
as operands. The * operator multiplies its two operands, which in this example are the vari-
ables hours and rate. The = symbol is called the assignment operator. It takes the value
of the expression on the right and stores it in the variable whose name appears on the left.
In this example, the = operator stores in the pay variable the result of the hours variable
multiplied by the rate	variable.	In	other	words,	the	statement	says,	“Make	the	pay variable
equal to hours times rate,	or	“pay is assigned the value of hours times rate.”

Punctuation

Notice that lines 3, 7, 10, 11, 14, 15, 18, 21, and 22 all end with a semicolon. A semicolon
in	C++	is	similar	to	a	period	in	English:	It	marks	the	end	of	a	complete	sentence	(or	state-
ment,	as	it	is	called	in	programming	jargon).	Semicolons	do	not	appear	at	the	end	of	every	
line in a C++ program, however. There are rules that govern where semicolons are required

46 Chapter 1 Introduction to Computers and Programming

and where they are not. Part of learning C++ is learning where to place semicolons and
other punctuation symbols.

Lines and statements
Often,	 the	 contents	 of	 a	 program	 are	 thought	 of	 in	 terms	 of	 lines	 and	 statements.	A	
“line”	is	just	that—a	single	line	as	it	appears	in	the	body	of	a	program.	Program	1-1	is	
shown with each of its lines numbered. Most of the lines contain something meaningful;
however, some of the lines are empty. The blank lines are only there to make the program
more readable.

A statement is a complete instruction that causes the computer to perform some action.
Here is the statement that appears in line 10 of Program 1-1:

cout << "How many hours did you work? ";

This	statement	causes	the	computer	to	display	the	message	“How	many	hours	did	you	work?”	
on the screen. Statements can be a combination of key words, operators, and programmer-
defined symbols. Statements often occupy only one line in a program, but sometimes they
are spread out over more than one line.

Variables
A variable is a named storage location in the computer’s memory for holding a piece of
information. The information stored in variables may change while the program is running
(hence	the	name	“variable”).	Notice	that	in	Program	1-1	the	words	hours, rate, and pay
appear in several places. All three of these are the names of variables. The hours variable is
used to store the number of hours the user has worked. The rate variable stores the user’s
hourly pay rate. The pay variable holds the result of hours multiplied by rate, which is
the user’s gross pay.

note: Notice the variables in Program 1-1 have names that reflect their purpose. In
fact, it would be easy to guess what the variables were used for just by reading their
names. This is discussed further in Chapter 2.

Variables are symbolic names that represent locations in the computer’s random-access
memory	(RAM).	When	 information	 is	stored	 in	a	variable,	 it	 is	actually	stored	 in	RAM.	
Assume a program has a variable named length. Figure 1-10 illustrates the way the vari-
able name represents a memory location.

0

10

20

1

11

21

2

12

22

3

13

23

4

14

24

5

15

25

6

16

26

7

17

27

8

18

28

9

19

29
72

length

Figure 1-10

 1.5 Input, Processing, and Output 47

In Figure 1-10, the variable length is holding the value 72. The number 72 is actually stored
in	RAM	at	address	23,	but	the	name	length symbolically represents this storage location. If it
helps, you can think of a variable as a box that holds information. In Figure 1-10, the number
72 is stored in the box named length.	Only	one	item	may	be	stored	in	the	box	at	any	given	
time. If the program stores another value in the box, it will take the place of the number 72.

Variable Definitions
In programming, there are two general types of data: numbers and characters. Numbers
are used to perform mathematical operations, and characters are used to print data on the
screen or on paper.

Numeric data can be categorized even further. For instance, the following are all whole
numbers, or integers:

5
7
−129
32154

The following are real, or floating-point numbers:

3.14159
6.7
1.0002

When creating a variable in a C++ program, you must know what type of data the program
will be storing in it. Look at line 7 of Program 1-1:

double hours, rate, pay;

The word double in this statement indicates that the variables hours, rate, and pay will
be used to hold double precision floating-point numbers. This statement is called a variable
definition. It is used to define one or more variables that will be used in the program and
to indicate the type of data they will hold. The variable definition causes the variables to be
created in memory, so all variables must be defined before they can be used. If you review
the listing of Program 1-1, you will see that the variable definitions come before any other
statements using those variables.

note: Programmers	often	use	the	term	“variable	declaration”	to	mean	the	same	thing	
as	“variable	definition.”	Strictly	speaking,	there	is	a	difference	between	the	two	terms.	
A definition statement always causes a variable to be created in memory. Some types of
declaration statements, however, do not cause a variable to be created in memory. You
will learn more about declarations later in this book.

1.5 input, Processing, and output

ConCePt: The three primary activities of a program are input, processing, and output.

Computer programs typically perform a three-step process of gathering input, performing
some process on the information gathered, and then producing output. Input is information

48 Chapter 1 Introduction to Computers and Programming

a program collects from the outside world. It can be sent to the program from the user, who
is entering data at the keyboard or using the mouse. It can also be read from disk files or
hardware devices connected to the computer. Program 1-1 allows the user to enter two pieces
of information: the number of hours worked and the hourly pay rate. Lines 11 and 15 use
the cin	(pronounced	“see	in”)	object	to	perform	these	input	operations:

cin >> hours;
cin >> rate;

Once	 information	 is	 gathered	 from	 the	outside	world,	 a	program	usually	processes	 it	 in	
some manner. In Program 1-1, the hours worked and hourly pay rate are multiplied in line
18 and the result is assigned to the pay variable:

pay = hours * rate;

Output	is	information	that	a	program	sends	to	the	outside	world.	It	can	be	words	or	graph-
ics displayed on a screen, a report sent to the printer, data stored in a file, or information
sent to any device connected to the computer. Lines 10, 14, and 21 in Program 1-1 all
perform output:

cout << "How many hours did you work? ";
cout << "How much do you get paid per hour? ";
cout << "You have earned $" << pay << endl;

These lines use the cout	(pronounced	“see	out”)	object	to	display	messages	on	the	com-
puter’s screen. You will learn more details about the cin and cout objects in Chapter 2.

Checkpoint
1.18 Describe the difference between a key word and a programmer-defined identifier.

1.19 Describe the difference between operators and punctuation symbols.

1.20 Describe the difference between a program line and a statement.

1.21	 Why	are	variables	called	“variable”?

1.22 What happens to a variable’s current contents when a new value is stored there?

1.23 What must take place in a program before a variable is used?

1.24 What are the three primary activities of a program?

1.6 the Programming Process

ConCePt: The programming process consists of several steps, which include design,
creation, testing, and debugging activities.

Designing and Creating a Program
Now that you have been introduced to what a program is, it’s time to consider the process
of creating a program. Quite often, when inexperienced students are given programming
assignments, they have trouble getting started because they don’t know what to do first. If
you find yourself in this dilemma, the steps listed in Figure 1-11 may help. These are the
steps recommended for the process of writing a program.

 1.6 The Programming Process 49

The steps listed in Figure 1-11 emphasize the importance of planning. Just as there are
good ways and bad ways to paint a house, there are good ways and bad ways to create a
program. A good program always begins with planning.

With the pay-calculating program as our example, let’s look at each of the steps in more
detail.

1. Clearly define what the program is to do.

This step requires that you identify the purpose of the program, the information that is
to be input, the processing that is to take place, and the desired output. Let’s examine
each of these requirements for the example program:

Purpose To calculate the user’s gross pay.

Input Number of hours worked, hourly pay rate.

Process Multiply number of hours worked by hourly pay rate. The result is the
user’s gross pay.

Output Display a message indicating the user’s gross pay.

2. Visualize the program running on the computer.

Before you create a program on the computer, you should first create it in your mind.
Step 2 is the visualization of the program. Try to imagine what the computer screen
looks like while the program is running. If it helps, draw pictures of the screen, with
sample input and output, at various points in the program. For instance, here is the
screen produced by the pay-calculating program:

How many hours did you work? 10
How much do you get paid per hour? 15
You have earned $150

In this step, you must put yourself in the shoes of the user. What messages should the
program display? What questions should it ask? By addressing these concerns, you will
have already determined most of the program’s output.

Figure 1-11

1. Clearly define what the program is to do.
2. Visualize the program running on the computer.
3. Use design tools such as a hierarchy chart, flowcharts,

or pseudocode to create a model of the program.
4. Check the model for logical errors.
5. Type the code, save it, and compile it.
6. Correct any errors found during compilation. Repeat

Steps 5 and 6 as many times as necessary.
7. Run the program with test data for input.
8. Correct any errors found while running the program.

Repeat Steps 5 through 8 as many times as necessary.
9. Validate the results of the program.

50 Chapter 1 Introduction to Computers and Programming

3. Use design tools such as a hierarchy chart, flowcharts, or pseudocode to create a model
of the program.

While planning a program, the programmer uses one or more design tools to create a
model of the program. Three common design tools are hierarchy charts, flowcharts,
and pseudocode. A hierarchy chart is a diagram that graphically depicts the structure
of a program. It has boxes that represent each step in the program. The boxes are con-
nected in a way that illustrates their relationship to one another. Figure 1-12 shows a
hierarchy chart for the pay-calculating program.

Calculate
Gross Pay

Display
Gross Pay

Get Payroll Data
from User

Multiply Hours
Worked by
Pay Rate

Read Number of
Hours Worked

Read Hourly
Pay Rate

Figure 1-12

A hierarchy chart begins with the overall task and then refines it into smaller subtasks. Each
of the subtasks is then refined into even smaller sets of subtasks, until each is small enough
to	be	easily	performed.	For	instance,	in	Figure	1-12,	the	overall	task	“Calculate	Gross	Pay”	
is	listed	in	the	top-level	box.	That	task	is	broken	into	three	subtasks.	The	first	subtask,	“Get	
Payroll	Data	from	User,”	is	broken	further	into	two	subtasks.	This	process	of	“divide	and	
conquer”	is	known	as	top-down design.

A flowchart is a diagram that shows the logical flow of a program. It is a useful tool for
planning each operation a program performs and the order in which the operations are to
occur. For more information see Appendix D, Introduction to Flowcharting.

Pseudocode is a cross between human language and a programming language. Although
the computer can’t understand pseudocode, programmers often find it helpful to write an
algorithm	 in	 a	 language	 that’s	“almost”	a	programming	 language,	but	 still	 very	 similar	
to natural language. For example, here is pseudocode that describes the pay-calculating
program:

Get payroll data.
Calculate gross pay.
Display gross pay.

Although the pseudocode above gives a broad view of the program, it doesn’t reveal all the
program’s details. A more detailed version of the pseudocode follows.

VideoNote
introduction to
Flowcharting

VideoNote
Designing a
Program with
Pseudocode

 1.6 The Programming Process 51

Display “How many hours did you work?”.
Input hours.
Display “How much do you get paid per hour?”.
Input rate.
Store the value of hours times rate in the pay variable.
Display the value in the pay variable.

Notice the pseudocode contains statements that look more like commands than the
English	statements	that	describe	the	algorithm	in	Section	1.4	(What	Is	a	Program	Made	
of?).	The	pseudocode	even	names	variables	and	describes	mathematical	operations.

4. Check the model for logical errors.

Logical errors	are	mistakes	that	cause	the	program	to	produce	erroneous	results.	Once	
a hierarchy chart, flowchart, or pseudocode model of the program is assembled, it
should be checked for these errors. The programmer should trace through the charts
or pseudocode, checking the logic of each step. If an error is found, the model can be
corrected before the next step is attempted.

5. Type the code, save it, and compile it.

Once	a	model	of	 the	program	 (hierarchy	 chart,	 flowchart,	or	pseudocode)	has	been	
created, checked, and corrected, the programmer is ready to write source code on the
computer. The programmer saves the source code to a file and begins the process of
translating it to machine language. During this step the compiler will find any syntax
errors that may exist in the program.

6. Correct any errors found during compilation. Repeat Steps 5 and 6 as many times as
necessary.

If the compiler reports any errors, they must be corrected. Steps 5 and 6 must be
repeated until the program is free of compile-time errors.

7. Run the program with test data for input.

Once	an	executable	 file	 is	generated,	 the	program	 is	 ready	 to	be	 tested	 for	 run-time	
errors. A run-time error is an error that occurs while the program is running. These are
usually logical errors, such as mathematical mistakes.

Testing for run-time errors requires that the program be executed with sample data or
sample input. The sample data should be such that the correct output can be predicted.
If the program does not produce the correct output, a logical error is present in the
program.

8. Correct any errors found while running the program. Repeat Steps 5 through 8 as many
times as necessary.

When run-time errors are found in a program, they must be corrected. You must identify
the step where the error occurred and determine the cause. Desk-checking is a process
that can help locate run-time errors. The term desk-checking means the programmer
starts reading the program, or a portion of the program, and steps through each state-
ment. A sheet of paper is often used in this process to jot down the current contents of
all variables and sketch what the screen looks like after each output operation. When a
variable’s contents change, or information is displayed on the screen, this is noted. By
stepping through each statement, many errors can be located and corrected. If an error
is	a	result	of	incorrect	logic	(such	as	an	improperly	stated	math	formula),	you	must	correct	
the statement or statements involved in the logic. If an error is due to an incomplete

52 Chapter 1 Introduction to Computers and Programming

understanding of the program requirements, then you must restate the program purpose
and modify the hierarchy and/or flowcharts, pseudocode, and source code. The program
must then be saved, recompiled and retested. This means Steps 5 though 8 must be
repeated until the program reliably produces satisfactory results.

9. Validate the results of the program.

When you believe you have corrected all the run-time errors, enter test data and deter-
mine whether the program solves the original problem.

What is software engineering?
The field of software engineering encompasses the whole process of crafting computer
software. It includes designing, writing, testing, debugging, documenting, modifying, and
maintaining complex software development projects. Like traditional engineers, software
engineers use a number of tools in their craft. Here are a few examples:

•	 Program	specifications
•	 Charts	and	diagrams	of	screen	output
•	 Hierarchy	charts	and	flowcharts
•	 Pseudocode
•	 Examples	of	expected	input	and	desired	output
•	 Special	software	designed	for	testing	programs

Most commercial software applications are very large. In many instances one or more
teams of programmers, not a single individual, develop them. It is important that the pro-
gram requirements be thoroughly analyzed and divided into subtasks that are handled by
individual teams, or individuals within a team.

In Step 3 of the programming process, you were introduced to the hierarchy chart as a
tool for top-down design. The subtasks that are identified in a top-down design can easily
become modules, or separate components of a program. If the program is very large or
complex, a team of software engineers can be assigned to work on the individual modules.
As the project develops, the modules are coordinated to finally become a single software
application.

1.7 Procedural and object-oriented Programming

ConCePt: Procedural programming and object-oriented programming are two ways
of thinking about software development and program design.

C++ is a language that can be used for two methods of writing computer programs: proce-
dural programming and object-oriented programming. This book is designed to teach you
some of both.

In	procedural	programming,	the	programmer	constructs	procedures	(or	functions,	as	they	
are	called	in	C++).	The	procedures	are	collections	of	programming	statements	that	perform	
a specific task. The procedures each contain their own variables and commonly share vari-
ables with other procedures. This is illustrated by Figure 1-13.

 1.7 Procedural and Object-Oriented Programming 53

Procedural	programming	 is	centered	on	 the	procedure,	or	 function.	Object-oriented	pro-
gramming	(OOP),	on	the	other	hand,	is	centered	on	the	object.	An	object	is	a	programming	
element that contains data and the procedures that operate on the data. It is a self-contained
unit. This is illustrated in Figure 1-14.

PROCEDURE A
 Variables
 Programming
END OF PROCEDURE A

PROCEDURE B
 Variables
 Programming
END OF PROCEDURE B

Program

Figure 1-13

PROCEDURE A
 Variables
 Programming
END OF PROCEDURE A

PROCEDURE B
 Variables
 Programming
END OF PROCEDURE B

Object A
Variables

PROCEDURE A
 Variables
 Programming
END OF PROCEDURE A

PROCEDURE B
 Variables
 Programming
END OF PROCEDURE B

Object B
Variables

PROCEDURE A
 Variables
 Programming
END OF PROCEDURE A

PROCEDURE B
 Variables
 Programming
END OF PROCEDURE B

Object C
Variables

Program

Figure 1-14

The objects contain, within themselves, both information and the ability to manipulate the
information.	Operations	 are	 carried	out	on	 the	 information	 in	 an	object	 by	 sending	 the	
object a message. When an object receives a message instructing it to perform some opera-
tion, it carries out the instruction. As you study this text, you will encounter many other
aspects of object-oriented programming.

Checkpoint
1.25 What four items should you identify when defining what a program is to do?

1.26	 What	does	it	mean	to	“visualize	a	program	running”?	What	is	the	value	of	such	
an activity?

1.27 What is a hierarchy chart?

1.28 Describe the process of desk-checking.

54 Chapter 1 Introduction to Computers and Programming

1.29 Describe what a compiler does with a program’s source code.

1.30 What is a run-time error?

1.31	 Is	a	syntax	error	(such	as	misspelling	a	key	word)	found	by	the	compiler	or	when	
the program is running?

1.32 What is the purpose of testing a program with sample data or input?

1.33 Briefly describe the difference between procedural and object-oriented programming.

Review Questions and exercises
short Answer
 1. Both main memory and secondary storage are types of memory. Describe the differ-

ence between the two.

 2. What is the difference between system software and application software?

 3. What type of software controls the internal operations of the computer’s hardware?

 4. Why must programs written in a high-level language be translated into machine lan-
guage before they can be run?

 5. What is a source code and an object code?

 6. Explain the difference between an object file and an executable file.

 7. What is the difference between a syntax error and a logical error?

Fill-in-the-Blank
 8. Computers can do many different jobs because they can be __________.

 9. The job of the __________ is to fetch instructions, carry out the operations com-
manded by the instructions, and produce some outcome or resultant information.

 10. The __________ is the part of a computer in which programs actually execute.

 11. The main memory is commonly known as __________.

 12. The two general categories of software are __________ and __________.

 13. A program is a set of __________.

	14.	 A(n)	__________	is	an	ordered	set	of	steps	written	in	human	language	to	perform	a	
task or to solve any problem.

 15. __________ is the only language computers really process.

 16. __________ languages are close to the level of humans in terms of readability.

 17. C++ is a high-level language that has __________ features.

 18. A program’s ability to run on several different types of computer systems is called
__________.

 19. Words that have special meaning in a programming language are called __________.

 20. Words or names defined by the programmer are called __________.

	21.	 A(n)	__________	translates	each	source	code	instruction	to	the	equivalent	machine	
language	instruction(s).

 Review Questions and Exercises 55

 22. __________ characters or symbols mark the beginning or ending of programming
statements, or separate items in a list.

 23. The statement #include<iostream> is	a(n)	__________.

	24.	 A(n)	__________	is	a	named	storage	location.

 25. When data is stored in a variable, it is actually stored in the __________ of the
 computer.

 26. The three primary activities of a program are __________, __________, and __________.

 27. __________ is information a program gathers from the outside world.

	28.	 A(n)	__________	is	a	diagrammatic	representation	of	the	logical	flow	of	a	program.

	29.	 A(n)	__________	is	a	diagram	that	graphically	illustrates	the	structure	of	a	program.

Algorithm Workbench
Draw	hierarchy	charts	or	flowcharts	that	depict	the	programs	described	below.	(See	
Appendix	D	for	instructions	on	creating	flowcharts.)

 30. Available Credit

 The following steps should be followed in a program that calculates a customer’s
available credit:

	 	 	1.		Display	the	message	“Enter	the	customer’s	maximum	credit.”

 2. Wait for the user to enter the customer’s maximum credit.

	 	 	3.		Display	the	message	“Enter	the	amount	of	credit	used	by	the	customer.”

 4. Wait for the user to enter the customer’s credit used.

 5. Subtract the used credit from the maximum credit to get the customer’s available
credit.

 6. Display a message that shows the customer’s available credit.

 31. Sales Tax

 Design a hierarchy chart or flowchart for a program that calculates the total of a
retail sale. The program should ask the user for:

 – The retail price of the item being purchased
 – The sales tax rate

	 	 Once	these	items	have	been	entered,	the	program	should	calculate	and	display:
 – The sales tax for the purchase
 – The total of the sale

 32. Account Balance

 Design a hierarchy chart or flowchart for a program that calculates the current
balance in a savings account. The program must ask the user for:

 – The starting balance
 – The total dollar amount of deposits made
 – The total dollar amount of withdrawals made
 – The monthly interest rate

Once	the	program	calculates	the	current	balance,	it	should	be	displayed	on	the	screen.

VideoNote
Designing
the Account
Balance
Program

Predict the Result
Questions 33–35 are programs expressed as English statements. What would each display
on the screen if they were actual programs?

 33. The variable i starts with the value 5.
 The variable j starts with the value 6.
 Increment i by 1.
 Decrement j by 1.
 Add i and j, and store the result in a variable sum.
 Display the value of sum on the screen.

 34. The variable x starts with the value 20.
 The variable y starts with the value 10.
 Store the value of x in a variable t.
 Store the value of y in x.
 Store the value of t in y.
 Display the value of x on the screen.
 Display the value of y on the screen

 35. The variable a starts with the value 1.
 The variable b starts with the value 10.
 The variable c starts with the value 100.
 The variable x starts with the value 0.
 Store the value of c times 3 in x.
 Add the value of b times 6 to the value already in x.
 Add the value of a times 5 to the value already in x.
 Display the value in x on the screen.

Find the error
 36. The following pseudocode algorithm has an error. The program is supposed to ask

the user for the length and width of a rectangular room, and then display the room’s
area. The program must multiply the width by the length in order to determine the
area. Find the error.

area 5 width 3 length.
Display “What is the room’s width?”.
Input width.
Display “What is the room’s length?”.
Input length.
Display area.

56 Chapter 1 Introduction to Computers and Programming

VideoNote
Predicting
the Result of
Problem 33

57

2.1 The Parts of a C++ Program

ConCePT: C++ programs have parts and components that serve specific purposes.

Every C++ program has an anatomy. Unlike human anatomy, the parts of C++ programs
are not always in the same place. Nevertheless, the parts are there, and your first step in
learning C++ is to learn what they are. We will begin by looking at Program 2-1.

Let’s examine the program line by line. Here’s the first line:

// A simple C++ program

The // marks the beginning of a comment. The compiler ignores everything from the
double slash to the end of the line. That means you can type anything you want on that line
and the compiler will never complain! Although comments are not required, they are very
important to programmers. Most programs are much more complicated than the example
in Program 2-1, and comments help explain what’s going on.

Introduction to C++2
ToPiCs

 2.1 The Parts of a C++ Program
 2.2 The cout Object
 2.3 The #include Directive
 2.4 Variables and Literals
 2.5 Identifiers
 2.6 Integer Data Types
 2.7 The char Data Type
 2.8 The C++ string Class
 2.9 Floating-Point Data Types
 2.10 The bool Data Type

 2.11 Determining the Size
of a Data Type

 2.12 Variable Assignments
and Initialization

 2.13 Scope
 2.14 Arithmetic Operators
 2.15 Comments
 2.16 Named Constants
 2.17 Programming Style

C
H

A
P

T
E

R

58 Chapter 2 Introduction to C++

Program 2-1

 1 // A simple C++ program
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 cout << "Programming is great fun!";
 8 return 0;
 9 }

The output of the program is shown below. This is what appears on the screen when the program runs.

Program output
Programming is great fun!

Line 2 looks like this:

#include <iostream>

Because this line starts with a #, it is called a preprocessor directive. The preprocessor reads
your program before it is compiled and only executes those lines beginning with a # symbol.
Think of the preprocessor as a program that “sets up” your source code for the compiler.

The #include directive causes the preprocessor to include the contents of another file in
the program. The word inside the brackets, iostream, is the name of the file that is to be
included. The iostream file contains code that allows a C++ program to display output
on the screen and read input from the keyboard. Because this program uses cout to dis-
play screen output, the iostream file must be included. The contents of the iostream file
are included in the program at the point the #include statement appears. The iostream
file is called a header file, so it should be included at the head, or top, of the program.

Line 3 reads:

using namespace std;

Programs usually contain several items with unique names. In this chapter you will learn
to create variables. In Chapter 6 you will learn to create functions. In Chapter 13 you will
learn to create objects. Variables, functions, and objects are examples of program entities
that must have names. C++ uses namespaces to organize the names of program entities.
The statement using namespace std; declares that the program will be accessing entities
whose names are part of the namespace called std. (Yes, even namespaces have names.)
The reason the program needs access to the std namespace is because every name created
by the iostream file is part of that namespace. In order for a program to use the entities
in iostream, it must have access to the std namespace.

Line 5 reads:

int main()

This marks the beginning of a function. A function can be thought of as a group of one or
more programming statements that collectively has a name. The name of this function is
main, and the set of parentheses that follows the name indicate that it is a function. The

 2.1 The Parts of a C++ Program 59

word int stands for “integer.” It indicates that the function sends an integer value back to
the operating system when it is finished executing.

Although most C++ programs have more than one function, every C++ program must have a
function called main. It is the starting point of the program. If you are ever reading someone
else’s C++ program and want to find where it starts, just look for the function named main.

noTe: C++ is a case-sensitive language. That means it regards uppercase letters as being
entirely different characters than their lowercase counterparts. In C++, the name of the
function main must be written in all lowercase letters. C++ doesn’t see “Main” the same
as “main,” or “INT” the same as “int.” This is true for all the C++ key words.

Line 6 contains a single, solitary character:

{

This is called a left-brace, or an opening brace, and it is associated with the beginning of the
function main. All the statements that make up a function are enclosed in a set of braces.
If you look at the third line down from the opening brace you’ll see the closing brace.
Everything between the two braces is the contents of the function main.

After the opening brace you see the following statement in line 7:

cout << "Programming is great fun!";

To put it simply, this line displays a message on the screen. You will read more about cout
and the << operator later in this chapter. The message “Programming is great fun!” is
printed without the quotation marks. In programming terms, the group of characters inside
the quotation marks is called a string literal or string constant.

Warning! Make sure you have a closing brace for every opening brace in your
program!

noTe: This is the only line in the program that causes anything to be printed on the
screen. The other lines, like #include <iostream> and int main(), are necessary for
the framework of your program, but they do not cause any screen output. Remember,
a program is a set of instructions for the computer. If something is to be displayed on
the screen, you must use a programming statement for that purpose.

At the end of the line is a semicolon. Just as a period marks the end of a sentence, a semi-
colon marks the end of a complete statement in C++. Comments are ignored by the com-
piler, so the semicolon isn’t required at the end of a comment. Preprocessor directives, like
#include statements, simply end at the end of the line and never require semicolons. The
beginning of a function, like int main(), is not a complete statement, so you don’t place
a semicolon there either.

It might seem that the rules for where to put a semicolon are not clear at all. Rather than
worry about it now, just concentrate on learning the parts of a program. You’ll soon get a
feel for where you should and should not use semicolons.

60 Chapter 2 Introduction to C++

Line 8 reads:

return 0;

This sends the integer value 0 back to the operating system upon the program’s completion.
The value 0 usually indicates that a program executed successfully.

Line 9 contains the closing brace:

}

This brace marks the end of the main function. Since main is the only function in this program,
it also marks the end of the program.

In the sample program you encountered several sets of special characters. Table 2-1 provides
a short summary of how they were used.

Table 2-1 Special Characters

Character Name Description

// Double slash Marks the beginning of a comment.

Pound sign Marks the beginning of a preprocessor directive.

< > Opening and closing brackets Encloses a filename when used with the
#include directive.

() Opening and closing parentheses Used in naming a function, as in int main()

{ } Opening and closing braces Encloses a group of statements, such as the
contents of a function.

" " Opening and closing quotation
marks

Encloses a string of characters, such as a message
that is to be printed on the screen.

; Semicolon Marks the end of a complete programming
statement.

Checkpoint
2.1 The following C++ program will not compile because the lines have been mixed

up.

int main()
}
// A crazy mixed up program
return 0;
#include <iostream>
cout << "In 1492 Columbus sailed the ocean blue.";
{
using namespace std;

When the lines are properly arranged the program should display the following
on the screen:

In 1492 Columbus sailed the ocean blue.

Rearrange the lines in the correct order. Test the program by entering it on the
computer, compiling it, and running it.

 2.2 The cout Object 61

2.2 The cout object

ConCePT: Use the cout object to display information on the computer’s screen.

In this section you will learn to write programs that produce output on the screen. The
simplest type of screen output that a program can display is console output, which is merely
plain text. The word console is an old computer term. It comes from the days when a
computer operator interacted with the system by typing on a terminal. The terminal, which
consisted of a simple screen and keyboard, was known as the console.

On modern computers, running graphical operating systems such as Windows or Mac OS
X, console output is usually displayed in a window such as the one shown in Figure 2-1. In
C++ you use the cout object to produce console output. (You can think of the word cout
as meaning console output.)

Figure 2-1 A Console Window

cout is classified as a stream object, which means it works with streams of data. To print
a message on the screen, you send a stream of characters to cout. Let’s look at line 7 from
Program 2-1:

cout << "Programming is great fun!";

Notice that the << operator is used to send the string “Programming is great fun!” to cout.
When the << symbol is used this way, it is called the stream insertion operator. The item
immediately to the right of the operator is sent to cout and then displayed on the screen.

The stream insertion operator is always written as two less-than signs with no space
between them. Because you are using it to send a stream of data to the cout object, you
can think of the stream insertion operator as an arrow that must point toward cout. This
is illustrated in Figure 2-2.

Program 2-2 is another way to write the same program.

VideoNote
Using cout

62 Chapter 2 Introduction to C++

cout << "Programming is great fun!";

cout "Programming is great fun!";

Think of the stream insertion operator as an
arrow that points toward cout.

Figure 2-2

Program 2-2

 1 // A simple C++ program
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 cout << "Programming is " << "great fun!";
 8 return 0;
 9 }

Program output
Programming is great fun!

As you can see, the stream-insertion operator can be used to send more than one item to
cout. The output of this program is identical to that of Program 2-1. Program 2-3 shows
yet another way to accomplish the same thing.

Program 2-3

 1 // A simple C++ program
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 cout << "Programming is ";
 8 cout << "great fun!";
 9 return 0;
10 }

Program output
Programming is great fun!

An important concept to understand about Program 2-3 is that, although the output is
broken up into two programming statements, this program will still display the message on
a single line. Unless you specify otherwise, the information you send to cout is displayed in
a continuous stream. Sometimes this can produce less-than-desirable results. Program 2-4
is an example.

The layout of the actual output looks nothing like the arrangement of the strings in the source
code. First, notice there is no space displayed between the words “sellers” and “during,” or

 2.2 The cout Object 63

between “June:” and “Computer.” cout displays messages exactly as they are sent. If spaces
are to be displayed, they must appear in the strings.

Program 2-4

 1 // An unruly printing program
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 cout << "The following items were top sellers";
 8 cout << "during the month of June:";
 9 cout << "Computer games";
10 cout << "Coffee";
11 cout << "Aspirin";
12 return 0;
13 }

Program output
The following items were top sellersduring the month of June:Computer
gamesCoffeeAspirin

Second, even though the output is broken into five lines in the source code, it comes out
as one long line of output. Because the output is too long to fit on one line on the screen,
it wraps around to a second line when displayed. The reason the output comes out as one
long line is because cout does not start a new line unless told to do so. There are two ways
to instruct cout to start a new line. The first is to send cout a stream manipulator called
endl (which is pronounced “end-line” or “end-L”). Program 2-5 is an example.

Program 2-5

 1 // A well-adjusted printing program
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 cout << "The following items were top sellers" << endl;
 8 cout << "during the month of June:" << endl;
 9 cout << "Computer games" << endl;
10 cout << "Coffee" << endl;
11 cout << "Aspirin" << endl;
12 return 0;
13 }

Program output
The following items were top sellers
during the month of June:
Computer games
Coffee
Aspirin

64 Chapter 2 Introduction to C++

noTe: The last character in endl is the lowercase letter L, not the number one.

Every time cout encounters an endl stream manipulator it advances the output to the
beginning of the next line for subsequent printing. The manipulator can be inserted any-
where in the stream of characters sent to cout, outside the double quotes. The following
statements show an example.

cout << "My pets are" << endl << "dog";
cout << endl << "cat" << endl << "bird" << endl;

Another way to cause cout to go to a new line is to insert an escape sequence in the string
itself. An escape sequence starts with the backslash character (\) and is followed by one or
more control characters. It allows you to control the way output is displayed by embedding
commands within the string itself. Program 2-6 is an example.

Program 2-6

 1 // Yet another well-adjusted printing program
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 cout << "The following items were top sellers\n";
 8 cout << "during the month of June:\n";
 9 cout << "Computer games\nCoffee";
10 cout << "\nAspirin\n";
11 return 0;
12 }

Program output
The following items were top sellers
during the month of June:
Computer games
Coffee
Aspirin

The newline escape sequence is \n. When cout encounters \n in a string, it doesn’t print it
on the screen, but interprets it as a special command to advance the output cursor to the
next line. You have probably noticed inserting the escape sequence requires less typing than
inserting endl. That’s why many programmers prefer it.

A common mistake made by beginning C++ students is to use a forward slash (/) instead of
a backslash (\) when trying to write an escape sequence. This will not work. For example,
look at the following code.

// Error!
cout << "Four Score/nAnd seven/nYears ago./n";

 2.2 The cout Object 65

In this code, the programmer accidentally wrote /n when he or she meant to write \n. The
cout object will simply display the /n characters on the screen. This code will display the
following output:

Four Score/nAnd seven/nYears ago./n

Another common mistake is to forget to put the \n inside quotation marks. For example,
the following code will not compile.

// Error! This code will not compile.
cout << "Good" << \n;
cout << "Morning" << \n;

This code will result in an error because the \n sequences are not inside quotation marks.
We can correct the code by placing the \n sequences inside the string literals, as shown here:

// This will work.
cout << "Good\n";
cout << "Morning\n";

There are many escape sequences in C++. They give you the ability to exercise greater
control over the way information is output by your program. Table 2-2 lists a few of them.

Table 2-2 Common Escape Sequences

Escape
Sequence

Name

Description

\n Newline Causes the cursor to go to the next line for subsequent printing.
\t Horizontal tab Causes the cursor to skip over to the next tab stop.
\a Alarm Causes the computer to beep.
\b Backspace Causes the cursor to back up, or move left one position.
\r Return Causes the cursor to go to the beginning of the current line, not

the next line.
\\ Backslash Causes a backslash to be printed.
\' Single quote Causes a single quotation mark to be printed.

\" Double quote Causes a double quotation mark to be printed.

Warning! When using escape sequences, do not put a space between the backslash
and the control character.

When you type an escape sequence in a string, you type two characters (a backslash fol-
lowed by another character). However, an escape sequence is stored in memory as a single
character. For example, consider the following string literal:

"One\nTwo\nThree\n"

The diagram in Figure 2-3 breaks this string into its individual characters. Notice how each
of the \n escape sequences are considered one character.

O n e \n T w o T\n h r e e \n

Figure 2-3

66 Chapter 2 Introduction to C++

2.3 The #include Directive

ConCePT: The #include directive causes the contents of another file to be inserted
into the program.

Now is a good time to expand our discussion of the #include directive. The following line
has appeared near the top of every example program.

#include <iostream>

The header file iostream must be included in any program that uses the cout object. This
is because cout is not part of the “core” of the C++ language. Specifically, it is part of the
input–output stream library. The header file, iostream, contains information describing
iostream objects. Without it, the compiler will not know how to properly compile a pro-
gram that uses cout.

Preprocessor directives are not C++ statements. They are commands to the preprocessor,
which runs prior to the compiler (hence the name “preprocessor”). The preprocessor’s job
is to set programs up in a way that makes life easier for the programmer.

For example, any program that uses the cout object must contain the extensive setup
information found in iostream. The programmer could type all this information into
the program, but it would be too time consuming. An alternative would be to use an edi-
tor to “cut and paste” the information into the program, but that would quickly become
tiring as well. The solution is to let the preprocessor insert the contents of iostream
automatically.

Warning! Do not put semicolons at the end of processor directives. Because pre-
processor directives are not C++ statements, they do not require semicolons. In many
cases an error will result from a preprocessor directive terminated with a semicolon.

An #include directive must always contain the name of a file. The preprocessor inserts the
entire contents of the file into the program at the point it encounters the #include direc-
tive. The compiler doesn’t actually see the #include directive. Instead it sees the code that
was inserted by the preprocessor, just as if the programmer had typed it there.

The code contained in header files is C++ code. Typically it describes complex objects like
cout. Later you will learn to create your own header files.

Checkpoint
2.2 The following C++ program will not compile because the lines have been mixed up.

cout << "Success\n";
cout << " Success\n\n";
int main()
cout << "Success";
}

 2.4 Variables and Literals 67

using namespace std;
// It's a mad, mad program
#include <iostream>
cout << "Success\n";
{
return 0;

 When the lines are properly arranged the program should display the following
on the screen:

 Program Output
Success
Success Success

Success

 Rearrange the lines in the correct order. Test the program by entering it on the
computer, compiling it, and running it.

2.3 Study the following program and show what it will print on the screen.

// The Works of Wolfgang
#include <iostream>
using namespace std;
int main()
{
 cout << "The works of Wolfgang\ninclude the following";
 cout << "\nThe Turkish March" << endl;
 cout << "and Symphony No. 40 ";
 cout << "in G minor." << endl;
 return 0;
}

2.4 On paper, write a program that will display your name on the first line, your street
address on the second line, your city, state, and ZIP code on the third line, and
your telephone number on the fourth line. Place a comment with today’s date at
the top of the program. Test your program by entering, compiling, and running it.

2.4 Variables and Literals

COnCePt: Variables represent storage locations in the computer’s memory. Literals
are constant values that are assigned to variables.

As you discovered in Chapter 1, variables allow you to store and work with data in the com-
puter’s memory. They provide an “interface” to RAM. Part of the job of programming is to
determine how many variables a program will need and what types of information they will
hold. Program 2-7 is an example of a C++ program with a variable. Take a look at line 7:

int number;

This is called a variable definition. It tells the compiler the variable’s name and the type of
data it will hold. This line indicates the variable’s name is number. The word int stands for
integer, so number will only be used to hold integer numbers. Later in this chapter you will
learn all the types of data that C++ allows.

VideoNote
Variabe
Definitions

68 Chapter 2 Introduction to C++

Program 2-7

 1 // This program has a variable.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 int number;
 8
 9 number = 5;
10 cout << "The value in number is " << number << endl;
11 return 0;
12 }

Program output
The value in number is 5

noTe: You must have a definition for every variable you intend to use in a program.
In C++, variable definitions can appear at any point in the program. Later in this chapter,
and throughout the book, you will learn the best places to define variables.

Notice that variable definitions end with a semicolon. Now look at line 9:

number = 5;

This is called an assignment. The equal sign is an operator that copies the value on its right (5)
into the variable named on its left (number). After this line executes, number will be set to 5.

noTe: This line does not print anything on the computer’s screen. It runs silently
behind the scenes, storing a value in RAM.

Look at line 10.

cout << "The value in number is " << number << endl;

The second item sent to cout is the variable name number. When you send a variable name
to cout it prints the variable’s contents. Notice there are no quotation marks around number.
Look at what happens in Program 2-8.

Program 2-8

 1 // This program has a variable.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 int number;
 8
 9 number = 5;

 2.4 Variables and Literals 69

10 cout << "The value in number is " << "number" << endl;
11 return 0;
12 }

Program output
The value in number is number

When double quotation marks are placed around the word number it becomes a string lit-
eral and is no longer a variable name. When string literals are sent to cout they are printed
exactly as they appear inside the quotation marks. You’ve probably noticed by now that the
endl stream manipulator has no quotation marks around it, for the same reason.

sometimes a number isn’t a number
As shown in Program 2-8, just placing quotation marks around a variable name changes
the program’s results. In fact, placing double quotation marks around anything that is not
intended to be a string literal will create an error of some type. For example, in Program
2-8 the number 5 was assigned to the variable number. It would have been incorrect to
perform the assignment this way:

number = "5";

In this line, 5 is no longer an integer, but a string literal. Because number was defined as an
integer variable, you can only store integers in it. The integer 5 and the string literal “5”
are not the same thing.

The fact that numbers can be represented as strings frequently confuses students who are
new to programming. Just remember that strings are intended for humans to read. They
are to be printed on computer screens or paper. Numbers, however, are intended primarily
for mathematical operations. You cannot perform math on strings. Before numbers can be
displayed on the screen, they must first be converted to strings. (Fortunately, cout handles
the conversion automatically when you send a number to it.)

Literals
A literal is a piece of data that is written directly into a program’s code. One of the most
common uses of literals is to assign a value to a variable. For example, in the following
statement assume that number is an int variable. The statement assigns the literal value
100 to the variable number:

number = 100;

Another common use of literals is to display something on the screen. For example, the
following statement displays the string literal “Welcome to my program.”

cout << "Welcome to my program." << endl;

Program 2-9 shows an example that uses a variable and several literals.

Program 2-9

 1 // This program has literals and a variable.
 2 #include <iostream>
 3 using namespace std;

(program continues)

70 Chapter 2 Introduction to C++

Program 2-9 (continued)

 4
 5 int main()
 6 {
 7 int apples;
 8
 9 apples = 20;
10 cout << "Today we sold " << apples << " bushels of apples.\n";
11 return 0;
12 }

Program output
Today we sold 20 bushels of apples.

Of course, the variable is apples. It is defined as an integer. Table 2-3 lists the literals found
in the program.

Table 2-3

Literal Type of Literal

20 Integer literal

"Today we sold " String literal

"bushels of apples.\n" String literal

0 Integer literal

noTe: Literals are also called constants.

Checkpoint
2.5 Examine the following program.

// This program uses variables and literals.
#include <iostream>
using namespace std;
int main()
{
 int little;
 int big;
 little = 2;
 big = 2000;
 cout << "The little number is " << little << endl;
 cout << "The big number is " << big << endl;
 return 0;
}

 List all the variables and literals that appear in the program.

2.6 What will the following program display on the screen?

#include <iostream>
using namespace std;

 2.5 Identifiers 71

int main()
{
 int number;
 number = 712;
 cout << "The value is " << "number" << endl;
 return 0;
}

2.5 identifiers

ConCePT: Choose variable names that indicate what the variables are used for.

An identifier is a programmer-defined name that represents some element of a program.
Variable names are examples of identifiers. You may choose your own variable names in
C++, as long as you do not use any of the C++ key words. The key words make up the
“core” of the language and have specific purposes. Table 2-4 shows a complete list of the
C++ key words. Note that they are all lowercase.

Table 2-4 The C++ Key Words

alignas const for private throw

alignof constexpr friend protected true

and const_cast goto public try

and_eq continue if register typedef

asm decltype inline reinterpret_cast typeid

auto default int return typename

bitand delete long short union

bitor do mutable signed unsigned

bool double namespace sizeof using

break dynamic_cast new static virtual

case else noexcept static_assert void

catch enum not static_cast volatile

char explicit not_eq struct wchar_t

char16_t export nullptr switch while

char32_t extern operator template xor

class false or this xor_eq

compl float or_eq thread_local

You should always choose names for your variables that give an indication of what the
variables are used for. You may be tempted to define variables with names like this:

int x;

The rather nondescript name, x, gives no clue as to the variable’s purpose. Here is a better
example.

int itemsOrdered;

72 Chapter 2 Introduction to C++

The name itemsOrdered gives anyone reading the program an idea of the variable’s use. This
way of coding helps produce self-documenting programs, which means you get an under-
standing of what the program is doing just by reading its code. Because real-world programs
usually have thousands of lines, it is important that they be as self-documenting as possible.

You probably have noticed the mixture of uppercase and lowercase letters in the name
itemsOrdered. Although all of C++’s key words must be written in lowercase, you may
use uppercase letters in variable names.

The reason the O in itemsOrdered is capitalized is to improve readability. Normally “items
ordered” is two words. Unfortunately you cannot have spaces in a variable name, so the
two words must be combined into one. When “items” and “ordered” are stuck together you
get a variable definition like this:

int itemsordered;

Capitalization of the first letter of the second word and succeeding words makes
itemsOrdered easier to read. It should be mentioned that this style of coding is not
required. You are free to use all lowercase letters, all uppercase letters, or any combination
of both. In fact, some programmers use the underscore character to separate words in a
variable name, as in the following.

int items_ordered;

Legal identifiers
Regardless of which style you adopt, be consistent and make your variable names as sen-
sible as possible. Here are some specific rules that must be followed with all identifiers.

•	 The	first	character	must	be	one	of	the	letters	a	through	z,	A	through	Z,	or	an	under-
score character (_).

•	 After	the	first	character	you	may	use	the	letters	a	through	z	or	A	through	Z,	the	digits	
0 through 9, or underscores.

•	 Uppercase	and	lowercase	characters	are	distinct.	This	means	ItemsOrdered is not the
same as itemsordered.

Table 2-5 lists variable names and tells whether each is legal or illegal in C++.

Table 2-5 Some Variable Names

Variable Name Legal or Illegal?

dayOfWeek Legal.

3dGraph Illegal. Variable names cannot begin with a digit.

_employee_num Legal.

June1997 Legal.

Mixture#3 Illegal. Variable names may only use letters, digits, or underscores.

2.6 integer Data Types

ConCePT: There are many different types of data. Variables are classified according
to their data type, which determines the kind of information that may be
stored in them. Integer variables can only hold whole numbers.

 2.6 Integer Data Types 73

Computer programs collect pieces of data from the real world and manipulate them in
various ways. There are many different types of data. In the realm of numeric information,
for example, there are whole numbers and fractional numbers. There are negative numbers
and positive numbers. And there are numbers so large, and others so small, that they don’t
even have a name. Then there is textual information. Names and addresses, for instance, are
stored as groups of characters. When you write a program you must determine what types
of information it will be likely to encounter.

If you are writing a program to calculate the number of miles to a distant star, you’ll need
variables that can hold very large numbers. If you are designing software to record micro-
scopic dimensions, you’ll need to store very small and precise numbers. Additionally, if you
are writing a program that must perform thousands of intensive calculations, you’ll want
variables that can be processed quickly. The data type of a variable determines all of these
factors.

Although C++ offers many data types, in the very broadest sense there are only two: numeric
and character. Numeric data types are broken into two additional categories: integer and
floating point. Integers are whole numbers like 12, 157, −34, and 2. Floating point numbers
have a decimal point, like 23.7, 189.0231, and 0.987. Additionally, the integer and floating
point data types are broken into even more classifications. Before we discuss the character
data type, let’s carefully examine the variations of numeric data.

Your primary considerations for selecting a numeric data type are

•	 The	largest	and	smallest	numbers	that	may	be	stored	in	the	variable
•	 How	much	memory	the	variable	uses
•	 Whether	the	variable	stores	signed	or	unsigned	numbers
•	 The	number	of	decimal	places	of	precision	the	variable	has

The size of a variable is the number of bytes of memory it uses. Typically, the larger a vari-
able is, the greater the range it can hold.

Table 2-6 shows the C++ integer data types with their typical sizes and ranges.

Table 2-6 Integer Data Types

Data Type Typical Size Typical Range

short int 2 bytes 232,768 to 132,767

unsigned short int 2 bytes 0 to +65,535

int 4 bytes 22,147,483,648 to 12,147,483,647

unsigned int 4 bytes 0 to 4,294,967,295

long int 4 bytes 22,147,483,648 to 12,147,483,647

unsigned long int 4 bytes 0 to 4,294,967,295

long long int 8 bytes 29,223,372,036,854,775,808 to
9,223,372,036,854,775,807

unsigned long long int 8 bytes 0 to 18,446,744,073,709,551,615

noTe: The data type sizes and ranges shown in Table 2-6 are typical on many systems.
Depending on your operating system, the sizes and ranges may be different.

74 Chapter 2 Introduction to C++

Here are some examples of variable definitions:

int days;
unsigned int speed;
short int month;
unsigned short int amount;
long int deficit;
unsigned long int insects;

Each of the data types in Table 2-6, except int, can be abbreviated as follows:

•	 	short int can be abbreviated as short
•	 	unsigned short int can be abbreviated as unsigned short
•	 	unsigned int can be abbreviated as unsigned
•	 	long int can be abbreviated as long
•	 	unsigned long int can be abbreviated as unsigned long
•	 	long long int can be abbreviated as long long
•	 	unsigned long long int can be abbreviated as unsigned long long

Because they simplify definition statements, programmers commonly use the abbreviated
data type names. Here are some examples:

unsigned speed;
short month;
unsigned short amount;
long deficit;
unsigned long insects;
long long grandTotal;
unsigned long long lightYearDistance;

Unsigned data types can only store nonnegative values. They can be used when you know
your program will not encounter negative values. For example, variables that hold ages or
weights would rarely hold numbers less than 0.

Notice in Table 2-6 that the int and long data types have the same sizes and ranges, and
that the unsigned int data type has the same size and range as the unsigned long data
type. This is not always true because the size of integers is dependent on the type of system
you are using. Here are the only guarantees:

•	 Integers	are	at	least	as	big	as	short	integers.
•	 Long	integers	are	at	least	as	big	as	integers.
•	 Unsigned	short	integers	are	the	same	size	as	short	integers.
•	 Unsigned	integers	are	the	same	size	as	integers.
•	 Unsigned	long	integers	are	the	same	size	as	long	integers.
•	 The	long long int and the unsigned long long int data types are guaranteed

to be at least 8 bytes (64 bits) in size.

Later in this chapter you will learn to use the sizeof operator to determine how large all
the data types are on your computer.

noTe: The long long int and the unsigned long long int data types were intro-
duced in C++ 11.

1111

 2.6 Integer Data Types 75

As mentioned before, variables are defined by stating the data type key word followed by
the name of the variable. In Program 2-10 an integer, an unsigned integer, and a long integer
have been defined.

Program 2-10

 1 // This program has variables of several of the integer types.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 int checking;
 8 unsigned int miles;
 9 long days;
10
11 checking = −20;
12 miles = 4276;
13 days = 189000;
14 cout << "We have made a long journey of " << miles;
15 cout << " miles.\n";
16 cout << "Our checking account balance is " << checking;
17 cout << "\nAbout " << days << " days ago Columbus ";
18 cout << "stood on this spot.\n";
19 return 0;
20 }

Program output
We have made a long journey of 4276 miles.
Our checking account balance is −20
About 189000 days ago Columbus stood on this spot.

In most programs you will need more than one variable of any given data type. If a program
uses two integers, length and width, they could be defined separately, like this:

int length;
int width;

It is easier, however, to combine both variable definitions on one line:

int length, width;

You can define several variables of the same type like this, simply separating their names
with commas. Program 2-11 illustrates this.

Program 2-11

 1 // This program shows three variables defined on the same line.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()

(program continues)

76 Chapter 2 Introduction to C++

Program 2-11 (continued)

 6 {
 7 int floors, rooms, suites;
 8
 9 floors = 15;
10 rooms = 300;
11 suites = 30;
12 cout << "The Grande Hotel has " << floors << " floors\n";
13 cout << "with " << rooms << " rooms and " << suites;
14 cout << " suites.\n";
15 return 0;
16 }

Program output
The Grande Hotel has 15 floors
with 300 rooms and 30 suites.

integer and Long integer Literals
In C++, if a numeric literal is an integer (not written with a decimal point) and it fits
within the range of an int (see Table 2-6 for the minimum and maximum values), then the
numeric literal is treated as an int. A numeric literal that is treated as an int is called an
integer literal. For example, look at lines 9, 10, and 11 in Program 2-11:

floors = 15;
rooms = 300;
suites = 30;

Each of these statements assigns an integer literal to a variable.

One of the pleasing characteristics of the C++ language is that it allows you to control
almost every aspect of your program. If you need to change the way something is stored in
memory, the tools are provided to do that. For example, what if you are in a situation where
you have an integer literal, but you need it to be stored in memory as a long integer? (Rest
assured, this is a situation that does arise.) C++ allows you to force an integer literal to be
stored as a long integer by placing the letter L at the end of the number. Here is an example:

long amount;
amount = 32L;

The first statement defines a long variable named amount. The second statement assigns
the literal value 32 to the amount variable. In the second statement, the literal is written as
32L, which makes it a long integer literal. This means the literal is treated as a long.

If you want an integer literal to be treated as a long long int, you can append LL at the
end of the number. Here is an example:

long long amount;
amount = 32LL;

The first statement defines a long long variable named amount. The second statement
assigns the literal value 32 to the amount variable. In the second statement, the literal is
written as 32LL, which makes it a long long integer literal. This means the literal is treated
as a long long int.

1111

 2.6 Integer Data Types 77

if You Plan to Continue in Computer science:
Hexadecimal and octal Literals
Programmers commonly express values in numbering systems other than decimal (or base
10). Hexadecimal (base 16) and octal (base 8) are popular because they make certain pro-
gramming tasks more convenient than decimal numbers do.

By default, C++ assumes that all integer literals are expressed in decimal. You express hexa-
decimal numbers by placing 0x in front of them. (This is zero-x, not oh-x.) Here is how the
hexadecimal number F4 would be expressed in C++:

0xF4

Octal numbers must be preceded by a 0 (zero, not oh). For example, the octal 31 would
be written

031

TiP: When writing long integer literals or long long integer literals, you can use either
an uppercase or lowercase L. Because the lowercase l looks like the number 1, you
should always use the uppercase L.

noTe: You will not be writing programs for some time that require this type of
manipulation. It is important, however, that you understand this material. Good pro-
grammers should develop the skills for reading other people’s source code. You may find
yourself reading programs that use items like long integer, hexadecimal, or octal literals.

Checkpoint

2.7 Which of the following are illegal variable names, and why?

X
99bottles
july97
theSalesFigureForFiscalYear98
r&d
grade_report

2.8 Is the variable name Sales the same as sales? Why or why not?

2.9 Refer to the data types listed in Table 2-6 for these questions.

A) If a variable needs to hold numbers in the range 32 to 6,000, what data type
would be best?

B) If a variable needs to hold numbers in the range 240,000 to 140,000, what
data type would be best?

C) Which of the following literals uses more memory? 20 or 20L

2.10 On any computer, which data type uses more memory, an integer or an unsigned
integer?

78 Chapter 2 Introduction to C++

2.7 The char Data Type
The char data type is used to store individual characters. A variable of the char data type
can hold only one character at a time. Here is an example of how you might declare a char
variable:

char letter;

This statement declares a char variable named letter, which can store one character. In
C++, character literals are enclosed in single quotation marks. Here is an example showing
how we would assign a character to the letter variable:

letter = 'g';

This statement assigns the character 'g' to the letter variable. Because char variables
can hold only one character, they are not compatible with strings. For example, you can-
not assign a string to a char variable, even if the string contains only one character. The
following statement, for example, will not compile because it attempts to assign a string
literal to a char variable.

letter = "g"; // ERROR! Cannot assign a string to a char

It is important that you do not confuse character literals, which are enclosed in single quo-
tation marks, with string literals, which are enclosed in double quotation marks.

Program 2-12 shows an example program that works with characters.

Program 2-12

 1 // This program works with characters.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 char letter;
 8
 9 letter = 'A';
10 cout << letter << endl;
11 letter = 'B';
12 cout << letter << endl;
13 return 0;
14 }

Program output
A
B

Although the char data type is used for storing characters, it is actually an integer data type
that typically uses 1 byte of memory. (The size is system dependent. On some systems, the
char data type is larger than 1 byte.)

 2.7 The char Data Type 79

The reason an integer data type is used to store characters is because characters are internally
represented by numbers. Each printable character, as well as many nonprintable characters,
is assigned a unique number. The most commonly used method for encoding characters is
ASCII, which stands for the American Standard Code for Information Interchange. (There
are other codes, such as EBCDIC, which is used by many IBM mainframes.)

When a character is stored in memory, it is actually the numeric code that is stored. When
the computer is instructed to print the value on the screen, it displays the character that
corresponds with the numeric code.

You may want to refer to Appendix B, which shows the ASCII character set. Notice that the
number 65 is the code for A, 66 is the code for B, and so on. Program 2-13 demonstrates
that when you work with characters, you are actually working with numbers.

Program 2-13

 1 // This program demonstrates the close relationship between
 2 // characters and integers.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 char letter;
 9
10 letter = 65;
11 cout << letter << endl;
12 letter = 66;
13 cout << letter << endl;
14 return 0;
15 }

Program output
A
B

Figure 2-4 illustrates that when characters, such as A, B, and C, are stored in memory, it is
really the numbers 65, 66, and 67 that are stored.

is stored in memory as

A

65

B

66

C

67

Figure 2-4

80 Chapter 2 Introduction to C++

The Difference Between string Literals
and Character Literals
It is important that you do not confuse character literals with string literals. Strings, which
are a series of characters stored in consecutive memory locations, can be virtually any
length. This means that there must be some way for the program to know how long a
string is. In C++ an extra byte is appended to the end of string literals when they are stored
in memory. In this last byte, the number 0 is stored. It is called the null terminator or null
character, and it marks the end of the string.

Don’t confuse the null terminator with the character '0'. If you look at Appendix B, you
will see that ASCII code 48 corresponds to the character '0', whereas the null terminator
is the same as the ASCII code 0. If you want to print the character 0 on the screen, you use
ASCII code 48. If you want to mark the end of a string, however, you use ASCII code 0.

Let’s look at an example of how a string literal is stored in memory. Figure 2-5 depicts the
way the string literal "Sebastian" would be stored.

S e b a s t i a n \0

Figure 2-5

First, notice the quotation marks are not stored with the string. They are simply a way
of marking the beginning and end of the string in your source code. Second, notice the
very last byte of the string. It contains the null terminator, which is represented by the \0
character. The addition of this last byte means that although the string "Sebastian" is 9
characters long, it occupies 10 bytes of memory.

The null terminator is another example of something that sits quietly in the background.
It doesn’t print on the screen when you display a string, but nevertheless, it is there silently
doing its job.

noTe: C++ automatically places the null terminator at the end of string literals.

Now let’s compare the way a string and a char are stored. Suppose you have the literals
'A' and "A" in a program. Figure 2-6 depicts their internal storage.

A \0

A ‘A’ is stored as

“A” is stored as

Figure 2-6

As you can see, 'A' is a 1-byte element and "A" is a 2-byte element. Since characters are
really stored as ASCII codes, Figure 2-7 shows what is actually being stored in memory.

 2.7 The char Data Type 81

Because char variables are only large enough to hold one character, you cannot assign string
literals to them. For example, the following code defines a char variable named letter.
The character literal 'A' can be assigned to the variable, but the string literal "A" cannot.

char letter;
letter = 'A'; // This will work.
letter = "A"; // This will not work!

One final topic about characters should be discussed. You have learned that some strings
look like a single character but really aren’t. It is also possible to have a character that looks
like a string. A good example is the newline character, \n. Although it is represented by two
characters, a slash and an n, it is internally represented as one character. In fact, all escape
sequences, internally, are just 1 byte.

Program 2-14 shows the use of \n as a character literal, enclosed in single quotation marks.
If you refer to the ASCII chart in Appendix B, you will see that ASCII code 10 is the linefeed
character. This is the code C++ uses for the newline character.

Program 2-14

 1 // This program uses character literals.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 char letter;
 8
 9 letter = 'A';
10 cout << letter << '\n';
11 letter = 'B';
12 cout << letter << '\n';
13 return 0;
14 }

Program output
A
B

Let’s review some important points regarding characters and strings:

•	 Printable	characters	are	internally	represented	by	numeric	codes.	Most	computers	use	
ASCII codes for this purpose.

•	 Characters	normally	occupy	a	single	byte	of	memory.

65 0

65 ‘A’ is stored as

“A” is stored as

Figure 2-7

82 Chapter 2 Introduction to C++

•	 Strings	 are	 consecutive	 sequences	 of	 characters	 that	 occupy	 consecutive	 bytes	 of	
memory.

•	 String	 literals	are	always	stored	 in	memory	with	a	null	 terminator	at	 the	end.	This	
marks the end of the string.

•	 Character	literals	are	enclosed	in	single	quotation	marks.
•	 String	literals	are	enclosed	in	double	quotation	marks.
•	 Escape	sequences	such	as	'\n' are stored internally as a single character.

2.8 The C++ string Class

ConCePT: Standard C++ provides a special data type for storing and working with
strings.

Because a char variable can store only one character in its memory location, another data
type is needed for a variable able to hold an entire string. Although C++ does not have a
built-in data type able to do this, standard C++ provides something called the string class
that allows the programmer to create a string type variable.

Using the string Class
The first step in using the string class is to #include the string header file. This is
accomplished with the following preprocessor directive:

#include <string>

The next step is to define a string type variable, called a string object. Defining a string
object is similar to defining a variable of a primitive type. For example, the following state-
ment defines a string object named movieTitle.

string movieTitle;

You can assign a string literal to movieTitle with the assignment operator:

movieTitle = "Wheels of Fury";

You can use cout to display the value of the movieTitle object, as shown in the next
statement:

cout << "My favorite movie is " << movieTitle << endl;

Program 2-15 is a complete program that demonstrates the preceding statements.

Program 2-15

 1 // This program demonstrates the string class.
 2 #include <iostream>
 3 #include <string> // Required for the string class.
 4 using namespace std;

 2.8 The C++ string Class 83

 5
 6 int main()
 7 {
 8 string movieTitle;
 9
10 movieTitle = "Wheels of Fury";
11 cout << "My favorite movie is " << movieTitle << endl;
12 return 0;
13 }

Program output
My favorite movie is Wheels of Fury

As you can see, working with string objects is similar to working with variables of
other types. Throughout this text we will continue to discuss string class features
and capabilities.

Checkpoint
2.11 What are the ASCII codes for the following characters? (Refer to Appendix B)

C
F
W

2.12 Which of the following is a character literal?

'B'
"B"

2.13 Assuming the char data type uses 1 byte of memory, how many bytes do the
following literals use?

'Q'
"Q"
"Sales"
'\n'

2.14 Write a program that has the following character variables: first, middle,
and last. Store your initials in these variables and then display them on the
screen.

2.15 What is wrong with the following program statement?

char letter = "Z";

2.16 What header file must you include in order to use string objects?

2.17 Write a program that stores your name, address, and phone number in three
separate string objects. Display the contents of the string objects on the
screen.

84 Chapter 2 Introduction to C++

2.9 Floating-Point Data Types

ConCePT: Floating-point data types are used to define variables that can hold real
numbers.

Whole numbers are not adequate for many jobs. If you are writing a program that works
with dollar amounts or precise measurements, you need a data type that allows fractional
values. In programming terms, these are called floating-point numbers.

Internally, floating-point numbers are stored in a manner similar to scientific notation. Take
the number 47,281.97. In scientific notation this number is 4.728197 * 104. (104 is equal
to 10,000, and 4.728197 * 10,000 is 47,281.97.) The first part of the number, 4.728197,
is called the mantissa. The mantissa is multiplied by a power of ten.

Computers typically use E notation to represent floating-point values. In E notation, the
number 47,281.97 would be 4.728197E4. The part of the number before the E is the man-
tissa, and the part after the E is the power of 10. When a floating point number is stored in
memory, it is stored as the mantissa and the power of 10.

Table 2-7 shows other numbers represented in scientific and E notation.

Table 2-7 Floating Point Representations

Decimal Notation Scientific Notation E Notation

247.91 2.4791 * 102 2.4791E2

0.00072 7.2 * 10−4 7.2E–4

2,900,000 2.9 * 106 2.9E6

In C++ there are three data types that can represent floating-point numbers. They are

float
double
long double

The float data type is considered single precision. The double data type is usually twice
as big as float, so it is considered double precision. As you’ve probably guessed, the long
double is intended to be larger than the double. Of course, the exact sizes of these data
types are dependent on the computer you are using. The only guarantees are

•	 A	double is at least as big as a float.
•	 A	long double is at least as big as a double.

Table 2-8 shows the sizes and ranges of floating-point data types usually found on PCs.

Table 2-8 Floating Point Data Types on PCs

Data Type Key Word Description

Single precision float 4 bytes. Numbers between ±3.4E-38 and ±3.4E38

Double precision double 8 bytes. Numbers between ±1.7E-308 and ±1.7E308

Long double precision long double 8 bytes*. Numbers between ±1.7E-308 and ±1.7E308

*Some compilers use 10 bytes for long doubles. This allows a range of ±3.4E-4932 to ±1.1E4832

 2.9 Floating-Point Data Types 85

You will notice there are no unsigned floating point data types. On all machines, vari-
ables of the float, double, and long double data types can store positive or negative
numbers.

Floating Point Literals
Floating point literals may be expressed in a variety of ways. As shown in Program 2-16,
E notation is one method. When you are writing numbers that are extremely large or
extremely small, this will probably be the easiest way. E notation numbers may be expressed
with an uppercase E or a lowercase e. Notice that in the source code the literals were
written as 1.495979E11 and 1.989E30, but the program printed them as 1.49598e+ 011
and 1.989e+30. The two sets of numbers are equivalent. (The plus sign in front of the
exponent is also optional.) In Chapter 3 you will learn to control the way cout displays E
notation numbers.

Program 2-16

 1 // This program uses floating point data types.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 float distance;
 8 double mass;
 9
10 distance = 1.495979E11;
11 mass = 1.989E30;
12 cout << "The Sun is " << distance << " meters away.\n";
13 cout << "The Sun\'s mass is " << mass << " kilograms.\n";
14 return 0;
15 }

Program output
The Sun is 1.49598e+011 meters away.
The Sun's mass is 1.989e+030 kilograms.

You can also express floating-point literals in decimal notation. The literal 1.495979E11
could have been written as

149597900000.00

Obviously the E notation is more convenient for lengthy numbers, but for numbers like
47.39, decimal notation is preferable to 4.739E1.

All of the following floating-point literals are equivalent:

1.4959E11
1.4959e11
1.4959E+11
1.4959e+11
149590000000.00

86 Chapter 2 Introduction to C++

Floating-point literals are normally stored in memory as doubles. But remember, C++ pro-
vides tools for handling just about any situation. Just in case you need to force a literal to
be stored as a float, you can append the letter F or f to the end of it. For example, the
following literals would be stored as floats:

1.2F
45.907f

noTe: Because floating-point literals are normally stored in memory as doubles,
many compilers issue a warning message when you assign a floating-point literal to a
float variable. For example, assuming num is a float, the following statement might
cause the compiler to generate a warning message:

num = 14.725;

You can suppress the warning message by appending the f suffix to the floating-point
literal, as shown below:

num = 14.725f;

If you want to force a value to be stored as a long double, append an L or l to it, as in
the following examples:

1034.56L
89.2l

The compiler won’t confuse these with long integers because they have decimal points.
(Remember, the lowercase L looks so much like the number 1 that you should always use
the uppercase L when suffixing literals.)

assigning Floating-Point Values to integer Variables
When a floating-point value is assigned to an integer variable, the fractional part of the
value (the part after the decimal point) is discarded. For example, look at the following
code.

int number;
number = 7.5; // Assigns 7 to number

This code attempts to assign the floating-point value 7.5 to the integer variable number. As
a result, the value 7 will be assigned to number, with the fractional part discarded. When
part of a value is discarded, it is said to be truncated.

Assigning a floating-point variable to an integer variable has the same effect. For example,
look at the following code.

int i;
float f;
f = 7.5;
i = f; // Assigns 7 to i.

 2.10 The bool Data Type 87

When the float variable f is assigned to the int variable i, the value being assigned (7.5)
is truncated. After this code executes i will hold the value 7 and f will hold the value 7.5.

noTe: When a floating-point value is truncated, it is not rounded. Assigning the
value 7.9 to an int variable will result in the value 7 being stored in the variable.

Warning! Floating-point variables can hold a much larger range of values than
integer variables can. If a floating-point value is being stored in an integer variable,
and the whole part of the value (the part before the decimal point) is too large for the
integer variable, an invalid value will be stored in the integer variable.

2.10 The bool Data Type

ConCePT: Boolean variables are set to either true or false.

Expressions that have a true or false value are called Boolean expressions, named in
honor of English mathematician George Boole (1815–1864).

The bool data type allows you to create small integer variables that are suitable for hold-
ing true or false values. Program 2-17 demonstrates the definition and assignment of a
bool variable.

Program 2-17

 1 // This program demonstrates boolean variables.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 bool boolValue;
 8
 9 boolValue = true;
10 cout << boolValue << endl;
11 boolValue = false;
12 cout << boolValue << endl;
13 return 0;
14 }

Program output
1
0

As you can see from the program output, the value true is represented in memory by
the number 1, and false is represented by 0. You will not be using bool variables until
Chapter 4, however, so just remember they are useful for evaluating conditions that are
either true or false.

88 Chapter 2 Introduction to C++

2.11 Determining the size of a Data Type

ConCePT: The sizeof operator may be used to determine the size of a data type
on any system.

Chapter 1 discussed the portability of the C++ language. As you have seen in this chap-
ter, one of the problems of portability is the lack of common sizes of data types on all
machines. If you are not sure what the sizes of data types are on your computer, C++
provides a way to find out.

A special operator called sizeof will report the number of bytes of memory used by any
data type or variable. Program 2-18 illustrates its use. The first line that uses the operator
is line 10:

cout << "The size of an integer is " << sizeof(int);

The name of the data type or variable is placed inside the parentheses that follow the
operator. The operator “returns” the number of bytes used by that item. This operator
can be invoked anywhere you can use an unsigned integer, including in mathematical
operations.

Program 2-18

 1 // This program determines the size of integers, long
 2 // integers, and long doubles.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 long double apple;
 9
10 cout << "The size of an integer is " << sizeof(int);
11 cout << " bytes.\n";
12 cout << "The size of a long integer is " << sizeof(long);
13 cout << " bytes.\n";
14 cout << "An apple can be eaten in " << sizeof(apple);
15 cout << " bytes!\n";
16 return 0;
17 }

Program output
The size of an integer is 4 bytes.
The size of a long integer is 4 bytes.
An apple can be eaten in 8 bytes!

 2.12 Variable Assignments and Initialization 89

Checkpoint
2.18 Yes or No: Is there an unsigned floating point data type? If so, what is it?

2.19 How would the following number in scientific notation be represented in E notation?

6.31 3 1017

2.20 Write a program that defines an integer variable named age and a float
variable named weight. Store your age and weight, as literals, in the variables.
The program should display these values on the screen in a manner similar to
the following:

Program output

 My age is 26 and my weight is 180 pounds.

 (Feel free to lie to the computer about your age and your weight—
it’ll never know!)

2.12 Variable assignments and initialization

ConCePT: An assignment operation assigns, or copies, a value into a variable.
When a value is assigned to a variable as part of the variable’s definition,
it is called an initialization.

As you have already seen in several examples, a value is stored in a variable with an
assignment statement. For example, the following statement copies the value 12 into the
variable unitsSold.

unitsSold = 12;

The = symbol is called the assignment operator. Operators perform operations on data.
The data that operators work with are called operands. The assignment operator has two
operands. In the previous statement, the operands are unitsSold and 12.

In an assignment statement, C++ requires the name of the variable receiving the assign-
ment to appear on the left side of the operator. The following statement is incorrect.

12 = unitsSold; // Incorrect!

In C++ terminology, the operand on the left side of the = symbol must be an lvalue. It is
called an lvalue because it is a value that may appear on the left side of an assignment
operator. An lvalue is something that identifies a place in memory whose contents may be
changed. Most of the time this will be a variable name. The operand on the right side of
the = symbol must be an rvalue. An rvalue is any expression that has a value. The assign-
ment statement takes the value of the rvalue and puts it in the memory location of the
object identified by the lvalue.

You may also assign values to variables as part of the definition. This is called initialization.
Program 2-19 shows how it is done.

90 Chapter 2 Introduction to C++

Program 2-19

 1 // This program shows variable initialization.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 int month = 2, days = 28;
 8
 9 cout << "Month " << month << " has " << days << " days.\n";
10 return 0;
11 }

Program output
Month 2 has 28 days.

As you can see, this simplifies the program and reduces the number of statements that must
be typed by the programmer. Here are examples of other definition statements that perform
initialization.

double interestRate = 12.9;
char stockCode = 'D';
long customerNum = 459L;

Of course, there are always variations on a theme. C++ allows you to define several variables
and only initialize some of them. Here is an example of such a definition:

int flightNum = 89, travelTime, departure = 10, distance;

The variable flightNum is initialized to 89 and departure is initialized to 10. The variables
travelTime and distance remain uninitialized.

Declaring Variables With the auto Key Word
C++ 11 introduces an alternative way to define variables, using the auto key word and an
initialization value. Here is an example:

auto amount = 100;

Notice that this statement uses the word auto instead of a data type. The auto key word
tells the compiler to determine the variable’s data type from the initialization value. In this
example the initialization value, 100, is an int, so amount will be an int variable. Here
are other examples:

auto interestRate = 12.0;
auto stockCode = 'D';
auto customerNum = 459L;

In this code, the interestRate variable will be a double because the initialization value, 12.0,
is a double. The stockCode variable will be a char because the initialization value, 'D', is a
char. The customerNum variable will be a long because the initialization value, 459L, is a long.

1111

 2.14 Arithmetic Operators 91

These examples show how to use the auto key word, but they don’t really show its useful-
ness. The auto key word is intended to simplify the syntax of declarations that are more
complex than the ones shown here. Later in the book, you will see examples of how the
auto key word can improve the readability of complex definition statements.

2.13 scope

ConCePT: A variable’s scope is the part of the program that has access to the variable.

Every variable has a scope. The scope of a variable is the part of the program where the
variable may be used. The rules that define a variable’s scope are complex, and you will
only be introduced to the concept here. In other sections of the book we will revisit this
topic and expand on it.

The first rule of scope you should learn is that a variable cannot be used in any part of the
program before the definition. Program 2-20 illustrates this.

Program 2-20

 1 // This program can't find its variable.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 cout << value; // ERROR! value not defined yet!
 8
 9 int value = 100;
10 return 0;
11 }

The program will not work because line 7 attempts to send the contents of the variable
value to cout before the variable is defined. The compiler reads your program from top
to bottom. If it encounters a statement that uses a variable before the variable is defined,
an error will result. To correct the program, the variable definition must be put before any
statement that uses it.

2.14 arithmetic operators

ConCePT: There are many operators for manipulating numeric values and perform-
ing arithmetic operations.

C++ offers a multitude of operators for manipulating data. Generally, there are three types
of operators: unary, binary, and ternary. These terms reflect the number of operands an
operator requires.

92 Chapter 2 Introduction to C++

Unary operators only require a single operand. For example, consider the following expression:

−5

Of course, we understand this represents the value negative five. The literal 5 is preceded by
the minus sign. The minus sign, when used this way, is called the negation operator. Since
it only requires one operand, it is a unary operator.

Binary operators work with two operands. The assignment operator is in this category.
Ternary operators, as you may have guessed, require three operands. C++ only has one
ternary operator, which will be discussed in Chapter 4.

Arithmetic operations are very common in programming. Table 2-9 shows the common
arithmetic operators in C++.

VideoNote
assignment
statements and
simple Math
expressions

Table 2-9 Fundamental Arithmetic Operators

Operator Meaning Type Example

+ Addition Binary total = cost + tax;

− Subtraction Binary cost = total − tax;

* Multiplication Binary tax = cost * rate;

/ Division Binary salePrice = original / 2;

% Modulus Binary remainder = value % 3;

Each of these operators works as you probably expect. The addition operator returns the
sum of its two operands. In the following assignment statement, the variable amount will
be assigned the value 12:

amount = 4 + 8;

The subtraction operator returns the value of its right operand subtracted from its left
operand. This statement will assign the value 98 to temperature:

temperature = 112 − 14;

The multiplication operator returns the product of its two operands. In the following state-
ment, markUp is assigned the value 3:

markUp = 12 * 0.25;

The division operator returns the quotient of its left operand divided by its right operand.
In the next statement, points is assigned the value 5:

points = 100 / 20;

It is important to note that when both of the division operator’s operands are integers, the
result of the division will also be an integer. If the result has a fractional part, it will be
thrown away. We will discuss this behavior, which is known as integer division, in greater
detail later in this section.

The modulus operator, which only works with integer operands, returns the remainder of
an integer division. The following statement assigns 2 to leftOver:

leftOver = 17 % 3;

 2.14 Arithmetic Operators 93

In Chapter 3 you will learn how to use these operators in more complex mathematical
formulas. For now we will concentrate on their basic usage. For example, suppose we need
to write a program that calculates and displays an employee’s total wages for the week.
The regular hours for the work week are 40, and any hours worked over 40 are considered
overtime. The employee earns $18.25 per hour for regular hours and $27.78 per hour for
overtime hours. The employee has worked 50 hours this week. The following pseudocode
algorithm shows the program’s logic.

Regular wages = base pay rate × regular hours
Overtime wages = overtime pay rate × overtime hours
Total wages = regular wages + overtime wages
Display the total wages

Program 2-21 shows the C++ code for the program.

Program 2-21

 1 // This program calculates hourly wages, including overtime.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 double regularWages, // To hold regular wages
 8 basePayRate = 18.25, // Base pay rate
 9 regularHours = 40.0, // Hours worked less overtime
10 overtimeWages, // To hold overtime wages
11 overtimePayRate = 27.78, // Overtime pay rate
12 overtimeHours = 10, // Overtime hours worked
13 totalWages; // To hold total wages
14
15 // Calculate the regular wages.
16 regularWages = basePayRate * regularHours;
17
18 // Calculate the overtime wages.
19 overtimeWages = overtimePayRate * overtimeHours;
20
21 // Calculate the total wages.
22 totalWages = regularWages + overtimeWages;
23
24 // Display the total wages.
25 cout << "Wages for this week are $" << totalWages << endl;
26 return 0;
27 }

Program output
Wages for this week are $1007.8

Let’s take a closer look at the program. As mentioned in the comments, there are variables
for regular wages, base pay rate, regular hours worked, overtime wages, overtime pay rate,
overtime hours worked, and total wages.

94 Chapter 2 Introduction to C++

Here is line 16, which multiplies basePayRate times regularHours and stores the result
in regularWages:

regularWages = basePayRate * regularHours;

Here is line 19, which multiplies overtimePayRate times overtimeHours and stores the
result in overtimeWages:

overtimeWages = overtimePayRate * overtimeHours;

Line 22 adds the regular wages and the overtime wages and stores the result in totalWages:

totalWages = regularWages + overtimeWages;

Line 25 displays the message on the screen reporting the week’s wages.

integer Division
When both operands of a division statement are integers, the statement will result in integer
division. This means the result of the division will be an integer as well. If there is a remain-
der, it will be discarded. For example, look at the following code:

double number;
number = 5 / 2;

This code divides 5 by 2 and assigns the result to the number variable. What will be stored
in number? You would probably assume that 2.5 would be stored in number because that is
the result your calculator shows when you divide 5 by 2. However, that is not what happens
when the previous C++ code is executed. Because the numbers 5 and 2 are both integers,
the fractional part of the result will be thrown away, or truncated. As a result, the value 2
will be assigned to the number variable.

In the previous code, it doesn’t matter that the number variable is declared as a double
because the fractional part of the result is discarded before the assignment takes place. In
order for a division operation to return a floating-point value, one of the operands must be
of a floating-point data type. For example, the previous code could be written as follows:

double number;
number = 5.0 / 2;

In this code, 5.0 is treated as a floating-point number, so the division operation will return
a floating-point number. The result of the division is 2.5.

in the spotlight:
Calculating Percentages and Discounts
Determining percentages is a common calculation in computer programming. Although the
% symbol is used in general mathematics to indicate a percentage, most programming lan-
guages (including C++) do not use the % symbol for this purpose. In a program, you have
to convert a percentage to a floating-point number, just as you would if you were using a
calculator. For example, 50 percent would be written as 0.5 and 2 percent would be written
as 0.02.

 2.14 Arithmetic Operators 95

Let’s look at an example. Suppose you earn $6,000 per month and you are allowed to contribute
a portion of your gross monthly pay to a retirement plan. You want to determine the amount of
your pay that will go into the plan if you contribute 5 percent, 7 percent, or 10 percent of your
gross wages. To make this determination you write the program shown in Program 2-22.

Program 2-22

 1 // This program calculates the amount of pay that
 2 // will be contributed to a retirement plan if 5%,
 3 // 7%, or 10% of monthly pay is withheld.
 4 #include <iostream>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 // Variables to hold the monthly pay and the
10 // amount of contribution.
11 double monthlyPay = 6000.0, contribution;
12
13 // Calculate and display a 5% contribution.
14 contribution = monthlyPay * 0.05;
15 cout << "5 percent is $" << contribution
16 << " per month.\n";
17
18 // Calculate and display a 7% contribution.
19 contribution = monthlyPay * 0.07;
20 cout << "7 percent is $" << contribution
21 << " per month.\n";
22
23 // Calculate and display a 10% contribution.
24 contribution = monthlyPay * 0.1;
25 cout << "10 percent is $" << contribution
26 << " per month.\n";
27
28 return 0;
29 }

Program output
5 percent is $300 per month.
7 percent is $420 per month.
10 percent is $600 per month.

Line 11 defines two variables: monthlyPay and contribution. The monthlyPay variable,
which is initialized with the value 6000.0, holds the amount of your monthly pay. The con-
tribution variable will hold the amount of a contribution to the retirement plan.

The statements in lines 14 through 16 calculate and display 5 percent of the monthly pay.
The calculation is done in line 14, where the monthlyPay variable is multiplied by 0.05.
The result is assigned to the contribution variable, which is then displayed in line 15.

Similar steps are taken in Lines 18 through 21, which calculate and display 7 percent of
the monthly pay, and lines 24 through 26, which calculate and display 10 percent of the
monthly pay.

96 Chapter 2 Introduction to C++

Calculating a Percentage Discount
Another common calculation is determining a percentage discount. For example, suppose
a retail business sells an item that is regularly priced at $59.95 and is planning to have a
sale where the item’s price will be reduced by 20 percent. You have been asked to write a
program to calculate the sale price of the item.

To determine the sale price you perform two calculations:

•	 First,	you	get	the	amount	of	the	discount,	which	is	20	percent	of	the	item’s	regular	
price.

•	 Second,	you	subtract	the	discount	amount	from	the	item’s	regular	price.	This	gives	you	
the sale price.

Program 2-23 shows how this is done in C++.

Program 2-23

 1 // This program calculates the sale price of an item
 2 // that is regularly priced at $59.95, with a 20 percent
 3 // discount subtracted.
 4 #include <iostream>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 // Variables to hold the regular price, the
10 // amount of a discount, and the sale price.
11 double regularPrice = 59.95, discount, salePrice;
12
13 // Calculate the amount of a 20% discount.
14 discount = regularPrice * 0.2;
15
16 // Calculate the sale price by subtracting the
17 // discount from the regular price.
18 salePrice = regularPrice - discount;
19
20 // Display the results.
21 cout << "Regular price: $" << regularPrice << endl;
22 cout << "Discount amount: $" << discount << endl;
23 cout << "Sale price: $" << salePrice << endl;
24 return 0;
25 }

Program output
Regular price: $59.95
Discount amount: $11.99
Sale price: $47.96

Line 11 defines three variables. The regularPrice variable holds the item’s regular price,
and is initialized with the value 59.95. The discount variable will hold the amount of the
discount once it is calculated. The salePrice variable will hold the item’s sale price.

Line 14 calculates the amount of the 20 percent discount by multiplying regularPrice
by 0.2. The result is stored in the discount variable. Line 18 calculates the sale price by
subtracting discount from regularPrice. The result is stored in the salePrice variable.
The cout statements in lines 21 through 23 display the item’s regular price, the amount of
the discount, and the sale price.

 2.14 Arithmetic Operators 97

in the spotlight:
Using the Modulus Operator and Integer Division
The modulus operator (%) is surprisingly useful. For example, suppose you need to extract
the rightmost digit of a number. If you divide the number by 10, the remainder will be the
rightmost digit. For instance, 123 ÷ 10 = 12 with a remainder of 3. In a computer program
you would use the modulus operator to perform this operation. Recall that the modulus op-
erator divides an integer by another integer, and gives the remainder. This is demonstrated
in Program 2-24. The program extracts the rightmost digit of the number 12345.

Program 2-24

 1 // This program extracts the rightmost digit of a number.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 int number = 12345;
 8 int rightMost = number % 10;
 9
10 cout << "The rightmost digit in "
11 << number << " is "
12 << rightMost << endl;
13
14 return 0;
15 }

Program output
The rightmost digit in 12345 is 5

Interestingly, the expression number % 100 will give you the rightmost two digits in number,
the expression number % 1000 will give you the rightmost three digits in number, etc.

The modulus operator (%) is useful in many other situations. For example, Program 2-25
converts 125 seconds to an equivalent number of minutes, and seconds.

Program 2-25

 1 // This program converts seconds to minutes and seconds.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 // The total seconds is 125.
 8 int totalSeconds = 125;
 9
10 // Variables for the minutes and seconds
11 int minutes, seconds;
12
13 // Get the number of minutes.
14 minutes = totalSeconds / 60;
15
16 // Get the remaining seconds.
17 seconds = totalSeconds % 60;
18
19 // Display the results.
20 cout << totalSeconds << " seconds is equivalent to:\n";
21 cout << "Minutes: " << minutes << endl;
22 cout << "Seconds: " << seconds << endl;
23 return 0;
24 }

Program output
125 seconds is equivalent to:
Minutes: 2
Seconds: 5

Let’s take a closer look at the code:

•	 Line	8	defines	an	int variable named totalSeconds, initialized with the value 125.
•	 Line	11	declares	the	int variables minutes and seconds.
•	 Line	14	calculates	the	number	of	minutes	in	the	specified	number	of	seconds.	There	

are 60 seconds in a minute, so this statement divides totalSeconds by 60. Notice
that we are performing integer division in this statement. Both totalSeconds and
the numeric literal 60 are integers, so the division operator will return an integer
result. This is intentional because we want the number of minutes with no frac-
tional part.

•	 Line	17	calculates	the	number	of	remaining	seconds.	There	are	60	seconds	in	a	
minute, so this statement uses the % operator to divide the totalSeconds by 60,
and get the remainder of the division. The result is the number of remaining sec-
onds.

•	 Lines	20	through	22	display	the	number	of	minutes	and	seconds.

98 Chapter 2 Introduction to C++

 2.15 Comments 99

Checkpoint
2.21 Is the following assignment statement valid or invalid? If it is invalid, why?

72 = amount;

2.22 How would you consolidate the following definitions into one statement?

int x = 7;
int y = 16;
int z = 28;

2.23 What is wrong with the following program? How would you correct it?

#include <iostream>
using namespace std;

int main()
{
 number = 62.7;
 double number;
 cout << number << endl;
 return 0;
}

2.24 Is the following an example of integer division or floating-point division? What
value will be stored in portion?

portion = 70 / 3;

2.15 Comments

ConCePT: Comments are notes of explanation that document lines or sections of a
program. Comments are part of the program, but the compiler ignores
them. They are intended for people who may be reading the source code.

It may surprise you that one of the most important parts of a program has absolutely no
impact on the way it runs. In fact, the compiler ignores this part of a program. Of course,
I’m speaking of the comments.

As a beginning programmer, you might be resistant to the idea of liberally writing com-
ments in your programs. After all, it can seem more productive to write code that actually
does something! It is crucial, however, that you develop the habit of thoroughly annotat-
ing your code with descriptive comments. It might take extra time now, but it will almost
certainly save time in the future.

Imagine writing a program of medium complexity with about 8,000 to 10,000 lines of C++
code. Once you have written the code and satisfactorily debugged it, you happily put it
away and move on to the next project. Ten months later you are asked to make a modifica-
tion to the program (or worse, track down and fix an elusive bug). You open the file that
contains your source code and stare at thousands of statements that now make no sense
at all. If only you had left some notes to yourself explaining the program’s code. Of course
it’s too late now. All that’s left to do is decide what will take less time: figuring out the old
program or completely rewriting it!

100 Chapter 2 Introduction to C++

This scenario might sound extreme, but it’s one you don’t want to happen to you. Real-
world programs are big and complex. Thoroughly documented code will make your life
easier, not to mention the other programmers who may have to read your code in the future.

single-Line Comments
You have already seen one way to place comments in a C++ program. You simply place
two forward slashes (//) where you want the comment to begin. The compiler ignores
everything from that point to the end of the line. Program 2-26 shows that comments may
be placed liberally throughout a program.

Program 2-26

 1 // PROGRAM: PAYROLL.CPP
 2 // Written by Herbert Dorfmann
 3 // This program calculates company payroll
 4 // Last modification: 8/20/2014
 5 #include <iostream>
 6 using namespace std;
 7
 8 int main()
 9 {
10 double payRate; // Holds the hourly pay rate
11 double hours; // Holds the hours worked
12 int employNumber; // Holds the employee number

(The remainder of this program is left out.)

In addition to telling who wrote the program and describing the purpose of variables, com-
ments can also be used to explain complex procedures in your code.

Multi-Line Comments
The second type of comment in C++ is the multi-line comment. Multi-line comments start
with /* (a forward slash followed by an asterisk) and end with */ (an asterisk followed
by a forward slash). Everything between these markers is ignored. Program 2-27 illustrates
how multi-line comments may be used. Notice that a multi-line comment starts in line 1
with the /* symbol, and it ends in line 6 with the */ symbol.

Program 2-27

 1 /*
 2 PROGRAM: PAYROLL.CPP
 3 Written by Herbert Dorfmann
 4 This program calculates company payroll
 5 Last modification: 8/20/2014
 6 */
 7
 8 #include <iostream>

 2.16 Named Constants 101

 9 using namespace std;
10
11 int main()
12 {
13 double payRate; // Holds the hourly pay rate
14 double hours; // Holds the hours worked
15 int employNumber; // Holds the employee number

(The remainder of this program is left out.)

Unlike a comment started with //, a multi-line comment can span several lines. This makes
it more convenient to write large blocks of comments because you do not have to mark
every line. Consequently, the multi-line comment is inconvenient for writing single-line
comments because you must type both a beginning and ending comment symbol.

noTe: Many programmers use a combination of single-line comments and multi-line
comments in their programs. Convenience usually dictates which style to use.

Remember the following advice when using multi-line comments:

•	 Be	careful	not	to	reverse	the	beginning	symbol	with	the	ending	symbol.
•	 Be	sure	not	to	forget	the	ending	symbol.

Both of these mistakes can be difficult to track down and will prevent the program from
compiling correctly.

2.16 named Constants

ConCePT: Literals may be given names that symbolically represent them in a program.

Assume the following statement appears in a banking program that calculates data pertain-
ing to loans:

amount = balance * 0.069;

In such a program, two potential problems arise. First, it is not clear to anyone other than
the original programmer what 0.069 is. It appears to be an interest rate, but in some situa-
tions there are fees associated with loan payments. How can the purpose of this statement
be determined without painstakingly checking the rest of the program?

The second problem occurs if this number is used in other calculations throughout the
program and must be changed periodically. Assuming the number is an interest rate, what
if the rate changes from 6.9 percent to 7.2 percent? The programmer will have to search
through the source code for every occurrence of the number.

Both of these problems can be addressed by using named constants. A named constant is
like a variable, but its content is read-only and cannot be changed while the program is
running. Here is a definition of a named constant:

const double INTEREST_RATE = 0.069;

102 Chapter 2 Introduction to C++

It looks just like a regular variable definition except that the word const appears before
the data type name, and the name of the variable is written in all uppercase characters. The
key word const is a qualifier that tells the compiler to make the variable read-only. Its
value will remain constant throughout the program’s execution. It is not required that the
variable name be written in all uppercase characters, but many programmers prefer to write
them this way so they are easily distinguishable from regular variable names.

An initialization value must be given when defining a constant with the const qualifier, or
an error will result when the program is compiled. A compiler error will also result if there
are any statements in the program that attempt to change the value of a named constant.

An advantage of using named constants is that they make programs more self-documenting.
The following statement

amount = balance * 0.069;

can be changed to read

amount = balance * INTEREST_RATE;

A new programmer can read the second statement and know what is happening. It is evident
that balance is being multiplied by the interest rate. Another advantage to this approach
is that widespread changes can easily be made to the program. Let’s say the interest rate
appears in a dozen different statements throughout the program. When the rate changes,
the initialization value in the definition of the named constant is the only value that needs
to be modified. If the rate increases to 7.2%, the definition is changed to the following:

const double INTEREST_RATE = 0.072;

The program is then ready to be recompiled. Every statement that uses INTEREST_RATE
will then use the new value.

Named constants can also help prevent typographical errors in a program’s code. For exam-
ple, suppose you use the number 3.14159 as the value of pi in a program that performs
various geometric calculations. Each time you type the number 3.14159 in the program’s
code, there is a chance that you will make a mistake with one or more of the digits. As a
result, the program will not produce the correct results. To help prevent a mistake such as
this, you can define a named constant for pi, initialized with the correct value, and then use
that constant in all of the formulas that require its value. Program 2-28 shows an example.
It calculates the circumference of a circle that has a diameter of 10.

Program 2-28

 1 // This program calculates the circumference of a circle.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 // Constants
 8 const double PI = 3.14159;
 9 const double DIAMETER = 10.0;
10
11 // Variable to hold the circumference

 2.17 Programming Style 103

12 double circumference;
13
14 // Calculate the circumference.
15 circumference = PI * DIAMETER;
16
17 // Display the circumference.
18 cout << "The circumference is: " << circumference << endl;
19 return 0;
20 }

Program output
The circumference is: 31.4159

Let’s take a closer look at the program. Line 8 defines a constant double named PI, initial-
ized with the value 3.14159. This constant will be used for the value of pi in the program’s
calculation. Line 9 defines a constant double named DIAMETER, initialized with the value
10. This will be used for the circle’s diameter. Line 12 defines a double variable named
circumference, which will be used to hold the circle’s circumference. Line 15 calculates
the circle’s circumference by multiplying PI by DIAMETER. The result of the calculation is
assigned to the circumference variable. Line 18 displays the circle’s circumference.

Checkpoint
2.25 Write statements using the const qualifier to create named constants for the

following literal values:

 Literal Value Description
 2.71828 Euler’s number (known in mathematics as e)
 5.256E5 Number of minutes in a year
 32.2 The gravitational acceleration constant (in feet per second2)
 9.8 The gravitational acceleration constant (in meters per second2)
 1609 Number of meters in a mile

2.17 Programming style

ConCePT: Programming style refers to the way a programmer uses identifiers,
spaces, tabs, blank lines, and punctuation characters to visually arrange
a program’s source code. These are some, but not all, of the elements of
programming style.

In Chapter 1 you learned that syntax rules govern the way a language may be used. The
syntax rules of C++ dictate how and where to place key words, semicolons, commas, braces,
and other components of the language. The compiler’s job is to check for syntax errors and,
if there are none, generate object code.

When the compiler reads a program it processes it as one long stream of characters. The
compiler doesn’t care that each statement is on a separate line, or that spaces separate
operators from operands. Humans, on the other hand, find it difficult to read programs that
aren’t written in a visually pleasing manner. Consider Program 2-29 for example.

104 Chapter 2 Introduction to C++

Program 2-29

 1 #include <iostream>
 2 using namespace std;int main(){double shares=220.0;
 3 double avgPrice=14.67;cout<<"There were "<<shares
 4 <<" shares sold at $"<<avgPrice<<" per share.\n";
 5 return 0;}

Program output
There were 220 shares sold at $14.67 per share.

Although the program is syntactically correct (it doesn’t violate any rules of C++), it is very
difficult to read. The same program is shown in Program 2-30, written in a more reason-
able style.

Program 2-30

 1 // This example is much more readable than Program 2-29.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 double shares = 220.0;
 8 double avgPrice = 14.67;
 9
10 cout << "There were " << shares << " shares sold at $";
11 cout << avgPrice << " per share.\n";
12 return 0;
13 }

Program output
There were 220 shares sold at $14.67 per share.

Programming style refers to the way source code is visually arranged. Ideally, it is a consis-
tent method of putting spaces and indentions in a program so visual cues are created. These
cues quickly tell a programmer important information about a program.

For example, notice in Program 2-30 that inside the function main’s braces each line is
indented. It is a common C++ style to indent all the lines inside a set of braces. You will
also notice the blank line between the variable definitions and the cout statements. This is
intended to visually separate the definitions from the executable statements.

noTe: Although you are free to develop your own style, you should adhere to com-
mon programming practices. By doing so, you will write programs that visually make
sense to other programmers.

 Review Questions and Exercises 105

Another aspect of programming style is how to handle statements that are too long to fit on
one line. Because C++ is a free-flowing language, it is usually possible to spread a statement
over several lines. For example, here is a cout statement that uses five lines:

cout << "The Fahrenheit temperature is "
 << fahrenheit
 << " and the Celsius temperature is "
 << celsius
 << endl;

This statement will work just as if it were typed on one line. Here is an example of variable
definitions treated similarly:

int fahrenheit,
 celsius,
 kelvin;

There are many other issues related to programming style. They will be presented through-
out the book.

review Questions and exercises
short answer

 1. How many operands does each of the following types of operators require?

 _______ Unary

 _______ Binary

 _______ Ternary

 2. How may the double variables temp, weight, and age be defined in one statement?

 3. How can the values of three variables length, breadth, and height be displayed
using one statement, such that each variable is displayed in a new line?

 4. Assume that x is an integer variable, y is a floating point variable, and z is a character
variable. Write statements in C++ to perform the following operations:

 A) Add 10 to x.

 B) Square the value of y.

 C) Divide x by 7 and store the result in y.

 D) Store ‘&’ in z.

 E) Display the values of y and z on the screen.

 F) Display the rightmost digit of x on the screen.

 G) Display the number of bytes used by an integer variable.

 5. Is the following comment written using single-line or multi-line comment symbols?

/* This program was written by M. A. Codewriter*/

 6. Is the following comment written using single-line or multi-line comment symbols?

// This program was written by M. A. Codewriter

