

JAVA
 STARTING OUT WITH

JAVA
From Control Structures

through Objects

TM

This page intentionally left blank

JAVA

S I X T H E D I T I O N

global Edition

Tony Gaddis
Haywood Community College

 STARTING OUT WITH

JAVA
From Control Structures

through Objects

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

TM

Editor in Chief: Marcia Horton
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Kelsey Loanes
Assistant Acquisitions Editor, Global Edition:

Murchana Borthakur
Associate Project Editor, Global Edition: Binita Roy
VP of Marketing: Christy Lesko
Director of Field Marketing: Tim Galligan
Product Marketing Manager: Bram van Kempen
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Director of Product Management: Erin Gregg
Team Lead Product Management: Scott Disanno
Program Manager: Carole Snyder

Production Project Manager: Camille Trentacoste
Procurement Manager: Mary Fischer
Senior Specialist, Program Planning and Support:
 Maura Zaldivar-Garcia
Senior Manufacturing Controller, Production, Global
 Edition: Trudy Kimber
Cover Designer: Lumina Datamatics
Cover Image: © javarman/Shutterstock
Manager, Rights Management: Rachel Youdelman
Associate Project Manager, Rights Management:
 William J. Opaluch
Full-Service Project Management: Kailash Jadli,
 iEnergizer Aptara®, Ltd.

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2016

The rights of Tony Gaddis to be identi�ed as the author of this work have been asserted by him in accordance with the
Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Starting Out with Java: From Control Structures through
Objects, 6th edition, ISBN 978-0-13-395705-1, by Tony Gaddis, published by Pearson Education © 2016.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of
the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd,
Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in
the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any
af�liation with or endorsement of this book by such owners.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the
documents and related graphics published as part of the services for any purpose. All such documents and related graphics
are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties
and conditions with regard to this information, including all warranties and conditions of merchantability. Whether express,
implied or statutory, �tness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its
respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from
loss of use, data or pro�ts, whether in an action of contract, negligence or other tortious action, arising out of or in
connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors changes are
periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or
changes in the product(s) and/or the program(s) described herein at any time partial screen shots may be viewed in full within
the software version speci�ed.

Microsoft® Windows® and Microsoft Of�ce® are registered trademarks of the Microsoft Corporation in the U.S.A. and other
countries. This book is not sponsored or endorsed by or af�liated with the Microsoft Corporation.

ISBN 10: 1-292-11065-1
ISBN 13: 978-1-292-11065-3

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

Typeset in 10 Sabon LT Std by iEnergizer Aptara®, Ltd.

Printed and bound by Courier Kendallville in the United States of America.

http://www.pearsonglobaleditions.com

5

Contents in Brief

 Preface 23

Chapter 1 Introduction to Computers and Java 37

Chapter 2 Java Fundamentals 63

Chapter 3 Decision Structures 147

Chapter 4 Loops and Files 225

Chapter 5 Methods 305

Chapter 6 A First Look at Classes 355

Chapter 7 Arrays and the ArrayList Class 441

Chapter 8 A Second Look at Classes and Objects 531

Chapter 9 Text Processing and More about Wrapper Classes 595

Chapter 10 Inheritance 649

Chapter 11 Exceptions and Advanced File I/O 739

Chapter 12 A First Look at GUI Applications 797

Chapter 13 Advanced GUI Applications 885

Chapter 14 Applets and More 953

Chapter 15 Creating GUI Applications with JavaFX and Scene Builder 1027

Chapter 16 Recursion 1083

Chapter 17 Databases 1111

 Index 1207

 Appendixes A–M Companion Website

 Case Studies 1–7 Companion Website

This page intentionally left blank

Preface 23

Chapter 1 Introduction to Computers and Java 37
1.1 Introduction. 37
1.2 Why Program? . 37
1.3 Computer Systems: Hardware and Software. 38

Hardware .38
Software .41

1.4 Programming Languages . 42
What Is a Program? . .42
A History of Java .44
Java Applications and Applets .44

1.5 What Is a Program Made Of? . 45
Language Elements .45
Lines and Statements .47
Variables .47
The Compiler and the Java Virtual Machine .48
Java Software Editions .50
Compiling and Running a Java Program . .50

1.6 The Programming Process . 52
Software Engineering . .54

1.7 Object-Oriented Programming. 55
Review Questions and Exercises 57
Programming Challenge 61

Chapter 2 Java Fundamentals 63
2.1 The Parts of a Java Program . 63
2.2 The print and println Methods, and the Java API 69
2.3 Variables and Literals . 75

Displaying Multiple Items with the + Operator .76
Be Careful with Quotation Marks . .77
More about Literals .78

Contents

7

Identifiers .78
Class Names .80

2.4 Primitive Data Types. 80
The Integer Data Types .82
Floating-Point Data Types .83
The boolean Data Type .86
The char Data Type . .86
Variable Assignment and Initialization .88
Variables Hold Only One Value at a Time .89

2.5 Arithmetic Operators . 90
Integer Division .93
Operator Precedence .93
Grouping with Parentheses .95
The Math Class . .98

2.6 Combined Assignment Operators . 99
2.7 Conversion between Primitive Data Types . 101

Mixed Integer Operations .103
Other Mixed Mathematical Expressions .104

2.8 Creating Named Constants with final. 105
2.9 The String Class . 106

Objects Are Created from Classes .106
The String Class .107
Primitive Type Variables and Class Type Variables107
Creating a String Object .108

2.10 Scope. 111
2.11 Comments . 113
2.12 Programming Style . 118
2.13 Reading Keyboard Input. 120

Reading a Character .124
Mixing Calls to nextLine with Calls to Other Scanner Methods 124

2.14 Dialog Boxes . 128
Displaying Message Dialogs . .128
Displaying Input Dialogs .129
An Example Program .129
Converting String Input to Numbers .131

2.15 Common Errors to Avoid . 135
Review Questions and Exercises 136
Programming Challenges 141

Chapter 3 Decision Structures 147
3.1 The if Statement . 147

Using Relational Operators to Form Conditions149
Putting It All Together .150
Programming Style and the if Statement .154
Be Careful with Semicolons .155

8 Contents

 Contents 9

Having Multiple Conditionally Executed Statements 155
Flags .156
Comparing Characters . .156

3.2 The if-else Statement. 157
3.3 Nested if Statements . 160
3.4 The if-else-if Statement . 167
3.5 Logical Operators. 173

The Precedence of Logical Operators .179
Checking Numeric Ranges with Logical Operators 180

3.6 Comparing String Objects . 181
Ignoring Case in String Comparisons .186

3.7 More about Variable Declaration and Scope. 187
3.8 The Conditional Operator (Optional) . 188
3.9 The switch Statement . 190
3.10 Displaying Formatted Output with System.out.printf

and String.format. 200
Format Specifier Syntax .203
Precision .203
Specifying a Minimum Field Width .204
Flags .206
Formatting String Arguments .210
The String.format Method . .211

3.11 Common Errors to Avoid . 214
Review Questions and Exercises 215
Programming Challenges 220

Chapter 4 Loops and Files 225
4.1 The Increment and Decrement Operators . 225

The Difference between Postfix and Prefix Modes 228
4.2 The while Loop . 229

The while Loop Is a Pretest Loop .232
Infinite Loops . .232
Don’t Forget the Braces with a Block of Statements 233
Programming Style and the while Loop .234

4.3 Using the while Loop for Input Validation . 236
4.4 The do-while Loop . 240
4.5 The for Loop. 243

The for Loop Is a Pretest Loop . .246
Avoid Modifying the Control Variable in the Body
of the for Loop .247
Other Forms of the Update Expression .247
Declaring a Variable in the for Loop’s Initialization Expression 247
Creating a User Controlled for Loop .248
Using Multiple Statements in the Initialization
and Update Expressions . .249

10 Contents

4.6 Running Totals and Sentinel Values. 252
Using a Sentinel Value .255

4.7 Nested Loops . 257
4.8 The break and continue Statements (Optional) 265
4.9 Deciding Which Loop to Use . 265
4.10 Introduction to File Input and Output . 266

Using the PrintWriter Class to Write Data to a File 266
Appending Data to a File .272
Specifying the File Location .273
Reading Data from a File .273
Reading Lines from a File with the nextLine Method 274
Adding a throws Clause to the Method Header 277
Checking for a File’s Existence . .281

4.11 Generating Random Numbers with the Random Class. 285
4.12 Common Errors to Avoid . 291
Review Questions and Exercises 292
Programming Challenges 298

Chapter 5 Methods 305
5.1 Introduction to Methods . 305

void Methods and Value-Returning Methods .306
Defining a void Method .307
Calling a Method . .308
Hierarchical Method Calls .313
Using Documentation Comments with Methods314

5.2 Passing Arguments to a Method. 315
Argument and Parameter Data Type Compatibility317
Parameter Variable Scope .318
Passing Multiple Arguments . .318
Arguments Are Passed by Value .320
Passing Object References to a Method .321
Using the @param Tag in Documentation Comments324

5.3 More about Local Variables . 327
Local Variable Lifetime .328
Initializing Local Variables with Parameter Values328

5.4 Returning a Value from a Method. 329
Defining a Value-Returning Method .329
Calling a Value-Returning Method .331
Using the @return Tag in Documentation Comments 332
Returning a boolean Value . .336
Returning a Reference to an Object .336

5.5 Problem Solving with Methods . 338
Calling Methods That Throw Exceptions . .342

5.6 Common Errors to Avoid . 342
Review Questions and Exercises 343
Programming Challenges 348

 Contents 11

Chapter 6 A First Look at Classes 355
6.1 Objects and Classes . 355

Classes: Where Objects Come From .356
Classes in the Java API .357
Primitive Variables vs . Objects .359

6.2 Writing a Simple Class, Step by Step . 362
Accessor and Mutator Methods . .376
The Importance of Data Hiding .376
Avoiding Stale Data . .377
Showing Access Specification in UML Diagrams 377
Data Type and Parameter Notation in UML Diagrams 377
Layout of Class Members .378

6.3 Instance Fields and Methods . 379
6.4 Constructors . 384

Showing Constructors in a UML Diagram . .386
Uninitialized Local Reference Variables .386
The Default Constructor . .386
Writing Your Own No-Arg Constructor .387
The String Class Constructor .388

6.5 Passing Objects as Arguments . 396
6.6 Overloading Methods and Constructors. 408

The BankAccount Class .410
Overloaded Methods Make Classes More Useful 416

6.7 Scope of Instance Fields . 416
Shadowing .417

6.8 Packages and import Statements . 418
Explicit and Wildcard import Statements .418
The java.lang Package . .419
Other API Packages .419

6.9 Focus on Object-Oriented Design: Finding the Classes
and Their Responsibilities . 420
Finding the Classes .420
Identifying a Class’s Responsibilities .423
This Is Only the Beginning .426

6.10 Common Errors to Avoid . 426
Review Questions and Exercises 427
Programming Challenges 432

Chapter 7 Arrays and the ArrayList Class 441
7.1 Introduction to Arrays . 441

Accessing Array Elements .443
Inputting and Outputting Array Contents . .444
Java Performs Bounds Checking .447
Watch Out for Off-by-One Errors .448
Array Initialization . .449
Alternate Array Declaration Notation .450

12 Contents

7.2 Processing Array Elements . 451
Array Length .453
The Enhanced for Loop .454
Letting the User Specify an Array’s Size .455
Reassigning Array Reference Variables .457
Copying Arrays .458

7.3 Passing Arrays as Arguments to Methods . 460
7.4 Some Useful Array Algorithms and Operations 464

Comparing Arrays .464
Summing the Values in a Numeric Array .465
Getting the Average of the Values in a Numeric Array466
Finding the Highest and Lowest Values in a Numeric Array 466
The SalesData Class .467
Partially Filled Arrays .475
Working with Arrays and Files .476

7.5 Returning Arrays from Methods . 477
7.6 String Arrays . 479

Calling String Methods from an Array Element 481
7.7 Arrays of Objects . 482
7.8 The Sequential Search Algorithm . 485
7.9 Two-Dimensional Arrays. 488

Initializing a Two-Dimensional Array .492
The length Field in a Two-Dimensional Array . .493
Displaying All the Elements of a Two-Dimensional Array 495
Summing All the Elements of a Two-Dimensional Array 495
Summing the Rows of a Two-Dimensional Array496
Summing the Columns of a Two-Dimensional Array 496
Passing Two-Dimensional Arrays to Methods .497
Ragged Arrays .499

7.10 Arrays with Three or More Dimensions. 500
7.11 The Selection Sort and the Binary Search Algorithms 501

The Selection Sort Algorithm .501
The Binary Search Algorithm .504

7.12 Command-Line Arguments and Variable-Length Argument Lists . . . 506
Command-Line Arguments .507
Variable-Length Argument Lists .508

7.13 The ArrayList Class . 510
Creating and Using an ArrayList Object . .511
Using the Enhanced for Loop with an ArrayList 512
The ArrayList Class’s toString method .513
Removing an Item from an ArrayList .514
Inserting an Item . .515
Replacing an Item .516
Capacity .517
Using the Diamond Operator for Type Inference (Java 7) 518

7.14 Common Errors to Avoid . 519

 Contents 13

Review Questions and Exercises 519
Programming Challenges 524

Chapter 8 A Second Look at Classes and Objects 531
8.1 Static Class Members . 531

A Quick Review of Instance Fields and Instance Methods 531
Static Members .532
Static Fields .532
Static Methods .535

8.2 Passing Objects as Arguments to Methods . 538
8.3 Returning Objects from Methods . 541
8.4 The toString Method. 543
8.5 Writing an equals Method . 547
8.6 Methods That Copy Objects. 550

Copy Constructors .552
8.7 Aggregation. 553

Aggregation in UML Diagrams . .561
Security Issues with Aggregate Classes .561
Avoid Using null References .563

8.8 The this Reference Variable. 566
Using this to Overcome Shadowing .567
Using this to Call an Overloaded Constructor
from Another Constructor .568

8.9 Enumerated Types . 569
Enumerated Types Are Specialized Classes .570
Switching On an Enumerated Type .576

8.10 Garbage Collection . 578
The finalize Method .580

8.11 Focus on Object-Oriented Design: Class Collaboration. 580
Determining Class Collaborations with CRC Cards 583

8.12 Common Errors to Avoid . 584
Review Questions and Exercises 585
Programming Challenges 589

Chapter 9 Text Processing and More
about Wrapper Classes 595
9.1 Introduction to Wrapper Classes. 595
9.2 Character Testing and Conversion with the Character Class 596

Character Case Conversion .601
9.3 More String Methods . 604

Searching for Substrings .604
Extracting Substrings .611
Methods That Return a Modified String .615
The Static valueOf Methods .616

14 Contents

9.4 The StringBuilder Class . 618
The StringBuilder Constructors . . .619
Other StringBuilder Methods .620
The toString Method .623

9.5 Tokenizing Strings . 629
9.6 Wrapper Classes for the Numeric Data Types 633

The Static toString Methods . .634
The toBinaryString, toHexString, and toOctalString Methods634
The MIN_VALUE and MAX_VALUE Constants . .634
Autoboxing and Unboxing .634

9.7 Focus on Problem Solving: The TestScoreReader Class 636
9.8 Common Errors to Avoid . 640
Review Questions and Exercises 641
Programming Challenges 644

Chapter 10 Inheritance 649
10.1 What Is Inheritance?. 649

Generalization and Specialization .649
Inheritance and the “Is a” Relationship .650
Inheritance in UML Diagrams .658
The Superclass’s Constructor .659
Inheritance Does Not Work in Reverse .661

10.2 Calling the Superclass Constructor . 662
When the Superclass Has No Default
or No-Arg Constructors .668
Summary of Constructor Issues in Inheritance .669

10.3 Overriding Superclass Methods . 670
Overloading versus Overriding .675
Preventing a Method from Being Overridden .678

10.4 Protected Members . 679
Package Access .684

10.5 Chains of Inheritance . 685
Class Hierarchies .691

10.6 The Object Class . 691
10.7 Polymorphism . 693

Polymorphism and Dynamic Binding .694
The “Is-a” Relationship Does Not Work in Reverse 696
The instanceof Operator .697

10.8 Abstract Classes and Abstract Methods . 698
Abstract Classes in UML . .704

10.9 Interfaces . 705
An Interface is a Contract .707
Fields in Interfaces .711
Implementing Multiple Interfaces .711
Interfaces in UML .711

 Contents 15

Default Methods .712
Polymorphism and Interfaces .714

10.10 Anonymous Inner Classes. 719
10.11 Functional Interfaces and Lambda Expressions 722
10.12 Common Errors to Avoid . 727
Review Questions and Exercises 728
Programming Challenges 734

Chapter 11 Exceptions and Advanced File I/O 739
11.1 Handling Exceptions . 739

Exception Classes . .740
Handling an Exception . .741
Retrieving the Default Error Message .745
Polymorphic References to Exceptions . .748
Using Multiple catch Clauses to Handle Multiple Exceptions 748
The finally Clause .756
The Stack Trace .758
Handling Multiple Exceptions with One catch Clause (Java 7) 759
When an Exception Is Not Caught .761
Checked and Unchecked Exceptions .762

11.2 Throwing Exceptions . 763
Creating Your Own Exception Classes . .766
Using the @exception Tag in Documentation Comments 769

11.3 Advanced Topics: Binary Files, Random Access Files,
and Object Serialization . 770
Binary Files .770
Random Access Files .777
Object Serialization .782
Serializing Aggregate Objects . .786

11.4 Common Errors to Avoid . 787
Review Questions and Exercises 787
Programming Challenges 793

Chapter 12 A First Look at GUI Applications 797
12.1 Introduction. 797

The JFC, AWT, and Swing . .798
Event-Driven Programming .800
The javax.swing and java.awt Packages .800

12.2 Creating Windows . 800
Using Inheritance to Extend the JFrame Class .803
Equipping GUI Classes with a main Method .805
Adding Components to a Window .807
Handling Events with Action Listeners .813

16 Contents

Writing an Event Listener for the KiloConverter Class 815
Background and Foreground Colors .820
The ActionEvent Object .824

12.3 Layout Managers . 829
Adding a Layout Manager to a Container .830
The FlowLayout Manager .830
The BorderLayout Manager .833
The GridLayout Manager .840

12.4 Radio Buttons and Check Boxes . 846
Radio Buttons .846
Check Boxes .852

12.5 Borders . 857
12.6 Focus on Problem Solving: Extending Classes from JPanel 860

The Brandi’s Bagel House Application . .860
The GreetingPanel Class . .861
The BagelPanel Class .862
The ToppingPanel Class .864
The CoffeePanel Class .866
Putting It All Together .868

12.7 Splash Screens . 872
12.8 Using Console Output to Debug a GUI Application 873
12.9 Common Errors to Avoid . 878
Review Questions and Exercises 878
Programming Challenges 881

Chapter 13 Advanced GUI Applications 885
13.1 The Swing and AWT Class Hierarchy . 885
13.2 Read-Only Text Fields . 886
13.3 Lists . 888

Selection Modes .888
Responding to List Events . .889
Retrieving the Selected Item .890
Placing a Border around a List .894
Adding a Scroll Bar to a List .894
Adding Items to an Existing JList Component .899
Multiple Selection Lists . .899

13.4 Combo Boxes. 904
Retrieving the Selected Item .905

13.5 Displaying Images in Labels and Buttons . 910
13.6 Mnemonics and Tool Tips . 916

Mnemonics .916
Tool Tips .918

13.7 File Choosers and Color Choosers . 918
File Choosers .919
Color Choosers .921

 Contents 17

13.8 Menus . 922
13.9 More about Text Components: Text Areas and Fonts 931

Text Areas .931
Fonts . .934

13.10 Sliders . 935
13.11 Look and Feel. 940
13.12 Common Errors to Avoid . 942
Review Questions and Exercises 943
Programming Challenges 948

Chapter 14 Applets and More 953
14.1 Introduction to Applets . 953
14.2 A Brief Introduction to HTML . 955

Hypertext .955
Markup Language .956
Document Structure Tags . .956
Text Formatting Tags .958
Creating Breaks in Text .960
Inserting Links .963

14.3 Creating Applets with Swing . 964
Running an Applet . .966
Handling Events in an Applet .968

14.4 Using AWT for Portability . 973
14.5 Drawing Shapes . 978

The XY Coordinate System . .978
Graphics Objects .978
The repaint Method .992
Drawing on Panels .993

14.6 Handling Mouse Events . 999
Handling Mouse Events .999

14.7 Timer Objects. 1009
14.8 Playing Audio. 1013

Using an AudioClip Object .1014
Playing Audio in an Application .1017

14.9 Common Errors to Avoid . 1018
Review Questions and Exercises 1018
Programming Challenges 1024

Chapter 15 Creating GUI Applications with JavaFX
and Scene Builder 1027
15.1 Introduction. 1027

Event-Driven Programming .1029
15.2 Scene Graphs. 1029

18 Contents

15.3 Using Scene Builder to Create JavaFX Applications 1031
Starting Scene Builder .1032
The Scene Builder Main Window .1033

15.4 Writing the Application Code . 1045
The Main Application Class .1046
The Controller Class . .1048
Using the Sample Controller Skeleton . .1053
Summary of Creating a JavaFX Application .1054

15.5 RadioButtons and CheckBoxes . 1055
RadioButtons . .1055
Determining in Code Whether a RadioButton Is Selected1057
Responding to RadioButton Events .1060
CheckBoxes .1063
Determining in Code Whether a CheckBox Is Selected1064
Responding to CheckBox Events .1066

15.6 Displaying Images . 1069
Displaying an Image with Code .1070

15.7 Common Errors to Avoid . 1074
Review Questions and Exercises 1074
Programming Challenges 1078

Chapter 16 Recursion 1083
16.1 Introduction to Recursion. 1083
16.2 Solving Problems with Recursion . 1086

Direct and Indirect Recursion .1090
16.3 Examples of Recursive Methods . 1091

Summing a Range of Array Elements with Recursion1091
Drawing Concentric Circles .1092
The Fibonacci Series . .1094
Finding the Greatest Common Divisor .1096

16.4 A Recursive Binary Search Method . 1097
16.5 The Towers of Hanoi . 1100
16.6 Common Errors to Avoid . 1105
Review Questions and Exercises 1105
Programming Challenges 1108

Chapter 17 Databases 1111
17.1 Introduction to Database Management Systems 1111

JDBC .1112
SQL . .1113
Using a DBMS .1113
Java DB . .1114
Creating the CoffeeDB Database .1114

 Contents 19

Connecting to the CoffeeDB Database .1114
Connecting to a Password-Protected Database1116

17.2 Tables, Rows, and Columns . 1117
Column Data Types .1119
Primary Keys .1119

17.3 Introduction to the SQL SELECT Statement 1120
Passing an SQL Statement to the DBMS . .1122
Specifying Search Criteria with the WHERE Clause 1132
Sorting the Results of a SELECT Query .1138
Mathematical Functions .1139

17.4 Inserting Rows . 1142
Inserting Rows with JDBC . .1144

17.5 Updating and Deleting Existing Rows. 1146
Updating Rows with JDBC .1147
Deleting Rows with the DELETE Statement .1151
Deleting Rows with JDBC .1151

17.6 Creating and Deleting Tables . 1155
Removing a Table with the DROP TABLE Statement 1158

17.7 Creating a New Database with JDBC . 1158
17.8 Scrollable Result Sets . 1160
17.9 Result Set Metadata . 1161
17.10 Displaying Query Results in a JTable . 1165
17.11 Relational Data. 1175

Joining Data from Multiple Tables .1178
An Order Entry System . .1179

17.12 Advanced Topics . 1197
Transactions .1197
Stored Procedures .1198

17.13 Common Errors to Avoid . 1199
Review Questions and Exercises 1199
Programming Challenges 1204

Index 1207

Companion Website:

Appendix A Working with Records and Random Access Files
Appendix B The ASCII/Unicode Characters
Appendix C Operator Precedence and Associativity
Appendix D Java Key Words
Appendix E Installing the JDK and JDK Documentation
Appendix F Using the javadoc Utility
Appendix G More about the Math Class
Appendix H Packages
Appendix I More about JOptionPane Dialog Boxes
Appendix J Answers to Checkpoints
Appendix K Answers to Odd-Numbered Review Questions

20 Contents

Appendix L Getting Started with Alice
Appendix M Configuring JavaDB
Case Study 1 Calculating Sales Commission
Case Study 2 The Amortization Class
Case Study 3 The PinTester Class
Case Study 4 Parallel Arrays
Case Study 5 The FeetInches Class
Case Study 6 The SerialNumber Class
Case Study 7 A Simple Text Editor Application

Chapter 1 Compiling and Running a Java Program, p. 50
 Using an IDE, p. 51
 Your First Java Program, p. 61

Chapter 2 Displaying Console Output, p. 69
 Declaring Variables, p. 75
 Simple Math Expressions, p. 91
 The Miles-per-Gallon Problem, p. 142

Chapter 3 The if Statement, p. 147
 The if-else Statement, p. 157
 The if-else-if Statement, p. 168
 The Time Calculator Problem, p. 221

Chapter 4 The while Loop, p. 229
 The Pennies for Pay Problem, p. 299

Chapter 5 Passing Arguments to a Method, p. 315
 Returning a Value from a Method, p. 329
 The Retail Price Calculator Problem, p. 348

Chapter 6 Writing Classes and Creating Objects, p. 363
 Initializing an Object with a Constructor, p. 384
 The Personal Information Class Problem, p. 433

Chapter 7 Accessing Array Elements in a Loop, p. 445
 Passing an Array to a Method, p. 460
 The Charge Account Validation Problem, p. 525

Chapter 8 Returning Objects from Methods, p. 541
 Aggregation, p. 553
 The BankAccount, Class Copy Constructor Problem, p. 590

Chapter 9 The Sentence Capitalizer Problem, p. 644

Chapter 10 Inheritance, p. 649
 Polymorphism, p. 693
 The Employee and Productionworker Classes Problem, p. 734

Chapter 11 Handling Exceptions, p. 739
 The Exception Project Problem, p. 795

LOCATIOn OF VIDEOnOTES In ThE TEXT
VideoNote

(continued on the next page)

Chapter 12 Creating a Simple GUI Application, p. 800
Handling Events, p. 813
The Monthly Sales Tax Problem, p. 882

Chapter 13 The JList Component, p. 888
 The JComboBox Component, p. 904
 The Image Viewer Problem, p. 948

Chapter 14 Creating an Applet, p. 965
 The House Applet Problem, p. 1024

Chapter 15 Using Scene Builder to Create the Kilometer Converter GUI, p. 1034
 Learning More About the Main Application Class, p. 1046
 Writing the Main Application Class For the Kilometer Converter GUI, p. 1047
 Learning More About the Controller Class, p. 1049
 Registering the Controller Class with the Application’s GUI, p. 1050
 JavaFX RadioButtons, p. 1055
 JavaFX CheckBoxes, p. 1063
 The Retail Price Calculator Problem, p. 1078

Chapter 16 Reducing a Problem with Recursion, p. 1087
 The Recursive Power Problem, p. 1109

Chapter 17 Displaying Query Results in a JTable, p. 1165
 The Customer Inserter Problem, p. 1204

VideoNote

LOCATIOn OF VIDEOnOTES In ThE TEXT (continued)

Preface

Welcome to Starting Out with Java: From Control Structures through Objects,
Sixth Edition. This book is intended for a one-semester or a two-quarter CS1

course. Although it is written for students with no prior programming background, even
experienced students will bene�t from its depth of detail.

Control Structures First, Then Objects
This text �rst introduces the student to the fundamentals of data types, input and output,
control structures, methods, and objects created from standard library classes.

Next, the student learns to use arrays of primitive types and reference types. After this, the
student progresses through more advanced topics, such as inheritance, polymorphism, the
creation and management of packages, GUI applications, recursion, and database program-
ming. From early in the book, applications are documented with javadoc comments. As the
student progresses through the text, new javadoc tags are covered and demonstrated.

As with all the books in the Starting Out With . . . series, the hallmark of this text is its clear,
friendly, and easy-to-understand writing. In addition, it is rich in example programs that are
concise and practical.

Changes in This Edition
This book’s pedagogy, organization, and clear writing style remain the same as in the previous
edition. Many improvements have been made, which are summarized here:

·	 A New Chapter on JavaFX: New to this edition is Chapter 15 Creating GUI
Applications with JavaFX and Scene Builder. JavaFX is the next generation toolkit
for creating GUIs and graphical applications in Java, and is bundled with Java 8.
This new chapter introduces the student to the JavaFX library, and shows how to use
Scene Builder (a free download from Oracle) to visually design GUIs. The chapter is
written in such a way that it is independent from the existing chapters on Swing and
AWT. The instructor can choose to skip the Swing and AWT chapters and go straight
to JavaFX, or cover all of the GUI chapters.

23

·	 String.format Is Used Instead of DecimalFormat: In previous editions, the DecimalFormat
class was used to format strings for GUI output. In this edition, the String.format
method is used instead. With String.format, the student can use the same format
speci�ers and �ags that were learned with the System.out.printf method.

·	 StringTokenizer Is No Longer Used: In previous editions, the StringTokenizer class
was introduced as a way to tokenize strings. In this edition, all string tokenizing is
done with the String.split method.

·	 Introduction of @Override annotation: Chapter 10 now introduces the use of
@Override annotation, and explains how it can prevent subtle errors.

·	 A New Section on Anonymous Inner Classes: Chapter 10 now has a new section that
introduces anonymous inner classes.

·	 The Introduction to Interfaces Has Been Improved: The introductory material on
interfaces in Chapter 10 has been revised for greater clarity.

·	 Default Methods: In this edition, Chapter 10 provides new material on default meth-
ods in interfaces, a new feature in Java 8.

·	 Functional Interfaces and Lambda Expressions: Java 8 introduces functional inter-
faces and lambda expressions, and in this edition, Chapter 10 has a new section on
these topics. The new material gives a detailed, stepped-out explanation of lambda
expressions, and discusses how they can be used to instantiate objects of anonymous
classes that implement functional interfaces.

·	 New Programming Problems: Several new motivational programming problems have
been added to many of the chapters.

Organization of the Text
The text teaches Java step-by-step. Each chapter covers a major set of topics and builds
knowledge as students progress through the book. Although the chapters can be easily
taught in their existing sequence, there is some �exibility. Figure P-1 shows chapter
 dependencies. Each box represents a chapter or a group of chapters. An arrow points from
a chapter to the chapter that must be previously covered.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Java. This chapter provides an introduc-
tion to the �eld of computer science and covers the fundamentals of hardware, software,
and programming languages. The elements of a program, such as key words, variables,
operators, and punctuation, are discussed by examining a simple program. An overview of
entering source code, compiling, and executing a program is presented. A brief history of
Java is also given.

24 Preface

 Preface 25

Chapter 2: Java Fundamentals. This chapter gets students started in Java by introduc-
ing data types, identi�ers, variable declarations, constants, comments, program output, and
simple arithmetic operations. The conventions of programming style are also introduced.
Students learn to read console input with the Scanner class and with dialog boxes using
JOptionPane.

Chapters 1–6 (Cover in Order)
Java Fundamentals

Depend On

Chapter 11
Exceptions and

Advanced File I/O

Chapter 14
Applets and More

*Some examples in
Chapter 17 use GUIs,
which are introduced

in Chapter 12.

Chapter 13
Advanced GUI
Applications

Chapter 9
Text Processing and

Wrapper Classes

Chapter 10
Inheritance

Chapter 16
Recursion

Chapter 12
A First Look at GUI

Applications

Chapter 7
Arrays and the

ArrayList Class

Chapter 8
A Second Look at

Classes and Objects

Depends On Depends On

Depends On

Depends OnDepends On

*Some examples in
Chapter 16 are applets,
which are introduced

in Chapter 14.

Chapter 17
Databases

Depends On

Chapter 15
Creating GUI Applications

with JavaFX and Scene
Builder

Depends On

Figure P-1 Chapter dependencies

26 Preface

Chapter 3: Decision Structures. In this chapter students explore relational operators
and relational expressions and are shown how to control the �ow of a program with the if,
if-else, and if-else-if statements. Nested if statements, logical operators, the conditional
operator, and the switch statement are also covered. The chapter discusses how to compare
String objects with the equals, compareTo, equalsIgnoreCase, and compareToIgnoreCase
methods. Formatting numeric output with the System.out.printf method and the
String.format method is discussed.

Chapter 4: Loops and Files. This chapter covers Java’s repetition control structures. The
while loop, do-while loop, and for loop are taught, along with common uses for these
devices. Counters, accumulators, running totals, sentinels, and other application-related
topics are discussed. Simple �le operations for reading and writing text �les are included.

Chapter 5: Methods. In this chapter students learn how to write void methods, value-
returning methods, and methods that do and do not accept arguments. The concept of
functional decomposition is discussed.

Chapter 6: A First Look at Classes. This chapter introduces students to designing
classes for the purpose of instantiating objects. Students learn about class �elds and meth-
ods, and UML diagrams are introduced as a design tool. Then constructors and overloading
are discussed. A BankAccount class is presented as a case study, and a section on object-
oriented design is included. This section leads the students through the process of identify-
ing classes and their responsibilities within a problem domain. There is also a section that
brie�y explains packages and the import statement.

Chapter 7: Arrays and the ArrayList Class. In this chapter students learn to create
and work with single and multi-dimensional arrays. Numerous array-processing tech-
niques are demonstrated, such as summing the elements in an array, �nding the highest and
lowest values, and sequentially searching an array. Other topics, including ragged arrays
and variable-length arguments (varargs), are also discussed. The ArrayList class is intro-
duced, and Java’s generic types are brie�y discussed and demonstrated.

Chapter 8: A Second Look at Classes and Objects. This chapter shows students how
to write classes with added capabilities. Static methods and �elds, interaction between
objects, passing objects as arguments, and returning objects from methods are discussed.
Aggregation and the “has a” relationship is covered, as well as enumerated types. A section
on object-oriented design shows how to use CRC cards to determine the collaborations
among classes.

Chapter 9: Text Processing and More about Wrapper Classes. This chapter dis-
cusses the numeric and Character wrapper classes. Methods for converting numbers to
strings, testing the case of characters, and converting the case of characters are covered.
Autoboxing and unboxing are also discussed. More String class methods are covered,
including using the split method to tokenize strings. The chapter also covers the
StringBuilder and StringTokenizer classes.

 Preface 27

Chapter 10: Inheritance. The study of classes continues in this chapter with the subjects
of inheritance and polymorphism. The topics covered include superclasses, subclasses, how
constructors work in inheritance, method overriding, polymorphism and dynamic binding,
protected and package access, class hierarchies, abstract classes, abstract methods, anony-
mous inner classes, interfaces, and lambda expressions.

Chapter 11: Exceptions and Advanced File I/O. In this chapter students learn to
develop enhanced error trapping techniques using exceptions. Handling exceptions is cov-
ered, as well as developing and throwing custom exceptions. The chapter discusses advanced
techniques for working with sequential access, random access, text, and binary �les.

Chapter 12: A First Look at GUI Applications. This chapter presents the basics of
developing GUI applications with Swing. Fundamental Swing components and the basic
concepts of event-driven programming are covered.

Chapter 13: Advanced GUI Applications. This chapter continues the study of GUI
application development with Swing. More advanced components, menu systems, and
look-and-feel are covered.

Chapter 14: Applets and More. In this chapter students apply their knowledge of GUI
development to the creation of applets. In addition to using Swing applet classes, AWT
classes are discussed for portability. Drawing simple graphical shapes is discussed.

Chapter 15: Creating GUI Applications with JavaFX and Scene Builder. This
chapter introduces JavaFX, which is the next generation library for creating graphical
applications in Java. This chapter also shows how to use Scene Builder, a free screen designer
from Oracle, to visually design GUIs. This chapter is written in such a way that it is inde-
pendent from the existing chapters on Swing and AWT. You can choose to skip chapters 12,
13, and 14, and go straight to Chapter 15, or cover all of the GUI chapters.

Chapter 16: Recursion. This chapter presents recursion as a problem-solving technique.
Numerous examples of recursive methods are demonstrated.

Chapter 17: Databases. This chapter introduces the student to database programming.
The basic concepts of database management systems and SQL are �rst introduced. Then the
student learns to use JDBC to write database applications in Java. Relational data is cov-
ered, and numerous example programs are presented throughout the chapter.

Features of the Text

Concept Statements. Each major section of the text starts with a concept statement that
concisely summarizes the focus of the section.

28 Preface

Example Programs. The text has an abundant number of complete and partial example
programs, each designed to highlight the current topic. In most cases the programs are prac-
tical, real-world examples.

Program Output. Each example program is followed by a sample of its output, which
shows students how the program functions.

Checkpoints. Checkpoints, highlighted by the checkmark icon, appear at intervals through-
out each chapter. They are designed to check students’ knowledge soon after learning a new
topic. Answers for all Checkpoint questions are provided in Appendix K, which can be
downloaded from the book’s resource page at www.pearsonhighered.com/cs-resources.

nOTE: Notes appear at several places throughout the text. They are short explanations
of interesting or often misunderstood points relevant to the topic at hand.

TIP: Tips advise the student on the best techniques for approaching different program-
ming problems and appear regularly throughout the text.

WARnInG! Warnings caution students about certain Java features, programming tech-
niques, or practices that can lead to malfunctioning programs or lost data.

In the Spotlight. Many of the chapters provide an In the Spotlight
section that presents a programming problem, along with detailed, step-
by-step analysis showing the student how to solve it.

Videonotes. A series of videos, developed speci�cally for this book, are available at www.
pearsonglobaleditions.com/Gaddis. Icons appear throughout the text alerting the student to
 videos about speci�c topics.

Case Studies. Case studies that simulate real-world business applications are
 introduced throughout the text and are provided on the book’s resource page at www.
pearsonglobaleditions.com/Gaddis.

Common Errors to Avoid. Each chapter provides a list of common errors and explana-
tions of how to avoid them.

Review Questions and Exercises. Each chapter presents a thorough and diverse set of
review questions and exercises. They include Multiple Choice and True/False, Find the
Error, Algorithm Workbench, and Short Answer.

VideoNote

http://www.pearsonhighered.com/cs-resources
http://www.pearsonglobaleditions.com/Gaddis
http://www.pearsonglobaleditions.com/Gaddis
http://www.pearsonglobaleditions.com/Gaddis
http://www.pearsonglobaleditions.com/Gaddis

 Preface 29

Programming Challenges. Each chapter offers a pool of programming challenges
designed to solidify students’ knowledge of topics at hand. In most cases the assignments
present real-world problems to be solved.

Supplements

Student Online Resources

Many student resources are available for this book from the publisher. The following items
are available on the Gaddis Series resource page at www.pearsonglobaleditions.com/Gaddis:

•	 The	source	code	for	each	example	program	in	the	book
•	 Access	to	the	book’s	companion	VideoNotes
•	 Appendixes	A–M	(listed	in	the	Contents)
•	 A	collection	of	seven	valuable	Case	Studies	(listed	in	the	Contents)
•	 Links	to	download	the	Java™	Edition	Development	Kit
•	 Links	to	download	numerous	programming	environments	including	jGRASP™,	Eclipse™,	

TextPad™,	NetBeans™,	JCreator,	and	DrJava

Online Practice and Assessment with MyProgrammingLab

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of program-
ming. Through practice exercises and immediate, personalized feedback, MyProgrammingLab
improves the programming competence of beginning students, who often struggle with the
basic concepts and paradigms of popular high-level programming languages. A self-study
and homework tool, the MyProgrammingLab course consists of hundreds of small practice
exercises organized around the structure of this textbook. For students, the system auto-
matically detects errors in the logic and syntax of their code submissions and offers targeted
hints that enable students to �gure out what went wrong—and why. For instructors, a com-
prehensive gradebook tracks correct and incorrect answers and stores the code inputted by
students for review.

MyProgrammingLab is offered to users of this book in partnership with Turing’s Craft, the
makers of the CodeLab interactive programming exercise system. For a full demonstration,
to see feedback from instructors and students, or to get started using MyProgrammingLab
in your course, visit www.myprogramminglab.com.

Instructor Resources

The following supplements are available to quali�ed instructors:

•	 Answers	to	all	of	the	Review	Questions
•	 Solutions	for	the	Programming	Challenges
•	 PowerPoint	Presentation	slides	for	each	chapter
•	 Computerized	Test	Banks
•	 Source	Code
•	 Lab	Manual
•	 Student	Files	for	the	Lab	Manual
•	 Solutions	to	the	Lab	Manual

http://www.pearsonglobaleditions.com/Gaddis
http://www.myprogramminglab.com

30 Preface

Visit the Pearson Instructor Resource Center (www.pearsonglobaleditions.com/Gaddis) or
contact your local Pearson representative for information on how to access these resources.

Acknowledgments
There have been many helping hands in the development and publication of this book.
We would like to thank the following faculty reviewers for their helpful suggestions
and expertise:

Reviewers For This Edition

Carl Stephen Guynes
University of North Texas

Alan G. Jackson
Oakland Community College

Zhen Jiang
West Chester University

Neven Jurkovic
Palo Alto College

Dennis Lang
Kansas State University

Jiang Li
Austin Peay State University

Cheng Luo
Coppin State University

Felix Rodriguez
Naugatuck Valley Community College

Diane Rudolph
John A Logan College

Timothy Urness
Drake University

Zijiang Yang
Western Michigan University

Reviewers of Previous Editions

Ahmad Abuhejleh
University of Wisconsin, River Falls

Colin Archibald
Valencia Community College

Ijaz Awani
Savannah State University

Bill Bane
Tarleton State University

N. Dwight Barnette
Virginia Tech

Asoke Bhattacharyya
Saint Xavier University, Chicago

Marvin Bishop
Manhattan College

Heather Booth
University of Tennessee, Knoxville

David Boyd
Valdosta University

Julius Brandstatter
Golden Gate University

Kim Cannon
Greenville Tech

Jesse Cecil
College of the Siskiyous

James Chegwidden
Tarrant County College

Kay Chen
Bucks County Community College

Brad Chilton
Tarleton State University

Diane Christie
University of Wisconsin, Stout

http://www.pearsonglobaleditions.com/Gaddis

 Preface 31

Cara Cocking
Marquette University

Jose Cordova
University of Louisiana, Monroe

Walter C. Daugherity
Texas A & M University

Michael Doherty
University of the Pacific

Jeanne M. Douglas
University of Vermont

Sander Eller
California Polytechnic University,
Pomona

Brooke Estabrook-Fishinghawk
Mesa Community College

Mike Fry
Lebanon Valley College

David Goldschmidt
College of St. Rose

Georgia R. Grant
College of San Mateo

Nancy Harris
James Madison University

Chris Haynes
Indiana University

Ric Heishman
Northern Virginia Community College

Deedee Herrera
Dodge City Community College

Mary Hovik
Lehigh Carbon Community College

Brian Howard
DePauw University

Alan Jackson
Oakland Community College (MI)

Norm Jacobson
University of California, Irvine

Stephen Judd
University of Pennsylvania

Harry Lichtbach
Evergreen Valley College

Michael A. Long
California State University, Chico

Tim Margush
University of Akron

Blayne E. May�eld
Oklahoma State University

Scott McLeod
Riverside Community College

Dean Mellas
Cerritos College

Georges Merx
San Diego Mesa College

Martin Meyers
California State University, Sacramento

Pati Milligan
Baylor University

Laurie Murphy
Pacific Lutheran University

Steve Newberry
Tarleton State University

Lynne O’Hanlon
Los Angeles Pierce College

Merrill Parker
Chattanooga State Technical
Community College

Bryson R. Payne
North Georgia College and State
University

Rodney Pearson
Mississippi State University

Peter John Polito
Springfield College

Charles Robert Putnam
California State University,
Northridge

Y. B. Reddy
Grambling State University

32 Preface

I also want to thank everyone at Pearson for making the Starting Out With . . . series so
successful. I have worked so closely with the team at Pearson that I consider them among
my closest friends. I am extremely fortunate to have Matt Goldstein as my editor, and
Kelsey Loanes as Editorial Assistant. They have guided me through the process of revising
this book, as well as many others. I am also fortunate to have Demetrius Hall and Bram Van
Kempen as Marketing Managers. Their hard work is truly inspiring, and they do a great job
getting my books out to the academic community. The production team, led by Camille
Trentacoste, worked tirelessly to make this book a reality. Thanks to you all!

About the Author
Tony Gaddis is the principal author of the Starting Out With . . . series of textbooks.
He has nearly two decades of experience teaching computer science courses, primarily at
Haywood Community College. Tony is a highly acclaimed instructor who was previously
selected as the North Carolina Community College “Teacher of the Year” and has received
the Teaching Excellence award from the National Institute for Staff and Organizational
Development. The Starting Out With . . . series includes introductory textbooks covering
programming	logic	and	design,	C++,	Java™,	Microsoft® Visual Basic®, Microsoft® Visual
C#, Python, Alice, and App Inventor, all published by Pearson.

Pearson wishes to thank and acknowledge the following people for their work on the
Global Edition:

Contributor

Ela Kashyap
Amity University

Reviewers

Elizabeth Riley
Macon State College

Carolyn Schauble
Colorado State University

Bonnie Smith
Fresno City College

Daniel Spiegel
Kutztown University

Caroline St. Clair
North Central College

Karen Stanton
Los Medanos College

Peter van der Goes
Rose State College

Tuan A Vo
Mt. San Antonio College

Xiaoying Wang
University of Mississippi

Yu Wu
University of North Texas

Muthuraj M
Android developer

Arup Kumar Bhattacharjee
RCC Institute of Information Technology

Soumen Mukherjee
RCC Institute of Information Technology

Mohit P. Tahiliani
National Institute of Technology
Karnataka

Harsh Bhasin
Jamia Hamdard

Through the power of practice and immediate personalized

feedback, MyProgrammingLab improves your performance.

Learn more at www.myprogramminglab.com

get with the programming

MyProgrammingLab™

http://www.myprogramminglab.com

This page intentionally left blank

JAVA
 STARTING OUT WITH

JAVA
From Control Structures

through Objects

TM

This page intentionally left blank

37

Introduction to
Computers and JavaC

H
A

P
T

E
R

1
Topics

 1.1 Introduction
 1.2 Why Program?
 1.3 Computer Systems: Hardware and

Software

 1.4 Programming Languages
 1.5 What Is a Program Made Of?
 1.6 The Programming Process
 1.7 Object-Oriented Programming

1.1 introduction
This book teaches programming using Java. Java is a powerful language that runs on prac-
tically every type of computer. It can be used to create large applications or small programs
that are part of a Web site. Before plunging right into learning Java, however, this chapter
will review the fundamentals of computer hardware and software, and then take a broad
look at computer programming in general.

1.2 Why program?

concepT: Computers can do many different jobs because they are programmable.

Every profession has tools that make the job easier to do. Carpenters use hammers, saws,
and measuring tapes. Mechanics use wrenches, screwdrivers, and ratchets. Electronics tech-
nicians use probes, scopes, and meters. Some tools are unique and can be categorized as
belonging to a single profession. For example, surgeons have certain tools that are designed
specifically for surgical operations. Those tools probably aren’t used by anyone other than
surgeons. There are some tools, however, that are used in several professions. Screwdrivers,
for instance, are used by mechanics, carpenters, and many others.

The computer is a tool used by so many professions that it cannot be easily categorized. It
can perform so many different jobs that it is perhaps the most versatile tool ever made. To the
accountant, computers balance books, analyze profits and losses, and prepare tax reports.
To the factory worker, computers control manufacturing machines and track production.
To the mechanic, computers analyze the various systems in an automobile and pinpoint
hard-to-find problems. The computer can do such a wide variety of tasks because it can

38 Chapter 1 Introduction to Computers and Java

be programmed. It is a machine specifically designed to follow instructions. Because of the
computer’s programmability, it doesn’t belong to any single profession. Computers are
designed to do whatever job their programs, or software, tell them to do.

Computer programmers do a very important job. They create software that transforms
computers into the specialized tools of many trades. Without programmers, the users of
computers would have no software, and without software, computers would not be able to
do anything.

Computer programming is both an art and a science. It is an art because every aspect of a
program should be carefully designed. Here are a few of the things that must be designed
for any real-world computer program:

•	 The	logical	flow	of	the	instructions
•	 The	mathematical	procedures
•	 The	layout	of	the	programming	statements
•	 The	appearance	of the	screens
•	 The	way	information	is	presented	to	the	user
•	 The	program’s	“user	friendliness”
•	 Manuals,	help	systems,	and/or	other	forms	of	written	documentation

There is also a science to programming. Because programs rarely work right the first time
they are written, a lot of analyzing, experimenting, correcting, and redesigning is required.
This demands patience and persistence of the programmer. Writing software demands disci-
pline as well. Programmers must learn special languages such as Java because computers do
not understand English or other human languages. Programming languages have strict rules
that must be carefully followed.

Both the artistic and scientific nature of programming makes writing computer software
like designing a car: Both cars and programs should be functional, efficient, powerful, easy
to use, and pleasing to look at.

1.3 computer systems: Hardware and software

concepT: All computer systems consist of similar hardware devices and
software components.

Hardware
Hardware refers to the physical components that a computer is made of. A computer, as we
generally think of it, is not an individual device, but a system of devices. Like the instru-
ments in a symphony orchestra, each device plays its own part. A typical computer system
consists of the following major components:

•	 The	central	processing	unit	(CPU)
•	 Main	memory
•	 Secondary	storage	devices
•	 Input	devices
•	 Output	devices

The organization of a computer system is shown in Figure 1-1.

 1.3 Computer Systems: Hardware and Software 39

Let’s take a closer look at each of these devices.

The cpU

At the heart of a computer is its central processing unit, or CPU.	The	CPU’s	job	is	to	fetch	
instructions, follow the instructions, and produce some resulting data. Internally, the central
processing unit consists of two parts: the control unit and the arithmetic and logic unit (ALU).
The control unit coordinates all of the computer’s operations. It is responsible for determin-
ing where to get the next instruction and regulating the other major components of the com-
puter with control signals. The arithmetic and logic unit, as its name suggests, is designed to
perform	mathematical	operations.	The	organization	of	the	CPU	is	shown	in	Figure	1-2.

Input
Devices

Output
Devices

Secondary
Storage Devices

Central Processing
Unit

Main Memory
(RAM)

Figure 1-1 The organization of a computer system

Figure 1-2 The organization of the CPU

A program is a sequence of instructions stored in the computer’s memory. When a computer
is	running	a	program,	the	CPU	is	engaged	in	a	process	known	formally	as	the	fetch/decode/
execute cycle.	The	steps	in	the	fetch/decode/execute	cycle	are	as	follows:

40 Chapter 1 Introduction to Computers and Java

Fetch	 The	CPU’s	control	unit	fetches,	from	main	memory,	the	next	instruction	in	the	
sequence of program instructions.

Decode The instruction is encoded in the form of a number. The control unit decodes the
instruction and generates an electronic signal.

Execute	 	The	signal	is	routed	to	the	appropriate	component	of	the	computer	(such	as	the	
ALU,	a	disk	drive,	or	some	other	device).	The	signal	causes	the	component	to	
perform an operation.

These steps are repeated as long as there are instructions to perform.

Main Memory

Commonly known as random access memory, or RAM, the computer’s main memory is a
device that holds information. Specifically, RAM holds the sequences of instructions in the
programs that are running and the data those programs are using.

Memory is divided into sections that hold an equal amount of data. Each section is made of
eight	“switches”	that	may	be	either	on	or	off.	A	switch	in	the	on	position	usually	represents	
the number 1, whereas a switch in the off position usually represents the number 0. The com-
puter stores data by setting the switches in a memory location to a pattern that represents a
character or a number. Each of these switches is known as a bit, which stands for binary
digit. Each section of memory, which is a collection of eight bits, is known as a byte. Each
byte is assigned a unique number known as an address. The addresses are ordered from
lowest to highest. A byte is identified by its address in much the same way a post office box
is identified by an address. Figure 1-3 shows a series of bytes with their addresses. In the
illustration, sample data is stored in memory. The number 149 is stored in the byte at
address	16,	and	the	number	72	is stored	in	the	byte	at	address	23.

RAM is usually a volatile type of memory, used only for temporary storage. When the com-
puter is turned off, the contents of RAM are erased.

Figure 1-3 Memory bytes and their addresses

secondary storage

Secondary storage is a type of memory that can hold data for long periods of time—even
when there is no power to the computer. Frequently used programs are stored in secondary
memory and loaded into main memory as needed. Important data, such as word processing
documents, payroll data, and inventory figures, is saved to secondary storage as well.

The most common type of secondary storage device is the disk drive. A traditional disk
drive stores data by magnetically encoding it onto a spinning circular disk. Solid state
drives, which store data in solid-state memory, are increasingly becoming popular. A
solid-state drive has no moving parts, and operates faster than a traditional disk drive.

 1.3 Computer Systems: Hardware and Software 41

Most computers have some sort of secondary storage device, either a traditional disk
drive or a solid-state drive, mounted inside their case. External drives are also available,
which connect to one of the computer’s communication ports. External drives can be used to
create backup copies of important data or to move data to another computer.

In addition to external drives, many types of devices have been created for copying data, and
for moving it to other computers. Universal Serial Bus drives, or USB drives are small
devices	that	plug into	the	computer’s	USB	(Universal	Serial	Bus)	port,	and	appear	to	the
system as a disk drive. These drives do not actually contain a disk, however. They store data
in a special type of memory known as flash memory.	USB	drives	are	inexpensive,	reliable,	
and small enough to be carried in your pocket.

Optical	devices	such	as	the	CD	(compact	disc)	and	the	DVD	(digital	versatile	disc)	are	also	
popular for data storage. Data is not recorded magnetically on an optical disc, but is
encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect the
pits	and	thus	read	the	encoded	data.	Optical	discs	hold	large	amounts	of	data,	and	because	
recordable CD and DVD drives are now commonplace, they make a good medium for
creating backup copies of data.

input Devices

Input is any data the computer collects from the outside world. The device that collects the
data and sends it to the computer is called an input device. Common input devices are the
keyboard,	mouse,	scanner,	and	digital	camera.	Disk	drives,	optical	drives,	and	USB	drives	
can also be considered input devices because programs and data are retrieved from them
and loaded into the computer’s memory.

output Devices

Output	is	any	data	the	computer	sends	to	the	outside	world.	It	might	be	a	sales	report,	a	
list of names, or a graphic image. The data is sent to an output device, which formats and
presents	it.	Common	output	devices	are	monitors	and	printers.	Disk	drives,	USB	drives,	
and	CD	recorders	can	also	be	considered	output	devices	because	the	CPU	sends	data	to	
them to be saved.

software
As previously mentioned, software refers to the programs that run on a computer. There are
two general categories of software: operating systems and application software. An operat-
ing system is a set of programs that manages the computer’s hardware devices and controls
their processes. Most all modern operating systems are multitasking, which means they are
capable of running multiple programs at once. Through a technique called time sharing, a
multitasking system divides the allocation of hardware resources and the attention of the
CPU	among	all	the	executing	programs.	UNIX,	Linux,	Mac	OS, and	Windows	are	multi-
tasking operating systems.

Application software refers to programs that make the computer useful to the user.
These programs solve specific problems or perform general operations that satisfy the
needs of the user. Word processing, spreadsheet, and database packages are all examples of
application software.

42 Chapter 1 Introduction to Computers and Java

checkpoint

www.myprogramminglab.com

1.1 Why is the computer used by so many different people, in so many different professions?

1.2	 List the five major hardware components of a computer system.

1.3 Internally,	the	CPU	consists	of	what	two	units?

1.4 Describe	the	steps	in	the	fetch/decode/execute	cycle.

1.5 What is a memory address? What is its purpose?

1.6 Explain why computers have both main memory and secondary storage.

1.7 What does the term multitasking mean?

1.4 programming Languages

concepT: A program is a set of instructions a computer follows in order to perform
a task. A programming language is a special language used to write
computer programs.

What is a program?
Computers are designed to follow instructions. A computer program is a set of instructions
that enable the computer to solve a problem or perform a task. For example, suppose we
want the computer to calculate someone’s gross pay. The following is a list of things the
computer should do to perform this task.

1. Display	a	message	on	the	screen:	“How	many	hours	did	you	work?”
	 2.	 Allow the user to enter the number of hours worked.

3. Once	the	user	enters	a	number,	store	it	in	memory.
4. Display	a	message	on	the	screen:	“How	much	do	you	get	paid	per	hour?”
5. Allow the user to enter an hourly pay rate.
6. Once	the	user	enters	a	number,	store	it	in	memory.
7. Once	both	the	number	of	hours	worked	and	the	hourly	pay	rate	are	entered,	multiply	

the two numbers and store the result in memory.
 8. Display a message on the screen that shows the amount of money earned. The mes-

sage must include the result of the calculation performed in Step 7.

Collectively, these instructions are called an algorithm. An algorithm is a set of well-defined
steps	for	performing	a	task	or	solving	a	problem.	Notice	that	these	steps	are	sequentially	
ordered.	Step	1	should	be	performed	before	Step	2,	and	so	forth.	It	is	important	that	these	
instructions be performed in their proper sequence.

Although you and I might easily understand the instructions in the pay-calculating algo-
rithm,	it	is	not	ready	to	be	executed	on	a	computer.	A	computer’s	CPU	can	only	process	
instructions that are written in machine language. If you were to look at a machine lan-
guage	program,	you	would	see	a	stream	of	binary	numbers	(numbers	consisting	of	only	1s	
and	0s).	The	binary	numbers	form	machine	language	instructions,	which	the	CPU	interprets	
as commands. Here is an example of what a machine language instruction might look like:

1011010000000101

http://www.myprogramminglab.com

 1.4 Programming Languages 43

As you can imagine, the process of encoding an algorithm in machine language is very
tedious	and	difficult.	In	addition,	each	different	type	of	CPU	has	its	own	machine	language.	
If you wrote a machine language program for computer A and then wanted to run it on
computer	B,	which	has	a	different	type	of	CPU,	you	would	have	to	rewrite	the	program	in	
computer B’s machine language.

Programming languages, which use words instead of numbers, were invented to ease the
task of programming. A program can be written in a programming language, which is much
easier to understand than machine language, and then translated into machine language.
Programmers use software to perform this translation. Many programming languages have
been created. Table 1-1 lists a few of the well-known ones.

Table 1-1 Programming languages

Language Description

BASIC Beginners All-purpose Symbolic Instruction Code is a general-purpose, proce-
dural programming language. It was originally designed to be simple enough for
beginners to learn.

FORTRAN FORmula	TRANslator	is	a	procedural	language designed	for	programming	com-
plex mathematical algorithms.

COBOL Common	Business-Oriented	Language	is	a	procedural	language	designed	for	
business applications.

Pascal Pascal is a structured, general-purpose, procedural language designed primarily
for teaching programming.

C C is a structured, general-purpose, procedural language developed at Bell Laboratories.

C++ Based on the C language, C++ offers object-oriented features not found in C.
C++ was also invented at Bell Laboratories.

C# Pronounced	“C	sharp.”	It	is	a	language	invented	by	Microsoft	for	developing	
applications	based	on	the	Microsoft	.NET	platform.

Java Java is an object-oriented language invented at Sun Microsystems, and is now
owned	by	Oracle.	It	may	be	used	to	develop	stand-alone	applications	that	operate	
on a single computer, applications that run over the Internet from a Web server, and
applets that run in a Web browser.

JavaScript JavaScript is a programming language that can be used in a Web site to perform
simple operations. Despite its name, JavaScript is not related to Java.

Perl A general-purpose programming language used widely on Internet servers.

PHP A programming language used primarily for developing Web server applications
and dynamic Web pages.

Python Python is an object-oriented programming language used in both business and
academia. Many popular Web sites contain features developed in Python.

Ruby Ruby is a simple but powerful object-oriented programming language. It can be used
for a variety of purposes, from small utility programs to large Web applications.

Visual Basic Visual Basic is a Microsoft programming language and software development envi-
ronment that allows programmers to create Windows-based applications quickly.

44 Chapter 1 Introduction to Computers and Java

A History of Java
In	1991	a	team	was formed	at	Sun	Microsystems	(a	company	that	is	now	owned	by	Oracle)	
to speculate about the important technological trends that might emerge in the near future.
The team, which was named the Green Team, concluded that computers would merge with
consumer	appliances.	Their	first	project	was	to	develop	a	handheld	device	named	*7	(pro-
nounced	star	seven)	that	could	be	used	to	control	a	variety	of	home	entertainment	devices.	
For the unit to work, it had to use a programming language that could be processed by all
the devices it controlled. This presented a problem because different brands of consumer
devices use different processors, each with its own machine language.

Because no such universal language existed, James Gosling, the team’s lead engineer, created
one.	Programs	written	in	this	language,	which	was	originally	named	Oak,	were	not	trans-
lated into the machine language of a specific processor, but were translated into an interme-
diate language known as byte code. Another program would then translate the byte code
into machine language that could be executed by the processor in a specific consumer device.

Unfortunately,	the	technology	developed	by	the	Green	Team	was	ahead	of	its	time.	No	cus-
tomers could be found, mostly because the computer-controlled consumer appliance indus-
try was just beginning. But rather than abandoning their hard work and moving on to other
projects, the team saw another opportunity: the Internet. The Internet is a perfect environ-
ment	for	a	universal	programming	language	such	as	Oak.	It	consists	of	numerous	different	
computer platforms connected together in a single network.

To demonstrate the effectiveness of its language, which was renamed Java, the team used it to
develop a Web browser. The browser, named HotJava, was able to download and run small
Java programs known as applets. This gave the browser the capability to display animation
and interact with the user. HotJava was demonstrated at the 1995 SunWorld conference
before	a	wowed	audience.	Later	the	announcement	was	made	that	Netscape	would	incorpo-
rate	Java	technology	into	its	Navigator	browser.	Other	Internet	companies	rapidly	followed,	
increasing the acceptance and the influence of the Java language. Today, Java is very popular
for developing not only applets for the Internet but also stand-alone applications.

Java Applications and Applets
There are two types of programs that may be created with Java: applications and applets.
An application is a stand-alone program that runs on your computer. You have probably
used several applications already, such as word processors, spreadsheets, database manag-
ers, and graphics programs. Although Java may be used to write these types of applications,
other languages such as C, C++, and Visual Basic are also used.

In the previous section you learned that Java may also be used to create applets. The term
applet refers to a small application, in the same way that the term piglet refers to a small
pig.	Unlike	applications,	an	applet	is	designed	to	be	transmitted	over	the	Internet	from	a	
Web server, and then executed in a Web browser. Applets are important because they can be
used to extend the capabilities of a Web page significantly.

Web	pages	are	normally	written	in	Hypertext	Markup	Language	(HTML).	HTML	is	lim-
ited, however, because it merely describes the content and layout of a Web page. HTML
does not have sophisticated abilities such as performing math calculations and interacting
with the user. A Web designer can write a Java applet to perform operations that are

 1.5 What Is a Program Made Of? 45

 normally performed by an application and embed it in a Web site. When someone visits the
Web site, the applet is downloaded to the visitor’s browser and executed.

security

Any time content is downloaded from a Web server to a visitor’s computer, security is an
important concern. Because Java is a full-featured programming language, at first you might
be suspicious of any Web site that transmits an applet to your computer. After all, couldn’t
a Java applet do harmful things, such as deleting the contents of the disk drive or transmit-
ting private information to another computer? Fortunately, the answer is no. Web browsers
run Java applets in a secure environment within your computer’s memory and do not allow
them to access resources, such as a disk drive, that are outside that environment.

1.5 What is a program Made of?

concepT: There are certain elements that are common to all programming
languages.

Language elements
All	programming	languages	have	some	things	in	common.	Table	1-2	lists	the	common	ele-
ments you will find in almost every language.

Table 1-2 The common elements of a programming language

Language Element Description

Key Words These are words that have a special meaning in the programming lan-
guage. They may be used for their intended purpose only. Key words
are also known as reserved words.

Operators Operators	are	symbols	or	words	that	perform	operations	on	one or	more	
operands. An operand is usually an item of data, such as a number.

Punctuation Most programming languages require the use of punctuation
characters. These characters serve specific purposes, such as marking
the beginning or ending of a statement, or separating items in a list.

Programmer-Defined
Names

Unlike	key	words,	which	are	part	of	the	programming	language,	these	
are words or names that are defined by the programmer. They are used
to identify storage locations in memory and parts of the program that
are created by the programmer. Programmer-defined names are often
called identifiers.

Syntax These are rules that must be followed when writing a program. Syntax
dictates how key words and operators may be used, and where punctu-
ation symbols must appear.

46 Chapter 1 Introduction to Computers and Java

Let’s look at an example Java program and identify an instance of each of these elements.
Code Listing 1-1 shows the code listing with each line numbered.

noTe: The line numbers are not part of the program. They are included to help point
out specific parts of the program.

Table 1-3 The Java key words

abstract const final int public throw

assert continue finally interface return throws

boolean default float long short transient

break do for native static true

byte double goto new strictfp try

case else if null super void

catch enum implements package switch volatile

char extends import private synchronized while

class false instanceof protected this

code Listing 1-1 Payroll.java

1 public class Payroll
2 {
3 public static void main(String[] args)
4 {
5 int hours = 40;
6 double grossPay, payRate = 25.0;
7
8 grossPay = hours * payRate;
9 System.out.println("Your gross pay is $" + grossPay);

10 }
11 }

Key Words (Reserved Words)

Two of Java’s key words appear in line 1: public and class. In line 3, the words public,
static, and void are all key words. The words int in line 5 and double in line 6 are also key
words. These words, which are always written in lowercase, each have a special meaning in
Java and can only be used for their intended purpose. As you will see, the programmer is
allowed to make up his or her own names for certain things in a program. Key words, how-
ever, are reserved and cannot be used for anything other than their designated purpose. Part
of learning a programming language is learning the commonly used key words, what they
mean, and how to use them.

Table 1-3 shows a list of the Java key words.

 1.5 What Is a Program Made Of? 47

programmer-Defined names

The words hours, payRate, and grossPay that appear in the program in lines 5, 6, 8, and 9
are programmer-defined names. They are not part of the Java language but are names made
up by the programmer. In this particular program, these are the names of variables. As you
will learn later in this chapter, variables are the names of memory locations that may hold
data.

operators

In line 8 the following line appears:

grossPay = hours * payRate;

The = and * symbols are both operators. They perform operations on items of data, known
as operands. The * operator multiplies its two operands, which in this example are the vari-
ables hours and payRate. The = symbol is called the assignment operator. It takes the value
of the expression that appears at its right and stores it in the variable whose name appears
at its left. In this example, the = operator stores in the grossPay variable the result of the
hours variable multiplied by the payRate	variable.	In	other	words,	the	statement	says,	“the	
grossPay variable is assigned the value of hours times payRate.”

punctuation

Notice	that	lines	5,	6,	8,	and	9	end	with	a	semicolon.	A	semicolon	in	Java	is	similar	to	a	
period	in	English:	It	marks	the	end	of	a	complete	sentence	(or	statement,	as	it	is	called	in	
programming	jargon).	Semicolons	do	not	appear	at	the	end	of	every	line	in	a	Java	program,	
however. There are rules that govern where semicolons are required and where they are not.
Part of learning Java is learning where to place semicolons and other punctuation symbols.

Lines and statements
Often,	the	contents	of	a	program	are	thought	of	in	terms	of	lines	and	statements.	A	line is
just that—a single line as it appears in the body of a program. Code Listing 1-1 is shown
with each of its lines numbered. Most of the lines contain something meaningful; however,
line 7 is empty. Blank lines are only used to make a program more readable.

A statement is a complete instruction that causes the computer to perform some action.
Here is the statement that appears in line 9 of Code Listing 1-1:

System.out.println("Your gross pay is $" + grossPay);

This statement causes the computer to display a message on the screen. Statements can be
a combination of key words, operators, and programmer-defined names. Statements
often occupy only one line in a program, but sometimes they are spread out over more than
one line.

Variables
The most fundamental way that a Java program stores an item of data in memory is with a
variable. A variable is a named storage location in the computer’s memory. The data stored
in	a	variable	may	change	while	the	program	is	running	(hence	the	name	“variable”).	Notice	
that in Code Listing 1-1 the programmer-defined names hours, payRate, and grossPay

48 Chapter 1 Introduction to Computers and Java

appear in several places. All three of these are the names of variables. The hours variable is
used to store the number of hours the user has worked. The payRate variable stores the
user’s hourly pay rate. The grossPay variable holds the result of hours multiplied by payRate,
which is the user’s gross pay.

Variables are symbolic names made up by the programmer that represent locations in the
computer’s RAM. When data is stored in a variable, it is actually stored in RAM. Assume
that a program has a variable named length. Figure 1-4 illustrates the way the variable
name represents a memory location.

In Figure 1-4, the variable length	is	holding	the	value	72.	The	number	72	is	actually	stored	
in	RAM	at	address	23,	but	the	name	length symbolically represents this storage location. If
it	helps,	you	can	think	of	a	variable	as	a	box	that	holds	data.	In	Figure	1-4,	the	number	72	
is stored in the box named length.	Only	one	item	may	be	stored	in	the	box	at	any	given	
time.	If	the	program	stores	another	value	in	the	box,	it	will	take	the	place	of	the	number	72.

Figure 1-4 A variable name represents a location in memory

The compiler and the Java Virtual Machine
When a Java program is written, it must be typed into the computer and saved to a file. A
text editor, which is similar to a word processing program, is used for this task. The Java
programming statements written by the programmer are called source code, and the file
they are saved in is called a source file. Java source files end with the .java extension.

After the programmer saves the source code to a file, he or she runs the Java compiler. A
compiler is a program that translates source code into an executable form. During the trans-
lation process, the compiler uncovers any syntax errors that may be in the program. Syntax
errors are mistakes that the programmer has made that violate the rules of the progra-
mming language. These errors must be corrected before the compiler can translate the
source	code.	Once	the	program	is	free	of	syntax	errors,	the	compiler	creates	another	file	that	
holds the translated instructions.

Most programming language compilers translate source code directly into files that contain
machine language instructions. These are called executable files because they may be exe-
cuted	directly	by	the	computer’s	CPU.	The	Java	compiler,	however,	translates	a	Java	source	
file into a file that contains byte code instructions. Byte code instructions are not machine
language,	and	therefore	cannot	be	directly	executed	by	the	CPU.	Instead,	they	are	executed	
by the Java Virtual Machine	 (JVM).	The	 JVM	is	a	program	that	 reads	 Java	byte code	
instructions and executes them as they are read. For this reason, the JVM is often called an
interpreter, and Java is often referred to as an interpreted language. Figure 1-5 illustrates
the process of writing a Java program, compiling it to byte code, and running it.

 1.5 What Is a Program Made Of? 49

Although	Java	byte	code	is	not	machine	language	for	a	CPU,	it	can	be	considered	as	machine	
language for the JVM. You can think of the JVM as a program that simulates a computer
whose machine language is Java byte code.

portability

The term portable means that a program may be written on one type of computer and then
run on a wide variety of computers, with little or no modification necessary. Because Java
byte code is the same on all computers, compiled Java programs are highly portable. In fact,
a compiled Java program may be run on any computer that has a JVM. Figure 1-6 illus-
trates the concept of a compiled Java program running on Windows, Linux, Mac, and
UNIX	computers.

With most other programming languages, portability is achieved by the creation of a com-
piler for each type of computer that the language is to run on. For example, in order for the
C++ language to be supported by Windows, Linux, and Mac computers, a separate C++
compiler must be created for each of those environments. Compilers are very complex pro-
grams, and more difficult to develop than interpreters. For this reason, a JVM has been
developed for many types of computers.

Byte Code
File

Figure 1-5
Program development process

Byte Code
File

Figure 1-6 Java byte code may be run on any
computer with a Java Virtual Machine

50 Chapter 1 Introduction to Computers and Java

Java software editions
The software that you use to create Java programs is referred to as the JDK	(Java	Develop-
ment	Kit)	or	the	SDK	(Software	Development	Kit).	There	are	the	following	different	edi-
tions	of	the	JDK	available	from	Oracle:

•	 Java SE—The Java Standard Edition provides all the essential software tools neces-
sary for writing Java applications and applets.

•	 Java EE—The Java Enterprise Edition provides tools for creating large business appli-
cations that employ servers and provide services over the Web.

•	 Java ME—The Java Micro Edition provides a small, highly optimized runtime envi-
ronment for consumer products such as cell phones, pagers, and appliances.

These	editions	of	Java	may	be	downloaded	from	Oracle	by	going	to:

http://java.oracle.com

noTe: You can follow the instructions in Appendix E, which can be downloaded from
the book’s companion Web site, to install the JDK on your system. You can access the
book’s	companion	Web	site	by	going	to	www.pearsonglobaleditions.com/Gaddis.

Tip: In Windows click Start, go to All Programs, and then go to Accessories. Click
 Command Prompt on the Accessories menu. A command prompt window should open.

compiling and Running a Java program
Compiling	a	Java	program	is	a	simple	process.	Once	you	have	installed	the	JDK,	go	to	your	
operating system’s command prompt.

At the operating system command prompt, make sure you are in the same directory or
folder where the Java program that you want to compile is located. Then, use the javac
command, in the following form:

javac Filename

Filename is the name of a file that contains the Java source code. As mentioned earlier, this
file has the .java extension. For example, if you want to compile the Payroll.java file, you
would execute the following command:

javac Payroll.java

This command runs the compiler. If the file contains any syntax errors, you will see one or
more error messages and the compiler will not translate the file to byte code. When this
happens you must open the source file in a text editor and fix the error. Then you can run
the compiler again. If the file has no syntax errors, the compiler will translate it to byte
code. Byte code is stored in a file with the .class extension, so the byte code for the Payroll.
java file will be stored in Payroll.class, which will be in the same directory or folder as the
source file.

To run the Java program, you use the java command in the following form:

java ClassFilename

Compiling and
Running a Java

Program

VideoNote

http://java.oracle.com
http://www.pearsonglobaleditions.com/Gaddis

 1.5 What Is a Program Made Of? 51

ClassFilename is the name of the .class file that you wish to execute; however, you do not
type the .class extension. For example, to run the program that is stored in the Payroll.class
file, you would enter the following command:

java Payroll

This	command	runs	the	Java	interpreter	(the	JVM)	and	executes	the	program.

integrated Development environments

In addition to the command prompt programs, there are also several Java integrated devel-
opment	environments	(IDEs).	These	environments	consist	of	a	text	editor,	compiler,	debug-
ger, and other utilities integrated into a package with a single set of menus. A program is
compiled and executed with a single click of a button, or by selecting a single item from a
menu.	Figure	1-7	shows	a	screen	from	the	NetBeans	IDE.

Using an IDE
VideoNote

checkpoint

www.myprogramminglab.com

1.8 Describe the difference between a key word and a programmer-defined symbol.

1.9 Describe the difference between operators and punctuation symbols.

Figure 1-7 An integrated development environment (IDE) (Oracle Corporate Counsel)

http://www.myprogramminglab.com

52 Chapter 1 Introduction to Computers and Java

1.10 Describe the difference between a program line and a statement.

1.11 Why	are	variables	called	“variable”?

1.12	 What happens to a variable’s current contents when a new value is stored there?

1.13 What is a compiler?

1.14 What is a syntax error?

1.15 What is byte code?

1.16 What is the JVM?

1.6 The programming process

concepT: The programming process consists of several steps, which include design,
creation, testing, and debugging activities.

Now	that	you	have	been	introduced	to	what	a	program	is,	it’s	time	to	consider	the	process	
of creating a program. Quite often when inexperienced students are given programming
assignments, they have trouble getting started because they don’t know what to do first. If
you find yourself in this dilemma, the following steps may help.

 1. Clearly define what the program is to do.
	 2.	 Visualize the program running on the computer.
 3. Use	design	tools	to	create	a	model	of	the	program.
 4. Check the model for logical errors.
 5. Enter the code and compile it.
 6. Correct any errors found during compilation. Repeat Steps 5 and 6 as many times

as necessary.
 7. Run the program with test data for input.
 8. Correct any runtime errors found while running the program. Repeat Steps 5 through

8 as many times as necessary.
 9. Validate the results of the program.

These steps emphasize the importance of planning. Just as there are good ways and bad
ways to paint a house, there are good ways and bad ways to create a program. A good pro-
gram always begins with planning. With the pay-calculating algorithm that was presented
earlier in this chapter serving as our example, let’s look at each of the steps in more detail.

1. clearly define what the program is to do

This step commonly requires you to identify the purpose of the program, the data that is to
be input, the processing that is to take place, and the desired output. Let’s examine each of
these requirements for the pay-calculating algorithm.

 Purpose To calculate the user’s gross pay.

 Input	 Number	of	hours	worked, hourly	pay	rate.

 Process Multiply number of hours worked by hourly pay rate. The result is the user’s
gross pay.

 Output Display a message indicating the user’s gross pay.

 1.6 The Programming Process 53

2. Visualize the program running on the computer

Before you create a program on the computer, you should first create it in your mind. Try to
imagine what the computer screen will look like while the program is running. If it helps,
draw pictures of the screen, with sample input and output, at various points in the program.
For instance, Figure 1-8 shows the screen we might want produced by a program that
implements the pay-calculating algorithm.

Figure 1-8 Screen produced by the pay-calculating algorithm

In this step, you must put yourself in the shoes of the user. What messages should the pro-
gram display? What questions should it ask? By addressing these concerns, you can deter-
mine most of the program’s output.

3. Use design tools to create a model of the program

While planning a program, the programmer uses one or more design tools to create a model
of the program. For example, pseudocode is a cross between human language and a pro-
gramming language and is especially helpful when designing an algorithm. Although the
computer can’t understand pseudocode, programmers often find it helpful to write an algo-
rithm	in	a	language	that’s	“almost”	a	programming	language,	but	still	very	similar	to	natu-
ral language. For example, here is pseudocode that describes the pay-calculating algorithm:

Get payroll data.
Calculate gross pay.
Display gross pay.

Although this pseudocode gives a broad view of the program, it doesn’t reveal all the pro-
gram’s details. A more detailed version of the pseudocode follows:

Display “How many hours did you work?”
Input hours.
Display “How much do you get paid per hour?”
Input rate.
Store the value of hours times rate in the pay variable.
Display the value in the pay variable.

Notice	that	the	pseudocode	uses	statements	that	look	more	like	commands	than	the	English
statements that describe the algorithm in Section 1.4. The pseudocode even names variables
and describes mathematical operations.

4. check the model for logical errors

Logical	errors	are	mistakes	that	cause	the	program	to	produce	erroneous	results.	Once	a	
model of the program is assembled, it should be checked for these errors. For example, if
pseudocode is used, the programmer should trace through it, checking the logic of each
step. If an error is found, the model can be corrected before the next step is attempted.

54 Chapter 1 Introduction to Computers and Java

5. enter the code and compile it

Once	a	model	of	the	program	has	been	created,	checked,	and	corrected,	the	programmer	is	
ready to write source code on the computer. The programmer saves the source code to a file
and begins the process of compiling it. During this step the compiler will find any syntax
errors that may exist in the program.

6. correct any errors found during compilation. Repeat steps 5 and 6 as
many times as necessary

If the compiler reports any errors, they must be corrected. Steps 5 and 6 must be repeated
until the program is free of compile-time errors.

7. Run the program with test data for input

Once	an	executable	file	is	generated,	the	program	is	ready	to	be	tested	for	runtime	errors.	A	
runtime error is an error that occurs while the program is running. These are usually logical
errors, such as mathematical mistakes.

Testing for runtime errors requires that the program be executed with sample data or sam-
ple input. The sample data should be such that the correct output can be predicted. If the
program does not produce the correct output, a logical error is present in the program.

8. correct any runtime errors found while running the program. Repeat
steps 5 through 8 as many times as necessary

When runtime errors are found in a program, they must be corrected. You must identify the
step where the error occurred and determine the cause. If an error is a result of incorrect
logic	(such	as	an	improperly	stated	math	formula),	you	must	correct	the	statement	or	state-
ments involved in the logic. If an error is due to an incomplete understanding of the program
requirements, then you must restate the program purpose and modify the program model
and source code. The program must then be saved, recompiled, and retested. This means
Steps 5 though 8 must be repeated until the program reliably produces satisfactory results.

9. Validate the results of the program

When you believe you have corrected all the runtime errors, enter test data and determine
whether the program solves the original problem.

software engineering
The field of software engineering encompasses the whole process of crafting computer software.
It includes designing, writing, testing, debugging, documenting, modifying, and maintaining
complex software development projects. Like traditional engineers, software engineers use
a number of tools in their craft. Here are a few examples:

•	 Program	specifications
•	 Diagrams	of	screen	output
•	 Diagrams	representing	the	program	components	and	the	flow	of	data
•	 Pseudocode
•	 Examples	of	expected	input	and	desired	output
•	 Special software designed	for	testing	programs

 1.7 Object-Oriented Programming 55

Most	commercial	software	applications	are	large	and	complex.	Usually	a	team	of	programmers,	
not a single individual, develops them. It is important that the program requirements be
thoroughly analyzed and divided into subtasks that are handled by individual teams, or
individuals within a team.

checkpoint

www.myprogramminglab.com

1.17 What four items should you identify when defining what a program is to do?

1.18 What	does	it	mean	to	“visualize	a	program	running”?	What	is	the	value	of	such	
an activity?

1.19 What is pseudocode?

1.20	 Describe what a compiler does with a program’s source code.

1.21	 What is a runtime error?

1.22	 Is	a	syntax	error	(such	as	misspelling	a	key	word)	found	by	the	compiler	or	when	
the program is running?

1.23	 What is the purpose of testing a program with sample data or input?

1.7 object-oriented programming

concepT: Java is an object-oriented programming (OOP) language. OOP is a
method of software development that has its own practices, concepts,
and vocabulary.

There are primarily two methods of programming in use today: procedural and object-
oriented. The earliest programming languages were procedural, meaning a program was
made of one or more procedures. A procedure is a set of programming statements that,
together, perform a specific task. The statements might gather input from the user, manipu-
late data stored in the computer’s memory, and perform calculations or any other operation
necessary to complete the procedure’s task.

Procedures typically operate on data items that are separate from the procedures. In a pro-
cedural program, the data items are commonly passed from one procedure to another, as
shown in Figure 1-9.

Figure 1-9 Data is passed among procedures

http://www.myprogramminglab.com

56 Chapter 1 Introduction to Computers and Java

As you might imagine, the focus of procedural programming is on the creation of proce-
dures that operate on the program’s data. The separation of data and the code that operates
on the data often leads to problems, however. For example, the data is stored in a particular
format, which consists of variables and more complex structures that are created from vari-
ables. The procedures that operate on the data must be designed with that format in mind.
But, what happens if the format of the data is altered? Quite often, a program’s specifica-
tions change, resulting in a redesigned data format. When the structure of the data changes,
the code that operates on the data must also be changed to accept the new format. This
results in added work for programmers and a greater opportunity for bugs to appear in
the code.

This has helped influence the shift from procedural programming to object-oriented pro-
gramming	(OOP).	Whereas	procedural	programming	is	centered	on	creating	procedures,	
object-oriented programming is centered on creating objects. An object is a software entity
that contains data and procedures. The data contained in an object is known as the object’s
attributes. The procedures, or behaviors, that an object performs are known as the object’s
methods.	The	object	is,	conceptually,	a	self-contained	unit	consisting	of	data	(attributes)	
and	procedures	(methods).	This	is	illustrated	in	Figure	1-10.

OOP	addresses	the problem	of	code/data	separation	through	encapsulation	and	data	hid-
ing. Encapsulation refers to the combining of data and code into a single object. Data hid-
ing	refers	to	an	object’s	ability	to	hide	its	data	from	code	that	is	outside	the	object.	Only	the	
object’s methods may then directly access and make changes to the object’s data. An object
typically hides its data, but allows outside code to access the methods that operate on the
data. As shown in Figure 1-11, the object’s methods provide programming statements out-
side the object with indirect access to the object’s data.

When an object’s internal data is hidden from outside code and access to that data is
restricted to the object’s methods, the data is protected from accidental corruption. In addi-
tion, the programming code outside the object does not need to know about the format or

Figure 1-10 An object contains data
and procedures

Figure 1-11 Code outside the object
interacts with the object’s methods

 Review Questions and Exercises 57

internal structure of the object’s data. The code only needs to interact with the object’s
methods. When a programmer changes the structure of an object’s internal data, he or she
also modifies the object’s methods so they may properly operate on the data. The way in
which outside code interacts with the methods, however, does not change.

These are just a few of the benefits of object-oriented programming. Because Java is fully
object-oriented,	you	will	learn	much	more	about	OOP	practices,	concepts,	and	terms	as	you	
progress through this book.

checkpoint

www.myprogramminglab.com

1.24	 In procedural programming, what two parts of a program are typically separated?

1.25	 What are an object’s attributes?

1.26	 What are an object’s methods?

1.27	 What is encapsulation?

1.28	 What is data hiding?

Review Questions and exercises
Multiple choice

 1. This part of the computer fetches instructions, carries out the operations commanded
by the instructions, and produces some outcome or resultant information.
a. memory
b.	CPU
c. secondary storage
d. input device

	 2.	 A	byte	is	made	up	of	eight
a.	 CPUs
b. addresses
c. variables
d. bits

 3. The coordination of all the operations of a computer is controlled by ____________
a.	 the	ALU
b. the control unit
c. memory
d. a storage device

 4. This type of memory can hold data for long periods of time—even when there is no
power to the computer.
a. RAM
b. primary storage
c. secondary storage
d.	CPU	storage

http://www.myprogramminglab.com

58 Chapter 1 Introduction to Computers and Java

5. A runtime error is usually the result of
a. a syntax error
b. a logical error
c. a compilation error
d. bad data

6. This type of program is designed to be transmitted over the Internet and run in a Web
browser.
a. application
b. applet
c. machine language
d. source code

7. These are words that have a special meaning in the programming language.
a. punctuation
b. programmer-defined names
c. key words
d. operators

8. These are symbols or words that perform operations on one or more operands.
a. punctuation
b. programmer-defined names
c. key words
d. operators

9. These are collections of well-defined instructions to perform a task or to solve a
problem.
a. program
b. statement
c. operation
d. circuits

10. These are words or names that are used to identify storage locations in memory and
parts of the program that are created by the programmer.
a. punctuation
b. programmer-defined names
c. key words
d. operators

11. These are the rules that must be followed when writing a program.
a. syntax
b. punctuation
c. key words
d. operators

	12.	 This	is	a	named	storage	location	in	the	computer’s	memory.
a. class
b. key word
c. variable
d. operator

 Review Questions and Exercises 59

 13. The Java compiler generates __________.
a. machine code
b. byte code
c. source code
d. HTML

 14. IDE stands for ___________.
a. Integrated Design Enhancement
b. Integrated Design Environments
c. Integrated Data Environments
d. Integrated Development Environments

Find the error

 1. The following pseudocode algorithm has an error. The program is supposed to ask
the user for the length and width of a rectangular room, and then display the room’s
area. The program must multiply the width by the length to determine the area. Find
the error.

area 5 width 3 length
Display “What is the room’s width?”
Input width.
Display “What is the room’s length?”
Input length.
Display area.

Algorithm Workbench

Write pseudocode algorithms for the programs described as follows:

 1. Available Credit

 A program that calculates a customer’s available credit should ask the user for
the following:

•	 The	customer’s	maximum	amount	of	credit
•	 The	amount	of	credit	used	by	the	customer

	 	 Once	these	items	have	been	entered,	the	program	should	calculate	and	display	the	cus-
tomer’s available credit. You can calculate available credit by subtracting the amount
of credit used from the maximum amount of credit.

	 2.	 Sales Tax

 A program that calculates the total of a retail sale should ask the user for the following:

•	 The	retail	price of	the	item	being	purchased
•	 The	sales	tax	rate

	 	 Once	 these	 items	 have	 been	 entered,	 the	 program	 should	 calculate	 and	 display
the following:

•	 The	sales	tax	for	the	purchase
•	 The	total	of	the	sale

60 Chapter 1 Introduction to Computers and Java

3. Discount Calculation

A program that calculates the total discount obtained on the online purchase of two
products must ask the user for the following:

•	 The	price	of	each	product	before	discount
•	 The	percentage	of	discount	on	each	product

	 	 Once	the	program	calculates	the	total	discount,	it	should	be	displayed	on	the	screen.

predict the Result

The following are programs expressed as English statements. What would each display on
the screen if they were actual programs?

 1. The variable x starts with the value 4.

The variable y starts with the value 3.
Multiply x	by	2.
Multiply y by 3.
Subtract x from y and store the result in y.
Display the value in y on the screen.

	 2.	 The	variable	a starts with the value 10.

The variable b	starts	with	the	value	2.

The variable c starts with the value 4.
Store the value of a times b in a.
Store the value of b times c in c.
Add a and c, and store the result in b.
Display the value in b on the screen.

short Answer

 1. Both main memory and secondary storage are types of memory. Describe the differ-
ence between the two.

	 2.	 What	type	of	memory	is	usually	volatile?

 3. What is the difference between operating system software and application software?

 4. Why must programs written in a high-level language be translated into machine lan-
guage before they can be run?

 5. Why is it easier to write a program in a high-level language than in machine language?

 6. What is a source file?

 7. What is the difference between a syntax error and a logical error?

 8. What is an algorithm?

 9. What is a compiler?

 10. What is the difference between an application and an applet?

 11. Why are Java applets safe to download and execute?

	12.	 What	must	a	computer	have	in	order	for	it	to	execute	Java	programs?

 13. What is the difference between machine language code and byte code?

 Programming Challenge 61

 14. Why does byte code make Java a portable language?

 15. Is encapsulation a characteristic of procedural or object-oriented programming?

 16. Why should an object hide its data?

 17. What part of an object forms an interface through which outside code may access the
object’s data?

 18. What are the steps involved in converting Java source code into machine code?

 19. Will the Java compiler translate a source file that contains syntax errors?

	20.	 What	does	the	Java	compiler	translate	Java	source	code	to?

	21.	 Assuming	you	are	using	the	JDK,	what	command	would	you	type	at	 the	operating	
system command prompt to compile the program LabAssignment.java?

	22.	 Assuming	there	are	no	syntax	errors	in	the	LabAssignment.java program when it is
compiled, answer the following questions.

a. What file will be produced?
b. What will the file contain?
c. What command would you type at the operating system command prompt to run

the program?

programming challenge

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. Your First Java program

This assignment will help you get acquainted with your Java development software. Here is
the Java program you will enter:

// This is my first Java program.
public class MyFirstProgram
{
 public static void main(String[] args)
 {
 System.out.println(“Hello World!”);
 }
}

if You Are Using the JDK at the command prompt:

	 1.	 Use	a	text	editor	to	type	the	source	code	exactly	as	it	is	shown.	Be	sure	to	place	all	the	
punctuation characters and be careful to match the case of the letters as they are
shown. Save it to a file named MyFirstProgram.java.

	 2.	 After	saving	the	program,	go	to	your	operating	system’s	command	prompt	and	change	
your current directory or folder to the one that contains the Java program you just
created. Then use the following command to compile the program:

javac MyFirstProgram.java

Your First Java
Program

VideoNote

http://www.myprogramminglab.com

62 Chapter 1 Introduction to Computers and Java

If you typed the contents of the file exactly as shown, you shouldn’t have any syntax
errors. If you see error messages, open the file in the editor and compare your code to
that shown. Correct any mistakes you have made, save the file, and run the compiler
again. If you see no error messages, the file was successfully compiled.

	 3.	 Next,	enter	the	following	command	to	run	the	program:

java MyFirstProgram

Be sure to use the capitalization of MyFirstProgram exactly as it is shown here. You
should	see	the	message	“Hello	World!”	displayed	on	the	screen.

if You Are Using an iDe:

Because there are many Java IDEs, we cannot include specific instructions for all of these.
The following are general steps that should apply to most of them. You will need to consult
your IDE’s documentation for specific instructions.

 1. Start your Java IDE and perform any necessary setup operations, such as starting a
new project and creating a new Java source file.

	 2.	 Use	the	IDE’s	text	editor	to	type	the	source	code	exactly	as	it	 is	shown.	Be	sure	to	
place all the punctuation characters and be careful to match the case of the letters as
they are shown. Save it to a file named MyFirstProgram.java.

 3. After saving the program, use your IDE’s command to compile the program. If you
typed the contents of the file exactly as shown, you shouldn’t have any syntax errors.
If you see error messages, compare your code to that shown. Correct any mistakes you
have made, save the file, and run the compiler again. If you see no error messages, the
file was successfully compiled.

Use	your	 IDE’s	 command	 to	 run	 the	program.	You	 should	 see	 the	message	“Hello	
World!”	displayed.

63

Java Fundamentals

C
H

A
P

T
E

R

2
Topics

 2.1 The Parts of a Java Program
 2.2 The print and println Methods, and

the Java API
 2.3 Variables and Literals
 2.4 Primitive Data Types
 2.5 Arithmetic Operators
 2.6 Combined Assignment Operators
 2.7 Conversion between Primitive Data

Types

 2.8 Creating Named Constants with final
 2.9 The String Class
 2.10 Scope
 2.11 Comments
 2.12 Programming Style
 2.13 Reading Keyboard Input
 2.14 Dialog Boxes
 2.15 Common Errors to Avoid

2.1 The parts of a Java program

concepT: A Java program has parts that serve specific purposes.

Java programs are made up of different parts. Your first step in learning Java is to learn what
the parts are. We will begin by looking at a simple example, shown in Code Listing 2-1.

code Listing 2-1 (Simple.java)

 1 // This is a simple Java program.
 2
 3 public class Simple
 4 {
 5 public static void main(String[] args)
 6 {
 7 System.out.println("Programming is great fun!");
 8 }
 9 }

64 Chapter 2 Java Fundamentals

As mentioned in Chapter 1, the names of Java source code files end with .java. The program
shown in Code Listing 2-1 is named Simple.java. Using the Java compiler, this program may
be compiled with the following command:

javac Simple.java

The compiler will create another file named Simple.class, which contains the translated Java
byte code. This file can be executed with the following command:

java Simple

Tip: Remember, the line numbers shown in the program listings are not part of the pro-
gram. The numbers are shown so we can refer to specific lines in the programs.

Tip: Remember, you do not type the .class extension when using the java command.

The output of the program is as follows. This is what appears on the screen when the
 program runs.

program output

Programming is great fun!

Let’s examine the program line by line. Here’s the statement in line 1:

// This is a simple Java program.

Other than the two slash marks that begin this line, it looks pretty much like an ordinary
sentence. The // marks the beginning of a comment. The compiler ignores everything from
the double-slash to the end of the line. That means you can type anything you want on that
line and the compiler never complains. Although comments are not required, they are very
important to programmers. Most programs are much more complicated than this example,
and comments help explain what’s going on.

Line 2 is blank. Programmers often insert blank lines in programs to make them easier to
read. Line 3 reads:

public class Simple

This line is known as a class header, and it marks the beginning of a class definition. One of
the uses of a class is to serve as a container for an application. As you progress through this
book, you will learn more and more about classes. For now, just remember that a Java pro-
gram must have at least one class definition. This line of code consists of three words:
public, class, and Simple. Let’s take a closer look at each word.

•	 public is a Java key word, and it must be written in all lowercase letters. It is known
as an access specifier, and it controls where the class may be accessed from. The public
specifier means access to the class is unrestricted. (In other words, the class is “open to
the public.”)

•	 class, which must also be written in lowercase letters, is a Java key word that indi-
cates the beginning of a class definition.

 2.1 The Parts of a Java Program 65

•	 Simple is the class name. This name was made up by the programmer. The class
could have been called Pizza, or Dog, or anything else the programmer wanted.
Programmer-defined names may be written in lowercase letters, uppercase letters, or
a mixture of both.

In a nutshell, this line of code tells the compiler that a publicly accessible class named
Simple is being defined. Here are two more points to know about classes:

•	 You	may	create	more	than	one	class	in	a	file,	but	you	may	have	only	one	public class
per Java file.

•	 When	a	Java	file	has	a	public class, the name of the public class must be the same as the
name of the file (without the .java extension). For instance, the program in Code Listing 2-1
has a public class named Simple, so it is stored in a file named Simple.java.

noTe: Java is a case-sensitive language. That means it regards uppercase letters as
being entirely different characters than their lowercase counterparts. The word Public is
not the same as public, and Class is not the same as class. Some words in a Java pro-
gram must be entirely in lowercase, while other words may use a combination of lower
and uppercase characters. Later in this chapter, you will see a list of all the Java key
words, which must appear in lowercase.

Line 4 contains only a single character:

{

This is called a left brace, or an opening brace, and is associated with the beginning of the
class definition. All of the programming statements that are part of the class are enclosed
in a set of braces. If you glance at the last line in the program, line 9, you’ll see the closing
brace. Everything between the two braces is the body of the class named Simple. Here is
the program code again, this time the body of the class definition is shaded.

// This is a simple Java program.
public class Simple
{
 public static void main(String[] args)
 {
 System.out.println("Programming is great fun!");
 }
}

Warning! Make sure you have a closing brace for every opening brace in
your program!

Line 5 reads:

public static void main(String[] args)

This line is known as a method header. It marks the beginning of a method. A method can
be thought of as a group of one or more programming statements that collectively has a
name. When creating a method, you must tell the compiler several things about it. That is

66 Chapter 2 Java Fundamentals

why this line contains so many words. At this point, the only thing you should be concerned
about is that the name of the method is main, and the rest of the words are required for the
method to be properly defined. This is shown in Figure 2-1.

Recall from Chapter 1 that a stand-alone Java program that runs on your computer is
known as an application. Every Java application must have a method named main. The main
method is the starting point of an application.

Name of the Method

Figure 2-1 The main method header

Line 6 has another opening brace:

{

This opening brace belongs to the main method. Remember that braces enclose statements,
and every opening brace must have an accompanying closing brace. If you look at line 8
you will see the closing brace that corresponds with this opening brace. Everything between
these braces is the body of the main method.

Line 7 appears as follows:

System.out.println("Programming is great fun!");

To put it simply, this line displays a message on the screen. The message, “Programming is
great fun!” is printed without the quotation marks. In programming terms, the group of
characters inside the quotation marks is called a string literal.

noTe: For the time being, all the programs you will write will consist of a class with a
main method whose header looks exactly like the one shown in Code Listing 2-1. As you
progress through this book you will learn what public static void and (String[] args)
mean. For now, just assume that you are learning a “recipe” for assembling a Java program.

noTe: This is the only line in the program that causes anything to be printed on the screen.
The other lines, like public class Simple and public static void main(String[] args),
are necessary for the framework of your program, but they do not cause any screen out-
put. Remember, a program is a set of instructions for the computer. If something is to be
displayed on the screen, you must use a programming statement for that purpose.

At the end of the line is a semicolon. Just as a period marks the end of a sentence, a semico-
lon marks the end of a statement in Java. Not every line of code ends with a semicolon,
however. Here is a summary of where you do not place a semicolon:

 2.1 The Parts of a Java Program 67

•	 Comments	do	not	have	to	end	with	a	semicolon	because	they	are	ignored	by	the		compiler.
•	 Class	headers	and	method	headers	do	not	end	with	a	semicolon	because	they	are	

 terminated with a body of code inside braces.
•	 The	brace	characters,	{ and }, are not statements, so you do not place a semicolon

after them.

It might seem that the rules for where to put a semicolon are not clear at all. For now, just
concentrate on learning the parts of a program. You’ll soon get a feel for where you should
and should not use semicolons.

As has already been pointed out, lines 8 and 9 contain the closing braces for the main
method and the class definition:

 }
}

Before continuing, let’s review the points we just covered, including some of the more
 elusive rules.

•	 Java	is	a	case-sensitive	language.	It	does	not	regard	uppercase	letters	as	being	the	same	
character as their lowercase equivalents.

•	 All	Java	programs	must	be	stored	in	a	file	with	a	name	that	ends	with	.java.
•	 Comments	are	ignored	by	the	compiler.
•	 A	.java file may contain many classes, but may have only one public class. If a .java

file has a public class, the class must have the same name as the file. For instance, if
the file Pizza.java contains a public class, the class’s name would be Pizza.

•	 Every	Java	application	program	must	have	a	method	named	main.
•	 For	every	left	brace,	or	opening	brace,	there	must	be	a	corresponding	right	brace,	or	

closing brace.
•	 Statements	are	terminated	with	semicolons.	This	does	not	include	comments,	class	

headers, method headers, or braces.

In the sample program, you encountered several special characters. Table 2-1 summarizes
how they were used.

Table 2-1 Special characters

Characters Name Meaning

// Double slash Marks the beginning of a comment

() Opening and closing
parentheses

Used in a method header

{ } Opening and closing
braces

Encloses a group of statements, such as the contents
of a class or a method

" " Quotation marks Encloses a string of characters, such as a message
that is to be printed on the screen

; Semicolon Marks the end of a complete programming
 statement

68 Chapter 2 Java Fundamentals

checkpoint

www.myprogramminglab.com

2.1 The following program will not compile because the lines have been mixed up.

public static void main(String[] args)
}
// A crazy mixed up program
public class Columbus
{
System.out.println("In 1492 Columbus sailed the ocean blue.");
{
}

When the lines are properly arranged, the program should display the following on
the screen:

In 1492 Columbus sailed the ocean blue.

Rearrange the lines in the correct order. Test the program by entering it on the
computer, compiling it, and running it.

2.2 When the program in Question 2.1 is saved to a file, what should the file be named?

2.3 Complete the following program skeleton so it displays the message “Hello World”
on the screen.

public class Hello
{
 public static void main(String[] args)
 {
 // Insert code here to complete the program
 }
}

2.4 On paper, write a program that will display your name on the screen. Place a com-
ment with today’s date at the top of the program. Test your program by entering,
compiling, and running it.

2.5 All Java source code filenames must end with __________.
a) a semicolon
b) .class
c) .java
d) none of the above

2.6 Every Java application program must have __________.
a) a method named main
b) more than one class definition
c) one or more comments

http://www.myprogramminglab.com

 2.2 The print and println Methods, and the Java API 69

2.2 The print and println Methods, and the Java api

concepT: The print and println methods are used to display text output. They
are part of the Java API, which is a collection of prewritten classes and
methods for performing specific operations.

In this section, you will learn how to write programs that produce output on the screen. The
simplest type of output that a program can display on the screen is console output. Console
output is merely plain text. When you display console output in a system that uses a graph-
ical user interface, such as Windows or Mac OS, the output usually appears in a window
similar to the one shown in Figure 2-2.

Figure 2-2 A console window (Microsoft Corporation)

The word console is an old computer term. It comes from the days when the operator of a
large computer system interacted with the system by typing on a terminal that consisted of
a simple screen and keyboard. This terminal was known as the console. The console screen,
which displayed only text, was known as the standard output device. Today, the term stan-
dard output device typically refers to the device that displays console output.

Performing output in Java, as well as many other tasks, is accomplished by using the Java
API. The term API stands for Application Programmer Interface. The API is a standard
library of prewritten classes for performing specific operations. These classes and their
methods are available to all Java programs. The print and println methods are part of the
API and provide ways for output to be displayed on the standard output device.

The program in Code Listing 2-1 (Simple.java) uses the following statement to print a
 message on the screen:

System.out.println("Programming is great fun!");

System is a class that is part of the Java API. The System class contains objects and methods
that perform system-level operations. One of the objects contained in the System class is
named out. The out object has methods, such as print and println, for performing output
on the system console, or standard output device. The hierarchical relationship among
System, out, print, and println is shown in Figure 2-3.

Displaying
Console Output

VideoNote

70 Chapter 2 Java Fundamentals

Here is a brief summary of how it all works together:

•	 The	System class is part of the Java API. It has member objects and methods for per-
forming system-level operations, such as sending output to the console.

•	 The	out object is a member of the System class. It provides methods for sending out-
put to the screen.

•	 The	print and println methods are members of the out object. They actually perform
the work of writing characters on the screen.

This hierarchy explains why the statement that executes println is so long. The sequence
System.out.println specifies that println is a member of out, which is a member of System.

Figure 2-3 Relationship among the System class, the out object, and the
print and println methods

noTe: The period that separates the names of the objects is pronounced “dot.”
System.out.println is pronounced “system dot out dot print line.”

The value that is to be displayed on the screen is placed inside the parentheses. This value is
known as an argument. For example, the following statement executes the println method
using the string "King Arthur" as its argument. This will print “King Arthur” on the screen.
(The quotation marks are not displayed.)

System.out.println("King Arthur");

An important thing to know about the println method is that after it displays its message,
it advances the cursor to the beginning of the next line. The next item printed on the screen
will begin in this position. For example, look at the program in Code Listing 2-2.

Because each string is printed with separate println statements in Code Listing 2-2, they
appear on separate lines in the Program Output.

 2.2 The print and println Methods, and the Java API 71

code Listing 2-2 (TwoLines.java)

 1 // This is another simple Java program.
 2
 3 public class TwoLines
 4 {
 5 public static void main(String[] args)
 6 {
 7 System.out.println("Programming is great fun!");
 8 System.out.println("I can't get enough of it!");
 9 }
10 }

program output

Programming is great fun!
I can't get enough of it!

The print Method

The print method, which is also part of the System.out object, serves a purpose similar to
that of println—to display output on the screen. The print method, however, does not
advance the cursor to the next line after its message is displayed. Look at Code Listing 2-3.

code Listing 2-3 (GreatFun.java)

 1 // This is another simple Java program.
 2
 3 public class GreatFun
 4 {
 5 public static void main(String[] args)
 6 {
 7 System.out.print("Programming is ");
 8 System.out.println("great fun!");
 9 }
10 }

program output

Programming is great fun!

An important concept to understand about Code Listing 2-3 is that, although the output is
broken up into two programming statements, this program will still display the message on
one line. The data that you send to the print method is displayed in a continuous stream.
Sometimes this can produce less-than-desirable results. The program in Code Listing 2-4 is
an example.

72 Chapter 2 Java Fundamentals

code Listing 2-4 (Unruly.java)

1 // An unruly printing program
2
3 public class Unruly
4 {
5 public static void main(String[] args)
6 {
7 System.out.print("These are our top sellers:");
8 System.out.print("Computer games");
9 System.out.print("Coffee");

10 System.out.println("Aspirin");
11 }
12 }

program output

These are our top sellers:Computer gamesCoffeeAspirin

The layout of the actual output looks nothing like the arrangement of the strings in the source
code. First, even though the output is broken up into four lines in the source code (lines 7
through 10), it comes out on the screen as one line. Second, notice that some of the words
that are displayed are not separated by spaces. The strings are displayed exactly as they are
sent to the print method. If spaces are to be displayed, they must appear in the strings.

There are two ways to fix this program. The most obvious way is to use println methods
instead of print methods. Another way is to use escape sequences to separate the output
into different lines. An escape sequence starts with the backslash character (\), and is fol-
lowed by one or more control characters. It allows you to control the way output is dis-
played by embedding commands within the string itself. The escape sequence that causes
the output cursor to go to the next line is \n. Code Listing 2-5 illustrates its use.

code Listing 2-5 (Adjusted.java)

 1 // A well adjusted printing program
2
3 public class Adjusted
4 {
5 public static void main(String[] args)
6 {
7 System.out.print("These are our top sellers:\n");
8 System.out.print("Computer games\nCoffee\n");
9 System.out.println("Aspirin");

10 }
11 }

program output

These are our top sellers:
Computer games
Coffee
Aspirin

 2.2 The print and println Methods, and the Java API 73

The \n characters are called the newline escape sequence. When the print or println
method encounters \n in a string, it does not print the \n characters on the screen, but inter-
prets them as a special command to advance the output cursor to the next line. There are
several other escape sequences as well. For instance, \t is the tab escape sequence. When
print or println encounters it in a string, it causes the output cursor to advance to the next
tab position. Code Listing 2-6 shows it in use.

code Listing 2-6 (Tabs.java)

 1 // Another well-adjusted printing program
 2
 3 public class Tabs
 4 {
 5 public static void main(String[] args)
 6 {
 7 System.out.print("These are our top sellers:\n");
 8 System.out.print("\tComputer games\n\tCoffee\n");
 9 System.out.println("\tAspirin");
10 }
11 }

program output

These are our top sellers:
 Computer games
 Coffee
 Aspirin

Table 2-2 Common escape sequences

Escape
Sequence Name Description

\n Newline Advances the cursor to the next line for subsequent printing

\t Horizontal tab Causes the cursor to skip over to the next tab stop

\b Backspace Causes the cursor to back up, or move left, one position

\r Return Causes the cursor to go to the beginning of the current line, not
the next line

\\ Backslash Causes a backslash to be printed

\' Single quote Causes a single quotation mark to be printed

\" Double quote Causes a double quotation mark to be printed

noTe: Although you have to type two characters to write an escape sequence, they are
stored in memory as a single character.

Table 2-2 lists the common escape sequences and describes them.

74 Chapter 2 Java Fundamentals

checkpoint

www.myprogramminglab.com

2.7 The following program will not compile because the lines have been mixed up.

System.out.print("Success\n");
}
public class Success
{
System.out.print("Success\n");
public static void main(String[] args)
System.out.print("Success ");
}
// It's a mad, mad program.
System.out.println("\nSuccess");
{

When the lines are arranged properly, the program should display the following
output on the screen:

Program Output

Success
Success Success

Success

Rearrange the lines in the correct order. Test the program by entering it on the
computer, compiling it, and running it.

2.8 Study the following program and show what it will print on the screen.

// The Works of Wolfgang
public class Wolfgang
{
 public static void main(String[] args)
 {
 System.out.print("The works of Wolfgang\ninclude ");
 System.out.print("the following");
 System.out.print("\nThe Turkish March ");
 System.out.print("and Symphony No. 40 ");
 System.out.println("in G minor.");
 }
}

2.9 On paper, write a program that will display your name on the first line; your street
address on the second line; your city, state, and ZIP code on the third line; and your
telephone number on the fourth line. Place a comment with today’s date at the top
of the program. Test your program by entering, compiling, and running it.

Warning! Do not confuse the backslash (\) with the forward slash (/). An escape
sequence will not work if you accidentally start it with a forward slash. Also, do not put
a space between the backslash and the control character.

http://www.myprogramminglab.com

 2.3 Variables and Literals 75

2.3 Variables and Literals

concepT: A variable is a named storage location in the computer’s memory. A literal
is a value that is written into the code of a program.

As you discovered in Chapter 1, variables allow you to store and work with data in the
computer’s memory. Part of the job of programming is to determine how many variables a
program will need and what types of data they will hold. The program in Code Listing 2-7
is an example of a Java program with a variable.

code Listing 2-7 (Variable.java)

 1 // This program has a variable.
 2
 3 public class Variable
 4 {
 5 public static void main(String[] args)
 6 {
 7 int value;
 8
 9 value = 5;
10 System.out.print("The value is ");
11 System.out.println(value);
12 }
13 }

program output

The value is 5

Let’s look more closely at this program. Here is line 7:

int value;

This is called a variable declaration. Variables must be declared before they can be used. A
variable declaration tells the compiler the variable’s name and the type of data it will hold.
This line indicates the variable’s name is value. The word int stands for integer, so value
will only be used to hold integer numbers. Notice that variable declarations end with a
semicolon. The next statement in this program appears in line 9:

value = 5;

This is called an assignment statement. The equal sign is an operator that stores the value
on its right (in this case 5) into the variable named on its left. After this line executes, the
value variable will contain the value 5.

noTe: This line does not print anything on the computer screen. It runs silently behind
the scenes.

Declaring
Variables

VideoNote

76 Chapter 2 Java Fundamentals

Now look at lines 10 and 11:

System.out.print("The value is ");
System.out.println(value);

The statement in line 10 sends the string literal “The value is ” to the print method. The
statement in line 11 sends the name of the value variable to the println method. When you
send a variable name to print or println, the variable’s contents are displayed. Notice there
are no quotation marks around value. Look at what happens in Code Listing 2-8.

code Listing 2-8 (Variable2.java)

1 // This program has a variable.
2
3 public class Variable2
4 {
5 public static void main(String[] args)
6 {
7 int value;
8
9 value = 5;

10 System.out.print("The value is ");
11 System.out.println("value");
12 }
13 }

program output

The value is value

When double quotation marks are placed around the word value it becomes a string literal,
not a variable name. When string literals are sent to print or println, they are displayed
exactly as they appear inside the quotation marks.

Displaying Multiple items with the + operator
When the + operator is used with strings, it is known as the string concatenation operator.
To concatenate means to append, so the string concatenation operator appends one string
to another. For example, look at the following statement:

System.out.println("This is " + "one string.");

This statement will print:

This is one string.

The + operator produces a string that is the combination of the two strings used as its oper-
ands. You can also use the + operator to concatenate the contents of a variable to a string.
The following code shows an example:

number = 5;
System.out.println("The value is " + number);

 2.3 Variables and Literals 77

The second line uses the + operator to concatenate the contents of the number variable with
the string “The value is ”. Although number is not a string, the + operator converts its value
to a string and then concatenates that value with the first string. The output that will be
displayed is:

The value is 5

Sometimes the argument you use with print or println is too long to fit on one line in your
program code. However, a string literal cannot begin on one line and end on another. For
example, the following will cause an error:

// This is an error!
System.out.println("Enter a value that is greater than zero
 and less than 10.");

You can remedy this problem by breaking the argument up into smaller string literals, and
then using the string concatenation operator to spread them out over more than one line.
Here is an example:

System.out.println("Enter a value that is " +
 "greater than zero and less " +
 "than 10.");

In this statement, the argument is broken up into three strings and joined using the + opera-
tor. The following example shows the same technique used when the contents of a variable
are part of the concatenation:

sum = 249;
System.out.println("The sum of the three " +
 "numbers is " + sum);

Be careful with Quotation Marks
As shown in Code Listing 2-8, placing quotation marks around a variable name changes the
program’s results. In fact, placing double quotation marks around anything that is not
intended to be a string literal will create an error of some type. For example, in Code
 Listings 2-7 and 2-8, the number 5 was assigned to the variable value. It would have been
an error to perform the assignment this way:

value = "5"; // Error!

In this statement, 5 is no longer an integer, but a string literal. Because value was declared
as an integer variable, you can only store integers in it. In other words, 5 and “5” are not the
same thing.

The fact that numbers can be represented as strings frequently confuses students who are
new to programming. Just remember that strings are intended for humans to read. They are
to be printed on computer screens or paper. Numbers, however, are intended primarily for
mathematical operations. You cannot perform math on strings, and before numbers can be
displayed on the screen, first they must be converted to strings. (Fortunately, print and
println handle the conversion automatically when you send numbers to them.) Don’t fret
if this still bothers you. Later in this chapter, we will shed more light on the differences
among numbers, characters, and strings by discussing their internal storage.

78 Chapter 2 Java Fundamentals

More about Literals
A literal is a value that is written in the code of a program. Literals are commonly assigned
to variables or displayed. Code Listing 2-9 contains both literals and a variable.

code Listing 2-9 (Literals.java)

1 // This program has literals and a variable.
2
3 public class Literals
4 {
5 public static void main(String[] args)
6 {
7 int apples;
8
9 apples = 20;

10 System.out.println("Today we sold " + apples +
11 " bushels of apples.");
12 }
13 }

program output

Today we sold 20 bushels of apples.

Of course, the variable in this program is apples. It is declared as an integer. Table 2-3
shows a list of the literals found in the program.

Table 2-3 Literals

Literal Type of Literal

20 Integer literal

“Today we sold ” String literal

“ bushels of apples.” String literal

identifiers
An identifier is a programmer-defined name that represents some element of a program.
Variable names and class names are examples of identifiers. You may choose your own vari-
able names and class names in Java, as long as you do not use any of the Java key words.
The key words make up the core of the language and each has a specific purpose. Table 1-3
in Chapter 1 and Appendix D (available on the book’s companion Web site) show a
complete list of Java key words.

You should always choose names for your variables that give an indication of what they are
used for. You may be tempted to declare variables with names like this:

int x;

 2.3 Variables and Literals 79

The rather nondescript name, x, gives no clue as to what the variable’s purpose is. Here is a
better example.

int itemsOrdered;

The name itemsOrdered gives anyone reading the program an idea of what the variable is
used for. This method of coding helps produce self-documenting programs, which means
you get an understanding of what the program is doing just by reading its code. Because
real-world programs usually have thousands of lines of code, it is important that they be as
self-documenting as possible.

You have probably noticed the mixture of uppercase and lowercase letters in the name
itemsOrdered. Although all of Java’s key words must be written in lowercase, you may use
uppercase letters in variable names. The reason the O in itemsOrdered is capitalized is to
improve readability. Normally “items ordered” is used as two words. Variable names can-
not contain spaces, however, so the two words must be combined. When “items” and
“ordered” are stuck together, you get a variable declaration like this:

int itemsordered;

Capitalization of the letter O makes itemsOrdered easier to read. Typically, variable names
begin with a lowercase letter, and after that, the first letter of each individual word that
makes up the variable name is capitalized.

The following are some specific rules that must be followed with all identifiers:

•	 The	first	character	must	be	one	of	the	letters	a–z	or	A–Z,	an	underscore	(_),	or	a	dollar	
sign ($).

•	 After	the	first	character,	you	may	use	the	letters	a–z	or	A–Z,	the	digits	0–9,	under-
scores (_), or dollar signs ($).

•	 Uppercase	and	lowercase	characters	are	distinct.	This	means	itemsOrdered is not the
same as itemsordered.

•	 Identifiers	cannot	include	spaces.

Table 2-4 Some variable names

Variable Name Legal or Illegal?

dayOfWeek Legal

3dGraph Illegal because identifiers cannot begin with a digit

june1997 Legal

mixture#3 Illegal because identifiers may use only alphabetic letters, digits,
underscores, or dollar signs

week day Illegal because identifiers cannot contain spaces

noTe: Although the $ is a legal identifier character, it is normally used for special pur-
poses. So, don’t use it in your variable names.

Table 2-4 shows a list of variable names and tells whether each is legal or illegal in Java.

80 Chapter 2 Java Fundamentals

class names
As mentioned before, it is standard practice to begin variable names with a lowercase letter,
and then capitalize the first letter of each subsequent word that makes up the name. It is
also a standard practice to capitalize the first letter of a class name, as well as the first letter
of each subsequent word it contains. This helps differentiate the names of variables from
the names of classes. For example, payRate would be a variable name, and Employee would
be a class name.

checkpoint

www.myprogramminglab.com

2.10 Examine the following program.

// This program uses variables and literals.

public class BigLittle
{
 public static void main(String[] args)
 {
 int little;
 int big;

 little = 2;
 big = 2000;
 System.out.println("The little number is " + little);
 System.out.println("The big number is " + big);
 }
}

List the variables and literals found in the program.

2.11 What will the following program display on the screen?

public class CheckPoint
{
 public static void main(String[] args)
 {
 int number;

 number = 712;
 System.out.println("The value is " + "number");
 }
}

2.4 primitive Data Types

concepT: There are many different types of data. Variables are classified according
to their data type, which determines the kind of data that may be stored
in them.

http://www.myprogramminglab.com

 2.4 Primitive Data Types 81

Computer programs collect pieces of data from the real world and manipulate them in
various ways. There are many different types of data. In the realm of numeric data, for
example, there are whole and fractional numbers, negative and positive numbers, and num-
bers so large and others so small that they don’t even have a name. Then there is textual
information. Names and addresses, for instance, are stored as strings of characters. When
you write a program you must determine what types of data it is likely to encounter.

Each variable has a data type, which is the type of data that the variable can hold. Selecting
the proper data type is important because a variable’s data type determines the amount of
memory the variable uses, and the way the variable formats and stores data. It is important
to select a data type that is appropriate for the type of data that your program will work
with. If you are writing a program to calculate the number of miles to a distant star, you need
variables that can hold very large numbers. If you are designing software to record micro-
scopic dimensions, you need variables that store very small and precise numbers. If you are
writing a program that must perform thousands of intensive calculations, you want variables
that can be processed quickly. The data type of a variable determines all of these factors.

Table 2-5 shows all of the Java primitive data types for holding numeric data.

The words listed in the left column of Table 2-5 are the key words that you use in variable
declarations. A variable declaration takes the following general format:

DataType VariableName;

Table 2-5 Primitive data types for numeric data

Data Type Size Range

byte 1 byte Integers in the range of −128 to +127

short 2 bytes Integers in the range of −32,768 to +32,767

int 4 bytes Integers in the range of −2,147,483,648 to +2,147,483,647

long 8 bytes Integers in the range of −9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

float 4 bytes Floating-point numbers in the range of ±3.4 × 10−38 to ±3.4 × 1038,
with 7 digits of accuracy

double 8 bytes Floating-point numbers in the range of ±1.7 × 10−308 to ±1.7 × 10308,
with 15 digits of accuracy

DataType is the name of the data type and VariableName is the name of the variable.
Here are some examples of variable declarations:

byte inches;
int speed;
short month;
float salesCommission;
double distance;

The size column in Table 2-5 shows the number of bytes that a variable of each of the data
types uses. For example, an int variable uses 4 bytes, and a double variable uses 8 bytes.

82 Chapter 2 Java Fundamentals

The range column shows the ranges of numbers that may be stored in variables of each data
type. For example, an int variable can hold numbers from −2,147,483,648 up to
+2,147,483,647. One of the appealing characteristics of the Java language is that the sizes
and ranges of all the primitive data types are the same on all computers.

noTe: These data types are called “primitive” because you cannot use them to create
objects. Recall from Chapter 1’s discussion on object-oriented programming that an
object has attributes and methods. With the primitive data types, you can only create
variables, and a variable can only be used to hold a single value. Such variables do not
have attributes or methods.

The integer Data Types
The first four data types listed in Table 2-5, byte, int, short, and long, are all integer data
types. An integer variable can hold whole numbers such as 7, 125, −14, and 6928. The program
in Code Listing 2-10 shows several variables of different integer data types being used.

code Listing 2-10 (IntegerVariables.java)

1 // This program has variables of several of the integer types.
2
3 public class IntegerVariables
4 {
5 public static void main(String[] args)
6 {
7 int checking; // Declare an int variable named checking.
8 byte miles; // Declare a byte variable named miles.
9 short minutes; // Declare a short variable named minutes.

10 long days; // Declare a long variable named days.
11
12 checking = -20;
13 miles = 105;
14 minutes = 120;
15 days = 189000;
16 System.out.println("We have made a journey of " + miles +
17 " miles.");
18 System.out.println("It took us " + minutes + " minutes.");
19 System.out.println("Our account balance is $" + checking);
20 System.out.println("About " + days + " days ago Columbus " +
21 "stood on this spot.");
22 }
23 }

program output

We have made a journey of 105 miles.
It took us 120 minutes.
Our account balance is $-20
About 189000 days ago Columbus stood on this spot.

 2.4 Primitive Data Types 83

In most programs you will need more than one variable of any given data type. If a program
uses three integers, length, width, and area, they could be declared separately, as follows:

int length;
int width;
int area;

It is easier, however, to combine the three variable declarations:

int length, width, area;

You can declare several variables of the same type, simply by separating their names
with commas.

integer Literals

When you write an integer literal in your program code, Java assumes it to be of the int
data type. For example, in Code Listing 2-10, the literals −20, 105, 120, and 189000 are all
treated as int values. You can force an integer literal to be treated as a long, however, by
suffixing it with the letter L. For example, the value 57L would be treated as a long.
Although you can use either an uppercase or a lowercase L, it is advisable to use the upper-
case L because the lowercase l looks too much like the number 1.

Warning! You cannot embed commas in numeric literals. For example, the follow-
ing statement will cause an error:

number = 1,257,649; // ERROR!

This statement must be written as:

number = 1257649; // Correct.

Floating-point Data Types
Whole numbers are not adequate for many jobs. If you are writing a program that works
with dollar amounts or precise measurements, you need a data type that allows fractional
values. In programming terms, these are called floating-point numbers. Values such as 1.7
and −45.316 are floating-point numbers.

In Java there are two data types that can represent floating-point numbers. They are float
and double. The float data type is considered a single precision data type. It can store a
floating-point number with 7 digits of accuracy. The double data type is considered a dou-
ble precision data type. It can store a floating-point number with 15 digits of accuracy. The
double data type uses twice as much memory as the float data type, however. A float vari-
able occupies 4 bytes of memory, whereas a double variable uses 8 bytes.

Code Listing 2-11 shows a program that uses three double variables.

code Listing 2-11 (Sale.java)

 1 // This program demonstrates the double data type.
 2
 3 public class Sale
 4 {

84 Chapter 2 Java Fundamentals

5 public static void main(String[] args)
6 {
7 double price, tax, total;
8
9 price = 29.75;

10 tax = 1.76;
11 total = 31.51;
12 System.out.println("The price of the item " +
13 "is " + price);
14 System.out.println("The tax is " + tax);
15 System.out.println("The total is " + total);
16 }
17 }

program output

The price of the item is 29.75
The tax is 1.76
The total is 31.51

Floating-point Literals

When you write a floating-point literal in your program code, Java assumes it to be of the
double data type. For example, in Code Listing 2-11, the literals 29.75, 1.76, and 31.51
are all treated as double values. Because of this, a problem can arise when assigning a
floating-point literal to a float variable. Java is a strongly typed language, which means
that it only allows you to store values of compatible data types in variables. A double
value is not compatible with a float variable because a double can be much larger or
much smaller than the allowable range for a float. As a result, code such as the following
will cause an error:

float number;
number = 23.5; // Error!

You can force a double literal to be treated as a float, however, by suffixing it with the letter
F or f. The preceding code can be rewritten in the following manner to prevent an error:

float number;
number = 23.5F; // This will work.

Warning! If you are working with literals that represent dollar amounts, remember
that you cannot embed currency symbols (such as $) or commas in the literal. For exam-
ple, the following statement will cause an error:

grossPay = $1,257.00; // ERROR!

This statement must be written as:

grossPay = 1257.00; // Correct.

 2.4 Primitive Data Types 85

scientific and e notation

Floating-point literals can be represented in scientific notation. Take the number 47,281.97.
In scientific notation this number is 4.728197 × 104. (104 is equal to 10,000, and 4.728197
× 10,000 is 47,281.97.)

Java uses E notation to represent values in scientific notation. In E notation, the number
4.728197 × 104 would be 4.728197E4. Table 2-6 shows other numbers represented in
 scientific and E notation.

Table 2-6 Floating-point representations

Decimal Notation Scientific Notation E Notation

247.91 2.4791 × 102 2.4791E2

0.00072 7.2 × 10−4 7.2E–4

2,900,000 2.9 × 106 2.9E6

noTe: The E can be uppercase or lowercase.

code Listing 2-12 (SunFacts.java)

 1 // This program uses E notation.
 2
 3 public class SunFacts
 4 {
 5 public static void main(String[] args)
 6 {
 7 double distance, mass;
 8
 9 distance = 1.495979E11;
10 mass = 1.989E30;
11 System.out.println("The sun is " + distance +
12 " meters away.");
13 System.out.println("The sun's mass is " + mass +
14 " kilograms.");
15 }
16 }

program output

The sun is 1.495979E11 meters away.
The sun's mass is 1.989E30 kilograms.

Code Listing 2-12 demonstrates the use of floating-point literals expressed in E notation.

86 Chapter 2 Java Fundamentals

The boolean Data Type
The boolean data type allows you to create variables that may hold one of two possible
values: true or false. Code Listing 2-13 demonstrates the declaration and assignment of a
boolean variable.

code Listing 2-13 (TrueFalse.java)

1 // A program for demonstrating boolean variables
2
3 public class TrueFalse
4 {
5 public static void main(String[] args)
6 {
7 boolean bool;
8
9 bool = true;

10 System.out.println(bool);
11 bool = false;
12 System.out.println(bool);
13 }
14 }

program output

true
false

Variables of the boolean data type are useful for evaluating conditions that are either true
or false. You will not be using them until Chapter 3, however, so for now just remember the
following things:

•	 boolean variables may hold only the value true or false.
•	 The	contents	of	a	boolean variable may not be copied to a variable of any type other

than boolean.

The char Data Type
The char data type is used to store characters. A variable of the char data type can hold one
character at a time. Character literals are enclosed in single quotation marks. The program
in Code Listing 2-14 uses a char variable. The character literals ‘A’ and ‘B’ are assigned to
the variable.

code Listing 2-14 (Letters.java)

1 // This program demonstrates the char data type.
2
3 public class Letters
4 {
5 public static void main(String[] args)

 2.4 Primitive Data Types 87

 6 {
 7 char letter;
 8
 9 letter = 'A';
10 System.out.println(letter);
11 letter = 'B';
12 System.out.println(letter);
13 }
14 }

program output

A
B

It is important that you do not confuse character literals with string literals, which are
enclosed in double quotation marks. String literals cannot be assigned to char variables.

Unicode

Characters are internally represented by numbers. Each printable character, as well as many
non-printable characters, is assigned a unique number. Java uses Unicode, which is a set of
numbers that are used as codes for representing characters. Each Unicode number requires
two bytes of memory, so char variables occupy two bytes. When a character is stored in
memory, it is actually the numeric code that is stored. When the computer is instructed to
print the value on the screen, it displays the character that corresponds with the numeric code.

You may want to refer to Appendix B, available on the book’s companion Web site (at
www.pearsonglobaleditions.com/Gaddis), which shows a portion of the Unicode char-
acter set. Notice that the number 65 is the code for A, 66 is the code for B, and so on.
Code Listing 2-15 demonstrates that when you work with characters, you are actually
working with numbers.

code Listing 2-15 (Letters2.java)

 1 // This program demonstrates the close relationship between
 2 // characters and integers.
 3
 4 public class Letters2
 5 {
 6 public static void main(String[] args)
 7 {
 8 char letter;
 9
10 letter = 65;
11 System.out.println(letter);
12 letter = 66;
13 System.out.println(letter);
14 }
15 }

http://www.pearsonglobaleditions.com/Gaddis

88 Chapter 2 Java Fundamentals

program output

A
B

Figure 2-4 illustrates that when you think of the characters A, B, and C being stored in
memory, it is really the numbers 65, 66, and 67 that are stored.

Figure 2-4 Characters and how they are stored in memory

Variable assignment and initialization
As you have already seen in several examples, a value is put into a variable with an assign-
ment statement. For example, the following statement assigns the value 12 to the variable
unitsSold:

unitsSold = 12;

The = symbol is called the assignment operator. Operators perform operations on data. The
data that operators work with are called operands. The assignment operator has two oper-
ands. In the statement above, the operands are unitsSold and 12.

In an assignment statement, the name of the variable receiving the assignment must appear
on the left side of the operator, and the value being assigned must appear on the right side.
The following statement is incorrect:

12 = unitsSold; // ERROR!

The operand on the left side of the = operator must be a variable name. The operand on the
right side of the = symbol must be an expression that has a value. The assignment operator
takes the value of the right operand and puts it in the variable identified by the left operand.
Assuming that length and width are both int variables, the following code illustrates that
the assignment operator’s right operand may be a literal or a variable:

length = 20;
width = length;

It is important to note that the assignment operator only changes the contents of its left
operand. The second statement assigns the value of the length variable to the width vari-
able. After the statement has executed, length still has the same value, 20.

You may also assign values to variables as part of the declaration statement. This is known
as initialization. Code Listing 2-16 shows how it is done.

The variable declaration statement in this program is in line 7:

int month = 2, days = 28;

 2.4 Primitive Data Types 89

code Listing 2-16 (Initialize.java)

 1 // This program shows variable initialization.
 2
 3 public class Initialize
 4 {
 5 public static void main(String[] args)
 6 {
 7 int month = 2, days = 28;
 8
 9 System.out.println("Month " + month + " has " +
10 days + " days.");
11 }
12 }

program output

Month 2 has 28 days.

This statement declares the month variable and initializes it with the value 2, and declares
the days variable and initializes it with the value 28. As you can see, this simplifies the pro-
gram and reduces the number of statements that must be typed by the programmer. Here
are examples of other declaration statements that perform initialization:

double payRate = 25.52;
float interestRate = 12.9F;
char stockCode = 'D';
int customerNum = 459;

Of course, there are always variations on a theme. Java allows you to declare several vari-
ables and initialize only some of them. Here is an example of such a declaration:

int flightNum = 89, travelTime, departure = 10, distance;

The variable flightNum is initialized to 89 and departure is initialized to 10. The travelTime
and distance variables remain uninitialized.

Warning! When a variable is declared inside a method, it must have a value stored
in it before it can be used. If the compiler determines that the program might be using
such a variable before a value has been stored in it, an error will occur. You can avoid this
type of error by initializing the variable with a value.

Variables Hold only one Value at a Time
Remember, a variable can hold only one value at a time. When you assign a new value to a
variable, the new value takes the place of the variable’s previous contents. For example,
look at the following code.

int x = 5;
System.out.println(x);
x = 99;
System.out.println(x);

90 Chapter 2 Java Fundamentals

In this code, the variable x is initialized with the value 5 and its contents are displayed. Then
the variable is assigned the value 99. This value overwrites the value 5 that was previously
stored there. The code will produce the following output:

5
99

checkpoint

www.myprogramminglab.com

2.12 Which of the following are illegal variable names and why?

x
99bottles
july97
theSalesFigureForFiscalYear98
r&d
grade_report

2.13 Is the variable name Sales the same as sales? Why or why not?

2.14 Refer to the Java primitive data types listed in Table 2-5 for this question.
a) If a variable needs to hold whole numbers in the range 32 to 6,000, what prim-

itive data type would be best?
b) If a variable needs to hold whole numbers in the range −40,000 to +40,000,

what primitive data type would be best?
c) Which of the following literals use more memory? 22.1 or 22.1F?

2.15 How would the number 6.31 × 1017 be represented in E notation?

2.16 A program declares a float variable named number, and the following statement
causes an error. What can be done to fix the error?

number = 7.4;

2.17 What values can boolean variables hold?

2.18 Write statements that do the following:
a) Declare a char variable named letter.
b) Assign the letter A to the letter variable.
c) Display the contents of the letter variable.

2.19 What are the Unicode codes for the characters ‘C’, ‘F’, and ‘W’?
(You may need to refer to Appendix B on the book’s companion Web site, at
www.pearsonglobaleditions.com/Gaddis.)

2.20 Which is a character literal, 'B' or "B"?

2.21 What is wrong with the following statement?

char letter = "Z";

2.5 arithmetic operators

concepT: There are many operators for manipulating numeric values and
performing arithmetic operations.

http://www.myprogramminglab.com
http://www.pearsonglobaleditions.com/Gaddis

 2.5 Arithmetic Operators 91

Java offers a multitude of operators for manipulating data. Generally, there are three types
of operators: unary, binary, and ternary. These terms reflect the number of operands an
operator requires.

Unary operators require only a single operand. For example, consider the following expression:

-5

Of course, we understand this represents the value negative five. We can also apply the
operator to a variable, as follows:

-number

This expression gives the negative of the value stored in number. The minus sign, when
used this way, is called the negation operator. Because it requires only one operand, it is a
unary operator.

Binary operators work with two operands. The assignment operator is in this category.
Ternary operators, as you may have guessed, require three operands. Java has only one ter-
nary operator, which is discussed in Chapter 3.

Arithmetic operations are very common in programming. Table 2-7 shows the arithmetic
operators in Java.

Table 2-7 Arithmetic operators

Operator Meaning Type Example

+ Addition Binary total = cost + tax;

− Subtraction Binary cost = total − tax;

* Multiplication Binary tax = cost * rate;

/ Division Binary salePrice = original / 2;

% Modulus Binary remainder = value % 3;

Each of these operators works as you probably expect. The addition operator returns the
sum of its two operands. Here are some example statements that use the addition operator:

amount = 4 + 8; // Assigns 12 to amount
total = price + tax; // Assigns price + tax to total
number = number + 1; // Assigns number + 1 to number

The subtraction operator returns the value of its right operand subtracted from its left oper-
and. Here are some examples:

temperature = 112 - 14; // Assigns 98 to temperature
sale = price - discount; // Assigns price - discount to sale
number = number - 1; // Assigns number - 1 to number

The multiplication operator returns the product of its two operands. Here are some examples:

markUp = 12 * 0.25; // Assigns 3 to markUp
commission = sales * percent; // Assigns sales * percent to commission
population = population * 2; // Assigns population * 2 to population

Simple Math
Expressions

VideoNote

92 Chapter 2 Java Fundamentals

The division operator returns the quotient of its left operand divided by its right operand.
Here are some examples:

points = 100 / 20; // Assigns 5 to points
teams = players / maxEach; // Assigns players / maxEach to teams
half = number / 2; // Assigns number / 2 to half

The modulus operator returns the remainder of a division operation involving two integers.
The following statement assigns 2 to leftOver:

leftOver = 17 % 3;

Situations arise where you need to get the remainder of a division. Computations that detect
odd numbers or are required to determine how many items are left over after division use
the modulus operator.

The program in Code Listing 2-17 demonstrates some of these operators used in a simple
payroll calculation.

code Listing 2-17 (Wages.java)

1 // This program calculates hourly wages plus overtime.
2
3 public class Wages
4 {
5 public static void main(String[] args)
6 {
7 double regularWages; // The calculated regular wages.
8 double basePay = 25; // The base pay rate.
9 double regularHours = 40; // The hours worked less overtime.

10 double overtimeWages; // Overtime wages
11 double overtimePay = 37.5; // Overtime pay rate
12 double overtimeHours = 10; // Overtime hours worked
13 double totalWages; // Total wages
14
15 regularWages = basePay * regularHours;
16 overtimeWages = overtimePay * overtimeHours;
17 totalWages = regularWages + overtimeWages;
18 System.out.println("Wages for this week are $" +
19 totalWages);
20 }
21 }

program output

Wages for this week are $1375.0

Code Listing 2-17 calculates the total wages an hourly paid worker earned in one week. As
mentioned in the comments, there are variables for regular wages, base pay rate, regular
hours worked, overtime wages, overtime pay rate, overtime hours worked, and total wages.

 2.5 Arithmetic Operators 93

Line 15 in the program multiplies basePay times regularHours and stores the result, which
is 1000, in regularWages:

regularWages = basePay * regularHours;

Line 16 multiplies overtimePay times overtimeHours and stores the result, which is 375, in
overtimeWages:

overtimeWages = overtimePay * overtimeHours;

Line 17 adds the regular wages and the overtime wages and stores the result, 1375, in
totalWages:

totalWages = regularWages + overtimeWages;

The println statement in lines 18 and 19 displays the message on the screen reporting the
week’s wages.

integer Division
When both operands of the division operator are integers, the operator will perform integer
division. This means the result of the division will be an integer as well. If there is a remain-
der, it will be discarded. For example, look at the following code:

double number;
number = 5 / 2;

This code divides 5 by 2 and assigns the result to the number variable. What value will be
stored in number? You would probably assume that 2.5 would be stored in number because
that is the result your calculator shows when you divide 5 by 2; however, that is not what
happens when the previous Java code is executed. Because the numbers 5 and 2 are both
integers, the fractional part of the result will be thrown away, or truncated. As a result, the
value 2 will be assigned to the number variable.

In the previous code, it doesn’t matter that number is declared as a double because the frac-
tional part of the result is discarded before the assignment takes place. In order for a divi-
sion operation to return a floating-point value, one of the operands must be of a
floating-point data type. For example, the previous code could be written as follows:

double number;
number = 5.0 / 2;

In this code, 5.0 is treated as a floating-point number, so the division operation will return
a floating-point number. The result of the division is 2.5.

operator precedence
It is possible to build mathematical expressions with several operators. The following state-
ment assigns the sum of 17, x, 21, and y to the variable answer:

answer = 17 + x + 21 + y;

Some expressions are not that straightforward, however. Consider the following statement:

outcome = 12 + 6 / 3;

94 Chapter 2 Java Fundamentals

What value will be stored in outcome? The 6 is used as an operand for both the addition and
division operators. The outcome variable could be assigned either 6 or 14, depending on
when the division takes place. The answer is 14 because the division operator has higher
precedence than the addition operator.

Mathematical expressions are evaluated from left to right. When two operators share an
 operand, the operator with the highest precedence works first. Multiplication and division
have higher precedence than addition and subtraction, so the statement above works like this:

 1. 6 is divided by 3, yielding a result of 2
 2. 12 is added to 2, yielding a result of 14

It could be diagrammed as shown in Figure 2-5.

Table 2-8 Precedence of arithmetic operators (highest to lowest)

Highest Precedence → - (unary negation)

* / %

Lowest Precedence → + −

Table 2-9 Associativity of arithmetic operators

Operator Associativity

- (unary negation) Right to left

* / % Left to right

+ − Left to right

Figure 2-5 Precedence illustrated

Table 2-8 shows the precedence of the arithmetic operators. The operators at the top of the
table have higher precedence than the ones below them.

The multiplication, division, and modulus operators have the same precedence. The addition
and subtraction operators have the same precedence. If two operators sharing an operand
have the same precedence, they work according to their associativity. Associativity is either
left to right or right to left. Table 2-9 shows the arithmetic operators and their associativity.

 2.5 Arithmetic Operators 95

grouping with parentheses
Parts of a mathematical expression may be grouped with parentheses to force some operations
to be performed before others. In the statement below, the sum of a, b, c, and d is divided by 4.0.

average = (a + b + c + d) / 4.0;

Without the parentheses, however, d would be divided by 4 and the result added to a, b,
and c. Table 2-11 shows more expressions and their values.

Table 2-10 Some expressions and their values

Expression Value

5 + 2 * 4 13

10 / 2 - 3 2

8 + 12 * 2 - 4 28

4 + 17 % 2 - 1 4

6 - 3 * 2 + 7 - 1 6

Table 2-11 More expressions and their values

Expression Value

(5 + 2) * 4 28

10 / (5 − 3) 5

8 + 12 * (6 − 2) 56

(4 + 17) % 2 − 1 0

(6 − 3) * (2 + 7) / 3 9

Table 2-10 shows some expressions and their values.

in the spotlight:
Calculating Percentages and Discounts
Determining percentages is a common calculation in computer programming. Although
the % symbol is used in general mathematics to indicate a percentage, most programming
languages (including Java) do not use the % symbol for this purpose. In a program, you
have to convert a percentage to a floating-point number, just as you would if you were
using a calculator. For example, 50 percent would be written as 0.5 and 2 percent would
be written as 0.02.

Let’s look at an example. Suppose you earn $6,000 per month and you are allowed to
 contribute a portion of your gross monthly pay to a retirement plan. You want to determine
the amount of your pay that will go into the plan if you contribute 5 percent, 8 percent, or
10 percent of your gross wages. To make this determination you write a program like the
one shown in Code Listing 2-18.

code Listing 2-18 (Contribution.java)

 1 // This program calculates the amount of pay that
 2 // will be contributed to a retirement plan if 5%,
 3 // 8%, or 10% of monthly pay is withheld.
 4
 5 public class Contribution
 6 {
 7 public static void main(String[] args)
 8 {
 9 // Variables to hold the monthly pay and
10 // the amount of contribution.
11 double monthlyPay = 6000.0;
12 double contribution;
13
14 // Calculate and display a 5% contribution.
15 contribution = monthlyPay * 0.05;
16 System.out.println("5 percent is $" +
17 contribution +
18 " per month.");
19
20 // Calculate and display an 8% contribution.
21 contribution = monthlyPay * 0.08;
22 System.out.println("8 percent is $" +
23 contribution +
24 " per month.");
25
26 // Calculate and display a 10% contribution.
27 contribution = monthlyPay * 0.1;
28 System.out.println("10 percent is $" +
29 contribution +
30 " per month.");
31 }
32 }

program output

5 percent is $300.0 per month.
8 percent is $480.0 per month.
10 percent is $600.0 per month.

Lines 11 and 12 declare two variables: monthlyPay and contribution. The monthlyPay vari-
able, which is initialized with the value 6000.0, holds the amount of your monthly pay. The
contribution variable will hold the amount of a contribution to the retirement plan.

The statements in lines 15 through 18 calculate and display 5 percent of the monthly pay.
The calculation is done in line 15, where the monthlyPay variable is multiplied by 0.05. The
result is assigned to the contribution variable, which is then displayed by the statement in
lines 16 through 18.

96 Chapter 2 Java Fundamentals

 2.5 Arithmetic Operators 972.5 Arithmetic Operators

Similar steps are taken in lines 21 through 24, which calculate and display 8 percent of the
monthly pay, and lines 27 through 30, which calculate and display 10 percent of the
monthly pay.

calculating a percentage Discount

Another common calculation is determining a percentage discount. For example, suppose a
retail business sells an item that is regularly priced at $59, and is planning to have a sale
where the item’s price will be reduced by 20 percent. You have been asked to write a pro-
gram to calculate the sale price of the item.

To determine the sale price you perform two calculations:

•	 First,	you	get the	amount	of	the	discount,	which	is	20	percent	of	the	item’s	regular	price.
•	 Second,	you subtract	the	discount	amount	from	the	item’s	regular	price.	This	gives	you	

the sale price.

Code Listing 2-19 shows how this is done in Java.

code Listing 2-19 (Discount.java)

 1 // This program calculates the sale price of an
 2 // item that is regularly priced at $59, with
 3 // a 20 percent discount subtracted.
 4
 5 public class Discount
 6 {
 7 public static void main(String[] args)
 8 {
 9 // Variables to hold the regular price, the
10 // amount of a discount, and the sale price.
11 double regularPrice = 59.0;
12 double discount;
13 double salePrice;
14
15 // Calculate the amount of a 20% discount.
16 discount = regularPrice * 0.2;
17
18 // Calculate the sale price by subtracting
19 // the discount from the regular price.
20 salePrice = regularPrice - discount;
21
22 // Display the results.
23 System.out.println("Regular price: $" + regularPrice);
24 System.out.println("Discount amount $" + discount);
25 System.out.println("Sale price: $" + salePrice);
26 }
27 }

program output

Regular price: $59.0
Discount amount $11.8
Sale price: $47.2

Lines 11 through 13 declare three variables. The regularPrice variable holds the item’s regu-
lar price, and is initialized with the value 59.0. The discount variable will hold the amount of
the discount once it is calculated. The salePrice variable will hold the item’s sale price.

Line 16 calculates the amount of the 20 percent discount by multiplying regularPrice by
0.2. The result is stored in the discount variable. Line 20 calculates the sale price by sub-
tracting discount from regularPrice. The result is stored in the salePrice variable. The
statements in lines 23 through 25 display the item’s regular price, the amount of the dis-
count, and the sale price.

98 Chapter 2 Java Fundamentals

The Math class
The Java API provides a class named Math, which contains numerous methods that are use-
ful for performing complex mathematical operations. In this section we will briefly look at
the Math.pow and Math.sqrt methods.

The Math.pow Method

In Java, raising a number to a power requires the Math.pow method. Here is an example of
how the Math.pow method is used:

result = Math.pow(4.0, 2.0);

The method takes two double arguments. It raises the first argument to the power of the
second argument, and returns the result as a double. In this example, 4.0 is raised to the
power of 2.0. This statement is equivalent to the following algebraic statement:

result = 42

Here is another example of a statement using the Math.pow method. It assigns 3 times 63 to x:

x = 3 * Math.pow(6.0, 3.0);

And the following statement displays the value of 5 raised to the power of 4:

System.out.println(Math.pow(5.0, 4.0));

The Math.sqrt Method

The Math.sqrt method accepts a double value as its argument and returns the square root
of the value. Here is an example of how the method is used:

result = Math.sqrt(9.0);

In this example the value 9.0 is passed as an argument to the Math.sqrt method. The method
will return the square root of 9.0, which is assigned to the result variable. The following
statement shows another example. In this statement the square root of 25.0 (which is 5.0)
is displayed on the screen:

System.out.println(Math.sqrt(25.0));

 2.6 Combined Assignment Operators 99

For more information about the Math class, see Appendix G, available on the book’s com-
panion Web site at www.pearsonglobaleditions.com/Gaddis.

Expression Value

6 + 3 * 5 ______

12 / 2 - 4 ______

9 + 14 * 2 - 6 ______

5 + 19 % 3 - 1 ______

(6 + 2) * 3 ______

14 / (11 - 4) ______

9 + 12 * (8 - 3) ______

2.23 Is the division statement in the following code an example of integer division or
floating-point division? What value will be stored in portion?

double portion;
portion = 70 / 3;

2.6 combined assignment operators

concepT: The combined assignment operators combine the assignment operator
with the arithmetic operators.

Quite often, programs have assignment statements of the following form:

x = x + 1;

On the right side of the assignment operator, 1 is added to x. The result is then assigned to
x, replacing the value that was previously there. Effectively, this statement adds 1 to x. Here
is another example:

balance = balance + deposit;

Assuming that balance and deposit are variables, this statement assigns the value of
balance + deposit to balance. The effect of this statement is that deposit is added to the
value stored in balance. Here is another example:

balance = balance - withdrawal;

Assuming that balance and withdrawal are variables, this statement assigns the value of
balance - withdrawal to balance. The effect of this statement is that withdrawal is sub-
tracted from the value stored in balance.

checkpoint

www.myprogramminglab.com

2.22 Complete the following table by writing the value of each expression in the Value
column.

http://www.pearsonglobaleditions.com/Gaddis
http://www.myprogramminglab.com

100 Chapter 2 Java Fundamentals

If you have not seen these types of statements before, they might cause some initial confu-
sion because the same variable name appears on both sides of the assignment operator.
Table 2-12 shows other examples of statements written this way.

Table 2-12 Various assignment statements (assume x = 6 in each statement)

Statement What It Does Value of x after the Statement

x = x + 4; Adds 4 to x 10

x = x − 3; Subtracts 3 from x 3

x = x * 10; Multiplies x by 10 60

x = x / 2; Divides x by 2 3

x = x % 4 Assigns the remainder of x / 4 to x. 2

Table 2-13 Combined assignment operators

Operator Example Usage Equivalent To

+= x += 5; x = x + 5;

−= y −= 2; y = y − 2;

*= z *= 10; z = z * 10;

/= a /= b; a = a / b;

%= c %= 3; c = c % 3;

These types of operations are common in programming. For convenience, Java offers a spe-
cial set of operators designed specifically for these jobs. Table 2-13 shows the combined
assignment operators, also known as compound operators.

As you can see, the combined assignment operators do not require the programmer to type
the variable name twice. The following statement:

balance = balance + deposit;

could be rewritten as

balance += deposit;

Similarly, the statement

balance = balance - withdrawal;

could be rewritten as

balance -= withdrawal;

checkpoint

www.myprogramminglab.com

2.24 Write statements using combined assignment operators to perform the following:
a) Add 6 to x
b) Subtract 4 from amount

http://www.myprogramminglab.com

 2.7 Conversion between Primitive Data Types 101

c) Multiply y by 4
d) Divide total by 27
e) Store in x the remainder of x divided by 7

2.7 conversion between primitive Data Types

concepT: Before a value can be stored in a variable, the value’s data type must be
compatible with the variable’s data type. Java performs some conversions
between data types automatically, but does not automatically perform any
conversion that can result in the loss of data. Java also follows a set of
rules when evaluating arithmetic expressions containing mixed data types.

Java is a strongly typed language. This means that before a value is assigned to a variable,
Java checks the data types of the variable and the value being assigned to it to determine
whether they are compatible. For example, look at the following statements:

int x;
double y = 2.5;
x = y;

The assignment statement is attempting to store a double value (2.5) in an int variable.
When the Java compiler encounters this line of code, it will respond with an error message.
(The JDK displays the message “possible loss of precision.”)

Not all assignment statements that mix data types are rejected by the compiler, however.
For instance, look at the following program segment:

int x;
short y = 2;
x = y;

This assignment statement, which stores a short in an int, will work with no problems. So
why does Java permit a short to be stored in an int, but does not permit a double to be
stored in an int? The obvious reason is that a double can store fractional numbers and can
hold values much larger than an int can hold. If Java were to permit a double to be assigned
to an int, a loss of data would be likely.

Just like officers in the military, the primitive data types are ranked. One data type outranks
another if it can hold a larger number. For example, a float outranks an int, and an int
outranks a short. Figure 2-6 shows the numeric data types in order of their rank. The
higher a data type appears in the list, the higher is its rank.

Figure 2-6 Primitive data type ranking

102 Chapter 2 Java Fundamentals

In assignment statements where values of lower-ranked data types are stored in variables of
higher-ranked data types, Java automatically converts the lower-ranked value to the higher-
ranked type. This is called a widening conversion. For example, the following code demonstrates
a widening conversion, which takes place when an int value is stored in a double variable:

double x;
int y = 10;
x = y; // Performs a widening conversion

A narrowing conversion is the conversion of a value to a lower-ranked type. For example,
converting a double to an int would be a narrowing conversion. Because narrowing con-
versions can potentially cause a loss of data, Java does not automatically perform them.

cast operators

The cast operator lets you manually convert a value, even if it means that a narrowing
conversion will take place. Cast operators are unary operators that appear as a data type
name enclosed in a set of parentheses. The operator precedes the value being converted.
Here is an example:

x = (int)number;

The cast operator in this statement is the word int inside the parentheses. It returns the
value in number, converted to an int. This converted value is then stored in x. If number
were a floating-point variable, such as a float or a double, the value that is returned would
be truncated, which means the fractional part of the number is lost. The original value in
the number variable is not changed, however.

Table 2-14 shows several statements using cast operators.

Table 2-14 Example uses of cast operators

Statement Description

littleNum = (short)bigNum; The cast operator returns the value in bigNum, converted to a
short. The converted value is assigned to the variable littleNum.

x = (long)3.7; The cast operator is applied to the expression 3.7. The operator
returns the value 3, which is assigned to the variable x.

number = (int)72.567; The cast operator is applied to the expression 72.567. The opera-
tor returns 72, which is used to initialize the variable number.

value = (float)x; The cast operator returns the value in x, converted to a float.
The converted value is assigned to the variable value.

value = (byte)number; The cast operator returns the value in number, converted to a
byte. The converted value is assigned to the variable value.

Note that when a cast operator is applied to a variable, it does not change the contents of the
variable. It only returns the value stored in the variable, converted to the specified data type.

Recall from our earlier discussion that when both operands of a division are integers, the
operation will result in integer division. This means that the result of the division will be

 2.7 Conversion between Primitive Data Types 103

an integer, with any fractional part of the result thrown away. For example, look at the
following code:

int pies = 10, people = 4;
double piesPerPerson;
piesPerPerson = pies / people;

Although 10 divided by 4 is 2.5, this code will store 2 in the piesPerPerson variable. Because
both pies and people are int variables, the result will be an int, and the fractional part will
be thrown away. We can modify the code with a cast operator, however, so it gives the cor-
rect result as a floating-point value:

piesPerPerson = (double)pies / people;

The variable pies is an int and holds the value 10. The expression (double)pies returns the
value in pies converted to a double. This means that one of the division operator’s operands
is a double, so the result of the division will be a double. The statement could also have been
written as follows:

piesPerPerson = pies / (double)people;

In this statement, the cast operator returns the value of the people variable converted to a
double. In either statement, the result of the division is a double.

Warning! The cast operator can be applied to an entire expression enclosed in
parentheses. For example, look at the following statement:

piesPerPerson = (double)(pies / people);

This statement does not convert the value in pies or people to a double, but converts the
result of the expression pies / people. If this statement were used, an integer division opera-
tion would still have been performed. Here’s why: The result of the expression pies / people
is 2 (because integer division takes place). The value 2 converted to a double is 2.0. To prevent
the integer division from taking place, one of the operands must be converted to a double.

Mixed integer operations
One of the nuances of the Java language is the way it internally handles arithmetic opera-
tions on int, byte, and short variables. When values of the byte or short data types are used
in arithmetic expressions, they are temporarily converted to int values. The result of an
arithmetic operation using only a mixture of byte, short, or int values will always be an int.

For example, assume that b and c in the following expression are short variables:

b + c

Although both b and c are short variables, the result of the expression b + c is an int. This
means that when the result of such an expression is stored in a variable, the variable must
be an int or higher data type. For example, look at the following code:

short firstNumber = 10,
 secondNumber = 20,
 thirdNumber;

104 Chapter 2 Java Fundamentals

// The following statement causes an error!
thirdNumber = firstNumber + secondNumber;

When this code is compiled, the following statement causes an error:

thirdNumber = firstNumber + secondNumber;

The error results from the fact that thirdNumber is a short. Although firstNumber and
secondNumber are also short variables, the expression firstNumber + secondNumber results
in an int value. The program can be corrected if thirdNumber is declared as an int, or if a
cast operator is used in the assignment statement, as shown here:

thirdNumber = (short)(firstNumber + secondNumber);

other Mixed Mathematical expressions
In situations where a mathematical expression has one or more values of the double, float,
or long data types, Java strives to convert all of the operands in the expression to the same
data type. Let’s look at the specific rules that govern evaluation of these types of expressions.

 1. If one of an operator’s operands is a double, the value of the other operand will be
converted to a double. The result of the expression will be a double. For example, in the
following statement assume that b is a double and c is an int:

a = b + c;

The value in c will be converted to a double prior to the addition. The result of the
addition will be a double, so the variable a must also be a double.

 2. If one of an operator’s operands is a float, the value of the other operand will be con-
verted to a float. The result of the expression will be a float. For example, in the
following statement assume that x is a short and y is a float:

z = x * y;

The value in x will be converted to a float prior to the multiplication. The result of the
multiplication will be a float, so the variable z must also be either a double or a float.

 3. If one of an operator’s operands is a long, the value of the other operand will be con-
verted to a long. The result of the expression will be a long. For example, in the fol-
lowing statement assume that a is a long and b is a short:

c = a - b;

The variable b will be converted to a long prior to the subtraction. The result of the
subtraction will be a long, so the variable c must also be a long, float, or double.

checkpoint

www.myprogramminglab.com

2.25 The following declaration appears in a program:

short totalPay, basePay = 500, bonus = 1000;

 The following statement appears in the same program:

totalPay = basePay + bonus;

a) Will the statement compile properly or cause an error?
b) If the statement causes an error, why? How can you fix it?

http://www.myprogramminglab.com

 2.8 Creating Named Constants with final 105

2.26 The variable a is a float and the variable b is a double. Write a statement that will
assign the value of b to a without causing an error when the program is compiled.

2.8 creating named constants with final

concepT: The final key word can be used in a variable declaration to make the
variable a named constant. Named constants are initialized with a value,
and that value cannot change during the execution of the program.

Assume that the following statement appears in a banking program that calculates data
pertaining to loans:

amount = balance * 0.069;

In such a program, two potential problems arise. First, it is not clear to anyone other than
the original programmer what 0.069 is. It appears to be an interest rate, but in some situa-
tions there are fees associated with loan payments. How can the purpose of this statement
be determined without painstakingly checking the rest of the program?

The second problem occurs if this number is used in other calculations throughout the pro-
gram and must be changed periodically. Assuming the number is an interest rate, what if the
rate changes from 6.9 percent to 8.2 percent? The programmer would have to search
through the source code for every occurrence of the number.

Both of these problems can be addressed by using named constants. A named constant is a
variable whose value is read only and cannot be changed during the program’s execution.
You can create such a variable in Java by using the final key word in the variable declara-
tion. The word final is written just before the data type. Here is an example:

final double INTEREST_RATE = 0.069;

This statement looks just like a regular variable declaration except that the word final
appears before the data type, and the variable name is written in all uppercase letters. It is
not required that the variable name appear in all uppercase letters, but many programmers
prefer to write them this way so they are easily distinguishable from regular variable names.

An initialization value must be given when declaring a variable with the final modifier, or
an error will result when the program is compiled. A compiler error will also result if there
are any statements in the program that attempt to change the value of a final variable.

An advantage of using named constants is that they make programs more self-documenting.
The following statement:

amount = balance * 0.069;

can be changed to read

amount = balance * INTEREST_RATE;

A new programmer can read the second statement and know what is happening. It is evident
that balance is being multiplied by the interest rate. Another advantage to this approach is that
widespread changes can easily be made to the program. Let’s say the interest rate appears in a
dozen different statements throughout the program. When the rate changes, the initialization

106 Chapter 2 Java Fundamentals

value in the definition of the named constant is the only value that needs to be modified. If the
rate increases to 8.2 percent, the declaration can be changed to the following:

final double INTEREST_RATE = 0.082;

The program is then ready to be recompiled. Every statement that uses INTEREST_RATE will
use the new value.

The Math.PI named constant

The Math class, which is part of the Java API, provides a predefined named constant,
Math.PI. This constant is assigned the value 3.14159265358979323846, which is an
approximation of the mathematical value pi. For example, look at the following statement:

area = Math.PI * radius * radius;

Assuming the radius variable holds the radius of a circle, this statement uses the Math.PI
constant to calculate the area of the circle.

For more information about the Math class, see Appendix F, available on the book’s com-
panion Web site at www.pearsonglobaleditions.com/Gaddis.

2.9 The String class

concepT: The String class allows you to create objects for holding strings. It also
has various methods that allow you to work with strings.

You have already encountered strings and examined programs that display them on the
screen, but let’s take a moment to make sure you understand what a string is. A string is a
sequence of characters. It can be used to represent any type of data that contains text, such
as names, addresses, warning messages, and so forth. String literals are enclosed in double-
quotation marks, such as the following:

"Hello World"
"Joe Mahoney"

Although programs commonly encounter strings and must perform a variety of tasks with
them, Java does not have a primitive data type for storing them in memory. Instead, the Java
API provides a class for handling strings. You use this class to create objects that are capable
of storing strings and performing operations on them. Before discussing this class, let’s
briefly discuss how classes and objects are related.

objects are created from classes
Chapter 1 introduced you to objects as software entities that can contain attributes and
methods. An object’s attributes are data values that are stored in the object. An object’s meth-
ods are procedures that perform operations on the object’s attributes. Before an object can be
created, however, it must be designed by a programmer. The programmer determines the
attributes and methods that are necessary, and then creates a class that describes the object.

You have already seen classes used as containers for applications. A class can also be used to
specify the attributes and methods that a particular type of object may have. Think of a class

http://www.pearsonglobaleditions.com/Gaddis

 2.9 The String Class 107

as a “blueprint” that objects may be created from. So a class is not an object, but a description
of an object. When the program is running, it can use the class to create, in memory, as many
objects as needed. Each object that is created from a class is called an instance of the class.

Tip: Don’t worry if these concepts seem a little fuzzy to you. As you progress through
this book, the concepts of classes and objects will be reinforced again and again.

The String class
The class that is provided by the Java API for handling strings is named String. The first
step in using the String class is to declare a variable of the String class data type. Here is
an example of a String variable declaration:

String name;

Tip: The S in String is written in an uppercase letter. By convention, the first character
of a class name is always written in an uppercase letter.

This statement declares name as a String variable. Remember that String is a class, not a
primitive data type. Let’s briefly look at the difference between primitive type variables and
class type variables.

primitive Type Variables and class Type Variables
A variable of any type can be associated with an item of data. Primitive type variables hold
the actual data items with which they are associated. For example, assume that number is an
int variable. The following statement stores the value 25 in the variable:

number = 25;

This is illustrated in Figure 2-7.

The number variable holds
the actual data with which
it is associated.

Figure 2-7 A primitive type variable holds the data with which it is associated

A class type variable does not hold the actual data item that it is associated with, but holds
the memory address of the data item it is associated with. If name is a String class variable,
then name can hold the memory address of a String object. This is illustrated in Figure 2-8.

Figure 2-8 A String class variable can hold the address of a String object

108 Chapter 2 Java Fundamentals

When a class type variable holds the address of an object, it is said that the variable references
the object. For this reason, class type variables are commonly known as reference variables.

creating a String object
Any time you write a string literal in your program, Java will create a String object in
memory to hold it. You can create a String object in memory and store its address in a
String variable with a simple assignment statement. Here is an example:

name = "Joe Mahoney";

Here, the string literal causes a String object to be created in memory with the value “Joe
Mahoney” stored in it. Then the assignment operator stores the address of that object in the
name variable. After this statement executes, it is said that the name variable references a
String object. This is illustrated in Figure 2-9.

You can also use the = operator to initialize a String variable, as shown here:

String name = "Joe Mahoney";

This statement declares name as a String variable, creates a String object with the value
“Joe Mahoney” stored in it, and assigns the object’s memory address to the name variable.
Code Listing 2-20 shows String variables being declared, initialized, and then used in a
println statement.

code Listing 2-20 (StringDemo.java)

1 // A simple program demonstrating String objects.
2
3 public class StringDemo
4 {
5 public static void main(String[] args)
6 {
7 String greeting = "Good morning, ";
8 String name = "Herman";
9

10 System.out.println(greeting + name);
11 }
12 }

program output

Good morning, Herman

Figure 2-9 The name variable holds the address of a String object

 2.9 The String Class 109

Because the String type is a class instead of a primitive data type, it provides numerous
methods for working with strings. For example, the String class has a method named
length that returns the length of the string stored in an object. Assuming the name variable
references a String object, the following statement stores the length of its string in the vari-
able stringSize (assume that stringSize is an int variable):

stringSize = name.length();

This statement calls the length method of the object that name refers to. To call a method
means to execute it. The general form of a method call is as follows:

referenceVariable.method(arguments. . .)

referenceVariable is the name of a variable that references an object, method is the
name of a method, and arguments. . . is zero or more arguments that are passed to the
method. If no arguments are passed to the method, as is the case with the length method, a
set of empty parentheses must follow the name of the method.

The String class’s length method returns an int value. This means that the method sends an
int value back to the statement that called it. This value can be stored in a variable, displayed
on the screen, or used in calculations. Code Listing 2-21 demonstrates the length method.

code Listing 2-21 (StringLength.java)

 1 // This program demonstrates the String class's length method.
 2
 3 public class StringLength
 4 {
 5 public static void main(String[] args)
 6 {
 7 String name = "Herman";
 8 int stringSize;
 9
10 stringSize = name.length();
11 System.out.println(name + " has " + stringSize +
12 " characters.");
13 }
14 }

program output

Herman has 6 characters.

You will study the String class methods in detail in Chapter 9, but let’s look at a few more
examples now. In addition to length, Table 2-15 describes the charAt, toLowerCase, and
toUpperCase methods.

noTe: The String class’s length method returns the number of characters in the string,
including spaces.

110 Chapter 2 Java Fundamentals

The program in Code Listing 2-22 demonstrates these methods.

code Listing 2-22 (StringMethods.java)

1 // This program demonstrates a few of the String methods.
2
3 public class StringMethods
4 {
5 public static void main(String[] args)
6 {
7 String message = "Java is Great Fun!";
8 String upper = message.toUpperCase();

Table 2-15 A few String class methods

Method Description and Example

charAt(index) The argument index is an int value and specifies a character position in the
string. The first character is at position 0, the second character is at position
1, and so forth. The method returns the character at the specified position.
The return value is of the type char.
Example:
 char letter;
 String name = "Herman";
 letter = name.charAt(3);
After this code executes, the variable letter will hold the character ‘m’.

length() This method returns the number of characters in the string. The return value
is of the type int.
Example:
 int stringSize;
 String name = "Herman";
 stringSize = name.length();
After this code executes, the stringSize variable will hold the value 6.

toLowerCase() This method returns a new string that is the lowercase equivalent of the
string contained in the calling object.
Example:
 String bigName = "HERMAN";
 String littleName = bigName.toLowerCase();
After this code executes, the object referenced by littleName will hold the
string “herman”.

toUpperCase() This method returns a new string that is the uppercase equivalent of the
string contained in the calling object.
Example:
 String littleName = "herman";
 String bigName = littleName.toUpperCase();
After this code executes, the object referenced by bigName will hold the string
“HERMAN”.

 2.10 Scope 111

 9 String lower = message.toLowerCase();
10 char letter = message.charAt(2);
11 int stringSize = message.length();
12
13 System.out.println(message);
14 System.out.println(upper);
15 System.out.println(lower);
16 System.out.println(letter);
17 System.out.println(stringSize);
18 }
19 }

program output

Java is Great Fun!
JAVA IS GREAT FUN!
java is great fun!
v
18

checkpoint

www.myprogramminglab.com

2.27 Write a statement that declares a String variable named city. The variable should
be initialized so it references an object with the string “San Francisco”.

2.28 Assume that stringLength is an int variable. Write a statement that stores the
length of the string referenced by the city variable (declared in Checkpoint 2.27)
in stringLength.

2.29 Assume that oneChar is a char variable. Write a statement that stores the first char-
acter in the string referenced by the city variable (declared in Checkpoint 2.27) in
oneChar.

2.30 Assume that upperCity is a String reference variable. Write a statement that stores
the uppercase equivalent of the string referenced by the city variable (declared in
Checkpoint 2.27) in upperCity.

2.31 Assume that lowerCity is a String reference variable. Write a statement that stores
the lowercase equivalent of the string referenced by the city variable (declared in
Checkpoint 2.27) in lowerCity.

2.10 scope

concepT: A variable’s scope is the part of the program that has access to the variable.

Every variable has a scope. The scope of a variable is the part of the program where the
variable may be accessed by its name. A variable is visible only to statements inside the
variable’s scope. The rules that define a variable’s scope are complex, and you are only

http://www.myprogramminglab.com

112 Chapter 2 Java Fundamentals

introduced to the concept here. In other chapters of the book we revisit this topic and
expand on it.

So far, you have only seen variables declared inside the main method. Variables that are
declared inside a method are called local variables. Later you will learn about variables
that are declared outside a method, but for now, let’s focus on the use of local variables.

A local variable’s scope begins at the variable’s declaration and ends at the end of the
method in which the variable is declared. The variable cannot be accessed by statements
that are outside this region. This means that a local variable cannot be accessed by code that
is outside the method, or inside the method but before the variable’s declaration. The pro-
gram in Code Listing 2-23 shows an example.

code Listing 2-23 (Scope.java)

1 // This program can't find its variable.
2
3 public class Scope
4 {
5 public static void main(String[] args)
6 {
7 System.out.println(value); // ERROR!
8 int value = 100;
9 }

10 }

The program does not compile because it attempts to send the contents of the variable
value to println before the variable is declared. It is important to remember that the com-
piler reads your program from top to bottom. If it encounters a statement that uses a vari-
able before the variable is declared, an error will result. To correct the program, the variable
declaration must be written before any statement that uses it.

Another rule that you must remember about local variables is that you cannot have two local
variables with the same name in the same scope. For example, look at the following method.

public static void main(String[] args)
{
 // Declare a variable named number and
 // display its value.
 int number = 7;
 System.out.println(number);

noTe: If you compile this program, the compiler will display an error message such
as “cannot resolve symbol.” This means that the compiler has encountered a name for
which it cannot determine a meaning.

 2.11 Comments 113

 // Declare another variable named number and
 // display its value.
 int number = 100; // ERROR!!!
 System.out.println(number); // ERROR!!!
}

This method declares a variable named number and initializes it with the value 7. The vari-
able’s scope begins at the declaration statement and extends to the end of the method.
Inside the variable’s scope a statement appears that declares another variable named number.
This statement will cause an error because you cannot have two local variables with the
same name in the same scope.

2.11 comments

concepT: Comments are notes of explanation that document lines or sections
of a program. Comments are part of the program, but the compiler
ignores them. They are intended for people who may be reading the
source code.

Comments are short notes that are placed in different parts of a program, explaining how
those parts of the program work. Comments are not intended for the compiler. They are
intended for programmers to read, to help them understand the code. The compiler skips all
of the comments that appear in a program.

As a beginning programmer, you might resist the idea of writing a lot of comments in
your programs. After all, it’s a lot more fun to write code that actually does something!
However, it’s crucial that you take the extra time to write comments. They will almost
certainly save you time in the future when you have to modify or debug the program.
Even large and complex programs can be made easy to read and understand if they are
properly commented.

In Java there are three types of comments: single-line comments, multiline comments, and
documentation comments. Let’s briefly discuss each type.

single-Line comments

You have already seen the first way to write comments in a Java program. You simply place
two forward slashes (//) where you want the comment to begin. The compiler ignores
everything from that point to the end of the line. Code Listing 2-24 shows that comments
may be placed liberally throughout a program.

code Listing 2-24 (Comment1.java)

 1 // PROGRAM: Comment1.java
 2 // Written by Herbert Dorfmann
 3 // This program calculates company payroll
 4
 5 public class Comment1

114 Chapter 2 Java Fundamentals

6 {
7 public static void main(String[] args)
8 {
9 double payRate; // Holds the hourly pay rate

10 double hours; // Holds the hours worked
11 int employeeNumber; // Holds the employee number
12
13 // The Remainder of This Program is Omitted.
14 }
15 }

In addition to telling who wrote the program and describing the purpose of variables, com-
ments can also be used to explain complex procedures in your code.

Multi-Line comments

The second type of comment in Java is the multi-line comment. Multi-line comments start
with /* (a forward slash followed by an asterisk) and end with */ (an asterisk followed by
a forward slash). Everything between these markers is ignored. Code Listing 2-25 illustrates
how multi-line comments may be used.

code Listing 2-25 (Comment2.java)

1 /*
2 PROGRAM: Comment2.java
3 Written by Herbert Dorfmann
4 This program calculates company payroll
5 */
6
7 public class Comment2
8 {
9 public static void main(String[] args)

10 {
11 double payRate; // Holds the hourly pay rate
12 double hours; // Holds the hours worked
13 int employeeNumber; // Holds the employee number
14
15 // The Remainder of This Program is Omitted.
16 }
17 }

Unlike a comment started with //, a multi-line comment can span several lines. This
makes it more convenient to write large blocks of comments because you do not have to

 2.11 Comments 115

mark every line. Consequently, the multi-line comment is inconvenient for writing single-
line comments because you must type both a beginning and an ending comment symbol.

Remember the following advice when using multi-line comments:

•	 Be	careful	not	to	reverse	the	beginning	symbol	with	the	ending	symbol.
•	 Be	sure	not	to	forget	the	ending	symbol.

Many programmers use asterisks or other characters to draw borders or boxes around their
comments. This helps to visually separate the comments from surrounding code. These are
called block comments. Table 2-16 shows four examples of block comments.

Table 2-16 Block comments

/*

 * This program demonstrates the

 * way to write comments.

 */

//***********************************

// This program demonstrates the *

// way to write comments. *

//***********************************

////////////////////////////////////

// This program demonstrates the

// way to write comments.

////////////////////////////////////

//-----------------------------------

// This program demonstrates the

// way to write comments.

//-----------------------------------

Documentation comments

The third type of comment is known as a documentation comment. Documentation com-
ments can be read and processed by a program named javadoc, which comes with the JDK.
The purpose of the javadoc program is to read Java source code files and generate attrac-
tively formatted HTML files that document the source code. If the source code files contain
any documentation comments, the information in the comments becomes part of the HTML
documentation. The HTML documentation files may be viewed in a Web browser.

Any comment that starts with /** and ends with */ is considered a documentation com-
ment. Normally you write a documentation comment just before a class header, giving a
brief description of the class. You also write a documentation comment just before each
method header, giving a brief description of the method. For example, Code Listing 2-26
shows a program with documentation comments. This program has a documentation com-
ment just before the class header, and just before the main method header.

116 Chapter 2 Java Fundamentals

code Listing 2-26 (Comment3.java)

1 /**
2 This class creates a program that calculates company payroll.
3 */
4
5 public class Comment3
6 {
7 /**
8 The main method is the program's starting point.
9 */

10
11 public static void main(String[] args)
12 {
13 double payRate; // Holds the hourly pay rate
14 double hours; // Holds the hours worked
15 int employeeNumber; // Holds the employee number
16
17 // The Remainder of This Program is Omitted.
18 }
19 }

You run the javadoc program from the operating system command prompt. Here is the
general format of the javadoc command:

javadoc SourceFile.java

SourceFile.java is the name of a Java source code file, including the .java extension. The
file will be read by javadoc and documentation will be produced for it. For example, the
following command will produce documentation for the Comment3.java source code file,
which is shown in Code Listing 2-26:

javadoc Comment3.java

After this command executes, several documentation files will be created in the same direc-
tory as the source code file. One of these files will be named index.html. Figure 2-10 shows
the index.html file being viewed in a Web browser. Notice that the text that was written in
the documentation comments appears in the file.

Tip: When you write a documentation comment for a method, the HTML documenta-
tion file that is produced by javadoc will have two sections for the method: a summary
section and a detail section. The first sentence in the method’s documentation comment is
used as the summary of the method. Note that javadoc considers the end of the sentence
as a period followed by a whitespace character. For this reason, when a method descrip-
tion contains more than one sentence, you should always end the first sentence with a
period followed by a whitespace character. The method’s detail section will contain all of
the description that appears in the documentation comment.

 2.11 Comments 117

If you look at the JDK documentation, which are HTML files that you view in a Web
browser, you will see that they are formatted in the same way as the files generated by
javadoc. A benefit of using javadoc to document your source code is that your documen-
tation will have the same professional look and feel as the standard Java documentation.

From this point forward in the book, we will use documentation comments in the example
source code. As we progress through various topics, you will see additional uses of docu-
mentation comments and the javadoc program.

checkpoint

www.myprogramminglab.com

2.32 How do you write a single line comment? How do you write a multi-line comment?
How do you write a documentation comment?

2.33 How are documentation comments different from other types of comments?

Figure 2-10 Documentation generated by javadoc (Google Inc.)

http://www.myprogramminglab.com

118 Chapter 2 Java Fundamentals

2.12 programming style

concepT: Programming style refers to the way a programmer uses spaces,
indentations, blank lines, and punctuation characters to visually arrange a
program’s source code.

In Chapter 1, you learned that syntax rules govern the way a language may be used. The
syntax rules of Java dictate how and where to place key words, semicolons, commas, braces,
and other elements of the language. The compiler checks for syntax errors, and if there are
none, generates byte code.

When the compiler reads a program it processes it as one long stream of characters. The
compiler doesn’t care that each statement is on a separate line, or that spaces separate
operators from operands. Humans, on the other hand, find it difficult to read programs that
aren’t written in a visually pleasing manner. Consider Code Listing 2-27 for example.

code Listing 2-27 (Compact.java)

1 public class Compact {public static void main(String [] args){int
2 shares=220; double averagePrice=14.67; System.out.println(
3 "There were "+shares+" shares sold at $"+averagePrice+
4 " per share.");}}

program output

There were 220 shares sold at $14.67 per share.

Although the program is syntactically correct (it doesn’t violate any rules of Java), it is very
difficult to read. The same program is shown in Code Listing 2-28, written in a more under-
standable style.

code Listing 2-28 (Readable.java)

1 /**
2 This example is much more readable than Compact.java.
3 */
4
5 public class Readable
6 {
7 public static void main(String[] args)
8 {
9 int shares = 220;

10 double averagePrice = 14.67;
11
12 System.out.println("There were " + shares +
13 " shares sold at $" +
14 averagePrice + " per share.");

 2.12 Programming Style 119

15 }
16 }

program output

There were 220 shares sold at $14.67 per share.

The term programming style usually refers to the way source code is visually arranged. It
includes techniques for consistently putting spaces and indentations in a program so
visual cues are created. These cues quickly tell a programmer important information
about a program.

For example, notice in Code Listing 2-28 that inside the class’s braces each line is indented,
and inside the main method’s braces each line is indented again. It is a common program-
ming style to indent all the lines inside a set of braces, as shown in Figure 2-11.

Figure 2-11 Indentation

Another aspect of programming style is how to handle statements that are too long to fit on
one line. Notice that the println statement is spread out over three lines. Extra spaces are
inserted at the beginning of the statement’s second and third lines, which indicate that they
are continuations.

When declaring multiple variables of the same type with a single statement, it is a common
practice to write each variable name on a separate line with a comment explaining the
variable’s purpose. Here is an example:

int fahrenheit, // To hold the Fahrenheit temperature
 celsius, // To hold the Celsius temperature
 kelvin; // To hold the Kelvin temperature

You may have noticed in the example programs that a blank line is inserted between the
variable declarations and the statements that follow them. This is intended to separate the
declarations visually from the executable statements.

There are many other issues related to programming style. They will be presented through-
out the book.

120 Chapter 2 Java Fundamentals

2.13 reading Keyboard input

concepT: Objects of the Scanner class can be used to read input from the keyboard.

Previously we discussed the System.out object, and how it refers to the standard output
device. The Java API has another object, System.in, which refers to the standard input
device. The standard input device is normally the keyboard. You can use the System.in
object to read keystrokes that have been typed at the keyboard. However, using System.in
is not as simple and straightforward as using System.out because the System.in object
reads input only as byte values. This isn’t very useful because programs normally require
values of other data types as input. To work around this, you can use the System.in object
in conjunction with an object of the Scanner class. The Scanner class is designed to read
input from a source (such as System.in), and it, provides methods that you can use to retrieve
the input formatted as primitive values or strings.

First, you create a Scanner object and connect it to the System.in object. Here is an example
of a statement that does just that:

Scanner keyboard = new Scanner(System.in);

Let’s dissect the statement into two parts. The first part of the statement,

Scanner keyboard

declares a variable named keyboard. The data type of the variable is Scanner. Because
Scanner is a class, the keyboard variable is a class type variable. Recall from our discussion
on String objects that a class type variable holds the memory address of an object.
Therefore, the keyboard variable will be used to hold the address of a Scanner object. The
second part of the statement is as follows:

= new Scanner(System.in);

The first thing we see in this part of the statement is the assignment operator (=). The
assignment operator will assign something to the keyboard variable. After the assignment
operator we see the word new, which is a Java key word. The purpose of the new key word
is to create an object in memory. The type of object that will be created is listed next. In this
case, we see Scanner(System.in) listed after the new key word. This specifies that a Scanner
object should be created, and it should be connected to the System.in object. The memory
address of the object is assigned (by the = operator) to the variable keyboard. After the state-
ment executes, the keyboard variable will reference the Scanner object that was created
in memory.

Figure 2-12 points out the purpose of each part of this statement. Figure 2-13 illustrates
how the keyboard variable references an object of the Scanner class.

 2.13 Reading Keyboard Input 121

The Scanner class has methods for reading strings, bytes, integers, long integers, short
integers, floats, and doubles. For example, the following code uses an object of the Scanner
class to read an int value from the keyboard and assign the value to the number variable.

int number;
Scanner keyboard = new Scanner(System.in);
System.out.print("Enter an integer value: ");
number = keyboard.nextInt();

The last statement shown here calls the Scanner class’s nextInt method. The nextInt
method formats an input value as an int, and then returns that value. Therefore, this state-
ment formats the input that was entered at the keyboard as an int, and then returns it. The
value is assigned to the number variable.

Table 2-17 lists several of the Scanner class’s methods and describes their use.

Scanner keyboard = new Scanner(System.in);

This declares a variable
named keyboard. The
variable can reference

an object of the Scanner
class.

This creates a Scanner
object in memory. The

object will read input from
System.in.

The = operator assigns the address
of the Scanner object to the

keyboard variable.

Figure 2-12 The parts of the statement

The keyboard variable
can hold the address
of a Scanner object.

A Scanner object

*This Scanner object
is configured to read
input from System.in.

Figure 2-13 The keyboard variable references a Scanner object

noTe: In the preceding code, we chose keyboard as the variable name. There is nothing
special about the name keyboard. We simply chose that name because we will use the
variable to read input from the keyboard.

122 Chapter 2 Java Fundamentals

Table 2-17 Some of the Scanner class methods

Method Example and Description
nextByte Example Usage:

 byte x;
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter a byte value: ");

 x = keyboard.nextByte();

Description: Returns input as a byte.
nextDouble Example Usage:

 double number;
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter a double value: ");
 number = keyboard.nextDouble();

Description: Returns input as a double.
nextFloat Example Usage:

 float number;
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter a float value: ");
 number = keyboard.nextFloat();

Description: Returns input as a float.
nextInt Example Usage:

 int number;
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter an integer value: ");
 number = keyboard.nextInt();

Description: Returns input as an int.
nextLine Example Usage:

 String name;
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter your name: ");
 name = keyboard.nextLine();

Description: Returns input as a String.
 nextLong Example Usage:

 long number;
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter a long value: ");
 number = keyboard.nextLong();

Description: Returns input as a long.
nextShort Example Usage:

 short number;
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter a short value: ");
 number = keyboard.nextShort();

Description: Returns input as a short.

