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Statistics for the Life Sciences is an introductory text in statistics, specifically addressed 
to students specializing in the life sciences. Its primary aims are (1) to show students 
how statistical reasoning is used in biological, medical, and agricultural research;  
(2) to enable students to confidently carry out simple statistical analyses and to inter-
pret the results; and (3) to raise students’ awareness of basic statistical issues such as 
randomization, confounding, and the role of independent replication.

Style and Approach
The style of Statistics for the Life Sciences is informal and uses only minimal mathe-
matical notation. There are no prerequisites except elementary algebra; anyone who 
can read a biology or chemistry textbook can read this text. It is suitable for use by 
graduate or undergraduate students in biology, agronomy, medical and health sci-
ences, nutrition, pharmacy, animal science, physical education, forestry, and other 
life sciences.

Use of Real Data Real examples are more interesting and often more enlightening 
than artificial ones. Statistics for the Life Sciences includes hundreds of examples and 
exercises that use real data, representing a wide variety of research in the life sci-
ences. Each example has been chosen to illustrate a particular statistical issue. The 
exercises have been designed to reduce computational effort and focus students’ 
attention on concepts and interpretations.

Emphasis on Ideas The text emphasizes statistical ideas rather than computations or 
mathematical formulations. Probability theory is included only to support statistical 
concepts. The text stresses interpretation throughout the discussion of descriptive 
and inferential statistics. By means of salient examples, we show why it is important 
that an analysis be appropriate for the research question to be answered, for the 
statistical design of the study, and for the nature of the underlying distributions. We 
help the student avoid the common blunder of confusing statistical nonsignificance 
with practical insignificance and encourage the student to use confidence intervals 
to assess the magnitude of an effect. The student is led to recognize the impact on 
real research of design concepts such as random sampling, randomization, efficiency, 
and the control of extraneous variation by blocking or adjustment. Numerous exer-
cises amplify and reinforce the student’s grasp of these ideas.

The Role of Technology The analysis of research data is usually carried out with 
the aid of a computer. Computer-generated graphs are shown at several places in 
the text. However, in studying statistics it is desirable for the student to gain 
 experience working directly with data, using paper and pencil and a hand-held 
calculator, as well as a computer. This experience will help the student appreciate 
the nature and purpose of the statistical computations. The student is thus  prepared 
to make intelligent use of the computer—to give it appropriate  instructions and 
properly interpret the output. Accordingly, most of the exercises in this text  
are intended for hand calculation. However, electronic data files are provided  
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at www.pearsonglobaleditions.com/Samuels for many of the exercises, so that a 
computer can be used if desired. Selected exercises are identified as Computer 
Problems to be completed with use of a computer. (Typically, the computer exer-
cises require calculations that would be unduly burdensome if carried out by hand.)

Organization
This text is organized to permit coverage in one semester of the maximum number 
of important statistical ideas, including power, multiple inference, and the basic prin-
ciples of design. By including or excluding optional sections, the instructor can also 
use the text for a one-quarter course or a two-quarter course. It is suitable for a ter-
minal course or for the first course of a sequence.

The following is a brief outline of the text.

Unit I: Data and Distributions

Chapter 1: Introduction. The nature and impact of variability in biological data. The 
hazards of observational studies, in contrast with experiments. Random sampling.
Chapter 2: Description of distributions. Frequency distributions, descriptive statis-
tics, the concept of population versus sample.
Chapters 3, 4, and 5: Theoretical preparation. Probability, binomial and normal dis-
tributions, sampling distributions.

Unit II: Inference for Means

Chapter 6: Confidence intervals for a single mean and for a difference in means.
Chapter 7: Hypothesis testing, with emphasis on the t test. The randomization test, 
the Wilcoxon-Mann-Whitney test.
Chapter 8: Inference for paired samples. Confidence interval, t test, sign test, and 
Wilcoxon signed-rank test.

Unit III: Inference for Categorical Data

Chapter 9: Inference for a single proportion. Confidence intervals and the chi-
square goodness-of-fit test.
Chapter 10: Relationships in categorical data. Conditional probability, contingency 
tables. Optional sections cover Fisher’s exact test, McNemar’s test, and odds ratios.

Unit IV:  Modeling Relationships

Chapter 11: Analysis of variance. One-way layout, multiple comparison procedures, 
one-way blocked ANOVA, two-way ANOVA. Contrasts and multiple comparisons 
are included in optional sections.
Chapter 12: Correlation and regression. Descriptive and inferential aspects of cor-
relation and simple linear regression and the relationship between them.
Chapter 13: A summary of inference methods.

Most sections within each chapter conclude with section-specific exercises. Chap-
ters and units conclude with supplementary exercises that provide opportunities 
for students to practice integrating the breadth of methods presented within the 
chapter or across the entire unit. Selected statistical tables are provided at the back 
of the book; other tables are available at www.pearsonglobaleditions.com/Samuels. 
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The tables of critical values are especially easy to use because they follow mutually 
consistent layouts and so are used in essentially the same way.

Optional appendices at the back of the book and available online at www. 
pearsonglobaleditions.com/Samuels give the interested student a deeper look into 
such matters as how the Wilcoxon-Mann-Whitney null distribution is calculated.

Changes to the Fifth Edition
• Chapters are grouped by unit, and feature Unit Highlights with reflections, 

summaries, and additional examples and exercises at the end of each unit that 
often require connecting ideas from multiple chapters.

• We added material on randomization-based inference to introduce or motivate 
most inference procedures presented in this text. There are now presentations 
of randomization methods at the beginnings of Chapters 7,  8, 10, 11, and 12.

• New exercises have been added throughout the text. Many exercises from the 
previous edition that involved calculation and reading tables have been 
updated to exercises that require interpretation of computer output.

• We replaced many older examples throughout the text with examples from 
current research from a variety life science disciplines.

• Chapter notes have been updated to include references to new examples. 
These are now available online at www.pearsonglobaleditions.com/Samuels 
with some selected notes remaining in print.

Instructor Supplements
Instructor’s Solutions Manual (downloadable) (ISBN-13: 978-1-292-10183-5; 
ISBN-10: 1-292-10183-0) Solutions to all exercises are available as a downloadable 
manual from Pearson Education’s online catalog at www.pearsonglobaleditions.
com/Samuels. Careful attention has been paid to ensure that all methods of solution 
and notation are consistent with those used in the core text.

PowerPoint Slides (downloadable) (ISBN-13: 978-1-292-10184-2; ISBN-10: 1-292-
10184-9) Selected figures and tables from throughout the textbook are available as 
downloadable PowerPoint slides for use in creating custom PowerPoint lecture pre-
sentations. These slides are available for download at www.pearsonglobaleditions.
com/Samuels.

Student Supplements
Data Sets The larger data sets used in examples and exercises in the book are avail-
able as .csv files at www.pearsonglobaleditions.com/Samuels

http://www.pearsonglobaleditions.com/Samuels
http://www.pearsonglobaleditions.com/Samuels
http://www.pearsonglobaleditions.com/Samuels
http://www.pearsonglobaleditions.com/Samuels
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StatCrunch™ StatCrunch is powerful web-based statistical software that allows 
users to perform complex analyses, share data sets, and generate compelling reports 
of their data. The vibrant online community offers tens of thousands of shared data 
sets for students to analyze.

• Collect. Users can upload their own data to StatCrunch or search a large library 
of publicly shared data sets, spanning almost any topic of interest. Also, an 
online survey tool allows users to quickly collect data via web-based surveys.

• Crunch. A full range of numerical and graphical methods allows users to ana-
lyze and gain insights from any data set. Interactive graphics help users under-
stand statistical concepts and are available for export to enrich reports with 
visual representations of data.

• Communicate. Reporting options help users create a wide variety of visually 
appealing representations of their data.

StatCrunch access is available to qualified adopters. StatCrunch Mobile is now 
 available—just visit www.statcrunch.com/mobile from the browser on your smart-
phone or tablet. For more information, visit our website at www.StatCrunch.com, or 
contact your Pearson representative.

Acknowledgments for the Fifth Edition
The fifth edition of Statistics for the Life Science retains the style and spirit of the 
writing of Myra Samuels. Prior to her tragic death from cancer, Myra wrote the first 
edition of the text, based on her experience both as a teacher of statistics and as a 
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the text considerably. We have benefited from countless conversations over the 
years with David Moore, Dick Scheaffer, Murray Clayton, Alan Agresti, Don Bentley, 
George Cobb, and many others who have our thanks.

We are grateful for the sound editorial guidance and encouragement of  Katherine 
Roz. We are also grateful for adopters of the earlier editions, particularly Robert 
Wolf and Jeff May, whose suggestions led to improvements in the current edition. 
Finally, we express our gratitude to the reviewers of this edition:

Jeffrey Schmidt (University of Wisconsin-Parkside), Liansheng Tang (George Mason 
University), Tim Hanson (University of South Carolina), Mohammed Kazemi (Uni-
versity of North Carolina–Charlotte), Kyoungmi Kim (University of California, 
Davis), and Leslie Hendrix (University of South Carolina)

Special Thanks
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Chapte r 

1Introduction

 1.1  Statistics and the Life Sciences
Researchers in the life sciences carry out investigations in various settings: in the 
clinic, in the laboratory, in the greenhouse, in the field. Generally, the resulting data 
exhibit some variability. For instance, patients given the same drug respond some-
what differently; cell cultures prepared identically develop somewhat differently; 
adjacent plots of genetically identical wheat plants yield somewhat different amounts 
of grain. Often the degree of variability is substantial even when experimental con-
ditions are held as constant as possible.

The challenge to the life scientist is to discern the patterns that may be more or 
less obscured by the variability of responses in living systems. The scientist must try 
to distinguish the “signal” from the “noise.”

Statistics is the science of understanding data and of making decisions in the 
face of variability and uncertainty. The discipline of statistics has evolved in response 
to the needs of scientists and others whose data exhibit variability. The concepts and 
methods of statistics enable the investigator to describe variability and to plan 
research so as to take variability into account (i.e., to make the “signal” strong in 
comparison to the background “noise” in data that are collected). Statistical meth-
ods are used to analyze data so as to extract the maximum information and also to 
quantify the reliability of that information.

We begin with some examples that illustrate the degree of variability found in 
biological data and the ways in which variability poses a challenge to the biological 
researcher. We will briefly consider examples that illustrate some of the statistical 
issues that arise in life sciences research and indicate where in this book the issues 
are addressed.

The first two examples provide a contrast between an experiment that showed 
no variability and another that showed considerable variability.

Objectives

In this chapter we will look 
at a series of examples of 
areas in the life sciences in 
which statistics is used, with 
the goal of understanding 
the scope of the field of 
statistics. We will also
• explain how experiments 

differ from observational 
studies.

• discuss the concepts of 
placebo effect, blinding, 
and confounding.

• discuss the role of 
random sampling in 
statistics.

example 
1.1.1

vaccine for Anthrax Anthrax is a serious disease of sheep and cattle. In 1881, Louis 
Pasteur conducted a famous experiment to demonstrate the effect of his vaccine 
against anthrax. A group of 24 sheep were vaccinated; another group of 24 unvac-
cinated sheep served as controls. Then, all 48 animals were inoculated with a viru-
lent culture of anthrax bacillus. Table 1.1.1 shows the results.1 The data of Table 1.1.1 
show no variability; all the vaccinated animals survived and all the unvaccinated 
animals died. ■
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In contrast to Table 1.1.1, the data of Table 1.1.2 show variability; mice given the 
same treatment did not all respond the same way. Because of this variability, the 
results in Table 1.1.2 are equivocal; the data suggest that exposure to E. coli increases 
the risk of liver tumors, but the possibility remains that the observed difference in 
percentages (62% versus 39%) might reflect only chance variation rather than an 
effect of E. coli. If the experiment were replicated with different animals, the per-
centages might change substantially.

One way to explore what might happen if the experiment were replicated is 
to simulate the experiment, which could be done as follows. Take 62 cards and 
write “liver tumors” on 27 ( =  8 + 19) of them and “no liver tumors” on the other 
35 ( =  5 + 30). Shuffle the cards and randomly deal 13 cards into one stack (to 
correspond to the E. coli mice) and 49 cards into a second stack. Next, count the 
number of cards in the “E. coli stack” that have the words “liver tumors” on 
them—to correspond to mice exposed to E. coli who develop liver tumors—and 
record whether this number is greater than or equal to 8. This process represents 
distributing 27 cases of liver tumors to two groups of mice (E. coli and germ free) 
randomly, with E. coli mice no more likely, nor any less likely, than germ-free mice 
to end up with liver tumors.

If we repeat this process many times (say, 10,000 times, with the aid of a com-
puter in place of a physical deck of cards), it turns out that roughly 12% of the time 
we get 8 or more E. coli mice with liver tumors. Since something that happens 12% 
of the time is not terribly surprising, Table 1.1.2 does not provide significant evidence 
that exposure to E. coli increases the incidence of liver tumors. ■

example 
1.1.2

bacteria and cancer To study the effect of bacteria on tumor development, research-
ers used a strain of mice with a naturally high incidence of liver tumors. One group 
of mice were maintained entirely germ free, while another group were exposed to 
the intestinal bacteria Escherichia coli. The incidence of liver tumors is shown in 
Table 1.1.2.2

Response

Treatment

Vaccinated Not vaccinated

Died of anthrax 0 24

Survived 24 0

Total 24 24

Percent survival 100% 0%

table 1.1.1 Response of sheep to anthrax 

Response

Treatment

E. coli Germ free

Liver tumors 8 19

No liver tumors 5 30

Total 13 49

Percent with liver tumors 62% 39%

table 1.1.2 Incidence of liver tumors in mice 
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In Chapter 10 we will discuss statistical techniques for evaluating data such as 
those in Tables 1.1.1 and 1.1.2. Of course, in some experiments variability is minimal 
and the message in the data stands out clearly without any special statistical analy-
sis. It is worth noting, however, that absence of variability is itself an experimental 
result that must be justified by sufficient data. For instance, because Pasteur’s 
anthrax data (Table 1.1.1) show no variability at all, it is intuitively plausible to con-
clude that the data provide “solid” evidence for the efficacy of the vaccination. But 
note that this conclusion involves a judgment; consider how much less “solid” the 
evidence would be if Pasteur had included only 3 animals in each group, rather than 
24. Statistical analyses can be used to make such a judgment, that is, to determine if 
the variability is indeed negligible. Thus, a statistical view can be helpful even in the 
absence of variability.

The next two examples illustrate additional questions that a statistical approach 
can help to answer.

example 
1.1.3

Flooding and AtP In an experiment on root metabolism, a plant physiologist grew 
birch tree seedlings in the greenhouse. He flooded four seedlings with water for one 
day and kept four others as controls. He then harvested the seedlings and analyzed 
the roots for adenosine triphosphate (ATP). The measured amounts of ATP (nmoles 
per mg tissue) are given in Table 1.1.3 and displayed in Figure 1.1.1.3

The data of Table 1.1.3 raise several questions: How should one summarize the 
ATP values in each experimental condition? How much information do the data 
provide about the effect of flooding? How confident can one be that the reduced 
ATP in the flooded group is really a response to flooding rather than just random 
variation? What size experiment would be required in order to firmly corroborate 
the apparent effect seen in these data? ■

Flooded Control
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Figure 1.1.1 ATP concentration in birch tree roots

table 1.1.3  ATP concentration in 
birch tree roots (nmol/mg)

Flooded Control

1.45 1.70

1.19 2.04

1.05 1.49

1.07 1.91
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Chapters 2, 6, and 7 address questions like those posed in Example 1.1.3. One 
question that we can address here is whether the data in Table 1.1.3 are consistent 
with the claim that flooding has no effect on ATP concentration, or instead provide 
significant evidence that flooding affects ATP concentrations. If the claim of no 
effect is true, then should we be surprised to see that all four of the flooded observa-
tions are smaller than each of the control observations? Might this happen by chance 
alone? If we wrote each of the numbers 1.05, 1.07, 1.19, 1.45, 1.49, 1.91, 1.70, and 2.04 
on cards, shuffled the eight cards, and randomly dealt them into two piles, what is the 
chance that the four smallest numbers would end up in one pile and the four largest 
numbers in the other pile? It turns out that we could expect this to happen 1 time in 
35 random shufflings, so “chance alone” would only create the kind of imbalance 
seen in Figure 1.1.1 about 2.9% of the time (since 1/35 = 0.029). Thus, we have some 
evidence that flooding has an effect on ATP concentration. We will develop this idea 
more fully in Chapter 7.

example 
1.1.4

MAO and schizophrenia Monoamine oxidase (MAO) is an enzyme that is thought 
to play a role in the regulation of behavior. To see whether different categories of 
patients with schizophrenia have different levels of MAO activity, researchers col-
lected blood specimens from 42 patients and measured the MAO activity in the 
platelets. The results are given in Table 1.1.4 and displayed in Figure 1.1.2. (Values are 
expressed as nmol benzylaldehyde product per 108 platelets per hour.4) Note that it 
is much easier to get a feeling for the data by looking at the graph (Figure 1.1.2) than 
it is to read through the data in the table. The use of graphical displays of data is a 
very important part of data analysis. ■

To analyze the MAO data, one would naturally want to make comparisons 
among the three groups of patients, to describe the reliability of those comparisons, 
and to characterize the variability within the groups. To go beyond the data to a bio-
logical interpretation, one must also consider more subtle issues, such as the 
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Figure 1.1.2 MAO activity in patients with schizophrenia

table 1.1.4 MAO activity in patients with schizophrenia

Diagnosis MAO activity

I: 6.8 4.1 7.3 14.2 18.8

Chronic 
undifferentiated 
schizophrenia 
(18 patients)

9.9 7.4 11.9 5.2 7.8

7.8 8.7 12.7 14.5 10.7

8.4 9.7 10.6

II: 7.8 4.4 11.4 3.1 4.3

Undifferentiated 
with paranoid 
features 
(16 patients)

10.1 1.5 7.4 5.2 10.0

3.7 5.5 8.5 7.7 6.8

3.1

III: 6.4 10.8 1.1 2.9 4.5

Paranoid 
schizophrenia  
(8 patients)

5.8 9.4 6.8
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 following: How were the patients selected? Were they chosen from a common hos-
pital population, or were the three groups obtained at different times or places? 
Were precautions taken so that the person measuring the MAO was unaware of the 
patient’s diagnosis? Did the investigators consider various ways of subdividing the 
patients before choosing the particular diagnostic categories used in Table 1.1.4? At 
first glance, these questions may seem irrelevant—can we not let the measurements 
speak for themselves? We will see, however, that the proper interpretation of data 
always requires careful consideration of how the data were obtained.

Sections 1.2 and 1.3. as well as Chapters 2 and 8, include discussions of selection of 
experimental subjects and of guarding against unconscious investigator bias. In Chapter 11 
we will show how sifting through a data set in search of patterns can lead to serious mis-
interpretations and we will give guidelines for avoiding the pitfalls in such searches.

The next example shows how the effects of variability can distort the results of 
an experiment and how this distortion can be minimized by careful design of the 
experiment.

example 
1.1.5

Food choice by insect Larvae The clover root curculio, Sitona hispidulus, is a root-
feeding pest of alfalfa. An entomologist conducted an experiment to study food 
choice by Sitona larvae. She wished to investigate whether larvae would preferen-
tially choose alfalfa roots that were nodulated (their natural state) over roots whose 
nodulation had been suppressed. Larvae were released in a dish where both nodu-
lated and nonnodulated roots were available. After 24 hours, the investigator counted 
the larvae that had clearly made a choice between root types. The results are shown 
in Table 1.1.5.5

The data in Table 1.1.5 appear to suggest rather strongly that Sitona larvae prefer 
nodulated roots. But our description of the experiment has obscured an important 
point—we have not stated how the roots were arranged. To see the relevance of the 
arrangement, suppose the experimenter had used only one dish, placing all the nod-
ulated roots on one side of the dish and all the nonnodulated roots on the other side, 
as shown in Figure 1.1.3(a), and had then released 120 larvae in the center of the dish. 
This experimental arrangement would be seriously deficient, because the data of 
Table 1.1.5 would then permit several competing interpretations—for instance, 
(a) perhaps the larvae really do prefer nodulated roots; or (b) perhaps the two sides 
of the dish were at slightly different temperatures and the larvae were responding to 
temperature rather than nodulation; or (c) perhaps one larva chose the nodulated 
roots just by chance and the other larvae followed its trail. Because of these possi-
bilities the experimental arrangement shown in Figure 1.1.3(a) can yield only weak 
information about larval food preference.

(a) (b)

Figure 1.1.3 Possible arrangements of food choice 
experiment. The dark-shaded areas contain nodulated 
roots and the light-shaded areas contain nonnodulated 
roots.
(a) A poor arrangement.
(b) A good arrangement.

table 1.1.5 Food choice by Sitona larvae

Choice Number of larvae

Chose nodulated roots 46

Chose nonnodulated roots 12

Other (no choice, died, lost) 62

Total 120
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The experiment was actually arranged as in Figure 1.1.3(b), using six dishes 
with nodulated and nonnodulated roots arranged in a symmetric pattern. Twenty 
larvae were released into the center of each dish. This arrangement avoids the pit-
falls of the arrangement in Figure 1.1.3(a). Because of the alternating regions of 
nodulated and nonnodulated roots, any fluctuation in environmental conditions 
(such as temperature) would tend to affect the two root types equally. By using 
several dishes, the experimenter has generated data that can be interpreted even if 
the larvae do tend to follow each other. To analyze the experiment properly, we 
would need to know the results in each dish; the condensed summary in Table 1.1.5 
is not adequate. ■

In Chapter 11 we will describe various ways of arranging experimental material 
in space and time so as to yield the most informative experiment, as well as how to 
analyze the data to extract as much information as possible and yet resist the temp-
tation to overinterpret patterns that may represent only random variation.

The following example is a study of the relationship between two measured 
quantities.

example 
1.1.6

body size and energy expenditure How much food does a person need? To inves-
tigate the dependence of nutritional requirements on body size, researchers used 
underwater weighing techniques to determine the fat-free body mass for each of 
seven men. They also measured the total 24-hour energy expenditure during condi-
tions of quiet sedentary activity; this was repeated twice for each subject. The results 
are shown in Table 1.1.6 and plotted in Figure 1.1.4.6

A primary goal in the analysis of these data would be to describe the relation-
ship between fat-free mass and energy expenditure—to characterize not only the 
overall trend of the relationship, but also the degree of scatter or variability in the 
relationship. (Note also that, to analyze the data, one needs to decide how to handle 
the duplicate observations on each subject.) ■
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Figure 1.1.4 Fat-free mass and energy expenditure in 
seven men. Each man is represented by a different symbol.

table 1.1.6 Fat-free mass and energy expenditure

Subject
Fat-free mass 

(kg)
24-hour energy 

expenditure (kcal)

1 49.3 1,851 1,936

2 59.3 2,209 1,891

3 68.3 2,283 2,423

4 48.1 1,885 1,791

5 57.6 1,929 1,967

6 78.1 2,490 2,567

7 76.1 2,484 2,653
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The focus of Example 1.1.6 is on the relationship between two variables: fat-free 
mass and energy expenditure. Chapter 12 deals with methods for describing such 
relationships, and also for quantifying the reliability of the descriptions.

A Look AheAd

Where appropriate, statisticians make use of the computer as a tool in data analysis; 
computer-generated output and statistical graphics appear throughout this book. 
The computer is a powerful tool, but it must be used with caution. Using the com-
puter to perform calculations allows us to concentrate on concepts. The danger when 
using a computer in statistics is that we will jump straight to the calculations without 
looking closely at the data and asking the right questions about the data. Our goal is 
to analyze, understand, and interpret data—which are numbers in a specific  context—
not just to perform calculations.

In order to understand a data set it is necessary to know how and why the data 
were collected. In addition to considering the most widely used methods in statistical 
inference, we will consider issues in data collection and experimental design. 
Together, these topics should provide the reader with the background needed to 
read the scientific literature and to design and analyze simple research projects.

The preceding examples illustrate the kind of data to be considered in this book. 
In fact, each of the examples will reappear as an exercise or example in an appropri-
ate chapter. As the examples show, research in the life sciences is usually concerned 
with the comparison of two or more groups of observations, or with the relationship 
between two or more variables. We will begin our study of statistics by focusing on a 
simpler situation—observations of a single variable for a single group. Many of the 
basic ideas of statistics will be introduced in this oversimplified context. Two-group 
comparisons and more complicated analyses will then be discussed in Chapter 7 and 
later chapters.

 1.2  Types of Evidence
Researchers gather information and make inferences about the state of nature in a 
variety of settings. Much of statistics deals with the analysis of data, but statistical 
considerations often play a key role in the planning and design of a scientific inves-
tigation. We begin with examples of the three major kinds of evidence that one 
encounters.

example 
1.2.1

Lightning and Deafness On 15 July 1911, 65-year-old Mrs. Jane Decker was struck 
by lightning while in her house. She had been deaf since birth, but after being struck, 
she recovered her hearing, which led to a headline in the New York Times, “Light-
ning Cures Deafness.”7 Is this compelling evidence that lightning is a cure for deaf-
ness? Could this event have been a coincidence? Are there other explanations for 
her cure? ■

The evidence discussed in Example 1.2.1 is anecdotal evidence. An anecdote is 
a short story or an example of an interesting event, in this case, of lightning curing 
deafness. The accumulation of anecdotes often leads to conjecture and to scientific 
investigation, but it is predictable pattern, not anecdote, that establishes a scientific 
theory.
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The data suggest that the size of the AC in homosexual men is more like that of 
heterosexual women than that of heterosexual men. When analyzing these data, we 
should take into account two things. (1) The measurements for two of the homo-
sexual men were much larger than any of the other measurements; sometimes one 
or two such outliers can have a big impact on the conclusions of a study. (2) Twenty-
four of the 30 homosexual men had AIDS, as opposed to 6 of the 30 heterosexual 
men; if AIDS affects the size of the anterior commissure, then this factor could 
account for some of the difference between the two groups of men.8 ■

Example 1.2.2 presents an observational study. In an observational study the 
researcher systematically collects data from subjects, but only as an observer and not 
as someone who is manipulating conditions. By systematically examining all the data 
that arise in observational studies, one can guard against selectively viewing and 
reporting only evidence that supports a previous view. However, observational stud-
ies can be misleading due to confounding variables. In Example 1.2.2 we noted that 
having AIDS may affect the size of the anterior commissure. We would say that the 
effect of AIDS is confounded with the effect of sexual orientation in this study.

Note that the context in which the data arose is of central importance in statis-
tics. This is quite clear in Example 1.2.2. The numbers themselves can be used to 
compute averages or to make graphs, like Figure 1.2.1, but if we are to understand 
what the data have to say, we must have an understanding of the context in which 
they arose. This context tells us to be on the alert for the effects that other factors, 
such as the impact of AIDS, may have on the size of the anterior commissure. Data 
analysis without reference to context is meaningless.

example 
1.2.2

sexual Orientation Some research has suggested that there is a genetic basis for sex-
ual orientation. One such study involved measuring the midsagittal area of the anterior 
commissure (AC) of the brain for 30 homosexual men, 30 heterosexual men, and 30 
heterosexual women. The researchers found that the AC tends to be larger in hetero-
sexual women than in heterosexual men and that it is even larger in homosexual men. 
These data are summarized in Table 1.2.1 and are shown graphically in Figure 1.2.1.
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Figure 1.2.1 Midsagittal area of the anterior 
commissure (mm2)

table 1.2.1  Midsagittal area of the anterior 
commissure (mm2)

Group
Average midsagittal area (mm2) 

of the anterior commissure

Homosexual men 14.20

Heterosexual men 10.61

Heterosexual women 12.03
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The design of this experiment allows for the investigation of the interaction 
between two factors: sex of the dog and dose. These factors interacted in the follow-
ing sense: For females, the effect of increasing the dose from 8 to 25 mg/kg was posi-
tive, although small (the average APL increased from 133.5 to 143 U/l), but for males 
the effect of increasing the dose from 8 to 25 mg/kg was negative (the average APL 
dropped from 143 to 124.5 U/l). Techniques for studying such interactions will be 
considered in Chapter 11. ■

Example 1.2.4 presents an experiment, in that the researchers imposed the 
 conditions—in this case, doses of a drug—on the subjects (the dogs). By randomly 
assigning treatments (drug doses) to subjects (dogs), we can get around the problem 
of confounding that complicates observational studies and limits the conclusions 
that we can reach from them. Randomized experiments are considered the “gold 
standard” in scientific investigation, but they can also be plagued by difficulties.

example 
1.2.3

Health and Marriage A study conducted in Finland found that people who were 
married at midlife were less likely to develop cognitive impairment (particularly 
Alzheimer’s disease) later in life.9 However, from an observational study such as this 
we don’t know whether marriage prevents later problems or whether persons who 
are likely to develop cognitive problems are less likely to get married. ■

example 
1.2.4

toxicity in Dogs Before new drugs are given to human subjects, it is common prac-
tice to first test them in dogs or other animals. In part of one study, a new investiga-
tional drug was given to eight male and eight female dogs at doses of 8 mg/kg and 
25 mg/kg. Within each sex, the two doses were assigned at random to the eight dogs. 
Many “endpoints” were measured, such as cholesterol, sodium, glucose, and so on, 
from blood samples, in order to screen for toxicity problems in the dogs before start-
ing studies on humans. One endpoint was alkaline phosphatase level (or APL, mea-
sured in U/l). The data are shown in Table 1.2.2 and plotted in Figure 1.2.2.10
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Figure 1.2.2 Alkaline phosphatase level in dogs

table 1.2.2 Alkaline phosphatase level (U/l)

Dose (mg/kg) Male Female

8 171 150

154 127

104 152

143 105

Average 143 133.5

25 80 101

149 113

138 161

131 197

Average 124.5 143
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Often human subjects in experiments are given a placebo—an inert substance, 
such as a sugar pill. It is well known that people often exhibit a placebo response; that 
is, they tend to respond favorably to any treatment, even if it is only inert. This psy-
chological effect can be quite powerful. Research has shown that placebos are effec-
tive for roughly one-third of people who are in pain; that is, one-third of pain 
sufferers report their pain ending after being giving a “painkiller” that is, in fact, an 
inert pill. For diseases such as bronchial asthma, angina pectoris (recurrent chest 
pain caused by decreased blood flow to the heart), and ulcers, the use of placebos has 
been shown to produce clinically beneficial results in over 60% of patients.11 Of 
course, if a placebo control is used, then the subjects must not be told which group 
they are in—the group getting the active treatment or the group getting the placebo.

example 
1.2.5

Autism Autism is a serious condition in which children withdraw from normal 
social interactions and sometimes engage in aggressive or repetitive behavior. In 
1997, an autistic child responded remarkably well to the digestive enzyme secretin. 
This led to an experiment (a “clinical trial”) in which secretin was compared to a 
placebo. In this experiment, children who were given secretin improved consider-
ably. However, the children given the placebo also improved considerably. There 
was no statistically significant difference between the two groups. Thus, the favor-
able response in the secretin group was considered to be only a “placebo response,” 
meaning, unfortunately, that secretin was not found to be beneficial (beyond induc-
ing a positive response associated simply with taking a substance as part of an 
experiment).12 ■

The word placebo means “I shall please.” The word nocebo (“I shall harm”) is 
sometimes used to describe adverse reactions to perceived, but nonexistent, risks. 
The following example illustrates the strength that psychological effects can have.

example 
1.2.6

bronchial Asthma A group of patients suffering from bronchial asthma were given 
a substance that they were told was a chest-constricting chemical. After being given 
this substance, several of the patients experienced bronchial spasms. However, dur-
ing part of the experiment, the patients were given a substance that they were told 
would alleviate their symptoms. In this case, bronchial spasms were prevented. In 
reality, the second substance was identical to the first substance: Both were distilled 
water. It appears that it was the power of suggestion that brought on the bronchial 
spasms; the same power of suggestion prevented spasms.13 ■

Similar to placebo treatment is sham treatment, which can be used on animals as 
well as humans. An example of sham treatment is injecting control animals with an 
inert substance such as saline. In some studies of surgical treatments, control animals 
(even, occasionally, humans) are given a “mock” surgery.

example 
1.2.7

Renal Denervation A surgical procedure called “renal denervation” was developed 
to help people with hypertension who do not respond to medication. An early study 
suggested that renal denervation (which uses radiotherapy to destroy some nerves in 
arteries feeding the kidney) reduces blood pressure. In that experiment, patients who 
received surgery had an average improvement in systolic blood pressure of 33 mmHg 
more than did control patients who received no surgery. Later an experiment was 
conducted in which patients were randomly assigned to one of two groups. Patients in 
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the treatment group received the renal denervation surgery. Patients in the control 
group received a sham operation in which a catheter was inserted, as in the real oper-
ation, but 20 minutes later the catheter was removed without radiotherapy being 
used. These patients had no way of knowing that their operation was a sham. The 
rates of improvement in the two groups of patients were nearly identical.14 ■

BLinding

In experiments on humans, particularly those that involve the use of placebos, blinding 
is often used. This means that the treatment assignment is kept secret from the 
experimental subject. The purpose of blinding the subject is to minimize the extent 
to which his or her expectations influence the results of the experiment. If subjects 
exhibit a psychological reaction to getting a medication, that placebo response will 
tend to balance out between the two groups so that any difference between the 
groups can be attributed to the effect of the active treatment.

In many experiments the persons who evaluate the responses of the subjects are 
also kept blind; that is, during the experiment they are kept ignorant of the treatment 
assignment. Consider, for instance, the following:

In a study to compare two treatments for lung cancer, a radiologist reads X-rays to 
evaluate each patient’s progress. The X-ray films are coded so that the radiologist 
cannot tell which treatment each patient received.

Mice are fed one of three diets; the effects on their liver are assayed by a research 
assistant who does not know which diet each mouse received.

Of course, someone needs to keep track of which subject is in which group, but 
that person should not be the one who measures the response variable. The most 
obvious reason for blinding the person making the evaluations is to reduce the pos-
sibility of subjective bias influencing the observation process itself: Someone who 
expects or wants certain results may unconsciously influence those results. Such bias 
can enter even apparently “objective” measurements through subtle variation in dis-
section techniques, titration procedures, and so on.

In medical studies of human beings, blinding often serves additional purposes. 
For one thing, a patient must be asked whether he or she consents to participate in a 
medical study. Suppose the physician who asks the question already knows which 
treatment the patient will receive. By discouraging certain patients and encouraging 
others, the physician can (consciously or unconsciously) create noncomparable treat-
ment groups. The effect of such biased assignment can be surprisingly large, and it has 
been noted that it generally favors the “new” or “experimental” treatment.15 Another 
reason for blinding in medical studies is that a physician may (consciously or uncon-
sciously) provide more psychological encouragement, or even better care, to the 
patients who are receiving the treatment that the physician regards as superior.

An experiment in which both the subjects and the persons making the evalua-
tions of the response are blinded is called a double-blind experiment. The first mam-
mary artery ligation experiment described in Example 1.2.7 was conducted as a 
double-blind experiment.

The need for ConTroL groups

example 
1.2.8

clofibrate An experiment was conducted in which subjects were given the drug 
clofibrate, which was intended to lower cholesterol and reduce the chance of death 
from coronary disease. The researchers noted that many of the subjects did not take 
all the medication that the experimental protocol called for them to take. They 
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table 1.2.4 Number of colds in cold-vaccine experiment

Vaccine Placebo

n 201 203

Average number of colds  
Previous year (from memory) 5.6 5.2

Current year 1.7 1.6

% reduction 70% 69%

 calculated the percentage of the prescribed capsules that each subject took and 
divided the subjects into two groups according to whether or not the subjects took at 
least 80% of the capsules they were given. Table 1.2.3 shows that the 5-year mortality 
rate for those who took at least 80% of their capsules was much lower than the cor-
responding rate for subjects who took fewer than 80% of the capsules. On the sur-
face, this suggests that taking the medication lowers the chance of death. However, 
there was a placebo control group in the experiment and many of the placebo sub-
jects took fewer than 80% of their capsules. The mortality rates for the two placebo 
groups—those who adhered to the protocol and those who did not—are quite simi-
lar to the rates for the clofibrate groups.

The clofibrate experiment seems to indicate that there are two kinds of subjects: 
those who adhere to the protocol and those who do not. The first group had a much 
lower mortality rate than the second group. This might be due simply to better health 
habits among people who show stronger adherence to a scientific protocol for 5 years 
than among people who only adhere weakly, if at all. A further conclusion from the 
experiment is that clofibrate does not appear to be any more effective than placebo in 
reducing the death rate. Were it not for the presence of the placebo control group, the 
researchers might well have drawn the wrong conclusion from the study and attributed 
the lower death rate among strong adherers to clofibrate itself, rather than to other 
confounded effects that make the strong adherers different from the nonadherers.16 ■

example 
1.2.9

the common cold Many years ago, investigators invited university students who 
believed themselves to be particularly susceptible to the common cold to be part of 
an experiment. Volunteers were randomly assigned to either the treatment group, in 
which case they took capsules of an experimental vaccine, or to the control group, in 
which case they were told that they were taking a vaccine, but in fact were given a 
placebo—capsules that looked like the vaccine capsules but that contained lactose 
in place of the vaccine.17 As shown in Table 1.2.4, both groups reported having dra-
matically fewer colds during the study than they had had in the previous year. The 
average number of colds per person dropped 70% in the treatment group. This 
would have been startling evidence that the vaccine had an effect, except that the 
corresponding drop in the control group was 69%. ■

table 1.2.3 Mortality rates for the clofibrate experiment

Clofibrate Placebo

Adherence n 5-year mortality n 5-year mortality

Ú80% 708 15.0% 1813 15.1%

680% 357 24.6%  882 28.2%
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We can attribute much of the large drop in colds in Example 1.2.9 to the placebo 
effect. However, another statistical concern is panel bias, which is bias attributable 
to the study having influenced the behavior of the subjects—that is, people who 
know they are being studied often change their behavior. The students in this study 
reported from memory the number of colds they had suffered in the previous year. 
The fact that they were part of a study might have influenced their behavior so that 
they were less likely to catch a cold during the study. Being in a study might also have 
affected the way in which they defined having a cold—during the study, they were 
“instructed to report to the health service whenever a cold developed”—so that 
some illness may have gone unreported during the study. (How sick do you have to 
be before you classify yourself as having a cold?)

example 
1.2.10

Diet and cancer Prevention A diet that is high in fruits and vegetables may yield 
many health benefits, but how can we be sure? During the 1990s, the medical com-
munity believed that such a diet would reduce the risk of cancer. This belief was 
based on comparisons from case-control studies. In such studies patients with cancer 
were matched with “control subjects”—persons of the same age, race, sex, and so 
on—who did not have cancer; then the diets of the two groups were compared, and 
it was found that the control patients ate more fruits and vegetables than did the 
cancer patients. This would seem to indicate that cancer rates go down as consump-
tion of fruits and vegetables goes up. The use of case-control studies is quite sensible 
because it allows researchers to make comparisons (e.g., of diets, etc.) while taking 
into consideration important characteristics such as age.

Nonetheless, a case-control study is not perfect. Not all people agree to be inter-
viewed and to complete health information surveys, and these individuals thus might 
be excluded from a case-control study. People who agree to be interviewed about 
their health are generally more healthy than those who decline to participate. In 
addition to eating more fruits and vegetables than the average person, they are also 
less likely to smoke and more likely to exercise.18 Thus, even though case-control 
studies took into consideration age, race, and other characteristics, they overstated 
the benefits of fruits and vegetables. The observed benefits are likely also the result 
of other healthy lifestyle factors.* Drawing a cause–effect conclusion that fruit and 
vegetable consumption protects against cancer is dangerous. ■

hisToriCAL ConTroLs

Researchers may be particularly reluctant to use randomized allocation in medical 
experiments on human beings. Suppose, for instance, that researchers want to evalu-
ate a promising new treatment for a certain illness. It can be argued that it would be 
unethical to withhold the treatment from any patients, and that therefore all current 
patients should receive the new treatment. But then who would serve as a control 
group? One possibility is to use historical controls—that is, previous patients with the 
same illness who were treated with another therapy. One difficulty with historical 
controls is that there is often a tendency for later patients to show a better response—
even to the same therapy—than earlier patients with the same diagnosis. This ten-
dency has been confirmed, for instance, by comparing experiments conducted at the 
same medical centers in different years.19 One major reason for the tendency is that 
the overall characteristics of the patient population may change with time. For 

*A more informative kind of study is a prospective study or cohort study in which people with varying diets are 
followed over time to see how many of them develop cancer; however, such a study can be difficult to carry out.
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instance, because diagnostic techniques tend to improve, patients with a given diag-
nosis (say, breast cancer) in 2001 may have a better chance of recovery (even with the 
same treatment) than those with the same diagnosis in 1991 because they were diag-
nosed earlier in the course of the disease. This is one reason that patients diagnosed 
with kidney cancer in 1995 had a 61% chance of surviving for at least 5 years but 
those with the same diagnosis in 2005 had a 75% 5-year survival rate.20

Medical researchers do not agree on the validity and value of historical controls. 
The following example illustrates the importance of this controversial issue.

example 
1.2.11

coronary Artery Disease Disease of the coronary arteries is often treated by sur-
gery (such as bypass surgery), but it can also be treated with drugs only. Many studies 
have attempted to evaluate the effectiveness of surgical treatment for this common 
disease. In a review of 29 of these studies, each study was classified as to whether it 
used randomized controls or historical controls; the conclusions of the 29 studies are 
summarized in Table 1.2.5.21

table 1.2.5 Coronary artery disease studies

Conclusion about 
effectiveness of surgery

Type of controls Effective Not effective Total number of studies

Randomized  1 7  8

Historical 16 5 21

It would appear from Table 1.2.5 that enthusiasm for surgery is much more com-
mon among researchers who use historical controls than among those who use ran-
domized controls. ■

example 
1.2.12

Healthcare trials A medical intervention, such as a new surgical procedure or drug, 
will often be used at one time in a nonrandomized clinical trial and at another time 
in a clinical trial of patients with the same condition who are assigned to groups 
randomly. Nonrandomized trials, which include the use of historical controls, tend to 
overstate the effectiveness of interventions. One analysis of many pairs of studies 
found that the nonrandomized trial showed a larger intervention effect than the cor-
responding randomized trial 22 times out of 26 comparisons; see Table 1.2.6.22 
Researchers concluded that overestimates of effectiveness are “due to poorer prog-
nosis in non-randomly selected control groups compared with randomly selected 
control groups.”23 That is, if you give a new drug to relatively healthy patients and 
compare them to very sick patients taking the standard drug, the new drug is going 
to look better than it really is.

Even when randomization is used, trials may or may not be run double-blind. A 
review of 250 controlled trials found that trials that were not run double-blind pro-
duced significantly larger estimates of treatment effects than did trials that were 
double-blind.24 ■

table 1.2.6 Randomized versus nonrandomized trials

Larger estimate of effect of the 
(common) intervention

Not randomized Randomized Total

Number of studies 22 4 26
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Proponents of the use of historical controls argue that statistical adjustment can 
provide meaningful comparison between a current group of patients and a group of 
historical controls; for instance, if the current patients are younger than the historical 
controls, then the data can be analyzed in a way that adjusts, or corrects, for the effect 
of age. Critics reply that such adjustment may be grossly inadequate.

The concept of historical controls is not limited to medical studies. The issue 
arises whenever a researcher compares current data with past data. Whether the 
data are from the lab, the field, or the clinic, the researcher must confront the ques-
tion: Can the past and current results be meaningfully compared? One should always 
at least ask whether the experimental material, and/or the environmental conditions, 
may have changed enough over time to distort the comparison.

1.2.1 Fluoridation of drinking water has long been a con-
troversial issue in the United States. One of the first com-
munities to add fluoride to their water was Newburgh, 
New York. In March 1944, a plan was announced to begin 
to add fluoride to the Newburgh water supply on April 1 
of that year. During the month of April, citizens of 
Newburgh complained of digestive problems, which were 
attributed to the fluoridation of the water. However, 
there had been a delay in the installation of the fluorida-
tion equipment so that fluoridation did not begin until 
May 2.25 Explain how the placebo effect/nocebo effect is 
related to this example.

1.2.2 Olestra is a no-calorie, no-fat additive that is used 
in the production of some potato chips. After the Food 
and Drug Administration approved the use of olestra, 
some consumers complained that olestra caused stomach 
cramps and diarrhea. A randomized, double-blind experi-
ment was conducted in which some subjects were given 
bags of potato chips made with olestra and other subjects 
were given ordinary potato chips. In the olestra group, 
38% of the subjects reported having gastrointestinal 
symptoms. However, in the group given regular potato 
chips the corresponding percentage was 37%. (The two 
percentages are not statistically significantly different.)26 
Explain how the placebo effect/nocebo effect is related to 
this example. Also explain why it was important for this 
experiment to be double-blind.

1.2.3 (Hypothetical) In a study of acupuncture, patients 
with headaches are randomly divided into two groups. 
One group is given acupuncture and the other group is 
given aspirin. The acupuncturist evaluates the effective-
ness of the acupuncture and compares it to the results 
from the aspirin group. Explain how lack of blinding 
biases the experiment in favor of acupuncture.

1.2.4 Randomized, controlled experiments have found 
that vitamin C is not effective in treating terminal cancer 
patients.27 However, a 1976 research paper reported that 
terminal cancer patients given vitamin C survived much 

longer than did historical controls. The patients treated 
with vitamin C were selected by surgeons from a group of 
cancer patients in a hospital.28 Explain how this experi-
ment was biased in favor of vitamin C.

1.2.5 On 3 November 2009, the blog lifehacker.com con-
tained a posting by an individual with chronic toenail fun-
gus. He remarked that after many years of suffering and 
trying all sorts of cures, he resorted to sanding his toenail 
as thin as he could tolerate, followed by daily application 
of vinegar and hydrogen-peroxide-soaked bandaids on 
his toenail. He repeated the vinegar peroxide bandaging 
for 100 days. After this time his nail grew out and the fun-
gus was gone. Using the language of statistics, what kind 
of evidence is this? Is this convincing evidence that this 
procedure is an effective cure of toenail fungus?

1.2.6 For each of the following cases [(a) (b)],
(I) state whether the study should be observational or 

experimental.
(II) state whether the study should be run blind, double-

blind, or neither. If the study should be run blind or 
double-blind, who should be blinded?
(a) An investigation of whether taking aspirin 

reduces one’s chance of having a heart attack.
(b) An investigation of whether babies born into 

poor families (family income below $25,000) are 
more likely to weigh less than 5.5 pounds at birth 
than babies born into wealthy families (family 
income above $65,000).

1.2.7 For each of the following cases [(a) and (b)],
(I) state whether the study should be observational or 

experimental.
(II) state whether the study should be run blind, double-

blind, or neither. If the study should be run blind or 
double-blind, who should be blinded?
(a) An investigation of whether the size of the 

midsagittal plane of the anterior commissure 

Exercises 1.2.1–1.2.10
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(a part of the brain) of a man is related to the 
sexual orientation of the man.

(b) An investigation of whether drinking more than 
1 liter of water per day helps with weight loss for 
people who are trying to lose weight.

1.2.8 (Hypothetical) In order to assess the effectiveness of a 
new fertilizer, researchers applied the fertilizer to the tomato 
plants on the west side of a garden but did not fertilize the 
plants on the east side of the garden. They later measured the 
weights of the tomatoes produced by each plant and found 
that the fertilized plants grew larger tomatoes than did the 
nonfertilized plants. They concluded that the fertilizer works.
(a) Was this an experiment or an observational study? Why?
(b) This study is seriously flawed. Use the language of 

statistics to explain the flaw and how this affects the 
validity of the conclusion reached by the researchers.

(c) Could this study have used the concept of blinding 
(i.e., does the word “blind” apply to this study)? If so, 
how? Could it have been double-blind? If so, how?

1.2.9 Reseachers studied 1,718 persons over age 65 living 
in North Carolina. They found that those who attended 
religious services regularly were more likely to have 
strong immune systems (as determined by the blood lev-
els of the protein interleukin-6) than those who didn’t.29 
Does this mean that attending religious services improves 
one’s health? Why or why not?

1.2.10 Researchers studied 300,818 golfers in Sweden 
and found that the “standardized mortality ratios” for 
golfers, adjusting for age, sex, and socioeconomic status, 
were lower than for nongolfers, meaning that golfers tend 
to live longer.30 Does this mean that playing golf improves 
one’s health? Why or why not?

 1.3  Random Sampling
In order to address research questions with data, we first must consider how those 
data are to be gathered. How we gather our data has tremendous implications on 
our choice of analysis methods and even on the validity of our studies. In this section 
we will examine some common types of data-gathering methods with special empha-
sis on the simple random sample.

sAmpLes And popuLATions

Before gathering data, we first consider the scope of our study by identifying the 
population. The population consists of all subjects/animals/specimens/plants, and so 
on, of interest. The following are all examples of populations:

• All birch tree seedlings in Florida

• All raccoons in Montaña de Oro State Park

• All people with schizophrenia in the United States

• All 100-ml water specimens in Chorro Creek

Typically we are unable to observe the entire population; therefore, we must be con-
tent with gathering data from a subset of the population, a sample of size n. From 
this sample we make inferences about the population as a whole (see Figure 1.3.1). 
The following are all examples of samples:

• A selection of eight (n = 8) Florida birch seedlings grown in a greenhouse.

Population
Inference

Random sampling

Sample of n

Figure 1.3.1 Sampling 
from a population
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• Thirteen (n = 13) raccoons captured in traps at the Montaña de Oro  campground.

• Forty-two (n = 42) patients with schizophrenia who respond to an advertise-
ment in a U.S. newspaper.

• Ten (n = 10) 100-ml vials of water collected one day at 10 locations along 
Chorro Creek.

Remark There is some potential for confusion between the statistical meaning of 
the term sample and the sense in which this word is sometimes used in biology. If a 
biologist draws blood from 20 people and measures the glucose concentration in 
each, she might say she has 20 samples of blood. However, the statistician says she 
has one sample of 20 glucose measurements; the sample size is n = 20. In the inter-
est of clarity, throughout this book we will use the term specimen where a biologist 
might prefer sample. So we would speak of glucose measurements on a sample of 20 
specimens of blood.

Ideally our sample will be a representative subset of the population; however, 
unless we are careful, we may end up obtaining a biased sample. A biased sample 
systematically overestimates or systematically underestimates a characteristic of the 
population. For example, consider the raccoons from the sample described previously 
that are captured in traps at a campground. These raccoons may systematically differ 
from the population; they may be larger (from having ample access to food from 
dumpsters and campers), less timid (from being around people who feed them), and 
may be even longer lived than the general population of raccoons in the entire park.

One method to ensure that samples will be (in the long run) representative of 
the population is to use random sampling.

definiTion of A simpLe rAndom sAmpLe

Informally, the process of obtaining a simple random sample can be visualized in 
terms of labeled tickets, such as those used in a lottery or raffle. Suppose that each 
member of the population (e.g., raccoon, patient, plant) is represented by one ticket, 
and that the tickets are placed in a large box and thoroughly mixed. Then n tickets 
are drawn from the box by a blindfolded assistant, with new mixing after each ticket 
is removed. These n tickets constitute the sample. (Equivalently, we may visualize 
that n assistants reach in the box simultaneously, each assistant drawing one ticket.)

More abstractly, we may define random sampling as follows.

*Technically, requirement (b) is that every pair of members of the population has the same chance of being 
selected for the sample, every group of 3 members of the population has the same chance of being selected for 
the sample, and so on. In contrast to this, suppose we had a population with 30 persons in it and we wrote the 
names of 3 persons on each of 10 tickets. We could then choose one ticket in order to get a sample of size n = 3, 
but this would not be a simple random sample, since the pair (1,2) could end up in the sample but the pair (1,4) 
could not. Here the selections of members of the sample are not independent of each other. (This kind of sam-
pling is known as “cluster sampling,” with 10 clusters of size 3.) If the population is infinite, then the technical 
definition that all subsets of a given size are equally likely to be selected as part of the sample is equivalent to the 
requirement that the members of the sample are chosen independently.

A Simple Random Sample
A simple random sample of n items is a sample in which (a) every member of the 
population has the same chance of being included in the sample, and (b) the 
members of the sample are chosen independently of each other. [Requirement 
(b) means that the chance of a given member of the population being chosen 
does not depend on which other members are chosen.]*
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Simple random sampling can be thought of in other, equivalent, ways. We may 
envision the sample members being chosen one at a time from the population; under 
simple random sampling, at each stage of the drawing, every remaining member of 
the population is equally likely to be the next one chosen. Another view is to con-
sider the totality of possible samples of size n. If all possible samples are equally 
likely to be obtained, then the process gives a simple random sample.

empLoying rAndomness

When conducting statistical investigations, we will need to make use of randomness. 
As previously discussed, we obtain simple random samples randomly—every mem-
ber of the population has the same chance of being selected. In Chapter 7 we shall 
discuss experiments in which we wish to compare the effects of different treatments 
on members of a sample. To conduct these experiments we will have to assign the 
treatments to subjects randomly—so that every subject has the same chance of 
receiving treatment A as they do treatment B.

Unfortunately, as a practical matter, humans are not very capable of mentally 
employing randomness. We are unable to eliminate unconscious bias that often leads us 
to systematically exclude or include certain individuals in our sample (or at least decrease 
or increase the chance of choosing certain individuals). For this reason, we must use 
external resources for selecting individuals when we want a random sample: mechanical 
devices such as dice, coins, and lottery tickets; electronic devices that produce random 
digits such as computers and calculators; or tables of random digits such as Table 1 in the 
back of this book. Although straightforward, using mechanical devices such as tickets in 
a box is impractical, so we will focus on the use of random digits for sample selection.

how To Choose A rAndom sAmpLe

The following is a simple procedure for choosing a random sample of n items from a 
finite population of items.

 (a) Create the sampling frame: a list of all members of the population with unique 
identification numbers for each member. All identification numbers must have 
the same number of digits; for instance, if the population contains 75 items, the 
identification numbers could be 01, 02, . . . , 75.

 (b) Read numbers from Table 1, a calculator, or computer. Reject any numbers that 
do not correspond to any population member. (For example, if the population 
has 75 items that have been assigned identification numbers 01, 02, . . . , 75, then 
skip over the numbers 76, 77, . . . , 99, and 00.) Continue until n numbers have 
been acquired. (Ignore any repeated occurrence of the same number.)

 (c) The population members with the chosen identification numbers constitute the 
sample.

The following example illustrates this procedure.

example 
1.3.1

Suppose we are to choose a random sample of size 6 from a population of 75 mem-
bers. Label the population members 01, 02, . . . , 75. Use Table 1, a calculator, or a 
computer to generate a string of random digits.* For example, our calculator might 
produce the following string:

8 3 8 7 1 7 9 4 0 1 6 2 5 3 4 5 9 7 5 3 9 8 2 2

*Most calculators generate random numbers expressed as decimal numbers between 0 and 1; to convert these to 
random digits, simply ignore the leading zero and decimal and read the digits that follow the decimal. To generate 
a long string of random digits, simply call the random number function on the calculator repeatedly.
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As we examine two-digit pairs of numbers, we ignore numbers greater than 75 as 
well as any pairs that identify a previously chosen individual.

 8 3    8 7  1 7   9 4  0 1 6 2 5 3 4 5   9 7    5 3   9 8  2 2

Thus, the population members with the following identification numbers will consti-
tute the sample: 17, 01, 62, 53, 45, 22. ■

Remark In calling the digits in Table 1 or your calculator or computer random dig-
its, we are using the term random loosely. Strictly speaking, random digits are digits 
produced by a random process—for example, tossing a 10-sided die. The digits in 
Table 1 or in your calculator or computer are actually pseudorandom digits; they are 
generated by a deterministic (although possibly very complex) process that is 
designed to produce sequences of digits that mimic randomly generated sequences.

Remark If the population is large, then computer software can be quite helpful in 
generating a sample. If you need a random sample of size 15 from a population with 
2,500 members, have the computer (or calculator) generate 15 random numbers 
between 1 and 2,500. (If there are duplicates in the set of 15, then go back and get 
more random numbers.)

prACTiCAL ConCerns when rAndom sAmpLing

In many cases, obtaining a proper simple random sample is difficult or impossible. 
For example, to obtain a random sample of raccoons from Montaña de Oro State 
Park, one would first have to create the sampling frame, which provides a unique 
number for each raccoon in the park. Then, after generating the list of random num-
bers to identify our sample, one would have to capture those particular raccoons. 
This is likely an impossible task.

In practice, when it is possible to obtain a proper random sample, one should. 
When a proper random sample is impractical, it is important to take all precautions 
to ensure that the subjects in the study may be viewed as if they were obtained by 
random sampling from some population. That is, the sample should be comprised of 
individuals that all have the same chance of being selected from the population, and 
the individuals should be chosen independently. To do this, the first step is to define 
the population. The next step is to scrutinize the procedure by which the observa-
tional units are selected and to ask: Could the observations have been chosen at 
random? With the raccoon example, this might mean that we first define the popula-
tion of raccoons by creating a sharp geographic boundary based on raccoon habitat 
and place traps at randomly chosen locations within the population habitat using a 
variety of baits and trap sizes. (We could use random numbers to generate latitude 
and longitude coordinates within the population habitat.) Although still less than 
ideal (some raccoons might be trap shy, and baby raccoons may not enter the traps 
at all), this is certainly better than simply capturing raccoons at one nonrandomly 
chosen atypical location (e.g., the campground) within the park. Presumably, the vast 
majority of raccoons now have the same chance of being trapped (i.e., equally likely 
to be selected), and capturing one raccoon has little or no bearing on the capture of 
any other (i.e., they can be considered to be independently chosen). Thus, it seems 
reasonable to treat the observations as if they were chosen at random.

nonsimpLe rAndom sAmpLing meThods

There are other kinds of sampling that are random in a sense, but that are not simple. 
Two common nonsimple random sampling techniques are the random cluster sample 
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and stratified random sample. To illustrate the concept of a cluster sample, consider a 
modification to the lottery method of generating a simple random sample. With clus-
ter sampling, rather than assigning a unique ticket (or ID number) for each member 
of the population, IDs are assigned to entire groups of individuals. As tickets are 
drawn from the box, entire groups of individuals are selected for the sample as in the 
following example and Figure 1.3.2.

example 
1.3.2

La Graciosa thistle The La Graciosa thistle (Cirsium loncholepis) is an endangered 
plant native to the Guadalupe Dunes on the central coast of California. In a seed 
germination study, 30 plants were randomly chosen from the population of plants in 
the Guadalupe Dunes and all seeds from the 30 plants were harvested. The seeds 
form a cluster sample from the population of all La Graciosa thistle seeds in Guada-
lupe while the individual plants were used to identify the clusters.31 ■

A stratified random sample is chosen by first dividing the population into 
strata—homogeneous collections of individuals. Then, many simple random samples 
are taken—one within each stratum—and combined to comprise the sample (see 
Figure 1.3.3). The following is an example of a stratified random sample.

Population

Sample

Figure 1.3.3 Stratified 
random sampling. The dots 
represent individuals 
within the population that 
are grouped into strata. 
Individuals from each 
stratum are randomly 
sampled and combined to 
form the sample.

Population

Sample

Figure 1.3.2 Random 
cluster sampling. The dots 
represent individuals 
within the population that 
are grouped into clusters 
(circles). Individuals in 
entire clusters are sampled 
from the population to 
form the sample.
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example 
1.3.3

sand crabs In a study of parasitism of sand crabs (Emerita analoga), researchers 
obtained a stratified random sample of crabs by dividing a beach into 5-meter strips 
parallel to the water’s edge. These strips were chosen as the strata because crab 
parasite loads may differ systematically based on the distance to the water’s edge, 
thus making the parasite load for crabs within each stratum more similar than loads 
across strata. The first stratum was the 5-meter strip of beach just under the water’s 
edge parallel to the shoreline. The second stratum was the 5-meter strip of beach just 
above the shoreline, followed by the third and fourth strata—the next two 5-meter 
strips above the shoreline. Within each strata, 25 crabs were randomly sampled, 
yielding a total sample size of 100 crabs.32 ■

The majority of statistical methods discussed in this textbook will assume we are 
working with data gathered from a simple random sample. A sample chosen by sim-
ple random sampling is often called a random sample. But note that it is actually the 
process of sampling rather than the sample itself that is defined as random; random-
ness is not a property of the particular sample that happens to be chosen.

sAmpLing error

How can we provide a rationale for inference from a limited sample to a much larger 
population? The approach of statistical theory is to refer to an idealized model of the 
sample–population relationship. In this model, which is called the random sampling 
model, the sample is chosen from the population by random sampling. The model is 
represented schematically in Figure 1.3.1.

The random sampling model is useful because it provides a basis for answering 
the question, How representative (of the population) is a sample likely to be? The 
model can be used to determine how much an inference might be influenced by 
chance, or “luck of the draw.” More explicitly, a randomly chosen sample will usually 
not exactly resemble the population from which it was drawn. The discrepancy 
between the sample and the population is called chance error due to sampling or 
sampling error. We will see in later chapters how statistical theory derived from the 
random sampling model enables us to set limits on the likely amount of error due to 
sampling in an experiment. The quantification of such error is a major contribution 
that statistical theory has made to scientific thinking.

Because our samples are chosen randomly, there will always be sampling error 
present. If we sample nonrandomly, however, we may exacerbate the sampling error 
in unpredictable ways such as by introducing sampling bias, which is a systematic 
tendency for some individuals of the population to be selected more readily than 
others. The following two examples illustrate sampling bias.

example 
1.3.4

Lengths of Fish A biologist plans to study the distribution of body length in a cer-
tain population of fish in the Chesapeake Bay. The sample will be collected using a 
fishing net. Smaller fish can more easily slip through the holes in the net. Thus, 
smaller fish are less likely to be caught than larger ones, so the sampling procedure 
is biased. ■

example 
1.3.5

sizes of Nerve cells A neuroanatomist plans to measure the sizes of individual 
nerve cells in cat brain tissue. In examining a tissue specimen, the investigator must 
decide which of the hundreds of cells in the specimen should be selected for mea-
surement. Some of the nerve cells are incomplete because the microtome cut through 
them when the tissue was sectioned. If the size measurement can be made only on 
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example 
1.3.6

sucrose in beet Roots An agronomist plans to sample beet roots from a field in 
order to measure their sucrose content. Suppose she were to take all her specimens 
from a randomly selected small area of the field. This sampling procedure would not 
be biased but would tend to produce too homogeneous a sample, because environ-
mental variation across the field would not be reflected in the sample. ■

Example 1.3.6 illustrates an important principle that is sometimes overlooked in 
the analysis of data: In order to check applicability of the random sampling model, 
one needs to ask not only whether the sampling procedure might be biased, but also 
whether the sampling procedure will adequately reflect the variability inherent in 
the population. Faulty information about variability can distort scientific conclu-
sions just as seriously as bias can.

We now consider some examples where the random sampling model might rea-
sonably be applied.

example 
1.3.7

Fungus Resistance in corn A certain variety of corn is resistant to fungus disease. 
To study the inheritance of this resistance, an agronomist crossed the resistant vari-
ety with a nonresistant variety and measured the degree of resistance in the progeny 
plants. The actual progeny in the experiment can be regarded as a random sample 
from a conceptual population of all potential progeny of that particular cross. ■

When the purpose of a study is to compare two or more experimental condi-
tions, a very narrow definition of the population may be satisfactory, as illustrated in 
the next example.

example 
1.3.8

Nitrite Metabolism To study the conversion of nitrite to nitrate in the blood, research-
ers injected four New Zealand White rabbits with a solution of radioactively labeled 
nitrite molecules. Ten minutes after injection, they measured for each rabbit the per-
centage of the nitrite that had been converted to nitrate.33 Although the four animals 
were not literally chosen at random from a specified population, it might be reason-
able, nevertheless, to view the measurements of nitrite metabolism as a random sam-
ple from similar measurements made on all New Zealand White rabbits. (This 
formulation assumes that age and sex are irrelevant to nitrite metabolism.) ■

example 
1.3.9

treatment of Ulcerative colitis A medical team conducted a study of two therapies, 
A and B, for treatment of ulcerative colitis. All the patients in the study were referral 
patients in a clinic in a large city. Each patient was observed for satisfactory “response” 
to therapy. In applying the random sampling model, the researchers might want to 
make an inference to the population of all ulcerative colitis patients in urban referral 
clinics. First, consider inference about the actual probabilities of response; such an 
inference would be valid if the probability of response to each therapy is the same at 

complete cells, a bias arises because the smaller cells had a greater chance of being 
missed by the microtome blade. ■

When the sampling procedure is biased, the sample may not accurately repre-
sent the population, because it is systematically distorted. For instance, in Example 
1.3.4 smaller fish will tend to be underrepresented in the sample, so the length of the 
fish in the sample will tend to be larger than those in the population.

The following example illustrates a kind of nonrandomness that is different 
from bias.
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example 
1.3.10

Abortion Funding In 1991, the U.S. Supreme Court made a controversial ruling 
upholding a ban on abortion counseling in federally financed family-planning clinics. 
Shortly after the ruling, a sample of 1,000 people were asked, “As you may know, the 
U.S. Supreme Court recently ruled that the federal government is not required to use 
taxpayer funds for family planning programs to perform, counsel, or refer for abor-
tion as a method of family planning. In general, do you favor or oppose this ruling?” 
In the sample, 48% favored the ruling, 48% were opposed, and 4% had no opinion.

A separate opinion poll conducted at nearly the same time, but by a different 
polling organization, asked over 1,200 people, “Do you favor or oppose that 
Supreme Court decision preventing clinic doctors and medical personnel from dis-
cussing abortion in family-planning clinics that receive federal funds?” In this sam-
ple, 33% favored the decision and 65% opposed it.34 The difference in the 
percentages favoring the opinion is too large to be attributed to chance error in the 
sampling. It seems that the way in which the question was worded had a strong 
impact on the respondents. ■

Another type of nonsampling error is nonresponse bias, which is bias caused by 
persons not responding to some of the questions in a survey or not returning a written 
survey. It is common to have only one-third of those receiving a survey in the mail 
complete the survey and return it to the researchers. (We consider the people receiv-
ing the survey to be part of the sample, even if some of them don’t complete the entire 
survey, or even return the survey at all.) If the people who respond are unlike those 
who choose not to respond—and this is often the case, since people with strong feel-
ings about an issue tend to complete a questionnaire, while others will ignore it—then 
the data collected will not accurately represent the population.

all urban referral clinics. However, this assumption might be somewhat questionable, 
and the investigators might believe that the population should be defined very nar-
rowly—for instance, as “the type of ulcerative colitis patients who are referred to this 
clinic.” Even such a narrow population can be of interest in a comparative study. For 
instance, if treatment A is better than treatment B for the narrow population, it might 
be reasonable to infer that A would be better than B for a broader population (even 
if the actual response probabilities might be different in the broader population). In 
fact, it might even be argued that the broad population should include all ulcerative 
colitis patients, not merely those in urban referral clinics. ■

It often happens in research that, for practical reasons, the population actually 
studied is narrower than the population that is of real interest. In order to apply the 
kind of rationale illustrated in Example 1.3.9, one must argue that the results in the 
narrowly defined population (or, at least, some aspects of those results) can mean-
ingfully be extrapolated to the population of interest. This extrapolation is not a 
statistical inference; it must be defended on biological, not statistical, grounds.

In Section 2.8 we will say more about the connection between samples and pop-
ulations as we further develop the concept of statistical inference.

nonsAmpLing errors

In addition to sampling errors, other concerns can arise in statistical studies. A non-
sampling error is an error that is not caused by the sampling method; that is, a non-
sampling error is one that would have arisen even if the researcher had a census of 
the entire population. For example, the way in which questions are worded can 
greatly influence how people answer them, as Example 1.3.10 shows.
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example 
1.3.11

Hiv testing A sample of 949 men were asked if they would submit to an HIV test 
of their blood. Of the 782 who agreed to be tested, 8 (1.02%) were found to be HIV 
positive. However, some of the men refused to be tested. The health researchers 
conducting the study had access to serum specimens that had been taken earlier 
from these 167 men and found that 9 of them (5.4%) were HIV positive.35 Thus, 
those who refused to be tested were much more likely to have HIV than those who 
agreed to be tested. An estimate of the HIV rate based only on persons who agree 
to be tested is likely to substantially underestimate the true prevalence. ■

There are other cases in which an experimenter is faced with the vexing problem 
of missing data—that is, observations that were planned but could not be made. In 
addition to nonresponse, this can arise because experimental animals or plants die, 
because equipment malfunctions, or because human subjects fail to return for a 
 follow-up observation.

A common approach to the problem of missing data is to simply use the remain-
ing data and ignore the fact that some observations are missing. This approach is 
temptingly simple but must be used with extreme caution, because comparisons 
based on the remaining data may be seriously biased. For instance, if observations on 
some experimental mice are missing because the mice died of causes related to the 
treatment they received, it is obviously not valid to simply compare the mice that 
survived. As another example, if patients drop out of a medical study because they 
think their treatment is not working, then analysis of the remaining patients could 
produce a greatly distorted picture.

Naturally, it is best to make every effort to avoid missing data. But if data are 
missing, it is crucial that the possible reasons for the omissions be considered in 
interpreting and reporting the results.

Data can also be misleading if there is bias in how the data are collected. People 
have difficulty remembering the dates on which events happen and they tend to give 
unreliable answers if asked a question such as “How many times per week do you 
exercise?” They may also be biased as they make observations, as the following 
example shows.

example 
1.3.12

sugar and Hyperactivity Mothers who thought that their young sons were “sugar 
sensitive” were randomly divided into two groups. Those in the first group were told 
that their sons had been given a large dose of sugar, whereas those in the second 
group were told that their sons had been given a placebo. In fact, all the boys had 
been given the placebo. Nonetheless, the mothers in the first group rated their sons 
to be much more hyperactive during a 25-minute study period than did the mothers 
in the second group.36 Neutral measurements found that boys in the first group were 
actually a bit less active than those in the second group. Numerous other studies 
have failed to find a link between sugar consumption and activity in children, despite 
the widespread belief that sugar causes hyperactive behavior. It seems that the 
expectations that these mothers had colored their observations.37 ■

1.3.1 In each of the following studies, identify which sam-
pling technique best describes the way the data were col-
lected (or could be treated as if they were collected): 
simple random sampling, random cluster sampling, or 
stratified random sampling. For cluster samples identify 
the clusters, and for stratified samples identify the strata.

(a) All 257 leukemia patients from three randomly 
chosen pediatric clinics in the United States were 
enrolled in a clinical trial for a new drug.

(b) A total of twelve 10-g soil specimens were collected 
from random locations on a farm to study physical 
and chemical soil profiles.

Exercises 1.3.1–1.3.7
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(c) In a pollution study three 100-ml air specimens were 
collected at each of four specific altitudes (100 m, 
500 m, 1000 m, 2000 m) for a total of twelve 100-ml 
specimens.

(d) A total of 20 individual grapes were picked, one from 
each of 20 random vines in a vineyard, to evaluate 
readiness for harvest.

(e) Twenty-four dogs (eight randomly chosen small 
breed, eight randomly chosen medium breed, and 
eight randomly chosen large breed) were enrolled in 
an experiment to evaluate a new training program.

1.3.2 For each of the following studies, identify the 
source(s) of sampling bias and describe (i) how it might 
affect the study conclusions and (ii) how you might alter 
the sampling method to avoid the bias.
(a) Eight hundred volunteers were recruited from 

nightclubs to enroll in an experiment to evaluate a 
new treatment for social anxiety.

(b) In a water pollution study, water specimens were 
collected from a stream on 15 rainy days.

(c) To study the size (radius) distribution of scrub oaks 
(shrubby oak trees), 20 oak trees were selected by 
using random latitude/longitude coordinates. If the 
random coordinate fell within the canopy of a tree, 
the tree was selected; if not, another random location 
was generated.

1.3.3 For each of the following studies, identify the 
source(s) of sampling bias and describe (i) how it might 
affect the study conclusions and (ii) how you might alter 
the sampling method to avoid the bias.
(a) To study the size distribution of rock cod (Epinephelus 

puscus) off the coast of southeastern Australia, 
scientists recorded the lengths and weights for all cod 
captured by a commercial fishing vessel on one day 
(using standard hook-and-line fishing methods).

(b) A nutritionist is interested in the eating habits of 
college students and observes what each student who 
enters a dining hall between 8:00 A.M. and 8:30 A.M. 
chooses for breakfast on a Monday morning.

(c) To study how fast an experimental painkiller 
relieves headache pain residents of a nursing home 
who complain of headaches are given the painkiller 
and are later asked how quickly their headaches 
subsided.

1.3.4 (A fun activity) Write the digits 1, 2, 3, 4 in order on 
an index card. Bring this card to a busy place (e.g., dining 
hall, library, university union) and ask at least 30 people 
to look at the card and select one of the digits at random 
in their head. Record their responses.
(a) If people can think “randomly,” about what fraction 

of the people should respond with the digit 1? 2? 3? 4?

(b) What fraction of those surveyed responded with the 
digit 1? 2? 3? 4?

(c) Do the results suggest anything about people’s ability 
to choose randomly?

1.3.5 Consider a population consisting of 600 individuals 
with unique IDs: 001, 002, . . . , 600. Use the following 
string of random digits to select a simple random sample 
of 5 individuals. List the IDs of the individuals selected 
for your sample.

7 2 8 1 2 1 8 7 6 4 4 2 1 2 1 5 9 3 7 8 7 8 0 3 5 4 7 2 1 6 5 9 6 8 5 1

1.3.6 (Sampling exercise) Refer to the collection of 100 
ellipses shown in the accompanying figure, which can be 
thought of as representing a natural population of the 
mythical organism C. ellipticus. The ellipses have been 
given identification numbers 00, 01, . . . , 99 for conve-
nience in sampling. Certain individuals of C. ellipticus are 
mutants and have two tail bristles.
(a) Use your judgment to choose a sample of size 10 from 

the population that you think is representative of the 
entire population. Note the number of mutants in the 
sample.

(b) Use random digits (from Table 1 or your calculator or 
computer) to choose a random sample of size 10 from 
the population and note the number of mutants in the 
sample.

1.3.7 (Sampling exercise) Refer to the collection of 100 
ellipses.
(a) Use random digits (from Table 1 or your calculator or 

computer) to choose a random sample of size 5 from 
the population and note the number of mutants in the 
sample.

(b) Repeat part (a) nine more times, for a total of 10 
samples. (Some of the 10 samples may overlap.)

To facilitate pooling of results from the entire class, report 
your results in the following format:

Number of 
mutants Nonmutants

Frequency (no. of 
samples)

0 5

1 4

2 3

3 2

4 1

5 0

Total: 10
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Chapte r 

2Description of Samples  
and Populations

2.1  Introduction
Statistics is the science of analyzing and learning from data. In this section we intro-
duce some terminology and notation for dealing with data.

Variables

We begin with the concept of a variable. A variable is a characteristic of a person or 
a thing that can be assigned a number or a category. For example, blood type (A, B, 
AB, O) and age are two variables we might measure on a person.

Blood type is an example of a categorical variable*: A categorical variable is a 
variable that records which of several categories a person or thing is in. Examples of 
categorical variables are

Blood type of a person: A, B, AB, O
Sex of a fish: male, female
Color of a flower: red, pink, white
Shape of a seed: wrinkled, smooth

Age is an example of a numeric variable, that is, a variable that records the 
amount of something. A continuous variable is a numeric variable that is measured 
on a continuous scale. Examples of continuous variables are

Weight of a baby
Cholesterol concentration in a blood specimen
Optical density of a solution

A variable such as weight is continuous because, in principle, two weights can be 
arbitrarily close together. Some types of numeric variables are not continuous but 
fall on a discrete scale, with spaces between the possible values. A discrete variable 
is a numeric variable for which we can list the possible values. For example, the num-
ber of eggs in a bird’s nest is a discrete variable because only the values 0, 1, 2, 3, . . . , 
are possible. Other examples of discrete variables are

Number of bacteria colonies in a petri dish
Number of cancerous lymph nodes detected in a patient
Length of a DNA segment in basepairs

Objectives

In this chapter we will study 
how to describe data. In 
particular, we will
• show how frequency 

distributions are used to 
make bar charts and 
histograms.

• compare the mean and 
median as measures of 
center.

• demonstrate how to 
construct and read a 
variety of graphics 
including dotplots, 
boxplots, and 
scatterplots.

• compare several 
measures of variability 
with emphasis on the 
standard deviation.

• examine how 
transformations of 
variables affect 
distributions.

• consider the relationship 
between populations and 
samples.

*For some categorical variables, the categories can be arrayed in a meaningful rank order. Such a variable is said 
to be ordinal. For example, the response of a patient to therapy might be none, partial, or complete.
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The distinction between continuous and discrete variables is not a rigid one. After 
all, physical measurements are always rounded off. We may measure the weight of a 
steer to the nearest kilogram, of a rat to the nearest gram, or of an insect to the near-
est milligram. The scale of the actual measurements is always discrete, strictly speak-
ing. The continuous scale can be thought of as an approximation to the actual scale 
of measurement.

ObserVatiOnal Units

When we collect a sample of n persons or things and measure one or more variables 
on them, we call these persons or things observational units or cases. The following 
are some examples of samples.

Sample Variable Observational unit

150 babies born in a certain hospital Birthweight (kg) A baby

73 Cecropia moths caught in a trap Sex A moth

81 plants that are a progeny of a single  
parental cross

Flower color A plant

Bacterial colonies in each of six petri dishes Number of colonies A petri dish

nOtatiOn fOr Variables and ObserVatiOns

We will adopt a notational convention to distinguish between a variable and an 
observed value of that variable. We will denote variables by uppercase letters such as 
Y. We will denote the observations themselves (that is, the data) by lowercase letters 
such as y. Thus, we distinguish, for example, between Y =  birthweight (the variable) 
and y = 7.9 lb (the observation). This distinction will be helpful in explaining some 
fundamental ideas concerning variability.

Exercises 2.1.1–2.1.5

For each of the following settings in Exercises 2.1.1–2.1.5, 
(i) identify the variable(s) in the study, (ii) for each 
variable tell the type of variable (e.g., categorical and 
ordinal, discrete, etc.), (iii) identify the observational unit 
(the thing sampled), and (iv) determine the sample size.

2.1.1
(a) A paleontologist measured the width (in mm) of the 

last upper molar in 36 specimens of the extinct 
mammal Acropithecus rigidus.

(b) The birthweight, date of birth, and the mother’s race 
were recorded for each of 65 babies.

2.1.2 
(a) A physician measured the height and weight of each 

of 37 children.
(b) During a blood drive, a blood bank offered to check 

the cholesterol of anyone who donated blood. A total 
of 129 persons donated blood. For each of them, the 
blood type and cholesterol levels were recorded.

2.1.3 
(a) A biologist measured the number of leaves on each of 

25 plants.
(b) A physician recorded the number of seizures that 

each of 20 patients with severe epilepsy had during an 
eight-week period.

2.1.4
(a) A conservationist recorded the weather (clear, partly 

cloudy, cloudy, rainy) and number of cars parked at 
noon at a trailhead on each of 18 days.

(b) An enologist measured the pH and residual sugar 
content (g/l) of seven barrels of wine.

2.1.5
(a) A biologist measured the body mass (g) and sex of 

each of 123 blue jays.
(b) A biologist measured the lifespan (in days), the thorax 

length (in mm), and the percent of time spent sleeping 
for each of 125 fruit flies.
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2.2  Frequency Distributions
A first step toward understanding a set of data on a given variable is to explore the data 
and describe the data in summary form. In this chapter we discuss three mutually com-
plementary aspects of data description: frequency distributions, measures of center, and 
measures of dispersion. These tell us about the shape, center, and spread of the data.

A frequency distribution is simply a display of the frequency, or number of 
occurrences, of each value in the data set. The information can be presented in tabu-
lar form or, more vividly, with a graph. A bar chart is a graph of categorical data 
showing the number of observations in each category. Here are two examples of 
frequency distributions for categorical data.

example 
2.2.1

color of Poinsettias Poinsettias can be red, pink, or white. In one investigation of 
the hereditary mechanism controlling the color, 182 progeny of a certain parental 
cross were categorized by color.1 The bar graph in Figure 2.2.1 is a visual display of 
the results given in Table 2.2.1.                                                                                         ■
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Figure 2.2.1 Bar chart of 
color of 182 poinsettias

 
Color

Frequency  
(number of plants)

Red 108

Pink  34

White  40

Total 182

table 2.2.1 Color of 182 poinsettias

school bags and Neck Pain Physiologists in Australia were concerned that carrying a 
school bag loaded with heavy books was a cause of neck pain in adolescents, so they 
asked a sample of 585 teenage girls how often they get neck pain when carrying their 
school bag (never, almost never, sometimes, often, always). A summary of the results 
reported to them is given in Table 2.2.2 and displayed as a bar graph in Figure 2.2.2(a).2 
As the variable incidence is an ordinal categorical variable, our tables and graphs 
should respect the natural ordering. Figure 2.2.2(b) shows the same data but with the 
categories in alphabetical order (a default setting for much software), which obscures 
the information in the data. ■

example 
2.2.2

 
Incidence

Frequency  
(number of girls)

Never 179

Almost never 159

Sometimes 173

Often  64

Always  10

Total 585

table 2.2.2  Neck pain associated with 
carrying a school bag
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Figure 2.2.2 (a) Bar chart 
of incidence of neck pain 
reported by 585 adolescents; 
(b) the same data but with 
the categories in 
alphabetical order

A dotplot is a simple graph that can be used to show the distribution of a numeric 
variable when the sample size is small. To make a dotplot, we draw a number line 
covering the range of the data and then put a dot above the number line for each 
observation, as the following example shows.

example 
2.2.3

infant Mortality Table 2.2.3 shows the infant mortality rate (infant deaths per 1,000 
live births) in each of seven countries in South Asia, as of 2013.3 The distribution is 
shown in Figure 2.2.3. ■

table 2.2.3  Infant mortality in 
seven South Asian 
countries

 
 
Country

Infant mortality 
rate (deaths per 
1,000 live births)

Bangladesh 47.3

Bhutan 40.0

India 44.6

Maldives 25.5

Nepal 41.8

Pakistan 59.4

Sri Lanka  9.2

20 30100 40 50 60
Infant mortality rate

Figure 2.2.3 Dotplot of infant mortality in seven South Asian countries
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When two or more observations take on the same value, we stack the dots in a 
dotplot on top of each other. This gives an effect similar to the effect of the bars in a 
bar chart. If we create bars in place of the stacks of dots, we then have a histogram. 
A histogram is like a bar chart, except that a histogram displays a numeric variable, 
which means that there is a natural order and scale for the variable. In a bar chart the 
amount of space between the bars (if any) is arbitrary, since the data being displayed 
are categorical. In a histogram the scale of the variable determines the placement of 
the bars. The following example shows a dotplot and a histogram for a frequency 
distribution.

example 
2.2.4

Litter size of sows A group of thirty-six 2-year-old sows of the same breed  
(3

4 Duroc, 14 Yorkshire) were bred to Yorkshire boars. The number of piglets surviving 
to 21 days of age was recorded for each sow.4 The results are given in Table 2.2.4 and 
displayed as a dotplot in Figure 2.2.4 and as a histogram in Figure 2.2.5.             ■ 
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Figure 2.2.5 Histogram of number of surviving 
piglets of 36 sows

relatiVe freqUenCy

The frequency scale is often replaced by a relative frequency scale:

Relative frequency =
Frequency

n

The relative frequency scale is useful if several data sets of different sizes (n’s) are to 
be displayed together for comparison. As another option, a relative frequency can be 
expressed as a percentage frequency. The shape of the display is not affected by the 
choice of frequency scale, as the following example shows.

table 2.2.4 Number of surviving piglets of 36 sows

 
Number of piglets

Frequency  
(number of sows)

 5  1

 6  0

 7  2

 8  3

 9  3

10  9

11  8

12  5

13  3

14  2

Total 36
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example 
2.2.5

color of Poinsettias The poinsettia color distribution of Example 2.2.1 is expressed 
as frequency, relative frequency, and percent frequency in Table 2.2.5 and Figure 
2.2.6. ■  

table 2.2.5 Color of 182 poinsettias

 
Color

 
Frequency

Relative 
frequency

Percent 
frequency

Red 108  .59  59

Pink  34  .19  19

White  40  .22  22

Total 182 1.00 100
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Figure 2.2.6 Bar chart of 
poinsettia colors on three 
scales:
(a) Frequency
(b) Relative frequency
(c) Percent frequency

GrOUped freqUenCy distribUtiOns

In the preceding examples, simple ungrouped frequency distributions provided con-
cise summaries of the data. For many data sets, it is necessary to group the data in 
order to condense the information adequately. (This is usually the case with continu-
ous variables.) The following example shows a grouped frequency distribution.

example 
2.2.6

serum cK Creatine phosphokinase (CK) is an enzyme related to muscle and brain 
function. As part of a study to determine the natural variation in CK concentration, 
blood was drawn from 36 male volunteers. Their serum concentrations of CK 
 (measured in U/l) are given in Table 2.2.6.5 Table 2.2.7 shows these data grouped into 
classes. For instance, the frequency of the class [20,40) (all values in the interval 
20 … y < 40) is 1, which means that one CK value fell in this range. The grouped fre-
quency distribution is displayed as a histogram in Figure 2.2.7.  ■
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table 2.2.6 Serum CK values for 36 men

121  82 100 151  68  58

 95 145  64 201 101 163

 84  57 139  60  78  94

119 104 110 113 118 203

 62  83  67  93  92 110

 25 123  70  48  95  42

table 2.2.7  Frequency distribution of serum 
CK values for 36 men

 
Serum CK (U/l)

Frequency (number  
of men)

 [20,40)  1

 [40,60)  4

 [60,80)  7

 [80,100)  8

[100,120)  8

[120,140)  3

[140,160)  2

[160,180)  1

[180,200)  0

[200,220)  2

Total 36
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Figure 2.2.7 Histogram of serum CK 
concentrations for 36 men

A grouped frequency distribution should display the essential features of the 
data. For instance, the histogram of Figure 2.2.7 shows that the average CK value is 
about 100 U/l, with the majority of the values falling between 60 and 140 U/l. In addi-
tion, the histogram shows the shape of the distribution. Note that the CK values are 
piled up around a central peak, or mode. On either side of this mode, the frequencies 
decline and ultimately form the tails of the distribution. These shape features are 
labeled in Figure 2.2.8. The CK distribution is not symmetric but is a bit skewed to 
the right, which means that the right tail is more stretched out than the left.*

Left tail

Mode

Right tail

Figure 2.2.8 Shape 
features of the CK 
distribution

*To help remember which tail of a skewed distribution is the longer tail, think of skew as stretch. Which side of 
the distribution is more stretched away from the center? A distribution that is skewed to the right is one in which 
the right tail stretches out more than the left.
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example 
2.2.7

Heights of students A sample of 510 college students were asked how tall they 
were. Note that they were not measured; rather, they just reported their heights.6 
Figure 2.2.9 shows the distribution of the self-reported values, using 7 classes and a 
class width of 3 (inches). By using only 7 classes, the distribution appears to be rea-
sonably symmetric, with a single peak around 66 inches.

When making a histogram, we need to decide how many classes to have and how 
wide the classes should be. If we use computer software to generate a histogram, the 
program will choose the number of classes and the class width for us, but most soft-
ware allows the user to change the number of classes and to specify the class width. 
If a data set is large and is quite spread out, it is a good idea to look at more than one 
histogram of the data, as is done in Example 2.2.7.

Figure 2.2.10 shows the height data, but in a histogram that uses 18 classes and a class 
width of 1.1. This view of the data shows two modes—one for women and one for men.

Figure 2.2.11 shows the height data again, this time using 37 classes, each of width 
0.5. Using such a large number of classes makes the distribution look jagged. In this 
case, we see an alternating pattern between classes with lots of observations and 
classes with few observations. In the middle of the distribution we see that there were 
many students who reported a height of 63 inches, few who reported a height of 63.5 
inches, many who reported a height of 64 inches, and so on. It seems that most stu-
dents round off to the nearest inch! ■

150

100

50

0

55 60 65 70

Height (inches)

F
re

qu
en

cy

75 80

Figure 2.2.9 Heights of 
students, using 7 classes 
(class width = 3)
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Figure 2.2.10 Heights of students, using 18 classes 
(class width = 1.1)
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Figure 2.2.11 Heights of students, using 37 classes 
(class width = 0.5)

interpretinG areas in a HistOGram

A histogram can be looked at in two ways. The tops of the bars sketch out the 
shape of the distribution. But the areas within the bars also have a meaning. The 
area of each bar is proportional to the corresponding frequency. Consequently, the 
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area of one or several bars can be interpreted as expressing the number of obser-
vations in the classes represented by the bars. For example, Figure 2.2.12 shows a 
histogram of the CK distribution of Example 2.2.6. The shaded area is 42% of the 
total area in all the bars. Accordingly, 42% of the CK values are in the correspond-
ing classes; that is, 15 of 36 or 42% of the values are between 60 U/I and 100 U/l.*

*Strictly speaking, between 60 U/l and 99 U/l, inclusive.

The area interpretation of histograms is a simple but important idea. In our later 
work with distributions we will find the idea to be indispensable.

sHapes Of distribUtiOns

When discussing a set of data, we want to describe the shape, center, and spread of 
the distribution. In this section we concentrate on the shapes of frequency distribu-
tions and illustrate some of the diversity of distributions encountered in the life sci-
ences. The shape of a distribution can be indicated by a smooth curve that 
approximates the histogram, as shown in Figure 2.2.13.

0

20 60 100

CK concentration (U/ l)

140 180 220

2

F
re

qu
en

cy

4

6

8Figure 2.2.12 Histogram 
of CK distribution. The 
shaded area is 42% of the 
total area and represents 
42% of the observations.

Figure 2.2.13 
Approximation of a 
histogram by a smooth 
curve

Some distributional shapes are shown in Figure 2.2.14. A common shape for 
biological data is unimodal (has one mode) and is somewhat skewed to the right, as 
in (c). Approximately bell-shaped distributions, as in (a), also occur. Sometimes a 
distribution is symmetric but differs from a bell in having long tails; an exaggerated 
version is shown in (b). Left-skewed (d) and exponential (e) shapes are less com-
mon. Bimodality (two modes), as in (f), can indicate the existence of two distinct 
subgroups of observational units.

Notice that the shape characteristics we are emphasizing, such as number of modes 
and degree of symmetry, are scale free; that is, they are not affected by the arbitrary choices 
of vertical and horizontal scale in plotting the distribution. By contrast, a characteristic 
such as whether the distribution appears short and fat, or tall and skinny, is affected by 
how the distribution is plotted and so is not an inherent feature of the biological variable.
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The following three examples illustrate biological frequency distributions with 
various shapes. In the first example, the shape provides evidence that the distribu-
tion is in fact biological rather than nonbiological.

(a) Symmetric, bell-shaped

(c) Skewed to the right

(b) Symmetric, not bell-shaped

(d) Skewed to the left

(e) Exponential (f) Bimodal

Figure 2.2.14 Shapes of distributions

Example 
2.2.8

Microfossils In 1977, paleontologists discovered microscopic fossil structures, 
resembling algae, in rocks 3.5 billion years old. A central question was whether these 
structures were biological in origin. One line of argument focused on their size dis-
tribution, which is shown in Figure 2.2.15. This distribution, with its unimodal and 
rather symmetric shape, resembles that of known microbial populations, but not that 
of known nonbiological structures.7 ■
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Figure 2.2.15 Sizes of 
microfossils
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example 
2.2.9

cell Firing times A neurobiologist observed discharges from rat muscle cells grown 
in culture together with nerve cells. The time intervals between 308 successive dis-
charges were distributed as shown in Figure 2.2.16. Note the exponential shape of 
the distribution.8                  ■ 
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Figure 2.2.16 Time 
intervals between electrical 
discharges in rat muscle 
cells

example 
2.2.10

brain Weight In 1888, P. Topinard published data on the brain weights of hun-
dreds of French men and women. The data for males and females are shown in 
Figure 2.2.17(a) and (b). The male distribution is fairly symmetric and bell shaped; 
the female distribution is somewhat skewed to the right. Part (c) of the figure 
shows the brain weight distribution for males and females combined. This com-
bined distribution is slightly bimodal.9                   

■
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sOUrCes Of VariatiOn

In interpreting biological data, it is helpful to be aware of sources of variability. The 
variation among observations in a data set often reflects the combined effects of 
several underlying factors. The following two examples illustrate such situations.

example 
2.2.11

Weights of seeds In a classic experiment to distinguish environmental from 
genetic influence, a geneticist weighed seeds of the princess bean Phaseolus vulgaris. 
Figure 2.2.18 shows the weight distributions of (a) 5,494 seeds from a commercial 
seed lot, and (b) 712 seeds from a highly inbred line that was derived from a single 
seed from the original lot. The variability in (a) is due to both environmental and 
genetic factors; in (b), because the plants are nearly genetically identical, the varia-
tion in weights is due largely to environmental influence.10 Thus, there is less 
 variability in the inbred line. ■

    

Figure 2.2.18 Weights of 
princess bean seeds: (a) 
from an open-bred 
population; (b) from an 
inbred line

example 
2.2.12

serum ALt Alanine aminotransferase (ALT) is an enzyme found in most human 
tissues. Part (a) of Figure 2.2.19 shows the serum ALT concentrations for  
129 adult volunteers. The following are potential sources of variability among the 
measurements:

 1. Interindividual
(a) Genetic
(b) Environmental

 2. Intraindividual
(a) Biological: changes over time
(b) Analytical: imprecision in assay

The effect of the last source—analytical variation—can be seen in part (b) of 
Figure 2.2.19, which shows the frequency distribution of 109 assays of the same 
 specimen of serum; the figure shows that the ALT assay is fairly imprecise.11 ■

   

Figure 2.2.19 Distribution 
of serum ALT 
measurements (a) for 129 
volunteers; (b) for 109 
assays of the same 
specimen
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Exercises 2.2.1–2.2.9

 
Length  
(mm)

Frequency 
(number of 
individuals)

 
Length  
(mm)

Frequency 
(number of 
individuals)

15  1 27 36
16  3 28 41
17 21 29 48
18 27 30 28
19 23 31 43
20 15 32 27
21 10 33 23
22 15 34 10
23 19 35  4
24 21 36  5
25 34 37  1
26 44 38  1

2.2.1 A paleontologist measured the width (in mm) of 
the last upper molar in 36 specimens of the extinct 
mammal Acropithecus rigidus. The results were as 
 follows:12

 6.1 5.7 6.0 6.5 6.0 5.7
 6.1 5.8 5.9 6.1 6.2 6.0
 6.3 6.2 6.1 6.2 6.0 5.7
 6.2 5.8 5.7 6.3 6.2 5.7
 6.2 6.1 5.9 6.5 5.4 6.7
 5.9 6.1 5.9 5.9 6.1 6.1

(a) Construct a frequency distribution and display it as a 
table and as a histogram.

(b) Describe the shape of the distribution.

2.2.2 In a study of schizophrenia, researchers measured 
the activity of the enzyme monoamine oxidase (MAO) in 
the blood platelets of 18 patients. The results (expressed 
as nmoles benzylaldehyde product per 108 platelets) 
were as follows:13

 6.8 8.4 8.7 11.9 14.2 18.8
 9.9 4.1 9.7 12.7 5.2 7.8
 7.8 7.4 7.3 10.6 14.5 10.7

Construct a dotplot of the data.

2.2.3 Consider the data presented in Exercise 2.2.2. 
Construct a frequency distribution and display it as a 
table and as a histogram.

2.2.4 A dendritic tree is a branched structure that ema-
nates from the body of a nerve cell. As part of a study of 
brain development, 36 nerve cells were taken from the 
brains of newborn guinea pigs. The investigators counted 
the number of dendritic branch segments emanating from 
each nerve cell. The numbers were as follows:14

 23 30 54 28 31 29 34 35 30
 27 21 43 51 35 51 49 35 24
 26 29 21 29 37 27 28 33 33
 23 37 27 40 48 41 20 30 57

Construct a dotplot of the data.

2.2.5 Consider the data presented in Exercise 2.2.4. 
Construct a frequency distribution and display it as a 
table and as a histogram.

2.2.6 The total amount of protein produced by a dairy 
cow can be estimated from periodic testing of her milk. 
The following are the total annual protein production val-
ues (lb) for twenty-eight 2-year-old Holstein cows. Diet, 
milking procedures, and other conditions were the same 
for all the animals.15

 425 481 477 434 410 397 438
 545 528 496 502 529 500 465
 539 408 513 496 477 445 546
 471 495 445 565 499 508 426

Construct a frequency distribution and display it as a 
table and as a histogram.

2.2.7 For each of 31 healthy dogs, a veterinarian mea-
sured the glucose concentration in the anterior chamber 
of the right eye and also in the blood serum. The follow-
ing data are the anterior chamber glucose measurements, 
expressed as a percentage of the blood glucose.16

 81 85 93 93 99 76 75 84
 78 84 81 82 89 81 96 82 
 74 70 84 86 80 70 131 75
 88 102 115 89 82 79 106

Construct a frequency distribution and display it as a 
table and as a histogram.

2.2.8 Agronomists measured the yield of a variety of 
hybrid corn in 16 locations in Illinois. The data, in bushels 
per acre, were17

 241 230 207 219 266 167
 204 144 178 158 153
 187 181 196 149 183
(a) Construct a dotplot of the data.
(b) Describe the shape of the distribution.

2.2.9 (Computer problem) Trypanosomes are parasites 
that cause disease in humans and animals. In an early 
study of trypanosome morphology, researchers measured 
the lengths of 500 individual trypanosomes taken from 
the blood of a rat. The results are summarized in the 
accompanying frequency distribution.18
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(a) Construct a histogram of the data using 24 classes 
(i.e., one class for each integer length, from 15 to 38).

(b) What feature of the histogram suggests the 
interpretation that the 500 individuals are a mixture 
of two distinct types?

(c) Construct a histogram of the data using only 6 classes. 
Discuss how this histogram gives a qualitatively 
different impression than the histogram from part (a).

2.3  Descriptive Statistics: Measures of Center
For categorical data, the frequency distribution provides a concise and complete 
summary of a sample. For numeric variables, the frequency distribution can usefully 
be supplemented by a few numerical measures. A numerical measure calculated 
from sample data is called a statistic.* Descriptive statistics are statistics that describe 
a set of data. Usually the descriptive statistics for a sample are calculated in order to 
provide information about a population of interest (see Section 2.8). In this section 
we discuss measures of the center of the data. There are several different ways to 
define the “center” or “typical value” of the observations in a sample. We will con-
sider the two most widely used measures of center: the median and the mean.

tHe median

Perhaps the simplest measure of the center of a data set is the sample median. The 
sample median is the value that most nearly lies in the middle of the sample—it is 
the data value that splits the ordered data into two equal halves. To find the median, 
first arrange the observations in increasing order. In the array of ordered observa-
tions, the median is the middle value (if n is odd) or midway between the two middle 
values (if n is even). We denote the median of the sample by the symbol y

&
 (read 

“y-tilde”). Example 2.3.1 illustrates these definitions.

*Numerical measures based on the entire population are called parameters, which are discussed in greater detail 
in Section 2.8.

example 
2.3.1

Weight Gain of Lambs The following are the 2-week weight gains (lb) of six young 
lambs of the same breed that had been raised on the same diet:19

11 13 19 2 10 1

The ordered observations are

1 2 10 11 13 19

The median weight gain is

y
& =

10 + 11
2

= 10.5 lb

The median divides the sorted data into two equal pieces (the same number of 
observations fall above and below the median). Figure 2.3.1 shows a dotplot of the 
lamb weight-gain data, along with the location of y

&
. ■

0 5

y

10

Weight gain (lb)

15 20
~

Figure 2.3.1 Plot of the 
lamb weight-gain data
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Weight Gain of Lambs Suppose the sample contained one more lamb, with the 
seven ranked observations as follows:

1 2 10 10 11 13 19

For this sample, the median weight gain is

y
&

= 10 lb

(Notice that in this example there are two lambs whose weight gain is equal to the 
median. The fourth observation—the second 10—is the median.) ■

A more formal way to define the median is in terms of rank position in the 
ordered array (counting the smallest observation as rank 1, the next as 2, and so on). 
The rank position of the median is equal to

(0.5)(n + 1)

Thus, if n = 7, we calculate (0.5)(n + 1) = 4, so that the median is the fourth larg-
est observation; if n = 6, we have (0.5)(n + 1) = 3.5, so that the median is midway 
between the third and fourth largest observations. Note that the formula (0.5)(n + 1) 
does not give the median, it gives the location of the median within the ordered list 
of the data.

tHe mean

The most familiar measure of center is the ordinary average or mean (sometimes called 
the arithmetic mean). The mean of a sample (or “the sample mean”) is the sum of the 
observations divided by the number of observations. If we denote a variable by Y, then 
we denote the observations in a sample by y1, y2, . . . , yn and we denote the mean of the 
sample by the symbol y (read “y-bar”). Example 2.3.3 illustrates this notation.

example  
2.3.2

example  
2.3.3

Weight Gain of Lambs The following are the data from Example 2.3.1:

11 13 19 2 10 1

Here y1 = 11, y2 = 13, and so on, and y6 = 1. The sum of the observations is 
11 + 13 + g + 1 = 56. We can write this using “summation notation” as gn

i = 1 yi = 56. The symbol gn
i = 1 yi means to “add up the yi’s.” Thus, when 

n = 6, gn
i = 1 yi = y1 + y2 + y3 + y4 + y5 + y6. In this case we get gn

i = 1 yi =
11 + 13 + 19 + 2 + 10 + 1 = 56.

The mean weight gain of the six lambs in this sample is

 y =
11 + 13 + 19 + 2 + 10 + 1

6

 =
56
6

 = 9.33 lb

tHe sAMPLe MeAN The general definition of the sample mean is

y =
a
n

i = 1
yi

n
where the yi ’s are the observations in the sample and n is the sample size (that 
is, the number of yi ’s).
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While the median divides the data into two equal pieces (i.e., the same number 
of observations above and below), the mean is the “point of balance” of the data. 
Figure 2.3.2 shows a dotplot of the lamb weight-gain data, along with the location of 
y
&

. If the data points were children on a weightless seesaw, then the seesaw would tip 
if the fulcrum were placed at y

&
 despite there being the same number of children on 

either side. The children on the left side (below y
&

) tend to sit further from y
&

 than the 
children on the right (above y

&
) causing the seesaw to tip. However, if the fulcrum 

were placed at y, the seesaw would exactly balance as in Figure 2.3.3. ■

The difference between a data point and the mean is called a deviation: 
deviationi = yi - y. The mean has the property that the sum of the deviations from 
the mean is zero—that is, gn

i = 1(yi - y) = 0. In this sense, the mean is a center of the 
distribution—the positive deviations balance the negative deviations.

0
5

10

Weight gain (lb)

15
20

y~

Figure 2.3.2 Plot of the lamb weight-gain data 
with the sample median as the fulcrum of a balance

0 5 10

Weight gain (lb)

15 20

y

Figure 2.3.3 Plot of the lamb weight-gain 
data with the sample mean as the fulcrum of  
a balance

example 
2.3.4

Weight Gain of Lambs For the lamb weight-gain data, the deviations are as follows:

deviation1 = y1 - y = 11 - 9.33 = 1.67

deviation2 = y2 - y = 13 - 9.33 = 3.67

deviation3 = y3 - y = 19 - 9.33 = 9.67

deviation4 = y4 - y = 2 - 9.33 = -7.33

deviation5 = y5 - y = 10 - 9.33 = 0.67

deviation6 = y6 - y = 1 - 9.33 = -8.33

The sum of the deviations is gn
i = 1(yi - y) = 1.67 + 3.67 + 9.67 - 7.33 + 0.67 -

8.33 = 0. ■

Robustness A statistic is said to be robust if the value of the statistic is relatively unaf-
fected by changes in a small portion of the data, even if the changes are dramatic ones. 
The median is a robust statistic, but the mean is not robust because it can be greatly 
shifted by changes in even one observation. Example 2.3.5 illustrates this behavior.

example  
2.3.5

Weight Gain of Lambs Recall that for the lamb weight-gain data

1 2 10 11 13 19

we found

y = 9.33 and y
&

= 10.5

Suppose now that the observation 19 is changed. How would the mean and median 
be affected? You can visualize the effect by imagining moving the right-hand dot in 
Figure 2.3.3. Clearly the mean could change a great deal; the median would not be 
affected. For instance,
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If the 19 is changed to 14, the mean becomes 8.5 and the median does not change.

If the 19 is changed to 29, the mean becomes 11 and the median does not change.

These changes are not wild ones; that is, the changed samples might well have arisen 
from the same feeding experiment. Of course, a huge change, such as changing the 
19 to 100, would shift the mean very drastically. Note that it would not shift the 
median at all. ■

VisUalizinG tHe mean and median

We can visualize the mean and the median in relation to the histogram of a distribu-
tion. The median divides the area under the histogram roughly in half because it 
divides the observations roughly in half [“roughly” because some observations may 
be tied at the median, as in Example 2.3.3(b), and because the observations within 
each class are not uniformly distributed across the class]. The mean can be visualized 
as the point of balance of the histogram: If the histogram were made out of plywood, 
it would balance if supported at the mean.

If the frequency distribution is symmetric, the mean and the median are equal 
and fall in the center of the distribution. If the frequency distribution is skewed, both 
measures are pulled toward the longer tail, but the mean is usually pulled farther 
than the median. The effect of skewness is illustrated by the following example.

example  
2.3.6

cricket singing times Male Mormon crickets (Anabrus simplex) sing to attract 
mates. A field researcher measured the duration of 51 unsuccessful songs—that is, 
the time until the singing male gave up and left his perch.20 Figure 2.3.4 shows the 
histogram of the 51 singing times. Table 2.3.1 gives the raw data. The median is 
3.7 min and the mean is 4.3 min. The discrepancy between these measures is due 
largely to the long straggly tail of the distribution; the few unusually long singing 
times influence the mean, but not the median. ■
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Figure 2.3.4 Histogram of cricket singing times

table 2.3.1 Fifty-one cricket singing times (min)

 4.3 3.9 17.4  2.3 0.8 1.5  0.7 3.7

24.1 9.4  5.6  3.7 5.2 3.9  4.2 3.5

 6.6 6.2  2.0  0.8 2.0 3.7  4.7

 7.3 1.6  3.8  0.5 0.7 4.5  2.2

 4.0 6.5  1.2  4.5 1.7 1.8  1.4

 2.6 0.2  0.7 11.5 5.0 1.2 14.1

 4.0 2.7  1.6  3.5 2.8 0.7  8.6

mean VersUs median

Both the mean and the median are usually reasonable measures of the center of a 
data set. The mean is related to the sum; for example, if the mean weight gain of 
100 lambs is 9 lb, then the total weight gain is 900 lb, and this total may be of primary 
interest since it translates more or less directly into profit for the farmer. In some 
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situations the mean makes very little sense. Suppose, for example, that the observa-
tions are survival times of cancer patients on a certain treatment protocol, and that 
most patients survive less than 1 year, while a few respond well and survive for 5 or 
even 10 years. In this case, the mean survival time might be greater than the survival 
time of most patients; the median would more nearly represent the experience of a 
“typical” patient. Note also that the mean survival time cannot be computed until 
the last patient has died; the median does not share this disadvantage. Situations in 
which the median can readily be computed, but the mean cannot, are not uncommon 
in bioassay, survival, and toxicity studies.

We have noted that the median is more robust than the mean. If a data set con-
tains a few observations rather distant from the main body of the data—that is, a 
long, straggly tail—then the mean may be unduly influenced by these few unusual 
observations. Thus, the “tail” may “wag the dog”—an undesirable situation. In such 
cases, the robustness of the median may be advantageous.

An advantage of the mean is that in some circumstances it is more efficient than 
the median. Efficiency is a technical notion in statistical theory; roughly speaking, a 
method is efficient if it takes full advantage of all the information in the data. Partly 
because of its efficiency, the mean has played a major role in classical methods in 
statistics.

2.3.1 Invent a sample of size 5 for which the sample 
mean is 20 and not all the observations are equal.

2.3.2 Invent a sample of size 5 for which the sample 
mean is 20 and the sample median is 15.

2.3.3 A researcher applied the carcinogenic (cancer-
causing) compound benzo(a)pyrene to the skin of five 
mice, and measured the concentration in the liver tis-
sue after 48 hours. The results (nmol/gm) were as 
 follows:21

6.3 5.9 7.0 6.9 5.9
Determine the mean and the median.

2.3.4 Consider the data from Exercise 2.3.3. Do the cal-
culated mean and median support the claim that, in gen-
eral, liver tissue concentration after 48 hours differs from 
6.3 nmol/gm?

2.3.5 Six men with high serum cholesterol participated in 
a study to evaluate the effects of diet on cholesterol level. 
At the beginning of the study their serum cholesterol lev-
els (mg/dl) were as follows: 22

366 327 274 292 274 230
Determine the mean and the median.

2.3.6 Consider the data from Exercise 2.3.5. Suppose an 
additional observation equal to 400 were added to the 
sample. What would be the mean and the median of the 
seven observations?

2.3.7 The weight gains of beef steers were measured over 
a 140-day test period. The average daily gains (lb/day) of 
9 steers on the same diet were as follows:23

 3.89 3.51 3.97 3.31 3.21
 3.36 3.67 3.24 3.27

Determine the mean and median.

2.3.8 Consider the data from Exercise 2.3.7. Are the cal-
culated mean and median consistent with the claim that, 
in general, steers gain 3.5 lb/day? Are they consistent with 
a claim of 4.0 lb/day?

2.3.9 Consider the data from Exercise 2.3.7. Suppose an 
additional observation equal to 2.46 were added to the 
sample. What would be the mean and the median of the 
10 observations?

2.3.10 As part of a classic experiment on mutations, 10 
aliquots of identical size were taken from the same cul-
ture of the bacterium E. coli. For each aliquot, the number 
of bacteria resistant to a certain virus was determined. 
The results were as follows:24

14 15 13 21 15

14 26 16 20 13

(a) Construct a frequency distribution of these data and 
display it as a histogram.

(b) Determine the mean and the median of the data and 
mark their locations on the histogram.

Exercises 2.3.1–2.3.14
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2.3.11 The accompanying table gives the litter size 
(number of piglets surviving to 21 days) for each of 36 
sows (as in Example 2.2.4). Determine the median litter 
size. (Hint: Note that there is one 5, but there are two 7’s, 
three 8’s, etc.)

Number of piglets Frequency (Number of sows)

 5  1

 6  0

 7  2

 8  3

 9  3

10  9

11  8

12  5

13  3

14  2

Total 36

2.3.12 Consider the data from Exercise 2.3.11. Determine 
the mean of the 36 observations. (Hint: Note that there is 
one 5 but there are two 7’s, three 8’s, etc. Thus, gyi = 5 + 7 + 7 + 8 + 8 + 8 + g =  5 + 2(7) + 3(8)
+ g )

2.3.13 Here is a histogram.

0 10 20 30 40 50 60

20 30 40 50 60 70 80 90

(a) Estimate the median of the distribution.
(b) Estimate the mean of the distribution.

2.3.14 Here is a histogram.

(a) Estimate the median of the distribution.
(b) Estimate the mean of the distribution.

2.4  Boxplots
One of the most efficient graphics, both for examining a single distribution and for 
making comparisons between distributions, is known as a boxplot, which is the topic 
of this section. Before discussing boxplots, however, we need to discuss quartiles.

qUartiles and tHe interqUartile ranGe

The median of a distribution splits the distribution into two parts, a lower part and 
an upper part. The quartiles of a distribution divide each of these parts in half, 
thereby dividing the distribution into four quarters. The first quartile, denoted by Q1, 
is the median of the data values in the lower half of the data set. The third quartile, 
denoted by Q3, is the median of the data values in the upper half of the data set.* The 
following example illustrates these definitions.

*Some authors use other definitions of quartiles, as does some computer software. A common alternative defini-
tion is to say that the first quartile has rank position (0.25)(n + 1) and that the third quartile has rank position 
(0.75)(n + 1). Thus, if n = 10, the first quartile would have rank position (0.25)(11) = 2.75—that is, to find the 
first quartile we would have to interpolate between the second and third largest observations. If n is large, then 
there is little practical difference between the definitions that various authors use.
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blood Pressure The systolic blood pressures (mm Hg) of seven middle-aged men 
were as follows:25

151 124 132 170 146 124 113

Putting these values in rank order, the sample is

113 124 124 132 146 151 170

The median is the fourth largest observation, which is 132. There are three data 
points in the lower part of the distribution: 113, 124, and 124. The median of these 
three values is 124. Thus, the first quartile, Q1, is 124.

Likewise, there are three data points in the upper part of the distribution: 146, 151 
and 170. The median of these three values is 151. Thus, the third quartile, Q3, is 151.

 

113 124 124 132 146 151 170
c ? c

first quartile median third quartile
Q1 Q3  ■

Note that the median is not included in either the lower part or the upper part 
of the distribution. If the sample size, n, is even, then exactly one-half of the observa-
tions are in the lower part of the distribution and one-half are in the upper part.

The interquartile range is the difference between the first and third quartiles 
and is abbreviated as IQR: IQR = Q3 - Q1. For the blood pressure data in 
Example 2.4.1, the IQR is 151 - 124 = 27. Note that the IQR is a number, not an 
interval; the IQR measures the spread of the middle 50% of the distribution.

example  
2.4.1

example 
2.4.2

Pulse The pulses of 12 college students were measured.26 Here are the data, 
arranged in order, with the position of the median indicated by a dashed line:

62 64 68 70 70 74?74 76 76 78 78 80

The median is 
74 + 74

2
= 74. There are six observations in the lower part of the 

distribution: 62, 64, 68, 70, 70, 74. Thus, the first quartile is the average of the third and 
fourth largest data values:

Q1 =
68 + 70

2
= 69

There are six observations in the upper part of the distribution: 74, 76, 76, 78, 78, 80. 
Thus, the third quartile is the average of the ninth and tenth largest data values (the 
third and fourth values in the upper part of the distribution):

Q3 =
76 + 78

2
= 77

Thus, the interquartile range is

IQR = 77 - 69 = 8
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We have

62 64 68 70 70 74?74 76 76 78 78 80 
c median c

first quartile third quartile
Q1 Q3

The minimum pulse value is 62 and the maximum is 80. ■

The minimum, the maximum, the median, and the quartiles, taken together, are 
referred to as the five-number summary of the data.

OUtliers

Sometimes a data point differs so much from the rest of the data that it doesn’t seem 
to belong with the other data. Such a point is called an outlier. An outlier might 
occur because of a recording error or typographical error when the data are recorded, 
because of an equipment failure during an experiment, or for many other reasons. 
Outliers are the most interesting points in a data set. Sometimes outliers tell us about 
a problem with the experimental protocol (e.g., an equipment failure, a failure of a 
patient to take his or her medication consistently during a medical trial). At other 
times an outlier might alert us to the fact that a special circumstance has happened 
(e.g., an abnormally high or low value on a medical test could indicate the presence 
of a disease in a patient).

People often use the term “outlier” informally. There is, however, a common 
definition of “outlier” in statistical practice. To give a definition of outlier, we first 
discuss what are known as fences. The lower fence of a distribution is

lower fence = Q1 - 1.5 * IQR

The upper fence of a distribution is

upper fence = Q3 + 1.5 * IQR

Note that the fences need not be data values; indeed, there might be no data 
near the fences. The fences just locate limits within the sample distribution. These 
limits give us a way to define outliers. An outlier is a data point that falls outside of 
the fences. That is, if

data point 6 Q1 - 1.5 * IQR

or

data point 7 Q3 + 1.5 * IQR

then we call the point an outlier.

example 
2.4.3

Pulse In Example 2.4.2 we saw that Q1 = 69, Q3 = 77, and IQR = 8. Thus, the 
lower fence is 69 - 1.5 * 8 = 69 - 12 = 57. Any point less than 57 would be an 
outlier. The upper fence is 77 + 1.5 * 8 = 77 + 12 = 89. Any point greater than 
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89 would be an outlier. Since there are no points less than 57 or greater than 89, there 
are no outliers in this data set. ■

example 
2.4.4

Radish Growth in Light A common biology experiment involves growing radish 
seedlings under various conditions. In one experiment students grew 14 radish seed-
lings in constant light. The observations, in order, are

first quartile third quartile

median

Q1 Q3

3 5 5 7 7 10 10108 9 1410 2120

Thus, the median is 
9 + 10

2
= 9.5, Q1 is 7, and Q3 is 10. The interquartile range is 

IQR = 10 - 7 = 3. The lower fence is 7 - 1.5 * 3 = 7 - 4.5 = 2.5, so any point 
less than 2.5 would be an outlier. The upper fence is 10 + 1.5 * 3 = 10 + 4.5 = 14.5, 
so any point greater than 14.5 is an outlier. Thus, the two largest observations in 
this data set are outliers: 20 and 21. ■

bOxplOts fOr data witH nO OUtliers

A boxplot is a visual representation of the five-number summary. To make a boxplot 
for a data set with no outliers, we first make a number line; then we mark the posi-
tions minimum, Q1, the median, Q3, and the maximum:
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Next, we make a box connecting the quartiles:
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Note that the interquartile range is equal to the length of the box. Finally, pro-
vided there are no outliers* we extend “whiskers” from Q1 down to the minimum 
and from Q3 up to the maximum:

60 65 70 75 80 85

A boxplot gives a quick visual summary of the distribution. We can immediately see 
where the center of the data is from the line within the box that locates the median. 
We see the spread of the total distribution, from the minimum up to the maximum, 
as well as the spread of the middle half of the distribution—the interquartile range—
from the length of the box. The boxplot also gives an indication of the shape of the 
distribution; the preceding boxplot has a long lower whisker, indicating that the dis-
tribution is skewed to the left. Example 2.4.5 shows a boxplot for data from a radish 
growth experiment that had no outliers.†

*We will consider situations with outliers after the next example.
†This and subsequent boxplots in our text are slightly stylized. Different computer packages present the plot 
somewhat differently, but all boxplots have the same basic five-number summary.

example 
2.4.5

Radish Growth In another version of the experiment in Example 2.4.4, a moist 
paper towel is put into a plastic bag. About one third of the way from the bottom of 
the bag a seam of staples was created; the radish seeds were placed along the seam. 
One group of students kept their radish seed bags in total darkness for 3 days and 
then measured the length, in mm, of each radish shoot at the end of the 3 days. They 
collected 14 observations; the data are shown in Table 2.4.1.27

table 2.4.1  Radish growth, in mm, after 
three days in total darkness

15 20 11 30 33

20 29 35  8 10

22 37 15 25

Here are the data in order from smallest to largest:

 8 10 11 15 15 20 20?22 25 29  30 33 35 37

 
       c    median     c

        first quartile       third quartile
       Q1 Q3

The quartiles are Q1 = 15 and Q3 = 30. The median, y
&

= 21, is the average of the 
two middle values of 20 and 22. Figure 2.4.1 shows a boxplot of the same data. ■
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bOxplOts fOr data witH OUtliers

If there are outliers in the upper part of the distribution, then we can identify 
them with dots (or other plotting symbols) on the boxplot. We then extend a whis-
ker from Q3 up to the largest data point that is not an outlier. Likewise, if there 
are outliers in the lower part of the distribution, we identify them with dots and 
extend a whisker from Q1 down to the smallest observation that is not an outlier. 
Figure 2.4.2 shows the distribution of radish seedlings grown under constant light. 
The area between the lower and upper fences is white, while the outlying region 
is blue.

0 10 20
Growth: darkness

30 40

Figure 2.4.1 Boxplot of 
data on radish growth in 
darkness

1.5 × IQR 1.5 × IQR

0 5 10 15 20 25

Figure 2.4.2 Dotplot and 
boxplot of data on radish 
growth in constant light. 
The points in the blue 
region are outliers.

Figure 2.4.3 shows a boxplot of the data on radish seedlings grown in constant 
light.*

0 5 10 15 20 25

Figure 2.4.3 Boxplot of 
data on radish growth in 
constant light

The method we have defined for identifying outliers allows the bulk of the data 
to determine how extreme an observation must be before we consider it to be an 

*Most computer software has options that can alter how outliers are determined and displayed.
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outlier, since the quartiles and the IQR are determined from the data themselves. 
Thus, a point that is an outlier in one data set might not be an outlier in another data 
set. We label a point as an outlier if it is unusual relative to the inherent variability in 
the entire data set.

After an outlier has been identified, people are often tempted to remove the 
outlier from the data set. In general this is not a good idea. If we can identify that an 
outlier occurred due to an equipment error, for example, then we have good reason 
to remove the outlier before analyzing the rest of the data. However, quite often 
outliers appear in data sets without any identifiable, external reason for them. In 
such cases, we simply proceed with our analysis, aware that there is an outlier pres-
ent. In some cases, we might want to calculate the mean, for example, with and with-
out the outlier and then report both calculations to show the effect of the outlier in 
the overall analysis. This is preferable to removing the outlier, which obscures the 
fact that there was an unusual data point present.

2.4.1 Here are the data from Exercise 2.3.10 on the num-
ber of virus-resistant bacteria in each of 10 aliquots:

14  15  13  21  15
14  26  16  20  13

(a) Determine the median and the quartiles.
(b) Determine the interquartile range.
(c) How large would an observation in this data set have 

to be in order to be an outlier?

2.4.2 Here are the 18 measurements of MAO activity 
reported in Exercise 2.2.2:

 6.8 8.4 8.7 11.9 14.2 18.8
 9.9 4.1 9.7 12.7 5.2 7.8
 7.8 7.4 7.3 10.6 14.5 10.7

(a) Determine the median and the quartiles.
(b) Determine the interquartile range.
(c) How large would an observation in this data set have 

to be in order to be an outlier?
(d) Construct a boxplot of the data.

2.4.3 In a study of milk production in sheep (for use in 
making cheese), a researcher measured the 3-month milk 
yield for each of 11 ewes. The yields (liters) were as fol-
lows:28

 56.5 89.8 110.1 65.6 63.7 82.6
 75.1 91.5 102.9 44.4 108.1

(a) Determine the median and the quartiles.
(b) Determine the interquartile range.
(c) Construct a boxplot of the data.

2.4.4 For each of the following histograms, use the histo-
gram to estimate the median and the quartiles; then con-
struct a boxplot for the distribution.
(a) 

Exercises 2.4.1–2.4.8

0 20 40 60 80 100

(b) 

0 20 40 60 80 100
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2.5  Relationships between Variables
In the previous sections we have studied univariate summaries of both numeric and 
categorical variables. A univariate summary is a graphical or numeric summary of a 
single variable.

The histogram, boxplot, sample mean, and median are all examples of univariate 
summaries for numeric data. The bar chart, frequency, and relative frequency tables 
are examples of univariate summaries for categorical data. In this section we present 
some common bivariate graphical summaries used to examine the relationship 
between pairs of variables.

CateGOriCal–CateGOriCal relatiOnsHips

To understand the relationship between two categorical variables, we first summa-
rize the data in a bivariate frequency table. Unlike the frequency table presented in 
Section 2.2 (a univariate table), the bivariate frequency table has both rows and 
columns—one dimension for each variable. The choice of which variable to list with 
the rows and which to list with the columns is arbitrary. The following example con-
siders the relationship between two categorical variables: E. Coli Source and Sam-
pling Location.

2.4.5 The following histogram shows the same data that 
are shown in one of the four boxplots. Which boxplot goes 
with the histogram? Explain your answer.

2.4.6 The following boxplot shows the five-number sum-
mary for a data set. For these data the minimum is 35, 
Q1 is 42, the median is 49, Q3 is 56, and the maximum is 
65. Is it possible that no observation in the data set equals 
42? Explain your answer.

descriptive statistics summary for a variable stored in col-
umn 1 (C1) of MINITAB’s worksheet.

	Variable	 N	 Mean	 Median	 TrMean	 StDev	 SEMean	
	 Cl	 75	119.94	 118.40	 119.98	 9.98	 1.15

	Variable	 Min	 Max	 Q1	 Q3	
	 Cl	 95.16	 145.11	 113.59	127.42

(a) Use the MINITAB output to calculate the 
interquartile range.

(b) Are there any outliers in this set of data?

2.4.8 Consider the data from Exercise 2.4.7. Use the five-
number summary that is given to create a boxplot of the 
data.

25 30 35 40 45 50 55 60

a

b

c

d

604020

35 40 45 50 55 60 65

2.4.7 Statistics software can be used to find the five-number 
summary of a data set. Here is an example of MINITAB’s 
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While Table 2.5.1 provides a concise summary of the data, it is difficult to discover 
any patterns in the data. Examining relative frequencies (row or column proportions) 
often helps us make meaningful comparisons as seen in the following example.

example 
2.5.1

E. Coli Watershed contamination In an effort to determine if there are differences 
in the primary sources of fecal contamination at different locations in the Morro Bay 
watershed, n = 623 water specimens were collected at three primary locations that 
feed into Morro Bay: Chorro Creek (n1 = 241), Los Osos Creek (n2 = 256), and 
Baywood Seeps (n3 = 126).29 DNA fingerprinting techniques were used to deter-
mine the intestinal origin of the dominant E. coli strain in each water specimen. 
E. coli origins were classified into the following five categories: bird, domestic pet 
(e.g., cat or dog), farm animal (e.g., horse, cow, pig), human, or other terrestrial mam-
mal (e.g., fox, mouse, coyote . . .). Thus, each water specimen had two categorical 
variables measured: location (Chorro, Los Osos, or Baywood) and E. coli source 
(bird, . . . , terrestrial mammal). Table 2.5.1 presents a frequency table of the data. ■

example 
2.5.2

E. Coli Watershed contamination Are domestic pets more of an E. coli problem 
(i.e., source) at Chorro Creek or Baywood Seeps? Table 2.5.1 shows that the domes-
tic pet E. coli source count at Chorro (29) is higher than Baywood (23), so at first 
glance it seems that pets are more problematic at Chorro. However, as more water 
specimens were collected at Chorro (n1 = 241) than Baywood (n2 = 126), the rela-
tive frequency of domestic pet source E. coli is actually lower at Chorro 
(29>241 = 0.120) than Baywood (23>126 = 0.183). Table 2.5.2 displays row per-
centages and thus facilitates comparisons of E. coli sources among the locations. 
(Note that column percentages would not be meaningful in this context since the 
water was sampled by location and not by E. coli source.) ■

table 2.5.2  Bivariate relative frequency table (row percentages)  
of E. coli source by location

E. Coli Source

 
Location

 
Bird

Domestic 
pet

Farm 
animal

 
Human

Terrestrial 
mammal

 
Total

Chorro Creek 19.1 12.0 44.0 15.8  9.1 100

Los Osos Creek 30.9 21.9 12.5 24.6 10.2 100

Baywood Seeps 27.8 18.3  0.0 47.6  6.3 100

All locations 25.7 17.3 22.2 25.8  9.0 100

E. Coli Source

 
Location

 
Bird

Domestic  
pet

Farm 
animal

 
Human

Terrestrial 
mammal

 
Total

Chorro Creek  46  29 106  38 22 241

Los Osos Creek  79  56  32  63 26 256

Baywood Seeps  35  23  0  60  8 126

Total 160 108 138 161 56 623

table 2.5.1 Frequency table of E. coli source by location
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To visualize the data in Tables 2.5.1 and 2.5.2, we can examine stacked bar charts. 
With a stacked frequency bar chart, the overall height of each bar reflects the sample 
size for a level of the X categorical variable (e.g., location), while the height or thick-
ness of a slice that makes up a bar represents the count of the Y categorical variable 
(e.g., E. coli source) for that level of X. Figure 2.5.1 displays a stacked bar chart for 
the E. coli watershed count data in Table 2.5.1.
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Human
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Bird

Figure 2.5.1 Stacked 
frequency chart of E. coli 
source by location

Like the frequency table, the stacked frequency bar chart is not conducive to 
making comparisons across the three locations as the sample sizes differ for these 
locations. (This graph does help highlight the difference in sample sizes; for example, 
it is very clear that many fewer water specimens were collected at Baywood Seeps.) 
A chart that better displays the distribution of one categorical variable across levels 
of another is a stacked relative frequency (or percentage) bar chart, which graphs 
the summaries from a bivariate relative frequency table such as Table 2.5.2. Figure 
2.5.2 provides an example using the E. coli watershed contamination data. This plot 
normalizes the bars of Figure 2.5.1 to have the same height (100%) to facilitate com-
parisons across the three locations.
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Figure 2.5.2 Stacked 
relative frequency 
(percentage) chart of  
E. coli source by location
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Figure 2.5.2 makes it very easy to see that farm animals are the largest contribu-
tors of E. coli to Chorro Creek while humans are primarily responsible for the pol-
lution at Baywood Seeps. The distribution of the slices in the three bars appears 
quite different, suggesting that the distribution of E. coli sources is not the same at 
the three locations. In Chapter 10 we will learn how to determine if these apparent 
differences are large enough to be compelling evidence for real differences in the 
distribution of E. coli source by location, or whether they are likely due to chance 
variation.

nUmeriC–CateGOriCal relatiOnsHips

In Section 2.4 we learned that boxplots are graphs based on only five numbers: the 
minimum, first quartile, median, third quartile, and maximum. They are appealing 
plots because they are very simple and uncluttered, yet contain easy to read informa-
tion about center, spread, skewness, and even outliers of a data set. By displaying 
side-by-side boxplots on the same graph, we are able to compare numeric data 
among several groups. We now consider an extension of the radish shoot growth 
problem in Example 2.4.3.

example 
2.5.3

Radish Growth Does light exposure alter initial radish shoot growth? The complete 
radish growth experiment of Examples 2.4.4 and 2.4.5 actually involved a total of 
42 radish seeds randomly divided to receive one of three lighting conditions for ger-
mination (14 seeds in each lighting condition): 24-hour light, diurnal light (12 hours of 
light and 12 hours of darkness each day), and 24 hours of darkness. At the end of 
3 days, shoot length was measured (mm). Thus, each shoot has two variables that are 
measured in this study: the categorical variable lighting condition (light, diurnal, 
dark) and the numeric variable sprout length (mm). Figure 2.5.3 displays side-by-side 
boxplots of the data. The boxplots make it very easy to compare the growth under the 
three conditions: It appears that light inhibits shoot growth. Are the observed differ-
ences in growth among the lighting conditions just due to chance variation, or is light 
really altering growth? We will learn how to numerically measure the strength of this 
evidence and answer this question in Chapters 7 and 11. ■
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Figure 2.5.3 Side-by-side 
boxplots of radish growth 
under three conditions: 
constant darkness, half 
light–half darkness, and 
constant light
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For smaller data sets, we also may consider side-by-side dotplots of the data. 
Figure 2.5.4 displays a jittered side-by-side dotplot of the radish growth data of 
Example 2.5.3. The “jitter” is a common software option that adds horizontal scatter 
to the plot, helping to reduce the overlap of the dots. Choosing between side-by-side 
boxplots and dotplots is matter of personal preference. A good rule of thumb is to 
choose the plot that accurately reflects patterns in the data in the cleanest (least ink 
on the paper) way possible. For the radish growth example, the boxplot enables a 
very clean comparison of the growth under the three light treatments without hiding 
any information revealed by the dotplot.

nUmeriC–nUmeriC relatiOnsHips

Each of the previous examples considered comparing the distribution of one vari-
able (either categorical or numeric) among several groups (i.e., across levels of a 
categorical variable). In the next example we illustrate the scatterplot as a tool to 
examine the relationship between two numeric variables, X and Y. A scatterplot 
plots each observed (x,y) pair as a dot on the x–y plane.
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Figure 2.5.4 Side-by-side 
jittered dotplots of radish 
growth under three 
conditions: constant 
darkness, half light–half 
darkness, and constant light

example 
2.5.4

Whale selenium Can metal concentration in marine mammal teeth be used as a 
bioindicator for body burden? Selenium (Se) is an essential element that has been 
shown to play an important role in protecting marine mammals against the toxic 
effects of mercury (Hg) and other metals. Twenty beluga whales (Delphinapterus 
leucas) were harvested from the Mackenzie Delta, Northwest Territories, as part of 
an annual traditional Inuit hunt.30 Each whale yielded two numeric measurements: 
Tooth Se (mg/g) and Liver Se (ng/g). Selenium concentrations for the whales are 
listed in Table 2.5.3. Liver Se concentration (Y) is graphed against Tooth Se concen-
tration (X) in the scatterplot of Figure 2.5.5.                                 ■
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Scatterplots are helpful in revealing relationships between numeric variables. In 
Figure 2.5.6 two lines have been added to the whale selenium scatterplot of Figure 
2.5.5 to highlight the increasing trend in the data: Tooth Se concentration tends to 
increase with liver Se concentration. The dashed line is called a lowess smooth, 
whereas the straight solid line is called a regression line. Many software packages 
allow one to easily add these lines to a scatterplot. The lowess smooth is particularly 
helpful in visualizing curved or nonlinear relationships in data, while the regression 
line is used to highlight a linear trend. Generally speaking, we would choose only 
one of these to display on our graph. In this case, since the pattern is fairly linear (the 
lowess smooth is fairly straight), we would choose the solid regression line. In Chapter 
12 we will learn how to identify the equation of the regression line that best sum-
marizes the data and determine if the apparent trend in the data is likely to be just 
due to chance or if there is evidence for a real relationship between X and Y.
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Figure 2.5.5 Scatterplot of 
liver selenium 
concentration against tooth 
selenium concentration for 
20 belugas

table 2.5.3 Liver and tooth selenium concentrations of 20 belugas

 
Whale

Liver Se 
(mg/g)

Tooth Se 
(ng/g)

 
Whale

Liver Se 
(mg/g)

Tooth Se 
(ng/g)

 1  6.23 140.16 11 15.28 112.63

 2  6.79 133.32 12 18.68 245.07

 3  7.92 135.34 13 22.08 140.48

 4  8.02 127.82 14 27.55 177.93

 5  9.34 108.67 15 32.83 160.73

 6 10.00 146.22 16 36.04 227.60

 7 10.57 131.18 17 37.74 177.69

 8 11.04 145.51 18 40.00 174.23

 9 12.36 163.24 19 41.23 206.30

10 14.53 136.55 20 45.47 141.31


