GLOBAL £
EDITION

Desktop

ul |e=s

g i

-ll' WAL T “©
‘:—I ' U @@D-gu |I®(
S0 we,
s. J@@/‘\ I% 5‘*0 '*_
D“QQEW&

.MQ l%latl.u ‘:;

N {,(‘&)J;lnrs
S D>/.\DM>
| e,

Y

Starting Out with App Inventor for Android

Tony Gaddis * Rebecca Halsey



STARTING OUT WITH

an  AppP Inventor for Android

E it O



This page intentionally left blank.



STARTING OUT WITH

.= App Inventor for Android

Edition mimimisl |

Tony Gaddis

and

Rebecca Halsey

PEARSON

Boston Columbus Indianapolis New York San Francisco
Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan
Munich Paris Montréal Toronto Delhi Mexico City Sdo Paulo Sydney
Hong Kong Seoul Singapore Taipei Tokyo



Vice President and Editorial Director, ECS: Marcia J. Horton
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Kelsey Loanes
Program Manager: Carole Snyder
Project Manager: Rose Kernan, RPK Editorial Services, Inc.
Project and Program Manager Team Lead: Scott Disanno
Media Team: Steve Wright
R&P Project Manager: Rachel Youdelman
Publishing Administrator and Business Analyst,

Global Edition: Shokhi Shah Khandelwal

Pearson Education Limited
Edinburgh Gate

Harlow

Essex CM20 2JE

England

and Associated Companies throughout the world

Assistant Acquisitions Editor,
Global Edition: Aditee Agarwal
Assitant Project Editor, Global Edition: Sinjita Basu
Senior Manufacturing Controller,
Production, Global Edition: Trudy Kimber
Operations Specialist: Vincent Scelta
Full-Service Project Management: iEnergizer Aptara®, Ltd.
Cover Design: Lumina Datamatics
Cover Photo: Shutterstock/My Life Graphic
Cover Printer: Ashford Colour Press

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The rights of Tony Gaddis and Rebecca Halsey to be identified as the authors of this work have been asserted by them in

accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Starting Out with App Inventor for Android, 1st Edition,
978-0-132-95526-3, by Tony Gaddis and Rebecca Halsey, published by Pearson Education © 20135.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, withouteither the prior written permission of
the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd,

Saffron House, 6-10 Kirby Street, London ECIN 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest
in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply
any affiliation with or endorsement of this book by such owners.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the
documents and related graphics published as part of the services for any purpose. All such documents and related graphics
are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties
and conditions with regard to this information, including all warranties and conditions of merchantability, whether
express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall microsoft and/
or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in
connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes
are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/
or changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full

within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This book is
not sponsored or endorsed by or affiliated with the Microsoft Corporation.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN-13: 978-1-292-08032-1
ISBN-10: 1-292-08032-9

Typeset in Sabon LT Std by iEnergizer Aptara®, Ltd.

Printed and bound by Ashford Colour Press in the United Kingdom.


http://www.pearsonglobaleditions.com

Preface 13

Introduction to Programming and
App Inventor

Working with Media

Input, Variables, and Calculations
Decision Blocks and Boolean Logic
Repetition Blocks, Times, and Dates
Procedures and Functions

Lists

Storing Data on the Device
Graphics and Animation

Working with Text

Text to Speech and Text Messaging
Sensors

Other App Inventor Capabilities
Setting Up App Inventor

Connecting an Android Device to
App Inventor

=
o N

25

97
153
211
271
311
343
395
439
485
533
555
585
621

627



6

Brief Contents

Uploading Your Application to App Inventor
Gallery and Google Play Store

Component Reference
Answers to Checkpoints

Index

637
643
673
685



Chapter 1

Chapter 2

Contents

Preface 13

Introduction to Programming and App Inventor 25

1.1 Introduction ... ... e 25
1.2 Whatlsa Computer Program? . .............ciiutiiuennnenn. 28
1.3 Introducing App Inventor .. ... ... . 32
TUTORIAL 1-1: Starting App Inventor and Creating a

New Project. . ..t e e 32
1.4 Getting Hands-On with App Inventor .. ........ ... ... ....... 46
TUTORIAL 1-2: Creating the Screen for the Hello World App ............. 61
TUTORIAL 1-3: Completing the Hello World App .. ........ ... ... ..., 75
TUTORIAL 1-4: Creating the Good Morning Translator App.............. 79
Review QUeStioNs . ... .. i e 88

Working with Media 97

2.1 DisplayingImages. . . ... e 97
TUTORIAL 2-1: Changing the Screen’s Background Image . .............. 100
TUTORIAL 2-2: Switching the Screen’s Background Image

M COdeE . ottt e 104
TUTORIAL 2-3: Using the Image Component . .. .........covvuerenn.. 109
TUTORIAL 2-4: Creating the Flags App .. ..., 114
2.2 Duplicating Blocks and Using Dropdowns. .. .................. 120
2.3 SOUNDS . . et 123
TUTORIAL 2-5: Creating the Guitar App . ... oo v it i i 126
TUTORIAL 2-6: Making the Phone Vibrate........................... 130
2.4 ColorBlocks . ... ..o 133
2.5 LayoutComponents ... ... 136
TUTORIAL 2-7: Using Layout Components and Color Blocks. . ........... 140
2.6 CommentingBlocks . ...... ... .. . .. . 143
TUTORIAL 2-8: Adding Comments. . . ....ovvtrnt et eneennennennans 144

Review QUESLIONS . . . ..ttt e 145



Contents

Chapter 3

Chapter 4

Chapter 5

Input, Variables, and Calculations 153

3.1 TheTextBox Component .......... ... ..t iiiieennnn...
3.2 Performing Calculations ... ......... ... ... .. . .
TUTORIAL 3-1: Calculating Fuel Economy........... ... ... ... .....
TUTORIAL 3-2: Creating the Restaurant Tip Calculator App.............
3.3 Storing Datawith Variables. .. ....... ... ... ... ... ... ...
TUTORIAL 3-3: Creating the Kilometer Converter App .. .........vuv ..
TUTORIAL 3-4: Creating the Change Counter App . ... ..o vvvnenn...
3.4 Creating Blocks with Typeblocking ... ......... ... ... ... ...
3.5 TheSliderComponent ........ ... .. ...,
3.6 MathFunctions. ....... ... . ... . .. i
Review QUESHIONS . . . ..ttt e

Decision Blocks and Boolean Logic 211

4.1 Introduction to Decision Blocks. ... .......... ... ... ... .. ...
4.2 Relational Operators and the if Block. .................... ...
TUTORIAL 4-1: The Test Average App . .« oot ii it
4.3 Theif then elseBlock........ ... ... ... . . . . .. ...
TUTORIAL 4-2: Modifying the Test Average App.....ovvvvvvnennenn..
TUTORIAL 4-3: Creating the Wages App . ..o oo viiii it
4.4 AFirst Look At Comparing Strings. . . ... . i i
4.5 Logical Operators . .. ...ttt e
TUTORIAL 4-4: Creating the Range Checker App. .......... ... ... .....
4.6 Nested DecisionBlocks . .......... ... . i
TUTORIAL 4-5: Creating the Grader App. . .....oviiv ..
4.7 The if then else ifBlock..... ... ... ... ... .. ... . ... . ....
4.8 Working with Random Numbers. ...........................
TUTORIAL 4-6: Simulating Coin TOSSeS . « .« vt v v nn e
4.9 The Screen’s InitializeBEvent ...... ... ... . ... .. ... ...
4.10 The ListPicker Component. . .. ...ttt
TUTORIAL 4-7: Creating the Time Zone App. .. ..o vvvvvinnnenen..
4.11 The CheckBox Component. ........ ... ... ..
Review QUESLIONS . . . .. oo

Repetition Blocks, Times, and Dates 271

5.1 The Notifier Component. ........ ... ... .. .. .. ...
52 Thewhile LOOP ..o vttt e e et
TUTORIAL 5-1: The Ending Balance App .. .. .o o iviii i i it
53 Thefor eachloOp ... .. i
TUTORIAL 5-2: Calculating a Sum of Consecutive Numbers .............
5.4 TheClock Component ........ ..o tiiriiieiinennnenn..
TUTORIAL 5-3: Creatinga Clock App ... oot i it



Chapter 6

Chapter 7

Chapter 8

Contents

5.5 The DatePicker Component ............ ... . ..., 303
Review QUESLIONS . . .. it e 306

Procedures and Functions 311

6.1 Modularizing Your Code With Procedures. .. .................. 311
6.2 Procedures . . ... ...ttt e 312
TUTORIAL 6-1: Creating the Lights App. .. ........c. .. 316
6.3 Passing Arguments to Procedures . . ........ ... ... ... ... 322
TUTORIAL 6-2: Creating the AreaCircle App . .. ..o ovi ittt 327
6.4 Returning Values From Procedures . ............ ... ... ..... 331
TUTORIAL 6-3: The Cups ToOunces App . .« v oot v i it e e an 334
Review QUESLIONS . . . ..ttt e 338
Lists 343

7.1 Creatingalist. .. ... ... . . . 343
TUTORIAL 7-1: Creatinga List. . ... ..., 345
7.2 lterating Over a List with the for eachloop .................. 350
TUTORIAL 7-2: Iterating Over a List with the for each Loop............ 353
7.3 Selectinganltem ...... ... .. ... 356
TUTORIAL 7-3: Selecting an IteminaList ........ ... ... ... ... ..... 356
TUTORIAL 7-4: Using the length of list Function................... 361
7.4 Inserting and Appending ltems........... ... ... . . ... 365
TUTORIAL 7-5: Add Itemstoa List . ......... ... 367
7.5 Removing ltems . ... ... .. 372
7.6 Replacingltems. .. ... ... . . 374
TUTORIAL 7-6: Replacing and Removing List Items. .. ................. 376
7.7 Searchingforanltem ......... ... .. . . .. .. 384
TUTORIAL 7-7: Creating a Number-Guessing Game. .. ................. 385
7.8 OtherListFunctions . ........ . ... . .. 390
Review QUEStIONS . . . ..o i 391

Storing Data on the Device 395

8.1 App Inventor Storage Components. . .................uo.. 395
8.2 The Application Sandbox . ......... ... .. ... i 396
8.3 FileComponent .. ... ... . . .. e 396
TUTORIAL 8-1: Creatinga File....... ... .. i i, 399
8.4 RetrievingaFile. . ..... ... .. 402
TUTORIAL 8-2: Retrievinga File. ... ... ... . i, 402
TUTORIAL 8-3: Appendinga File ........... ... ... ... i i, 405
8.5 TinyDB ... e 407
8.6 Tag-Value Pairs . ... ... ... ... i e 408

8.7 StoringaTag-ValuePair ........ ... ... . . ... i 409

9



10

Contents

Chapter 9

Chapter 10

Chapter 11

TUTORIAL 8-4: Storing Names and Phone Numbers ...................
8.8 RetrievingaValue...... ... ... .. . . . . e
TUTORIAL 8-5: Storing and Retrieving Values .. ......................
8.9 Tag-Value Pairs when the ValueisaList. ......................
TUTORIAL 8-6: Storing a List as a Value in a Tag-Value Pair.............
8.10 TinyDB Across Multiple Screens. . .. ... ... ... i
TUTORIAL 8-7: TinyDB across Multiple Screens. .. ....................
Review QUESLIONS . . . ..ot

Graphics and Animation 439

9.1 The CanvasComponent . ............tiuiuiiniiennuenneenn..
TUTORIAL 9-1: Drawingonthe Canvas.............covvitinnnnn .
9.2 The Ball and ImageSprite Component. .......................
TUTORIAL 9-2: Bouncing Ball. . ...... ... . .. . .,
TUTORIAL 9-3: Fishbowl - Using the ImageSprite Component............
9.3 Using the Clock Component to Create Animations . .............
TUTORIAL9-4: Crackthe Egg ... ... ittt
9.4 Dragging Sprites. . . ... i
TUTORIAL 9-5: Drag Ball Sprite Example. . ........ ... .. ... ... .....
TUTORIAL 9-6: Drag the Ball intothe Box . ........ ... .. ... .. .....
9.5 Detecting Collisions . ....... ... i
TUTORIAL 9-7: Popping Balloons. .. ....... ... ... ... it
Review QUEStiONS . . .. o i e

Working with Text 485

10.1 Concatenating Strings. . . . ... ... i
10.2 Comparing Strings . . .. oo
TUTORIAL 10-1: Comparing Strings. . . .. ooue et nninnnnieeeeennnn.
10.3 Trimming a String. . . . ..o o e
10.4 Converting Case . . .. oottt e
TUTORIAL 10-2: Trim and Convert to Format Tags....................
10.5 Findinga Substring. ... ... .
TUTORIAL 10-3: Validate an Email Address.............. ... .. .....
10.6 Replacinga Substring . . ....... ... . . i
10.7 Extractinga Substring. . . ... .. .. .
10.8 Splitting a Substring . . . ... ... ...
TUTORIAL 10-4: Validating Email — Valid Name and Top-Level Domain . . .
Review QUESLIONS . . . . oo

Text to Speech and Text Messaging 533

11.1 The TextToSpeech Component. . ......... ... i,
TUTORIAL 11-1: TexttoSpeech. . ... ... .. . i i it



Chapter 12

Chapter 13

Contents

11.2 The Texting Component. . ...ttt 540
11.3 Receiving Text Messages. . ... ..., 543
TUTORIAL 11-2: Creating the Speak Messages from Family App.......... 544
11.4 Sending Text Messages. . .. ..o vttt 547
TUTORIAL 11-3: ReplytoFamily . . ............ ... ... ... .. .. 548
Review QUESLIONS . . .. o i 550

Sensors 555

12.1 The LocationSensor. . . ...ttt e e 555
TUTORIAL 12-1: Display Location ... ....oovuvin i, 559
12.2 The OrientationSeNsor . . ... ...ttt iieeeeee.. 566
TUTORIAL 12-2: Catand MOUSE . ... .o vi ittt e e ee e 569
12.3 The Accelerometer . . ... i 574
TUTORIAL 12-3: Shaketo Clear Canvas. .............ciiiiinnnenn. 576
12.4 Using the ActivityStarter Component to launch Google Maps. . . . .. 578
TUTORIAL 12-4: Open Google Maps ... ...ttt 580
Review QUEStiONS . . .. .o i e 581

Other App Inventor Capabilities 585

13.1 Recording Audio . . . ... oot 585
TUTORIAL 13-1: Record and PlayBack Audio. .. .......... ... ... ..... 587
13.2 Taking a Photo with the Phone’sCamera .. ................... 591
13.3 The Camcorder Component. . ...ttt 592
13.4 Using the ImagePicker Component. .. ......... ... ... ... ... 593
TUTORIAL 13-2: Using the ImagePicker .. ......... ... .. ... oL, 593
13.5 Playing Video . . ... 596
TUTORIAL 13-3: Playing Video. . . ... ..o 597
13.6 Selecting Contacts from the Contact List and Placing Phone Calls. .. 600
TUTORIAL 13-4: Using the Contact and Phone Number Pickers........... 601
TUTORIAL 13-5: Using the PhoneCall component ..................... 604
13.7 ScanningaBarcode. . ........ .. ... . 608
13.8 Using Voice Recognition . . ....... ... .. ... oL, 609
TUTORIAL 13-6: Speak a Text Message . ..o vvvvenin e, 609
13.9 Connecting to a Twitter Account ........................... 613
TUTORIAL 13-7: Building a Twitter Application. . ..................... 614
1310 TinyWebDB . . . ..o e 616
Review QUeStiONS . . .. .o i 617

Appendix A Setting Up App Inventor 621

Appendix B Connecting an Android Device to App Inventor 627

11



12 Contents

Uploading Your Application to
App Inventor Gallery and Google Play Store 637

Component Reference 643
Answers to Checkpoints 673

Index 685



Cell phones have become an important part of most students’ lives. Even students with
limited computer experience have no trouble using their phones to send text messages,
check their email, and update their Facebook statuses. Of course, the typical cell phone
today is much more than a mere phone. It’s a powerful computer with many unique
capabilities, including the ability to run thousands of available programs, or apps.

Even though students regularly download, install, and use apps on their phones, they
do not typically think of their phones as computers. In fact, students have a unique
relationship with their phones that is different, and more personal, than the relation-
ship they have with their laptop computers. When students learn that they can cre-
ate their own mobile apps—especially apps that take advantage of a phone’s unique
capabilities (such as text messaging, location sensing, etc.)—they become excited and
motivated to learn.

This book capitalizes on that excitement and motivation by using App Inventor 2 to
teach introductory programming skills. App Inventor 2 is a free, cloud-based devel-
opment platform that is provided by The MIT Center for Mobile Learning. It allows
users with no prior programming experience to make their own Android apps. It is
extremely easy to use, and it combines a visual GUI designer with a drag-and-drop
code editor. An on-screen Android emulator or an actual Android device that is con-
nected to the computer (either wirelessly or with a USB cable) runs apps as they are
created. Because App Inventor 2 allows students to create apps and see them running
on a phone, programming becomes a personally meaningful skill.

Programming With Blocks

For many beginning students, learning the syntax of a programming language can
be a daunting task. Precious time that should be devoted to learning the fundamen-
tals of programming is often spent tracking down missing semicolons or unbal-
anced braces.

Syntax errors in App Inventor are never a problem, because they never happen! You
build an app by dragging and dropping “blocks” into an editor. The blocks, which
represent actions and data, can be snapped together, like the pieces of a puzzle, to cre-
ate fully functional programming statements. Because you don’t have to spend time
locating and fixing syntax errors, you can concentrate on planning the actions that

you want your app to perform and arranging them into the proper sequence. 13



14 Preface

Runtime and logic errors can still occur, of course, because the student can use the
wrong instruction or get instructions out of order. But because syntax is not an issue,
the student devotes his or her time to developing and debugging algorithms.

Using the Emulator or Android Devices

You use a Windows, Mac, or Linux computer to develop apps with App Inventor 2,
but to test your apps, you use either the Android emulator, which is included with
App Inventor, or an actual Android device such as a smartphone or a tablet. An
Android device can be connected to the computer either wirelessly (via Wi-Fi) or with
a USB cable. This book can be used with either approach.

The emulator, which is shown in Figure P-1, is a simulated Android phone. As you
are using App Inventor to develop an app, the app appears and runs on the emula-
tor’s screen. You can interact with the emulator in many of the same ways that you
interact with an actual smartphone. Although the emulator is limited (for example, it
does not have a GPS sensor to report its location, and it cannot make phone calls), it
does provide many of the basic features of an actual smartphone.

Most of the topics that are covered in Chapters 1 through 11 can be taught using the
emulator. The topics covered in Chapters 12 and 13 require an Android device.

Figure P-1 The Android Emulator

r ™
8 5554:<build> [ESEEC

ii ﬂﬂ 6:06 pm




Preface

App Inventor in the Classroom

App Inventor can be used in a variety of ways in the classroom, and this text is
designed to accommodate all of them. Here are some examples:

You can use this text with App Inventor 2 for the first part of an introductory
programming course, and then switch to a traditional programming language.
Depending on the amount of time you want to devote to App Inventor, you can
use the entire book, or you can omit some of the latter chapters.

You can use this text with App Inventor 2 for a brief introduction to program-
ming in a computer concepts course or an introduction to technology course.
The latter chapters can be omitted to fit the amount of time that you have.
You can use this text by itself in a semester-long course that uses only App
Inventor 2 to teach programming fundamentals.

You can use this text in short courses or summer programs that use App
Inventor 2 to teach programming.

VideoNotes to Accompany This Book

A full set of VideoNotes has been developed to accompany each tutorial in the book.
Students can follow along with the authors as they work through tutorials in the videos.
Also, one exercise or programming project at the end of each chapter has an accompanying
VideoNote that shows the student how to create the solution. To access these supplements,
go to www.pearsonglobaleditions.com/Gaddis and click on the image of this book’s cover.

Brief Overview of Each Chapter

Chapter 1: Introduction Programming and App Inventor 2

This chapter explains what algorithms and programs are, and why we use program-
ming languages. App Inventor 2 is introduced and the student learns the fundamental
steps for creating an app’s user interface, using the Blocks Editor to program the app,
and using the emulator to test an app.

Chapter 2: Working With Media

In this chapter, the student learns to create apps that use images and sound. Topics
include setting the background image for the device’s screen and displaying images
in image components, as well as on buttons (to create clickable images). The Sound
component is introduced for playing sound effects, and techniques for working with
colors are presented. The chapter discusses the visual arrangement of components in
the app’s user interface and the importance of commenting code.

Chapter 3: Input, Variables, and Calculations

In this chapter, the student learns to use TextBox components to read user input.
Variables are introduced as a way to store data in memory. App Inventor’s math


http://www.pearsonglobaleditions.com/Gaddis

16

Preface

operator blocks are introduced, and the student learns to create math expressions.
The Slider component is also discussed.

Chapter 4: Decision Blocks and Boolean Logic

In this chapter, the student learns about App Inventor’s decision structures: the
if then block, the if then else block, and the if then else if block. The rela-
tional operators are introduced, as well as logical operators. The chapter discusses
random numbers, their applications, and how to generate them in App Inventor. The
Screen component’s Initialize event is introduced. The chapter concludes with a
discussion of the ListPicker and CheckBox components.

Chapter 5: Repetition Blocks, Times, and Dates

This chapter shows the student how to use loops to create repetition structures.
App Inventor’s while and for each loops are presented. Counters, accumulators, and
running totals are also discussed. The chapter introduces the Clock component as
a way to work with dates and times, and also as a way to create a timer. The chapter
concludes with a discussion of the DatePicker component.

Chapter 6: Procedures and Functions

In this chapter, the student first learns how to write procedures. The chapter shows
the benefits of using procedures to modularize programs and discusses the top-down
design approach. Then, the student learns to pass arguments to procedures. Finally,
the student learns to write functions, or procedures that return a result.

Chapter 7: Lists

This chapter introduces lists. The student learns to create lists, insert and append
items, select items at specific and random positions, remove items, replace items,
search for items, and more.

Chapter 8: Storing Data on the Device

This chapter discusses the File component and the TinyDB component. The File com-
ponent allows you to read and write text files on the device or emulator. TinyDB is a
simple database component that allows you to store data as tag-value pairs.

Chapter 9: Graphics and Animation

App Inventor provides components for creating graphics and animations. In this
chapter, the student first learns to draw primitive graphics with the Canvas compo-
nent. Then, the Ball and ImageSprite components are discussed. Simple games are
created that use collision detection, the Clock component, and sprites.

Chapter 10: Working with Text

In this chapter, the student learns to process strings at a detailed level. Various text-
processing capabilities are discussed, such as concatenation, comparing strings,
trimming strings, converting case, finding, replacing, and extracting substrings, and
string splitting.



Preface 17

Chapter 11: Text to Speech and Text Messaging

This chapter begins with an introduction to the TextToSpeech component, which
converts text to spoken words. (The component reads text aloud.) Next, the student
learns to use the Texting component to send and receive text messages.

Chapter 12: Sensors

This chapter focuses on the sensors that are found on an Android device. The sensors
that are introduced are: The LocationSensor, for determining the device’s physical
location, the OrientationSensor, for determining the device’s orientation in 3D space,
and the AccelerometerSensor, for determining the device’s acceleration in 3D space.
This chapter concludes with a discussion of using the ActivityStarter component to
launch Google Maps.

Chapter 13: Other App Inventor Capabilities

This chapter presents various components that work on Android devices. The compo-
nents that are covered in this chapter give capabilities such as recording audio, taking
photos, selecting images from the device’s gallery, playing videos, selecting entries
from the contact list, scanning barcodes, using voice recognition, connecting to a
Twitter account, and storing data on a Web server with a TinyWebDB component.

Appendix A: Setting Up App Inventor
Appendix B: Connecting an Android Device to App Inventor

Appendix C: Uploading Your Application to App Inventor
Gallery and Google Play Store

Appendix D: Component Reference

Appendix E: Answers to Checkpoints

Features of the Text

Concept Statements

The major sections of the text starts with a concept statement. This statement con-
cisely summarizes the main point of the section.

Example Apps

The text has an abundant number of complete and partial example apps, which are
each designed to highlight the topic currently being studied.

Tutorials

Each chapter has several hands-on tutorials that lead the student through the process
of developing or completing an app. These tutorials give the student experience per-
forming the tasks discussed in the chapters.



18

Preface

VideoNotes

Online videos developed specifically for this book are available for viewing at www.
pearsonglobaleditions.com/Gaddis. Icons appear throughout the text, alerting the
student to videos about specific topics.

Notes

Notes appear at several places throughout the text. They are short explanations of
interesting or frequently misunderstood points relevant to the topic at hand.

Tips

Tips advise the student on the best techniques for approaching different program-
ming problems.

Checkpoints

Checkpoints are questions placed at intervals throughout each chapter. They are
designed to query the student’s knowledge quickly after learning a new topic.
Review Questions

Each chapter presents a thorough set of multiple-choice and short-answer review
questions.

Exercises

Each chapter offers a set of exercises for developing apps. The exercises are designed
to solidify the student’s knowledge of the topics presented in the chapter.

Online Resources

This book’s online resource page contains numerous student supplements. To access
these supplements, go to www.pearsonglobaleditions.com/Gaddis and click on the
image of this book’s cover. You will find the following items:

A link to the App Inventor site

The book’s example apps

Graphics and audio files that can be used in student projects
Access to the book’s companion VideoNotes

Instructor Resources

The following supplements are available to qualified instructors only:

Answers to the Review Questions
Solutions for the exercises
PowerPoint presentation slides for each chapter

Visit the Pearson Instructor Resource Center (www.pearsonglobaleditions.com/Gaddis)
or send an e-mail to computing@pearson.com for information on how to access them.


http://www.pearsonglobaleditions.com/Gaddis
http://www.pearsonglobaleditions.com/Gaddis
http://www.pearsonglobaleditions.com/Gaddis
http://www.pearsonglobaleditions.com/Gaddis
mailto:computing@pearson.com

Preface

Acknowledgements

The authors would like to thank Dr. Hal Abelson of MIT for his inspiring work, and
particularly for creating App Inventor. We want to thank the entire App Inventor
team at MIT for the amazing job they are doing. We also want to thank everyone
at Pearson Education for making this book possible. We are extremely grateful that
Matt Goldstein is our editor. He and Kelsey Loanes, editorial assistant, guided us
through the process of writing this book. We are also fortunate to have Demetrius
Hall and Bram Van Kempen as marketing managers. They do an amazing job of get-
ting computer science books out to the academic community. The production team,
lead by Camille Trentacoste, worked tirelessly to make this book a reality. We could
not have done it without their patience and hard work. Thanks to you all!

Pearson wishes to thank and acknowledge the following people for their work on the
Global Edition:

Contributor:
Passent M. El-Kafrawy, Menoufia University, Egypt

Reviewers:

Muthuraj M., Android Developer, Bangalore

Arup Bhattacharjee, RCC Institute of Technology, India
Soumen Mukherjee, RCC Iustitute of Technology, India
Manasa Rangarer, NMAM Institute of Technology, Niite, India
Professor Harsh Bhasin, Jamia Hamdard

19



This page intentionally left blank.



About the Authors

Tony Gaddis

Tony Gaddis is the author of the Starting Out with series of textbooks. Tony has
nearly twenty years of experience teaching computer science courses, primarily at
Haywood Community College. He is a highly acclaimed instructor who was pre-
viously selected as the North Carolina Community College “Teacher of the Year”
and has received the Teaching Excellence award from the National Institute for Staff
and Organizational Development. The Starting Out with series includes introductory
books covering C++, Java™, Microsoft® Visual Basic®, Microsoft® C#®, Python,
Programming Logic and Design, and Alice, all published by Pearson Education.

Rebecca Halsey

Rebecca Halsey is an Associate Professor at Guilford Technical Community College
where she teaches classes in Computer Science and Mobile Application Develop-
ment. She is also developing and leading the new Mobile Application Development
curriculum at GTCC. She also has twenty years of industry experience as a software
developer.

21



This page intentionally left blank.



VideoNote

CHAPTER 1

Starting App Inventor and
Creating a New Project

Creating the Screen for the
Hello World App

Completing the Hello World App

Creating the Good Morning
Translator App

The Presidential Trivia App

CHAPTER 2

Changing the Screen’s
Background Image

Switching the Screen’s
Background Image in Code

Using the Image Component
Creating the Flags App
Creating the Guitar App
Making the Phone Vibrate

Using Layout Components
and Color Blocks

Adding Comments

Creating an App to Vibrate the Phone

CHAPTER 3
Calculating Fuel Economy

Creating the Restaurant
Tip Calculator App

32

61

75

79

94

100

104

109

114

126

130

140

144

147

162

168

Creating the Kilometer Converter App

Creating the Change Counter App

The Average of Three Test Scores App

CHAPTER 4

The Test Average App

Modifying the Test Average App
Creating the Wages App
Creating the Range Checker App
Creating the Grader App
Simulating Coin Tosses

Creating the Time Zone App
The Mass and Weight App

CHAPTER 5
The Ending Balance App

Calculating the Sum of
Consecutive Numbers

Creating a Clock App

The Sum of Numbers App

CHAPTER 6

Creating the Lights App

Creating the AreaCircle App
Creating the Cups To Ounces App

Creating the Retail Price
Calculator App

182

193

208

218

227

229

240

243

250

256

268

282

291

297

308

316

327

334

339

J i

23



24

VideoNotes

CHAPTER 7
Creating a List

Iterating Over a List with
the for each Loop

Selecting an Item in a List

Using the length of list Function
Adding Items to a List

Replacing and Removing List Items
Creating a Number-Guessing Game

Creating the Entrée List App

CHAPTER 8

Creating a File

Retrieving a File

Appending a File

Storing Names and Phone Numbers
Storing and Retrieving Values

Storing a List as a Value in
a Tag-Value Pair

TinyDB Across Multiple Screens

Creating the Daily Special App

CHAPTER 9

Drawing on the Canvas
Bouncing Ball

The Fishbowl App

Crack the Egg

Drag Ball sprite Example
Drag the Ball into the Box
Popping Balloons

TouchedDown and TouchedUp

345

353

356

361

367

376

385

393

399

402

405

409

411

414

423

435

442

452

456

458

463

464

471

481

CHAPTER 10
Comparing Strings
Validate an Email Address

Validating Email - Valid Name
and Top-Level Domain

The Alphabetize Names Project

CHAPTER 11
Text to Speech

Creating the Speak Messages
From Family App

Reply to Family
The Forward Message App

CHAPTER 12

Display Location

Cat and Mouse

Shake to Clear Canvas
Open Google Maps

Crossing the State Line

CHAPTER 13

Record and Play Back Audio
Using the ImagePicker
Playing Video

Using the Contact and
Phone Number Pickers

Using the PhoneCall Component
Speak a Text Message

The Show Spoken Message App

494

507

519

532

536

544

548

552

559

569

576

580

584

587

593

597

601

604

609

619



CHAPTER

1.1

1.2 What is a Computer Program? 1.4 Getting Hands-On with App Inventor

Introduction to Programming
and App Inventor

Introduction 1.3 Introducing App Inventor

Introduction

This book teaches fundamental programming skills using an exciting application known
as App Inventor 2. (We will refer to it simply as App Inventor.) App Inventor allows
you to quickly and easily create applications, or “apps,” for Android smartphones and
tablets. It is not necessary to have prior programming experience or knowledge to use
this book. App Inventor was created for beginners who have never programmed before.

You might find it surprising that with no previous programming experience, you can
learn to create apps for a smartphone or a tablet. Perhaps you have heard that you need
to know a lot about programming in languages such as Java to create mobile apps.
While it is true that apps are typically created with high-level programming languages,
App Inventor takes a different approach. With App Inventor, you use a screen designer
to visually create an app’s screen, as shown in Figure 1-1. Then, you use a special editor
known as the Blocks Editor to create the actions that the app performs. With the Blocks
Editor, you do not have to know a language such as Java to program the app. Instead,
you visually assemble code blocks to create the app’s actions. Figure 1-2 shows an
example of the Blocks Editor.

With App Inventor, you use a standard computer, like a Windows PC, a Mac, or a
Linux system, to create an app. You can connect a supported Android smartphone or
tablet to the computer either wirelessly or with a USB cable. As you develop the app, you
will see it running on the connected device. (See Appendix B for more information about
connecting your Android device to App Inventor.)

25



26 Chapter 1 Introduction to Programming and App Inventor

Figure 1-1 The App Inventor Designer (source: MIT App Inventor 2, Pearson Education, Inc.)

A M[T !ﬂventu‘ ? Proged - Conned ~ Bl - Help - My Projects Guide Repor an lssue :s:lmsl:-:-:s:—fg-;-‘na-l com -
S eta

Gooivog _____ CEDETENCEDS  Cmem

Paletie Viewer Components Properiies

User Interface

IDisplay hidden components in Viewsr 8 [ screent ImageidyDog
i imageldyDog Picture
& Buttonspeak Degsng

i spunaspeak

Button L

X N

CheckBox .

Clock Visible

showing ¥

Image :

>

Label Width

Autzmatic
ListPicker

Height

Aussmatic

A Notifier
i PasswordTedBox
Bl sider '

Ll TexBox ¥

@ webviewer

Layout
Media
Drawing and Animation

Sensors

Rename  Delete

Social HNon-visible components
4 Media
SoundSpeak .
Connectivity °geng
Upload Fite _

Storage

LEGD® MINDSTORMS®

Figure 1-2 The Blocks Editor (Source: MIT App Inventor 2)

MIT App Inventor 2
Geta

- 1 = - =]

Blocks Viewer

Progect - Conned - Bl » Help = MyProjects  Guide Reporanissue  gaddisbooks@gmail.com -

B Buirin
B control
lLDgc
Wuan
Mren
Wl ists
' Colors

W variaies

-Prncedules
2 [ sereent

llimageMiyDog

& Buttanspeak

< soundspeak
@ Any component

Rename  Delete

Dog.png
Upload Fils




1.1 Introduction

If you do not have a supported Android device to connect to your computer, App
Inventor provides an Android emulator that runs on your computer. The emulator,
which is shown in Figure 1-3, is a simulated Android phone. As you are using App
Inventor to develop an app, the app appears and runs on the emulator’s screen. You
can interact with the emulator in many of the same ways that you interact with an
actual smartphone. Although the emulator is limited (for example, it does not have
a GPS sensor to report its location, and it cannot make phone calls), it does provide
many of the basic features of an actual smartphone.

Figure 1-3 The Android Emulator (Source: MIT App Inventor 2, Pearson Education, Inc.)

' .
B 5554:<build> ..}

Screent

Stop this application About this application

App Inventor Runs in the Cloud

Although you will need to install a program on your computer to run the Android
emulator, App Inventor runs in the cloud. This simply means that it runs on
a remote server that you are accessing over the Internet. App Inventor is part of
MIT’s Center for Mobile Learning, so it is hosted on servers that are managed by
MIT. Additionally, the projects that you create with App Inventor are stored on the
remote servers.

27



28

Chapter 1

Introduction to Programming and App Inventor

There are several advantages to this cloud-based approach. For example, you can
access App Inventor and your projects from any computer that is properly set up and
connected to the Internet. In addition, the files that you create with App Inventor are
maintained and backed up by the host. Also, you can be sure that you are always run-
ning the most recent version of App Inventor. Of course, this approach requires that
you have an Internet connection to use App Inventor.

Setting Up App Inventor

Before you can work through the tutorials in this book, you must set up App Inventor
to work with either the Android emulator or an actual Android device. If you haven’t
already done so, turn to Appendix A and follow the instructions to set up App
Inventor. Appendix A also has an accompanying VideoNote that demonstrates the
set up process. You can access the VideoNote from the book’s companion website
at www.pearsonglobaleditions.com/Gaddis. If you have an Android device that
you want to connect to App Inventor, read Appendix B after you have set up App
Inventor on your computer.

What Is a Computer Program?

A computer program is a set of instructions that a computer follows
to perform a task.

Before jumping straight into App Inventor, you should take a moment to learn some
basic concepts about computer programming. The concepts that we discuss in this
section apply to all types of computer programming, regardless of whether the com-
puter is a laptop, a supercomputer, or a mobile device.

The title of this section poses the question “What is a computer program?” Before
we can answer that, first we should answer the question “What is a computer?” To
learn programming, you do not need a deep understanding of how computers work,
but you do need to understand in the most basic terms what a computer is. Here’s a
definition that we can start with:

A computer is a device that follows instructions.

A computer doesn’t know how to do anything on its own. It only follows the
instructions that are given to it. Having said that, you must realize that a com-
puter cannot follow just any kind of instruction. For example, you can’t wake up
in the morning and say to your computer, “Make an omelet and serve it to me in
bed.” That’s not an instruction that a computer can understand. That’s the kind
of instruction that a human (like a butler, if you’re lucky enough to have one) can
understand. Unfortunately, common computers like the ones you and I have on our
desktops don’t make breakfast. Their purpose is to work with data. They do things


http://www.pearsonglobaleditions.com/Gaddis

1.2 What Is a Computer Program?

like adding and multiplying numbers, displaying data on the screen, storing data so
it can be retrieved later, and so forth. Knowing this, we can expand our definition
of what a computer is, as follows:

A computer is a device that follows instructions for manipulating and storing data.

When a computer is designed, it is equipped with a set of operations that it can per-
form on pieces of data. Most of the operations are very basic in nature. For example,
the following are typical operations that a computer can do:

Add two numbers

Subtract one number from another number

Multiply two numbers

Divide one number by another number

Move a number from one memory location to another
Determine whether one number is equal to another number
And so forth . ..

A computer instruction is merely a command for the computer to perform one of the
operations that it knows how to do.

Although an instruction exists for each operation that a computer is able to
perform, the individual instructions aren’t very useful by themselves. Because
the computer’s operations are so basic in nature, a meaningful task can only be
accomplished if the computer performs many operations. For example, if you
want your computer to calculate the amount of interest that you will earn from
your savings account this year, it will have to perform a large number of instruc-
tions, carried out in the proper sequence. Now we can understand what a compu-
ter program is:

A computer program is a set of instructions that the computer follows to perform
a task.

So, if we want the computer to perform a meaningful task, such as calculating our
savings account interest, we must have a program, which is a set of instructions. The
instructions in a program must be carefully written so they follow a logical sequence.
When a computer is performing the instructions in a program, we say that the com-
puter is running or executing the program.

Algorithms and Programming Languages

Computer programmers do a very important job. Their job is important because
without programs, computers would do nothing! When a programmer begins the
process of writing a program, one of the first things he or she does is develop an algo-
rithm. An algorithm is a set of well-defined, logical steps that must be taken in order
to perform a task. For example, suppose we are writing a program to calculate an
employee’s gross pay. Here are the steps that should be taken:

1. Get the number of hours that the employee worked, and store it in memory.
2. Get the employee’s hourly pay rate, and store it in memory.

29



30

Chapter 1

Introduction to Programming and App Inventor

3. Multiply the number of hours worked by the hourly pay rate and store the
result in memory.

4. Display a message on the screen that shows the amount of money earned. The
message must include the result of the calculation performed in Step 3.

Notice that the steps in this algorithm are sequentially ordered. Step 1 should be
performed before Step 2, and so forth. It is important that these instructions are per-
formed in their proper sequence.

The steps shown in the pay-calculating algorithm are written in English. Although
you and I might easily understand the algorithm, it is not ready to be executed on a
computer. The instructions have to be translated into machine language, which is the
only language that computers understand. In machine language, each instruction is
represented by a binary number. A binary number is a number that has only 1s and
0s. Here is an example of a binary number:

1011010000000101

When you or I look at this number, we see only a series of 1s and 0s. To the com-
puter, however, this number is an instruction, which is a command to perform some
operation. A computer program that is ready to be executed by the computer is a
stream of binary numbers representing instructions.

As you can imagine, the process of translating an algorithm from English state-
ments to machine language instructions is very tedious and difficult. To make the
job of programming easier, special programming languages have been invented.
Programming languages use words instead of numbers to represent instructions.
A program can be written in a programming language, which is much easier for
people to understand than machine language, and then be translated into machine
language. Programmers use special software called compilers or interpreters to per-
form this translation.

Over the years, many programming languages have been created. If you are work-
ing toward a degree in computer science or a related field, you are likely to study
languages such as Java, Python, C++ (pronounced “C plus plus”), and Visual Basic.
These are only a few of the languages that are used by professional programmers
to create software applications. Each of these languages has its own set of words
that the programmer must learn in order to use the language. The words that make
up a programming language are known as keywords. For example, the word print
is a keyword in the Python 2 language. It prints a message on the screen. Here is
an example of how the print keyword might be used to form an instruction in a
Python 2 program:

print “Hello Earthling!”

This causes the message Hello Earthling! to be displayed on the computer screen.
Compare this instruction to the binary number we saw earlier. You can see from
this simple example why programmers prefer to use programming languages
instead of machine language. Using words to write a program is much easier than
using binary numbers.



1.2 What Is a Computer Program?

In addition to keywords, programming languages have operators that perform various
operations on data. For example, all programming languages have math operators
that perform arithmetic. In Java, as well as most other languages, the + sign is an
operator that adds two numbers. The following would add 12 and 75:

12 + 75

In addition to keywords and operators, each language also has its own synzax, which
is a set of rules that must be strictly followed when writing a program. The syntax
rules dictate how keywords, operators, and various punctuation characters must be
used in a program. When you are learning a programming language, you must learn
the syntax rules for that particular language.

When you write a program with a traditional programming language, you convert
your algorithm into a series of statements. A programming statement consists of key-
words, operators, punctuation, and other allowable programming elements, arranged
in the proper sequence to perform an operation. Programmers call these statements
code. Typically, you type your programming statements into a text editor, save them
to a file, and then use a compiler to translate the statements into an executable pro-
gram. An executable program is a file containing machine language instructions that
can be directly executed by the computer.

Programming with App Inventor

One way that App Inventor makes programming easy to learn is by eliminating many
of the errors that beginning students commonly make. With a traditional program-
ming language, like Java or C++, beginners frequently make typing mistakes that
result in misspelled keywords, missing punctuation characters, and other such errors.
These types of mistakes are known as syntax errors. If a program contains even one
syntax error, it cannot be translated into an executable program. As a result, students
and professional programmers alike spend a lot of time tracking down syntax errors
and fixing them. In App Inventor, however, syntax errors never happen, because you
do not type programming statements.

Instead, you drag and drop code blocks, which are graphical building blocks, into an
editor. The blocks, which represent actions and data, can be “snapped” together, like
the pieces of a puzzle, to create fully functional programming statements. Because
you don’t have to spend time locating and fixing syntax errors, you can concentrate
on planning the actions that you want your app to perform, and arranging them into
the proper sequence.

Perhaps the greatest reason that programming is easy with App Inventor is that it’s
fun! Rather than writing boring programs that perform calculations or analyze data,
you will be creating mobile apps that you can run on your own smartphone or tablet,
assuming it is a supported Android device. So if you have a great idea for an app, you
can create it and install it on your device. If you want to share your apps with others,
you can upload them to the Google Play Store or the App Inventor Gallery. (For more
information about submitting your App Inventor apps to the Google Play store and
the App Inventor Gallery, see Appendix C.)

31



32 Chapter 1

Introduction to Programming and App Inventor

/ Checkpoint

1.1 What is a computer?

1.2 What is a program?

1.3 What is an algorithm?

1.4 What is the only language that computers understand?

1.5 Why were programming languages invented?

Introducing App Inventor

App Inventor is a Web application that runs in your browser. The following browsers
work with App Inventor:

Google Chrome 4.0 or higher
Apple Safari 5.0 or higher
Mozilla Firefox 3.6 or higher

Each time you work with App Inventor to create or modify an app, you will perform
the following general steps:

You will open your browser and go to the App Inventor website.
You will either create a new project or open an existing project.
You will open the Blocks Editor.

You will connect either the Android emulator or an actual Android device to

App Inventor.

In Tutorial 1-1, you will perform these steps, using the Android emulator. Before
performing this tutorial, make sure you have set up App Inventor on your computer.
(If you have not already set up App Inventor, see Appendix A for instructions.)

dl’utorial 1-1:

Starting App Inventor and Creating a New Project

VideoNote
Starting App
Inventor and
Creating a New
Project

Step 1:

Step 2:

Step 3:

Open your Web browser and go to the following address:

http://appinventor.mit.edu

You will see a screen similar to the one shown in Figure 1-4. Click the
Create button that appears in the upper right area of the screen.

If you are not currently signed into your Google account, you will see
a screen similar to the one shown in Figure 1-5. (If you are already
signed into your Google account, skip to Step 4.) Enter your email
address and Google account password, and then click Sign In.


http://appinventor.mit.edu

1.3 Introducing App Inventor

Figure 1-4 App Inventor Main Screen (Source: MIT App Inventor 2)

.‘1\‘ T App Inventor . i '
;g Home Blog Support :
aoBm =S

Three Starter Apps:

Welcome Inventors o

Ball Bounce
Digital C
View. f@ (&6) Tutorials Build your first apps!
Start Now

Get Started Create Tutorials

Follow these simple
steps to build your
Frst app MIT App Inventor

Library Teach Forums

Design and program
YOUr oWn apps Using

Step-by-step gusdas
show you how ta
build all kinds of
spps

Teachers, find out
sbout cusriculum

Everything you nead
and tesching
resaurces questions

. o kmaw about App
Iventor. reference
dacs, tips
troubleshooting

Looking for your App Invenitor 1 projects? They're still here! Find pul whal's nappening with App 1

Join community
forums to get
answers to your

Figure 1-5 Login to Your Google Account (Source: Google and the Google logo are

registered trademarks of Google Inc., used with permission.)
Google

One account. All of Google.

Sign in with your Google Account

Stay signed in MNeed help?

Lreale an account

33



34 Chapter 1 Introduction to Programming and App Inventor

@5 NOTE: If this is the first time you have used App Inventor with the

Google account that you are signed in as, you will see a screen in-
dicating that App Inventor is requesting permission to access your
Google account. Click the Allow button.

Step 4: Next, you will see the My Projects screen, as shown in Figure 1-6. This
screen normally displays a list of all the App Inventor projects that you
have created. From this screen, you can open a project, delete a project,
download and upload projects, and perform other actions. There are
no projects listed in the screen shown in Figure 1-6 because we haven’t
created any yet. Any time that you want to display this screen, you
simply click the My Projects link, as shown in Figure 1-7.

Figure 1-6 The My Projects Screen (Source: MIT App Inventor 2)

HM"ADN“"’E’“‘:;E Projed-  Conneds Bulds  Helps MyProjects  Guide Reporlanissus  gaddisbookag@gemail com -
esess |
Projects

HName Date Crented Daze Moddied ¥

You don't have any prajects in App Imventar 2 yet
To Ieam how ta use App Inventor, click the “Duide”
link &t the upper right of the window, o to start

your first progect. click the “Mew” button st the
= upper left of the window
' Where did my projects go? If you had prajects

But now they'e messing, you are prabably locking
for App inventor version 1. Its still available here

Happy Inverting!

Eracy Policy and Terma of Use

Figure 1-7 The My Projects Link (Source: MIT App Inventor 2)

F MITAPP lnventt;;? Project - Connect = Build « Help « My Projects Guide Report an Issue
h a

Projects

Name Date Created Date Modified ¥

Click here to display the My Projects screen.



Step 5:

1.3 Introducing App Inventor

To create a new project, click the New Project button, as shown in
Figure 1-8. This will display the dialog box shown in Figure 1-9,
prompting you to enter the name of the project that you are creating.
You must follow these rules when naming a project:

The project name must begin with an alphabetical letter.

After the first letter, the remaining characters can be alphabetical
letters, numbers, or underscore characters (_).

You cannot have spaces in a project name.

When you create a project, you should give it a name that describes it.
Because this is your first project, enter MyFirstProject as the name, and
then click the OK button.

Figure 1-8 Click the New Button to Start a New Project (Source: MIT App Inventor 2)

rﬂ MIT App Inventor 2 B Cameds B
| ¥ HE J Beta =Ll LUTInegL miEdi

New Project Celete Project

Projects

Mame Date Created

Figure 1-9 Specify a Project Name (Source: MIT App Inventor 2)

Step 6:

PI'CjECt MyFirstProject
name:

Cancel OK

You should now see the screen shown in Figure 1-10. This screen is
known as the Designer. When you are developing an app, you will use
the Designer to create the app’s screen. We will discuss the Designer in
greater detail later in the chapter.

Next you will open the Blocks Editor. Click the Blocks button in the
upper-right area of the screen, as shown in Figure 1-11. The Blocks
Editor will appear as shown in Figure 1-12.

35



36

Chapter 1

Introduction to Programming and App Inventor

Figure 1-10 The Designer (Source: MIT App Inventor 2)

Fi = MIT App Im“;:z Project-  Connect-  Build+  Hedp + My Projects  CQuide  Reportanissue  gaddisbooks@igmail com -
MyFirstProject soreent - || adoscrsen . i Remave serven | Ceaigner |

user Interface Loy higlden camponents in Veswver ™ sereent Screenl
e : _ i
W CheckBox ¥

o ook L Alignkorizontal
-l image L Left ¥
Al Label L Alignertical
| ListPicker
A Notifier ¥ BaogrounoCalor
[ wnite
*+ PasswordTextBox
B
B sice v ackgrounamage
(=
Ll TextBox
— CloseSoreendnimation
@ wetViewer Bebik =
Icon
=
Media
OpenScreenAnimatian
Drawing and Animation Dafautt ¥
Sensors Rename  Delete ScreenOrientation
Soeial Unspecified ¥
Storage .H Scrollable
Connoctivity Uplead File o
Title
LEGO® MINDSTORMS®

Sowent

Figure 1-11 Click the Open the Blocks Editor Button (Source: MIT App Inventor 2)

My Projects Guide Report an lssue gaddisbooks@gmail.com -

D'S{xgem Screend
AboutScreen

AlignHorizontal
Left r

Click here to open
the Blocks editor.

Step 7: The next step is to create a new Android emulator. As shown in

Figure 1-13, click Connect at the top of the screen, and then click



1.3 Introducing App Inventor 37

Figure 1-12 The Blocks Edlitor (source: MIT App Inventor 2)

F MIT App |”"‘e“'g'£ Promc-  Connect-  Buid  Helps MyProjeds  Gude  Reportanizsun  paddishocksgigmat com -

Myl irstl*moject

Blocks Viewer

& Buitin

Bl contral
Wioge
[
Wy
s
Wcors
Bysiavies
Wrrcsos

T sereem

Any component

Rsname  Delsta

a

Figure 1-13 Click Connect and then Click Emulator to Create a New
Android Emulator (Source: MIT App Inventor 2)

H MIT App Inventor 2 —— S i
Beta
z Al Companion —
MyFirsiProject Screen

Emulat
Blocks Viewer | Uss U
& Builtin Reset Connection
E contral Hard Reset
.Lugic
M 1iatn
e
.

Emulator on the menu that appears. It might take several minutes for the
emulator to be created in the computer’s memory. Once the emulator has
been created and initialized, it will appear as shown in Figure 1-14.

NOTE: In the Windows task bar, the emulator will be represented by
an Android Icon (0.

L




38

Chapter 1

Introduction to Programming and App Inventor

Figure 1-14 The Android Emulator (Source: Microsoft Corporation)

p
B 5554:<build>

Nl & s5:13em

Screent

Y W o

O [ o

Step 8: If you plan to continue with the next tutorial at this time, leave App
Inventor open in your browser and the emulator running. If you plan
to continue with the next tutorial at a later time, close the emulator
and sign out of App Inventor by clicking your account email, which
appears in the upper-right corner of the window, and then clicking
Sign out. This is shown in Figure 1-15.

Figure 1-15 Signing Out (Source: MIT App Inventor 2)

My Projects Guide Report an |ssue gaddisbooks@gmail.com -

Let’s take a closer look at the various parts of App Inventor.



1.3 Introducing App Inventor

The Designer

When you create an app with App Inventor, you will use the Designer to create the

app’s screen. The Designer is organized into the following columns, which are identi-
fied in Figure 1-16:

The Palette column
The Viewer column
The Components column

The Media column
The Properties column

Figure 1-16 The Designer (Source: MIT App Inventor 2)

The Palette column The Viewer column The Components column  The Properties column

fg MITAgp 1 rentor 2

Falette Viewer Components Froperties

Uner Intartace - eraent reen|

8 side

B ebvisne

Layeut

Medin

Drawing amd Amimaticn

Sensors

Soeial

Media
starage .

Ceanactivity Upsaad File

LEGO® MINDSTOHRMI®

The Media column
Let’s take a closer look at each of these columns.

The Palette Column

The leftmost column in the Designer is known as the Palette. The Palette provides a list
of components that you can use to build your app. A component is an item that per-
forms a specific purpose within an app. For example, an Image component displays an
image on the screen, a Button component appears as a button that the user can touch,
a Texting component sends and receives text messages, a PhoneCall component causes
the phone to dial a number, and so forth. When you are creating an app, you select the
components that you need from the Palette, and insert them into the app.

The Palette is divided into sections that each contain a group of components. Each
section represents a category of components. The different sections, or categories, are:

User Interface—These are the fundamental components for building an app’s
screen. If you want the app to have a button that the user can click, an image

39



Chapter 1 Introduction to Programming and App Inventor

that is displayed on the app’s screen, a text box that the user can type input into,
or various other basic components, you will find them here.

Layout—This section provides components for organizing other components on
the app’s screen. They provide ways to arrange components horizontally, verti-
cally, or in rows and columns.

Media—This section provides components for taking photos, recording and play-
ing videos, recording and playing sounds, picking images from the phone’s gal-
lery, recognizing speech, and converting text to speech.

Drawing and Animation—This section provides components for creating simple
drawings and animations.

Sensors—These components allow your app to access the device’s accelerometer (to
detect shaking and movement), location sensor (to detect the device’s location via
GPS and/or network data), and orientation sensor (to detect the device’s orienta-
tion, or the manner in which it is tilted). There is also a barcode scanner component
and a near field communication sensor that allows two phones to exchange data.

Social—These are components that work with the phone’s contact list, make phone
calls, send and receive text messages, and perform certain operations with Twitter.

Storage—These are components that store data locally on the device or remotely
on a Web server.

Connectivity—This section provides components for launching external applica-
tions, connecting with Bluetooth devices, and browsing the Web.

LEGO® MINDSTORM®—These specialized components are used to connect an
app with a LEGO® MINDSTORM® NXT robot using Bluetooth.

You open a section in the Palette column simply by clicking its name. In Figure 1-16,
you can see the User Interface section is open.

The Viewer Column

The Viewer column appears next to the Palette column. The Viewer column shows
a rectangular area that represents the app’s screen. You design an app’s user inter-
face (the part of the app that the user sees, and interacts with) by dragging compo-
nents from the Palette and dropping them onto the simulated screen in the Viewer.
Figure 1-17 shows a Button component being created by dragging it from the
Palette to the Viewer. You can arrange the components on the simulated screen to
make the app’s interface look the way you want it.

Figure 1-17 Creating a Component by Dragging it from the Palette to the
Viewer (Source: MIT App Inventor 2)

Screeni = 4Agd Screen Remaove Scree

Palette Viewer Components

User Interface Display udden components in Views: Screent

Text foy fmont




)

1.3 Introducing App Inventor

NOTE: A subtle, but important concept to keep in mind is that the icons that are
shown in the Palette are the #ypes of components that you can create. When you drag
a component from the Palette, you are selecting the type of component that you want.
When you drop it into the Viewer, an actual component of the selected type is created.

Keep in mind, however, that the Viewer column does not truly show a WYSIWYG
(What You See Is What You Get) display. The components that you place on the
simulated screen in the Viewer might appear slightly different on the emulator screen,
or on the device that you have connected to your system. You will be aware of any
differences quickly because the components that you drop onto the simulated Viewer
screen appear immediately on the emulator or the connected device. For example,
Figure 1-18 shows an app screen in the Viewer, and the same screen displayed in the
emulator. Notice that the shapes of the text boxes (the rectangles that let the user
enter data) and the button are slightly different between the two screens, and the
spacing between the components is also different. Think of the Viewer as a tool for
arranging components on an app’s screen, but always compare your layout with the
actual display on the emulator or your connected device.

Figure 1-18 A Screen in the Viewer and the Emulator (Source: MIT App Inventor 2)

Screen design in the viewer. Actual output in the emulator.

! l

-
B 7 5554:<build > | 1=

MPG Calculator

How many miles did you drive? MPG Calculator

How many gallons did you LISE?I How many miles did you drive?

Calculate MPG How many gallons did you use?

Caloulate MPG

—_—

ol i N o

"-.“..

41



42

Chapter 1

Introduction to Programming and App Inventor

The Components Column

The Components column shows a hierarchical tree listing all of the components that you
have placed in your app. Each time you drag a component from the Palette and drop
it onto the Viewer, an entry representing that component appears in the Component
column. You can use the Component column to select any component in your app.

The Media Column

Just below the Components column is the Media column. The Media column allows
you to manage the media files (images, videos, and audio files) that you want to use
in your app. Because App Inventor stores your apps in the cloud, you have to upload
any media files that you want to use in an app. The Media column allows you to
upload such files to the App Inventor server, download them from the server to your
computer, and delete them from the server when they are no longer needed.

The Properties Column

A component’s appearance and other characteristics, are determined by the compo-
nent’s properties. Here are just a few examples:

If you want to display text on your device’s screen, you will use a Label com-
ponent. The Label component has a property named Text. You set the Label
component’s Text property to the text that you want to display.

If you want to display an image on your device’s screen, you will use an Image
component. The Image component has a property named Picture that deter-
mines the image that is displayed. You set the Picture property to the name of
the image file that you want displayed.

If you want an app to play a sound, you will use a Sound component. The
Sound component has a property named Source that determines the audio file
that is played. You set the Source property to the name of the audio file that you
want to play.

Once you have added a component to an app, you use the Properties column to
examine and change the component’s properties.

The Blocks Editor

The Blocks Editor appears in its own window, separate from the Designer. The Blocks
Editor is where you assemble code blocks that perform actions. A code block, or simply a
block, is a shape that looks something like a puzzle piece. Figure 1-19 shows an example.
App Inventor provides numerous blocks that represent actions and data. The blocks are
shaped in such a way that you can snap them together to make a program. For example,
Figure 1-20 shows several blocks snapped together to make a complete programming
statement. (Don’t worry about understanding the blocks shown in Figures 1-19 and
1-20. They are just meant to show you examples of how blocks appear.)

Figure 1-19 A Code Block (source: MIT App Inventor 2)




1.3 Introducing App Inventor

Figure 1-20 A Programming Statement Constructed from Code Blocks
(Source: MIT App Inventor 2)

| if

get =)
T bonus - 13

—

2] bonus - JERIN 0 1

The Blocks Editor is shown in Figure 1-21. Notice that a workspace is provided for
assembling blocks. You drag blocks onto the workspace, and snap them together to
create programming statements.

The column on the left side of the Blocks Editor provides access to the blocks that you
can use. Notice in Figure 1-22 that the Blocks column is organized in the following
manner: Built-In, Screen1, and Any component. Each of these provides a separate set
of blocks that you can use in your app. Here is a summary of each:

Built-In—The blocks that you find here are the basic blocks that make up the
App Inventor language. You have the built-in blocks available to you in
every app.

Screen1—Each time you add a component to Screenl in the Designer, a set of
component blocks are added to this section. Component blocks are blocks that
perform an action on a specific component that you have added to the app.

Any component—This section contains advanced blocks that allow us to work
with any component in the app.

Figure 1-21 The Blocks Editor (Source: MIT App Inventor 2)

H MIT nm‘ Invpn“:“_?l Project « Conned « Build « Heip + My Projects Guide Repon an lssus gaddisbooks@gmai com

— TN

Blocks Viewer

B Buitin
E Control
B iogic
. Math
Mven
. Lists
Moo

Wvariabies

~a—— Blocks column

W procedures
& [ soreent

B any companent

Workspace

Renams  Delete &ho &0

43



44

Chapter 1

Introduction to Programming and App Inventor

Figure 1-22 The Blocks Column (Source: MIT App Inventor 2)

Blocks

2 Builtin

O Contral
O Logic

B math

B et

B Lists

O Colors
B variables

Built-in blocks

[ Procedures
Screen1 component blocks —_— —_—

0 Screeni

Any component blocks __—w= ¥ Any component
(Advanced)

The Built-In Blocks

Notice in Figure 1-22 that the Built-in Blocks section is organized into the following cat-
egories: Control, Logic, Math, Text, Lists, Colors, Variables, and Procedures. When you
click one of the categories, a drawer containing blocks opens. For example, Figure 1-23
shows what happens when you click Math. A drawer containing various math blocks
opens. When you open a drawer, you can click and drag a block onto the workspace.

Figure 1-23 The Math Drawer Opened (source: MIT App Inventor 2)

]

roject « Conned « Bufid Hedp » iy Projects

H MIT App Inventor 2
an Beta
e e B

Blocks. Viewer
B Builto
B control m
*
B st
M coiors
[
s ~«——— The Math drawer
B [ Screent
B Any component m
random integer from | 3 to | ED0D
Renama | Delute a
Media ﬁ

Uglaad File -



Py

-

1.3 Introducing App Inventor 45

The topmost area of the App Inventor screen is shown in Figure 1-24. The bar at the
top shows the following items:

Project—When you click this item, a menu appears. The Project menu allows you
to start, save, import, and export projects.

Connect—When you click this item, a menu appears. The Connect menu allows
you to connect to an Android device or the Android emulator.

Build—When you click this item, a menu appears. The Build menu allows you to
package an app so it can be shared with others.

Help—When you click this item, a menu appears. The Help menu provides access
to documentation, tutorials, and the App Inventor forum.

My Projects—When you click this item, the My Projects screen is displayed. (The
screen was previously shown in Figure 1-6.) The My Projects screen displays a list of
all the App Inventor projects that you have created. From this screen, you can open a
project, delete a project, download and upload projects, and perform other actions.

Guide—Clicking this item opens a separate Web page containing the App Inventor
documentation.

Report an Issue—Clicking this item takes you to the App Inventor support forum.

Figure 1-24 Top Part of the App Inventor Screen (Source: MIT App Inventor 2)

ﬂg Mi J'li',||if:-"|':':%..:

A trash can icon appears in the lower-right corner of the Blocks Editor, as shown on
the left in Figure 1-25. You can delete blocks that you no longer need by dragging
them onto the trash can, as shown on the right in Figure 1-25.

Figure 1-25 The Trash Can Icon (Source: MIT App Inventor 2)

3
Hen(]

TIP: You can also delete a block by selecting it and then pressing the Delete key
on the keyboard.



46 Chapter 1 Introd

uction to Programming and App Inventor

/ Checkpoint

1.6
1.7
1.8
1.9

1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17

those,

True or false: My First Project is a legal project name in App Inventor.
What part of App Inventor do you use to create an app’s screen?
What is a user interface?

Does the Viewer show a WYSIWYG (What You See Is What You Get)
representation of an app’s screen?

What is the Palette column?

What is the Viewer column?

What is the Components column?

What is the Media column?

What is the Properties column?

What is the Blocks Editor?

What is a code block (or simply, a block)?

How do you create an emulator and connect to it?

Getting Hands-On with App Inventor

You are almost ready to create your first app with App Inventor. There are a few more
fundamental concepts and procedures that we need to discuss, however. We will cover
and then in Tutorial 1-2 and Tutorial 1-3, you will create the Hello World app.

Managing Projects

You manage all of your App Inventor projects from the My Projects screen, which is
shown in Figure 1-26. When you go to appinventor.mit.edu and click the Create
button, you will be taken to the My Projects screen, unless you were actively work-
ing on a project the last time you used App Inventor. If that is the case, you will be

Figure 1-26 The My Projects Screen (Source: MIT App Inventor 2)

I‘g !

AIT App Inventor 2
Beta

v Project [ Deiste Project

Projects

Hame
MilesPerGallon
Guitar
GoodDog
MyFirstProject

Test



1.4 Getting Hands-On with App Inventor 47

taken directly to your most recent project in the Designer. From the Designer or the
Blocks Editor, you can click the My Projects link at the top of the screen, as shown in
Figure 1-27, to go to the My Projects screen.

Figure 1-27 The My Projects Link at the Top of the App Inventor Screen
(Source: MIT App Inventor 2)

Notice that near the top of the My Projects screen (shown in Figure 1-26) there are
buttons labeled New Project and Delete Project. The New Project button creates
a new project. You used this in Tutorial 1-1, when you created the project named
MyFirstProject. The Delete Project button deletes the project or projects that are
currently selected in the project list. (You select a project by checking the checkbox
that appears next to its name in the project list.)

Below these buttons, you see a list of your projects. The list shows each project’s
name and the date and time that it was created. To open a project, you simply click
its name, and it is opened in the Designer. If you want to select a project (so you can
delete it, or download its source), you click the checkbox that appears to the left of
the project’s name.

The App’s Screenl Component

In App Inventor, the most fundamental type of component that an app can have
is a Screen. In fact, every app must have a Screen component, which acts as a
container for all the other components making up the app’s user interface. When
you start a new project, App Inventor automatically creates an empty Screen
component.

Each component in an app must have a unique name that identifies it. When a
component is added to an app, App Inventor automatically gives the component a
default name. The empty Screen component that is automatically created in an app
is named Screeni. Figure 1-28 shows the Screenl component, as displayed in the
viewer.

Each time you add a component to an app, the component’s name appears in
the Component column. You can see in Figure 1-28 that Screen1i is listed in the
Component column. If you need to work with a particular component, you can select
its name in the Component column.

NOTE: The Component column allows you to rename components. Normally,
you will want to change the default name that App Inventor gives a component,
because the default name does not indicate the component’s purpose. The only
exception is the Screen1 component. App Inventor does not allow you to change
the name of the Screen1 component.



48

Chapter 1

Introduction to Programming and App Inventor

Figure 1-28 An App’s Screen in the Viewer (Source: MIT App Inventor 2)

Name of the screen component
currently displayed in the viewer.

IstProjec Screent - Add Screen Remove Screen

Palette Viewer Components

User Interface Screen

Display hidden components in Viewer
& Button
o CheckBox Scrent \

Name of the
screen component.

The screen’s title

Layout

Media

Drawing and Animation
Sensors

Social

Storage Media

Connectivity Upload File

Working with the Properties Column

The appearance and other characteristics of a component are determined by the compo-
nent’s properties. When you select a component (either by clicking the component in the
Viewer, or clicking its name in the Components column), that component’s properties
are displayed in the Properties column. For example, when the screen1 component is
selected, its properties are displayed in the Properties column as shown in Figure 1-29.

For example, look at the Properties column in Figure 1-29 and notice that one of
Screenl’s properties is named Title. The Title property determines the text that is
displayed in the screen’s title bar (the bar that appears at the top of the screen). As you can
see from the figure, the default value of this property is Screenl. The text that is entered
for the Screen1 component’s Title property is displayed in the screen’s title bar, both in
the Viewer, and in the emulator or other connected device. This is shown in Figure 1-30.

In most cases, you will want to change the value of the screen1 component’s Title
property to something that makes more sense to the user. For example, Figure 1-31
shows the Viewer, the Properties Column, and the emulator after we have changed
the Title property to My First App. (The Screen1 component has several other prop-
erties, and a summary of all of them appears at the end of this chapter.)



1.4 Getting Hands-On with App Inventor

Figure 1-29 The Properties Column, Showing the Selected Component’s
Properties (Source: MIT App Inventor 2)

The Screen1 Components S
component —p "I Soreent Screent
is selected. Anoutscreen —_

AlignHorizontal

el v

Alignertical

BackgroundCalor
[ whae

Eackgroundimage

CloseScreenAnimation
Default v
The Screen1 component’s
properties are displayed.
OpenScreenirimaton
Default v
Rename  Delete ScreenCrientation
Unspecified ¥

Scroliabie

Ugload File -

Titke

VersionCode

Versianhiame

Figure 1-30 The Screenl Component’s Title Property Set to the Text Screent
(Source: MIT App Inventor 2)

The Viewer The Properties column The Emulator
Viewss Properties # 1 5554cbuid> [E=mEE)

Dispiay hidden companents in Viewer Screent

AboutScreen

AlignHorizontal

The text displayed
AlignVertical i i
The text displayed here is < het:e Ls;]destermlr:ed
determined by the Screen1 — b1 cre(-:-tr'1
component’s Title property. 0 wnite Sl

Title property.

Backgroundimage

CioseSeresnAnamation

Default L

Icon

Hane

OpenScresndnimation

Default b

ScreenDrientation

Unspecified ¥

Scroliable

VersonName



50

Chapter 1

Introduction to Programming and App Inventor

Figure 1-31 The screenl Component’s Title Property Set to the Text My First
App (Source: MIT App Inventor 2)

The Viewer The Properties column The Emulator
Viewer Properties 8 5554 <build> [~
Display hidden components in Viewer Screent
My Firit App
AboutScreen
AlignHorizontal
Left v A
\ - The text displayed here
. . AlignVertical is determined by the
The text displayed here is Top v Screen component’s

determined by the Screen1
component’s Title property.

Title property.

BackgroundColor
D White
Backgroundimage

- 1
CloseScreenAnimation R e LAl
About thy spplication

Default v

o (o Bt Mt o)
OpenScreenAnimation [ po— -
Default v VALY
ScreenOrientation

Unspecified ¥

Scroliable

Cd

VersionCode

VersionName

Label Components

Another basic component is the Label. A Label component displays text on
the app’s screen. You create a Label component by dragging it from the User
Interface section of the Palette and onto the app’s screen in the Viewer, as shown
in Figure 1-32. When you create Label components in an app, they are given
default names such as Labell, Label2, and so forth. For example, Figure 1-33
shows the Components column after a Label component has been created in an
app. As you can see in the figure, the name of the component is Label1. (Also,
notice that the name Label1 is highlighted in the Components column, and in the
Viewer, the component is outlined with a green border. This indicates that the
component is currently selected.)

Once you have created a Label component, you set its Text property to the text
that you want the component to display. For example, in Figure 1-34, the Labell
component’s Text property (look in the Properties column) is set to the value Text
for Labell. As a result, Text for Labell is displayed on the app’s screen in the viewer
and on the emulator or other connected device. To change the text that is displayed



1.4 Getting Hands-On with App Inventor

Figure 1-32 Creating a Label Component (Source: MIT App Inventor 2)

Palette Viewer

User Interface Display hidden components in Viewer

Button ?
w' CheckBox My Fist App
[Text for Label1

3 Clock

- Image ? /
Label\_//
ListPicker
Motifier

**| PasswordTextBox

0l stider 7
TextBox

& VWebViewer

Figure 1-33 The Name of the Component Shown in the Components Column
(Source: MIT App Inventor 2)

Viewer Components

Display hidden components in Viewer = Screeni

| Labell

Name of the
label component.

by a Label component, just make sure the component is selected in the Components
tree, and then change the value of the component’s Text property in the Properties
column. (If the component is not currently selected, simply click its name in the
Components column to select it.)

For example, Figure 1-35 shows an app with a Label component, with its Text prop-
erty set to Apps are fun to create! The text is displayed by the component in the
Viewer and on the emulator.

51



52

Chapter 1

Introduction to Programming and App Inventor

Figure 1-34 A Label Component’s Text Property Determines the Text that the
Component Displays (source: MIT App Inventor 2)

Viewer Components Properties

Display hidden components in Viewer e Screen1 Labell

o BackgroundColor

[ none

FontBold

[Text for Lael1 |

Fontitalic

FontSize

140

FontTypeface

default v

TextAlignment

left v

TextColor
. Black

Visible

Rename  Delete showing ¥

Figure 1-35 A Label Component Displaying the Text Apps are fun to create!
(Source: MIT App Inventor 2)

Viewer Components Properties " 5554cbuild> RS
Display hsdden components in Viewer B Screenl Labelt

My Firt App
Lahett BackgroundColor

0 none

FantBold

J4pps are fun to createl

Fontftaiic

FantTypeface

default v

TextAlignment

Ieft -

TextColor
| S

Visible

Rename  Delete showing ¥

Label Width and Height

Label components have two properties, Width and Height, that determine the label’s
size on the app’s screen. Figure 1-36 shows where a Label component’s Width and
Height properties are located in the Properties column. Notice that both properties
are set to the value Automatic by default.



1.4 Getting Hands-On with App Inventor

Figure 1-36 The Label Component’s Width and Height Properties
(Source: MIT App Inventor 2)
Properties

Label

BackgroundColor
|:| Mone

FontBold

Fonthtalic

FontSize
14.0

FontTypeface

default r

Text

Apps are fun to oreate

TextAlignment
left r

TextColor

B sk

Visible

showing ¥

Height

Automatic...

When you click the Width or the Height properties, a small dialog box appears,
as shown in Figure 1-37. (The dialog box is the same for both the Width and
the Height properties.) The possible values that you can set the Width and Height
properties to are:

Automatic—When a component’s Width property is set to Automatic, the
component’s width will automatically adjust to accommodate the size of the
label’s text.

When a component’s Height property is set to Fill Parent, the label’s height will
automatically adjust to accommodate the size of the label’s text.

Fill parent—When a component’s Width property is set to Fill Parent, the com-
ponent will be as wide as the container (such as the Screen1 component) that

53



54 Chapter 1 Introduction to Programming and App Inventor

it is enclosed in. When a component’s Height property is set to Fill Parent, the
component will be as high as the container (such as the screen1 component)
that it is enclosed in.

A Specified Number of Pixels—You can specify a specific number of pixels for a
component’s width and/or height. You should avoid this in most cases, because
different devices have different screen sizes. Specifying a specific number of pix-
els for a component’s width or height will cause the component to appear dif-
ferently on different devices.

Figure 1-37 Dialog Box to Set the Width Property (Source: MIT App Inventor 2)

Width

@ Automatic

2 Fill parent
; pixels

I Cancel | | oK |

Changing a Component’s Name

A component’s name identifies the component in blocks that make up the app’s
code, and in the App Inventor environment. When you create a component, App
Inventor automatically gives it a name (we refer to this as the default name). For
example, suppose you created three Label components in an app. App Inventor
would name these components Labell, Label2, and Label3. Default names are
not very descriptive, so you should always change a component’s name to some-
thing that is more meaningful. A component’s name should reflect the purpose of
the component.

For example, suppose you are creating an app that has several Label components, and
one of them is used to display a phone number. A default name such as Label1 does
not convey the component’s purpose. A name such as LabelPhoneNumber would
be much better. When you are working with the app’s code blocks, and you see the
name LabelPhoneNumber, you will know precisely which Label component the code
block is referring to.

In the Designer, you can use the Components column to change the name of any com-
ponent (except the Screen1 component). Here are the steps:

1. Click the name of the component in the Components column to select it.

2. Click the Rename button at the bottom of the Components column.

3. The Rename Component dialog box shown in Figure 1-38 will appear. Enter
the component’s new name and click OK.

In Figure 1-38, we are changing the name of the Labell component to
LabelMessage. Figure 1-39 shows the Components column after the component’s
name has been changed.



1.4 Getting Hands-On with App Inventor

Figure 1-38 Rename Component Dialog Box (source: MIT App Inventor 2)

d nama:
Old name: Label1

Newname: LabelMessage

Cancel @|

Figure 1-39 The Component’s Name is Changed to LabelMessage
(Source: MIT App Inventor 2)

Components

a Screend

' LabelMessage

Rules and Conventions for Naming Components
When naming a component, you must follow these simple rules:

Component names can contain only letters, numbers, and underscores (_).
The first character of a component name must be a letter.
Component names cannot contain spaces.

Table 1-1 lists some example component names and indicates whether each one is

legal or illegal.

Table 1-1 Legal and illegal component names (Source: Pearson Education, Inc.)

3rdTestScoreLabel Illegal because component names must
start with a letter

Label*Mobile*Number Illegal because the * character is not
allowed. Component names can contain
only letters, numbers, and underscores.

Label Contact Name Illegal because component names
cannot contain spaces

Label Contact Name Legal

Optional Conventions Used in this Book

Because a component’s name should reflect the component’s purpose, programmers
often find themselves creating names that are made of multiple words. In this book,

55



56

Chapter 1

Introduction to Programming and App Inventor

we always begin a component’s name with a word that indicates the type of compo-
nent. For example, a Label component’s name will always begin with the word Label.
This is not a requirement, but rather a convention that we follow in this book.

In addition, we use the Pascal naming convention, which makes names easier to read
when they contain multiple words. For example, look at the following names, which
are written in all lowercase letters:

labelcontactname
labeltotalpoints
labelmobilenumber

Unfortunately, these names are not easily read by the human eye because the words
are not separated. Because we cannot have spaces in component names, we need to
find another way to separate the words in a multiword name to make it more read-
able to the human eye. In this book, we address this problem using the Pascal case
naming convention. In a Pascal case name, the first letter of each word is capitalized.
Here are some examples:

LabelContactName
LabelTotalPoints
LabelMobileNumber

Deleting Components

If you add a component to an app and later decide that you don’t want the compo-
nent, it’s easy to delete it. Just click on the component’s name in the Components
column to select it, and then click the Delete button that appears at the bottom of the
Components column.

Button Components

Buttons are common components in mobile apps, as well as desktop applications.
The user can click a button to make some action take place. In App Inventor, you cre-
ate a Button component by dragging it from the User Interface section of the Palette
to the app’s screen in the Viewer. This is shown in Figure 1-40.

Button components have a Text property, which holds the text that is displayed on
the face of the button. When you create a Button component, it is given a default
name such as Buttonil, Button2, and so forth, and its Text property will be set to
Text for Buttonl, Text for Button2, and so forth. Once you create a Button compo-
nent, you should change its name to something that is more descriptive. You should
also change the component’s Text property to indicate what the button will do when
it is clicked. For example, a button that calculates an average might have the text
Calculate Average displayed on it. To change a Button component’s Text property,
just select the component in the Components tree, and then change the value of the
component’s Text property in the Properties column.

Figure 1-41 shows an example of an app with a Button component. Notice in
the figure that we have renamed the component to ButtonExample, and we have
changed its Text property to Click Me! The value of the Text property is displayed
on the face of the button in both the viewer and the emulator.



1.4 Getting Hands-On with App Inventor

Figure 1-40 Creating a Button Component (source: MIT App Inventor 2)

H MIT App Inventor 2
Loy Beta

Project = Connect - Build - Help -

Screenl - Add Screen ... Remaove Screen

MyFirstProject

Palette Viewer

User Interface [Cpisplay hidden components in Viewer

Button 2

3
f—

CheckBox = My First App

. Text fogRytion
« Image /@J '
Al Label 7
=|  ListPicker 7
Ay Motifier 7
+* PasswordTextBox i)
Il slider ?
1| TextBox ?
‘ WebViewer 7

Figure 1-41 A Button Component Displaying the Text Click Me! (source: MIT App Inventor 2)

Viewer

iDisplay hidden companents in Viewer

ClickMe! |

Components
8 [ soeent
- ButtonExample

Rename  Delate

Upioad File

Properties
ButtonExample

BackgroundCalor
. Default

Enabled
-

FontBold

Fontitalic

FontSize
140

FontTypeface

detault L

Image

Shape

detauln v

ShowFeedback
-

Texk |gIr.:ng|‘.

center ¥

B 5554 <huild>

My First &pp

ot




58

Chapter 1

Introduction to Programming and App Inventor

Screen Alignment

When you place components on an app’s screen, the components are arranged verti-
cally, from the top of the screen to the bottom of the screen. By default, they are also
aligned along the left edge of the screen. For example, Figure 1-42 shows an app with
three Button components. The image on the left shows the app’s screen in the Viewer,
and the image on the right shows the app in the emulator.

Figure 1-42 An App with Three Button Components (Source: MIT App Inventor 2)

-
Viewer B 5554:<build> =1

My First App

Texi for Button
Text for Button Text for Button2
Text for Button2 Teut for Buttond

Text for Button3

[Upisplay hidden components in Viewer

. My First App

About this application

.."-d" ™
AWl SO

Screen components have an AlignHorizontal property (shown in Figure 1-43)
that determines how the components that are contained in the screen are hori-
zontally aligned. You can set the AlignHorizontal property to one of the fol-
lowing values:

¢ Left—Components are aligned along the left edge of the screen
o Center—Components are aligned in the center of the screen
* Right—Components are aligned along the right edge of the screen

Figure 1-44 shows examples of how each of these settings affect the contents of the
screen. The default setting for the AlignHorizontal property is Left.



1.4 Getting Hands-On with App Inventor

Figure 1-43 The AlignHorizontal Property (Source: MIT App Inventor 2)

Components Properties
e Screen] Screen
i AboutScreen
— Button2
P
— Button3
AlignHorizontal
Left ¥

The Screen1 component
is selected.

AlignVertical

Top 2

BackgroundCaolor

|:| White

Figure 1-44 Examples of the AlignHorizontal Property Settings (Source: MIT App Inventor 2)

AlignHorizontal set to Left AlignHorizontal set to Center AlignHorizontal set to Right
Viewer Viewer Viewer
Dy o e . Ve i o e e Ve DA by s comrcei s Ve
L] L] L]
Teot for Button Tan for Bufion1 Tt for Busion1
Teatfor ButionZ Ted for Buionz Test for BultonZ
Tead for Bufion3 Ted far Butiond Test tor Bulion3

Screen components also have an AlignVertical property (shown in Figure 1-45)
that determines how the components that are contained in the screen are vertically
aligned. You can change the AlignVertical property only if the screen is not scrollable
(the Scrollable property is not checked). If this is the case, you can set the AlignVertical
property to one of the following values:

Top—Components are aligned along the top of the screen
Center—Components are aligned in the center of the screen
Bottom—Components are aligned along the bottom of the screen

Figure 1-46 shows examples of how each of these settings affect the contents of the
screen. (In each example, the AlignHorizontal property is set to Center.) The default
setting for the AlignVertical property is Top. If the Scrollable property is checked, the
components are automatically aligned to the top of the screen.

59



60

Chapter 1

Introduction to Programming and App Inventor

Figure 1-45 The AlignVertical Property (source: MIT App Inventor 2)

Components Properties
=] Screend Screen
= Butt
Huftor AboutScreen
— Button2
4
= Button3

AlignHorizontal

Left r

The Screen1 component

is selected. AlignVertical

Top A

BackgroundColor
|:| White

Backgroundimage

None...

CloseScreenAnimation

Default v

Icon

Mone...

OpenScreenAnimation

Default v

Rename  Delete ScreenOrientation
Unspecified ¥

Media Scrollable
Upload File .. ~4—— The Scrollabe property

y is not checked.
Title

My First App

Figure 1-46 Examples of the AlignVertical Property Settings (Source: MIT App Inventor 2)

AlignHorizontal set to Center AlignHorizontal set to Center AlignHorizontal set to Center
AlignVertical set to Top AlignVertical set to Center AlignVertical set to Bottom
Viewer Viewer Viewer

Tt for Button 1

Tt for Button2

Tast for Button3

Tet for Button 1

Taut for ButtonZ

Tt for Button3

Teat for Button1

Test for ButtonZ

Test for Button3



At this point, you know enough to design the screen for your first app. Tutorial 1-2

1.4 Getting Hands-On with App Inventor

leads you through the steps to create the screen for the Hello World app.

VideoNote

Creating the
Screen for the
Hello World App

Tutorial 1-2:

Creating the Screen for the Hello World App

When a student is learning computer programming, it is traditional to start by
learning to write a Hello World program. A Hello World program is a simple
program that merely displays the words “Hello World” on the screen. In this
tutorial and the next, you will use App Inventor to create a Hello World app.
The app will initially appear as the image on the left in Figure 1-47. Notice that

Figure 1-47 The Completed App (Source: MIT App Inventor 2)

The app initially appears like this.

When the button is clicked, Hello World is displayed.

2 =
B 5554:<build > =

My Hella World App

Immueurgseeaml

© =
B 5554:<build> =

My Hello World App
Hello World

Iﬂluue;ugseeamj

~

61



62 Chapter 1 Introduction to Programming and App Inventor

the screen contains a button that reads Click Here To See a Message. When you
click the button, the message Hello World will appear, as shown in the image on
the right in the figure.

The process of creating this app is divided into two parts. In this tutorial you
will create the app’s screen. In the next tutorial you will use the Blocks Editor
to write code that displays the Hello World message to appear when the user
clicks the button.

Step 1: If App Inventor is already running on your computer, go to the My
Projects page, which will appear similar to Figure 1-48. (Your list of
projects will be different.)

If App Inventor is not running on your computer:

Go to appinventor.mit.edu with your browser.

Click the Create link that appears on that page.

If prompted, log into your Google account.

Go to the My Projects page, which will appear similar to Figure 1-48.
(Your list of projects will be different.)

Figure 1-48 The My Projects Page (Source: MIT App Inventor 2)

Projects

MilesPerGallon
Guitar
GoodDog
MyFirstProject

Test

Step 2: Click the New Project button that appears above the list of projects.
In the dialog box that appears, enter HelloWorld as the project
name, as shown in Figure 1-49, and click the OK button. The
project will be created, and the Designer will appear, as shown in
Figure 1-50.

Figure 1-49 Enter the Project Name (Source: MIT App Inventor 2)

F'I'CjEE‘i HelloWorld
name:

Cancel OK



1.4 Getting Hands-On with App Inventor

Figure 1-50 The HelloWorld Project in the Designer (Source: MIT App Inventor 2)

Palette

User Interface

il Image

Layout

Media

Drawing and Animation

Sensors
Social
Storage

Connectivity

Step 3:

Step 4:

Step 5:

Step 6:

creeni - Wl And Screan Femoive Screen Designer

Viewer Components Properties

hidden components in Viewer Screen] Screent

Media

Upload File

The screen1 component should already be selected in the Components
column. In the Properties column, change the AlignHorizontal prop-
erty to Center, and change the Title property to read My Hello World
App. This is shown in Figure 1-51.

Drag a Label component from the Palette to the Viewer, as shown in
Figure 1-52. This creates a Label component named Label1, with its
Text property set to Text for Labell.

Because the name Labell is not very descriptive, you should
change the component’s name. Make sure the Labell component
is selected in the Components column, and click the Rename but-
ton (which appears at the bottom of the Components column). The
dialog box shown in Figure 1-53 will appear. Enter LabelMessage
as the component’s new name, and click OK. The component’s new
name should now appear in the Components column, as shown in
Figure 1-54.

Make sure the Labe1Message component is selected in the Components
column, and in the Properties column, delete the contents of the Title
property. (The Title property should appear empty.) This is shown

63



64 Chapter 1 Introduction to Programming and App Inventor

Figure 1-51 Setting the Screenl Component’s Properties
(Source: MIT App Inventor 2)

Components Properties
Sereend Screend
AboutScreen

AlignHorizontal

Center v

AlignVertical

Top 5

BackgroundColor
|:| White

Backgroundimage

MNon

CloseScreenAnimation

Default r

lcon

OpenScreenAnimation

Default r

Rename | Delete ScreenOrientation
Unspecified ¥

Media

Scrollable
o

Upload File ...

Title

My Hello World App

VersionCode

1

in Figure 1-55. Notice that the label now appears as a small dot in the
viewer. This is because the label’s Width and Height properties are both
set to Automatic. Recall that this means the label’s size will automatically



1.4 Getting Hands-On with App Inventor

Figure 1-52 Creating the Label Component (source: MIT App Inventor 2)
Palette Viewer
User Interface Display hidden components in Viewer
Button ?

' CheckBox

Clock

Label

ListPicke
Notifier
#3 PasswordTextBox
W slider 7
TextBox

& WebV

Layout

Media

Drawing and Animation

Sensors

Canial

& Image

My Hello World App

':Tex'tfrﬁrLéneH |

[iewer

adjust to match the size of the text that it displays. Because the Text
property is now empty, the label displays nothing, and its size automati-
cally shrinks down to nothing. In fact, the only way that you can see the
label in the Viewer is to select it in the Components column. The green
border that indicates the component is selected will appear as a dot.

Figure 1-53 Renaming the Labell Component (Source: MIT App Inventor 2)

Old name: Lsbel

Mew name: LabellMessage

Cancel OK

65



66

Chapter 1

Introduction to Programming and App Inventor

Figure 1-54 The Component Renamed (Source: MIT App Inventor 2)

Components

a8 Screent

*LabelMessage

Figure 1-55 The Label’s Text Property is Empty (Source: MIT App Inventor 2)

Viewer Components Properties

Display hidden components in Viewer = Screen Labell

¥ Labeil.tessage
My Hello World App

Step 7: Now you will create a Button component. Drag the Button compo-
nent from the User Interface section of the Palette to the Viewer. Notice
that as you drag the component, a thin blue line appears in the viewer,
showing where the component will be inserted. You want the blue line
to appear below the Label component, as shown in Figure 1-56, when
you release the mouse button. This creates a Button component named

Buttoni, with its Text property set to Text for Buttonl.

Step 8: Make sure the Button1 component is selected in the Components col-
umn, and change the component’s name to ButtonDisplayMessage.
Then, in the Properties column, change the Text property to Click Here

To See a Message. This is shown in Figure 1-57.

Step 9:  You’ve added all of the components that you will need for this app.
Although you haven’t written any code, this would be a good time to
preview the app’s screen in the emulator. Click the Connect button in
the upper area of the App Inventor screen, and then click Emulator on
the menu that appears. It might take several minutes for the emulator
to be created in the computer’s memory. Once the emulator has been

created and initialized, it will appear as shown in Figure 1-58.



1.4 Getting Hands-On with App Inventor

Figure 1-56 Creating a Button Component (Source: MIT App Inventor 2)

MIT App Inventor 2
v Y Beta

Palette Viewer

User Interface

Dusplay hidden compo

& Bufion L
7 crhaao
e The blue line shows where the

TestfogRyatant component will be inserted.

g

Layout
Media
Drawing and Animation

Sensors

Figure 1-57 The Button Renamed and its Text Property Changed
(Source: MIT App Inventor 2)

Viewer Components Properties
Display hidden components in Viewer = Teen Buttonl
L
olor
My Hello World App

Click Here To See a Message

Fontitahc

Renamsa Delata

i

Ry e
Upload File extAligniment

67



68

Chapter 1

Introduction to Programming and App Inventor

If possible, leave the project open in App Inventor. You will finish
the app in the next tutorial.

Figure 1-58 The App in the Emulator (Source: MIT App Inventor 2)

L

g
# 7 5554:<build> ==

My Hello World App

About this application

NOTE: Although the app is running in the emulator, it is not capable
of doing anything other than displaying the screen. If you click the
Button component, nothing will happen. That is because you have not
yet written the code that executes when the button is clicked. You will
do that in the next tutorial.




1.4 Getting Hands-On with App Inventor

Programming with Blocks

Before you continue with the next tutorial, we will discuss the steps that you must
take to complete the Hello World app. Carefully read this section, and then perform
the steps in Tutorial 1-3.

First, you need to understand that apps are event-driven programs. This means that
when an app is running, it waits for specific events to happen, and then it responds
to those events. What do we mean by event? An event is an action that takes place,
such as the user clicking a button, or sliding his or her finger across the device’s
screen. An incoming text message is also an event, as well as when the user tilts or
shakes the phone. When you are creating an app, you decide which events the app
will respond to, and then you write the code that executes when those events take
place. (Obviously, there are limitations to the events that the emulator can respond
to, because it isn’t a physical device. For example, emulators can’t receive incoming
phone calls, and they can’t be tilted or shaken.)

Recall that the Hello World app has a Button component named ButtonDisplay
Message, and a Label component named LabelMessage. We want the app to display
Hello World in the label when the user clicks the button. So, we need a block that
executes when the user clicks the ButtonDisplayMessage component.

Assuming the HelloWorld project is currently open in the Blocks Editor, notice that the
Blocks column has entries for Screenl, LabelMessage, and ButtonDisplayMessage.
This is shown in Figure 1-59. Because you want to create a block that executes
when the ButtonDisplayMessage component is clicked, you need to click
ButtonDisplayMessage entry. This causes a “drawer” to open, revealing blocks that
are related to the ButtonDisplayMessage component, as shown in Figure 1-60.

Figure 1-59 The Component Entries in the Blocks Column (Source: MIT App Inventor 2)

Blocks

B Built-in
] Control
L] Logic
= Math
o Text
B Lists
| Colors

! Variables

Screen’
' lLabelhMessage

— ButtonDis essa
ButionDisplayhie e

69



