
Fundam
entals of

 W
eb D

evelopm
ent

C
onnolly • H

oar

Global
editionG

lo
b

a
l

ed
it

io
n

This is a special edition of an established
title widely used by colleges and universities
throughout the world. Pearson published this
exclusive edition for the benefit of students
outside the United States and Canada. If you
purchased this book within the United States
or Canada you should be aware that it has
been imported without the approval of the
Publisher or Author.

Pearson Global Edition

Global
edition

For these Global Editions, the editorial team at Pearson has
collaborated with educators across the world to address a
wide range of subjects and requirements, equipping students
with the best possible learning tools. This Global Edition
preserves the cutting-edge approach and pedagogy of the
original, but also features alterations, customization, and
adaptation from the North American version.

 Fundamentals of
Web Development
Randy Connolly • Ricardo Hoar

CONNOLLY_1292057092_mech.indd 1 09/09/14 9:11 PM

Online Access
Thank you for purchasing a new copy of Fundamentals of Web Development, 1/e, Global Edition. Your
textbook includes eighteen months of prepaid access to the book’s Companion Website. This prepaid
subscription provides you with full access to the following student support areas:

• Online Labs

• Case Studies

• Source Code

Use a coin to scratch off the coating and reveal your student access code.
Do not use a knife or other sharp object as it may damage the code.

To access the Fundamentals of Web Development, 1/e, Global Edition, Companion Website for the first
time, you will need to register online using a computer with an Internet connection and a web browser.
The process takes just a couple of minutes and only needs to be completed once.

1.	 Go to http://www.pearsonglobaleditions.com/connolly

2.	 Click on Companion Website.

3.	 Click on the Register button.

4.	 On the registration page, enter your student access code* found beneath the scratch-off panel.
Do not type the dashes. You can use lower- or uppercase.

5.	 Follow the on-screen instructions. If you need help at any time during the online registration process,
simply click the Need Help? icon.

6.	 Once your personal Login Name and Password are confirmed, you can begin using the
Fundamentals of Web Development Companion Website!

To log in after you have registered:

You only need to register for this Companion Website once. After that, you can log in any time at
http://www.pearsonglobaleditions.com/connolly by providing your Login Name and Password when prompted.

*Important: The access code can only be used once. This subscription is valid for eighteen months upon activation
and is not transferable. If this access code has already been revealed, it may no longer be valid.

CONNOLLY_1292057092_ifc.indd 1 18/09/14 7:30 PM

Fundamentals of
Web Development

A01_CONN7150_01_SE_FM.indd 1 16/09/14 12:00 PM

A01_CONN7150_01_SE_FM.indd 2 16/09/14 12:00 PM

Fundamentals of
Web Development
Randy Connolly
Mount Royal University, Calgary

Ricardo Hoar
Mount Royal University, Calgary

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Global Edition contributions by

Soumen Mukherjee
RCC Institute of Information Technology, Kolkata

Arup Kumar Bhattacharjee
RCC Institute of Information Technology, Kolkata

A01_CONN7150_01_SE_FM.indd 3 24/09/14 4:24 PM

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The rights of Randy Connolly and Ricardo Hoar to be identified as the authors of this work have been asserted by them in accordance with the
Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Fundamentals of Web Development,1st edition, ISBN 978-0-13-340715-0, by, Randy
Connolly and Ricardo Hoar published by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmittedin any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, withouteither the prior written permission of the publisher or a license permitting restricted copying
in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher
any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by
such owners.

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on appropriate page within text.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and related
graphics published as part of the services for any purpose. All such documents and related graphics are provided “as is” without warranty of any kind.
Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and
conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall
Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of
use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance
of information available from the services. The documents and related graphics contained herein could include technical inaccuracies or typographical
errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes
in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified.
Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This book is not sponsored or
endorsed by or affiliated with the Microsoft Corporation.

ISBN 10: 1292057092
ISBN 13: 978-1-29-205709-5

10 9 8 7 6 5 4 3 2 1
14 13 12 11 10

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Typeset in 10 SabonLTStd-Roman by Cenveo Publisher Services

Printed and bound by Neografia in Slovakia.

The publisher’s policy is to use paper manufactured from sustainable forests.

Editorial Director:  Marcia Horton
Acquisitions Editor:  Matt Goldstein
Editorial Assistant:  Kelsey Loanes
Program Manager:  Kayla Smith-Tarbox
Marketing Coordinator:  Jon Bryant
Managing Editor:  Scott Disanno
Head, Learning Asset Acquisition, Global Edition:  Laura Dent
Acquisitions Editor, Global Edition:  Karthik Subramaniun
Project Editor, Global Edition:  Anuprova Dey Chowdhuri
Operations Supervisor:  Vincent Scelta

Manufacturing Buyer:  Linda Sager
Text Designer:  Jerilyn Bockorick, Cenveo® Publisher Services
Cover Designer:  Shree Mohanambal Inbakumar, Lumina Datamatics
Manager, Rights and Permissions:  Timothy Nicholls
Text Permission Coordinator:  Jenell Forschler
Cover Art:  © Robert Kneschke/Shutterstock
Full-Service Project Management:  Hardik Popli, Cenveo Publisher Services
Interior Printer/Bindery:  Neografia
Cover Printer:  Neografia

A01_CONN7150_01_SE_FM.indd 4 25/09/14 3:50 PM

To Janet, for your intelligence, support, beauty, and love.

Randy Connolly

Thanks be to you Joanne for the love and joy you bring to our family.

Ricardo Hoar

A01_CONN7150_01_SE_FM.indd 5 16/09/14 12:00 PM

A01_CONN7150_01_SE_FM.indd 6 16/09/14 12:00 PM

Brief Table of Contents

Chapter 1	 How the Web Works  45

Chapter 2	 Introduction to HTML  96

Chapter 3	 Introduction to CSS  139

Chapter 4	 HTML Tables and Forms  192

Chapter 5	 Advanced CSS: Layout  228

Chapter 6	 JavaScript: Client-Side Scripting  274

Chapter 7	 Web Media  327

Chapter 8	 Introduction to Server-Side Development
	 with PHP  366

Chapter 9	 PHP Arrays and Superglobals  408

Chapter 10	 PHP Classes and Objects  446

Chapter 11	 Working with Databases  480

7

A01_CONN7150_01_SE_FM.indd 7 16/09/14 12:00 PM

8	 BRIEF TABLE OF CONTENTS

Chapter 12	 Error Handling and Validation  547

Chapter 13	 Managing State  585

Chapter 14	 Web Application Design  617

Chapter 15	 Advanced JavaScript & jQuery  657

Chapter 16	 Security  709

Chapter 17	 XML Processing and Web Services  762

Chapter 18	 Content Management Systems  825

Chapter 19	 Web Server Administration  882

Chapter 20	 Search Engines  925

Chapter 21	 Social Network Integration  958

A01_CONN7150_01_SE_FM.indd 8 16/09/14 12:00 PM

9

Table of Contents

Preface  33

Acknowledgments  40

Chapter 1  How the Web Works  45

	 1.1	 Definitions and History  46

A Short History of the Internet  46

The Birth of the Web  48

Web Applications in Comparison to Desktop Applications  50

Static Websites versus Dynamic Websites  52

Web 2.0 and Beyond  53

	 1.2	 Internet Protocols  55

A Layered Architecture  56

Link Layer  56

Internet Layer  57

Transport Layer  59

Application Layer  60

	 1.3	 The Client-Server Model  60

The Client  61

The Server  61

The Request-Response Loop  61

The Peer-to-Peer Alternative  62

Server Types  62

Real-World Server Installations  64

	 1.4	 Where Is the Internet?  67

From the Computer to the Local Provider  68

A01_CONN7150_01_SE_FM.indd 9 16/09/14 12:00 PM

From the Local Provider to the Ocean’s Edge  70

Across the Oceans  73

	 1.5	 Domain Name System  74

Name Levels  76

Name Registration  78

Address Resolution  78

	 1.6	 Uniform Resource Locators  82

Protocol  82

Domain  83

Port  83

Path  83

Query String  83

Fragment  83

	 1.7	 Hypertext Transfer Protocol  84

Headers  86

Request Methods  88

Response Codes  89

	 1.8	 Web Servers  90

Operating Systems  91

Web Server Software  91

Database Software  92

Scripting Software  92

	 1.9	 Chapter Summary  92

Key Terms  93

Review Questions  93

References  93

Chapter 2  Introduction to HTML  96

	 2.1	 What Is HTML and Where Did It Come from?  97

XHTML  99

HTML5  101

10	 TABLE OF CONTENTS

A01_CONN7150_01_SE_FM.indd 10 16/09/14 12:00 PM

	 2.2	 HTML Syntax  103

Elements and Attributes  103

Nesting HTML Elements  104

	 2.3	 Semantic Markup  106

	 2.4	 Structure of HTML Documents  108

DOCTYPE  109

Head and Body  110

	 2.5	 Quick Tour of HTML Elements  112

Headings  112

Paragraphs and Divisions  116

Links  116

URL Relative Referencing  118

Inline Text Elements  122

Images  122

Character Entities  123

Lists  124

	 2.6	 HTML5 Semantic Structure Elements  125

Header and Footer  125

Heading Groups  128

Navigation  128

Articles and Sections  129

Figure and Figure Captions  131

Aside  133

	 2.7	 Chapter Summary  133

Key Terms  133

Review Questions  134

Hands-On Practice  134

Chapter 3  Introduction to CSS  139

	 3.1	 What Is CSS?  140

Benefits of CSS  140

	 TABLE OF CONTENTS	 11

A01_CONN7150_01_SE_FM.indd 11 16/09/14 12:00 PM

CSS Versions  140

Browser Adoption  141

	 3.2	 CSS Syntax  142

Selectors  143

Properties  143

Values  144

	 3.3	 Location of Styles  147

Inline Styles  147

Embedded Style Sheet  148

External Style Sheet  148

	 3.4	 Selectors  149

Element Selectors  150

Class Selectors  150

Id Selectors  151

Attribute Selectors  154

Pseudo-Element and Pseudo-Class Selectors  156

Contextual Selectors  158

	 3.5	 The Cascade: How Styles Interact  160

Inheritance  160

Specificity  160

Location  163

	 3.6	 The Box Model  166

Background  167

Borders  168

Margins and Padding  169

Box Dimensions  172

	 3.7	 CSS Text Styling  178

Font Family  178

Font Sizes  180

Paragraph Properties  182

	 3.8	 Chapter Summary  184

Key Terms  185

12	 TABLE OF CONTENTS

A01_CONN7150_01_SE_FM.indd 12 16/09/14 12:00 PM

Review Questions  185

Hands-On Practice  186

References  191

Chapter 4  HTML Tables and Forms  192

	 4.1	 Introducing Tables  193

Basic Table Structure  193

Spanning Rows and Columns  194

Additional Table Elements  195

Using Tables for Layout  196

	 4.2	 Styling Tables  199

Table Borders  199

Boxes and Zebras  200

	 4.3	 Introducing Forms  202

Form Structure  203

How Forms Work  204

Query Strings  205

The <form> Element  206

	 4.4	 Form Control Elements  207

Text Input Controls  209

Choice Controls  211

Button Controls  213

Specialized Controls  215

Date and Time Controls  216

	 4.5	 Table and Form Accessibility  218

Accessible Tables  219

Accessible Forms  220

	 4.6	 Microformats  221

	 4.7	 Chapter Summary  222

Key Terms  223

	 TABLE OF CONTENTS	 13

A01_CONN7150_01_SE_FM.indd 13 16/09/14 12:00 PM

Review Questions  223

Hands-On Practice  224

Chapter 5  Advanced CSS: Layout  228

	 5.1	 Normal Flow  229

	 5.2	 Positioning Elements  232

Relative Positioning  232

Absolute Positioning  233

Z-Index  234

Fixed Position  235

	 5.3	 Floating Elements  237

Floating within a Container  237

Floating Multiple Items Side by Side  239

Containing Floats  242

Overlaying and Hiding Elements  243

	 5.4	 Constructing Multicolumn Layouts  247

Using Floats to Create Columns  248

Using Positioning to Create Columns  251

	 5.5	 Approaches to CSS Layout  253

Fixed Layout  254

Liquid Layout  255

Other Layout Approaches  257

	 5.6	 Responsive Design  258

Setting Viewports  259

Media Queries  262

	 5.7	 CSS Frameworks  264

Grid Systems  264

CSS Preprocessors  266

	 5.8	 Chapter Summary  269

Key Terms  269

14	 TABLE OF CONTENTS

A01_CONN7150_01_SE_FM.indd 14 16/09/14 12:00 PM

Review Questions  269

Hands-On Practice  270

Chapter 6  JavaScript: Client-Side Scripting  274

	 6.1	 What Is JavaScript and What Can It Do?  275

Client-Side Scripting  276

JavaScript’s History and Uses  279

	 6.2	 JavaScript Design Principles  284

Layers  285

Users without JavaScript  287

Graceful Degradation and Progressive Enhancement  291

	 6.3	 Where Does JavaScript Go?  291

Inline JavaScript  293

Embedded JavaScript  293

External JavaScript  294

Advanced Inclusion of JavaScript  294

	 6.4	 Syntax  295

Variables  296

Comparison Operators  296

Logical Operators  297

Conditionals  297

Loops  298

Functions  299

Errors Using Try and Catch  300

	 6.5	 JavaScript Objects  301

Constructors  301

Properties  302

Objects Included in JavaScript  302

Window Object  305

	 6.6	 The Document Object Model (DOM)  305

Nodes  306

	 TABLE OF CONTENTS	 15

A01_CONN7150_01_SE_FM.indd 15 16/09/14 12:00 PM

Document Object  307

Element Node Object  309

Modifying a DOM Element  309

Additional Properties  312

	 6.7	 JavaScript Events  312

Inline Event Handler Approach  312

Listener Approach  314

Event Object  315

Event Types  316

	 6.8	 Forms  320

Validating Forms  320

Submitting Forms  322

	 6.9	 Chapter Summary  322

Key Terms  322

Review Questions  323

Hands-On Practice  323

References  326

Chapter 7  Web Media  327

	 7.1	 Digital Representations of Images  328

	 7.2	 Color Models  332

RGB  332

CMYK  333

HSL  335

Opacity  336

Color Relationships  336

	 7.3	 Image Concepts  340

Color Depth  340

Image Size  341

Display Resolution  345

16	 TABLE OF CONTENTS

A01_CONN7150_01_SE_FM.indd 16 16/09/14 12:00 PM

	 7.4	 File Formats  346

JPEG  346

GIF  347

PNG  352

SVG  352

Other Formats  354

	 7.5	 Audio and Video  354

Media Concepts  354

Browser Video Support  356

Browser Audio Support  357

	 7.6	 HTML5 Canvas  359

	 7.7	 Chapter Summary  361

Key Terms  361

Review Questions  361

Hands-On Practice  362

Chapter 8  �Introduction to Server-Side Development
with PHP  366

	 8.1	 What Is Server-Side Development?  367

Comparing Client and Server Scripts  367

Server-Side Script Resources  367

Comparing Server-Side Technologies  369

	 8.2	 A Web Server’s Responsibilities  372

Apache and Linux  373

Apache and PHP  374

PHP Internals  376

Installing Apache, PHP, and MySQL for Local Development  378

	 8.3	 Quick Tour of PHP  380

PHP Tags  380

PHP Comments  381

	 TABLE OF CONTENTS	 17

A01_CONN7150_01_SE_FM.indd 17 16/09/14 12:00 PM

Variables, Data Types, and Constants  383

Writing to Output  386

	 8.4	 Program Control  390

if . . . else  390

switch . . . case  391

while and do . . . while  392

for  393

Alternate Syntax for Control Structures  393

Include Files  394

	 8.5	 Functions  395

Function Syntax  396

Calling a Function  397

Parameters  397

Variable Scope within Functions  400

	 8.6	 Chapter Summary  402

Key Terms  402

Review Questions  402

Hands-On Practice  403

References  407

Chapter 9  PHP Arrays and Superglobals  408

	 9.1	 Arrays  409

Defining and Accessing an Array  409

Multidimensional Arrays  411

Iterating through an Array  411

Adding and Deleting Elements  413

Array Sorting  415

More Array Operations  416

Superglobal Arrays  417

	 9.2	 $_GET and $_POST Superglobal Arrays  418

Determining If Any Data Sent  419

18	 TABLE OF CONTENTS

A01_CONN7150_01_SE_FM.indd 18 16/09/14 12:00 PM

Accessing Form Array Data  422

Using Query Strings in Hyperlinks  423

Sanitizing Query Strings  424

	 9.3	 $_SERVER Array  426

Server Information Keys  427

Request Header Information Keys  427

	 9.4	 $_FILES Array  429

HTML Required for File Uploads  429

Handling the File Upload in PHP  430

Checking for Errors  432

File Size Restrictions  432

Limiting the Type of File Upload  434

Moving the File  435

	 9.5	 Reading/Writing Files  436

Stream Access  436

In-Memory File Access  437

	 9.6	 Chapter Summary  439

Key Terms  439

Review Questions  439

Hands-On Practice  440

References  445

Chapter 10  PHP Classes and Objects  446

	 10.1	 Object-Oriented Overview  447

Terminology  447

The Unified Modeling Language  447

Differences between Server and Desktop Objects  448

	 10.2	 Classes and Objects in PHP  451

Defining Classes  451

Instantiating Objects  452

Properties  452

	 TABLE OF CONTENTS	 19

A01_CONN7150_01_SE_FM.indd 19 16/09/14 12:00 PM

Constructors  453

Methods  454

Visibility  456

Static Members  456

Class Constants  458

	 10.3	 Object-Oriented Design  459

Data Encapsulation  459

Inheritance  464

Polymorphism  471

Object Interfaces  473

	 10.4	 Chapter Summary  476

Key Terms  476

Review Questions  477

Hands-On Practice  477

References  479

Chapter 11  Working with Databases  480

	 11.1	 Databases and Web Development  481

The Role of Databases in Web Development  481

Database Design  481

Database Options  487

	 11.2	 SQL  489

SELECT Statement  489

INSERT, UPDATE, and DELETE Statements  491

Transactions  492

Data Definition Statements  497

Database Indexes and Efficiency  497

	 11.3	 Database APIs  498

PHP MySQL APIs  499

Deciding on a Database API  499

20	 TABLE OF CONTENTS

A01_CONN7150_01_SE_FM.indd 20 16/09/14 12:00 PM

	 11.4	 Managing a MySQL Database  500

Command-Line Interface  500

phpMyAdmin  501

MySQL Workbench  503

	 11.5	 Accessing MySQL in PHP  504

Connecting to a Database  504

Handling Connection Errors  506

Executing the Query  508

Processing the Query Results  514

Freeing Resources and Closing Connection  518

Using Transactions  519

	 11.6	 Case Study Schemas  520

Art Database  521

Book CRM Database  521

Travel Photo Sharing Database  522

	 11.7	 Sample Database Techniques  523

Display a List of Links  523

Search and Results Page  524

Editing a Record  528

Saving and Displaying Raw Files in the Database  536

	 11.8	 Chapter Summary  539

Key Terms  540

Review Questions  540

Hands-On Practice  540

References  546

Chapter 12  Error Handling and Validation  547

	 12.1	 What Are Errors and Exceptions?  548

Types of Errors  548

Exceptions  550

	 TABLE OF CONTENTS	 21

A01_CONN7150_01_SE_FM.indd 21 16/09/14 12:00 PM

	 12.2	 PHP Error Reporting  550

The error_reporting Setting  551

The display_errors Setting  551

The log_error Setting  552

	 12.3	 PHP Error and Exception Handling  553

Procedural Error Handling  553

Object-Oriented Exception Handling  553

Custom Error and Exception Handlers  556

	 12.4	 Regular Expressions  557

Regular Expression Syntax  557

Extended Example  560

	 12.5	 Validating User Input  563

Types of Input Validation  563

Notifying the User  564

How to Reduce Validation Errors  565

	 12.6	 Where to Perform Validation  568

Validation at the JavaScript Level  572

Validation at the PHP Level  575

	 12.7	 Chapter Summary  580

Key Terms  580

Review Questions  581

Hands-On Practice  581

References  584

Chapter 13  Managing State  585

	 13.1	 The Problem of State in Web Applications  586

	 13.2	 Passing Information via Query Strings  588

	 13.3	 Passing Information via the URL Path  590

URL Rewriting in Apache and Linux  590

	 13.4	 Cookies  591

How Do Cookies Work?  592

22	 TABLE OF CONTENTS

A01_CONN7150_01_SE_FM.indd 22 16/09/14 12:00 PM

Using Cookies  594

Persistent Cookie Best Practices  594

	 13.5	 Serialization  596

Application of Serialization  598

	 13.6	 Session State  598

How Does Session State Work?  601

Session Storage and Configuration  602

	 13.7	 HTML5 Web Storage  605

Using Web Storage  605

Why Would We Use Web Storage?  607

	 13.8	 Caching  607

Page Output Caching  609

Application Data Caching  609

	 13.9	 Chapter Summary  611

Key Terms  611

Review Questions  612

Hands-On Practice  612

References  616

Chapter 14  Web Application Design  617

	 14.1	 Real-World Web Software Design  618

Challenges in Designing Web Applications  618

	 14.2	 Principle of Layering  619

What Is a Layer?  619

Consequences of Layering  621

Common Layering Schemes  623

	 14.3	 Software Design Patterns in the Web Context  629

Adapter Pattern  629

Simple Factory Pattern  633

Template Method Pattern  635

Dependency Injection  638

	 TABLE OF CONTENTS	 23

A01_CONN7150_01_SE_FM.indd 23 16/09/14 12:00 PM

	 14.4	 Data and Domain Patterns  639

Table Data Gateway Pattern  640

Domain Model Pattern  641

Active Record Pattern  645

	 14.5	 Presentation Patterns  648

Model-View-Controller (MVC) Pattern  648

Front Controller Pattern  651

	 14.6	 Chapter Summary  652

Key Terms  652

Review Questions  652

Hands-On Practice  653

References  654

Chapter 15  Advanced JavaScript & jQuery  657

	 15.1	 JavaScript Pseudo-Classes  658

Using Object Literals  658

Emulate Classes through Functions  659

Using Prototypes  661

	 15.2	 jQuery Foundations  663

Including jQuery in Your Page  664

jQuery Selectors  665

jQuery Attributes  668

jQuery Listeners  672

Modifying the DOM  673

	 15.3	 AJAX  677

Making Asynchronous Requests  680

Complete Control over AJAX  686

Cross-Origin Resource Sharing (CORS)  687

	 15.4	 Asynchronous File Transmission  688

Old iframe Workarounds  689

24	 TABLE OF CONTENTS

A01_CONN7150_01_SE_FM.indd 24 16/09/14 12:00 PM

The FormData Interface  690

Appending Files to a POST  692

	 15.5	 Animation  693

Animation Shortcuts  693

Raw Animation  695

	 15.6	 Backbone MVC Frameworks  698

Getting Started with Backbone.js  699

Backbone Models  699

Collections  701

Views  701

	 15.7	 Chapter Summary  704

Key Terms  704

Review Questions  704

Hands-On Practice  705

References  708

Chapter 16  Security  709

	 16.1	 Security Principles  710

Information Security  710

Risk Assessment and Management  711

Security Policy  714

Business Continuity  714

Secure by Design  717

Social Engineering  719

	 16.2 Authentication 720

Authentication Factors  720

Single-Factor Authentication  721

Multifactor Authentication  721

Third-Party Authentication  722

Authorization  725

	 TABLE OF CONTENTS	 25

A01_CONN7150_01_SE_FM.indd 25 16/09/14 12:00 PM

	 16.3	 Cryptography  725

Substitution Ciphers  727

Public Key Cryptography  730

Digital Signatures  733

	 16.4	 Hypertext Transfer Protocol Secure (HTTPS)  734

Secure Handshakes  734

Certificates and Authorities  735

	 16.5	 Security Best Practices  738

Data Storage  738

Monitor Your Systems  742

Audit and Attack Thyself  744

	 16.6	 Common Threat Vectors  745

SQL Injection  745

Cross-Site Scripting (XSS)  747

Insecure Direct Object Reference  751

Denial of Service  752

Security Misconfiguration  753

	 16.7	 Chapter Summary  756

Key Terms  757

Review Questions  757

Hands-On Practice  758

References  760

Chapter 17  XML Processing and Web Services  762

	 17.1	 XML Overview  763

Well-Formed XML  763

Valid XML  764

XSLT  767

XPath  769

	 17.2	 XML Processing  771

XML Processing in JavaScript  771

XML Processing in PHP  773

26	 TABLE OF CONTENTS

A01_CONN7150_01_SE_FM.indd 26 16/09/14 12:00 PM

	 17.3	 JSON  778

Using JSON in JavaScript  778

Using JSON in PHP  780

	 17.4	 Overview of Web Services  781

SOAP Services  782

REST Services  784

An Example Web Service  784

Identifying and Authenticating Service Requests  788

	 17.5	 Consuming Web Services in PHP  789

Consuming an XML Web Service  790

Consuming a JSON Web Service  794

	 17.6	 Creating Web Services  800

Creating an XML Web Service  801

Creating a JSON Web Service  808

	 17.7	 Interacting Asynchronously with Web Services  811

Consuming Your Own Service  812

Using Google Maps  813

	 17.8	 Chapter Summary  818

Key Terms  819

Review Questions  819

Hands-On Practice  819

References  824

Chapter 18  Content Management Systems  825

	 18.1	 Managing Websites  826

Components of a Managed Website  826

	 18.2	 Content Management Systems  828

Types of CMS  829

	 18.3	 CMS Components  831

Post and Page Management  831

	 TABLE OF CONTENTS	 27

A01_CONN7150_01_SE_FM.indd 27 16/09/14 12:00 PM

WYSIWYG Editors  833

Template Management  834

Menu Control  835

User Management and Roles  835

User Roles  836

Workflow and Version Control  838

Asset Management  840

Search  841

Upgrades and Updates  843

	 18.4	 WordPress Technical Overview  844

Installation  844

File Structure  845

WordPress Nomenclature  847

Taxonomies  850

WordPress Template Hierarchy  851

	 18.5	 Modifying Themes  853

Changing Themes in Dashboard  853

Creating a Child Theme (CSS Only)  854

Changing Theme Files  855

	 18.6	 Customizing WordPress Templates  856

WordPress Loop  856

Core WordPress Classes  857

Template Tags  859

Creating a Page Template  861

Post Tags  863

	 18.7	 Creating a Custom Post Type  864

Organization  865

Registering Your Post Type  866

Adding Post-Specific Fields  867

Saving Your Changes  867

Under the Hood  868

Displaying Our Post Type  870

28	 TABLE OF CONTENTS

A01_CONN7150_01_SE_FM.indd 28 16/09/14 12:00 PM

	 18.8	 Writing a Plugin  872

Getting Started  872

Hooks, Actions, and Filters  873

Activate Your Plugin  874

Output of the Plugin  874

Make It a Widget  875

	 18.9	 Chapter Summary  876

Key Terms  877

Review Questions  877

Hands-On Practice  877

References  881

Chapter 19  Web Server Administration  882

	 19.1	 Web Server–Hosting Options  883

Shared Hosting  883

Dedicated Hosting  886

Collocated Hosting  887

Cloud Hosting  888

	 19.2	 Domain and Name Server Administration  889

Registering a Domain Name  890

Updating the Name Servers  892

DNS Record Types  893

Reverse DNS  895

	 19.3	 Linux and Apache Configuration  895

Configuration  897

Daemons  897

Connection Management  899

Data Compression  901

Encryption and SSL  902

Managing File Ownership and Permissions  904

	 TABLE OF CONTENTS	 29

A01_CONN7150_01_SE_FM.indd 29 16/09/14 12:00 PM

	 19.4	 Apache Request and Response Management  905

Managing Multiple Domains on One Web Server  905

Handling Directory Requests  907

Responding to File Requests  908

URL Redirection  908

Managing Access with .htaccess  912

Server Caching  914

	 19.5	 Web Monitoring and Analytics  916

Internal Monitoring  916

External Monitoring  918

Internal Analytics  918

Third-Party Analytics  919

Third-Party Support Tools  919

	 19.6	 Chapter Summary  921

Key Terms  921

Review Questions  921

Hands-On Practice  922

References  924

Chapter 20  Search Engines  925

	 20.1	 The History and Anatomy of Search Engines  926

Before Google  926

Search Engine Overview  927

	 20.2	 Web Crawlers and Scrapers  929

Robots Exclusion Standard  931

Scrapers  932

	 20.3	 Indexing and Reverse Indexing  933

	 20.4	 PageRank and Result Order  934

	 20.5	 White-Hat Search Engine Optimization  938

Title  938

Meta Tags  939

30	 TABLE OF CONTENTS

A01_CONN7150_01_SE_FM.indd 30 16/09/14 12:00 PM

URLs  940

Site Design  942

Sitemaps  943

Anchor Text  944

Images  945

Content  945

	 20.6	 Black-Hat SEO  946

Content Spamming  946

Link Spam  948

Other Spam Techniques  950

	 20.7	 Chapter Summary  952

Key Terms  952

Review Questions  953

Hands-On Practice  953

References  957

Chapter 21  Social Network Integration  958

	 21.1	 Social Networks  959

How Did We Get Here?  959

Common Characteristics  962

	 21.2	 Social Network Integration  963

Basic Social Media Presence  964

Facebook’s Social Plugins  965

Open Graph  970

Google’s Plugins  972

Twitter’s Widgets  974

Advanced Social Network Integration  977

	 21.3	 Monetizing Your Site with Ads  978

Web Advertising 101  978

Web Advertising Economy  981

	 TABLE OF CONTENTS	 31

A01_CONN7150_01_SE_FM.indd 31 16/09/14 12:00 PM

	 21.4	 Marketing Campaigns  982

Email Marketing  983

Physical World Marketing  987

	 21.5	 Working in Web Development  989

Types of Web Development Companies  989

Roles and Skills  990

	 21.6	 Chapter Summary  992

Key Terms  992

Review Questions  992

Hands-On Practice  993

References  997

Index  998

Credits  1022

32	 TABLE OF CONTENTS

A01_CONN7150_01_SE_FM.indd 32 16/09/14 12:00 PM

Preface

elcome to the Fundamentals of Web Development. This textbook is intended
to cover the broad range of topics required for modern web development and

is suitable for intermediate to upper-level computing students. A significant percent-
age of the material in this book has also been used by the authors to teach web
development principles to first-year computing students and to non-computing
students as well.

One of the difficulties that we faced when planning this book is that web devel-
opment is taught in a wide variety of ways and to a diverse student audience. Some
instructors teach a single course that focuses on server-side programming to third-
year students; other instructors teach the full gamut of web development across two
or more courses, while others might only teach web development indirectly in the
context of a networking, HCI, or capstone project course. We have tried to create
a textbook that supports learning outcomes in all of these teaching scenarios.

What Is Web Development?

Web development is a term that takes on different meanings depending on the audi-
ence and context. In practice, web development requires people with complemen-
tary but distinct expertise working together toward a single goal. Whereas a graphic
designer might regard web development as the application of good graphic design
strategies, a database administrator might regard it as a simple interface to an
underlying database. Software engineers and programmers might regard web devel-
opment as a classic software development task with phases and deliverables, where
a systems administrator sees a system that has to be secured from attackers. With
so many different classes of user and meanings for the term, it’s no wonder that web
development is often poorly understood. Too often, in an effort to fully cover one
aspect of web development, the other principles are ignored altogether, leaving
students without a sense of where their skills fit into the big picture.

A true grasp of web development requires an understanding of multiple per-
spectives. As you will see, the design and layout of a website are closely related to
the code and the database. The quality of the graphics is related to the performance
and configuration of the server, and the security of the system spans every aspect of

W

33

A01_CONN7150_01_SE_FM.indd 33 16/09/14 12:00 PM

development. All of these seemingly independent perspectives are interrelated and
therefore a web developer (of any type) should have a foundational understanding
of all aspects, even if they only possess expertise in a handful of areas.

Features of the Book

To help students master the fundamentals of web development, this book has the
following features:

■	 Covers both the concepts and the practice of the entire scope of web
development. Web development can be a difficult subject to teach because
it involves covering a wide range of theoretical material that is technology
independent as well as practical material that is very specific to a particular
technology. This book comprehensively covers both the conceptual and
practical side of the entire gamut of the web development world.

■	 Focused on the web development reality of today’s world and in anticipation
of future trends. The world of web development has changed remarkably
in the past decade. For instance, fewer and fewer sites are being created
from scratch; instead, a great deal of current web development makes use
of existing sophisticated frameworks and environments such as jQuery,
WordPress, HTML5, and Facebook. We believe it is important to integrate
this new world of web development into any web development textbook.

■	 Sophisticated, realistic, and engaging case studies. Rather than using
simplistic “Hello World” style web projects, this book makes extensive use
of three case studies: an art store, a travel photo sharing community, and a
customer relations management system. For all the case studies, supporting
material such as the business cases, use cases, design documentation, visual
design, images, and databases are included. We have found that students
are more enthusiastic and thus work significantly harder with attractive and
realistic cases.

■	 Comprehensive coverage of a modern Internet development platform. In
order to create any kind of realistic Internet application, readers require
detailed knowledge of and practice with a single specific Internet development
platform. This book covers HTML5, CSS3, JavaScript, and the LAMP stack
(that is, Linux, Apache, MySQL, and PHP). Other important technologies
covered include jQuery, XML, WordPress, Bootstrap, and a variety of third-
party APIs that include Facebook, Twitter, and Google and Bing Maps.

■	 Content presentation suitable for visually oriented learners. As long-time
instructors, the authors are well aware that today’s students are often
extremely reluctant to read long blocks of text. As a result, we have tried to

34	 PREFACE

A01_CONN7150_01_SE_FM.indd 34 16/09/14 12:00 PM

make the content visually pleasing and to explain complicated ideas not only
through text but also through diagrams.

■	 Content that is the result of over twenty years of classroom experience (in
college, university, and adult continuing education settings) teaching web
development. The book’s content also reflects the authors’ deep experience
engaging in web development work for a variety of international clients.

■	 Tutorial-driven programming content available online. Rather than using
long programming listings to teach ideas and techniques, this book uses
a combination of illustrations, short color-coded listings, and separate
tutorial exercises. These step-by-step tutorials are not contained within the
book, but are available online at www.pearsonglobaleditions.com/connolly.
Throughout the book you will find frequent links to these tutorial exercises.

■	 Complete pedagogical features for the student. Each chapter includes learning
objectives, margin notes, links to step-by-step tutorials, advanced tips,
keyword highlights, end-of-chapter review questions, and three different case
study exercises.

Organization of the Book

The chapters in Fundamentals of Web Development can be organized into three
large sections.

■	 Foundational client-side knowledge (Chapters 1–7). These first chapters cover
the foundational knowledge needed by any web developer. This includes how
the web works (Chapter 1), HTML (Chapters 2 and 4), CSS (Chapters 3 and 5),
JavaScript (Chapter 6), and web media (Chapter 7). Not every course
would need to cover each of these chapters. Depending on the course, some
instructors might skip Chapters 1, 5, 6, or 7.

■	 Essential server-side development (Chapters 8–13). Despite the increasing
importance of JavaScript-based development, learning server-side
development is still the essential skill taught in most web development
courses. The basics of PHP are covered in Chapters 8 and 9. Object-oriented
PHP is covered in Chapter 10, and depending on the instructor, could be
skipped (though PHP classes and objects are used in places in subsequent
chapters). Database-driven web development is covered in Chapter 11, while
state management and error handling are covered in Chapters 12 and 13.

■	 Specialized topics (Chapters 14–21). Contemporary web development
has become a very complex field, and different instructors will likely have
different interest areas beyond the foundational topics. As such, our book
provides specialized chapters that cover a variety of different interest areas.

	 PREFACE	 35

A01_CONN7150_01_SE_FM.indd 35 16/09/14 12:00 PM

Chapter 14 covers web application design for those interested more in
software engineering and programming design. Chapter 15 includes advanced
JavaScript and jQuery programming. Chapter 16 covers the vital topic of web
security. Chapter 17 covers another programming topic: namely, consuming
and creating web services. Chapter 18 covers the increasingly important
topic of integrating with (and customizing) content management systems.
The next two chapters address two important non-development topics: web
server administration (Chapter 19) and search engines (Chapter 20). Finally,
Chapter 21 covers another increasingly important topic: how to integrate a
site into third-party social networks.

Pathways through this Book

There are many approaches to teach web development and our book is intended to
work with most of these approaches. It should be noted that this book has more
material than can be plausibly covered in a single semester course. This is by design
as it allows different instructors to chart their own unique way through the diverse
topics that make up contemporary web development.

We do have some suggested pathways through the materials (though you are
welcome to chart your own course), which you can see illustrated in the pathway
diagrams.

■	 All the web in a single course. Many computing programs only have space
for a single course on web development. This is typically an intermediate or
upper-level course in which students will be expected to do a certain amount
of learning on their own. In this case, we recommend covering Chapters 1, 2,
3, 4, 8, 9, 11, and 13. A semester-long course might also cover Chapters 6 and
16 as well.

■	 Client-focused course for introductory students. Some computing programs
have a web course with minimal programming that may be open to non-
major students or which acts as an introductory course to web development
for major students. For such a course, we recommend covering Chapters 1,
2, 3, 4, 5, and 7. You can use Chapter 6 to introduce client-side scripting if
desired. If some server-side web programming is going to be introduced, you
can also cover Chapters 8 and 9. If no programming is going to be covered,
you might consider adding some parts of Chapters 18, 20, and 21.

■	 Server-focused course for intermediate students. If students have already
taken a client-focused course (or you want the students to learn the client
content quickly on their own), then Chapters 8–14 and perhaps Chapters
16 and 17 would provide the students with a very solid foundation in
server-side development.

36	 PREFACE

A01_CONN7150_01_SE_FM.indd 36 16/09/14 12:00 PM

8 9 1861 20 21

16 178 9 10 11 12 13 14

171 2 4 7 8
18 19

21

16

1161 2 3 8 9
15 18 20 21

16 19

Recommended chapters Optional chapters

Client-focused pathway

Server-focused pathway

Advanced pathway

Infrastructure-focused pathway

All-in-one pathway

196 14 15 16 17 18 20 21

2 3 4 5 7

■	 Advanced web development course. Some programs offer a web development
course for upper-level students in which it is assumed that the students
already know the foundational topics and are also experienced with the
basics of server-side development. Such courses probably have the widest
range of possible topics. One example of such a course that we have taught
covers the content in Chapters 6 14–18, and 20–21.

■	 Infrastructure-focused course. In some computing programs the emphasis
is less on the particulars of web programming and more on integrating web
technologies into the overall computing infrastructure within an organization.
Such a course might cover Chapters 1, 2, 4, 7, 8, 16, 18, 19, and part of
Chapters 17 and 21.

	 PREFACE	 37

A01_CONN7150_01_SE_FM.indd 37 16/09/14 12:00 PM

8 9 1861 20 21

16 178 9 10 11 12 13 14

171 2 4 7 8
18 19

21

16

1161 2 3 8 9
15 18 20 21

16 19

Recommended chapters Optional chapters

Client-focused pathway

Server-focused pathway

Advanced pathway

Infrastructure-focused pathway

All-in-one pathway

196 14 15 16 17 18 20 21

2 3 4 5 7

For the Instructor

Web development courses have been called “unteachable” and indeed teaching web
development has many challenges. We believe that using our book will make teach-
ing web development significantly less challenging.

The following instructor resources are available at www.pearsonglobaleditions
.com/connolly:

■	 Attractive and comprehensive PowerPoint presentations (one for each
chapter).

■	 Images and databases for all the case studies.

■	 Solutions to end-of-chapter exercises and to tutorial exercises.

Why This Book?

The ACM computing curricula for computer science, information systems, informa-
tion technology, and computing engineering all recommend at least a single course
devoted to web development. As a consequence, almost every post-secondary com-
puting program offers at least one course on web development.

38	 PREFACE

A01_CONN7150_01_SE_FM.indd 38 16/09/14 12:00 PM

Despite this universality, we could not find a suitable textbook for these courses
that addressed both the theoretical underpinnings of the web together with modern
web development practices. Complaints about this lack of breadth and depth have
been well documented in published accounts in the computing education research
literature. Although there are a number of introductory textbooks devoted to
HTML and CSS, and, of course, an incredibly large number of trade books focused
on specific web technologies, many of these are largely unsuitable for computing
major students. Rather than illustrating how to create simple pages using HTML
and JavaScript with very basic server-side capabilities, we believed that instructors
increasingly need a textbook that guides students through the development of real-
istic, enterprise-quality web applications using contemporary Internet development
platforms and frameworks.

This book is intended to fill this need. It covers the required ACM web develop-
ment topics in a modern manner that is closely aligned with contemporary best
practices in the real world of web development. It is based on our experience teach-
ing a variety of different web development courses since 1997, our working profes-
sionally in the web development industry, our research in published accounts in the
computing education literature, and in our corresponding with colleagues across the
world. We hope that you find that this book does indeed satisfy your requirements
for a web development textbook!

	 PREFACE	 39

A01_CONN7150_01_SE_FM.indd 39 16/09/14 12:00 PM

Acknowledgments

book of this scale and scope incurs many debts of gratitude. We are first and
foremost exceptionally grateful to Matt Goldstein, the Acquisitions Editor at

Pearson, who championed the book and guided the overall process of bringing the
book to market. Joan Murray and Shannon Bailey from Pearson played crucial roles
in getting the initial prospectus considered. Kayla Smith-Tarbox was the Program
Manager and ably handled the very tricky job of coordinating between the writers and
the production team. Scott Disanno and Jenah Blitz-Soehr at Pearson also contributed
in the early stages. We would like to thank Hardik Popli and his team at Cenveo
Publisher Services for the work they did on the post-production side. We would also
like to thank Margaret Berson, proofreader, who made sure that the words and illus-
trations actually work to tell a story that makes sense.

Reviewers help ensure that a textbook reflects more than just the authors’ perspective.
We were truly blessed in having two extraordinary reviewers: Jordan Pratt of Mount
Royal University and Jamel Schiller of University of Wisconsin, Green Bay, who carefully
examined every single chapter.

There are many others who helped guide our thinking, provided suggestions, or made
our administrative and teaching duties somewhat less onerous. While we cannot thank
everyone, we are grateful to Mount Royal University for granting a semester break for
one of the authors, Peter Alston (now at the University of Liverpool) and his colleagues
at Edge Hill University for hosting one of the authors for an important week early in the
book’s composition, and Amber Settle of De Paul University, who provided invaluable
feedback on an early paper in which the rationale for the textbook was first hatched. Our
long-time colleagues Paul Pospisil and Charles Hepler provided very helpful diversions
from web development, which were always appreciated. And of course we would like to
acknowledge all our students who have improved our insight and who acted as non-
voluntary guinea pigs in the evolution of our thinking on teaching web development.

From its earliest inception in May of 2012 all the way to its conclusion in the
early months of 2014, Dr. Janet Miller provided incredible and overwhelming encour-
agement, understanding, and feedback for which Randy Connolly will be always
grateful. Joanne Hoar, an M.Sc. in computer science, made this book possible for
Ricardo Hoar with continuous emotional support and professional feedback, all while
maintaining a stable household for their three children under the age of 4 (and looking
beautiful the whole time). Finally, we want to thank our children, Alexander
Connolly, Benjamin Connolly, Archimedes Hoar, Curia Hoar, and Hypatia Hoar,
who saw less of their fathers during this time but were always on our minds.

A

40	

A01_CONN7150_01_SE_FM.indd 40 16/09/14 12:00 PM

Pearson would like to thank Soumen Mukherjee and Arup Kumar Bhattacharjee of
RCC Institute of Information Technology, Kolkata, and Manasa S. of NMAM Institute
of Technology, Bangalore for reviewing the Global Edition.

	 Acknowledgments	 41

A01_CONN7150_01_SE_FM.indd 41 24/09/14 4:51 PM

Visual Walkthrough

42

218 CHAPTER 5 Advanced CSS: Layout

However, since only setting the viewport as in Figure 5.32 shrank but still
cropped the content, setting the viewport is only one step in creating a responsive
design. There needs to be a way to transform the look of the site for the smaller
screen of the mobile device, which is the job of the next key component of respon-
sive design, media queries.

@media only screen and (max-width:480px) { ... }

a media query
Device has to
be a screen

CSS rules to use if device
matches these conditions

Only use this style
if both conditions
are true

Use this style if width of
viewport is no wider
than 480 pixels

FIGURE 5.33 Sample media query

N O T E

It is worth emphasizing that what Figure 5.31 illustrates is that if an alter-
nate viewport is not speci�ed via the <meta> element, then the mobile browser
will try to render a shrunken version of the full desktop site.

N

I

5.6.2 Media Queries
The other key component of responsive designs is CSS media queries. A media query
is a way to apply style rules based on the medium that is displaying the �le. You can
use these queries to look at the capabilities of the device, and then de�ne CSS rules
to target that device. Unfortunately, media queries are not supported by Internet
Explorer 8 and earlier.

Figure 5.33 illustrates the syntax of a typical media query. These queries are
Boolean expressions and can be added to your CSS �les or to the <link> element to
conditionally use a different external CSS �le based on the capabilities of the device.

Table 5.3 is a partial list of the browser features you can examine with media
queries. Many of these features have min- and max- versions.

Contemporary responsive sites will typically provide CSS rules for phone dis-
plays �rst, then tablets, then desktop monitors, an approach called progressive
enhancement, in which a design is adapted to progressively more advanced devices,
an approach you will also see in the JavaScript chapter. Figure 5.34 illustrates how
a responsive site might use media queries to provide progressive enhancement.

Notice that the smallest device is described �rst, while the largest device is
described last. Since later (in the source code) rules override earlier rules, this

HANDS-ON
EXERCISES

LAB 5 EXERCISE
Media Queries

HANDS ON

7.7 Chapter Summary 317

program in a fraction of the time. The potential advantage of the JavaScript
approach is the ability to add animation and, more importantly, interactivity with
other HTML elements.

A full (or even a partial) examination of what can be done using the <canvas>
element is well beyond the scope of this book. Over time, as third-party JavaScript
libraries for scripting the canvas surface become more and more sophisticated, it is
likely that it will become a more essential part of “normal” web development.

7.7 Chapter Summary

This chapter has covered the essential concepts and terms in web media, which
includes not just image �les but also audio and video �les as well. The chapter
focused on the most important media concepts as well as the four different image
formats. The chapter also covered HTML5’s support for audio and video �les.

7.7.1 Key Terms

alpha transparency
additive colors
anti-aliasing
artifacts
bitmap image
canvas element
CMYK color model
codec
color depth
color palette
container formats
digital representation
display resolution
dithering

gamut
GIF
halftones
HSL color model
image size
interpolate
JPEG
lightness
lossless compression
lossy compression
LZW compression
media encoding
MPEG-4
opacity

pixels
PNG
raster image
reference pixel
RGB color model
run-length compression
saturation
subtractive colors
SVG
TIF
vector image
web-safe color palette

7.7.2 Review Questions
1. How do pixels differ from halftones?
2. How do raster images differ from vector images?
3. Brie�y describe the RGB, CMYK, and HSL color models.
4. What is opacity? Provide examples of three different ways to set it in CSS.
5. What is the purpose of the artist color wheel?
6. What is color depth? What is its relationship to dithering?
7. With raster images, does resizing images affect image quality? Why or why not?

Hundreds of color-coded
illustrations clarify key
concepts.

Separate hands-on exercises
(available online) give
readers opportunity to
practically apply concepts
and techniques covered
in the text.

Security, Pro Tip, and
Note boxes emphasize
important concepts and
practical advice.

Key terms are highlighted
in consistent color.

Key terms appear again
at end of chapter.

Review questions at end
of chapter provide
opportunity for self-testing.

A01_CONN7150_01_SE_FM.indd 42 16/09/14 12:00 PM

	 VISUAL WALKTHROUGH	 43

Illustrations help explain
especially complicated
processes.

Color-coded source
code listings emphasize
important elements and
visually separate
comments from the code.

Important algorithms are
illustrated visually to
help clarify understanding.

19.2 Domain and Name Server Administration 845

When choosing a cloud host, be sure to ask the same questions you would of a
shared or a dedicated host, and try to resist answers to real questions that defer to
the cloud as a magic entity that will miraculously solve all your problems. At the
end of the day a request for your website has to be answered by a physical machine
with access to RAM, �le system, and an OS.

19.2 Domain and Name Server Administration

The domain name system (DNS) is the distributed network that resolves queries for
domain names. First covered back in Chapter 1, DNS lets people use domain names
rather than IP addresses, making URLs more intuitive and easy to remember.
Despite its ubiquity in Internet communication, the details of the DNS system only
seem important when you start to administer your own websites.

The authors suggest going back over the DNS system and registrar description back
in Chapter 1. The details about managing a domain name for your site require that you
understand the parties involved in a DNS resolution request, as shown in Figure 19.5.

This section builds on an understanding of the DNS system and describes some
of the complexities involved with domain name registration and administration.

HANDS-ON
EXERCISES

LAB 19 EXERCISE
Register a Domain

HANDS ON

.com name
server will
return IP address
of DNS server
for funwebdev.com

comnameservers

Rootnameserver

ISPISP

I want to visit www.funwebdev.com1

DNS
Resolver

2

12

14

13

4

7

9

5
6If IP for this site is not in browser’s cache,

it delegates task to operating system’s
DNS Resolver.

If not in its DNS cache,
resolver makes request
for IP address to ISP’s
DNS Server.

If the primary DNS
server doesn’t have
the requested domain
in its DNS cache, it
sends out the request
to the root name
server.

Request for IP
address for
www.funwebdev.com

funwebdev.comfunwebdev.com

Browser requests
page

Returns
requested
page

Return IP address of
www.funwebdev.com

Root name server
returns IP of name
server for requested
TLD (in this case
the com name server).

Request IP of name server
for funwebdev.com

Return IP address
of web server

Return IP
address
of
www.funwebdev.com

Alternate
DNSserver

Primary
DNSserver

DNSserver

Webserver

3

8

10

11

Checks
its DNS cache

FIGURE 19.5 Illustration of the domain name resolution process (�rst shown in Chapter 1)

11.5 Accessing MySQL in PHP 461

<?php

try {
 $connString = "mysql:host=localhost;dbname=bookcrm";
 $user = "testuser";
 $pass = "mypassword";

 $pdo = new PDO($connString,$user,$pass);
 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $sql = "select * from Categories order by CategoryName";
 $result = $pdo->query($sql);

 while ($row = $result->fetch()) {
 echo $row['ID'] . " - " . $row['CategoryName'] . "
";

}
$pdo = null;

}
catch (PDOException $e) {
 die($e->getMessage());
}

?>

1

3

4

5

2

FIGURE 11.20 Basic database connection algorithm

LISTING 11.4 Connecting to a database with PDO (object-oriented)

// modify these variables for your installation
$connectionString = "mysql:host=localhost;dbname=bookcrm";
$user = "testuser";
$pass = "mypassword";

$pdo = new PDO($connectionString, $user, $pass);

LISTING 11.3 Connecting to a database with mysqli (procedural)

// modify these variables for your installation
$host = "localhost";
$database = "bookcrm";
$user = "testuser";
$pass = "mypassword";

$connection = mysqli_connect($host, $user, $pass, $database);

A01_CONN7150_01_SE_FM.indd 43 16/09/14 12:00 PM

44	 VISUAL WALKTHROUGH

398 CHAPTER 9 PHP Arrays and Superglobals

Display the appropriate
data from the $images
array.

Write loops to display
these menus using the

travel‐data.php.
Also use the
appropriate PHP sort
functions.

Notice that links for countries
need to include the country code
as a query string parameter.

Notice that links for each
thumbnail include id as
query string parameter.

Write a loop that displays these
images and links using data
within the $images array

travel‐data.php.

FIGURE 9.14 Completed Project 2

396 CHAPTER 9 PHP Arrays and Superglobals

9.6.3 Hands-On Practice

HANDS-ON
EXERCISES

PROJECT 9.1

HANDS ON

DIFFICULTY LEVEL: Beginner

Overview
Demonstrate your ability to work with arrays and superglobals in PHP.

Instructions
1. You have been provided with two �les: the data entry form (Chapter09

-project01.php) and the page that will process the form data (art-form-process
.php). Examine both in the browser.

2. Modify Chapter09-project01.php so that it uses the POST method and
art-form-process.php as the form action.

3. Modify art-form-process.php so that it displays the email, �rst name, last name,
and privacy values that were entered into the form, as shown in Figure 9.13.
This will require using the appropriate superglobal array. Also display the �rst
name and last name in the welcome greeting.

4. In art-form-process.php, de�ne an array that contains the labels for the
account menu (see Figure 9.13). Replace the hard-coded list in the �le with a
loop that displays the equivalent list using the contents of your just-de�ned
array. Notice that some conditional logic will be required to add the
class="active" attribute to the correct element.

5. Modify art-footer.inc.php so that it includes the array de�ned within
art-data.php. Replace the hard-coded markup in the �le with a loop that
outputs the equivalent markup but uses the data de�ned in the array.

Test
1. Test the page. Remember that you cannot simply open a local PHP page in

the browser using its open command. Instead you must have the browser
request the page from a server. If you are using a local server such as
XAMMP, the �le must exist within the htdocs folder of the server, and then
the request will be localhost/some-path/Chapter09-project01.php.

PROJECT 1: Art Store

PROJECT 2: Share Your Travel Photos

DIFFICULTY LEVEL: Intermediate

Overview
You have been provided with two �les: a page that will eventually contain thumb-
nails for a variety of travel images (Chapter09-project02.php) and a page that will
eventually display the details of a single travel image (travel-image.php). Clicking a
thumbnail in the �rst �le will take you to the second page where you will be able to
see details for that image, as shown in Figure 9.14.

HANDS-ON
EXERCISES

PROJECT 9.2

HANDS ON

Each chapter ends with three
case study exercises that
allow the reader to
practice the material
covered in the chapter
within a realistic context.

Exercises increase in
complexity and can
be assigned separately
by the instructor.

Exercises contain step-
by-step instructions of
varying dif�culty.

Attractive and realistic
case studies help
engage the readers’
interest.

All images, pages, classes,
databases, and other
material for each of
the case studies are
available for download.

A01_CONN7150_01_SE_FM.indd 44 16/09/14 12:00 PM

45

How the Web Works 1
Chapter Objectives

In this chapter you will learn . . .

■	 The history of the Internet and World Wide Web

■	 Fundamental concepts and protocols that support the Internet

■	 About the hardware and software that supports the Internet

■	 How a web page is actually retrieved and interpreted

T his chapter introduces the World Wide Web (WWW). The WWW

relies on a number of systems, protocols, and technologies all

working together in unison. Before learning about HTML markup,

CSS styling, JavaScript, and PHP programming, you must understand

how the Internet makes web applications possible. This chapter begins

with a brief history of the Internet and provides an overview of key

Internet and WWW technologies applicable to the web developer. To

truly understand these concepts in depth, one would normally take

courses in computer science or information technology (IT) covering

networking principles. If you find some of these topics too in-depth

or advanced, you may decide to skip over some of the details here

and return to them later.

M01_CONN7150_01_SE_C01.indd 45 09/09/14 4:51 PM

46	 Chapter 1  How the Web Works

1.1  Definitions and History

The World Wide Web (WWW or simply the Web) is certainly what most people
think of when they see the word “Internet.” But the WWW is only a subset of the
Internet, as illustrated in Figure 1.1.

1.1.1  A Short History of the Internet
The history of telecommunication and data transport is a long one. There is a stra-
tegic advantage in being able to send a message as quickly as possible (or at least,
more quickly than your competition). The Internet is not alone in providing instan-
taneous digital communication. Earlier technologies like radio, telegraph, and the
telephone provided the same speed of communication, albeit in an analog form.

Telephone networks in particular provide a good starting place to learn about
modern digital communications. In the telephone networks of old, calls were routed
through operators who physically connected caller and receiver by connecting a
wire to a switchboard to complete a circuit. These operators were around in some
areas for almost a century before being replaced with automatic mechanical
switches, which did the same job: physically connect caller and receiver.

One of the weaknesses of having a physical connection is that you must estab-
lish a link and maintain a dedicated circuit for the duration of the call. This type of
network connection is sometimes referred to as circuit switching and is shown in
Figure 1.2.

The problem with circuit switching is that it can be difficult to have multiple
conversations simultaneously (which a computer might want to do). It also requires
more bandwidth since even the silences are transmitted (that is, unused capacity in
the network is not being used efficiently).

Internet

EmailEmail

WebWeb

FTPFTP

Online
gaming
Online
gaming

Figure 1.1  The web as a subset of the Internet

M01_CONN7150_01_SE_C01.indd 46 09/09/14 4:51 PM

	 1.1  Definitions and History	 47

Bandwidth is a measurement of how much data can (maximally) be transmitted
along an Internet connection. Normally measured in bits per second (bps), this mea-
surement differs according to the type of Internet access technology you are using.
A dial-up 56-Kbps modem has far less bandwidth than a 10-Gbps fiber optic
connection.

In the 1960s, as researchers explored digital communications and began to
construct the first networks, the research network ARPANET was created. ARPANET
did not use circuit switching but instead used an alternative communications method
called packet switching. A packet-switched network does not require a continuous
connection. Instead it splits the messages into smaller chunks called packets and
routes them to the appropriate place based on the destination address. The packets
can take different routes to the destination, as shown in Figure 1.3. This may seem
a more complicated and inefficient approach than circuit switching, but is in fact
more robust (it is not reliant on a single pathway that may fail) and a more efficient
use of network resources (since a circuit can communicate data from multiple
connections).

This early ARPANET network was funded and controlled by the United States
government, and was used exclusively for academic and scientific purposes. The
early network started small with just a handful of connected university campuses
and research institutions and companies in 1969 and grew to a few hundred by the
early 1980s.

At the same time, alternative networks were created like X.25 in 1974, which
allowed (and encouraged) business use. USENET, built in 1979, had fewer restric-
tions still, and as a result grew quickly to 550 hosts by 1981. Although there was
growth in these various networks, the inability for them to communicate with each

Thou map of woe, that
thus dost talk in signs!

Thou map of woe, that
thus dost talk in signs!

Thou map of woe, that
thus dost talk in signs!

Thou map of woe, that
thus dost talk in signs!

Figure 1.2  Telephone network as example of circuit switching

M01_CONN7150_01_SE_C01.indd 47 09/09/14 4:51 PM

48	 Chapter 1  How the Web Works

other was a real limitation. To promote the growth and unification of the disparate
networks, a suite of protocols was invented to unify the networks. A protocol is the
name given to a formal set of publicly available rules that manage data exchange
between two points. Communications protocols allow any two computers to talk to
one another, so long as they implement the protocol.

By 1981 protocols for the Internet were published and ready for use.1,2 New
networks built in the United States began to adopt the TCP/IP (Transmission
Control Protocol/Internet Protocol) communication model (discussed in the next
section), while older networks were transitioned over to it.

Any organization, private or public, could potentially connect to this new network
so long as they adopted the TCP/IP protocol. On January 1, 1983, TCP/IP was adopted
across all of ARPANET, marking the end of the research network that spawned the
Internet.3 Over the next two decades, TCP/IP networking was adopted across the globe.

1.1.2  The Birth of the Web
The next decade saw an explosion in the numbers of users, but the Internet of the late
1980s and the very early 1990s did not resemble the Internet we know today. During
these early years, email and text-based systems were the extent of the Internet experience.

Thou map of woe, that
thus dost talk in signs!

Original message
broken into
numbered packets

Sender
address

Destination
address

that thus dostA B 2

talk in signs3A B

1 Thou map of woe,A B

1 Thou map of woe,A B

that thus dostA B 2
talk in signs3A B

1 Thou map of woe,A B

talk in signs3A B

that thus dostA B 2

talk in signs3A B

that thus dostA B 2

talk in signs3A B

Original message
reassembled from
packets

Thou map of woe,A B 1

Thou map of woe, that
thus dost talk in signs!

A B

Figure 1.3  Internet network as example of packet switching

M01_CONN7150_01_SE_C01.indd 48 09/09/14 4:51 PM

	 1.1  Definitions and History	 49

This transition from the old terminal and text-only Internet of the 1980s to
the Internet of today is of course due to the invention and massive growth of the
World Wide Web. This invention is usually attributed to the British Tim
Berners-Lee (now Sir Tim Berners-Lee), who, along with the Belgian Robert
Cailliau, published a proposal in 1990 for a hypertext system while both were
working at CERN in Switzerland. Shortly thereafter Berners-Lee developed the
main features of the web.4

This early web incorporated the following essential elements that are still the
core features of the web today:

■	 A Uniform Resource Locator (URL) to uniquely identify a resource on the
WWW.

■	 The Hypertext Transfer Protocol (HTTP) to describe how requests and
responses operate.

■	 A software program (later called web server software) that can respond to
HTTP requests.

■	 Hypertext Markup Language (HTML) to publish documents.

■	 A program (later called a browser) that can make HTTP requests from URLs
and that can display the HTML it receives.

HTML will require several chapters to cover in this book. URLs and the HTTP
are covered in this chapter. This chapter will also provide a little bit of insight into
the nature of web server software; Chapter 20 will examine the inner workings of
server software in more detail.

So while the essential outline of today’s web was in place in the early 1990s,
the web as we know it did not really begin until Mosaic, the first popular graphi-
cal browser application, was developed at the National Center for Supercomputing
Applications at the University of Illinois Urbana-Champaign and released in early
1993 by Eric Bina and Marc Andreessen (who was a computer science under-
graduate student at the time). Andreessen later moved to California and cofounded
Netscape Communications, which released Netscape Navigator in late 1994.
Navigator quickly became the principal web browser, a position it held until the
end of the 1990s, when Microsoft’s Internet Explorer (first released in 1995)
became the market leader, a position it would hold for over a decade.

Also in late 1994, Berners-Lee helped found the World Wide Web Consortium
(W3C), which would soon become the international standards organization that
would oversee the growth of the web. This growth was very much facilitated by the
decision of CERN to not patent the work and ideas done by its employee and
instead leave the web protocols and code-base royalty free.

To illustrate the growth of the Internet, Figure 1.4 graphs the count of hosts
connected to the Internet from 1990 until 2010. You can see that the last decade in
particular has seen an enormous growth, during which social networks, web

M01_CONN7150_01_SE_C01.indd 49 09/09/14 4:51 PM

50	 Chapter 1  How the Web Works

1.1.3.  Web Applications in Comparison
to Desktop Applications
The user experience for a website is unlike the user experience for traditional desk-
top software. The location of data storage, limitations with the user interface, and
limited access to operating system features are just some of the distinctions.
However, as web applications have become more and more sophisticated, the dif-
ferences in the user experience between desktop applications and web applications
are becoming more and more blurred.

There are a variety of advantages and disadvantages to web-based applications in
comparison to desktop applications. Some of the advantages of web applications include:

■	 Accessible from any Internet-enabled computer.

■	 Usable with different operating systems and browser applications.

services, asynchronous applications, the semantic web, and more have all been cre-
ated (and will be described fully in due course in this textbook).

1995 2000 2005 2010

1,000,000

10,000,000

100,000,000

1,000,000,000

N
u

m
b

er
 o

f
In

te
rn

et
 H

o
st

s
(L

o
g

ar
it

h
m

ic
 s

ca
le

)

Year
1990

�Figure 1.4  Growth in Internet hosts/servers based on data from the Internet
Systems Consortium.5

B a c k g r o u n d

The Request for Comments (RFC) archive lists all of the Internet and
WWW protocols, concepts, and standards. It started out as an unofficial reposi-
tory for ARPANET information and eventually became the de facto official
record. Even today new standards are published there.

M01_CONN7150_01_SE_C01.indd 50 09/09/14 4:51 PM

	 1.1  Definitions and History	 51

■	 Easier to roll out program updates since only software on the server needs to
be updated and not on every desktop in the organization.

■	 Centralized storage on the server means fewer security concerns about local
storage (which is important for sensitive information such as health care data).

Unfortunately, in the world of IT, for every advantage, there is often a corre-
sponding disadvantage; this is also true of web applications. Some of these disad-
vantages include:

■	 Requirement to have an active Internet connection (the Internet is not always
available everywhere at all times).

■	 Security concerns about sensitive private data being transmitted over the
Internet.

■	 Concerns over the storage, licensing, and use of uploaded data.

■	 Problems with certain websites on certain browsers not looking quite right.

■	 Restrictions on access to the operating system can prevent software and
hardware from being installed or accessed (like Adobe Flash on iOS).

In addition, clients or their IT staff may have additional plugins added to their
browsers, which provide added control over their browsing experience, but which
might interfere with JavaScript, cookies, or advertisements. We will continually try
to address these challenges throughout the book.

B a c k g r o u n d

One of the more common terms you might encounter in web development is
the term “intranet” (with an “a”), which refers to an Internet network that is local
to an organization or business. Intranet resources are often private, meaning that
only employees (or authorized external parties such as customers or suppliers) have
access to those resources. Thus Internet (with an “e”) is a broader term that
encompasses both private (intranet) and public networked resources.

Intranets are typically protected from unauthorized external access via
security features such as firewalls or private IP ranges, as shown in Figure 1.5.
Because intranets are private, search engines such as Google have limited or no
access to content within them.

Due to this private nature, it is difficult to accurately gauge, for instance,
how many web pages exist within intranets, and what technologies are more
common in them. Some especially expansive estimates guess that almost half of
all web resources are hidden in private intranets.

Being aware of intranets is also important when one considers the job
market and market usage of different web technologies. If one focuses just on the

(continued)

M01_CONN7150_01_SE_C01.indd 51 09/09/14 4:51 PM

52	 Chapter 1  How the Web Works

1.1.4  Static Websites versus Dynamic Websites
In the earliest days of the web, a webmaster (the term popular in the 1990s for the
person who was responsible for creating and supporting a website) would publish
web pages and periodically update them. Users could read the pages but could not
provide feedback. The early days of the web included many encyclopedic, collection-
style sites with lots of content to read (and animated icons to watch).

In those early days, the skills needed to create a website were pretty basic: one
needed knowledge of the HTML and perhaps familiarity with editing and creating
images. This type of website is commonly referred to as a static website, in that it consists

public Internet, it will appear that PHP, MySQL, and WordPress are the most
commonly used web development stack. But when one adds in the private world
of corporate intranets, other technologies such as ASP.NET, JSP, SharePoint,
Oracle, SAP, and IBM WebSphere are just as important.

Customers and corporate
partners might be able to
access internal system.

Off-site workers might be
able to access internal
system.

Public can’t
access internal
computing
systems.

Public can
access public
web system.

Firewall

Firewall

Financial and other
enterprise systems

Groupware
and �le servers

Public

web
syste

m

Priv
ate

corporate

computin
g

syste
m

Intranet
website

Web
servers

Web
server

Figure 1.5  Intranet versus Internet

M01_CONN7150_01_SE_C01.indd 52 09/09/14 4:51 PM

	 1.1  Definitions and History	 53

only of HTML pages that look identical for all users at all times. Figure 1.6 illustrates a
simplified representation of the interaction between a user and a static website.

Within a few years of the invention of the web, sites began to get more compli-
cated as more and more sites began to use programs running on web servers to
generate content dynamically. These server-based programs would read content
from databases, interface with existing enterprise computer systems, communicate
with financial institutions, and then output HTML that would be sent back to the
users’ browsers. This type of website is called here in this text a dynamic website
because the page content is being created at run time by a program created by a
programmer; this page content can vary from user to user. Figure 1.7 illustrates a
very simplified representation of the interaction between a user and a dynamic
website.

So while knowledge of HTML was still necessary for the creation of these
dynamic websites, it became necessary to have programming knowledge as well.
And by the late 1990s, other knowledge and skills were becoming necessary, such
as CSS, usability, and security.

1.1.5  Web 2.0 and Beyond
In the mid-2000s, a new buzzword entered the computer lexicon: Web 2.0. This term
had two meanings, one for users and one for developers. For the users, Web 2.0

I want to see
vacation.html

Server retrieves f iles
from its hard drive

Server "sends" HTML
and then later the image
to browser

Browser
displays f iles

vacation.html

picture.jpg

1

2

3

4

Figure 1.6  Static website

M01_CONN7150_01_SE_C01.indd 53 09/09/14 4:51 PM

54	 Chapter 1  How the Web Works

referred to an interactive experience where users could contribute and consume web
content, thus creating a more user-driven web experience. Some of the most popular
websites fall into this category: Facebook, YouTube, and Wikipedia. This shift to
allow feedback from the user, such as comments on a story, threads in a message
board, or a profile on a social networking site has revolutionized what it means to
use a web application.

For software developers, Web 2.0 also referred to a change in the paradigm of
how dynamic websites are created. Programming logic, which previously existed
only on the server, began to migrate to the browser. This required learning
JavaScript, a rather tricky programming language that runs in the browser, as well
as mastering the rather difficult programming techniques involved in asynchronous
communication.

Web development in the Web 2.0 world is significantly more complicated today
than it was even a decade ago. While this book attempts to cover all the main topics
in web development, in practice, it is common for a certain division of labor to exist.
The skills to create a good-looking static web page are not the same skill set that is
required to write software that facilitates user interactions. Many programmers are

I want to see
vacation.php

Server recognizes
that it must run a
dynamic script that
is on its hard drive.

Scripts
"outputs" HTML

Browser
displays f iles

vacation.php

1

2

4

Server "sends"
generated HTML
and the image
f ile to user.

5

Server executes
or interprets
the script.

3

6

Figure 1.7  Dynamic website

M01_CONN7150_01_SE_C01.indd 54 09/09/14 4:51 PM

	 1.2  Internet Protocols	 55

poor visual user interface designers, and most designers can’t program. This separa-
tion of software system and visual user interface is essential to any Web 2.0
application.

Chapters on HTML and CSS are essential for learning about layout and design
best practices. Later chapters on server and client-side programming build on those
design skills, but go far beyond them. To build modern applications you must have
both sets of skills on your team.

B a c k g r o u n d

When a system is known by a 1.0 and 2.0, people invariably speculate on
what the 3.0 version will look like. If there is a Web 3.0, it is currently uncertain
and still under construction. Some people have, however, argued that Web 3.0
will be something called the semantic web.

Semantic is a word from linguistics that means, quite literally, “meaning.”
The semantic web thus adds context and meaning to web pages in the form of
special markup. These semantic elements would allow search engines and other
data mining agents to make sense of the content.

Currently a block of text on the web could be anything: a poem, an article,
or a copyright notice. Search engines at present mainly just match the text you
are searching for with text in the page. Currently these search engines have to use
sophisticated algorithms to try to figure out the meaning of the page. The goal of
the semantic web is to make it easier to figure out those meanings, thereby dra-
matically improving the nature of search on the web. Currently there are a num-
ber of semi-standardized approaches for adding semantic qualifiers to HTML;
some examples include RDF (Resource Description Framework), OWL (Web
Ontology Language), and SKOS (Simple Knowledge Organization System).

1.2  Internet Protocols

The Internet exists today because of a suite of interrelated communications proto-
cols. A protocol is a set of rules that partners in communication use when they
communicate. We have already mentioned one of these essential Internet protocols,
namely TCP/IP.

These protocols have been implemented in every operating system, and make
fast web development possible. If web developers had to keep track of packet rout-
ing, transmission details, domain resolution, checksums, and more, it would be hard
to get around to the matter of actually building websites. Despite the fact that these
protocols work behind the scenes for web developers, having some general aware-
ness of what the suite of Internet protocols does for us can at times be helpful.

M01_CONN7150_01_SE_C01.indd 55 09/09/14 4:51 PM

56	 Chapter 1  How the Web Works

1.2.1  A Layered Architecture
The TCP/IP Internet protocols were originally abstracted as a four-layer stack.6,7
Later abstractions subdivide it further into five or seven layers.8 Since we are
focused on the top layer anyhow, we will use the earliest and simplest four-layer
network model shown in Figure 1.8.

Layers communicate information up or down one level, but needn’t worry
about layers far above or below. Lower layers handle the more fundamental aspects
of transmitting signals through networks, allowing the higher layers to think about
how a client and server interact. The web requires all layers to operate, although in
web development we will focus on the highest layer, the application layer.

1.2.2  Link Layer
The link layer is the lowest layer, responsible for both the physical transmission
across media (wires, wireless) and establishing logical links. It handles issues like

Ensures transmissions arrive in

order and without error

Establishes connection, routing, and addressing

Transport
Layer

Internet
Layer

TCP, U
DP

IPv4, IP
v6

Responsible for physical transmission of raw bits

Link
Layer

MAC

Higher protocols that allow applications

to interact with transport layer

Application
Layer

HTTP, F
TP,

POP, e
tc

Figure 1.8  Four-layer network model

M01_CONN7150_01_SE_C01.indd 56 09/09/14 4:51 PM

	 1.2  Internet Protocols	 57

packet creation, transmission, reception, error detection, collisions, line sharing,
and more. The one term here that is sometimes used in the Internet context is that
of MAC (media access control) addresses. These are unique 48- or 64-bit identifiers
assigned to network hardware and which are used at the physical networking level.
We will not focus on this layer, although you can learn more in a computer
networking course or text.

1.2.3  Internet Layer
The Internet layer (sometimes also called the IP Layer) routes packets between com-
munication partners across networks. The Internet layer provides “best effort”
communication. It sends out the message to the destination, but expects no reply,
and provides no guarantee the message will arrive intact, or at all.

The Internet uses the Internet Protocol (IP) addresses to identify destinations on
the Internet. As can be seen in Figure 1.9, every device connected to the Internet has
an IP address, which is a numeric code that is meant to uniquely identify it.

The details of the IP addresses can be important to a web developer. There are
occasions when one needs to track, record, and compare the IP address of a given
web request. Online polls, for instance, need to compare IP addresses to ensure the
same address does not vote more than once.

IPv4 address 142.108.149.36

IP: 142.108.149.36

IP: 22.15.216.13

IP: 10.238.28.131

IP: 192.168.123.254

IP: 142.181.80.3

IP: 10.239.28.131

192.168.123.254

10.239.28.131IP Address

Figure 1.9  IP addresses and the Internet

M01_CONN7150_01_SE_C01.indd 57 09/09/14 4:51 PM

58	 Chapter 1  How the Web Works

There are two types of IP addresses: IPv4 and IPv6. IPv4 addresses are the IP
addresses from the original TCP/IP protocol. In IPv4, 12 numbers are used (imple-
mented as four 8-bit integers), written with a dot between each integer (Figure 1.10).
Since an unsigned 8-bit integer’s maximum value is 255, four integers together can
encode approximately 4.2 billion unique IP addresses.

Your IP address will generally be assigned to you by your Internet service pro-
vider (ISP). In organizations, large and small, purchasing extra IP addresses from the
ISP is not cost effective. In a local network, computers can share a single external IP
address between them. IP addresses in the range of 192.168.0.0 to 192.168.255, for
example, are reserved for exactly this local area network use. Your connection
therefore might have an internal IP of 192.168.0.15 known only to the internal
network, and another public IP address that is your address to the world.

The decision to make IP addresses 32 bits limited the number of hosts to 4.2
billion. As more and more devices connected to the Internet the supply was becom-
ing exhausted, especially in some local areas that had already distributed their share.

To future-proof the Internet against the 4.2 billion limit, a new version of the
IP protocol was created, IPv6. This newer version uses eight 16-bit integers for 2128

192.168. 123. 254

4–8 bit components
(32 bits)

IPv4
232 addresses

8–16 bit components
(128 bits)

IPv6
2128 addresses

3fae:7a10:4545:9:291:e8ff:fe21:37ca

Figure 1.10  IPv4 and IPv6 comparison

Hands-On
Exercises

Lab 1 Exercise
Your IP address

B a c k g r o u n d

You may be wondering who gives an ISP its IP addresses. The answer is
ultimately the Internet Assigned Numbers Authority (IANA). This group is actu-
ally a department of ICANN, the Internet Corporation for Assigned Names and
Numbers, which is an internationally organized nonprofit organization respon-
sible for the global coordination of IP addresses, domains, and Internet protocols.
IANA allocates IP addresses from pools of unallocated addresses to Regional
Internet Registries such as AfriNIC (for Africa) or ARIN (for North America).

M01_CONN7150_01_SE_C01.indd 58 09/09/14 4:51 PM

	 1.2  Internet Protocols	 59

unique addresses, over a billion billion times the number in IPv4. These 16-bit
integers are normally written in hexadecimal, due to their longer length. This new
addressing system is currently being rolled out with a number of transition
mechanisms, making the rollout seamless to most users and even developers.

Figure 1.10 compares the IPv4 and IPv6 address schemes.

1.2.4  Transport Layer
The transport layer ensures transmissions arrive in order and without error. This is
accomplished through a few mechanisms. First, the data is broken into packets formatted
according to the Transmission Control Protocol (TCP). The data in these packets can
vary in size from 0 to 64K, though in practice typical packet data size is around 0.5 to
1K. Each data packet has a header that includes a sequence number, so the receiver can
put the original message back in order, no matter when they arrive. Secondly, each packet
is acknowledged back to the sender so in the event of a lost packet, the transmitter will
realize a packet has been lost since no ACK arrived for that packet. That packet is retrans-
mitted, and although out of order, is reordered at the destination, as shown in Figure
1.11. This means you have a guarantee that messages sent will arrive and in order. As a
consequence, web developers don’t have to worry about pages not getting to the users.

Message broken
into packets with a
sequence number.

Thou map of woe,1

that thus dost2

talk in signs!3

Thou map of woe,1

that thus dost2

3ACK

that thus dost2

2ACK

1ACK

talk in signs!3

For each TCP packet
sent, an ACK
(acknowledgement)
must be received back.

Eventually, sender will
resend any packets that
didn’t get an ACK back.

Message reassembled from
packets and ordered according
to their sequence numbers.

Thou map of woe, that
thus dost talk in signs!

Thou map of woe, that
thus dost talk in signs!

1

2

3
4

Figure 1.11  TCP packets

M01_CONN7150_01_SE_C01.indd 59 09/09/14 4:51 PM

60	 Chapter 1  How the Web Works

1.2.5  Application Layer
With the application layer, we are at the level of protocols familiar to most web
developers. Application layer protocols implement process-to-process communica-
tion and are at a higher level of abstraction in comparison to the low-level packet
and IP address protocols in the layers below it.

There are many application layer protocols. A few that are useful to web
developers include:

■	 HTTP. The Hypertext Transfer Protocol is used for web communication.

■	 SSH. The Secure Shell Protocol allows remote command-line connections to
servers.

■	 FTP. The File Transfer Protocol is used for transferring files between
computers.

■	 POP/IMAP/SMTP. Email-related protocols for transferring and storing
email.

■	 DNS. The Domain Name System protocol used for resolving domain names
to IP addresses.

N o t e

We will discuss the HTTP and the DNS protocols later in this chapter. SSH
will be covered later in the book in the chapter on security.

P r o Ti p

Sometimes we do not want guaranteed transmission of packets.
Consider a live multicast of a soccer game, for example. Millions of sub-

scribers may be streaming the game, and we can’t afford to track and retransmit
every lost packet. A small loss of data in the feed is acceptable, and the customers
will still see the game. An Internet protocol called User Datagram Protocol (UDP)
is used in these scenarios in lieu of TCP. Other examples of UDP services include
Voice Over IP, many online games, and Domain Name System (DNS).

1.3  The Client-Server Model

The web is sometimes referred to as a client-server model of communications. In the
client-server model, there are two types of actors: clients and servers. The server is
a computer agent that is normally active 24 hours a day, 7 days a week, listening

M01_CONN7150_01_SE_C01.indd 60 09/09/14 4:51 PM

	 1.3  The Client-Server Model	 61

for queries from any client who make a request. A client is a computer agent that
makes requests and receives responses from the server, in the form of response
codes, images, text files, and other data.

1.3.1  The Client
Client machines are the desktops, laptops, smart phones, and tablets you see
everywhere in daily life. These machines have a broad range of specifications
regarding operating system, processing speed, screen size, available memory,
and storage. In the most familiar scenario, client requests for web pages come
through a web browser. But a client can be more than just a web browser. When
your word processor’s help system accesses online resources, it is a client, as is
an iOS game that communicates with a game server using HTTP. Sometimes a
server web program can even act as a client. For instance, later in Chapter 17,
our sample PHP websites will consume web services from service providers such
as Flickr and Microsoft; in those cases, our PHP application will be acting as a
client.

The essential characteristic of a client is that it can make requests to particular
servers for particular resources using URLs and then wait for the response. These
requests are processed in some way by the server.

1.3.2  The Server
The server in this model is the central repository, the command center, and the
central hub of the client-server model. It hosts web applications, stores user and
program data, and performs security authorization tasks. Since one server may serve
many thousands, or millions of client requests, the demands on servers can be high.
A site that stores image or video data, for example, will require many terabytes of
storage to accommodate the demands of users.

The essential characteristic of a server is that it is listening for requests, and
upon getting one, responds with a message. The exchange of information between
the client and server is summarized by the request-response loop.

1.3.3  The Request-Response Loop
Within the client-server model, the request-response loop is the most basic
mechanism on the server for receiving requests and transmitting data in
response. The client initiates a request to a server and gets a response that could
include some resource like an HTML file, an image, or some other data, as
shown in Figure 1.12. This response can also contain other information about
the request, or the resource provided such as response codes, cookies, and other
data.

M01_CONN7150_01_SE_C01.indd 61 09/09/14 4:51 PM

62	 Chapter 1  How the Web Works

1.3.4  The Peer-to-Peer Alternative
It may help your understanding to contrast the client-server model with a different
network topology. In the peer-to-peer model, shown in Figure 1.13, where each
computer is functionally identical, each node is able to send and receive data
directly with one another. In such a model, each peer acts as both a client and
server, able to upload and download information. Neither is required to be con-
nected 24/7, and with each computer being functionally equal, there is less distinc-
tion between peers. The client-server model, in contrast, defines clear and distinct
roles for the server. Video chat and bit torrent protocols are examples of the peer-
to-peer model.

1.3.5  Server Types
In Figure 1.12, the server was shown as a single machine, which is fine from a con-
ceptual standpoint. Clients make requests for resources from a URL; to the client,
the server is a single machine.

However, most real-world websites are typically not served from a single
server machine, but by many servers. It is common to split the functionality of a
website between several different types of server, as shown in Figure 1.14. These
include:

■	 Web servers. A web server is a computer servicing HTTP requests. This
typically refers to a computer running web server software such as Apache
or Microsoft IIS (Internet Information Services).

Server

Client

Request

Response

Figure 1.12  Request-response loop

M01_CONN7150_01_SE_C01.indd 62 09/09/14 4:51 PM

	 1.3  The Client-Server Model	 63

■	 Application servers. An application server is a computer that hosts and
executes web applications, which may be created in PHP, ASP.NET, Ruby
on Rails, or some other web development technology.

■	 Database servers. A database server is a computer that is devoted to running
a Database Management System (DBMS), such as MySQL, Oracle, or SQL
Server, that is being used by web applications.

■	 Mail servers. A mail server is a computer creating and satisfying mail
requests, typically using the Simple Mail Transfer Protocol (SMTP).

■	 Media servers. A media server (also called a streaming server) is a special
type of server dedicated to servicing requests for images and videos. It may
run special software that allows video content to be streamed to clients.

■	 Authentication servers. An authentication server handles the most common
security needs of web applications. This may involve interacting with local
networking resources such as LDAP (Lightweight Directory Access Protocol)
or Active Directory.

In smaller sites, these specialty servers are often the same machine as the web
server.

Request and Respond

Figure 1.13  Peer-to-peer model

M01_CONN7150_01_SE_C01.indd 63 09/09/14 4:51 PM

64	 Chapter 1  How the Web Works

1.3.6  Real-World Server Installations
The previous section briefly described the different types of server that one might
find in a real-world website. In such a site, not only are there different types of
server, but there is often replication of each of the different server types. A busy site
can receive thousands or even tens of thousands of requests a second; globally
popular sites such as Facebook receive millions of requests a second.

A single web server that is also acting as an application or database server will
be hard-pressed to handle more than a few hundred requests a second, so the usual
strategy for busier sites is to use a server farm. The goal behind server farms is to
distribute incoming requests between clusters of machines so that any given web or
data server is not excessively overloaded, as shown in Figure 1.15. Special devices
called load balancers distribute incoming requests to available machines.

Even if a site can handle its load via a single server, it is not uncommon to still use
a server farm because it provides failover redundancy; that is, if the hardware fails in a
single server, one of the replicated servers in the farm will maintain the site’s availability.

In a server farm, the computers do not look like the ones in your house. Instead,
these computers are more like the plates stacked in your kitchen cabinets. That is, a
farm will have its servers and hard drives stacked on top of each other in server

Webserver

Mailserver

Dataserver

Mediaserver

Application
server

Authentication

server

Figure 1.14  Different types of server

M01_CONN7150_01_SE_C01.indd 64 09/09/14 4:51 PM

	 1.3  The Client-Server Model	 65

racks. A typical server farm will consist of many server racks, each containing many
servers, as shown in Figure 1.16.

Server farms are typically housed in special facilities called data centers. A data
center will contain more than just computers and hard drives; sophisticated air con-
ditioning systems, redundancy power systems using batteries and generators, and
security personnel are all part of a typical data center, as shown in Figure 1.17.

To prevent the potential for site down times, most large websites will exist in
mirrored data centers in different parts of the country, or even the world. As a con-
sequence, the costs for multiple redundant data centers are quite high (not only due
to the cost of the infrastructure but also due to the very large electrical power con-
sumption used by data centers), and only larger web companies can afford to create
and manage their own. Most web companies will instead lease space from a third-
party data center.

The scale of the web farms and data centers for large websites can be astonish-
ingly large. While most companies do not publicize the size of their computing
infrastructure, some educated guesses can be made based on the publicly known IP
address ranges and published records of a company’s energy consumption and their
power usage effectiveness.

For instance, a 2012 estimate argued that Amazon Web Services is using almost
half a million servers spread across seven different data centers.9 In 2012, an

Webserver

Webserver

Webserver

Database
server

Database
server

Loadbalancer

Loadbalancer

Client
requests

Figure 1.15  Server farm

M01_CONN7150_01_SE_C01.indd 65 09/09/14 4:52 PM

66	 Chapter 1  How the Web Works

infrastructure engineer at Amazon using a much more conservative estimation algo-
rithm concluded that Facebook is using about 200,000 servers while Google is using
around a million servers.10

Batteries and UPS

Production data server

Production web server

Production data server

Production web server

Patch panel

Patch panel

Test server

Rack management server

Fiber channel switches

RAID HD arrays

Keyboard tray and �ip-up monitor

Figure 1.16  Sample server rack

M01_CONN7150_01_SE_C01.indd 66 09/09/14 4:52 PM

	 1.4  Where Is the Internet?	 67

Server racks

Air conditioning

UPS (batteries)

Backup
generators

Figure 1.17  Hypothetical data center

B a c k g r o u n d

It is also common for the reverse to be true—that is, a single server machine
may host multiple sites. Large commercial web hosting companies such as
GoDaddy, BlueHost, Dreamhost, and others will typically host hundreds or even
thousands of sites on a single machine (or mirrored on several servers).

This type of server is sometimes referred to as a virtual server (or virtual
private server). In this approach, each virtual server runs its own copy of the
operating system web server software and thus emulates the operations of a
dedicated physical server.

1.4  Where Is the Internet?

It is quite common for the Internet to be visually represented as a cloud, which is
perhaps an apt way to think about the Internet given the importance of light and
magnetic pulses to its operation. To many people using it, the Internet does seem to
lack a concrete physical manifestation beyond our computer and cell phone screens.

But it is important to recognize that our global network of networks does not
work using magical water vapor, but is implemented via millions of miles of copper
wires and fiber optic cables, as well as via hundreds of thousands or even millions

Hands-On
Exercises

Lab 1 Exercise
Tracing a Packet

M01_CONN7150_01_SE_C01.indd 67 09/09/14 4:52 PM

68	 Chapter 1  How the Web Works

of server computers and probably an equal number of routers, switches, and other
networked devices, along with many thousands of air conditioning units and
specially constructed server rooms and buildings.

The big picture of all the networking hardware involved in making the Internet
work is far beyond the scope of this text. We should, however, try to provide at least
some sense of the hardware that is involved in making the web possible.

1.4.1  From the Computer to the Local Provider
Andrew Blum, in his eye-opening book, Tubes: A Journey to the Center of the
Internet, tells the reader that he decided to investigate the question “Where is the
Internet” when a hungry squirrel gnawing on some outdoor cable wires disrupted his
home connection thereby making him aware of the real-world texture of the Internet.
While you may not have experienced a similar squirrel problem, for many of us, our
main experience of the hardware component of the Internet is that which we experi-
ence in our homes. While there are many configuration possibilities, Figure 1.18 does
provide an approximate simplification of a typical home to local provider setup.

The broadband modem (also called a cable modem or DSL modem) is a bridge
between the network hardware outside the house (typically controlled by a phone
or cable company) and the network hardware inside the house. These devices are
often supplied by the ISP.

Broadband

modem

Wireless

router

Ethernet

cable

Fiber ju
nctio

n

boxes

Cable modem

termination

syst
em

(CMTS)

Other
head-end

Master

head-end

Fiber optic

cables

ISP head-end

Typical home

Internet in
sta

llation

To the rest

of th
e Internet

Figure 1.18  Internet hardware from the home computer to the local Internet provider

M01_CONN7150_01_SE_C01.indd 68 09/09/14 4:52 PM

	 1.4  Where Is the Internet?	 69

The wireless router is perhaps the most visible manifestation of the Internet in
one’s home, in that it is a device we typically need to purchase and install. Routers
are in fact one of the most important and ubiquitous hardware devices that make
the Internet work. At its simplest, a router is a hardware device that forwards data
packets from one network to another network. When the router receives a data
packet, it examines the packet’s destination address and then forwards it to another
destination by deciding the best path to send the packets.

A router uses a routing table to help determine where a packet should be sent.
It is a table of connections between target addresses and the node (typically another
router) to which the router can deliver the packet. In Figure 1.19, the different rout-
ing tables use next-hop routing, in which the router only knows the address of the
next step of the path to the destination; it leaves it to the next step to continue rout-
ing the packet to the appropriate destination. The packet thus makes a variety of
successive hops until it reaches its destination. There are a lot of details that have
been left out of this particular illustration. Routers will make use of submasks,

A

B

Sender address

142.109.149.46

Thou map of woe,1142.109.149.46142.109.149.46 209.202.161.240

Destination
address

209.202.161.240

Sender address

Destination address

65.47.242.9

Router address

140.239.191.1

Router address

66.37.223.130

Router address

204.70.198.182

Router address

Address Next Hop

etc.

142.109.149.146142.109.149.146 66.37.223.130

Address Next Hop

208.68.17.3

66.37.223.130

209.202.161.240

etc.

140.239.191.1

65.47.242.9

66.37.223.130

142.109.149.146142.109.149.146 140.239.191.1

Address Next Hop

209.202.161.240

etc.

204.70.198.182

142.109.149.146142.109.149.146 65.47.242.9

0.0.0.0

Address Next Hop

127.0.0.1

204.70.198.182

209.202.161.240

208.68.17.3

65.47.242.9

65.47.242.9

90.124.1.2

Routing table

etc.

Figure 1.19  Simplified routing tables

M01_CONN7150_01_SE_C01.indd 69 09/09/14 4:52 PM

70	 Chapter 1  How the Web Works

timestamps, distance metrics, and routing algorithms to supplement or even replace
routing tables; but those are all topics for a network architecture course.

Once we leave the confines of our own homes, the hardware of the Internet
becomes much murkier. In Figure 1.18, the various neighborhood broadband cables
(which are typically using copper, aluminum, or other metals) are aggregated and
connected to fiber optic cable via fiber connection boxes. Fiber optic cable (or sim-
ply optical fiber) is a glass-based wire that transmits light and has significantly
greater bandwidth and speed in comparison to metal wires. In some cities (or large
buildings), you may have fiber optic cable going directly into individual buildings;
in such a case the fiber junction box will reside in the building.

These fiber optic cables eventually make their way to an ISP’s head-end, which
is a facility that may contain a cable modem termination system (CMTS) or a digi-
tal subscriber line access multiplexer (DSLAM) in a DSL-based system. This is a
special type of very large router that connects and aggregates subscriber connections
to the larger Internet. These different head-ends may connect directly to the wider
Internet, or instead be connected to a master head-end, which provides the connec-
tion to the rest of the Internet.

1.4.2  From the Local Provider to the Ocean’s Edge
Eventually your ISP has to pass on your requests for Internet packets to other net-
works. This intermediate step typically involves one or more regional network hubs.
Your ISP may have a large national network with optical fiber connecting most of the
main cities in the country. Some countries have multiple national or regional net-
works, each with their own optical network. Canada, for instance, has three national
networks that connect the major cities in the country as well as connect to a couple
of the major Internet exchange points in the United States, as well as several provincial
networks that connect smaller cities within one or two provinces. Alternatively, your
smaller regional ISP may have transit arrangements with a larger national network
(that is, they lease the use of part of their optical fiber network’s bandwidth).

A general principle in network design is that the fewer the router hops (and thus
the more direct the path), the quicker the response. Figure 1.20 illustrates some
hypothetical connections between several different networks spread across four
countries. As you can see, just like in the real world, the countries in the illustration
differ in their degree of internal and external interconnectedness.

The networks in Country A are all interconnected, but rely on Network A1 to
connect them to the networks in Country B and C. Network B1 has many connec-
tions to other countries’ networks. The networks within Country C and D are not
interconnected, and thus rely on connections to international networks in order to
transfer information between the two domestic networks. For instance, even though
the actual distance between a node in Network C1 and a node in C2 might only be
a few miles, those packets might have to travel many hundreds or even thousands
of miles between networks A1 and/or B1.

M01_CONN7150_01_SE_C01.indd 70 09/09/14 4:52 PM

	 1.4  Where Is the Internet?	 71

Clearly this is an inefficient system, but is a reasonable approximation of the
state of the Internet in the late 1990s (and in some regions of the world this is still
the case), when almost all Internet traffic went through a few Network Access
Points (NAP), most of which were in the United States.

This type of network configuration began to change in the 2000s, as more and
more networks began to interconnect with each other using an Internet exchange
point (IX or IXP). These IXPs allow different ISPs to peer with one another (that is,
interconnect) in a shared facility, thereby improving performance for each partner in
the peer relationship.

Figure 1.21 illustrates how the configuration shown in Figure 1.20 changes with
the use of IXPs.

As you can see, IXPs provide a way for networks within a country to intercon-
nect. Now networks in Countries C and D no longer need to make hops out of their

Country DCountry BCountry A

Country C

Network D2

Network D1

Network B1

Network C2

Network C1

Network A2

Network A3

Network A1

Figure 1.20  Connecting different networks within and between countries

Country DCountry BCountry A

Country C

Network D2

Network D1

Network B1

Network C2

Network C1

Network A2

Network A3

Network A1

IXP A1

IXP D1

IXP C1

IXP A2

Figure 1.21  National and regional networks using Internet exchange points

M01_CONN7150_01_SE_C01.indd 71 09/09/14 4:52 PM

72	 Chapter 1  How the Web Works

country for domestic communications. Notice as well that for each of the IXPs,
there are connections not just with networks within their country, but also with
other countries’ networks as well. Multiple paths between IXPs provide a powerful
way to handle outages and keep packets flowing. Another key strength of IXPs is
that they provide an easy way for networks to connect to many other networks at
a single location.11

As you can see in Figure 1.22, different networks connect not only to other
networks within an IXP, but now large websites such as Microsoft and
Facebook are also connecting to multiple other networks simultaneously as a
way of improving the performance of their sites. Real IXPs, such as at Palo Alto
(PAIX), Amsterdam (AMS-IX), Frankfurt (CE-CIX), and London (LINX),
allow many hundreds of networks and companies to interconnect and have
throughput of over 1000 gigabits per second. The scale of peering in these IXPs
is way beyond that shown in Figure 1.22 (which shows peering with only five
others); companies within these IXPs use large routers from Cisco and Brocade
that have hundreds of ports allowing hundreds of simultaneous peering
relationships.

In recent years, major web companies have joined the network companies in
making use of IXPs. As shown in Figure 1.23, this sometimes involves mirroring
(duplicating) a site’s infrastructure (i.e., web and data servers) in a data center
located near the IXP. For instance, Equinix Ashburn IX in Ashburn, Virginia, is
surrounded by several gigantic data centers just across the street from the IXP.

IXP Verizo
n

Bell
Canada

Micro
soft

eBay

Telecom

New Zealand

BT Group

To rest o
f

InternetTo clie
nt’s

own
network

Hypothetical IXP

configuration

Figure 1.22  Hypothetical Internet exchange point

M01_CONN7150_01_SE_C01.indd 72 09/09/14 4:52 PM

	 1.4  Where Is the Internet?	 73

This concrete geography to the digital world encapsulates an arrangement that
benefits both the networks and the web companies. The website will have incre-
mental speed enhancements (by reducing the travel distance for these sites)
across all the networks it is peered with at the IXP, while the network will have
improved performance for its customers when they visit the most popular
websites.

1.4.3  Across the Oceans
Eventually, international Internet communication will need to travel underwater.
The amount of undersea fiber optic cable is quite staggering and is growing yearly.
As can be seen in Figure 1.24, over 250 undersea fiber optic cable systems operated
by a variety of different companies span the globe. For places not serviced by under-
sea cable (such as Antarctica, much of the Canadian Arctic islands, and other small
islands throughout the world), Internet connectivity is provided by orbiting satel-
lites. It should be noted that satellite links (which have smaller bandwidth in com-
parison to fiber optic) account for an exceptionally small percentage of oversea
Internet communication.

Connectio
n

with
 under-o

cean

Internet ca
bles

To continental

Internet
connections

Web and data servers

for major websites

High-speed �ber optic

connection directly to

nearby IXP

Datacenter

IXP

Landing

station

Figure 1.23  IXPs and data centers

M01_CONN7150_01_SE_C01.indd 73 09/09/14 4:52 PM

74	 Chapter 1  How the Web Works

1.5  Domain Name System

Back in Section 1.2, you learned about IP addresses and how they are an essential
feature of how the Internet works. As elegant as IP addresses may be, human beings
do not enjoy having to recall long strings of numbers. One can imagine how
unpleasant the Internet would be if you had to remember IP addresses instead of
domains. Rather than google.com, you’d have to type 173.194.33.32. If you had to
type in 69.171.237.24 to visit Facebook, it is quite likely that social networking
would be a less popular pastime.

Even as far back as the days of ARPANET, researchers assigned domain names
to IP addresses. In those early days, the number of Internet hosts was small, so a list
of a few hundred domain and IP addresses could be downloaded as needed from the
Stanford Research Institute (now SRI International) as a hosts file (see Pro Tip).
Those key-value pairs of domain names and IP addresses allowed people to use the
domain name rather than the IP address.12

As the number of computers on the Internet grew, this hosts file had to be
replaced with a better, more scalable, and distributed system. This system is called
the Domain Name System (DNS) and is shown in its most simplified form in
Figure 1.25.

Figure 1.24  Undersea fiber optic cables (courtesy TeleGeography / www.submarinecablemap.com)

Hands-On
Exercises

Lab 1 Exercise
Name Servers

M01_CONN7150_01_SE_C01.indd 74 09/09/14 4:52 PM

	 1.5  Domain Name System	 75

DNS is one of the core systems that make an easy-to-use Internet possible (DNS
is used for email as well). The DNS system has another benefit besides ease of use.
By separating the domain name of a server from its IP location, a site can move to
a different location without changing its name. This means that sites and email
systems can move to larger and more powerful facilities without disrupting service.

Since the entire request-response cycle can take less than a second, it is easy to
forget that DNS requests are happening in all your web and email applications.
Awareness and understanding of the DNS system is essential for success in develop-
ing, securing, deploying, troubleshooting, and maintaining web systems.

I need to go to
www.funwebdev.com

Here it is,
it’s: 66.147.244.79

What’s the
IP address of
www.funwebdev.com?

I want the
default page
at 66.147.244.79

Here it is ...

Web server:
66.147.244.79

1

23

4

Domain
nameserver

Figure 1.25  DNS overview

P r o Ti p

A remnant of those earliest days still exists on most modern computers,
namely the hosts file. Inside that file (in Unix systems typically at /etc/hosts) you
will see domain name mappings in the following format:

127.0.0.1 Localhost SomeLocalDomainName.com

This mechanism will be used in this book to help us develop websites on our own
computers with real domain names in the address bar.

(continued)

M01_CONN7150_01_SE_C01.indd 75 09/09/14 4:52 PM

76	 Chapter 1  How the Web Works

1.5.1  Name Levels
A domain name can be broken down into several parts. They represent a hierarchy,
with the rightmost parts being closest to the root at the “top” of the Internet naming
hierarchy. All domain names have at least a top-level domain (TLD) name and a
second-level domain (SLD) name. Most websites also maintain a third-level WWW
subdomain and perhaps others. Figure 1.26 illustrates a domain with four levels.

The rightmost portion of the domain name (to the right of the rightmost period)
is called the top-level domain. For the top level of a domain, we are limited to two
broad categories, plus a third reserved for other use. They are:

The same hosts file mechanism could also allow a malicious user to reroute traffic
destined for a particular domain. If a malicious user ran a server at 123.56.789.1
they could modify a user’s hosts to make facebook.com point to their malicious
server. The end client would then type facebook.com into his browser and instead
of routing that traffic to the legitimate facebook.com servers, it would be sent to
the malicious site, where the programmer could phish, or steal data.

123.456.678.1 facebook.com

For this reason many system administrators and most modern operating systems
do not allow access to this file without an administrator password.

server1.www.funwebdev.com

Top ‐ level domain (TLD)Top ‐ level domain (TLD)

Second ‐ level domain (SLD)Second ‐ level domain (SLD)

Third ‐ level domainThird ‐ level domain

Fourth ‐ level domainFourth ‐ level domain

com

funwebdev

www

server1

Top ‐ level domain (TLD)Top ‐ level domain (TLD)

Second ‐ level domain (SLD)Second ‐ level domain (SLD)

Third ‐ level domainThird ‐ level domain

Fourth ‐ level domainFourth ‐ level domain

Most general

Most speci�c

Figure 1.26  Domain levels

M01_CONN7150_01_SE_C01.indd 76 09/09/14 4:52 PM

	 1.5  Domain Name System	 77

■	 Generic top-level domain (gTLD)

°	 Unrestricted. TLDs include .com, .net, .org, and .info.

°	 Sponsored. TLDs including .gov, .mil, .edu, and others. These domains
can have requirements for ownership and thus new second-level domains
must have permission from the sponsor before acquiring a new address.

°	 New. From January to May of 2012, companies and individuals could
submit applications for new TLDs. TLD application results were announced
in June 2012, and include a wide range of both contested and single
applicant domains. These include corporate ones like .apple, .google, and
.macdonalds, and contested ones like .buy, .news, and .music.13

■	 Country code top-level domain (ccTLD)

°	 TLDs include .us, .ca, .uk, and .au. At the time of writing, there were 252
codes registered.14 These codes are under the control of the countries
which they represent, which is why each is administered differently. In the
United Kingdom, for example, commercial entities and businesses must
register subdomains to co.uk rather than second-level domains directly.
In Canada .ca domains can be obtained by any person, company, or
organization living or doing business in Canada. Other countries have
peculiar extensions with commercial viability (such as .tv for Tuvalu) and
have begun allowing unrestricted use to generate revenue.

°	 Since some nations use nonwestern characters in their native languages,
the concept of the internationalized top-level domain name (IDN)
has also been tested with great success in recent years. Some IDNs
include Greek, Japanese, and Arabic domains (among others) which
have test domains at http://παράδειγμα.δοκιμή, http://例え.テスト, and
http://رابتخإ.لاثم , respectively.

■	 arpa

°	 The domain .arpa was the first assigned top-level domain. It is still
assigned and used for reverse DNS lookups (i.e., finding the domain name
of an IP address).

In a domain like funwebdev.com, the “.com” is the top-level domain and fun-
webdev is called the second-level domain. Normally it is the second-level domains
that one registers.

There are few restrictions on second-level domains aside from those imposed by
the registrar (defined in the next section below). Except for internationalized domain
names, we are restricted to the characters A-Z, 0-9, and the “-” character. Since
domain names are case-insensitive characters, a-z can also be used interchangeably.

M01_CONN7150_01_SE_C01.indd 77 09/09/14 4:52 PM

78	 Chapter 1  How the Web Works

The owner of a second-level domain can elect to have subdomains if they so
choose, in which case those subdomains are prepended to the base hostname. For
example, we can create exam-answers.webdevfun.com as a domain name, where
exam-answers is the subdomain (don’t bother checking . . . it doesn’t exist).

N o t e

We could go further creating sub-subdomains if we wanted to. Each fur-
ther level of subdomain is prepended to the front of the hostname. This allows
third level, fourth, and so on. This can be used to identify individual computers
on a network all within a domain.

1.5.2  Name Registration
As we have seen, domain names provide a human-friendly way to identify comput-
ers on the Internet. How then are domain names assigned? Special organizations or
companies called domain name registrars manage the registration of domain names.
These domain name registrars are given permission to do so by the appropriate
generic top-level domain (gTLD) registry and/or a country code top-level domain
(ccTLD) registry.

In the 1990s, a single company (Networks Solutions Inc.) handled the com, net,
and org registries. By 1999, the name registration system changed to a market sys-
tem in which multiple companies could compete in the domain name registration
business. A single organization—the nonprofit Internet Corporation for Assigned
Names and Numbers (ICANN)—still oversees the management of top-level
domains, accredits registrars, and coordinates other aspects of DNS. At the time of
writing this chapter, there were almost 1000 different ICANN-accredited registrars
worldwide.

Figure 1.27 illustrates the process involved in registering a domain name.

1.5.3  Address Resolution
While domain names are certainly an easier way for users to reference a website,
eventually your browser needs to know the IP address of the website in order to
request any resources from it. DNS provides a mechanism for software to discover
this numeric IP address. This process is referred to here as address resolution.

As shown back in Figure 1.25, when you request a domain name, a computer
called a domain name server will return the IP address for that domain. With that
IP address, the browser can then make a request for a resource from the web server
for that domain.

M01_CONN7150_01_SE_C01.indd 78 09/09/14 4:52 PM

	 1.5  Domain Name System	 79

While Figure 1.25 provides a clear overview of the address resolution process,
it is quite simplified. What actually happens during address resolution is more com-
plicated, as can be seen in Figure 1.28.

DNS is sometimes referred to as a distributed database system of name servers.
Each server in this system can answer, or look for the answer to questions about
domains, caching results along the way. From a client’s perspective, this is like a
phonebook, mapping a unique name to a number.

Figure 1.28 is one of the more complicated ones in this text, so let’s examine
the address resolution process in more detail.

1.	The resolution process starts at the user’s computer. When the domain www
.funwebdev.com is requested (perhaps by clicking a link or typing in a URL),
the browser will begin by seeing if it already has the IP address for the domain
in its cache. If it does, it can jump to step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in the diagram.

2.	 If the browser doesn’t know the IP address for the requested site, it will delegate
the task to the DNS resolver, a software agent that is part of the operating

DOMAINS

Dom
ain

Dom
ain

Dom
ain

Dom
ain

Dom
ain

Dom
ain

I want the domain
funwebdev.com

1

WHOIS
info

TLD (.com)
registry

TLD name servers

Complete the registration procedures
which includes WHOIS contact information
(includes DNS information) and payment.

Registrars will check if
domain is available by
asking Registry for the TLD.

Enjoy the new domain …
You now have purchased
the rights to use it.

Registry will
push DNS
information
for domain
to TLD name
server.

Decide on a
top-level
domain (.com)
and a
second-level
domain
(funwebdev).

2

3

5

Choose a domain registrar
or a reseller (a company such
as a web host that works
with a registrar).

4

6

Figure 1.27  Domain name registration process

M01_CONN7150_01_SE_C01.indd 79 09/09/14 4:52 PM

80	 Chapter 1  How the Web Works

system. The DNS resolver also keeps a cache of frequently requested domains;
if the requested domain is in its cache, then the process jumps to step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

.

3.	Otherwise, it must ask for outside help, which in this case is a nearby
DNS server, a special server that processes DNS requests. This might be a
computer at your Internet service provider (ISP) or at your university or
corporate IT department. The address of this local DNS server is usually
stored in the network settings of your computer’s operating system, as can
be seen in Figure 1.9. This server keeps a more substantial cache of domain
name/IP address pairs. If the requested domain is in its cache, then the
process jumps to step 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

.

4.	If the local DNS server doesn’t have the IP address for the domain in its
cache, then it must ask other DNS servers for the answer. Thankfully, the
domain system has a great deal of redundancy built into it. This means that
in general there are many servers that have the answers for any given DNS
request. This redundancy exists not only at the local level (for instance, in
Figure 1.28, the ISP has a primary DNS server and an alternative one as
well) but at the global level as well.

5.	If the local DNS server cannot find the answer to the request from an
alternate DNS server, then it must get it from the appropriate top-level

.com name
server will
return IP address
of DNS server
for funwebdev.com

comnameservers

Rootnameserver

ISPISP

I want to visit www.funwebdev.com 1

DNS
Resolver

2

12

14

13

4

7

9

5
6If IP for this site is not in browser’s cache,

it delegates task to operating system’s
DNS Resolver.

If not in its DNS cache,
resolver makes request
for IP address to ISP’s
DNS Server.

If the primary DNS
server doesn’t have
the requested domain
in its DNS cache, it
sends out the request
to the root name
server.

Request for IP
address for
www.funwebdev.com

funwebdev.comfunwebdev.com

Browser requests
page

Returns
requested
page

Return IP address of
www.funwebdev.com

Root name server
returns IP of name
server for requested
TLD (in this case
the com name server).

Request IP of name server
for funwebdev.com

Return IP address
of web server

Return IP
address
of
www.funwebdev.com

Alternate
DNSserver

Primary
DNSserver

DNSserver

Webserver

3

8

10

11

Checks
its DNS cache

Figure 1.28  Domain name address resolution process

M01_CONN7150_01_SE_C01.indd 80 09/09/14 4:52 PM

	 1.5  Domain Name System	 81

domain (TLD) name server. For funwebdev.com this is .com. Our local DNS
server might already have a list of the addresses of the appropriate TLD
name servers in its cache. In such a case, the process can jump to step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

.

6.	If the local DNS server does not already know the address of the requested
TLD server (for instance, when the local DNS server is first starting up it
won’t have this information), then it must ask a root name server for that
information. The DNS root name servers store the addresses of TLD name
servers. IANA (Internet Assigned Numbers Authority) authorizes 13 root
servers, so all root requests will go to one of these 13 roots. In practice,
these 13 machines are mirrored and distributed around the world (see http://
www.root-servers.org/ for an interactive illustration of the current root
servers); at the time of writing there are a total of 350 root server machines.
With the creation of new commercial top-level domains in 2012, approximately
2000 or so new TLDs will be coming online; this will create a heavier load on
these root name servers.

7.	After receiving the address of the TLD name server for the requested
domain, the local DNS server can now ask the TLD name server for the
address of the requested domain. As part of the domain registration process
(see Figure 1.27), the address of the domain’s DNS servers are sent to the
TLD name servers, so this is the information that is returned to the local
DNS server in step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

.

8.	The user’s local DNS server can now ask the DNS server (also called a
second-level name server) for the requested domain (www.funwebdev.com);
it should receive the correct IP address of the web server for that domain.
This address will be stored in its own cache so that future requests for this
domain will be speedier. That IP address can finally be returned to the DNS
resolver in the requesting computer, as shown in step 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

.

9.	The browser will eventually receive the correct IP address for the requested
domain, as shown in step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

. Note: If the local DNS server was unable to
find the IP address, it would return a failed response, which in turn would
cause the browser to display an error message.

10.	�Now that it knows the desired IP address, the browser can finally send out
the request to the web server, which should result in the web server responding
with the requested resource (step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

).

This process may seem overly complicated, but in practice it happens very
quickly because DNS servers cache results. Once the server resolves funwebdev
.com, subsequent requests for resources on funwebdev.com will be faster, since we
can use the locally stored answer for the IP address rather than have to start over
again at the root servers.

To facilitate system-wide caching, all DNS records contain a time to live (TTL)
field, recommending how long to cache the result before requerying the name

M01_CONN7150_01_SE_C01.indd 81 09/09/14 4:52 PM

82	 Chapter 1  How the Web Works

server. Although this mechanism improves the efficiency and response time of the
DNS system, it has a consequence of delaying propagation of changes throughout
all servers. This is why administrators, after updating a DNS entry, must wait for
propagation to all client ISP caches.

For more hands-on practice with the Domain Names System, please refer to
Chapter 19 on Deployment.

N o t e

Every web developer should understand the practice of pointing the name
servers to the web server hosting the site. Quite often, domain registrars can
convince customers into purchasing hosting together with their domain. Since
most users are unaware of the distinction, they do not realize that the company
from which you buy web space does not need to be the same place you registered
the domain. Those name servers can then be updated at the registrar to point to
any name servers you use. Within 48 hours, the IP-to-domain name mapping
should have propagated throughout the DNS system so that anyone typing the
newly registered domain gets directed to your web server.

1.6  Uniform Resource Locators

In order to allow clients to request particular resources from the server, a naming
mechanism is required so that the client knows how to ask the server for the file.
For the web that naming mechanism is the Uniform Resource Locator (URL). As
illustrated in Figure 1.29, it consists of two required components: the protocol used
to connect, and the domain (or IP address) to connect to. Optional components of
the URL are the path (which identifies a file or directory to access on that server),
the port to connect to, a query string, and a fragment identifier.

1.6.1  Protocol
The first part of the URL is the protocol that we are using. Recall that in Section
1.2 we listed several application layer protocols on the TCP/IP stack. Many of those
protocols can appear in a URL, and define what application protocols to use.
Requesting ftp://example.com/abc.txt sends out an FTP request on port 21, while
http://example.com/abc.txt would transmit on port 80.

http://www.funwebdev.com/index.php?page=17#articlehttp://www.funwebdev.com/index.php?page=17#article

Protocol Domain Query String FragmentPath

Figure 1.29  URL components

M01_CONN7150_01_SE_C01.indd 82 09/09/14 4:52 PM

	 1.6  Uniform Resource Locators	 83

1.6.2  Domain
The domain identifies the server from which we are requesting resources. Since the
DNS system is case insensitive, this part of the URL is case insensitive. Alternatively,
an IP address can be used for the domain.

1.6.3  Port
The optional port attribute allows us to specify connections to ports other than the
defaults defined by the IANA authority. A port is a type of software connection
point used by the underlying TCP/IP protocol and the connecting computer. If the
IP address is analogous to a building address, the port number is analogous to the
door number for the building.

Although the port attribute is not commonly used in production sites, it can be
used to route requests to a test server, to perform a stress test, or even to circumvent
Internet filters. If no port is specified, the protocol component of a URL determines
which port to use.

The syntax for the port is to add a colon after the domain, then specify an inte-
ger port number. Thus for instance, to connect to our server on port 888 we would
specify the URL as http://funwebdev.com:888/.

1.6.4  Path
The path is a familiar concept to anyone who has ever used a computer file system.
The root of a web server corresponds to a folder somewhere on that server. On
many Linux servers that path is /var/www/html/ or something similar (for Windows
IIS machines it is often /inetpub/wwwroot/). The path is case sensitive, though on
Windows servers it can be case insensitive.

The path is optional. However, when requesting a folder or the top-level page
of a domain, the web server will decide which file to send you. On Apache servers
it is generally index.html or index.php. Windows servers sometimes use Default
.html or Default.aspx. The default names can always be configured and changed.

1.6.5  Query String
Query strings will be covered in depth when we learn more about HTML forms and
server-side programming. They are the way of passing information such as user
form input from the client to the server. In URLs, they are encoded as key-value
pairs delimited by “&” symbols and preceded by the “?” symbol. The components
for a query string encoding a username and password are illustrated in Figure 1.30.

1.6.6  Fragment
The last part of a URL is the optional fragment. This is used as a way of requesting
a portion of a page. Browsers will see the fragment in the URL, seek out the

M01_CONN7150_01_SE_C01.indd 83 09/09/14 4:52 PM

84	 Chapter 1  How the Web Works

fragment tag anchor in the HTML, and scroll the website down to it. Many early
websites would have one page with links to content within that page using frag-
ments and “back to top” links in each section.

1.7  Hypertext Transfer Protocol

There are several layers of protocols in the TCP/IP model, each one building on the
lower ones until we reach the highest level, the application layer, which allows for
many different types of services, like Secure Shell (SSH), File Transfer Protocol
(FTP), and the World Wide Web’s protocol, i.e., the Hypertext Transfer Protocol
(HTTP).

While the details of many of the application layer protocols are beyond the scope
of this text, some, like HTTP, are an essential part of the web and hence require a
deep understanding for a developer to build atop them successfully. We will come
back to the HTTP protocol at various times in this book; each time we will focus
on a different aspect of it. However, here we will just try to provide an overview of
its main points.

The HTTP establishes a TCP connection on port 80 (by default). The server
waits for the request, and then responds with a response code, headers, and an
optional message (which can include files) as shown in Figure 1.31.

The user experience for a website is unlike a user experience for traditional
desktop software. Users do not download software; they visit a URL. While we as
web users might be tempted to think of an entire page being returned in a single
HTTP response, this is not in fact what happens.

In reality the experience of seeing a single web page is facilitated by the client’s
browser, which requests the initial HTML page, then parses the returned HTML to
find all the resources referenced from within it, like images, style sheets, and scripts.
Only when all the files have been retrieved is the page fully loaded for the user, as
shown in Figure 1.32. A single web page can reference dozens of files and requires
many HTTP requests and responses.

The fact that a single web page requires multiple resources, possibly from dif-
ferent domains, is the reality we must work with and be aware of. Modern browsers
provide the developer with tools that can help us understand the HTTP traffic for a

?username=john&password=abcdefg

Keys

Values
Delimiters

Figure 1.30  Query string components

Hands-On
Exercises

Lab 1 Exercise
Seeing HTTP Headers

M01_CONN7150_01_SE_C01.indd 84 09/09/14 4:52 PM

	 1.7  Hypertext Transfer Protocol	 85

GET /index.html HTTP/1.1
Host: example.com
User‐Agent: Mozilla/5.0 (Windows NT 6.1; WOW64;
rv:15.0) Gecko/20100101 Firefox/15.0.1
Accept: text/html,application/xhtml+xml
Accept‐Language: en‐us,en;q=0.5
Accept‐Encoding: gzip, deflate
Connection: keep‐alive
Cache‐Control: max‐age=0

Request

HTTP/1.1 200 OK
Date: Mon, 22 Oct 2012 02:43:49 GMT
Server: Apache
Vary: Accept‐Encoding
Content‐Encoding: gzip
Content‐Length: 4538
Connection: close
Content‐Type: text/html; charset=UTF‐8

<html>
<head> ...

Response

Web server

Figure 1.31  HTTP illustrated

Webserver

For each resource
referenced in the HTML,
the browser makes
additional requests.

When all resources have
arrived, the browser can
lay out and display the
page to the user.

vacation.html

styles.css

GET /vacation.html

GET /styles.css

GET /picture.jpg

picture.jpg

3

8

1

2Browser

7

6

5

4

CSS

Figure 1.32  Browser parsing HTML and making subsequent requests

M01_CONN7150_01_SE_C01.indd 85 09/09/14 4:52 PM

86	 Chapter 1  How the Web Works

given page. Figure 1.33 shows a screen from the Firefox plugin FireBug (an HTML/
JavaScript debugger), which lists the resources requested for a current page and the
breakdown of the load times for each component.

1.7.1  Headers
Headers are sent in the request from the client and received in the response from the
server. These encode the parameters for the HTTP transaction, meaning they define
what kind of response the server will send. Headers are one of the most powerful
aspects of HTTP and unfortunately few developers spend any time learning about
them. Although there are dozens of headers,15 we will cover a few of the essential ones
to give you a sense of what type of information is sent with each and every request.

Request headers include data about the client machine (as in your personal
computer). Web developers can use this information for analytic reasons and for site
customization. Some of these include:

■	 Host. The host header was introduced in HTTP 1.1, and it allows multiple
websites to be hosted off the same IP address. Since requests for different
domains can arrive at the same IP, the host header tells the server which
domain at this IP address we are interested in.

■	 User-Agent. The User-Agent string is the most referenced header in modern
web development. It tells us what kind of operating system and browser

Figure 1.33  Distribution of load times

M01_CONN7150_01_SE_C01.indd 86 09/09/14 4:52 PM

	 1.7  Hypertext Transfer Protocol	 87

the user is running. Figure 1.34 shows a sample string and the components
encoded within. These strings can be used to switch between different style
sheets and to record statistical data about the site’s visitors.

■	 Accept. The Accept header tells the server what kind of media types the client
can receive in the response. The server must adhere to these constraints and
not transmit data types that are not acceptable to the client. A text browser,
for example, may not accept attachment binaries, whereas a graphical browser
can do so.

■	 Accept-Encoding. The Accept-Encoding headers specify what types of
modifications can be done to the data before transmission. This is where
a browser can specify that it can unzip or “deflate” files compressed with
certain algorithms. Compressed transmission reduces bandwidth usage, but
is only useful if the client can actually deflate and see the content.

■	 Connection. This header specifies whether the server should keep the
connection open, or close it after response. Although the server can abide
by the request, a response Connection header can terminate a session, even
if the client requested it stay open.

■	 Cache-Control. The Cache header allows the client to control caching mechanisms.
This header can specify, for example, to only download the data if it is newer
than a certain age, never redownload if cached, or always redownload. Proper
use of the Cache-Control header can greatly reduce bandwidth.

Response headers have information about the server answering the request and
the data being sent. Some of these include:

■	 Server. The Server header tells the client about the server. It can include
what type of operating system the server is running as well as the web server
software that it is using.

Mozilla/6.0 (Windows NT 6.2; WOW64; rv:16.0.1) Gecko/20121011 Firefox/16.0.1Mozilla/6.0 (Windows NT 6.2; WOW64; rv:16.0.1) Gecko/20121011 Firefox/16.0.1

Browser OS
Additional details (32/
64 bit, build versions)

Gecko Browser
Build Date Firefox version

Figure 1.34  User-Agent components

N o t e

The Server header can provide additional information to hackers about
your infrastructure. If, for example, you are running a vulnerable version of a
plugin, and your Server header declares that information to any client that asks,
you could be scanned, and subsequently attacked based on that header alone. For
this reason, many administrators limit this field to as little info as possible.

M01_CONN7150_01_SE_C01.indd 87 09/09/14 4:52 PM

88	 Chapter 1  How the Web Works

■	 Last-Modified. Last-Modified contains information about when the requested
resource last changed. A static file that does not change will always transmit
the same last modified timestamp associated with the file. This allows cache
mechanisms (like the Cache-Control request header) to decide whether to
download a fresh copy of the file or use a locally cached copy.

■	 Content-Length. Content-Length specifies how large the response body
(message) will be. The requesting browser can then allocate an appropriate
amount of memory to receive the data. On dynamic websites where the
Last-Modified header changes each request, this field can also be used to
determine the “freshness” of a cached copy.

■	 Content-Type. To accompany the request header Accept, the response
header Content-Type tells the browser what type of data is attached in the
body of the message. Some media-type values are text/html, image/jpeg,
image/png, application/xml, and others. Since the body data could be
binary, specifying what type of file is attached is essential.

■	 Content-Encoding. Even though a client may be able to gzip decompress files
and specified so in the Accept-Encoding header, the server may or may not
choose to encode the file. In any case, the server must specify to the client
how the content was encoded so that it can be decompressed if need be.

N o t e

Although compressing pages before transmission reduces bandwidth, it
requires CPU cycles and memory to do so. On busy servers, sometimes it can be
more efficient to transmit dynamic content uncompressed, saving those CPU
cycles to respond to requests.

1.7.2  Request Methods
The HTTP protocol defines several different types of requests, each with a different
intent and characteristics. The most common requests are the GET and POST request,
along with the HEAD request. Other requests, such as PUT, DELETE, CONNECT, TRACE,
and OPTIONS are seldom used, and are not covered here.

The most common type of HTTP request is the GET request. In this request one
is asking for a resource located at a specified URL to be retrieved. Whenever you
click on a link, type in a URL in your browser, or click on a book mark, you are
usually making a GET request.

Data can also be transmitted through a GET request, something you will be
learning about more in Chapter 4.

The other common request method is the POST request. This method is normally
used to transmit data to the server using an HTML form (though as we will learn in

M01_CONN7150_01_SE_C01.indd 88 09/09/14 4:52 PM

	 1.7  Hypertext Transfer Protocol	 89

Chapter 4, a data entry form could use the GET method instead). In a POST request,
data is transmitted through the header of the request, and as such is not subject to
length limitations like with GET. Additionally, since the data is not transmitted in the
URL, it is seen to be a safer way of transmitting data (although in practice all post data
is transmitted unencrypted, and can be read nearly as easily as GET data). Figure 1.35
illustrates a GET and a POST request in action.

A HEAD request is similar to a GET except that the response includes only the
header information, and not the body that would be retrieved in a full GET. Search
engines, for example, use this request to determine if a page needs to be reindexed
without making unneeded requests for the body of the resource, saving bandwidth.

1.7.3  Response Codes
Response codes are integer values returned by the server as part of the response
header. These codes describe the state of the request, including whether it was suc-
cessful, had errors, requires permission, and more. For a complete listing, please
refer to the HTTP specification. Some commonly encountered codes are listed on
the following page to provide a taste of what kind of response codes exist.

Browser

Hyperlink

Browser

Picasso

1906

Spain

Artist:

Year:

Nationality:

Submit

Web server

<form method="POST" action="FormProcess.php">

POST /FormProcess.php http/1.1

GET /SomePage.php http/1.1

Hyperlink

Figure 1.35  GET versus POST requests

M01_CONN7150_01_SE_C01.indd 89 09/09/14 4:52 PM

90	 Chapter 1  How the Web Works

Table 1.1 lists the most common response codes. The codes use the first digit to
indicate the category of response. 2## codes are for successful responses, 3## are for
redirection-related responses, 4## codes are client errors, while 5## codes are server
errors.

1.8  Web Servers

A web server is, at a fundamental level, nothing more than a computer that responds
to HTTP requests. The first web server was hosted on Tim Berners-Lee’s desktop

Code Description

200: OK The 200 response code means that the request was successful.

301: Moved Permanently Tells the client that the requested resource has permanently moved. Codes
like this allow search engines to update their databases to reflect the new
location of the resource. Normally the new location for that resource is
returned in the response.

304: Not Modified If the client so requested a resource with appropriate Cache-Control
headers, the response might say that the resource on the server is no
newer than the one in the client cache. A response like this is just a header,
since we expect the client to use a cached copy of the resource.

307: Temporary redirect This code is similar to 301, except the redirection should be considered
temporary.

400: Bad Request If something about the headers or HTTP request in general is not correctly
adhering to HTTP protocol, the 400 response code will inform the client.

401: Unauthorized Some web resources are protected and require the user to provide credentials
to access the resource. If the client gets a 401 code, the request will have
to be resent, and the user will need to provide those credentials.

404: Not found 404 codes are one of the only ones known to web users. Many browsers
will display an HTML page with the 404 code to them when the requested
resource was not found.

414: Request URI too long URLs have a length limitation, which varies depending on the server
software in place. A 414 response code likely means too much data is likely
trying to be submitted via the URL.

500: Internal server error This error provides almost no information to the client except to say the
server has encountered an error.

TABLE 1.1  HTTP Response Codes

M01_CONN7150_01_SE_C01.indd 90 09/09/14 4:52 PM

	 1.8  Web Servers	 91

computer; later when you begin PHP development in Chapter 8, you may find your-
self turning your own computer into a web server.

Real-world web servers are often more powerful than your own desktop com-
puter, and typically come with additional software to make them more reliable and
replaceable. And as we saw in Section 1.3.6, real-world websites typically have
many web servers configured together in web farms.

Regardless of the physical characteristics of the server, one must choose an
application stack to run a website. This stack will include an operating system, web
server software, a database, and a scripting language to process dynamic requests.

Web practitioners often develop an affinity for a particular stack (often without
rationale). Throughout this textbook we will rely on the LAMP software stack,
which refers to the Linux operating system, Apache web server, MySQL database,
and PHP scripting language. Since Apache and MySQL also run on Windows and
Mac operating systems, variations of the LAMP stack can run on nearly any com-
puter (which is great for students). The Apple OSX MAMP software stack is nearly
identical to LAMP, since OSX is a Unix implementation, and includes all the tools
available in Linux. The WAMP software stack is another popular variation where
Windows operating system is used.

Despite the wide adoption of the LAMP stack, web developers need to be aware
of alternate software that could be used to support their websites. Many corpora-
tions, for instance, make use of the Microsoft WISA software stack, which refers to
Windows operating system, IIS web server, SQL Server database, and the ASP.NET
server-side development technologies.

1.8.1  Operating Systems
The choice of operating system will constrain what other software can be installed
and used on the server. The most common choice for a web server is a Linux-
based OS, although there is a large business-focused market that uses Microsoft
Windows IIS.

Linux is the preferred choice for technical reasons like the higher average
uptime, lower memory requirements, and the easier ability to remotely administer
the machine from the command line, if required. The free cost also makes it an
excellent tool for students and professionals alike looking to save on licensing costs.

Organizations that have already adopted Microsoft solutions across the organi-
zation are more likely to use a Windows server OS to host their websites, since they
will have in-house Windows administrators familiar with the Microsoft suite of
tools.

1.8.2  Web Server Software
If running Linux, the most likely server software is Apache, which has been ported
to run on Windows, Linux, and Mac, making it platform agnostic. Apache is also

M01_CONN7150_01_SE_C01.indd 91 09/09/14 4:52 PM

92	 Chapter 1  How the Web Works

well suited to textbook discussion since all of its configuration options can be set
through text files (although graphical interfaces exist).

IIS, the Windows server software, is preferred largely by those using Windows
in their enterprises already or who prefer the .NET development framework. The
most compelling reason to choose an IIS server is to get access to other Microsoft
tools and products, including ASP.NET and SQL Server.

1.8.3  Database Software
The moment you decide your website will be dynamic, and not just static HTML
pages, you will likely need to make use of relational database software capable of
running SQL queries.

The open-source DBMS of choice is usually MySQL (though some prefer
PostgreSQL or SQLite), whereas the proprietary choice for web DBMS includes Oracle,
IBM DB2, and Microsoft SQL Server. All of these database servers are capable of
managing large amounts of data, maintaining integrity, responding to many queries,
creating indexes, creating triggers, and more. The differences between these servers are
real, but are not relevant to the scope of projects we will be developing in this text.

In this book you will be using the MySQL Server, meaning if you are developing
on another platform, some queries may have to be altered.

1.8.4  Scripting Software
Finally (or perhaps firstly if you are starting a project from scratch) is the choice of
server-side development language or platform. This development platform will be
used to write software that responds to HTTP requests. The choice for a LAMP
stack is usually PHP or Python or Ruby on Rails. We have chosen PHP due to its
access to low-level HTTP features, object-oriented support, C-like syntax, and its
wide proliferation on the web.

Other technologies like ASP.NET are available to those interested in working
entirely inside the Microsoft platform. Each technology does have real advantages
and disadvantages, but we will not be addressing them here.

1.9  Chapter Summary

This long chapter has been broad in its coverage of how the Internet and the web work.
It began with a short history of the Internet and how those early choices are still affect-
ing the web today. From the design of the Internet suite of protocols you saw how IP
addresses, and a multilayer stack of protocols guaranteed transmission and receipt of
data. The chapter also tried to provide a picture of the hardware component of the web
and the Internet, from your home router, to gigantic web farms, to the many tentacles
of undersea and overland fiber optic cable. The chapter then covered some of the key
protocols that make the web work: the DNS, URLs, and the HTTP protocol.

M01_CONN7150_01_SE_C01.indd 92 09/09/14 4:52 PM

	 1.9  Chapter Summary	 93

1.9.1  Key Terms
address resolution
Apache
application layer
application server
authentication server
bandwidth
broadband modem
cable modem termination

system
circuit switching
client
client-server model
country code top-level

domain (ccTLD)
data center
database server
DNS resolver
DNS server
domain names
domain name registrars
Domain Name

System (DNS)
dynamic website
failover redundancy
fiber optic cable
four-layer network model
generic top-level

domain (gTLD)
GET request
head-end
HTTP
Internet Assigned Numbers

Authority (IANA)
Internet Corporation for

Assigned Names and
Numbers (ICANN)

internationalized top-level
domain name (IDN)

intranet
Internet exchange point

(IX or IXP)
Internet layer
Internet Protocol (IP)
IP address
IPv4
IPv6
LAMP software stack
link layer
load balancers
MAC addresses
mail server
media server
Mosaic
Netscape Navigator
Network Access

Points (NAP)
next-hop routing
packet
packet switching
peer
peer-to-peer model
port
POST request
protocol
request
semantic web
Request for

Comments (RFC)
request headers
request-response loop
response

response codes
response headers
reverse DNS lookups
root name server
router
routing table
second-level domain
server
server farm
server racks
static website
subdomain
TCP/IP (Transmission

Control Protocol/
Internet Protocol)

top-level domain (TLD)
TLD name server
transport layer
Transmission Control

Protocol (TCP)
User Datagram

Protocol (UDP)
Uniform Resource

Locator (URL)
virtual server
webmaster
Web 2.0
web server
WISA software stack
World Wide Web

Consortium (W3C)

1.9.2  Review Questions
	 1.	 What is bandwidth? What is its standard unit of measurement?
	 2.	 What are the five essential elements of the early web that are still the core

features of the modern web?

M01_CONN7150_01_SE_C01.indd 93 09/09/14 4:52 PM

94	 Chapter 1  How the Web Works

	 3.	 Describe the relative advantages and disadvantages of web-based applications
in comparison to traditional desktop applications.

	 4.	 What is Request for Comments?
	 5.	 What is semantic web? What are the semi-standardized approaches for adding

semantic qualifiers to HTML?
	 6.	 What is a virtual server?
	 7.	 What is a broadband modem?
	 8.	 What is the Internet Protocol (IP)? Why is it important for web developers?
	 9.	 What is the client-server model of communications? How does it differ from

peer-to-peer?
	10.	Discuss the relationship between server farms, data centers, and Internet

exchange points. Be sure to provide a definition for each.
	11.	Describe the function of a Uniform Resource Locator (URL).
	12.	What are the two main benefits of DNS?
	13.	How many levels can a domain name have? What are generic top-level

domains?
	14.	Describe the main steps in the domain name address resolution process.
	15.	How many requests are involved in displaying a single web page?
	16.	How many distinct domains can be hosted at a single IP address?
	17.	What is the LAMP stack? What are some of its common variants?

1.9.3  References
	 1.	� J. Postel, “Internet Protocol,” September 1981. [Online].
		 http://www.rfc-editor.org/rfc/rfc791.txt.
	 2.	� J. Postel, “Transmission Control Protocol,” September 1981. [Online].

http://www.rfc-editor.org/rfc/rfc793.txt.
	 3.	� R. Hauben, “From the ARPANET to the Internet,” 2001. [Online]. http://

www.columbia.edu/~rh120/other/tcpdigest_paper.txt.
	 4.	� T. Berners-Lee, “The World Wide Web Project,” December 1992. [Online].

http://www.w3.org/History/19921103-hypertext/hypertext/WWW/
TheProject.html.

	 5.	� Internet Systems Consortium, “Internet host count history,” July 2012.
[Online]. http://www.isc.org/solutions/survey/history.

	 6.	� E. R. Braden, “Requirements for Internet Hosts—Application and Support,”
October 1989. [Online]. http://www.rfc-editor.org/rfc/rfc1123.txt.

	 7.	� E. R. Braden, “Requirements for Internet Hosts—Communication Layers,”
October 1989. [Online]. http://www.rfc-editor.org/rfc/rfc1122.txt.

	 8.	 A. S. Tanenbaum, Computer Networks, Prentice Hall-PTR, 2002.
	 9.	 http://huanliu.wordpress.com/2012/03/13/amazon-data-center-size/.
	10.	� http://perspectives.mvdirona.com/2012/08/13/FunWithEnergyConsumptionData.

aspx.

M01_CONN7150_01_SE_C01.indd 94 09/09/14 4:52 PM

	 1.9  Chapter Summary	 95

	11.	� P. S. Ryan and G. Jason, “A Primer on Internet Exchange Points for
Policymakers and Non-Engineers,” August 2012. http://ssrn.com/
abstract=2128103 or http://dx.doi.org/10.2139/ssrn.2128103.

	12.	� P. V. Mockapetris and K. J. Dunlap, “Development of the domain name
system,” 123–133, in Symposium proceedings on communications
architectures and protocols (SIGCOMM ‘88), New York, NY, 1988.

	13.	� ICANN, “Reveal Day 13 June 2012—New gTLD Applied-For Strings,” June
2012. [Online]. http://newgtlds.icann.org/en/program-status/application-results/
strings-1200utc-13jun12-en.

	14.	� World Intellectual Property Association. [Online]. http://www.wipo.int/amc/
en/domains/cctld_db/index.html.

15.	� T. Berners-Lee et al., “Hypertext Transfer Protocol—HTTP/1.1,” June 1999.
[Online]. http://www.rfc-editor.org/rfc/rfc2616.txt.

M01_CONN7150_01_SE_C01.indd 95 09/09/14 4:52 PM

96

Introduction to HTML2	
Chapter Objectives

In this chapter you will learn . . .

■	 A very brief history of HTML

■	 The syntax of HTML

■	 Why semantic structure is so important for HTML

■	 How HTML documents are structured

■	 A tour of the main elements in HTML

■	 The semantic structure elements in HTML5

T his chapter provides an overview of HTML, the building block of

all web pages. The massive success and growth of the web has in

large part been due to the simplicity of this language. There are many

books devoted just to HTML; this book covers HTML in just two

chapters. As a consequence, this chapter skips over some details and

instead focuses on the key parts of HTML.

M02_CONN7150_01_SE_C02.indd 96 09/09/14 4:52 PM

	 2.1  What Is HTML and Where Did It Come from?	 97

2.1  What Is HTML and Where Did It Come from?

Dedicated HTML books invariably begin with a brief history of HTML. Such a
history might begin with the ARPANET of the late 1960s, jump quickly to the first
public specification of the HTML by Tim Berners-Lee in 1991, and then to HTML’s
codification by the World Wide Web Consortium (better known as the W3C) in
1997. Some histories of HTML might also tell stories about the Netscape Navigator
and Microsoft Internet Explorer of the early and mid-1990s, a time when intrepid
developers working for the two browser manufacturers ignored the W3C and
brought forward a variety of essential new tags (such as, for instance, the <table>
tag), and features such as CSS and JavaScript, all of which have been essential to the
growth and popularization of the web.

Perhaps in reaction to these manufacturer innovations, in 1998 the W3C froze
the HTML specification at version 4.01. This specification begins by stating:

To publish information for global distribution, one needs a universally understood
language, a kind of publishing mother tongue that all computers may potentially
understand. The publishing language used by the World Wide Web is HTML
(from HyperText Markup Language).

As one can see from the W3C quote, HTML is defined as a markup language.
A markup language is simply a way of annotating a document in such a way as to
make the annotations distinct from the text being annotated. Markup languages
such as HTML, Tex, XML, and XHTML allow users to control how text and visual
elements will be laid out and displayed. The term comes from the days of print,
when editors would write instructions on manuscript pages that might be revision
instructions to the author or copy editor. You may very well have been the recipient
of markup from caring parents or concerned teachers at various points in your past,
as shown in Figure 2.1.

At its simplest, markup is a way to indicate information about the content that
is distinct from the content. This “information about content” in HTML is imple-
mented via tags (or more formally, HTML elements, but more on that later). The
markup in Figure 2.1 consists of the red text and the various circles and arrows and
the little yellow sticky notes. HTML does the same thing but uses textual tags.

In addition to specifying “information about content” many markup languages
are able to encode information how to display the content for the end user. These
presentation semantics can be as simple as specifying a bold weight font for certain
words, and were a part of the earliest HTML specification. Although combining
semantic markup with presentation markup is no longer permitted in HTML5,
“formatting the content” for display remains a key reason why HTML was widely
adopted.

M02_CONN7150_01_SE_C02.indd 97 09/09/14 4:52 PM

98	 Chapter 2  Introduction to HTML

B a c k g r o u n d

Created in 1994, the World Wide Web Consortium (W3C) is the main
standards organization for the World Wide Web (WWW). It promotes compat-
ibility, thereby ensuring web technologies work together in a predictable way.

To help in this goal, the W3C produces Recommendations (also called
specifications). These Recommendations are very lengthy documents that are
meant to guide manufacturers in their implementations of HTML, XML, and
other web protocols.

The membership of the W3C at present consists of almost 400 members;
these include businesses, government agencies, universities, and individuals.

Figure 2.1  Sample ad-hoc markup languages

M02_CONN7150_01_SE_C02.indd 98 09/09/14 4:52 PM

	 2.1  What Is HTML and Where Did It Come from?	 99

B a c k g r o u n d

Like HTML, XML is a textual markup language. Also like HTML, the
formal rules for XML were set by the W3C.

XML is a more general markup language than HTML. It is (and has been)
used to mark up any type of data. XML-based data formats (called schemas in
XML) are almost everywhere. For instance, Microsoft Office products now use
compressed XML as the default file format for the documents it creates. RSS data
feeds use XML and Web 2.0 sites often use XML data formats to move data back
and forth asynchronously between the browser and the server. The following is
an example of a simple XML document:

<?xml version="1.0" encoding="ISO-8859-1"?>
<art>
 <painting id="290">
 <title>Balcony</title>
 <artist>
 <name>Manet</name>
 <nationality>France</nationality>
 </artist>
 <year>1868</year>
 <medium>Oil on canvas</medium>
 </painting>
</art>

By and large, the XML-based syntax rules (called “well-formed” in XML
lingo) for XHTML are pretty easy to follow. The main rules are:

2.1.1  XHTML
Instead of growing HTML, the W3C turned its attention in the late 1990s to a new
specification called XHTML 1.0, which was a version of HTML that used stricter
XML (extensible markup language) syntax rules (see Background next).

But why was “stricter” considered a good thing? Perhaps the best analogy might
be that of a strict teacher. When one is prone to bad habits and is learning something
difficult in school, sometimes a teacher who is more scrupulous about the need to
finish daily homework may actually in the long run be more beneficial than a more
permissive and lenient teacher.

As the web evolved in the 1990s, web browsers evolved into quite permissive and
lenient programs. They could handle sloppy HTML, missing or malformed tags, and
other syntax errors. However, it was somewhat unpredictable how each browser would
handle such errors. The goal of XHTML with its strict rules was to make page render-
ing more predictable by forcing web authors to create web pages without syntax errors.

To help web authors, two versions of XHTML were created: XHTML 1.0
Strict and XHTML 1.0 Transitional. The strict version was meant to be rendered

(continued)

M02_CONN7150_01_SE_C02.indd 99 09/09/14 4:52 PM

100	 Chapter 2  Introduction to HTML

by a browser using the strict syntax rules and tag support described by the W3C
XHTML 1.0 Strict specification; the transitional recommendation is a more forgiv-
ing flavor of XHTML, and was meant to act as a temporary transition to the even-
tual global adoption of XHTML Strict.

The payoff of XHTML Strict was to be predictable and standardized web
documents. Indeed, during much of the 2000s, the focus in the professional web
development community was on standards: that is, on limiting oneself to the W3C
specification for XHTML.

A key part of the standards movement in the web development community of
the 2000s was the use of HTML validators (see Figure 2.2) as a means of verifying
that a web page’s markup followed the rules for XHTML Transitional or Strict.
Web developers often placed proud images on their sites to tell the world at large
that their site followed XHTML rules (and also to communicate their support for
web standards).

Yet despite the presence of XHTML validators and the peer pressure from book
authors, actual web browsers tried to be forgiving when encountering badly formed
HTML so that pages worked more or less how the authors intended regardless of
whether a document was XHTML valid or not.

In the mid-2000s, the W3C presented a draft of the XHTML 2.0 specification.
It proposed a revolutionary and substantial change to HTML. The most important
was that backwards compatibility with HTML and XHTML 1.0 was dropped.
Browsers would become significantly less forgiving of invalid markup. The XHTML
2.0 specification also dropped familiar tags such as , <a>,
, and numbered
headings such as <h1>. Development on the XHTML 2.0 specification dragged on

■	 There must be a single root element.
■	 Element names are composed of any of the valid characters (most

punctuation symbols and spaces are not allowed) in XML.
■	 Element names can’t start with a number.
■	 Element and attribute names are case sensitive.
■	 Attributes must always be within quotes.
■	 All elements must have a closing element (or be self-closing).

XML also provides a mechanism for validating its content. It can check, for
instance, whether an element name is valid, or elements are in the correct order,
or that the elements follow a proper nesting hierarchy. It can also perform data
type checks on the text within an element: for instance, whether the text inside
an element called <date> is actually a valid date, or the text within an element
called <year> is a valid integer and falls between, say, the numbers 1950 and
2010. Chapter 17 covers XML in more detail.

M02_CONN7150_01_SE_C02.indd 100 09/09/14 4:52 PM

	 2.1  What Is HTML and Where Did It Come from?	 101

for many years, a result not only of the large W3C committee in charge of the
specification, but also of gradual discomfort on the part of the browser manufactur-
ers and the web development community at large, who were faced with making
substantial changes to all existing web pages.

2.1.2  HTML5
At around the same time the XHTML 2.0 specification was being developed, a group
of developers at Opera and Mozilla formed the WHATWG (Web Hypertext Application
Technology Working Group) group within the W3C. This group was not convinced

Figure 2.2  W3C XHTML validation service

M02_CONN7150_01_SE_C02.indd 101 09/09/14 4:52 PM

