
Java
An Introduction to Problem

 Solving &
 Program

m
ing

Savitch
M

ock
sev

en
t

h

ed
it

io
n

Global
editionG

lo
ba

l
ed

it
io

n

This is a special edition of an established
title widely used by colleges and universities
throughout the world. Pearson published this
exclusive edition for the benefit of students
outside the United States and Canada. If you
purchased this book within the United States
or Canada you should be aware that it has
been imported without the approval of the
Publisher or Author.

Pearson Global Edition

Global
edition

For these Global Editions, the editorial team at Pearson has
collaborated with educators across the world to address a
wide range of subjects and requirements, equipping students
with the best possible learning tools. This Global Edition
preserves the cutting-edge approach and pedagogy of the
original, but also features alterations, customization and
adaptation from the North American version.

Java
An Introduction to Problem Solving & Programming
seventh edition

Savitch • Mock

SAVITCH_129201833X_mech.indd 1 6/11/14 2:23 PM

An Introduction to
Problem Solving & Programming

™

A01_SAVI1833_07_SE_FM.indd 1 5/31/14 4:27 PM

A01_SAVI1833_07_SE_FM.indd 2 5/31/14 4:27 PM

 This page is intentionally left blank.

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

An Introduction to
Problem Solving & Programming

Walter Savitch
University of California, San Diego

Contributor

Kenrick Mock
University of Alaska Anchorage

7th edition™

Global Edition

Global Edition Contributors

Arup Bhattacharjee
Soumen Mukherjee

A01_SAVI1833_07_SE_FM.indd 3 14/06/14 9:32 AM

Editorial Director: Marcia Horton
Acquisitions Editor: Matt Goldstein
Program Manager: Kayla Smith-Tarbox
Editorial Assistant: Kelsey Loanes
Marketing Coordinator: Kathryn Ferranti
Production Director: Erin Gregg
Managing Editor: Scott Disanno
Production Project Manager: Heather McNally
Head, Learning Asset Acquisition, Global Edition:
  Laura Dent
Acquisitions Editor, Global Edition: Karthik Subramaniun
Project Editor, Global Edition: Anuprova Dey Chowdhuri

Senior Operations Supervisor: Vincent Scelta
Operations Specialist: Linda Sager
Art Director: Kristine Carney
Cover Designer: Shree Mohanambal Inbakumar
Manager, Rights and Permissions: Michael Joyce
Media Director: Daniel Sandin
Full-Service Project Management: Sonam Arora, Cenveo®
  Publisher Services
Composition: Cenveo Publisher Services
Interior Printer/Bindery: Courier Westford
Cover Printer: Courier Westford

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The rights of Walter Savitch and Kendrick Mock to be identified as the authors of this work have been asserted by
him in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled An Introduction to Problem Solving & Programming, 7th
edition, ISBN 978-0-13-376626-4, by Walter Savitch and Kendrick Mock, published by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior
written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the
Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does
not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such
trademarks imply any affiliation with or endorsement of this book by such owners.

Credits and acknowledgments borrowed from other sources and reproduced, with permission, appear on the
appropriate page within the textbook.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other
countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

ISBN 10: 1292018232
ISBN 13: 978-1-29-201833-1

10 9 8 7 6 5 4 3 2 1
14 13 12 11 10

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Typeset in 10 GiovanniStd-Book by Cenveo Publisher Services.

Printed and bound by Courier Westford

The publisher’s policy is to use paper manufactured from sustainable forests.

A01_SAVI1833_07_SE_FM.indd 4 14/06/14 9:32 AM

ISBN 13: 978-1-29-20 -6989 0

 (Print)

 (PDF)

55

Preface for Instructors

Welcome to the seventh edition of Java: An Introduction to Problem Solving &
Programming. This book is designed for a first course in programming and
computer science. It covers programming techniques, as well as the basics of
the Java programming language. It is suitable for courses as short as one quar-
ter or as long as a full academic year. No previous programming experience is
required, nor is any mathematics, other than a little high school algebra. The
book can also be used for a course designed to teach Java to students who have
already had another programming course, in which case the first few chapters
can be assigned as outside reading.

Changes in This Edition

The following list highlights how this seventh edition differs from the sixth
edition:

■	End-of-chapter programs are now split into Practice Programs and
Programming Projects. Practice Programs require a direct application
of concepts presented in the chapter and solutions are usually short.
Practice Programs are appropriate for laboratory exercises. Programming
Projects require additional problem solving and solutions are generally
longer than Practice Programs. Programming Projects are appropriate for
homework problems.

■	An introduction to functional programming with Java 8’s lambda expres-
sions.

■	Additional material on secure programming (e.g., overflow, array out of
bounds), introduction to Java 2Dtm API, networking, and the URL class as
further examples of polymorphism in the context of streams.

■	Twenty-one new Practice Programs and thirteen new Programming
Projects.

■	Ten new VideoNotes for a total of seventy two VideoNotes. These VideoNotes
walk students through the process of both problem solving and coding
to help reinforce key programming concepts. An icon appears in the
margin of the book when a VideoNote is available regarding the topic
covered in the text.

A01_SAVI1833_07_SE_FM.indd 5 5/31/14 4:27 PM

6	 Preface for Instructors

Latest Java Coverage

All of the code in this book has been tested using a pre-release version of
Oracle’s Java SE Development Kit (JDK), version 8. Any imported classes are
standard and in the Java Class Library that is part of Java. No additional classes
or specialized libraries are needed.

Flexibility

If you are an instructor, this book adapts to the way you teach, rather than
making you adapt to the book. It does not tightly prescribe the sequence
in which your course must cover topics. You can easily change the order
in which you teach many chapters and sections. The particulars involved
in rearranging material are explained in the dependency chart that follows
this preface and in more detail in the “Prerequisites” section at the start of
each chapter.

Early Graphics

Graphics supplement sections end each of the first ten chapters. This gives you
the option of covering graphics and GUI programming from the start of your
course. The graphics supplement sections emphasize applets but also cover
GUIs built using the JFrame class. Any time after Chapter 8, you can move on
to the main chapters on GUI programming (Chapters 13 through 15), which
are now on the Web. Alternatively, you can continue through Chapter 10 with
a mix of graphics and more traditional programming. Instructors who prefer
to postpone the coverage of graphics can postpone or skip the graphics supple-
ment sections.

Coverage of Problem-Solving and Programming Techniques

This book is designed to teach students basic problem-solving and program-
ming techniques and is not simply a book about Java syntax. It contains
numerous case studies, programming examples, and programming tips. In
addition, many sections explain important problem-solving and program-
ming techniques, such as loop design techniques, debugging techniques, style
techniques, abstract data types, and basic object-oriented programming tech-
niques, including UML, event-driven programming, and generic programming
using type parameters.

Early Introduction to Classes

Any course that really teaches Java must teach classes early, since everything
in Java involves classes. A Java program is a class. The data type for strings of
characters is a class. Even the behavior of the equals operator (==) depends
on whether it is comparing objects from classes or simpler data items. Classes
cannot be avoided, except by means of absurdly long and complicated “magic

A01_SAVI1833_07_SE_FM.indd 6 5/31/14 4:27 PM

	 Preface for Instructors	 7

formulas.” This book introduces classes fairly early. Some exposure to using
classes is given in Chapters 1 and 2. Chapter 5 covers how to define classes.
All of the basic information about classes, including inheritance, is presented
by the end of Chapter 8 (even if you omit Chapter 7). However, some topics
regarding classes, including inheritance, can be postponed until later in the
course.

Although this book introduces classes early, it does not neglect traditional
programming techniques, such as top-down design and loop design tech-
niques. These older topics may no longer be glamorous, but they are informa-
tion that all beginning students need.

Generic Programming

Students are introduced to type parameters when they cover lists in Chapter
12. The class ArrayList is presented as an example of how to use a class that
has a type parameter. Students are then shown how to define their own classes
that include a type parameter.

Language Details and Sample Code

This book teaches programming technique, rather than simply the Java
language. However, neither students nor instructors would be satisfied
with an introductory programming course that did not also teach the
programming language. Until you calm students’ fears about language
details, it is often impossible to focus their attention on bigger issues.
For this reason, the book gives complete explanations of Java language
features and lots of sample code. Programs are presented in their entirety,
along with sample input and output. In many cases, in addition to the
complete examples in the text, extra complete examples are available over
the Internet.

Self-Test Questions

Self-test questions are spread throughout each chapter. These questions have a
wide range of difficulty levels. Some require only a one-word answer, whereas
others require the reader to write an entire, nontrivial program. Complete an-
swers for all the self-test questions, including those requiring full programs, are
given at the end of each chapter.

Exercises and Programming Projects

Completely new exercises appear at the end of each chapter. Since only you,
and not your students, will have access to their answers, these exercises are
suitable for homework. Some could be expanded into programming projects.
However, each chapter also contains other programming projects, several of
which are new to this edition.

A01_SAVI1833_07_SE_FM.indd 7 5/31/14 4:27 PM

8	 Preface for Instructors

Support Material

The following support materials are available on the Internet at
www.pearsonglobaleditions.com/savitch:

For instructors only:

■	Solutions to most exercises and programming projects
■	PowerPoint slides
■	Lab Manual with associated code.

Instructors should click on the registration link and follow instructions to re-
ceive a password. If you encounter any problems, please contact your local
Pearson Sales Representative. For the name and number of your sales represen-
tative, go to www.pearsonglobaleditions.com/savitch.

For students:
■	Source code for programs in the book and for extra examples
■	Student lab manual
■	�� VideoNotes: video solutions to programming examples and exercises.

Visit www.pearsonglobaleditions.com/savitch to access the student resources.

VideoNotes

VideoNotes are designed for teaching students key programming concepts
and techniques. These short step-by-step videos demonstrate how to solve
problems from design through coding. VideoNotes allow for self-placed in-
struction with easy navigation including the ability to select, play, rewind, fast-
forward, and stop within each VideoNote exercise.

Margin icons in your textbook let you know when a VideoNote video is
available for a particular concept or homework problem.

Integrated Development Environment Resource Kits

Professors who adopt this text can order it for students with a kit containing
seven popular Java IDEs (the most recent JDK from Oracle, Eclipse, NetBeans,
jGRASP, DrJava, BlueJ, and TextPad). The kit also includes access to a Web
site containing written and video tutorials for getting started in each IDE. For
ordering information, please contact your campus Pearson Education repre-
sentative or visit www.pearsonhighered.com.

Contact Us

Your comments, suggestions, questions, and corrections are always welcome.
Please e-mail them to savitch.programming.java@gmail.com.

VideoNote

A01_SAVI1833_07_SE_FM.indd 8 5/31/14 4:27 PM

Preface for Students

This book is designed to teach you the Java programming language and, even
more importantly, to teach you basic programming techniques. It requires
no previous programming experience and no mathematics other than some
simple high school algebra. However, to get the full benefit of the book, you
should have Java available on your computer, so that you can practice with the
examples and techniques given. The latest version of Java is preferable, but a
version as early as 5 will do.

If You Have Programmed Before

You need no previous programming experience to use this book. It was
designed for beginners. If you happen to have had experience with some
other programming language, do not assume that Java is the same as the
programming language(s) you are accustomed to using. All languages are
different, and the differences, even if small, are large enough to give you
problems. Browse the first four chapters, reading at least the Recap portions.
By the time you reach Chapter 5, it would be best to read the entire chapter.

If you have programmed before in either C or C++, the transition to Java
can be both comfortable and troublesome. At first glance, Java may seem
almost the same as C or C++. However, Java is very different from these lan-
guages, and you need to be aware of the differences. Appendix 6 compares Java
and C++ to help you see what the differences are.

Obtaining a Copy of Java

Appendix 1 provides links to sites for downloading Java compilers and pro-
gramming environments. For beginners, we recommend Oracle’s Java JDK for
your Java compiler and related software and TextPad as a simple editor envi-
ronment for writing Java code. When downloading the Java JDK, be sure to
obtain the latest version available.

Support Materials for Students
■	Source code for programs in the book and for extra examples
■	Student lab manual
■	VideoNotes: video solutions to programming examples and exercises.

Visit www.pearsonglobaleditions.com/savitch to access the student resources.

9

A01_SAVI1833_07_SE_FM.indd 9 5/31/14 4:27 PM

10	 Preface for Students

Learning Aids

Each chapter contains several features to help you learn the material:

■	The opening overview includes a brief table of contents, chapter objectives
and prerequisites, and a paragraph or two about what you will study.

■	Recaps concisely summarize major aspects of Java syntax and other impor-
tant concepts.

■	FAQs, or “frequently asked questions,” answer questions that other students
have asked.

■	Remembers highlight important ideas you should keep in mind.
■	Programming Tips suggest ways to improve your programming skills.
■	Gotchas identify potential mistakes you could make—and should avoid—

while programming.
■	Asides provide short commentaries on relevant issues.
■	Self-Test Questions test your knowledge throughout, with answers given

at the end of each chapter. One of the best ways to practice what you are
learning is to do the self-test questions before you look at the answers.

■	A summary of important concepts appears at the end of each chapter.

VideoNotes

These short step-by-step videos demonstrate how to solve problems from design
through coding. VideoNotes allow for self-placed instruction with easy navigation
including the ability to select, play, rewind, fast-forward, and stop within each
VideoNote exercise. Margin icons in your textbook let you know when a VideoNote
video is available for a particular concept or homework problem.

This Text Is Also a Reference Book

In addition to using this book as a textbook, you can and should use it as a
reference. When you need to check a point that you have forgotten or that you
hear mentioned by somebody but have not yet learned yourself, just look in
the index. Many index entries give a page number for a “recap.” Turn to that
page. It will contain a short, highlighted entry giving all the essential points
on that topic. You can do this to check details of the Java language as well as
details on programming techniques.

Recap sections in every chapter give you a quick summary of the main
points in that chapter. Also, a summary of important concepts appears at the
end of each chapter. You can use these features to review the chapter or to
check details of the Java language.

VideoNote

10

A01_SAVI1833_07_SE_FM.indd 10 5/31/14 4:27 PM

Acknowledgments

We thank the many people who have made this seventh edition possible, in-
cluding everyone who has contributed to the first six editions. We begin by
recognizing and thanking the people involved in the development of this new
edition. The comments and suggestions of the following reviewers were in-
valuable and are greatly appreciated. In alphabetical order, they are:

Christopher Crick—Oklahoma State University
Christopher Plaue—University of Georgia
Frank Moore—University of Alaska Anchorage
Greg Gagne—Westminster College
Helen Hu—Westminster College
Paul Bladek—Edmonds Community College, Washington
Paul LaFollette—Temple University
Pei Wang—Temple University
Richard Cassoni—Palomar College
Walter Pistone—Palomar College

Many other reviewers took the time to read drafts of earlier editions of the book.
Their advice continues to benefit this new edition. Thank you once again to:

Adel Elmaghraby—University of Louisville
Alan Saleski—Loyola University Chicago
Anthony Larrain—DePaul University
Arijit Sengupta—Raj Soin College of Business, Wright State University
Asa Ben-Hur—Colorado State University
Ashraful A. Chowdhury—Georgia Perimeter College
Billie Goldstein—Temple University
Blayne Mayfield—Oklahoma State University
Boyd Trolinger—Butte College
Charles Hoot—Oklahoma City University
Chris Hoffmann—University of Massachusetts, Amherst
Dan Adrian German—Indiana University
Dennis Brylow—Marquette University
Dolly Samson—Hawaii Pacific University
Donald E. Smith—Rutgers University
Drew McDermott—Yale University
Ed Gellenbeck—Central Washington University
Faye Tadayon-Navabi—Arizona State University
Gerald Baumgartner—Louisiana State University
Gerald H. Meyer—LaGuardia Community College
Gobi Gopinath—Suffolk County Community College
Gopal Gupta—University of Texas, Dallas
H. E. Dunsmore—Purdue University, Lafayette
Helen H. Hu—Westminster College
Howard Straubing—Boston College
James Roberts—Carnegie Mellon University
Jim Buffenbarger—Boise State University 11

A01_SAVI1833_07_SE_FM.indd 11 5/31/14 4:27 PM

12	A cknowledgments

Joan Boone—University of North Carolina at Chapel Hill
John Motil—California State University, Northridge
Ken Slonneger—University of Iowa
Laird Dornan—Sun Microsystems, Inc.
Le Gruenwald—University of Oklahoma
Lily Hou—Carnegie Mellon University
Liuba Shrira—Brandeis University
Martin Chetlen—Moorpark College
Mary Elaine Califf—Illinois State University
Michele Kleckner—Elon University
Michael Clancy—University of California, Berkeley
Michael Litman—Western Illinois University
Michael Long—California State University
Michael Olan—Richard Stockton College of New Jersey
Michal Young—University of Oregon
Nan C. Schaller—Rochester Institute of Technology
Peter Spoerri—Fairfield University
Ping-Chu Chu—Fayetteville State University
Prasun Dewan—University of North Carolina, Chapel Hill
Ricci Heishman—North Virginia Community College
Richard Whitehouse—Arizona State University
Richard A. Johnson—Missouri State University
Richard Ord—University of California, San Diego
Robert Herrmann—Sun Microsystems, Inc., Java Soft
Robert Holloway—University of Wisconsin, Madison
Rob Kelly—State University of New York at Stony Brook
Robert P. Burton—Brigham Young University
Ryan Shoemaker—Sun Microsystems, Inc.
Stan Kwasny—Washington University
Stephen F. Weiss—University of North Carolina, Chapel Hill
Steven Cater—Kettering University
Subramanian Vijayarangam—University of Massachusetts, Lowell
Tammy VanDeGrift—University of Portland
Thomas Cortina—Carnegie Mellon University
Thomas VanDrunen—Wheaton College
Y. Annie Liu—State University of New York at Stony Brook

We thank Frank Carrano for his revision of the fifth edition of this text-
book. Last but not least, we thank the many students in classes at the Univer-
sity of California, San Diego (UCSD), who were kind enough to help correct
preliminary versions of this text, as well as the instructors who class-tested
these drafts. In particular, we extend a special thanks to Carole McNamee of
California State University, Sacramento, and to Paul Kube of UCSD. These stu-
dent comments and the detailed feedback and class testing of earlier editions
of the book were a tremendous help in shaping the final book.

W. S.
K. M.

Pearson Education wishes to thank B.R. Chandravarkar of NITK, Arup Bhattacharjee,
Soumen Mukherjee, and Raghavan, for reviewing the Global Edition.

A01_SAVI1833_07_SE_FM.indd 12 5/31/14 4:27 PM

Dependency Chart

This chart shows the prerequisites for the chapters in the book. If there is a line between two boxes,
the material in the higher box should be covered before the material in the lower box. Minor varia-
tions to this chart are discussed in the “Prerequisites” section at the start of each chapter. These
variations usually provide more, rather than less, flexibility than what is shown on the chart.

* Note that some sections of these
chapters can be covered sooner.
Those sections are given in this chart.
** These chapters contain sections
that can be covered sooner. See the
chapter’s “Prerequisites” section for
full details.

Chapter 1
Introduction

Chapter 2
Primitive Types, Strings

Chapter 3
Flow of Control: Branching

Chapter 4
Flow of Control: Loops

Section 7.1
Array Basics

Chapter 7*
Arrays

Chapter 11**
Recursion

Chapter 8**
Inheritance

Chapter 13**
Basic Swing

Chapter 14
Applets

Chapter 15
More Swing

Chapter 9*
Exceptions

Section 9.1
Exception Basics

Section 10.1
Overview of Files

Section 10.2
Text Files

Section 10.3
Any Files

Section 10.4
Binary Files

Section 10.5
File I/O for Objects

Section 10.6
Files and Graphics

Chapter 12**
Data Structures, Generics

Chapter 5 and 6
Classes and Methods

A01_SAVI1833_07_SE_FM.indd 13 5/31/14 4:27 PM

14

Recaps
Summarize Java syntax and other
important concepts.

Remembers
Highlight important ideas that
students should keep in mind.

Features of This Text
Recap  Bytes and Memory Locations

A computer’s main memory is divided into numbered units called
bytes. The number of a byte is called its address. Each byte can hold
eight binary digits, or bits, each of which is either 0 or 1. To store a
piece of data that is too large to fit into a single byte, the computer
uses several adjacent bytes. These adjacent bytes are thought of as a
single, larger memory location whose address is the address of the first
of the adjacent bytes.

Remember  Syntactic Variables

When you see something in this book like Type, Variable_1, or
Variable_2 used to describe Java syntax, these words do not literally
appear in your Java code. They are syntactic variables, which are a
kind of blank that you fill in with something from the category that
they describe. For example, Type can be replaced by int, double,
char, or any other type name. Variable_1 and Variable_2 can each be
replaced by any variable name.

■ Pr ogramming Tip   Initialize Variables

A variable that has been declared, but that has not yet been given a value by an
assignment statement (or in some other way), is said to be uninitialized. If the
variable is a variable of a class type, it literally has no value. If the variable has a
primitive type, it likely has some default value. However, your program will be
clearer if you explicitly give the variable a value, even if you are simply reassigning the
default value. (The exact details on default values have been known to change and
should not be counted on.)

One easy way to ensure that you do not have an uninitialized variable
is to initialize it within the declaration. Simply combine the declaration and an
assignment statement, as in the following examples:

int count = 0;

double taxRate = 0.075;

char grade = ‘A’;

int balance = 1000, newBalance;

Note that you can initialize some variables and not initialize others in a declaration.
Sometimes the compiler may complain that you have failed to initialize a

variable. In most cases, that will indeed be true. Occasionally, though, the compiler
is mistaken in giving this advice. However, the compiler will not compile your
program until you convince it that the variable in question is initialized. To make the
compiler happy, initialize the variable when you declare it, even if the variable will
be given another value before it is used for anything. In such cases, you cannot argue
with the compiler.	 ■

Gotcha   Hidden Errors

Just because your program compiles and runs without any errors and even
produces reasonable-looking output does not mean that your program is
correct. You should always run your program with some test data that gives
predictable output. To do this, choose some data for which you can compute
the correct results, either by using pencil and paper, by looking up the answer, or
by some other means. Even this testing does not guarantee that your program is
correct, but the more testing you do, the more confidence you can have in your
program.	 ■

FAQ11 FAQ stands for “frequently asked question.”  Why just 0s and 1s?

Computers use 0s and 1s because it is easy to make an electrical device
that has only two stable states. However, when you are programming,
you normally need not be concerned about the encoding of data as 0s
and 1s. You can program as if the computer directly stored numbers,
letters, or strings of characters in memory.
   There is nothing special about calling the states zero and one. We
could just as well use any two names, such as A and B or true and false.
The important thing is that the underlying physical device has two stable
states, such as on and off or high voltage and low voltage. Calling these
two states zero and one is simply a convention, but it’s one that is almost
universally followed.

Programming Tips
Give students helpful advice about
programming in Java.

Gotchas
Identify potential mistakes in
programming that students might
make and should avoid.

FAQs
Provide students answers to frequently
asked questions within the context of
the chapter.

A01_SAVI1833_07_SE_FM.indd 14 5/31/14 4:27 PM

	F eatures of This Text	 15

VideoNotes
Step-by-step video solutions to
programming examples and homework
exercises.

Case Study Unit Testing

So far we’ve tested our programs by running them, typing in some input, and
visually checking the results to see if the output is what we expected. This is fine
for small programs but is generally insufficient for large programs. In a large
program there are usually so many combinations of interacting inputs that it
would take too much time to manually verify the correct result for all inputs.
Additionally, it is possible that code changes result in unintended side effects.
For example, a fix for one error might introduce a different error. One way to
attack this problem is to write unit tests. Unit testing is a methodology in which
the programmer tests the correctness of individual units of code. A unit is often a
method but it could be a class or other group of code.

The collection of unit tests becomes the test suite. Each test is generally
automated so that human input is not required. Automation is important
because it is desirable to have tests that run often and quickly. This makes it
possible to run the tests repeatedly, perhaps once a day or every time code is
changed, to make sure that everything is still working. The process of running
tests repeatedly is called regression testing.

Let’s start with a simple test case for the Species class in Listing 5.19. Our
first test might be to verify that the name, initial population, and growth rate
is correctly set in the setSpecies method. We can accomplish this by creating

Writing arithmetic
expressions and statements

VideoNote

Case Studies
Take students from problem statement
to algorithm development to Java code.

Listings
Show students complete programs
with sample output.

LISTING 1.2   Drawing a Happy Face

 import javax.swing.JApplet;

 import java.awt.Graphics;

 public class HappyFace extends JApplet
 {

 public void paint(Graphics canvas)
 {
 canvas.drawOval(100, 50, 200, 200);
 canvas.fillOval(155, 100, 10, 20);
 canvas.fillOval(230, 100, 10, 20);
 canvas.drawArc(150, 160, 100, 50, 180, 180);
 }
 }
Applet Output

A01_SAVI1833_07_SE_FM.indd 15 5/31/14 4:27 PM

16	F eatures of This Text

Programming Examples
Provide more examples of Java
programs that solve specific problems.

 Pr ogramming Example	 Nested Loops

The body of a loop can contain any sort of statements. In particular, you
can have a loop statement within the body of a larger loop statement. For
example, the program in Listing 4.4 uses a while loop to compute the
average of a list of nonnegative scores. The program asks the user to enter
all the scores followed by a negative sentinel value to mark the end of the
data. This while loop is placed inside a do-while loop so that the user
can repeat the entire process for another exam, and another, until the user
wishes to end the program.

Self-Test Questions

	28.	 Given the class Species as defined in Listing 5.19, why does the
following program cause an error message?

 public class SpeciesEqualsDemo
 {

 public static void main(String[] args)
 {
 Species s1, s2; s1.
 setSpecies(“Klingon ox”, 10, 15);
 s2.setSpecies(“Klingon ox”, 10, 15);

 if (s1 == s2)
 System.out.println(“Match with ==.”);

 else
 System.out.println(“Do Notmatchwith ==.”)
 }
}

	29.	 After correcting the program in the previous question, what output does
the program produce?

	30.	 What is the biggest difference between a parameter of a primitive type
and a parameter of a class type?

	31.	 Given the class Species, as defined in Listing 5.19, and the class

Self-Test Questions
Provide students with the opportunity
to practice skills learned in the chapter.
Answers at the end of each chapter
give immediate feedback.

Asides
Give short commentary on relevant
topics.

 5.1 Class and Method Definitions 291

methods as well: void methods can have formal parameters, which are handled in
exactly the same way as we just described for methods that return a value.

It is possible, even common, to have more than one formal parameter
in a method definition. In that case, each formal parameter is listed in the
method heading, and each parameter is preceded by a data type. For example,
the following might be the heading of a method definition:

public void doStuff(int n1, int n2, double cost, char code)

Even if more than one parameter has the same
type, each parameter must be preceded by a type
name.

The number of arguments given in a method
invocation must be exactly the same as the
number of formal parameters in the heading of
the method definition. For example, the following
might be an invocation of our hypothetical method
doStuff:

anObject.doStuff(42, 100, 9.99, Z);

As suggested by this example, the correspondence
is one of order and type. The first argument in the
method call is plugged in for the first parameter
in the method definition heading, the second
argument in the method call is plugged in for the
second parameter in the heading of the method
definition, and so forth. Each argument must
match its corresponding parameter in data type,
except for the automatic type conversions that we discussed earlier.

One word of warning: Parameters of a class type behave differently from
parameters of a primitive type. We will discuss parameters of a class type later
in this chapter.

parameter of a primitive type—such as int, double, or char—is a local
variable.

When a method is invoked, each parameter is initialized to the value of the
corresponding argument in the method invocation. This type of substitution
is known as the call-by-value parameter mechanism. The argument in a
method invocation can be a literal constant, such as 2 or
'A'; a variable; or any expression that yields a value of the appropriate
type.

Note that if you use a variable of a primitive type as an argument in a
method invocation, the method invocation cannot change the value of
this argument variable.

Several
parameters are
possible in a
method

Aside Use of the Terms Parameter and
Argument

Our use of the terms parameter and argument
is consistent with common usage. We use
parameter to describe the definition of the
data type and variable inside the header of
a method and argument to describe items
passed into a method when it is invoked.
However, people often use these terms
interchangeably. Some people use the term
parameter both for what we call a formal
parameter and for what we call an argument.
Other people use the term argument both
for what we call a formal parameter and for
what we call an argument. When you see the
term parameter or argument in other books,
you must figure out its exact meaning from
the context.

Arguments must
match parameters
in number, order,
and type

7402_Savitch_Ch05_pp261-372.indd 291 12/20/10 11:49 AM

A01_SAVI1833_07_SE_FM.indd 16 5/31/14 4:27 PM

17

Brief Contents

Chapter 1	 Introduction to Computers and Java  35

Chapter 2	 Basic Computation  81

Chapter 3	 Flow of Control: Branching  173

Chapter 4	 Flow of Control: Loops  233

Chapter 5	 Defining Classes and Methods  301

Chapter 6	 More About Objects and Methods  417

Chapter 7	 Arrays  525

Chapter 8	 Inheritance, Polymorphism, and

Interfaces  623

Chapter 9	 Exception Handling  705

Chapter 10	 Streams, File I/O, and Networking  773

Chapter 11	 Recursion  855

Chapter 12	 Dynamic Data Structures and Generics  903

Appendices
1	 Getting Java  975

2	 Running Applets  976

A01_SAVI1833_07_SE_FM.indd 17 5/31/14 4:27 PM

18	 Brief Contents

3	 Protected and Package Modifiers  978

4	 The DecimalFormat Class  979

5	 javadoc  983

6	 Differences Between C++ and Java  986

7	 Unicode Character Codes  990

8	 Introduction to Java 8 Functional

Programming  991

Index  996

The following chapters and appendices, along with an index to their contents,
are on the book’s Web site:

Chapter 13	 Window Interfaces Using Swing

Chapter 14	 Applets and HTML

Chapter 15	 More Swing

Appendices
9	 The Iterator Interface

10	 Cloning

11	 Java Reserved Keywords

A01_SAVI1833_07_SE_FM.indd 18 5/31/14 4:27 PM

19

Contents

Chapter 1  Introduction to Computers and Java  35

1.1 Computer Basics  36

Hardware and Memory  37

Programs  40

Programming Languages, Compilers, and Interpreters  41

Java Bytecode  43

Class Loader  45

1.2 A Sip of Java  46

History of the Java Language  46

Applications and Applets  47

A First Java Application Program  48

Writing, Compiling, and Running a Java Program  53

1.3 Programming Basics  55

Object-Oriented Programming  55

Algorithms  59

Testing and Debugging  61

Software Reuse  62

1.4 Graphics Supplement  64

A Sample Graphics Applet  64

Size and Position of Figures  66

Drawing Ovals and Circles  68

Drawing Arcs  69

Running an Applet  71

Chapter 2  Basic Computation  81

2.1 Variables and Expressions  82

Variables  83

Data Types  85

A01_SAVI1833_07_SE_FM.indd 19 5/31/14 4:27 PM

20	C ontents

Java Identifiers  87

Assignment Statements  89

Simple Input  92

Simple Screen Output  94

Constants  94

Named Constants  96

Assignment Compatibilities  97

Type Casting  99

Arithmetic Operators  102

Parentheses and Precedence Rules  105

Specialized Assignment Operators  106

Case Study: Vending Machine Change  108

Increment and Decrement Operators  113

More About the Increment and Decrement Operators  114

2.2 The Class String  115

String Constants and Variables  115

Concatenation of Strings  116

String Methods  117

String Processing  119

Escape Characters  122

The Unicode Character Set  123

2.3 Keyboard and Screen I/O  125

Screen Output  125

Keyboard Input  128

Other Input Delimiters (Optional)  133

Formatted Output with printf (Optional)  135

2.4 Documentation and Style  137

Meaningful Variable Names  137

Comments  138

Indentation  141

Using Named Constants  141

2.5 Graphics Supplement  143

Style Rules Applied to a Graphics Applet  144

Creating a Java GUI Application with the JFrame Class  144

Introducing the Class JOptionPane  147

Reading Input as Other Numeric Types  157

A01_SAVI1833_07_SE_FM.indd 20 5/31/14 4:27 PM

	C ontents	 21

Programming Example: Change-Making Program

  with Windowing I/O  158

Chapter 3  Flow of Control: Branching  173

3.1 The if-else Statement  174

The Basic if-else Statement  175

Boolean Expressions  182

Comparing Strings  187

Nested if-else Statements  192

Multibranch if-else Statements  194

Programming Example: Assigning Letter Grades  196

Case Study: Body Mass Index   199

The Conditional Operator (Optional)  202

The exit Method  202

3.2 The Type boolean  203

Boolean Variables  204

Precedence Rules  205

Input and Output of Boolean Values  208

3.3 The switch Statement  210

Enumerations  216

3.4 Graphics Supplement  217

Specifying a Drawing Color  218

A Dialog Box for a Yes-or-No Question  221

Chapter 4  Flow of Control: Loops  233

4.1  Java Loop Statements  234

The while Statement  235

The do-while Statement  238

Programming Example: Bug Infestation  243

Programming Example: Nested Loops  249

The for Statement  251

Declaring Variables within a for Statement  257

Using a Comma in a for Statement (Optional)  258

The for-each Statement  260

A01_SAVI1833_07_SE_FM.indd 21 5/31/14 4:27 PM

22	C ontents

4.2 Programming with Loops  260

The Loop Body  261

Initializing Statements  262

Controlling the Number of Loop Iterations  263

Case Study: Using a Boolean Variable to End a Loop  265

Programming Example: Spending Spree  267

The break Statement and continue Statement in Loops

  (Optional)  270

Loop Bugs  273

Tracing Variables  275

Assertion Checks  277

4.3 Graphics Supplement  279

Programming Example: A Multiface Applet  279

The drawstring Method  284

Chapter 5  Defining Classes and Methods  301

5.1 Class and Method Definitions  303

Class Files and Separate Compilation  305

Programming Example: Implementing a Dog Class  305

Instance Variables  306

Methods  309

Defining void Methods  312

Defining Methods That Return a Value  313

Programming Example: First Try at Implementing a Species Class  318

The Keyword this  322

Local Variables  324

Blocks  326

Parameters of a Primitive Type  327

5.2  Information Hiding and Encapsulation  333

Information Hiding  334

Precondition and Postcondition Comments  334

The public and private Modifiers  336

Programming Example: A Demonstration of Why Instance

  Variables Should Be Private  339

Programming Example: Another Implementation of a Class

  of Rectangles  340

Accessor Methods and Mutator Methods  342

A01_SAVI1833_07_SE_FM.indd 22 5/31/14 4:27 PM

	 Contents	 23

Programming Example: A Purchase Class  346

Methods Calling Methods  350

Encapsulation  356

Automatic Documentation with javadoc  359

UML Class Diagrams  360

5.3 Objects and References  361

Variables of a Class Type  362

Defining an equals Method for a Class  367

Programming Example: A Species Class  371

Boolean-Valued Methods  374

Case Study: Unit Testing  376

Parameters of a Class Type  378

Programming Example: Class-Type Parameters Versus

  Primitive-Type Parameters  382

5.4 Graphics Supplement  386

The Graphics Class  386

Programming Example: Multiple Faces, but with a Helping Method  388

The Graphics2D Class and the Java2DTM API  392

The init Method  394

Adding Labels to an Applet  395

Chapter 6 M ore About Objects and Methods  417

6.1 Constructors  419

Defining Constructors  419

Calling Methods from Constructors  428

Calling a Constructor from Other Constructors (Optional)  431

6.2 Static Variables and Static Methods  433

Static Variables  433

Static Methods  434

Dividing the Task of a main Method into Subtasks  441

Adding a main Method to a Class  442

The Math Class  444

Wrapper Classes  447

6.3 Writing Methods  453

Case Study: Formatting Output  453

Decomposition  459

A01_SAVI1833_07_SE_FM.indd 23 20/06/14 9:27 AM

24	C ontents

Addressing Compiler Concerns  460

Testing Methods  462

6.4 Overloading  464

Overloading Basics  464

Overloading and Automatic Type Conversion  467

Overloading and the Return Type  470

Programming Example: A Class for Money  472

6.5  Information Hiding Revisited  479

Privacy Leaks  479

6.6 Enumeration as a Class  483

6.7 Packages  485

Packages and Importing  486

Package Names and Directories  487

Name Clashes  490

6.8 Graphics Supplement  491

Adding Buttons  491

Event-Driven Programming  493

Programming Buttons  493

Programming Example: A Complete Applet with Buttons  497

Adding Icons  500

Changing Visibility  502

Programming Example: An Example of Changing Visibility  502

Chapter 7  Arrays  525

7.1 Array Basics  527

Creating and Accessing Arrays  528

Array Details  531

The Instance Variable length  534

More About Array Indices  537

Initializing Arrays  540

7.2 Arrays in Classes and Methods  542

Case Study: Sales Report  542

Indexed Variables as Method Arguments  550

Entire Arrays as Arguments to a Method  553

A01_SAVI1833_07_SE_FM.indd 24 5/31/14 4:27 PM

	C ontents	 25

Arguments for the Method main  554

Array Assignment and Equality  555

Methods That Return Arrays  558

7.3 Programming with Arrays and Classes  562

Programming Example: A Specialized List Class  562

Partially Filled Arrays  570

7.4 Sorting and Searching Arrays  572

Selection Sort  572

Other Sorting Algorithms  576

Searching an Array  578

7.5 Multidimensional Arrays  579

Multidimensional-Array Basics  580

Multidimensional-Array Parameters and Returned Values  583

Java’s Representation of Multidimensional Arrays  586

Ragged Arrays (Optional)  587

Programming Example: Employee Time Records  589

7.6 Graphics Supplement  595

Text Areas and Text Fields  595

Programming Example: A Question-and-Answer Applet  595

The Classes JTextArea and JTextField  598

Drawing Polygons  600

Chapter 8 � Inheritance, Polymorphism, and

Interfaces  623

8.1  Inheritance Basics  624

Derived Classes  626

Overriding Method Definitions  630

Overriding Versus Overloading  631

The final Modifier  631

Private Instance Variables and Private Methods of a Base Class  632

UML Inheritance Diagrams  634

8.2 Programming with Inheritance  637

Constructors in Derived Classes  637

The this Method—Again  639

Calling an Overridden Method  639

A01_SAVI1833_07_SE_FM.indd 25 5/31/14 4:27 PM

26	C ontents

Programming Example: A Derived Class of a Derived Class  640

Another Way to Define the equals Methods in Undergraduate  645

Type Compatibility  645

The Class Object  650

A Better equals Method  652

8.3 Polymorphism  654

Dynamic Binding and Inheritance  654

Dynamic Binding with toString  657

8.4  INTERFACES AND ABSTRACT CLASSES  659

Class Interfaces  659

Java Interfaces  660

Implementing an Interface  661

An Interface as a Type  663

Extending an Interface  666

Case Study: Character Graphics  667

Case Study: The Comparable Interface  680

Abstract Classes  684

8.5 Graphics Supplement  686

The Class JApplet  687

The Class JFrame  687

Window Events and Window Listeners  690

The ActionListener Interface  692

What to Do Next  692

Chapter 9  Exception Handling  705

9.1 Basic Exception Handling  706

Exceptions in Java  707

Predefined Exception Classes  717

9.2 Defining Your Own Exception Classes  719

9.3 More About Exception Classes  729

Declaring Exceptions (Passing the Buck)  729

Kinds of Exceptions  732

Errors  734

Multiple Throws and Catches  735

The finally Block  741

A01_SAVI1833_07_SE_FM.indd 26 5/31/14 4:27 PM

	C ontents	 27

Rethrowing an Exception (Optional)  742

Case Study: A Line-Oriented Calculator  743

9.4 Graphics Supplement  755

Exceptions in GUIs  755

Programming Example: A JFrame GUI Using Exceptions  755

Chapter 10  Streams, File I/O, and Networking  773

10.1 An Overview of Streams and File I/O  775

The Concept of a Stream  775

Why Use Files for I/O?  776

Text Files and Binary Files  776

10.2 Text-File I/O  778

Creating a Text File  778

Appending to a Text File  784

Reading from a Text File  786

10.3 Techniques for any File  789

The Class File  789

Programming Example: Reading a File Name

  from the Keyboard  789

Using Path Names  791

Methods of the Class File  792

Defining a Method to Open a Stream  794

Case Study: Processing a Comma-Separated Values File  796

10.4 Basic Binary-File I/O  799

Creating a Binary File  799

Writing Primitive Values to a Binary File  801

Writing Strings to a Binary File  804

Some Details About writeUTF  805

Reading from a Binary File  806

The Class EOFException  812

Programming Example: Processing a File of Binary Data  814

10.5 Binary-File I/O with Objects and Arrays  819

Binary-File I/O with Objects of a Class  819

Some Details of Serialization  823

Array Objects in Binary Files  824

A01_SAVI1833_07_SE_FM.indd 27 5/31/14 4:27 PM

28	C ontents

10.6 NETWORK COMMUNICATION WITH STREAMS  827

10.7 Graphics Supplement  833

Programming Example: A JFrame GUI for Manipulating Files  833

Chapter 11  Recursion  855

11.1 The Basics of Recursion  856

Case Study: Digits to Words  860

How Recursion Works  864

Infinite Recursion  868

Recursive Methods Versus Iterative Methods  870

Recursive Methods That Return a Value  872

11.2 Programming with Recursion  876

Programming Example: Insisting That User Input Be Correct  876

Case Study: Binary Search  878

Programming Example: Merge Sort—A Recursive Sorting Method  886

Chapter 12 � Dynamic Data Structures and Generics  903

12.1 Array-Based Data Structures  905

The Class ArrayList  906

Creating an Instance of ArrayList  906

Using the Methods of ArrayList  908

Programming Example: A To-Do List  912

Parameterized Classes and Generic Data Types  915

12.2 THE JAVA COLLECTIONS FRAMEWORK  915

The Collection Interface   915

The Class HashSet  916

The Map Interface  918

The Class HashMap  918

12.3 Linked Data Structures  921

The Class LinkedList  921

Linked Lists  922

Implementing the Operations of a Linked List  925

A Privacy Leak  932

Inner Classes  933

A01_SAVI1833_07_SE_FM.indd 28 5/31/14 4:27 PM

	C ontents	 29

Node Inner Classes  934

Iterators  934

The Java Iterator Interface  946

Exception Handling with Linked Lists  946

Variations on a Linked List  948

Other Linked Data Structures  950

12.4 Generics  951

The Basics  951

Programming Example: A Generic Linked List  954

APPENDICES

1	 Getting Java  975

2	 Running Applets  976

3	 Protected and Package Modifiers  978

4	 The DecimalFormat Class  979

Other Pattern Symbols  980

5	 Javadoc  983

Commenting Classes for Use within javadoc  983

Running javadoc  984

6	 Differences Between C++ and Java  986

Primitive Types  986

Strings  986

Flow of Control  986

Testing for Equality  987

main Method (Function) and Other Methods  987

Files and Including Files  987

Class and Method (Function) Definitions  988

No Pointer Types in Java  988

Method (Function) Parameters  988

Arrays  988

Garbage Collection  989

Other Comparisons  989

7	 Unicode Character Codes  990

8	 Introduction to Java 8 Functional Programming  991

Index  996

A01_SAVI1833_07_SE_FM.indd 29 5/31/14 4:27 PM

A01_SAVI1833_07_SE_FM.indd 30 5/31/14 4:27 PM

 This page is intentionally left blank.

Location of Videonotes In The Text

Chapter 1	 Compiling a Java program, p. 54
Writing an algorithm, p. 59
Recognizing a hidden error, p. 62
Another applet example, p. 72
Writing an algorithm for Project 3, p. 77

Chapter 2	 Another sample program, p. 95
Writing arithmetic expressions and statements, p. 106
Processing strings, p. 121
Pitfalls involving nextLine(), p. 131
Using printf, p. 135
Solving a conversion problem, p. 165
Solution to Project 8, p. 167

Chapter 3	 Input validation, p. 180
Writing boolean expressions, p. 186
Using multibranch if-else statements, p. 195
Using switch statements, p. 213
Solution to Practice Program 2, p. 227
Responding to user input, p. 227

Chapter 4	 Using nested while loops, p. 251
Comparing loop statements, p. 259
Debugging a loop, p. 276
Solution to Project 2, p. 290
Nesting for statements, p. 291

Chapter 5	 Writing and invoking methods, p. 332
Investigating public and private access, p. 340
Objects and references, p. 366
Exploring parameters of class types, p. 385
Drawing Images, p. 392
Developing a solution to Project 6, p. 407
Solution to Project 10, p. 409

Chapter 6	 Writing constructors, p. 431
Using static and non-static methods, p. 440
Generating random numbers, p. 446
Writing and invoking overloaded methods, p. 477
Compiling classes in a package, p. 486
Solving a similar problem, p. 513
Solution to Project 9, p. 514

A01_SAVI1833_07_SE_FM.indd 31 5/31/14 4:27 PM

A01_SAVI1833_07_SE_FM.indd 32 5/31/14 4:27 PM

 This page is intentionally left blank.

Location of Videonotes In The Text

Chapter 7	 Using arrays within a class, p. 549
Using arrays within methods, p. 560
The java.util.Arrays class, p. 577
Coding with two-dimensional arrays, p. 587
Inserting into a sorted array, p. 612
Solution to Project 7, p. 613

Chapter 8	 Protected instance variables and methods, p. 632
	 Defining classes using inheritance, p. 644

Exploring polymorphism, p. 654
Exploring interfaces, p. 665
Defining an abstract class, p. 686
Deriving a class from Vehicle, p. 696

Chapter 9	 Using predefined exception classes, p. 718
Using your exception classes, p. 726
Using a throws clause, p. 741
Solution to Practice Program 2, p. 763
Defining an exception class, p. 766

Chapter 10	 Writing and reading a text file, p. 788
Writing and reading a binary file, p. 817
Using a binary file of objects and arrays, p. 827
Networking with Streams, p. 827
Processing a file, p. 843
Solution to Practice Program 3, p. 844

Chapter 11	 Writing void methods that are recursive, p. 867
Recursion and stack overflow, p. 869
Writing recursive methods that return a value, p. 875
Using recursion to search and sort an array, p. 878
Solution to Project 1, p. 894
Drawing recursively, p. 899

Chapter 12	 Walkthrough of the HashMap demonstration, p. 918
	 Using HashMap with a custom class, p. 920

Using List, ArrayList, and LinkedList, p. 922
Adding a node anywhere in a linked list, p. 934
Creating classes that use generics, p. 957
Defining a circular linked list, p. 966
Solution to Project 14, p. 969

A01_SAVI1833_07_SE_FM.indd 33 5/31/14 4:27 PM

A01_SAVI1833_07_SE_FM.indd 34 5/31/14 4:27 PM

 This page is intentionally left blank.

Introduction to
Computers and Java

1.1  Computer Basics   36
Hardware and Memory   37
Programs   40
Programming Languages, Compilers, and

Interpreters   41
Java Bytecode   43
Class Loader   45

1.2 A Sip of Java   46
History of the Java Language   46
Applications and Applets   47
A First Java Application Program   48
Writing, Compiling, and Running a Java

Program   53

1.3 P rogramming Basics   55
Object-Oriented Programming   55
Algorithms   59
Testing and Debugging   61
Software Reuse   62

1.4 G raphics Supplement   64
A Sample Graphics Applet   64
Size and Position of Figures   66
Drawing Ovals and Circles   68
Drawing Arcs   69
Running an Applet   71

1	

Chapter Summary   72
Practice Programs   75

Programming Projects   76
Answers to Self-Test Questions   77

M01_SAVI1833_07_SE_C01.indd 35 20/05/14 2:54 PM

Introduction

This chapter gives you a brief overview of computer hardware and software. Much
of this introductory material applies to programming in any language, not just to
programming in Java. Our discussion of software will include a description of a
methodology for designing programs known as object-oriented programming.
Section 1.2 introduces the Java language and explains a sample Java program.

Section 1.4 is the first of a number of graphics supplements that end each
of the first ten chapters and provide an introduction to the graphics capabilities
of the Java language. These graphics supplements are interdependent, and each
one uses the Java topics presented in its chapter.

Objectives

After studying this chapter, you should be able to

•	Give a brief overview of computer hardware and software
•	Give an overview of the Java programming language
•	Describe the basic techniques of program design in general and object-

oriented programming in particular
•	Describe applets and some graphics basics

Prerequisites

This first chapter does not assume that you have had any previous programming
experience, but it does assume that you have access to a computer. To get the
full value from the chapter, and from the rest of this book, you should have
a computer that has the Java language installed, so that you can try out what
you are learning. Appendix 1 describes how to obtain and install a free copy
of the Java language for your computer.

1.1  Computer Basics

The Analytical Engine has no pretensions whatever to originate anything. It
can do whatever we know how to order it to perform. It can follow analysis;
but it has no power of anticipating any analytical relations or truths. Its prov-
ince is to assist us in making available what we are already acquainted with.

—Ada Augusta, Countess of Lovelace (1815–1852)

36

It is by no means hopeless to expect to make a machine for really very diffi-
cult mathematical problems. But you would have to proceed step-by-step.
I think electricity would be the best thing to rely on.

—Charles Sanders Peirce (1839–1914)

M01_SAVI1833_07_SE_C01.indd 36 20/05/14 2:54 PM

Computer systems consist of hardware and software. The hardware is the
physical machine. A set of instructions for the computer to carry out is called
a program. All the different kinds of programs used to give instructions to the
computer are collectively referred to as software. In this book, we will discuss
software, but to understand software, it helps to know a few basic things
about computer hardware.

Hardware and Memory

Most computers available today have the same basic components, configured
in basically the same way. They all have input devices, such as a keyboard and
a mouse. They all have output devices, such as a display screen and a printer.
They also have several other basic components, usually housed in some sort
of cabinet, where they are not so obvious. These other components store data
and perform the actual computing.

The CPU, or central processing unit, or simply the processor, is the device
inside your computer that follows a program’s instructions. Currently, one of
the better-known processors is the Intel®Core™i7 processor. The processor can
carry out only very simple instructions, such as moving numbers or other data
from one place in memory to another and performing some basic arithmetic
operations like addition and subtraction. The power of a computer comes
from its speed and the intricacies of its programs. The basic design of the
hardware is conceptually simple.

A computer’s memory holds data for the computer to process, and it
holds the result of the computer’s intermediate calculations. Memory exists
in two basic forms, known as main memory and auxiliary memory. Main
memory holds the current program and much of the data that the program is
manipulating. You most need to be aware of the nature of the main memory
when you are writing programs. The information stored in main memory
typically is volatile, that is, it disappears when you shut down your computer.
In contrast, the data in auxiliary memory, or secondary memory, exists even
when the computer’s power is off. All of the various kinds of disks—including
hard disk drives, flash drives, compact discs (CDs), and digital video discs
(DVDs) are auxiliary memory.

To make this more concrete, let’s look at an example. You might have
heard a description of a personal computer (PC) as having, say, 1 gigabyte
of RAM and a 200-gigabyte hard drive. RAM—short for random access
memory—is the main memory, and the hard drive is the principal—but
not the only—form of auxiliary memory. A byte is a quantity of memory.
So 1 gigabyte of RAM is approximately 1 billion bytes of memory, and a
200-gigabyte hard drive has approximately 200 billion bytes of memory.
What exactly is a byte? Read on.

The computer’s main memory consists of a long list of numbered bytes.
The number of a byte is called its address. A byte is the smallest addressable
unit of memory. A piece of data, such as a number or a keyboard character,

	 1.1  Computer Basics	 37

Hardware and
software make
up a computer
system

The CPU, or
central processing
unit, or processor,
performs the
instructions in a
program

Main memory is
volatile; auxiliary
memory is not

M01_SAVI1833_07_SE_C01.indd 37 20/05/14 2:54 PM

38	 Chapter 1 /  Introduction to Computers and Java

can be stored in one of these bytes. When the computer needs to recover the
data later, it uses the address of the byte to find the data item.

A byte, by convention, contains eight digits, each of which is either 0 or 1.
Actually, any two values will do, but the two values are typically written as 0
and 1. Each of these digits is called a binary digit or, more typically, a bit.
A byte, then, contains eight bits of memory. Both main memory and auxiliary
memory are measured in bytes.

Data of various kinds, such as numbers, letters, and strings of characters,
is encoded as a series of 0s and 1s and placed in the computer’s memory. As
it turns out, one byte is just large enough to store a single keyboard character.
This is one of the reasons that a computer’s memory is divided into these
eight-bit bytes instead of into pieces of some other size. However, storing
either a string of characters or a large number requires more than a single byte.
When the computer needs to store a piece of data that cannot fit into a single
byte, it uses several adjacent bytes. These adjacent bytes are then considered
to be a single, larger memory location, and the address of the first byte is
used as the address of the entire memory location. Figure 1.1 shows how a
typical computer’s main memory might be divided into memory locations.
The addresses of these larger locations are not fixed by the hardware but
depend on the program using the memory.

Main memory
consists of
addressable
eight-bit bytes

Groups of
adjacent bytes
can serve as a
single memory
location

Figure 1.1   Main Memory

2-byte memory location at address 3021

3-byte memory location at address 3024

2-byte memory location at address 3027

1-byte memory location at address 3023

11110000

11001100

00110001

11100001

10000001

10111100

01111111

11001110

10101010

01100011

10100010

3021

3022

3025

3026

3030

3031

3029

3024

3023

3027

3028

Bytes

Byte addresses

M01_SAVI1833_07_SE_C01.indd 38 20/05/14 2:54 PM

	 1.1  Computer Basics	 39

Recall that main memory holds the current program and much of its data.
Auxiliary memory is used to hold data in a more or less permanent form.
Auxiliary memory is also divided into bytes, but these bytes are grouped into
much larger units known as files. A file can contain almost any sort of data,
such as a program, an essay, a list of numbers, or a picture, each in an encoded
form. For example, when you write a Java program, you will store the program
in a file that will typically reside in some kind of disk storage. When you
use the program, the contents of the program file are copied from auxiliary
memory to main memory.

You name each file and can organize groups of files into directories, or
folders. Folder and directory are two names for the same thing. Some computer
systems use one name, and some use the other.

A file is a group
of bytes stored in
auxiliary memory

A directory, or
folder, contains
groups of files

FAQ1  Why just 0s and 1s?

Computers use 0s and 1s because it is easy to make an electrical device
that has only two stable states. However, when you are programming,
you normally need not be concerned about the encoding of data as 0s
and 1s. You can program as if the computer directly stored numbers,
letters, or strings of characters in memory.
   There is nothing special about calling the states zero and one. We
could just as well use any two names, such as A and B or true and false.
The important thing is that the underlying physical device has two stable
states, such as on and off or high voltage and low voltage. Calling these
two states zero and one is simply a convention, but it’s one that is almost
universally followed.

1 FAQ stands for “frequently asked question.”

Recap  Bytes and Memory Locations

A computer’s main memory is divided into numbered units called bytes.
The number of a byte is called its address. Each byte can hold eight
binary digits, or bits, each of which is either 0 or 1. To store a piece of
data that is too large to fit into a single byte, the computer uses several
adjacent bytes. These adjacent bytes are thought of as a single, larger
memory location whose address is the address of the first of the adjacent
bytes.

M01_SAVI1833_07_SE_C01.indd 39 20/05/14 2:54 PM

40	 Chapter 1 /  Introduction to Computers and Java

Programs

You probably have some idea of what a program is. You use programs all
the time. For example, text editors and word processors are programs. As we
mentioned earlier, a program is simply a set of instructions for a computer
to follow. When you give the computer a program and some data and tell
the computer to follow the instructions in the program, you are running, or
executing, the program on the data.

Figure 1.2 shows two ways to view the running of a program. To see the
first way, ignore the dashed lines and blue shading that form a box. What’s left
is what really happens when you run a program. In this view, the computer
has two kinds of input. The program is one kind of input; it contains the
instructions that the computer will follow. The other kind of input is the data
for the program. It is the information that the computer program will process.
For example, if the program is a spelling-check program, the data would
be the text that needs to be checked. As far as the computer is concerned,
both the data and the program itself are input. The output is the result—or
results—produced when the computer follows the program’s instructions. I f
the program checks the spelling of some text, the output might be a list of
words that are misspelled.

This first view of running a program is what really happens, but it is not
always the way we think about running a program. Another way is to think of
the data as the input to the program. In this second view, the computer and
the program are considered to be one unit. Figure 1.2 illustrates this view by
surrounding the combined program–computer unit with a dashed box and
blue shading. When we take this view, we think of the data as input to the
program and the results as output from the program. Although the computer
is understood to be there, it is presumed just to be something that assists
the program. People who write programs—that is, programmers—find this
second view to be more useful when they design a program.

Your computer has more programs than you might think. Much of what
you consider to be “the computer” is actually a program—that is, software—
rather than hardware. When you first turn on a computer, you are already

A program is a
set of computer
instructions

Figure 1.2   Running a Program

Output

Program

Computer
Data (input for the

program)

M01_SAVI1833_07_SE_C01.indd 40 20/05/14 2:54 PM

	 1.1  Computer Basics	 41

running and interacting with a program. That program is called the operating
system. The operating system is a kind of supervisory program that oversees
the entire operation of the computer. If you want to run a program, you tell
the operating system what you want to do. The operating system then retrieves
and starts the program. The program you run might be a text editor, a browser
to surf the World Wide Web, or some program that you wrote using the Java
language. You might tell the operating system to run the program by using
a mouse to click an icon, by choosing a menu item, or by typing in a simple
command. Thus, what you probably think of as “the computer” is really the
operating system. Some common operating systems are Microsoft Windows,
Apple’s (Macintosh) Mac OS, Linux, and UNIX.

An operating
system is a
program that
supervises a
computer’s
operation

FAQ  What exactly is software?

The word software simply means programs. Thus, a software company
is a company that produces programs. The software on your computer is
just the collection of programs on your computer.

Programming Languages, Compilers,
and Interpreters

Most modern programming languages are designed to be relatively easy for
people to understand and use. Such languages are called high-level languages.
Java is a high-level language. Most other familiar programming languages,
such as Visual Basic, C++, C#, COBOL, Python, and Ruby, are also high-level
languages. Unfortunately, computer hardware does not understand high-level
languages. Before a program written in a high-level language can be run, it
must be translated into a language that the computer can understand.

The language that the computer can directly understand is called machine
language. Assembly language is a symbolic form of machine language that
is easier for people to read. So assembly language is almost the same thing as
machine language, but it needs some minor additional translation before it
can run on the computer. Such languages are called low-level languages.

The translation of a program from a high-level language, like Java, to a low-
level language is performed entirely or in part by another program. For some
high-level languages, this translation is done as a separate step by a program
known as a compiler. So before you run a program written in a high-level
language, you must first run the compiler on the program. When you do this,
you are said to compile the program. After this step, you can run the resulting
machine-language program as often as you like without compiling it again.

The terminology here can get a bit confusing, because both the input
to the compiler program and the output from the compiler program are
programs. Everything in sight is a program of some kind or other. To help

Java is a high-
level language

Computers
execute a low-
level language
called machine
language

Compile once,
execute often

M01_SAVI1833_07_SE_C01.indd 41 20/05/14 2:54 PM

42	 Chapter 1 /  Introduction to Computers and Java

avoid confusion, we call the input program, which in our case will be a
Java program, the source program, or source code. The machine-language
program that the compiler produces is often called the object program,
or object code. The word code here just means a program or a part of a
program.

Compilers
translate source
code into object
code

Recap  Compiler

A compiler is a program that translates a program written in a high-level
language, such as Java, into a program in a simpler language that the
computer can more or less directly understand.

Some high-level languages are translated not by compilers but rather
by another kind of program called an interpreter. Like a compiler, an
interpreter translates program statements from a high-level language to a
low-level language. But unlike a compiler, an interpreter executes a portion
of code right after translating it, rather than translating the entire program at
once. Using an interpreter means that when you run a program, translation
alternates with execution. Moreover, translation is done each time you run
the program. Recall that compilation is done once, and the resulting object
program can be run over and over again without engaging the compiler
again. This implies that a compiled program generally runs faster than an
interpreted one.

Interpreters
translate and
execute portions
of code at a time

Recap  Interpreter

An interpreter is a program that alternates the translation and execution
of statements in a program written in a high-level language.

One disadvantage of the processes we just described for translating
programs written in most high-level programming languages is that you need
a different compiler or interpreter for each type of language or computer
system. I f you want to run your source program on three different types of
computer systems, you need to use three different compilers or interpreters.
Moreover, if a manufacturer produces an entirely new type of computer
system, a team of programmers must write a new compiler or interpreter
for that computer system. This is a problem, because these compilers and
interpreters are large programs that are expensive and time-consuming to
write. Despite this cost, many high-level-language compilers and interpreters
work this way. Java, however, uses a slightly different and much more versatile

M01_SAVI1833_07_SE_C01.indd 42 20/05/14 2:54 PM

	 1.1  Computer Basics	 43

approach that combines a compiler and an interpreter. We describe Java’s
approach next.

Java Bytecode

The Java compiler does not translate your program into the machine language
for your particular computer. I nstead, it translates your Java program into a
language called bytecode. Bytecode is not the machine language for any particular
computer. Instead, bytecode is a machine language for a hypothetical computer
known as a virtual machine. A virtual machine is not exactly like any particular
computer, but is similar to all typical computers. Translating a program written
in bytecode into a machine-language program for an actual computer is quite
easy. The program that does this translation is a kind of interpreter called the Java
Virtual Machine, or JVM. The JVM translates and runs the Java bytecode.

To run your Java program on your computer, you proceed as follows:
First, you use the compiler to translate your Java program into bytecode.
Then you use the particular JVM for your computer system to translate each
bytecode instruction into machine language and to run the machine-language
instructions. The whole process is shown in Figure 1.3.

Modern implementations of the JVM use a Just-in-Time (JIT), compiler.
The JIT compiler reads the bytecode in chunks and compiles entire chunks to
native machine language instructions as needed. The compiled machine language
instructions are remembered for future use so a chunk needs to be compiled
only once. This model generally runs programs faster than the interpreter model,
which repeatedly translates the next bytecode instruction to machine code.

It sounds as though Java bytecode just adds an extra step to the process.
Why not write compilers that translate directly from Java to the machine
language for your particular computer system? That could be done, and it
is what is done for many other programming languages. Moreover, that
technique would produce machine-language programs that typically run
faster. However, Java bytecode gives Java one important advantage, namely,
portability. After you compile your Java program into bytecode, you can run
that bytecode on any computer. When you run your program on another
computer, you do not need to recompile it. This means that you can send your
bytecode over the Internet to another computer and have it run easily on that
computer regardless of the computer’s operating system. That is one of the
reasons Java is good for Internet applications.

Portability has other advantages as well. When a manufacturer produces a
new type of computer system, the creators of Java do not have to design a new
Java compiler. One Java compiler works on every computer. Of course, every
type of computer must have its own bytecode interpreter—the JVM—that
translates bytecode instructions into machine-language instructions for that
particular computer, but these interpreters are simple programs compared to a
compiler. Thus, Java can be added to a new computer system very quickly and
very economically.

The JVM is an
interpreter
that translates
and executes
bytecode

A compiler
translates
Java code into
bytecode

Java bytecode
runs on any
computer that
has a JVM

M01_SAVI1833_07_SE_C01.indd 43 20/05/14 2:54 PM

44	 Chapter 1 /  Introduction to Computers and Java

Java program

Java compiler

Bytecode
program

Machine-language
instructions

Bytecode interpreter (JVM)

Computer execution
of machine-language instructions

Data for
Java program

Output of
Java program

Figure 1.3   Compiling and Running a Java Program

Recap  Bytecode

The Java compiler translates your Java program into a language called
bytecode. This bytecode is not the machine language for any particular
computer, but it is similar to the machine language of most common
computers. Bytecode is easily translated into the machine language of
a given computer. Each type of computer will have its own translator—
called an interpreter—that translates from bytecode instructions to
machine-language instructions for that computer.

M01_SAVI1833_07_SE_C01.indd 44 20/05/14 2:54 PM

	 1.1  Computer Basics	 45

Knowing about Java bytecode is important, but in the day-to-day business
of programming, you will not even be aware that it exists. You normally will
give two commands, one to compile your Java program into bytecode and
one to run your program. The run command tells the bytecode interpreter to
execute the bytecode. This run command might be called “run” or something
else, but it is unlikely to be called “interpret.” You will come to think of the
run command as running whatever the compiler produces, and you will not
even think about the translation of bytecode to machine language.

FAQ  Why is it called bytecode?

Programs in low-level languages, such as bytecode and machine-language
code, consist of instructions, each of which can be stored in a few bytes
of memory. Typically, one byte of each instruction contains the operation
code, or opcode, which specifies the operation to be performed. The
notion of a one-byte opcode gave rise to the term bytecode.

Class Loader

A Java program is seldom written as one piece of code all in one file. Instead,
it typically consists of different pieces, known as classes. We will talk about
classes in detail later, but thinking of them as pieces of code is sufficient for
now. These classes are often written by different people, and each class is
compiled separately. Thus, each class is translated into a different piece of
bytecode. To run your program, the bytecode for these various classes must
be connected together. The connecting is done by a program known as the
class loader. This connecting is typically done automatically, so you normally
need not be concerned with it. In other programming languages, the program
corresponding to the Java class loader is called a linker.

For now, think of
a class as a piece
of code

Self-Test Questions

Answers to the self-test questions appear at the end of each chapter.

	1.	 What are the two kinds of memory in a computer?

	2.	 What is software?

	3.	 What data would you give to a program that computes the sum of two
numbers?

M01_SAVI1833_07_SE_C01.indd 45 20/05/14 2:54 PM

46	 Chapter 1 /  Introduction to Computers and Java

	 4.	 What data would you give to a program that computes the average of all
the quizzes you have taken in a course?

	 5.	 What is the difference between a program written in a high-level lan
guage, a program in machine language, and a program expressed in Java
bytecode?

	 6.	 Is Java a high-level language or a low-level language?

	 7.	 Is Java bytecode a high-level language or a low-level language?

	 8.	What is a compiler?

	 9.	What is a source program?

	10.	 What do you call a program that translates Java bytecode into machine-
language instructions?

1.2  A Sip of Java

“New Amsterdam, madame,” replied the Prince, “and after that the Sunda
Islands and beautiful Java with its sun and palm trees.”

—HENRY DE VERE STACPOOLE, The Beach of Dreams

In this section, we describe some of the characteristics of the Java language
and examine a simple Java program. This introduction is simply an overview
and a presentation of some terminology. We will begin to explore the details
of Java in the next chapter.

History of the Java Language

Java is widely viewed as a programming language for I nternet applications.
However, this book, and many other people, views Java as a general-purpose
programming language that can be used without any reference to the Internet.
At its birth, Java was neither of these things, but it eventually evolved into
both.

The history of Java goes back to 1991, when James Gosling and his team
at Sun Microsystems began designing the first version of a new programming
language that would become Java—though it was not yet called that. This
new language was intended for programming home appliances, like toasters
and TVs. That sounds like a humble engineering task, but in fact it’s a very
challenging one. Home appliances are controlled by a wide variety of computer
processors (chips). The language that Gosling and his team were designing
had to work on all of these different processors. Moreover, a home appliance
is typically an inexpensive item, so no manufacturer would be willing to invest

M01_SAVI1833_07_SE_C01.indd 46 20/05/14 2:54 PM

	 1.2  A Sip of Java	 47

large amounts of time and money into developing complicated compilers
to translate the appliance-language programs into a language the processor
could understand. To solve these challenges, the designers wrote one piece of
software that would translate an appliance-language program into a program
in an intermediate language that would be the same for all appliances and
their processors. Then a small, easy-to-write and hence inexpensive program
would translate the intermediate language into the machine language for
a particular appliance or computer. The intermediate language was called
bytecode. The plan for programming appliances using this first version of Java
never caught on with appliance manufacturers, but that was not the end of the
story.

In 1994, Gosling realized that his language—now called Java—would be
ideal for developing a Web browser that could run programs over the Internet.
The Web browser was produced by Patrick Naughton and Jonathan Payne
at Sun Microsystems. Originally called WebRunner and then HotJava, this
browser is no longer supported. But that was the start of Java’s connection
to the I nternet. I n the fall of 1995, Netscape Communications Corporation
decided to make the next release of its Web browser capable of running Java
programs. Other companies associated with the I nternet followed suit and
have developed software that accommodates Java programs.

FAQ  Why is the language named Java?

The question of how Java got its name does not have a very interesting
answer. The current custom is to name programming languages in pretty
much the same way that parents name their children. The creator of the
programming language simply chooses any name that sounds good to
her or him. The original name of the Java language was Oak. Later the
creators realized that there already was a computer language named
Oak, so they needed another name, and Java was chosen. One hears
conflicting explanations of the origin of the name Java. One traditional,
and perhaps believable, story is that the name was thought of during a
long and tedious meeting while the participants drank coffee, and the
rest, as they say, is history.

Applications and Applets

This book focuses on two kinds of Java programs: applications and applets.
An application is just a regular program. An applet sounds as though it
would be a little apple, but the name is meant to convey the idea of a little
application. Applets and applications are almost identical. The difference is
that an application is meant to be run on your computer, like any other
program, whereas an applet is meant to be sent to another location on the
Internet and run there.

Applications are
regular programs

M01_SAVI1833_07_SE_C01.indd 47 20/05/14 2:54 PM

48	 Chapter 1 /  Introduction to Computers and Java

Once you know how to design and write one of these two kinds of
programs, either applets or applications, it is easy to learn to write the other
kind. This book is organized to allow you to place as much or as little emphasis
on applets as you wish. In most chapters the emphasis is on applications, but
the graphics supplements at the ends of the first ten chapters give material
on applets. Applets are also covered in detail in Chapter 14, which is on the
book’s Web site. You may choose to learn about applets along the way, by
doing the graphics supplements, or you may wait and cover them in Chapter 14.
If you want just a brief sample of applets, you can read only the graphics
supplement for this first chapter.

A First Java Application Program

Our first Java program is shown in Listing 1.1. Below the program, we show
a sample of the screen output that might be produced when a person runs
and interacts with the program. The person who interacts with a program is
called the user. The text typed in by the user is shown in color. If you run this
program—and you should do so—both the text displayed by the program and
the text you type will appear in the same color on your computer screen.

The user might or might not be the programmer, that is, the person who
wrote the program. As a student, you often are both the programmer and
the user, but in a real-world setting, the programmer and user are generally
different people. This book is teaching you to be the programmer. One of
the first things you need to learn is that you cannot expect the users of your
program to know what you want them to do. For that reason, your program
must give the user understandable instructions, as we have done in the sample
program.

At this point, we just want to give you a feel for the Java language by
providing a brief, informal description of the sample program shown in
Listing 1.1. Do not worry if some of the details of the program are not completely
clear on this first reading. This is just a preview of things to come. In Chapter 2,
we will explain the details of the Java features used in the program.

The first line

import java.util.Scanner;

tells the compiler that this program uses the class Scanner. Recall that for now,
we can think of a class as a piece of software that we can use in a program. This
class is defined in the package java.util, which is short for “Java utility.” A
package is a library of classes that have already been defined for you.

The remaining lines define the class FirstProgram, extending from the
first open brace ({) to the last close brace (}):

public class FirstProgram
{
  . . .
}

Applets run
within a Web
browser

A user runs and
interacts with a
program

A package is a
library of classes

M01_SAVI1833_07_SE_C01.indd 48 20/05/14 2:54 PM

	 1.2  A Sip of Java	 49

LISTING 1.1   A Sample Java Program

import java.util.Scanner;

public class FirstProgram
{
 public static void main(String[] args)
 {
 System.out.println(“Hello out there.”);
 System.out.println(“I will add two numbers for you.”);
 System.out.println(“Enter two whole numbers on a line:”);

 int n1, n2;

 Scanner keyboard = new Scanner(System.in);

 n1 = keyboard.nextInt();
 n2 = keyboard.nextInt();

 System.out.print1n(“The sum of those two numbers is”);
 System.out.print1n(n1 + n2);
 }
}

Sample Screen Output

Hello out there.

I will add two numbers for you.

Enter two whole numbers on a line:

12 30

The sum of those two numbers is

42

Gets the Scanner class from the
package (library) java.util

Sends output to screen

Reads one whole number
from the keyboard

Says that n1 and n2 are variables
that hold integers (whole numbers)

Readies the program
for keyboard input

Name of the class—your choice. “This program
should be in a file named FirstProgram.java”

Within these braces are typically one or more parts called methods. Every
Java application has a method called main, and often other methods. The defi
nition of the method main extends from another open brace to another close
brace:

public static void main(String[] args)
{
  . . .
}

A class contains
methods

Every application
has a main
method

M01_SAVI1833_07_SE_C01.indd 49 20/05/14 2:54 PM

50	 Chapter 1 /  Introduction to Computers and Java

The words public static void will have to remain a mystery for now, but they
are required. Chapters 5 and 6 will explain these details.

Any statements, or instructions, within a method define a task and make
up the body of the method. The first three statements in our main method’s
body are the first actions this program performs:

System.out.println("Hello out there.");
System.out.println("I will add two numbers for you.");
System.out.println("Enter two whole numbers on a line:");

Each of these statements begins with System.out.println and causes the
quoted characters given within the parentheses to be displayed on the screen
on their own line. For example,

System.out.println("Hello out there.");

causes the line

Hello out there.

to be written to the screen.
For now, you can consider System.out.println to be a funny way of

saying “Display what is shown in parentheses.” H owever, we can tell you
a little about what is going on here and introduce some terminology. Java
programs use things called software objects or, more simply, objects to
perform actions. The actions are defined by methods. System.out is an object
used to send output to the screen; println is the method that performs
this action for the object System.out. That is, println sends what is within
its parentheses to the screen. The item or items inside the parentheses are
called arguments and provide the information the method needs to carry
out its action. I n each of these first three statements, the argument for the
method println is a string of characters between quotes. This argument is
what println writes to the screen.

An object performs an action when you invoke, or call, one of its methods.
In a Java program, you write such a method call, or method invocation,
by writing the name of the object, followed by a period—called a dot in
computer jargon—followed by the method name and some parentheses that
might or might not contain arguments.

The next line of the program in Listing 1.1,

int n1, n2;

says that n1 and n2 are the names of variables. A variable is something
that can store a piece of data. The int says that the data must be an integer,
that is, a whole number; int is an example of a data type. A data type
specifies a set of possible values and the operations defined for those
values. The values of a particular data type are stored in memory in the
same format.

Objects perform
actions when you
call its methods

Variables store
data

A data type
specifies a set of
values and their
operations

M01_SAVI1833_07_SE_C01.indd 50 20/05/14 2:54 PM

	 1.2  A Sip of Java	 51

The next line

Scanner keyboard = new Scanner(System.in);

enables the program to accept, or read, data that a user enters at the keyboard.
We will explain this line in detail in Chapter 2.2

Next, the line

n1 = keyboard.nextInt();

reads a number that is typed at the keyboard and then stores this number in
the variable n1. The next line is almost the same except that it reads another
number typed at the keyboard and stores this second number in the variable
n2. Thus, if the user enters the numbers 12 and 30, as shown in the sample
output, the variable n1 will contain the number 12, and the variable n2 will
contain the number 30.

Finally, the statements

System.out.println("The sum of those two numbers is");
System.out.println(n1 + n2);

display an explanatory phrase and the sum of the numbers stored in the
variables n1 and n2. Note that the second line contains the expression n1 + n2
rather than a string of characters in quotes. This expression computes the sum
of the numbers stored in the variables n1 and n2. When an output statement
like this contains a number or an expression whose value is a number, the
number is displayed on the screen. So in the sample output shown in Listing
1.1, these two statements produce the lines

The sum of those two numbers is
42

Notice that each invocation of println displays a separate line of output.
The only thing left to explain in this first program are the semicolons

at the end of certain lines. The semicolon acts as ending punctuation, like
a period in an English sentence. A semicolon ends an instruction to the
computer.

Of course, Java has precise rules for how you write each part of a program.
These rules form the grammar for the Java language, just as the rules for the
English language make up its grammar. However, Java’s rules are more precise.
The grammatical rules for any language, be it a programming language or a
natural language, are called the syntax of the language.

A program gets,
or reads, data
from a user

2 As you will see in the next chapter, you can use some other name in place of key
board, but that need not concern us now. Anyway, keyboard is a good word to use
here.

Syntax is the set
of grammatical
rules for a
language

M01_SAVI1833_07_SE_C01.indd 51 20/05/14 2:54 PM

52	 Chapter 1 /  Introduction to Computers and Java

Recap  Invoking (Calling) a Method

A Java program uses objects to perform actions that are defined by
methods. An object performs an action when you invoke, or call, one of
its methods. You indicate this in a program by writing the object name,
followed by a period—called a dot—then the method name, and finally
a pair of parentheses that can contain arguments. The arguments are
information for the method.

Examples:

System.out.println("Hello out there.");
n1 = keyboard.nextInt();

In the first example, System.out is the object, println is the method,
and "Hello out there." is the argument. When a method requires
more than one argument, you separate the arguments with commas.
A method invocation is typically followed by a semicolon.
   In the second example, keyboard is the object and nextInt is the
method. This method has no arguments, but the parentheses are
required nonetheless.

FAQ  Why do we need an import for input but not for output?

The program in Listing 1.1 needs the line

import java.util.Scanner;

to enable keyboard input, such as the following:

n1 = keyboard.nextInt();

Why don’t we need a similar import to enable screen output such as

System.out.println("Hello out there.");

The answer is rather dull. The package that includes definitions and code
for screen output is imported automatically into a Java program.

M01_SAVI1833_07_SE_C01.indd 52 20/05/14 2:54 PM

	 1.2  A Sip of Java	 53

Self-Test Questions

	11.	 What would the following statement, when used in a Java program,
display on the screen?

System.out.println("Java is great!");

	12.	 Write a statement or statements that can be used in a Java program to
display the following on the screen:

Java for one.
Java for all.

	13.	 Suppose that mary is an object that has the method increaseAge. This
method takes one argument, an integer. Write an invocation of the
method increaseAge by the object mary, using the argument 5.

	14.	 What is the meaning of the following line in the program in Listing 1.1?

n1 = keyboard.nextInt();

	15.	 Write a complete Java program that uses System.out.println to display
the following to the screen when the program is run:

Hello World!

Your program does nothing else. Note that you do not need to fully
understand all the details of the program in order to write it. You can
simply follow the model of the program in Listing 1.1. (You do want
to understand all the details eventually, but that may take a few more
chapters.)

Writing, Compiling, and Running a Java Program

A Java program is divided into smaller parts called classes. Each program
can consist of any number of class definitions. Although we wrote only one
class—FirstProgram—for the program in Listing 1.1, in fact, the program
uses two other classes: System and Scanner. However, these two classes are
provided for you by Java.

You can write a Java class by using a simple text editor. For example, you
could use Notepad in a Windows environment or TextEdit on a Macintosh
system. Normally, each class definition you write is in a separate file.
Moreover, the name of that file must be the name of the class, with .java
added to the end. For example, the class FirstProgram must be in a file
named FirstProgram.java.

Before you can run a Java program, you must translate its classes into a
language that the computer can understand. As you saw earlier in this chapter,

Writing a Java
program

Each class is in a
file whose name
ends in .java

M01_SAVI1833_07_SE_C01.indd 53 20/05/14 2:54 PM

54	 Chapter 1 /  Introduction to Computers and Java

this translation process is called compiling. As a rule, you do not need to
compile classes like Scanner that are provided for you as part of Java. You
normally need compile only the classes that you yourself write.

To compile a Java class using the free Java system distributed by Oracle®
for Windows, Linux, or Solaris, you use the command javac followed by
the name of the file containing the class. For example, to compile a class
named MyClass that is in a file named MyClass.java, you give the following
command to the operating system:

javac MyClass.java

Thus, to compile the class in Listing 1.1, you would give the following
command:

javac FirstProgram.java

When you compile a Java class, the translated version of the class—
its bytecode—is placed in a file whose name is the name of the class follo
wed by .class. So when you compile a class named MyClass in the file
MyClass.java, the resulting bytecode is stored in a file named MyClass
.class. When you compile the file named FirstProgram.java, the resulting
bytecode is stored in a file named FirstProgram.class.

Although a Java program can involve any number of classes, you run
only the class that you think of as the program. This class will contain a main
method beginning with words identical to or very similar to

public static void main(String[] args)

These words will likely, but not always, be someplace near the beginning of
the file. The critical words to look for are public static void main. The
remaining portion of the line might use somewhat different wording.

You run a Java program by giving the command java, followed by the
name of the class you think of as the program. For example, to run the
program in Listing 1.1, you would give the following one-line command:

java FirstProgram

Note that you write the class name, such as FirstProgram, not the name of
the file containing the class or its bytecode. That is, you omit any .java or
.class ending. When you run a Java program, you are actually running the
Java bytecode interpreter on the compiled version of your program.

The easiest way to write, compile, and run a Java program is to use an
integrated development environment, or IDE. An IDE combines a text editor
with menu commands for compiling and running a Java program. IDEs such
as BlueJ, Eclipse, and NetBeans are free and available for Windows, Mac
OS, and other systems. A ppendix 1 provides links to these I DEs and other
resources for writing Java programs.

Compiling a Java
program

Use the command
javac to compile

Bytecode is in a
file whose name
ends in .class

Use the command
java to execute

VideoNote
Compiling a Java program

M01_SAVI1833_07_SE_C01.indd 54 20/05/14 2:54 PM

	 1.3  Programming Basics	 55

Self-Test Questions

	16.	 Suppose you define a class named YourClass in a file. What name should
the file have?

	17.	 Suppose you compile the class YourClass. What will be the name of the
file containing the resulting bytecode?

1.3  Programming Basics

‘The time has come,’ the Walrus said,
‘To talk of many things:
Of shoes–and ships–and sealing wax–
Of cabbages–and kings . . .’

—Lewis Carroll, Through the Looking-Glass

Programming is a creative process. We cannot tell you exactly how to write a
program to do whatever task you might want it to perform. However, we can
give you some techniques that experienced programmers have found to be
extremely helpful. In this section, we discuss some basics of these techniques.
They apply to programming in almost any programming language and are not
particular to Java.

Object-Oriented Programming

Java is an object-oriented programming language, abbreviated OOP. What is
OOP? The world around us is made up of objects, such as people, automobiles,
buildings, trees, shoes, ships, sealing wax, cabbages, and kings. Each of these
objects has the ability to perform certain actions, and each action can affect
some of the other objects in the world. OOP is a programming methodology
that views a program as similarly consisting of objects that can act alone or

FAQ  �I tried to run the sample program in Listing 1.1. After I
typed two numbers on a line, nothing happened. Why?

When you type a line of data at the keyboard for a program to read, you
will see the characters you type, but the Java program does not actually
read your data until you press the Enter (Return) key. Always press the
Enter key when you have finished typing a line of input data at the
keyboard.

Software objects
act and interact

M01_SAVI1833_07_SE_C01.indd 55 20/05/14 2:54 PM

56	 Chapter 1 /  Introduction to Computers and Java

interact with one another. An object in a program—that is, a software object—
might represent a real-world object, or it might be an abstraction.

For example, consider a program that simulates a highway interchange
so that traffic flow can be analyzed. The program would have an object to
represent each automobile that enters the interchange, and perhaps other
objects to simulate each lane of the highway, the traffic lights, and so on. The
interactions among these objects can lead to a conclusion about the design of
the interchange.

Object-oriented programming comes with its own terminology. An object
has characteristics, or attributes. For example, an automobile object might
have attributes such as its name, its current speed, and its fuel level. The values
of an object’s attributes give the object a state. The actions that an object can
take are called behaviors. As we saw earlier, each behavior is defined by a
piece of Java code called a method.

Objects of the same kind are said to have the same data type and belong
to the same class. A class defines a kind of object; it is a blueprint for creating
objects. The data type of an object is the name of its class. For example, in a
highway simulation program, all the simulated automobiles might belong
to the same class—probably called Automobile—and so their data type is
Automobile.

All objects of a class have the same attributes and behaviors. Thus, in
a simulation program, all automobiles have the same behaviors, such as
moving forward and moving backward. This does not mean that all simulated
automobiles are identical. Although they have the same attributes, they can
have different states. That is, a particular attribute can have different values
among the automobiles. So we might have three automobiles having different
makes and traveling at different speeds. All this will become clearer when we
begin to write Java classes.

As you will see, this same object-oriented methodology can be applied
to any sort of computer program and is not limited to simulation programs.
Object-oriented programming is not new, but its use in applications outside
of simulation programs did not become popular until the early 1990s.

The values of an
object’s attributes
define its state

A class is a
blueprint for
objects

Recap O bjects, Methods, and Classes

An object is a program construction that has data—called attributes—
associated with it and that can perform certain actions known as
behaviors. A class defines a type or kind of object. It is a blueprint for
defining the objects. All objects of the same class have the same kinds
of data and the same behaviors. When the program is run, each object
can act alone or interact with other objects to accomplish the program’s
purpose. The actions performed by objects are defined by methods.

M01_SAVI1833_07_SE_C01.indd 56 20/05/14 2:54 PM

	 1.3  Programming Basics	 57

Object-oriented programming uses classes and objects, but it does not
use them in just any old way. There are certain design principles that must
be followed. The following are three of the main design principles of object-
oriented programming:

Encapsulation
Polymorphism
Inheritance

Encapsulation sounds as though it means putting things into a capsule
or, to say it another way, packaging things up. This intuition is basically
correct. The most important part of encapsulation, however, is not simply
that things are put into a capsule, but that only part of what is in the capsule
is visible. When you produce a piece of software, you should describe it in a
way that tells other programmers how to use it, but that omits all the details
of how the software works. Note that encapsulation hides the fine detail of
what is inside the “capsule.” For this reason, encapsulation is often called
information hiding.

The principles of encapsulation apply to programming in general, not
just to object-oriented programming. But object-oriented languages enable
a programmer not only to realize these principles but also to enforce them.
Chapter 5 will develop the concept of encapsulation further.

Polymorphism comes from a Greek word meaning “many forms.” The
basic idea of polymorphism is that it allows the same program instruction to
mean different things in different contexts. Polymorphism commonly occurs
in English, and its use in a programming language makes the programming

FAQ  What if I know some other programming language?

If Java is your first programming language, you can skip the answer
to this question. If you know some other programming language, the
discussion here may help you to understand objects in terms of things
you already know about. If that other programming language is object
oriented, such as C++, C#, Python, or Ruby, you have a good idea of
what objects, methods, and classes are. They are basically the same
in all object-oriented programming languages, although some other
languages might use another term to mean the same thing as method.
If your familiarity is with an older programming language that does not
use objects and classes, you can think of objects in terms of other, older
programming constructs. For example, if you know about variables and
functions or procedures, you can think of an object as a variable that has
multiple pieces of data and its own functions or procedures. Methods are
really the same thing as what are called functions or procedures in older
programming languages.

OOP design
principles

Encapsulation
packages and
hides detail

M01_SAVI1833_07_SE_C01.indd 57 20/05/14 2:54 PM

58	 Chapter 1 /  Introduction to Computers and Java

language more like a human language. For example, the English instruction
“Go play your favorite sport” means different things to different people. To one
person, it means to play baseball. To another person, it means to play soccer.

Polymorphism also occurs in everyday tasks.3 I magine a person who
whistles for her pets to come to dinner. Her dog runs, her bird flies, and her
fish swim to the top of their tank. They all respond in their own way. The
come-to-dinner whistle doesn’t tell the animals how to come to dinner, just
to come. Likewise when you press the “on” button on your laptop, your iPod,
or your toothbrush, each of them responds appropriately. In a programming
language such as Java, polymorphism means that one method name, used as
an instruction, can cause different actions, depending on the kinds of objects
that perform the action. For example, a method named showOutput might
display the data in an object. But the number of data items it displays and
their format depend on the kind of object that carries out the action. We will
explain polymorphism more fully in Chapter 8.

Inheritance is a way of organizing classes. You can define common
attributes and behaviors once and have them apply to a whole collection of
classes. By defining a general class, you can use inheritance later to define
specialized classes that add to or revise the details of the general class.

An example of such a collection of classes is shown in Figure 1.4. At
each level, the classifications become more specialized. The class Vehicle has
certain properties, like possessing wheels. The classes Automobile, Motorcycle,
and Bus “inherit” the property of having wheels, but add more properties or
restrictions. For example, an Automobile object has four wheels, a Motorcycle
object has two wheels, and a Bus object has at least four wheels. Inheritance
enables the programmer to avoid the repetition of programming instructions
for each class. For example, everything that is true of every object of type
Vehicle, such as “has wheels,” is described only once, and it is inherited by
the classes Automobile, Motorcycle, and Bus. Without inheritance, each of
the classes Automobile, Motorcycle, Bus, SchoolBus, LuxuryBus, and so forth
would have to repeat descriptions such as “has wheels.” Chapter 8 will explain
inheritance more fully.

3 The examples here are based on those by Carl Alphonce in “Pedagogy and Practice of
Design Patterns and Objects First: A One-Act Play.” ACM SIGPLAN Notices 39, 5 (May
2004), 7–14.

Polymorphism
enables objects
to behave
appropriately

Inheritance
organizes related
classes

Recap  Object-Oriented Programming

Object-oriented programming, or OOP, is a programming methodology
that defines objects whose behaviors and interactions accomplish a given
task. OOP follows the design principles of encapsulation, polymorphism,
and inheritance.

M01_SAVI1833_07_SE_C01.indd 58 20/05/14 2:54 PM

	 1.3  Programming Basics	 59

Algorithms

Objects have behaviors that are defined by methods. You as a programmer
need to design these methods by giving instructions for carrying out the
actions. The hardest part of designing a method is not figuring out how to
express your solution in a programming language. The hardest part is coming
up with a plan or strategy for carrying out the action. This strategy is often
expressed as something called an algorithm.

An algorithm is a set of directions for solving a problem. To qualify as an
algorithm, the directions must be expressed so completely and so precisely that
somebody can follow them without having to fill in any details or make any
decisions that are not fully specified in the instructions. An algorithm can be
written in English, a programming language such as Java, or in pseudocode,
which is a combination of English and a programming language.

An example may help to clarify the notion of an algorithm. Our first
sample algorithm finds the total cost of a list of items. For example, the list
of items might be a shopping list that includes the price of each item. The
algorithm would then compute the total cost of all the items on the list. The
algorithm is as follows:

Algorithm to compute the total cost of a list of items

1.  Write the number 0 on the blackboard.
2.  Do the following for each item on the list:

	 	 • A dd the cost of the item to the number on the blackboard.
	 	 • �R eplace the old number on the blackboard with the result of this addition.

3. A nnounce that the answer is the number written on the blackboard.

Figure 1.4   An Inheritance Hierarchy

Vehicle

Automobile Motorcycle Bus

LuxuryBusSchoolBusSportsCarFamilyCar

An algorithm is
like a recipe

Algorithms are
often written in
pseudocode

VideoNote
Writing an algorithm

M01_SAVI1833_07_SE_C01.indd 59 20/05/14 2:54 PM

60	 Chapter 1 /  Introduction to Computers and Java

Most algorithms need to store some intermediate results. This algorithm
uses a blackboard to store intermediate results. If the algorithm is written in
the Java language and run on a computer, intermediate results are stored in
the computer’s memory.

Recap  Algorithm

An algorithm is a set of directions for solving a problem. To qualify as an
algorithm, the directions must be expressed completely and precisely.

Recap  Pseudocode

Pseudocode is a mixture of English and Java. When using pseudocode,
you simply write each part of the algorithm in whatever language is
easiest for you. If a part is easier to express in English, you use English.
If another part is easier to express in Java, you use Java.

Self-Test Questions

18.	What is a method?

19.	What is the relationship between classes and objects?

20.	 Do all objects of the same class have the same methods?

21.	 What is encapsulation?

22.	 What is information hiding?

23.	What is polymorphism?

24.	 What is inheritance?

25.	 What is an algorithm?

26.	 What is pseudocode?

27.	What attributes would you want for an object that represents a song?

28.	Write an algorithm that counts the number of values that are odd in a list
of integers.

M01_SAVI1833_07_SE_C01.indd 60 20/05/14 2:54 PM

	 1.3  Programming Basics	 61

Testing and Debugging

The best way to write a correct program is to carefully design the necessary
objects and the algorithms for the objects’ methods. Then you carefully
translate everything into a programming language such as Java. I n other
words, the best way to eliminate errors is to avoid them in the first place.
However, no matter how carefully you proceed, your program might still
contain some errors. When you finish writing a program, you should test it to
see whether it performs correctly and then fix any errors you find.

A mistake in a program is called a bug. For this reason, the process of
eliminating mistakes in your program is called debugging. There are three
commonly recognized kinds of bugs or errors: syntax errors, run-time errors,
and logic errors. Let’s consider them in that order.

A syntax error is a grammatical mistake in your program. You must follow
very strict grammatical rules when you write a program. Violating one of these
rules—for example, omitting a required punctuation mark—is a syntax error.
The compiler will detect syntax errors and provide an error message indicating
what it thinks the error is. I f the compiler says you have a syntax error, you
probably do. However, the compiler is only guessing at what the error is, so it
could be incorrect in its diagnosis of the problem.

Syntax errors
are grammatical
mistakes

Recap  Syntax

The syntax of a programming language is the set of grammatical rules for
the language—that is, the rules for the correct way to write a program or
part of a program. The compiler will detect syntax errors in your program
and provide its best guess as to what is wrong.

An error that is detected when your program is run is called a run-time
error. Such an error will produce an error message. For example, you might
accidentally try to divide a number by zero. The error message might not
be easy to understand, but at least you will know that something is wrong.
Sometimes the error message can even tell you exactly what the problem is.

If the underlying algorithm for your program contains a mistake, or if you
write something in Java that is syntactically correct but logically wrong, your
program could compile and run without any error message. You will have written
a valid Java program, but you will not have written the program you wanted. The
program will run and produce output, but the output will be incorrect. In this
case, your program contains a logic error. For example, if you were to mistakenly
use a plus sign instead of a minus sign, you would make a logic error. You could
compile and run your program with no error messages, but the program would
give the wrong output. Sometimes a logic error will lead to a run-time error that
produces an error message. But often a logic error will not give you any error
messages. For this reason, logic errors are the hardest kind of error to locate.

Run-time errors
occur during
execution

Logic errors
are conceptual
mistakes in the
program or
algorithm

M01_SAVI1833_07_SE_C01.indd 61 20/05/14 2:54 PM

62	 Chapter 1 /  Introduction to Computers and Java

Software Reuse

When you first start to write programs, you can easily get the impression that
you must create each program entirely from scratch. However, typical software
is not produced this way. Most programs contain some components that
already exist. Using such components saves time and money. Furthermore,
existing components have probably been used many times, so they likely are
better tested and more reliable than newly created software.

Don’t let a gotcha
get you

Gotcha   Coping with “Gotchas”

Any programming language has details that can trip you up in ways that
are surprising or hard to deal with. These sorts of problems are often called
pitfalls, but a more colorful term is gotchas. A gotcha is like a trap waiting to
catch you. When you get caught in the trap, the trap has “got you” or, as it is
more commonly pronounced, “gotcha.”

In this book, we have “Gotcha” sections like this one that warn you about
many of the most common pitfalls and tell you how to avoid them or cope
with them.	 ■

Gotcha   Hidden Errors

Just because your program compiles and runs without any errors and even
produces reasonable-looking output does not mean that your program is correct.
You should always run your program with some test data that gives predictable
output. To do this, choose some data for which you can compute the correct
results, either by using pencil and paper, by looking up the answer, or by some
other means. Even this testing does not guarantee that your program is correct, but
the more testing you do, the more confidence you can have in your program.	 ■

Self-Test Questions

	29.	What is a syntax error?

	30.	What is a logic error?

	31.	What kinds of errors are likely to produce error messages that will alert
you to the fact that your program contains an error?

	32.	 Suppose you write a program that is supposed to compute the day of the
week (Sunday, Monday, and so forth) on which a given date (like December
1, 2014) will fall. Now suppose that you forget to account for leap years.
Your program will then contain an error. What kind of program error is it?

VideoNote
Recognizing a hidden error

M01_SAVI1833_07_SE_C01.indd 62 20/05/14 2:54 PM

	 1.3  Programming Basics	 63

For example, a highway simulation program might include a new highway
object to model a new highway design but would probably model automobiles
by using an automobile class that was already designed for some other program.
To ensure that the classes you use in your programs are easily reusable, you
must design them to be reusable. You must specify exactly how objects of that
class interact with other objects. This is the principle of encapsulation that
we mentioned earlier. But encapsulation is not the only principle you must
follow. You must also design your class so that the objects are general and
not specific to one particular program. For example, if your program requires
that all simulated automobiles move only forward, you should still include a
reverse in your automobile class, because some other simulation may require
automobiles to back up. We will return to the topic of reusability after we learn
more details about the Java language and have some examples to work with.

Besides reusing your own classes, you can and will use classes that Java
provides. For example, we have already used the standard classes Scanner
and System to perform input and output. Java comes with a collection of
many classes known as the Java Class Library, sometimes called the Java
Application Programming Interface, or API. The classes in this collection are
organized into packages. As you saw earlier, the class Scanner, for example,
is in the package java.util. From time to time we will mention or use
classes within the Java Class Library. You should become familiar with the
documentation provided for the Java Class Library on the Oracle® Web site.
At this writing, the link to this documentation is http://docs.oracle.com/
javase/7/docs/api/. Figure 1.5 gives an example of this documentation.

Java provides a
library of classes
for you

Figure 1.5   The Documentation for the Class Scanner

Description of
the class
Scanner

Class names
(we clicked
on Scanner)

Package names

M01_SAVI1833_07_SE_C01.indd 63 20/05/14 2:54 PM

64	 Chapter 1 /  Introduction to Computers and Java

1.4  Graphics Supplement

Have a nice day.

—Common farewell

Each of Chapters 1 through 10 has a graphics section like this one that
describes how to write programs that include various kinds of graphics
displays. We typically will display the graphics inside of an applet because
it is easier to do, especially for beginners. However, sometimes we will use a
windowing interface within an application program to display the graphics.
Chapter 2 will introduce you to this approach.

Since some people prefer to delay coverage of graphics until after a
programmer, such as yourself, has mastered the more elementary material,
you may skip these supplements without affecting your understanding of the
rest of the book. In order to cover graphics this early, we will have to resort
to some “magic formulas”—that is, code that we will tell you how to use but
not fully explain until later in the book. These graphics supplements do build
on each other. If you want to cover the graphics supplement in one chapter,
you will need to first read all or most of the graphics supplements in previous
chapters.

The material on applets and graphics presented here uses classes, objects,
and methods. You know that objects are entities that store data and can take
actions. In this section, we will use objects only for taking actions, and we will
use only one kind of object. Our objects will usually be named canvas and
will have various methods that can draw figures—such as ovals—inside an
applet display.

Remember  �You Can Display Graphics in Applets and
Application Programs

Whether you write an applet or an application program to display
graphics depends on your objective. You would write an applet if you
want to have a graphical feature on a Web page. Otherwise, you would
write an application program.

A Sample Graphics Applet

Listing 1.2 contains an applet that draws a happy face. Let’s examine the code
by going through it line by line.

The line

import javax.swing.JApplet;

M01_SAVI1833_07_SE_C01.indd 64 20/05/14 2:54 PM

	 1.4  Graphics Supplement	 65

says that this applet—like all applets—uses the class JApplet that is in the
Swing library (package). The line

import java.awt.Graphics;

says that this applet also uses the class Graphics from the A WT library
(package). Applets often use classes in the AWT library in addition to classes
in the Swing library.

The next line

public class HappyFace extends JApplet

Applets use the
packages Swing
and AWT

LISTING 1.2   Drawing a Happy Face

 import javax.swing.JApplet;
 import java.awt.Graphics;
 public class HappyFace extends JApplet
 {
 public void paint(Graphics canvas)
 {
 super.paint(canvas);
 canvas.drawOval(100, 50, 200, 200);
 canvas.fillOval(155, 100, 10, 20);
 canvas.fillOval(230, 100, 10, 20);
 canvas.drawArc(150, 160, 100, 50, 180, 180);
 }
 }
Applet Output

M01_SAVI1833_07_SE_C01.indd 65 20/05/14 2:54 PM

66	 Chapter 1 /  Introduction to Computers and Java

begins the class definition for the applet. It is named HappyFace. The words
extends JApplet indicate that we are defining an applet, as opposed to some
other kind of class. Although you need not worry about further details yet,
we are using inheritance to create the class HappyFace based upon an existing
class JApplet.

The applet contains one method—paint—whose definition begins with

public void paint(Graphics canvas)

The paint method specifies what graphics are drawn in the applet. Each of
the four statements within the body of the method is an instruction to draw
a figure. The paint method is invoked automatically when the applet is run.

We will not discuss the details of method definitions until Chapter 5, but
we will tell you enough here to allow you to define the method paint to do
some simple graphics. The method invocation

super.paint(canvas);

tells Java to apply the default drawing operations to this applet. If this is left
out the window may not be drawn correctly. The method invocation

canvas.drawOval(100, 50, 200, 200);

draws the big circle that forms the outline of the face. The first two numbers
tell where on the screen the circle is drawn. The method drawOval, as you may
have guessed, draws ovals. The last two numbers give the width and height of
the oval. To obtain a circle, you make the width and height the same size, as
we have done here. The units used for these numbers are called pixels, and we
will describe them shortly.

The two method invocations

canvas.fillOval(155, 100, 10, 20);
canvas.fillOval(230, 100, 10, 20);

draw the two eyes. The eyes are “real” ovals that are taller than they are wide.
Also notice that the method is called fillOval, not drawOval, which means it
draws an oval that is filled in.

The last invocation

canvas.drawArc(150, 160, 100, 50, 180, 180);

draws the mouth. We will explain the meaning of all of these arguments next.

Size and Position of Figures

All measurements within a screen display are given not in inches or centimeters
but in pixels. A pixel—short for picture element—is the smallest length your
screen is capable of showing. A pixel is not an absolute unit of length like an
inch or a centimeter. The size of a pixel can be different on different screens,
but it will always be a small unit. You can think of your computer screen as

An applet’s paint
method draws its
graphics

M01_SAVI1833_07_SE_C01.indd 66 20/05/14 2:54 PM

	 1.4  Graphics Supplement	 67

being covered by small squares, each of which can be any color. You cannot
show anything smaller than one of these squares. A pixel is one of these
squares, but when used as measure of length, a pixel is the length of the side
of one of these squares.4 If you have shopped for a digital camera, you have
undoubtedly heard the term pixel or megapixel. The meaning of the word pixel
when used in Java applets is the same as its meaning when describing pictures
from a digital camera. A megapixel is just a million pixels.

Figure 1.6 shows the coordinate system used to position figures inside of
an applet or other kind of Java window-like display. Think of the large rectangle
as outlining the drawing area that is displayed on the screen. The coordinate
system assigns two numbers to each point inside the rectangle. The numbers
are known as the x-coordinate and the y-coordinate of the point. The
x-coordinate is the number of pixels from the left edge of the rectangle to
the point. The y-coordinate is the number of pixels from the top edge of the
rectangle to the point. The coordinates are usually written within parentheses
and separated by a comma, with the x-coordinate first. So the point marked
with a blue dot in Figure 1.6 has the coordinates (100, 50); 100 is the
x-coordinate and 50 is the y-coordinate.

Each coordinate in this system is greater than or equal to zero. The
x-coordinate gets larger as you go to the right from point (0, 0). The y-coordinate
gets larger as you go down from point (0, 0). I f you have studied x- and
y-coordinates in a math class, these are the same, with one change. I n other
coordinate systems, the y-coordinates increase as they go up from point (0, 0).

4 Strictly speaking, a pixel need not be a square but could be rectangular. However, we
do not need to go into such fine detail here.

A pixel is the
smallest length
shown on a
screen

A coordinate
system positions
points on the
screen

Figure 1.6   Screen Coordinate System

(0, 0)

(100, 50)

Positive y direction

Positive x direction

100 pixels

50
 p

ix
el

s

M01_SAVI1833_07_SE_C01.indd 67 20/05/14 2:54 PM

68	 Chapter 1 /  Introduction to Computers and Java

Figure 1.7   �The Oval Drawn by canvas.drawOval (100,
50, 90, 50)

(0, 0)

(100, 50)

100 pixels

50
 p

ix
el

s

50
 p

ix
el

s

90 pixels

Oval object
drawn

You position a rectangle in this graphical coordinate system at coordinates
(x, y) by placing its upper left corner at the point (x, y). For example, the
rectangle given by the dashed blue lines in Figure 1.7 is positioned at point
(100, 50), which is marked with a black X. You position a figure that is not
a rectangle at point (x, y) by first enclosing it in an imaginary rectangle that
is as small as possible but still contains the figure and then by placing the
upper left corner of this enclosing rectangle at (x, y). For example, in Figure
1.7 the oval is also positioned at point (100, 50). If the applet contains only
an oval and no rectangle, only the oval shows on the screen. But an imaginary
rectangle is still used to position the oval.

Drawing Ovals and Circles

The oval in Figure 1.7 is drawn by the Java statement

canvas.drawOval(100, 50, 90, 50);

The first two numbers are the x- and y-coordinates of the upper left corner
of the imaginary rectangle that encloses the oval. That is, these two numbers
are the coordinates of the position of the figure drawn by this statement. The
next two numbers give the width and height of the rectangle containing the
oval (and thus the width and height of the oval itself). If the width and height
are equal, you get a circle.

Now let’s return to the statements in the body of the method paint:

canvas.drawOval(100, 50, 200, 200);
canvas.fillOval(155, 100, 10, 20);
canvas.fillOval(230, 100, 10, 20);

drawOval and
fillOval draw
ovals or circles

M01_SAVI1833_07_SE_C01.indd 68 20/05/14 2:54 PM

	 1.4  Graphics Supplement	 69

In each case, the first two numbers are the x- and y-coordinates of the upper left
corner of an imaginary rectangle that encloses the figure being drawn. The first
statement draws the outline of the face at position (100, 50). Since the width
and height—as given by the last two arguments—have the same value, 200,
we get a circle whose diameter is 200. The next two statements draw filled ovals
for the eyes positioned at the points (155, 100) and (230, 100). The eyes are
each 10 pixels wide and 20 pixels high. The results are shown in Listing 1.2.

Recap  The Methods drawOval and fillOval

Syntax

canvas.drawOval(x, y, Width, Height);
canvas.fillOval(x, y, Width, Height);

The method drawOval draws the outline of an oval that is Width pixels
wide and Height pixels high. The oval is placed so that the upper left
corner of a tightly enclosing rectangle is at the point (x, y).
   The method fillOval draws the same oval as drawOval but fills it in.

Drawing Arcs

Arcs, such as the smile on the happy face in Listing 1.2, are specified as a
portion of an oval. For example, the following statement from Listing 1.2
draws the smile on the happy face:

canvas.drawArc(150, 160, 100, 50, 180, 180);

The first two arguments give the position of an invisible rectangle. The upper
left corner of this rectangle is at the point (150, 160). The next two arguments
specify the size of the rectangle; it has width 100 and height 50. I nside this
invisible rectangle, imagine an invisible oval with the same width and height
as the invisible rectangle. The last two arguments specify the portion of this
invisible oval that is made visible. In this example, the bottom half of the oval is
visible and forms the smile. Let’s examine these last two arguments more closely.

The next-to-last argument of drawArc specifies a start angle in degrees. The
last argument specifies how many degrees of the oval’s arc will be made visible.
The rightmost end of the oval’s horizontal equator is at zero degrees. As you
move along the oval’s edge in a counterclockwise direction, the degrees increase
in value. For example, Figure 1.8a shows a start angle of 0 degrees; we measure
90 degrees along the oval in a counterclockwise direction, making one quarter
of the oval visible. Conversely, as you move along the oval in a clockwise
direction, the degrees decrease in value. For example, in Figure 1.8b, we start
at 0 and move −90 degrees in a clockwise direction, making a different quarter
of the oval visible. I f the last argument is 360, you move counterclockwise
through 360 degrees, making the entire oval visible, as Figure 1.8c shows.

drawArc draws
part of an oval

M01_SAVI1833_07_SE_C01.indd 69 20/05/14 2:54 PM

70	 Chapter 1 /  Introduction to Computers and Java

Sweep through 180 degrees

Sweep through 90 degrees
Height

Width

canvas.drawArc(x, y, width, height, 0, 90);

canvas.drawArc(x, y, width, height, 0, -90);

canvas.drawArc(x, y, width, height, 0, 360);

canvas.drawArc(x, y, width, height, 180, 180);

(x, y)
(a)

(b)

(c)

(d)

Sweep through -90 degrees

Sweep through 360 degrees

Start at
0 degrees

Start at
0 degrees

Start at
180 degrees

Start at
0 degrees

Figure 1.8   Specifying an Arc

M01_SAVI1833_07_SE_C01.indd 70 20/05/14 2:54 PM

	 1.4  Graphics Supplement	 71

Finally, Figure 1.8d illustrates an arc that begins at 180 degrees, so it starts
on the left end of the invisible oval. The last argument is also 180, so the arc is
made visible through 180 degrees in the counterclockwise direction, or halfway
around the oval. The smile on the happy face in Listing 1.2 uses this same arc.

Running an Applet

You compile an applet in the same way that you compile any other Java class.
However, you run an applet differently from other Java programs. The normal

Recap  drawArc

Syntax

canvas.drawArc(x, y, Width, Height, StartAngle, ArcAngle);

Draws an arc that is part of an oval placed so the upper left corner of
a tightly enclosing rectangle is at the point (x, y). The oval’s width and
height are Width and Height, both in pixels. The portion of the arc drawn
is given by StartAngle and ArcAngle, both given in degrees. The rightmost
end of the oval’s horizontal equator is at 0 degrees. You measure positive
angles in a counterclockwise direction and negative angles in a clockwise
direction. Beginning at StartAngle, you measure ArcAngle degrees along
the oval to form the arc. Figure 1.8 gives some examples of arcs.

FAQ  What is canvas?

The identifier canvas names an object that does the drawing. Note that
canvas is a “dummy variable” that stands for an object that Java supplies
to do the drawing. You need not use the identifier canvas, but you do
need to be consistent. If you change one occurrence of canvas to, say,
pen, you must change all occurrences of canvas to pen. Thus, the method
paint shown in Listing 1.2 could be written as follows:

public void paint (Graphics pen)
{
 super.paint(pen)
 pen.drawOval(100, 50, 200, 200);
 pen.fillOval(155, 100, 10, 20);
 pen.fillOval(230, 100, 10, 20);
 pen.drawArc(150, 160, 100, 50, 180, 180);
}

This definition and the one given in Listing 1.2 are equivalent.

M01_SAVI1833_07_SE_C01.indd 71 20/05/14 2:54 PM

72	 Chapter 1 /  Introduction to Computers and Java

way to run an applet is as part of a Web page. The applet is then viewed
through a Web browser. We will discuss this means of viewing an applet in
Chapter 14 (on the book’s Web site).

You need not know how to embed an applet in a Web page to run it,
however. Instead, you can use an applet viewer, a program designed to run
applets as stand-alone programs. The easiest way to do this is to run the
applet from an integrated development environment (IDE), such as the ones
mentioned earlier in this chapter. Every I DE has a menu command such as
Run Applet, Run, Execute, or something similar. Appendix 2 explains how to
use Oracle’s applet viewer.

The way to end an applet depends on how you are running it. If you are
using an IDE or other applet viewer, you end the applet display by clicking
the close-window button with your mouse. The close-window button will
likely be as shown in Listing 1.2, but it might have a different location or
appearance, depending on your computer and operating system. In that case,
the close-window button will probably be like those on other windows on
your computer. If you are running the applet from a Web site, the applet stays
until you close or navigate away from the page it is on.

An applet viewer
will run an applet

Ending an applet

Chapter Summary

■	 A computer’s main memory holds the program that is currently executing,
and it also holds many of the data items that the program is manipulating.
A computer’s main memory is divided into a series of numbered locations
called bytes. This memory is volatile: The data it holds disappears when the
computer’s power is off.

■	 A computer’s auxiliary memory is used to hold data in a more or less
permanent way. Its data remains even when the computer’s power is off.
Hard disk drives, flash drives, CDs, and DVDs are examples of auxiliary
memory.

■	 A compiler is a program that translates a program written in a high-level lan-
guage like Java into a program written in a low-level language. An interpreter

Self-Test Questions

	33.	 How would you change the applet program in Listing 1.2 so that the eyes
are circles instead of ovals?

	34.	 How would you change the applet program in Listing 1.2 so that the face
frowns? (Hint: Turn the smile upside down by changing the arguments in
the call to the method drawArc.)

VideoNote
Another applet example

M01_SAVI1833_07_SE_C01.indd 72 20/05/14 2:54 PM

	 1.4  Graphics Supplement	 73

is a program that performs a similar translation, but unlike a compiler, an
interpreter executes a portion of code right after translating it, rather than
translating the entire program at once.

■	 The Java compiler translates your Java program into a program in the byte-
code language. When you give the command to run your Java program, this
bytecode program is both translated into machine-language instructions and
executed by an interpreter called the Java Virtual Machine.

■	 An object is a program construct that performs certain actions. These ac-
tions, or behaviors, are defined by the object’s methods. The characteristics,
or attributes, of an object are determined by its data, and the values of these
attributes give the object a state.

■	 Object-oriented programming is a methodology that views a program
as consisting of objects that can act alone or interact with one another.
A software object might represent a real-world object, or it might be an
abstraction.

■	 Three of the main principles of object-oriented programming are encapsula-
tion, polymorphism, and inheritance.

■	 A class is a blueprint for the attributes and behaviors of a group of objects.
The class defines the type of these objects. All objects of the same class have
the same methods.

■	 In a Java program, a method invocation is written as the object name, fol-
lowed by a period (called a dot), the method name, and, finally, the argu-
ments in parentheses.

■	 An algorithm is a set of directions for solving a problem. To qualify as an
algorithm, the directions must be expressed so completely and precisely that
somebody could follow them without having to fill in any details or make
any decisions that are not fully specified in the directions.

■	 Pseudocode is a combination of English and a programming language. It is
used to write an algorithm’s directions.

■	 The syntax of a programming language is the set of grammatical rules for the
language. These rules dictate whether a statement in the language is correct.
The compiler will detect errors in a program’s syntax.

■	 You can write applets that display pictures on the computer screen. Applets
are meant to be sent over the Internet and be viewed in a Web browser.
However, you can use an applet viewer, which is a stand-alone program,
instead.

■	 The method drawOval draws the outline of an oval. The method fillOval
draws the same oval as drawOval but fills it in. The method drawArc draws
an arc that is part of an oval.

M01_SAVI1833_07_SE_C01.indd 73 20/05/14 2:54 PM

74	 Chapter 1 /  Introduction to Computers and Java

Exercises

	  1.	 What is the use of the central processing unit in a computer? Name
any one well-known processor.

	  2.	 After you use a text editor to write a program, will it be in main memory or
auxiliary memory?

	  3.	 Name the supervisory program that oversees the entire operation of the
computer?

	  4.	 How does machine language differ from assembly language?

	  5.	 How does bytecode differ from assembly language?

	  6.	 What would the following statements, when used in a Java program, dis-
play on the screen?

float salary;
salary = 5000.50f;
System.out.println (“My salary is”);
System.out.println(salary);

	  7.	 Write a statement or statements that can be used in a Java program to dis-
play the following on the screen:

5
3
1

	  8.	 Write statements that can be used in a Java program to read your salary, as
entered on the keyboard, and display it on the screen.

	  9.	 Given a person’s year of joining in an organization and the current year,
the Year of Service Wizard can compute the number of years the person has
served. Write statements that can be used in a Java program to perform this
computation for the Year of Service Wizard.

	10.	Write statements that can be used in a Java program to read two inte-
gers and display the number of even integers that lie between them.
For example, the number of even integers that lie between 12 and 5
are 4.

	11.	A single bit can represent two values: 0 and 1. Two bits can represent
four values: 00, 01, 10, and 11. Three bits can represent eight values:
000, 001, 010, 011, 100, 101, 110, and 111. How many values can be
represented by

		 a.  10 bits?      b.  20 bits?      c.  30 bits?

M01_SAVI1833_07_SE_C01.indd 74 5/30/14 1:42 PM

	 1.4  Graphics Supplement	 75

	12.	 Find the documentation for the Java Class Library on the Oracle® Web site. (At
this writing, the link to this documentation is http://download-llnw.oracle. com/
javase/7/docs/api/.) Then find the description for the Package java.applet. How
many Interfaces are described in the section entitled “Interface Summary”?

	13.	 Self-Test Question 27 asked you to think of some attributes for a song
object. What attributes would you want for an object that represents a cell
phone number list containing many phone numbers?

	14.	 What behaviors might a cell phone number have? What behaviors might a
cell phone number list have? Contrast the difference in behavior between
the two kinds of objects.

	15.	 What attributes and behaviors would an object representing a cell phone
subscriber account have?

	16.	 Suppose that you have a number x that is greater than 1. Write an algo-
rithm that computes the largest integer k such that 3k is less than or equal
to x.

	17.	 Write an algorithm that finds the minimum value in a list of values.

	18.	 Write statements that can be used in a Java applet to draw the following
three connected rings. (Don’t worry about the color.)

	19.	Find the documentation for the class Graphics2D in the Java Class
Library. (See Exercise 12.) Learn how to use the method draw3DRect.
Then explain the use of different parameters used in the method draw-
3DRect. Also explain the use of different parameters used in the method
fill3DRect.

	20.	 Write statements that can be used in a Java applet to draw the outline of a
crescent moon. Graphics

Graphics

Graphics

Practice programs

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	1.	 Write the Java program shown in Listing 1.2 in the bin directory under the jdk
directory. Name the file HappyFace.java. Compile the program so that you
receive no compiler error messages. Then run the program.

M01_SAVI1833_07_SE_C01.indd 75 5/30/14 1:42 PM

76	 Chapter 1 /  Introduction to Computers and Java

Programming Projects

Programming Projects require more problem-solving than Practice Programs and can
usually be solved many different ways.

	1.	 Write a Java program that displays the following picture. (Hint: Write a
sequence of println statements that display lines of asterisks and blanks.)

	2.	 Write a java program so that it adds four numbers. Compile the pro-
gram so that you receive no compiler error messages. Then run the
program.

	3.	 The following program has syntax errors that prevent the program from
compiling. Find and fix the errors.

import java.util.Scanner;
public class SyntaxError
{
 public static void main(String[] args)
 {
 System.out.println(“Enter two numbers to subtract”.);
 Scanner keyboard = new Scanner(System.in);
 n1 = keyboard.nextInt();
 n2 = keyboard.nextInt();
 int result = n1 - n2;
 System.out.println(The result is: + result)
 }
}

	4.	 The following program has syntax errors that prevent the program from
compiling. Find and fix the errors.

import java.util.Scanner;
public class SemanticError
{
 public static void main(String[] args)
 {
 int width=0, depth=0;
 System.out.println(“Enter the height, width, and depth of”);
 System.out.println(“a box and I will compute the volume.”);
 Scanner keyboard = new Scanner(System.in);
 height = keyboard.nextInt();
 width = keyboard.nextInt();
 depth = keyboard.nextInt();
 int volume = height * width * depth;
 System.out.println(“The volume is “ + volume);
 }
}

M01_SAVI1833_07_SE_C01.indd 76 5/30/14 1:42 PM

	 1.4  Graphics Supplement	 77

Graphics

Graphics

Graphics

VideoNote
Writing an algorithm for
Project 3

	2.	 Write a complete program for the problem described in Exercise 9.

	3.	 Write a complete program for the problem described in Exercise 10.

	4.	 Write an applet program similar to the one in Listing 1.2 that displays a
picture of a snowman. (Hint: Draw three circles, one above the other. Make
the circles progressively smaller from bottom to top. Make the top circle a
happy face.)

	5.	 Write an applet program for the problem described in Exercise 18.

	6.	 Write an applet program that displays the following pattern:

Answers to Self-Test Questions

	  1.	 Main memory and auxiliary memory.

	  2.	 Software is just another name for programs.

	  3.	 The two numbers to be added.

	  4.	 All the grades on all the quizzes you have taken in the course.

	  5.	 A high-level-language program is written in a form that is easy for a human
being to write and read. A machine-language program is written in a form

M01_SAVI1833_07_SE_C01.indd 77 20/05/14 2:54 PM

78	 Chapter 1 /  Introduction to Computers and Java

the computer can execute directly. A high-level-language program must be
translated into a machine-language program before the computer can ex-
ecute it. Java bytecode is a low-level language that is similar to the machine
language of most common computers. It is relatively easy to translate a
program expressed in Java bytecode into the machine language of almost
any computer.

	  6.	 Java is a high-level language.

	  7.	 Java bytecode is a low-level language.

	  8.	 A compiler translates a high-level-language program into a low-level-
language program such as a machine-language program or a Java bytecode
program. When you compile a Java program, the compiler translates your
Java program into a program expressed in Java bytecode.

	  9.	 A source program is the high-level-language program that is input to a compiler.

	10.	 The Java Virtual Machine is a program that translates Java bytecode instruc-
tions into machine-language instructions. The JVM is a kind of interpreter.

	11.	 Java is great!

	12.	 System.out.println("Java for one.");
System.out.println("Java for all.");

	13.	 mary.increaseAge(5);

	14.	 The statement reads a whole number typed in at the keyboard and stores
it in the variable nl.

	15.	 public class Question15
{
 public static void main(String[] args)
 {
 System.out.println("Hello World!");
 }
}

Some details, such as identifier names, may be different in your program.
Be sure you compile and run your program.

	16.	 The file containing the class YourClass should be named YourClass.java.

	17.	 YourClass.class.

	18.	 A method defines an action that an object is capable of performing.

	19.	 A class is a blueprint for creating objects. All objects in the same class have
the same kind of data and the same methods.

M01_SAVI1833_07_SE_C01.indd 78 20/05/14 2:54 PM

	 1.4  Graphics Supplement	 79

	20.	 Yes, all objects of the same class have the same methods.

	21.	 Encapsulation is the process of hiding all the details of an object that are
unnecessary to using the object. Put another way, encapsulation is the pro-
cess of describing a class or object by giving only enough information to
allow a programmer to use the class or object.

	22.	 Information hiding is another term for encapsulation.

	23.	 In a programming language, such as Java, polymorphism means that one
method name, used as an instruction, can cause different actions, depend-
ing on the kind of object performing the action.

	24.	 Inheritance is a way of organizing classes. You can define a general class
having common attributes and behaviors, and then use inheritance to de-
fine specialized classes that add to or revise the details of the general class.

	25.	 An algorithm is a set of directions for solving a problem. To qualify as an
algorithm, the directions must be expressed so completely and precisely
that somebody could follow them without having to fill in any details or
make any decisions that are not fully specified in the directions.

	26.	 Pseudocode is a mixture of English and Java that you can use to write the
steps of an algorithm.

	27.	 A song object could have the following attributes: title, composer, date,
performer, album title.

	28.	 Algorithm to count the odd integers in a list of integers:

		 1.  Write the number 0 on the blackboard.

	 	 2.  Do the following for each odd integer on the list:

	 	 	 • A dd 1 to the number on the blackboard.

	 	 	 • �R eplace the old number on the blackboard with the result of this addition.

	 	 3. A nnounce that the answer is the number written on the blackboard.

	29.	 A syntax error is a grammatical mistake in a program. When you write a
program, you must adhere to very strict grammatical rules. If you violate
one of these rules by omitting a required punctuation mark, for example,
you make a syntax error.

	30.	 A logic error is a conceptual error in a program or its algorithm. If your
program runs and gives output, but the output is incorrect, you have a logic
error.

	31.	 Syntax errors and run-time errors.

M01_SAVI1833_07_SE_C01.indd 79 20/05/14 2:54 PM

80	 Chapter 1 /  Introduction to Computers and Java

	32.	 A logic error.

	33.	 Change the following lines

canvas.fillOval(155, 100, 10, 20);
canvas.fillOval(230, 100, 10, 20);

to

canvas.fillOval(155, 100, 10, 10);
canvas.fillOval(230, 100, 10, 10);

The last two numbers on each line are changed from 10, 20 to 10, 10. You
could also use some other number, such as 20, and write 20, 20 in place
of 10, 10.

	34.	 Change the following line

canvas.drawArc(150, 160, 100, 50, 180, 180);

to

canvas.drawArc(150, 160, 100, 50, 180, -180);

The last number is changed from positive to negative. Other correct
answers are possible. For example, the following is also acceptable:

canvas.drawArc(150, 160, 100, 50, 0, 180);

You could also change the first number 150 to a larger number in either
of the above statements. Other correct answers are similar to what we
have already described.

M01_SAVI1833_07_SE_C01.indd 80 20/05/14 2:54 PM

Basic
Computation

2.1 � Variables and Expressions   82
Variables   83
Data Types   85
Java Identifiers   87
Assignment Statements   89
Simple Input   92
Simple Screen Output   94
Constants   94
Named Constants   96
Assignment Compatibilities   97
Type Casting   99
Arithmetic Operators   102
Parentheses and Precedence Rules   105
Specialized Assignment Operators   106
Case Study: Vending Machine Change   108
Increment and Decrement Operators   113
More About the Increment and Decrement

Operators   114

2.2  The Class String  115
String Constants and Variables   115
Concatenation of Strings   116
String Methods   117
String Processing   119

Escape Characters   122
The Unicode Character Set   123

2.3 � Keyboard and Screen I/O   125
Screen Output   125
Keyboard Input   128
Other Input Delimiters (Optional)   133
Formatted Output with printf (Optional)   135

2.4 D ocumentation and Style   137
Meaningful Variable Names   137
Comments   138
Indentation   141
Using Named Constants   141

2.5  Graphics Supplement   143
Style Rules Applied to a Graphics Applet   144
Creating a Java GUI Application with the JFrame

Class   144
Introducing the Class JOptionPane   147
Reading Input as Other Numeric Types   157
Programming Example: Change-Making Program

with Windowing I/O   158

2

Chapter Summary   160
Practice Programs   164 Answers to Self-Test Questions   168

Programming Projects   165

M02_SAVI1833_07_SE_C02.indd 81 20/05/14 3:05 PM

In this chapter, we explain enough about the Java language to allow you to
write simple Java programs. You do not need any programming experience
to understand this chapter. If you are already familiar with some other
programming language, such as Visual Basic, C, C++, or C#, much that is in
Section 2.1 will already be familiar to you. However, even if you know the
concepts, you should learn the Java way of expressing them.

Objectives

After studying this chapter, you should be able to

•	Describe the Java data types that are used for simple data like numbers and
characters

•	Write Java statements to declare variables and define named constants
•	Write assignment statements and expressions containing variables and

constants
•	Define strings of characters and perform simple string processing
•	Write Java statements that accomplish keyboard input and screen output
•	Adhere to stylistic guidelines and conventions
•	Write meaningful comments within a program
•	Use the class JFrame to produce windowing interfaces within Java appli­

cation programs
•	Use the class JOptionPane to perform window-based input and output

Prerequisites

If you have not read Chapter 1, you should read at least the section of
Chapter 1 entitled “A First Java Application Program” to familiarize yourself
with the notions of class, object, and method. Also, material from the graphics
supplement in Chapter 1 is used in the section “Style Rules Applied to a
Graphics Applet” in the graphics supplement of this chapter.

2.1  Variables and Expressions

In this section, we explain how simple variables and arithmetic expressions
are used in Java programs. Some of the terms used here were introduced in
Chapter 1. We will, however, review them again.

82

Beauty without expression tires.

—RALPH WALDO EMERSON, The Conduct of Life, (1876)

M02_SAVI1833_07_SE_C02.indd 82 20/05/14 3:05 PM

Variables

Variables in a program are used to store data such as numbers and letters.
They can be thought of as containers of a sort. The number, letter, or other
data item in a variable is called its value. This value can be changed, so
that at one time the variable contains, say, 6, and at another time, after the
program has run for a while, the variable contains a different value, such
as 4.

For example, the program in Listing 2.1 uses the variables numberOfBaskets,
eggsPerBasket, and totalEggs. When this program is run, the statement

eggsPerBasket = 6;

sets the value of eggsPerBasket to 6.
In Java, variables are implemented as memory locations, which we

described in Chapter 1. Each variable is assigned one memory location. When
the variable is given a value, the value is encoded as a string of 0s and 1s and is
placed in the variable’s memory location.

	 2.1  Variables and Expressions	 83

A variable is
a program
component
used to store or
represent data

Variables
represent
memory locations

LISTING 2.1   A Simple Java Program

public class EggBasket
{
 public static void main(String[] args)
 {
 int numberOfBaskets, eggsPerBasket, totalEggs;

 numberOfBaskets = 10;
 eggsPerBasket = 6;

 totalEggs = numberOfBaskets * eggsPerBasket;

 System.out.println("If you have");
 System.out.println(eggsPerBasket + " eggs per basket and");
 System.out.println(numberOfBaskets + " baskets, then");
 System.out.println("the total number of eggs is " + totalEggs);
 }
}

Sample Screen Output

If you have

6 eggs per basket and

10 baskets, then

the total number of eggs is 60

Variable
declarations

Assignment statement

M02_SAVI1833_07_SE_C02.indd 83 20/05/14 3:05 PM

84	 Chapter 2 /  Basic Computation

You should choose variable names that are helpful. The names should
suggest the variables’ use or indicate the kind of data they will hold. For
example, if you use a variable to count something, you might name it count.
If the variable is used to hold the speed of an automobile, you might call the
variable speed. You should almost never use single-letter variable names like
x and y. Somebody reading the statement

x = y + z;

would have no idea of what the program is really adding. The names of
variables must also follow certain spelling rules, which we will detail later in
the section “Java Identifiers.”

Before you can use a variable in your program, you must state some
basic information about each one. The compiler—and so ultimately the
computer—needs to know the name of the variable, how much computer
memory to reserve for the variable, and how the data item in the variable is
to be coded as strings of 0s and 1s. You give this information in a variable
declaration. Every variable in a Java program must be declared before it is
used for the first time.

A variable declaration tells the computer what type of data the variable
will hold. That is, you declare the variable’s data type. Since different types
of data are stored in the computer’s memory in different ways, the computer
must know the type of a variable so it knows how to store and retrieve
the value of the variable from the computer’s memory. For example, the
following line from Listing 2.1 declares numberOfBaskets, eggsPerBasket,
and totalEggs to be variables of data type int:

int numberOfBaskets, eggsPerBasket, totalEggs;

A variable declaration consists of a type name, followed by a list of variable
names separated by commas. The declaration ends with a semicolon. All the
variables named in the list are declared to have the same data type, as given at
the start of the declaration.

If the data type is int, the variable can hold whole numbers, such as 42,
−99, 0, and 2001. A whole number is called an integer. The word int is an
abbreviation of integer. If the type is double, the variable can hold numbers
having a decimal point and a fractional part after the decimal point. If the
type is char, the variables can hold any one character that appears on the
computer keyboard.

Every variable in a Java program must be declared before the variable can
be used. Normally, a variable is declared either just before it is used or at the
start of a section of your program that is enclosed in braces {}. In the simple
programs we have seen so far, this means that variables are declared either just
before they are used or right after the lines

public static void main(String[] args)
{

Declare variables
before using
them

Choose
meaningful
variable names

M02_SAVI1833_07_SE_C02.indd 84 20/05/14 3:05 PM

	 2.1  Variables and Expressions	 85

Data Types

As you have learned, a data type specifies a set of values and their operations.
In fact, the values have a particular data type because they are stored in
memory in the same format and have the same operations defined for them.

Recap  Variable Declarations

In a Java program, you must declare a variable before it can be used.
A variable declaration has the following form:

Syntax

Type Variable_1, Variable_2, ...;

Examples

int styleNumber, numberOfChecks, numberOfDeposits;
double amount, interestRate;
char answer;

A data type
specifies a set
of values and
operations

Remember  Syntactic Variables

When you see something in this book like Type, Variable_1, or Variable_2
used to describe Java syntax, these words do not literally appear in your
Java code. They are syntactic variables, which are a kind of blank that you
fill in with something from the category that they describe. For example,
Type can be replaced by int, double, char, or any other type name.
Variable_1 and Variable_2 can each be replaced by any variable name.

Java has two main kinds of data types: class types and primitive types.
As the name implies, a class type is a data type for objects of a class. Since a
class is like a blueprint for objects, the class specifies how the values of its type
are stored and defines the possible operations on them. As we implied in the
previous chapter, a class type has the same name as the class. For example,
quoted strings such as "Java is fun" are values of the class type String, which
is discussed later in this chapter.

Variables of a primitive type are simpler than objects (values of a class
type), which have both data and methods. A value of a primitive type is an
indecomposable value, such as a single number or a single letter. The types
int, double, and char are examples of primitive types.

Class types and
primitive types

M02_SAVI1833_07_SE_C02.indd 85 20/05/14 3:05 PM

86	 Chapter 2 /  Basic Computation

Figure 2.1 lists all of Java’s primitive types. Four types are for integers,
namely, byte, short, int, and long. The only differences among the various
integer types are the range of integers they represent and the amount of
computer memory they use. If you cannot decide which integer type to use,
use the type int.

A number having a fractional part—such as the numbers 9.99, 3.14159,
−5.63, and 5.0—is called a floating-point number. Notice that 5.0 is a
floating-point number, not an integer. If a number has a fractional part, even
if the fractional part is zero, it is a floating-point number. As shown in Figure
2.1, Java has two data types for floating-point numbers, float and double.
For example, the following code declares two variables, one of type float and
one of type double:

float cost;
double capacity;

As with integer types, the differences between float and double involve the
range of their values and their storage requirements. If you cannot decide
between the types float and double, use double.

The primitive type char is used for single characters, such as letters, digits,
or punctuation. For example, the following declares the variable symbol to be
of type char, stores the character for uppercase A in symbol, and then displays
A on the screen:

char symbol;
symbol = 'A';
System.out.println(symbol);

Figure 2.1   Primitive Type

Type Name Kind of Value Memory Used Range of Values

byte Integer 1 byte 128 to 127

short Integer 2 bytes 32,768 to 32,767

int Integer 4 bytes 2,147,483,648 to 2,147,483,647

long Integer 8 bytes 9,223,372,036,8547,75,808 to
 9,223,372,036,854,775,807

float Floating-point 4 bytes ±3.40282347 × 10+38
−45

 to
±1.40239846 × 10

double Floating-point 8 bytes ±1.79769313486231570 × 10+308
−324

to
±4.94065645841246544 × 10

char Single character
(Unicode)

2 bytes All Unicode values from 0 to 65,535

boolean 1 bit True or false

A floating-point
number has a
fractional part

M02_SAVI1833_07_SE_C02.indd 86 20/05/14 3:05 PM

	 2.1  Variables and Expressions	 87

In a Java program, we enclose a single character in single quotes, as in 'A'.
Note that there is only one symbol for a single quote. The same quote symbol
is used on both sides of the character. Finally, remember that uppercase letters
and lowercase letters are different characters. For example, 'a' and 'A' are
two different characters.

The last primitive type we have to discuss is the type boolean. This data
type has two values, true and false. We could, for example, use a variable of
type boolean to store the answer to a true/false question such as “Is eggCount
less than 12?” We will have more to say about the data type boolean in the
next chapter.

All primitive type names in Java begin with a lowercase letter. In the next
section, you will learn about a convention in which class type names—that is,
the names of classes—begin with an uppercase letter.

Although you declare variables for class types and primitive types in
the same way, these two kinds of variables store their values using different
mechanisms. Chapter 5 will explain class type variables in more detail.
In this chapter and the next two, we will concentrate on primitive types.
We will occasionally use variables of a class type before Chapter 5, but
only in contexts where they behave pretty much the same as variables of a
primitive type.

Java Identifiers

The technical term for a name in a programming language, such as the name
of a variable, is an identifier. In Java, an identifier (a name) can contain
only letters, digits 0 through 9, and the underscore character (_). The first
character in an identifier cannot be a digit.1 In particular, no name can
contain a space or any other character such as a dot (period) or an asterisk
(*). There is no limit to the length of an identifier. Well, in practice, there
is a limit, but Java has no official limit and will accept even absurdly long
names. Java is case sensitive. That is, uppercase and lowercase letters are
considered to be different characters. For example, Java considers mystuff,
myStuff, and MyStuff to be three different identifiers, and you could have
three different variables with these three names. Of course, writing variable
names that differ only in their capitalization is a poor programming practice,
but the Java compiler would happily accept them. Within these constraints,
you can use any name you want for a variable, a class, or any other item you
define in a Java program. But there are some style guidelines for choosing
names.

Single quotes
enclose a
character

1 Java does allow the dollar sign ($) to appear in an identifier, treating it as a letter. But
such identifiers have a special meaning. It is intended to identify code generated by a
machine, so you should not use the $ symbol in your identifiers.

Java is case
sensitive

M02_SAVI1833_07_SE_C02.indd 87 20/05/14 3:05 PM

88	 Chapter 2 /  Basic Computation

Our somewhat peculiar use of uppercase and lowercase letters, such as
numberOfBaskets, deserves some explanation. It would be perfectly legal to
use NumberOfBaskets or number_of_baskets instead of numberOfBaskets,
but these other names would violate some well-established conventions
about how you should use uppercase and lowercase letters. Under these
conventions, we write the names of variables using only letters and digits. We
“punctuate” multiword names by using uppercase letters—since we cannot
use spaces. The following are all legal names that follow these conventions:

inputStream YourClass CarWash hotCar theTimeOfDay

Notice that some of these legal names start with an uppercase letter and
others, such as hotCar, start with a lowercase letter. We will always follow the
convention that the names of classes start with an uppercase letter, and the
names of variables and methods start with a lowercase letter.

The following identifiers are all illegal in Java, and the compiler will
complain if you use any of them:

prenhall.com go-team Five* 7eleven

The first three contain illegal characters, either a dot, a hyphen, or an asterisk.
The last name is illegal because it starts with a digit.

Some words in a Java program, such as the primitive types and the word
if, are called keywords or reserved words. They have a special predefined
meaning in the Java language and cannot be used as the names of variables,
classes, or methods, or for anything other than their intended meaning. All
Java keywords are entirely in lowercase. A full list of these keywords appears
in Appendix 11, which is online, and you will learn them as we go along. The
program listings in this book show keywords, such as public, class, static,
and void, in a special color. The text editors within an IDE often identify
keywords in a similar manner.

Some other words, such as main and println, have a predefined meaning
but are not keywords. That means you can change their meaning, but it is
a bad idea to do so, because it could easily confuse you or somebody else
reading your program.

Legal identifiers

Illegal identifiers

Java keywords
have special
meanings

Recap  Identifiers (Names)

The name of something in a Java program, such as a variable, class, or
method, is called an identifier. It must not start with a digit and may
contain only letters, digits 0 through 9, and the underscore character (_).
Uppercase and lowercase letters are considered to be different characters.
(The symbol $ is also allowed, but it is reserved for special purposes, and
so you should not use $ in a Java name.)

M02_SAVI1833_07_SE_C02.indd 88 20/05/14 3:05 PM

	 2.1  Variables and Expressions	 89

Assignment Statements

The most straightforward way to give a variable a value or to change its value is to
use an assignment statement. For example, if answer is a variable of type int and
you want to give it the value 42, you could use the following assignment statement:

answer = 42;

The equal sign, =, is called the assignment operator when it is used in an
assignment statement. It does not mean what the equal sign means in other
contexts. The assignment statement is an order telling the computer to change
the value stored in the variable on the left side of the assignment operator to
the value of the expression on the right side. Thus, an assignment statement
always consists of a single variable followed by the assignment operator (the
equal sign) followed by an expression. The assignment statement ends with a
semicolon. So assignment statements take the form

Variable = Expression;

Gotcha   Java Is Case Sensitive

Do not forget that Java is case sensitive. If you use an identifier, like myNumber,
and then in another part of your program you use the spelling MyNumber, Java
will not recognize them as being the same identifier. To be seen as the same
identifier, they must use exactly the same capitalization.	 ■

Faq  �Why should I follow naming conventions? And who sets
the rules?

By following naming conventions, you can make your programs easier
to read and to understand. Typically, your supervisor or instructor
determines the conventions that you should follow when writing Java
programs. However, the naming conventions that we just gave are
almost universal among Java programmers. We will mention stylistic
conventions for other aspects of a Java program as we go forward. Sun
Microsystems provides its own conventions on its Web site. While the
company suggests that all Java programmers follow these conventions,
not everyone does.

An assignment
statement gives
a value to a
variable

Although it is not required by the Java language, the common practice, and
the one followed in this book, is to start the names of classes with uppercase
letters and to start the names of variables and methods with lowercase letters.
These names are usually spelled using only letters and digits.

M02_SAVI1833_07_SE_C02.indd 89 20/05/14 3:05 PM

90	 Chapter 2 /  Basic Computation

The expression can be another variable, a number, or a more complicated
expression made up by using arithmetic operators, such as + and -, to
combine variables and numbers. For example, the following are all examples
of assignment statements:

amount = 3.99;
firstInitial = 'B';
score = numberOfCards + handicap;
eggsPerBasket = eggsPerBasket − 2;

All the names, such as amount, score, and numberOfCards, are variables. We
are assuming that the variable amount is of type double, firstInitial is of
type char, and the rest of the variables are of type int.

When an assignment statement is executed, the computer first evaluates
the expression on the right side of the assignment operator (=) to get the value
of the expression. It then uses that value to set the value of the variable on the
left side of the assignment operator. You can think of the assignment operator
as saying, “Make the value of the variable equal to what follows.”

For example, if the variable numberOfCards has the value 7 and handicap
has the value 2, the following assigns 9 as the value of the variable score:

score = numberOfCards + handicap;

In the program in Listing 2.1, the statement

totalEggs = numberOfBaskets * eggsPerBasket;

is another example of an assignment statement. It tells the computer to set
the value of totalEggs equal to the number in the variable numberOfBaskets
multiplied by the number in the variable eggsPerBasket. The asterisk
character (*) is the symbol used for multiplication in Java.

Note that a variable can meaningfully occur on both sides of the
assignment operator and can do so in ways that might at first seem a little
strange. For example, consider

count = count + 10;

This does not mean that the value of count is equal to the value of count plus
10, which, of course, is impossible. Rather, the statement tells the computer to
add 10 to the old value of count and then make that the new value of count.
In effect, the statement will increase the value of count by 10. Remember that
when an assignment statement is executed, the computer first evaluates the
expression on the right side of the assignment operator and then makes that
result the new value of the variable on the left side of the assignment operator.
As another example, the following assignment statement will decrease the
value of eggsPerBasket by 2:

eggsPerBasket = eggsPerBasket − 2;

* means multiply

The same variable
can occur on both
sides of the =

M02_SAVI1833_07_SE_C02.indd 90 20/05/14 3:05 PM

	 2.1  Variables and Expressions	 91

You can initialize
a variable when
you declare it

Recap  Assignment Statements Involving Primitive Types

An assignment statement that has a variable of a primitive type on
the left side of the equal sign causes the following action: First, the
expression on the right side of the equal sign is evaluated, and then the
variable on the left side of the equal sign is set to this value.

Syntax

Variable = Expression;

Example

score = goals – errors;
interest = rate * balance;
number = number + 5;

■ P rogramming Tip   Initialize Variables

A variable that has been declared, but that has not yet been given a value by
an assignment statement (or in some other way), is said to be uninitialized. If
the variable is a variable of a class type, it literally has no value. If the variable
has a primitive type, it likely has some default value. However, your program
will be clearer if you explicitly give the variable a value, even if you are simply
reassigning the default value. (The exact details on default values have been
known to change and should not be counted on.)

One easy way to ensure that you do not have an uninitialized variable is
to initialize it within the declaration. Simply combine the declaration and an
assignment statement, as in the following examples:

int count = 0;
double taxRate = 0.075;
char grade = 'A';
int balance = 1000, newBalance;

Note that you can initialize some variables and not initialize others in a
declaration.

Sometimes the compiler may complain that you have failed to initialize
a variable. In most cases, that will indeed be true. Occasionally, though, the
compiler is mistaken in giving this advice. However, the compiler will not
compile your program until you convince it that the variable in question is
initialized. To make the compiler happy, initialize the variable when you
declare it, even if the variable will be given another value before it is used for
anything. In such cases, you cannot argue with the compiler.	 ■

M02_SAVI1833_07_SE_C02.indd 91 20/05/14 3:05 PM

92	 Chapter 2 /  Basic Computation

Simple Input

In Listing 2.1, we set the values of the variables eggsPerBasket and
numberOfBaskets to specific numbers. It would make more sense to obtain the
values needed for the computation from the user, so that the program could be
run again with different numbers. Listing 2.2 shows a revision of the program
in Listing 2.1 that asks the user to enter numbers as input at the keyboard.

We use the class Scanner, which Java supplies, to accept keyboard input.
Our program must import the definition of the Scanner class from the package
java.util. Thus, we begin the program with the following statement:

import java.util.Scanner;

The following line sets things up so that data can be entered from the keyboard:

Scanner keyboard = new Scanner(System.in);

This line must appear before the first statement that takes input from the
keyboard. That statement in our example is

eggsPerBasket = keyboard.nextInt();

This assignment statement gives a value to the variable eggsPerBasket. The
expression on the right side of the equal sign, namely

keyboard.nextInt()

reads one int value from the keyboard. The assignment statement makes this
int value the value of the variable eggsPerBasket, replacing any value that
the variable might have had. When entering numbers at the keyboard, the user
must either separate multiple numbers with one or more spaces or place each
number on its own line. Section 2.3 will explain such keyboard input in detail.

Recap  Combining a Variable Declaration and an Assignment

You can combine the declaration of a variable with an assignment
statement that gives the variable a value.

Syntax

Type Variable_1 = Expression_1, Variable_2 = Expression_2,
. . .;

Examples

int numberSeen = 0, increment = 5;
double height = 12.34, prize = 7.3 + increment;
char answer = 'y';

Use the standard
class Scanner to
accept keyboard
input

M02_SAVI1833_07_SE_C02.indd 92 20/05/14 3:05 PM

	 2.1  Variables and Expressions	 93

LISTING 2.2   A Program with Keyboard Input

import java.util.Scanner;

public class EggBasket2
{
 public static void main(String[] args)
 {
 int numberOfBaskets, eggsPerBasket, totalEggs;

 Scanner keyboard = new Scanner(System.in);
 System.out.println("Enter the number of eggs in each basket:");
 eggsPerBasket = keyboard.nextInt();
 System.out.println("Enter the number of baskets:");
 numberOfBaskets = keyboard.nextInt();

 totalEggs = numberOfBaskets * eggsPerBasket;

 System.out.println("If you have");
 System.out.println(eggsPerBasket + " eggs per basket and");
 System.out.println(numberOfBaskets + " baskets, then");
 System.out.println("the total number of eggs is " + totalEggs);

 System.out.println("Now we take two eggs out of each basket.");

 eggsPerBasket = eggsPerBasket - 2;
 totalEggs = numberOfBaskets * eggsPerBasket;

 System.out.println("You now have");
 System.out.println(eggsPerBasket + " eggs per basket and");
 System.out.println(numberOfBaskets + " baskets.");
 System.out.println("The new total number of eggs is " + totalEggs);
 }
}

Sample Screen Output

Enter the number of eggs in each basket:
6
Enter the number of baskets:
10
If you have
6 eggs per basket and
10 baskets, then
the total number of eggs is 60
Now we take two eggs out of each basket.
You now have
4 eggs per basket and
10 baskets.
The new total number of eggs is 40

Gets the Scanner class from
the package (library) java.util

Reads one whole number
from the keyboard

Sets up things so the program
can accept keyboard input

M02_SAVI1833_07_SE_C02.indd 93 20/05/14 3:05 PM

94	 Chapter 2 /  Basic Computation

Simple Screen Output

Now we will give you a brief overview of screen output—just enough to allow
you to write and understand programs like the one in Listing 2.2. System is a
class that is part of the Java language, and out is a special object within that
class. The object out has println as one of its methods. It may seem strange
to write System.out.println to call a method, but that need not concern you
at this point. Chapter 6 will provide some details about this notation.

So

System.out.println(eggsPerBasket + "eggs per basket.");

displays the value of the variable eggsPerBasket followed by the phrase
eggs per basket. Notice that the 1 symbol does not indicate arithmetic here. It
denotes another kind of “and.” You can read the preceding Java statement as
an instruction to display the value of the variable eggsPerBasket and then to
display the string "eggs per basket."

Section 2.3 will continue the discussion of screen output.

Constants

A variable can have its value changed. That is why it is called a variable: Its
value varies. A number like 2 cannot change. It is always 2. It is never 3. In
Java, terms like 2 or 3.7 are called constants, or literals, because their values
do not change.

Constants need not be numbers. For example, 'A', 'B', and '$' are three
constants of type char. Their values cannot change, but they can be used in
an assignment statement to change the value of a variable of type char. For
example, the statement

firstInitial = 'B';

changes the value of the char variable firstInitial to 'B'.
There is essentially only one way to write a constant of type char, namely,

by placing the character between single quotes. On the other hand, some
of the rules for writing numeric constants are more involved. Constants of
integer types are written the way you would expect them to be written, such
as 2, 3, 0, 23, or 752. An integer constant can be prefaced with a plus sign or
a minus sign, as in 112 and 272. Numeric constants cannot contain commas.
The number 1,000 is not correct in Java. Integer constants cannot contain a
decimal point. A number with a decimal point is a floating-point number.

Floating-point constant numbers may be written in either of two forms.
The simple form is like the everyday way of writing numbers with digits
after the decimal point. For example, 2.5 is a floating-point constant. The
other, slightly more complicated form is similar to a notation commonly used
in mathematics and the physical sciences, scientific notation. For instance,
consider the number 865000000.0. This number can be expressed more
clearly in the following scientific notation:

8.65 × 10^8

A constant does
not change in
value

Java’s e notation
is like scientific
notation

M02_SAVI1833_07_SE_C02.indd 94 20/05/14 3:05 PM

	 2.1  Variables and Expressions	 95

Java has a similar notation, frequently called either e notation or floating-
point notation. Because keyboards have no way of writing exponents, the 10 is
omitted and both the multiplication sign and the 10 are replaced by the letter e.
So in Java, 8.65 3 108 is written as 8.65e8. The e stands for exponent, since it is
followed by a number that is thought of as an exponent of 10. This form and the
less convenient form 865000000.0 are equivalent in a Java program. Similarly,
the number 4.83 3 1024, which is equal to 0.000483, could be written in Java
as either 0.000483 or 4.83e-4. Note that you also could write this number as
0.483e-3 or 48.3e-5. Java does not restrict the position of the decimal point.

The number before the e may contain a decimal point, although it doesn’t
have to. The number after the e cannot contain a decimal point. Because
multiplying by 10 is the same as moving the decimal point in a number, you
can think of a positive number after the e as telling you to move the decimal
point that many digits to the right. If the number after the e is negative, you
move the decimal point that many digits to the left. For example, 2.48e4 is
the same number as 24800.0, and 2.48e-2 is the same number as 0.0248.

Faq  What is “floating” in a floating-point number?

Floating-point numbers got their name because, with the e notation
we just described, the decimal point can be made to “float” to a new
location by adjusting the exponent. You can make the decimal point in
0.000483 float to after the 4 by expressing this number as the equivalent
expression 4.83e-4. Computer language implementers use this trick to
store each floating-point number as a number with exactly one digit
before the decimal point (and some suitable exponent). Because the
implementation always floats the decimal point in these numbers, they
are called floating-point numbers. Actually, the numbers are stored
in another base, such as 2 or 16, rather than as the decimal (base 10)
numbers we used in our example, but the principle is the same.

Faq  �Is there an actual difference between the constants 5 and
5.0?

The numbers 5 and 5.0 are conceptually the same number. But Java
considers them to be different. Thus, 5 is an integer constant of type
int, but 5.0 is a floating-point constant of type double. The number 5.0
contains a fractional part, even though the fraction is 0. Although you
might see the numbers 5 and 5.0 as having the same value, Java stores
them differently. Both integers and floating-point numbers contain a
finite number of digits when stored in a computer, but only integers
are considered exact quantities. Because floating-point numbers have a
fractional portion, they are seen as approximations.

Another sample program
VideoNote

M02_SAVI1833_07_SE_C02.indd 95 20/05/14 3:05 PM

96	 Chapter 2 /  Basic Computation

Named Constants

Java provides a mechanism that allows you to define a variable, initialize it,
and moreover fix the variable’s value so that it cannot be changed. The syntax is

public static final Type Variable = Constant;

For example, we can give the name PI to the constant 3.14159 as follows:

public static final double PI = 3.14159;

You can simply take this as a long, peculiarly worded way of giving a name
(like PI) to a constant (like 3.14159), but we can explain most of what is on
this line. The part

double PI = 3.14159;

simply declares PI as a variable and initializes it to 3.14159. The words that
precede this modify the variable PI in various ways. The word public says
that there are no restrictions on where you can use the name PI. The word
static will have to wait until Chapter 6 for an explanation; for now, just be
sure to include it. The word final means that the value 3.14159 is the final
value assigned to PI or, to phrase it another way, that the program is not
allowed to change the value of PI.

Gotcha   Imprecision in Floating-Point Numbers

Floating-point numbers are stored with a limited amount of precision and so
are, for all practical purposes, only approximate quantities. For example, the
fraction one third is equal to

0.3333333 . . .

where the three dots indicate that the 3s go on forever. The computer stores
numbers in a format somewhat like the decimal representation on the
previously displayed line, but it has room for only a limited number of digits.
If it can store only ten digits after the decimal, then one third is stored as

0.3333333333 (and no more 3s)

This number is slightly smaller than one third and so is only approximately
equal to one third. In reality, the computer stores numbers in binary notation,
rather than in base 10, but the principles are the same and the same sorts of
things happen.

Not all floating-point numbers lose accuracy when they are stored in the
computer. Integral values like 29.0 can be stored exactly in floating-point
notation, and so can some fractions like one half. Even so, we usually will not
know whether a floating-point number is exact or an approximation. When
in doubt, assume that floating-point numbers are stored as approximate
quantities.	 ■

Name important
constants

M02_SAVI1833_07_SE_C02.indd 96 20/05/14 3:05 PM

	 2.1  Variables and Expressions	 97

The convention for naming constants is to use all uppercase letters,
with an underscore symbol ( _ ) between words. For example, in a calendar
program, you might define the following constant:

public static final int DAYS_PER_WEEK = 7;

Although this convention is not required by the definition of the Java
language, most programmers adhere to it. Your programs will be easier to read
if you can readily identify variables, constants, and so forth.

Recap   Named Constants

To define a name for a constant, write the keywords public static
final in front of a variable declaration that includes the constant as the
initializing value. Place this declaration within the class definition but
outside of any method definitions, including the main method.

Syntax

public static finalType Variable = Constant;

Examples

public static final int MAX_STRIKES = 3;
public static final double MORTGAGE_INTEREST_RATE = 6.99;
public static final String MOTTO =
 "The customer is right!";
public static final char SCALE = 'K';

Although it is not required, most programmers spell named constants
using all uppercase letters, with an underscore to separate words.

Assignment Compatibilities

As the saying goes, “You can’t put a square peg in a round hole,” and you
can’t put a double value like 3.5 in a variable of type int. You cannot even
put the double value 3.0 in a variable of type int. You cannot store a value of
one type in a variable of another type unless the value is somehow converted
to match the type of the variable. However, when dealing with numbers, this
conversion will sometimes—but not always—be performed automatically for
you. The conversion will always be done when you assign a value of an integer
type to a variable of a floating-point type, such as

double doubleVariable = 7;

M02_SAVI1833_07_SE_C02.indd 97 20/05/14 3:05 PM

98	 Chapter 2 /  Basic Computation

Slightly more subtle assignments, such as the following, also perform the
conversion automatically:

int intVariable = 7;
double doubleVariable = intVariable;

More generally, you can assign a value of any type in the following list to a
variable of any type that appears further down in the list:

byte → short → int → long → float → double

For example, you can assign a value of type long to a variable of type float
or to a variable of type double (or, of course, to a variable of type long), but
you cannot assign a value of type long to a variable of type byte, short, or
int. Note that this is not an arbitrary ordering of the types. As you move
down the list from left to right, the types become more precise, either because
they allow larger values or because they allow decimal points in the numbers.
Thus, you can store a value into a variable whose type allows more precision
than the type of the value allows.

In addition, you can assign a value of type char to a variable of type int or
to any of the numeric types that follow int in our list of types. This particular
assignment compatibility will be important when we discuss keyboard input.
However, we do not advise assigning a value of type char to a variable of type
int except in certain special cases.2

If you want to assign a value of type double to a variable of type int, you
must change the type of the value using a type cast, as we explain in the next
section.

A value can be
assigned to a
variable whose
type allows more
precision

2 Readers who have used certain other languages, such as C or C++, may be surprised
to learn that you cannot assign a value of type char to a variable of type byte. This is
because Java reserves two bytes of memory for each value of type char but naturally
reserves only one byte of memory for values of type byte.

Recap  Assignment Compatibilities

You can assign a value of any type on the following list to a variable of
any type that appears further down on the list:

byte → short → int → long → float → double

In particular, note that you can assign a value of any integer type to a
variable of any floating-point type.

It is also legal to assign a value of type char to a variable of type int
or to any of the numeric types that follow int in our list of types.

M02_SAVI1833_07_SE_C02.indd 98 20/05/14 3:05 PM

	 2.1  Variables and Expressions	 99

Type Casting

The title of this section has nothing to do with the Hollywood notion of
typecasting. In fact, it is almost the opposite. In Java—and in most
programming languages—a type cast changes the data type of a value from its
normal type to some other type. For example, changing the type of the value
2.0 from double to int involves a type cast. The previous section described
when you can assign a value of one type to a variable of another type and
have the type conversion occur automatically. In all other cases, if you want
to assign a value of one type to a variable of another type, you must perform a
type cast. Let’s see how this is done in Java.

Suppose you have the following:

double distance = 9.0;
int points = distance;

A type cast
changes the data
type of a value

As the note indicates, the last statement is illegal in Java. You cannot assign a
value of type double to a variable of type int, even if the value of type double
happens to have all zeros after the decimal point and so is conceptually a
whole number.

In order to assign a value of type double to a value of type int, you
must place (int) in front of the value or the variable holding the value. For
example, you can replace the preceding illegal assignment with the following
and get a legal assignment:

int points = (int)distance; This assignment is legal.

The expression (int)distance is called a type cast. Neither distance
nor the value stored in distance is changed in any way. But the value
stored in points is the “int version” of the value stored in distance.
If the value of distance is 25.36, the value of (int)distance is 25. So
points contains 25, but the value of distance is still 25.36. If the value
of distance is 9.0, the value assigned to points is 9, and the value of
distance remains unchanged.

An expression like (int) 25.36 or (int)distance is an expression that
produces an int value. A type cast does not change the value of the source
variable. The situation is analogous to computing the number of (whole)
dollars you have in an amount of money. If you have $25.36, the number of
dollars you have is 25. The $25.36 has not changed; it has merely been used
to produce the whole number 25.

For example, consider the following code:

double dinnerBill = 25.36;
int dinnerBillPlusTip = (int)dinnerBill + 5;
System.out.println("The value of dinnerBillPlusTip is " +
 dinnerBillPlusTip);

This assignment is illegal.

M02_SAVI1833_07_SE_C02.indd 99 20/05/14 3:05 PM

100	 Chapter 2 /  Basic Computation

The expression (int)dinnerBill produces the value 25, so the output of this
code would be

The value of dinnerBillPlusTip is 30

But the variable dinnerBill still contains the value 25.36.
Be sure to note that when you type cast from a double to an int—or from

any floating-point type to any integer type—the amount is not rounded. The
part after the decimal point is simply discarded. This is known as truncating.
For example, the following statements

double dinnerBill = 26.99;
int numberOfDollars = (int)dinnerBill;

set numberOfDollars to 26, not 27. The result is not rounded.
As we mentioned previously, when you assign an integer value to a variable

of a floating-point type—double, for example—the integer is automatically
type cast to the type of the variable. For example, the assignment statement

double point = 7;

is equivalent to

double point = (double)7;

The type cast (double) is implicit in the first version of the assignment. The
second version, however, is legal.

Recap  Type Casting

In many situations, you cannot store a value of one type in a variable
of another type unless you use a type cast that converts the value to an
equivalent value of the target type.

Syntax

(Type_Name)Expression

Examples

double guess = 7.8;
int answer = (int)guess;

The value stored in answer will be 7. Note that the value is truncated, not
rounded. Note also that the variable guess is not changed in any way;
it still contains 7.8. The last assignment statement affects only the value
stored in answer.

Truncation
discards the
fractional part

M02_SAVI1833_07_SE_C02.indd 100 20/05/14 3:05 PM

	 2.1  Variables and Expressions	 101

■ P rogramming Tip   Type Casting a Character to an Integer

Java sometimes treats values of type char as integers, but the assignment of
integers to characters has no connection to the meaning of the characters. For
example, the following type cast will produce the int value corresponding to
the character '7':

char symbol = '7';
System.out.println((int)symbol);

You might expect the preceding to display 7, but it does not. It displays the
number 55. Java, like all other programming languages, uses an arbitrary
numbering of characters to encode them. Thus, each character corresponds
to an integer. In this correspondence, the digits 0 through 9 are characters
just like the letters or the plus sign. No effort was made to have the digits
correspond to their intuitive values. Basically, they just wrote down all the
characters and then numbered them in the order they were written down.
The character '7' just happened to get 55. This numbering system is called
the Unicode system, which we discuss later in the chapter. If you have heard
of the ASCII numbering system, the Unicode system is the same as the ASCII
system for the characters in the English language.	 ■

Self-Test Questions

	 1.	Which of the following may be used as variable names in Java?

rate1, 1stPlayer, myprogram.java, long, TimeLimit,
numberOfWindows

	 2.	 Can a Java program have two different variables with the names aVariable
and avariable?

	 3.	 Give the declaration for a variable called count of type int. The variable
should be initialized to zero in the declaration.

	 4.	 Give the declaration for two variables of type double. The variables are to
be named rate and time. Both variables should be initialized to zero in
the declaration.

	 5.	Write the declaration for two variables called miles and flowRate.
Declare the variable miles to be of type int and initialize it to zero in
the declaration. Declare the variable flowRate to be of type double and
initialize it to 50.56 in the declaration.

	 6.	What is the normal spelling convention for named constants?

	 7.	 Give a definition for a named constant for the number of hours in a day.

M02_SAVI1833_07_SE_C02.indd 101 20/05/14 3:05 PM

102	 Chapter 2 /  Basic Computation

Arithmetic Operators

In Java, you can perform arithmetic involving addition, subtraction,
multiplication, and division by using the arithmetic operators 1, 2, *, and
/, respectively. You indicate arithmetic in basically the same way that you do
in ordinary arithmetic or algebra. You can combine variables or numbers—
known collectively as operands—with these operators and parentheses to
form an arithmetic expression. Java has a fifth arithmetic operator, %, that
we will define shortly.

The meaning of an arithmetic expression is basically what you expect it to
be, but there are some subtleties about the type of the result and, occasionally,
even about the value of the result. All five of the arithmetic operators can be
used with operands of any of the integer types, any of the floating-point types,
and even with operands of differing types. The type of the value produced
depends on the types of the operands being combined.

	 8.	Write a Java assignment statement that will set the value of the variable
interest to the value of the variable balance multiplied by 0.05.

	 9.	Write a Java assignment statement that will set the value of the variable
interest to the value of the variable balance multiplied by the value of
the variable rate. The variables are of type double.

	10.	Write a Java assignment statement that will increase the value of the
variable count by 3. The variable is of type int.

	11.	What is the output produced by the following lines of program code?

char a, b;
a = 'b';
System.out.println(a);
b = 'c';
System.out.println(b);
a = b;
System.out.println(a);

	12.	 In the Programming Tip entitled “Type Casting a Character to an Integer,”
you saw that the following does not display the integer 7:

char symbol = '7';
System.out.println((int)symbol);

Thus, (int)symbol does not produce the number corresponding to the
digit in symbol. Can you write an expression that will work to produce
the integer that intuitively corresponds to the digit in symbol, assuming
that symbol contains one of the ten digits 0 through 9? (Hint: The digits
do correspond to consecutive integers, so if (int)'7' is 55, then (int)'8'
is 56.)

An arithmetic
expression
combines
operands,
operators, and
parentheses

M02_SAVI1833_07_SE_C02.indd 102 20/05/14 3:05 PM

