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Student Supplements
• MasteringPhysics™ (www.masteringphysics.com) is a

homework, tutorial, and assessment system based on
years of research into how students work physics problems
and precisely where they need help. Studies show that
students who use MasteringPhysics significantly increase their
final scores compared to hand-written homework. Mastering-
Physics achieves this improvement by providing students 
with instantaneous feedback specific to their wrong answers,
simpler sub-problems upon request when they get stuck, and
partial credit for their method(s) used. This individualized,
24/7 Socratic tutoring is recommended by nine out of ten
students to their peers as the most effective and time-efficient
way to study.

• Pearson eText is available through MasteringPhysics. Allow-
ing students access to the text wherever they have access to
the Internet, Pearson eText comprises the full text, including
figures that can be enlarged for better viewing. Within eText,
students are also able to pop up definitions and terms to help
with vocabulary and the reading of the material. Students can
also take notes in eText using the annotation feature at the top
of each page.

• ActivPhysics OnLine™ (accessed through the Self Study area
within www.masteringphysics.com) provides students with a
group of highly regarded applet-based tutorials.
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Preface

What’s New?
Lots! Much is new and unseen before. Here are the big four:

1. Multiple-choice Questions added to the end of each Chapter. They are not the
usual type. These are called MisConceptual Questions because the responses
(a, b, c, d, etc.) are intended to include common student misconceptions.
Thus they are as much, or more, a learning experience than simply a testing
experience.

2. Search and Learn Problems at the very end of each Chapter, after the other
Problems. Some are pretty hard, others are fairly easy. They are intended to
encourage students to go back and reread some part or parts of the text,
and in this search for an answer they will hopefully learn more—if only
because they have to read some material again.

3. Chapter-Opening Questions (COQ) that start each Chapter, a sort of
“stimulant.” Each is multiple choice, with responses including common
misconceptions—to get preconceived notions out on the table right at the
start. Where the relevant material is covered in the text, students find an
Exercise asking them to return to the COQ to rethink and answer again.

4. Digital. Biggest of all. Crucial new applications. Today we are surrounded by
digital electronics. How does it work? If you try to find out, say on the
Internet, you won’t find much physics: you may find shallow hand-waving
with no real content, or some heavy jargon whose basis might take months or
years to understand. So, for the first time, I have tried to explain

• The basis of digital in bits and bytes, how analog gets transformed into
digital, sampling rate, bit depth, quantization error, compression, noise
(Section 17–10).

• How digital TV works, including how each pixel is addressed for each frame,
data stream, refresh rate (Section 17–11).

• Semiconductor computer memory, DRAM, and flash (Section 21–8).

• Digital cameras and sensors—revised and expanded Section 25–1.

• New semiconductor physics, some of which is used in digital devices,
including LED and OLED—how they work and what their uses are—plus
more on transistors (MOSFET), chips, and technology generation as in
22-nm technology (Sections 29–9, 10, 11).

Besides those above, this new seventh edition includes

5. New topics, new applications, principal revisions.

• You can measure the Earth’s radius (Section 1–7).

• Improved graphical analysis of linear motion (Section 2–8).

• Planets (how first seen), heliocentric, geocentric (Section 5–8).

• The Moon’s orbit around the Earth: its phases and periods with diagram
(Section 5–9).

• Explanation of lake level change when large rock thrown from boat
(Example 10–11).

xiii
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• Biology and medicine, including:
• Blood measurements (flow, sugar)—Chapters 10, 12, 14, 19, 20, 21;
• Trees help offset CO2 buildup—Chapter 15;
• Pulse oximeter—Chapter 29;
• Proton therapy—Chapter 31;
• Radon exposure calculation—Chapter 31;
• Cell phone use and brain—Chapter 31.

• Colors as seen underwater (Section 24–4).

• Soap film sequence of colors explained (Section 24–8).

• Solar sails (Section 22–6).

• Lots on sports.

• Symmetry—more emphasis and using italics or boldface to make visible.

• Flat screens (Sections 17–11, 24–11).

• Free-electron theory of metals, Fermi gas, Fermi level. New Section 29–6.

• Semiconductor devices—new details on diodes, LEDs, OLEDs, solar cells,
compound semiconductors, diode lasers, MOSFET transistors, chips, 22-nm
technology (Sections 29–9, 10, 11).

• Cross section (Chapter 31).

• Length of an object is a script rather than normal l, which looks like 1 or
I (moment of inertia, current), as in F = I B. Capital L is for angular
momentum, latent heat, inductance, dimensions of length [L].

6. New photographs taken by students and instructors (we asked).

7. Page layout: More than in previous editions, serious attention to how each
page is formatted. Important derivations and Examples are on facing pages:
no turning a page back in the middle of a derivation or Example. Throughout,
readers see, on two facing pages, an important slice of physics.

8. Greater clarity: No topic, no paragraph in this book was overlooked in the
search to improve the clarity and conciseness of the presentation. Phrases
and sentences that may slow down the principal argument have been
eliminated: keep to the essentials at first, give the elaborations later.

9. Much use has been made of physics education research. See the new
powerful pedagogic features listed first.

10. Examples modified: More math steps are spelled out, and many new
Examples added. About 10% of all Examples are Estimation Examples.

11. This Book is Shorter than other complete full-service books at this level.
Shorter explanations are easier to understand and more likely to be read.

12. Cosmological Revolution: With generous help from top experts in the field,
readers have the latest results.

See the World through Eyes that Know Physics
I was motivated from the beginning to write a textbook different from the others
which present physics as a sequence of facts, like a catalog: “Here are the facts
and you better learn them.” Instead of beginning formally and dogmatically,
I have sought to begin each topic with concrete observations and experiences
students can relate to: start with specifics, and after go to the great generalizations
and the more formal aspects of a topic, showing why we believe what we believe.
This approach reflects how science is actually practiced.

l

l

xiv PREFACE
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PREFACE xv

The ultimate aim is to give students a thorough understanding of the basic
concepts of physics in all its aspects, from mechanics to modern physics. A second
objective is to show students how useful physics is in their own everyday lives and
in their future professions by means of interesting applications to biology, medicine,
architecture, and more.

Also, much effort has gone into techniques and approaches for solving
problems: worked-out Examples, Problem Solving sections (Sections 2–6, 3–6,
4–7, 4–8, 6–7, 6–9, 8–6, 9–2, 13–7, 14–4, and 16–6), and Problem Solving
Strategies (pages 30, 57, 60, 88, 115, 141, 158, 184, 211, 234, 399, 436, 456, 534,
568, 594, 655, 666, and 697).

This textbook is especially suited for students taking a one-year introduc-
tory course in physics that uses algebra and trigonometry but not calculus.†

Many of these students are majoring in biology or premed, as well as architecture,
technology, and the earth and environmental sciences. Many applications to 
these fields are intended to answer that common student query: “Why must I study
physics?” The answer is that physics is fundamental to a full understanding of
these fields, and here they can see how. Physics is everywhere around us in the
everyday world. It is the goal of this book to help students “see the world through
eyes that know physics.”

A major effort has been made to not throw too much material at students
reading the first few chapters. The basics have to be learned first. Many aspects can
come later, when students are less overloaded and more prepared. If we don’t
overwhelm students with too much detail, especially at the start, maybe they can
find physics interesting, fun, and helpful—and those who were afraid may lose
their fear.

Chapter 1 is not a throwaway. It is fundamental to physics to realize that every
measurement has an uncertainty, and how significant figures are used. Converting
units and being able to make rapid estimates are also basic.

Mathematics can be an obstacle to students. I have aimed at including all steps
in a derivation. Important mathematical tools, such as addition of vectors and
trigonometry, are incorporated in the text where first needed, so they come with
a context rather than in a scary introductory Chapter. Appendices contain a review
of algebra and geometry (plus a few advanced topics).

Color is used pedagogically to bring out the physics. Different types of vectors
are given different colors (see the chart on page xix).

Sections marked with a star * are considered optional. These contain slightly
more advanced physics material, or material not usually covered in typical 
courses and/or interesting applications; they contain no material needed in later
Chapters (except perhaps in later optional Sections).

For a brief course, all optional material could be dropped as well as significant
parts of Chapters 1, 10, 12, 22, 28, 29, 32, and selected parts of Chapters 7, 8, 9,
15, 21, 24, 25, 31. Topics not covered in class can be a valuable resource for later
study by students. Indeed, this text can serve as a useful reference for years because
of its wide range of coverage.

†It is fine to take a calculus course. But mixing calculus with physics for these students may often
mean not learning the physics because of stumbling over the calculus.
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Thanks
Many physics professors provided input or direct feedback on every aspect of this
textbook. They are listed below, and I owe each a debt of gratitude.

xvi PREFACE
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New photographs were offered by Professors Vickie Frohne (Holy Cross Coll.),
Guillermo Gonzales (Grove City Coll.), Martin Hackworth (Idaho State U.),
Walter H. G. Lewin (MIT), Nicholas Murgo (NEIT), Melissa Vigil (Marquette U.),
Brian Woodahl (Indiana U. at Indianapolis), and Gary Wysin (Kansas State U.).
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To Students
HOW TO STUDY
1. Read the Chapter. Learn new vocabulary and notation. Try to respond to

questions and exercises as they occur.
2. Attend all class meetings. Listen. Take notes, especially about aspects you do not

remember seeing in the book. Ask questions (everyone wants to, but maybe you
will have the courage). You will get more out of class if you read the Chapter first.

3. Read the Chapter again, paying attention to details. Follow derivations and
worked-out Examples. Absorb their logic. Answer Exercises and as many of
the end-of-Chapter Questions as you can, and all MisConceptual Questions.

4. Solve at least 10 to 20 end of Chapter Problems, especially those assigned. In
doing Problems you find out what you learned and what you didn’t. Discuss
them with other students. Problem solving is one of the great learning tools.
Don’t just look for a formula—it might be the wrong one.

NOTES ON THE FORMAT AND PROBLEM SOLVING
1. Sections marked with a star (*) are considered optional. They can be omitted

without interrupting the main flow of topics. No later material depends on
them except possibly later starred Sections. They may be fun to read, though.

2. The customary conventions are used: symbols for quantities (such as m for
mass) are italicized, whereas units (such as m for meter) are not italicized.
Symbols for vectors are shown in boldface with a small arrow above: .

3. Few equations are valid in all situations. Where practical, the limitations of
important equations are stated in square brackets next to the equation. The
equations that represent the great laws of physics are displayed with a tan
background, as are a few other indispensable equations.

4. At the end of each Chapter is a set of Questions you should try to answer.
Attempt all the multiple-choice MisConceptual Questions. Most important
are Problems which are ranked as Level I, II, or III, according to estimated
difficulty. Level I Problems are easiest, Level II are standard Problems, and
Level III are “challenge problems.” These ranked Problems are arranged by
Section, but Problems for a given Section may depend on earlier material
too. There follows a group of General Problems, not arranged by Section or
ranked. Problems that relate to optional Sections are starred (*). Answers to
odd-numbered Problems are given at the end of the book. Search and Learn
Problems at the end are meant to encourage you to return to parts of the text
to find needed detail, and at the same time help you to learn.

5. Being able to solve Problems is a crucial part of learning physics, and provides
a powerful means for understanding the concepts and principles. This book
contains many aids to problem solving: (a) worked-out Examples, including
an Approach and Solution, which should be studied as an integral part of 
the text; (b) some of the worked-out Examples are Estimation Examples,
which show how rough or approximate results can be obtained even if 
the given data are sparse (see Section 1–7); (c) Problem Solving Strategies
placed throughout the text to suggest a step-by-step approach to problem
solving for a particular topic—but remember that the basics remain the
same; most of these “Strategies” are followed by an Example that is solved
by explicitly following the suggested steps; (d) special problem-solving
Sections; (e) “Problem Solving” marginal notes which refer to hints within
the text for solving Problems; (f) Exercises within the text that you should
work out immediately, and then check your response against the answer
given at the bottom of the last page of that Chapter; (g) the Problems them-
selves at the end of each Chapter (point 4 above).

6. Conceptual Examples pose a question which hopefully starts you to think
and come up with a response. Give yourself a little time to come up with
your own response before reading the Response given.

7. Math review, plus additional topics, are found in Appendices. Useful data, con-
version factors, and math formulas are found inside the front and back covers.

F
B
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Introduction,
Measurement, Estimating

1

CONTENTS

1–1 The Nature of Science

1–2 Physics and its Relation to
Other Fields

1–3 Models, Theories, and Laws

1–4 Measurement and Uncertainty;
Significant Figures

1–5 Units, Standards, and 
the SI System

1–6 Converting Units

1–7 Order of Magnitude:
Rapid Estimating

*1–8 Dimensions and Dimensional
Analysis

1

Image of the Earth from a NASA satellite.
The sky appears black from out in space

because there are so few molecules
to reflect light. (Why the sky

appears blue to us on 
Earth has to do with 

scattering of light by 
molecules of the 

atmosphere, as 
discussed in 
Chapter 24.) 
Note the 
storm off 
the coast 
of Mexico.

CHAPTER-OPENING QUESTIONS—Guess now!
1. How many are in 

(a) 10. (b) 100. (c) 1000. (d) 10,000. (e) 100,000. (f) 1,000,000.

2. Suppose you wanted to actually measure the radius of the Earth, at least
roughly, rather than taking other people’s word for what it is. Which response
below describes the best approach?

(a) Use an extremely long measuring tape.
(b) It is only possible by flying high enough to see the actual curvature of the Earth.
(c) Use a standard measuring tape, a step ladder, and a large smooth lake.
(d) Use a laser and a mirror on the Moon or on a satellite.
(e) Give up; it is impossible using ordinary means.

[We start each Chapter with a Question—sometimes two. Try to answer right away. Don’t worry about
getting the right answer now—the idea is to get your preconceived notions out on the table. If they 
are misconceptions, we expect them to be cleared up as you read the Chapter. You will usually get
another chance at the Question(s) later in the Chapter when the appropriate material has been covered.
These Chapter-Opening Questions will also help you see the power and usefulness of physics.]

1.0 m3?cm3
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P hysics is the most basic of the sciences. It deals with the behavior and
structure of matter. The field of physics is usually divided into classical
physics which includes motion, fluids, heat, sound, light, electricity, and

magnetism; and modern physics which includes the topics of relativity, atomic
structure, quantum theory, condensed matter, nuclear physics, elementary particles, and
cosmology and astrophysics. We will cover all these topics in this book, beginning
with motion (or mechanics, as it is often called) and ending with the most recent
results in fundamental particles and the cosmos. But before we begin on the
physics itself, we take a brief look at how this overall activity called “science,”
including physics, is actually practiced.

1–1 The Nature of Science
The principal aim of all sciences, including physics, is generally considered to be
the search for order in our observations of the world around us. Many people
think that science is a mechanical process of collecting facts and devising
theories. But it is not so simple. Science is a creative activity that in many
respects resembles other creative activities of the human mind.

One important aspect of science is observation of events, which includes
the design and carrying out of experiments. But observation and experiments
require imagination, because scientists can never include everything in a
description of what they observe. Hence, scientists must make judgments about
what is relevant in their observations and experiments.

Consider, for example, how two great minds, Aristotle (384–322 B.C.;
Fig. 1–1) and Galileo (1564–1642; Fig. 2–18), interpreted motion along a hori-
zontal surface. Aristotle noted that objects given an initial push along the ground
(or on a tabletop) always slow down and stop. Consequently, Aristotle argued,
the natural state of an object is to be at rest. Galileo, the first true experimen-
talist, reexamined horizontal motion in the 1600s. He imagined that if friction
could be eliminated, an object given an initial push along a horizontal surface
would continue to move indefinitely without stopping. He concluded that for an
object to be in motion was just as natural as for it to be at rest. By inventing a
new way of thinking about the same data, Galileo founded our modern view of
motion (Chapters 2, 3, and 4), and he did so with a leap of the imagination.
Galileo made this leap conceptually, without actually eliminating friction.

2 CHAPTER 1 Introduction, Measurement, Estimating

FIGURE 1;1 Aristotle is the central
figure (dressed in blue) at the top of
the stairs (the figure next to him is
Plato) in this famous Renaissance
portrayal of The School of Athens,
painted by Raphael around 1510.
Also in this painting, considered
one of the great masterpieces in art,
are Euclid (drawing a circle at the
lower right), Ptolemy (extreme
right with globe), Pythagoras,
Socrates, and Diogenes.
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Observation, with careful experimentation and measurement, is one side of
the scientific process. The other side is the invention or creation of theories to
explain and order the observations. Theories are never derived directly from
observations. Observations may help inspire a theory, and theories are accepted
or rejected based on the results of observation and experiment.

Theories are inspirations that come from the minds of human beings. For
example, the idea that matter is made up of atoms (the atomic theory) was not
arrived at by direct observation of atoms—we can’t see atoms directly. Rather,
the idea sprang from creative minds. The theory of relativity, the electromag-
netic theory of light, and Newton’s law of universal gravitation were likewise
the result of human imagination.

The great theories of science may be compared, as creative achievements,
with great works of art or literature. But how does science differ from these
other creative activities? One important difference is that science requires
testing of its ideas or theories to see if their predictions are borne out by exper-
iment. But theories are not “proved” by testing. First of all, no measuring
instrument is perfect, so exact confirmation is not possible. Furthermore, it is
not possible to test a theory for every possible set of circumstances. Hence a
theory cannot be absolutely verified. Indeed, the history of science tells us that
long-held theories can sometimes be replaced by new ones, particularly when
new experimental techniques provide new or contradictory data.

A new theory is accepted by scientists in some cases because its predictions
are quantitatively in better agreement with experiment than those of the older
theory. But in many cases, a new theory is accepted only if it explains a greater
range of phenomena than does the older one. Copernicus’s Sun-centered theory
of the universe (Fig. 1–2b), for example, was originally no more accurate than
Ptolemy’s Earth-centered theory (Fig. 1–2a) for predicting the motion of heav-
enly bodies (Sun, Moon, planets). But Copernicus’s theory had consequences
that Ptolemy’s did not, such as predicting the moonlike phases of Venus. A
simpler and richer theory, one which unifies and explains a greater variety of
phenomena, is more useful and beautiful to a scientist. And this aspect, as well
as quantitative agreement, plays a major role in the acceptance of a theory.

SECTION 1–1 The Nature of Science 3

(a) (b)

FIGURE 1;2 (a) Ptolemy’s geocentric view of the universe. Note at the center the four elements of the 
ancients: Earth, water, air (clouds around the Earth), and fire; then the circles, with symbols, for the Moon,
Mercury, Venus, Sun, Mars, Jupiter, Saturn, the fixed stars, and the signs of the zodiac. (b) An early 
representation of Copernicus’s heliocentric view of the universe with the Sun at the center. (See Chapter 5.)
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An important aspect of any theory is how well it can quantitatively predict
phenomena, and from this point of view a new theory may often seem to be only
a minor advance over the old one. For example, Einstein’s theory of relativity
gives predictions that differ very little from the older theories of Galileo and
Newton in nearly all everyday situations. Its predictions are better mainly in the
extreme case of very high speeds close to the speed of light. But quantitative
prediction is not the only important outcome of a theory. Our view of the world
is affected as well. As a result of Einstein’s theory of relativity, for example, our
concepts of space and time have been completely altered, and we have come to
see mass and energy as a single entity (via the famous equation ).

1–2 Physics and its Relation to
Other Fields

For a long time science was more or less a united whole known as natural
philosophy. Not until a century or two ago did the distinctions between physics
and chemistry and even the life sciences become prominent. Indeed, the sharp
distinction we now see between the arts and the sciences is itself only a few
centuries old. It is no wonder then that the development of physics has both
influenced and been influenced by other fields. For example, the notebooks
(Fig. 1–3) of Leonardo da Vinci, the great Renaissance artist, researcher, and
engineer, contain the first references to the forces acting within a structure, a
subject we consider as physics today; but then, as now, it has great relevance to
architecture and building.

Early work in electricity that led to the discovery of the electric battery and
electric current was done by an eighteenth-century physiologist, Luigi Galvani
(1737–1798). He noticed the twitching of frogs’ legs in response to an electric spark
and later that the muscles twitched when in contact with two dissimilar metals
(Chapter 18). At first this phenomenon was known as “animal electricity,” but it
shortly became clear that electric current itself could exist in the absence of an animal.

Physics is used in many fields. A zoologist, for example, may find physics useful
in understanding how prairie dogs and other animals can live underground without
suffocating. A physical therapist will be more effective if aware of the principles
of center of gravity and the action of forces within the human body. A know-
ledge of the operating principles of optical and electronic equipment is helpful in a
variety of fields. Life scientists and architects alike will be interested in the nature
of heat loss and gain in human beings and the resulting comfort or discomfort.
Architects may have to calculate the dimensions of the pipes in a heating system
or the forces involved in a given structure to determine if it will remain standing
(Fig. 1–4). They must know physics principles in order to make realistic designs
and to communicate effectively with engineering consultants and other specialists.

E = mc2

4 CHAPTER 1 Introduction, Measurement, Estimating

FIGURE 1;3 Studies on the forces
in structures by Leonardo da Vinci
(1452–1519).

(a) (b)

FIGURE 1;4 (a) This bridge over the River Tiber in Rome was built 2000 years ago and still stands.
(b) The 2007 collapse of a Mississippi River highway bridge built only 40 years before.
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From the aesthetic or psychological point of view, too, architects must be 
aware of the forces involved in a structure—for example instability, even if only
illusory, can be discomforting to those who must live or work in the structure.

The list of ways in which physics relates to other fields is extensive. In the
Chapters that follow we will discuss many such applications as we carry out our
principal aim of explaining basic physics.

1–3 Models, Theories, and Laws
When scientists are trying to understand a particular set of phenomena, they often
make use of a model. A model, in the scientific sense, is a kind of analogy or
mental image of the phenomena in terms of something else we are already familiar
with. One example is the wave model of light. We cannot see waves of light as we
can water waves. But it is valuable to think of light as made up of waves, because
experiments indicate that light behaves in many respects as water waves do.

The purpose of a model is to give us an approximate mental or visual
picture—something to hold on to—when we cannot see what actually is
happening. Models often give us a deeper understanding: the analogy to a known
system (for instance, the water waves above) can suggest new experiments to
perform and can provide ideas about what other related phenomena might
occur.

You may wonder what the difference is between a theory and a model.
Usually a model is relatively simple and provides a structural similarity to the
phenomena being studied. A theory is broader, more detailed, and can give
quantitatively testable predictions, often with great precision. It is important, how-
ever, not to confuse a model or a theory with the real system or the phenomena
themselves.

Scientists have given the title law to certain concise but general statements
about how nature behaves (that electric charge is conserved, for example).
Often the statement takes the form of a relationship or equation between
quantities (such as Newton’s second law, ).

Statements that we call laws are usually experimentally valid over a wide
range of observed phenomena. For less general statements, the term principle
is often used (such as Archimedes’ principle). We use “theory” for a more
general picture of the phenomena dealt with.

Scientific laws are different from political laws in that the latter are prescrip-
tive: they tell us how we ought to behave. Scientific laws are descriptive: they do
not say how nature should behave, but rather are meant to describe how nature
does behave. As with theories, laws cannot be tested in the infinite variety of
cases possible. So we cannot be sure that any law is absolutely true. We use the
term “law” when its validity has been tested over a wide range of cases, and
when any limitations and the range of validity are clearly understood.

Scientists normally do their research as if the accepted laws and theories
were true. But they are obliged to keep an open mind in case new information
should alter the validity of any given law or theory.

1–4 Measurement and Uncertainty;
Significant Figures

In the quest to understand the world around us, scientists seek to find relation-
ships among physical quantities that can be measured.

Uncertainty
Reliable measurements are an important part of physics. But no measurement is
absolutely precise. There is an uncertainty associated with every measurement.

F = ma

SECTION 1–4 Measurement and Uncertainty; Significant Figures 5
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Among the most important sources of uncertainty, other than blunders, are the
limited accuracy of every measuring instrument and the inability to read an
instrument beyond some fraction of the smallest division shown. For example,
if you were to use a centimeter ruler to measure the width of a board (Fig. 1–5),
the result could be claimed to be precise to about 0.1 cm (1 mm), the smallest
division on the ruler, although half of this value might be a valid claim as well.
The reason is that it is difficult for the observer to estimate (or “interpolate”)
between the smallest divisions. Furthermore, the ruler itself may not have been
manufactured to an accuracy very much better than this.

When giving the result of a measurement, it is important to state the
estimated uncertainty in the measurement. For example, the width of a board
might be written as The (“plus or minus 0.1 cm”) repre-
sents the estimated uncertainty in the measurement, so that the actual width
most likely lies between 8.7 and 8.9 cm. The percent uncertainty is the ratio of
the uncertainty to the measured value, multiplied by 100. For example, if the
measurement is 8.8 cm and the uncertainty about 0.1 cm, the percent uncertainty is

“is approximately equal to.”
Often the uncertainty in a measured value is not specified explicitly. In such

cases, the

uncertainty in a numerical value is assumed to be one or a few units in the
last digit specified.

For example, if a length is given as 8.8 cm, the uncertainty is assumed to be
about 0.1 cm or 0.2 cm, or possibly even 0.3 cm. It is important in this case that
you do not write 8.80 cm, because this implies an uncertainty on the order of
0.01 cm; it assumes that the length is probably between about 8.79 cm and
8.81 cm, when actually you believe it is between about 8.7 and 8.9 cm.

Is the diamond yours? A friend asks to
borrow your precious diamond for a day to show her family. You are a bit 
worried, so you carefully have your diamond weighed on a scale which reads
8.17 grams. The scale’s accuracy is claimed to be The next day you
weigh the returned diamond again, getting 8.09 grams. Is this your diamond?

RESPONSE The scale readings are measurements and are not perfect. They
do not necessarily give the “true” value of the mass. Each measurement could
have been high or low by up to 0.05 gram or so. The actual mass of your
diamond lies most likely between 8.12 grams and 8.22 grams. The actual mass
of the returned diamond is most likely between 8.04 grams and 8.14 grams.
These two ranges overlap, so the data do not give you a strong reason to
doubt that the returned diamond is yours.

Significant Figures
The number of reliably known digits in a number is called the number of
significant figures. Thus there are four significant figures in the number 23.21 cm
and two in the number 0.062 cm (the zeros in the latter are merely place holders
that show where the decimal point goes). The number of significant figures may not
always be clear. Take, for example, the number 80. Are there one or two signifi-
cant figures? We need words here: If we say it is roughly 80 km between two
cities, there is only one significant figure (the 8) since the zero is merely a place
holder. If there is no suggestion that the 80 is a rough approximation, then we
can often assume (as we will in this book) that it has 2 significant figures: so it is
80 km within an accuracy of about 1 or 2 km. If it is precisely 80 km, to within

then we write 80.0 km (three significant figures). &0.1 or&0.2 km,

&0.05 gram.

CONCEPTUAL EXAMPLE 1;1

where L means

0.1
8.8

* 100% L  1%,

&0.1 cm8.860.1 cm.

6 CHAPTER 1 Introduction, Measurement, Estimating

FIGURE 1;5 Measuring the width
of a board with a centimeter ruler.
Accuracy is about &1 mm.
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When specifying numerical results, you should avoid the temptation to keep
more digits in the final answer than is justified: see boldface statement on previous
page. For example, to calculate the area of a rectangle 11.3 cm by 6.8 cm, the result of
multiplication would be But this answer can not be accurate to the implied

uncertainty, because (using the outer limits of the assumed uncertainty for
each measurement) the result could be between and

At best, we can quote the answer as which
implies an uncertainty of about 1 or The other two digits (in the number

) must be dropped (rounded off) because they are not significant. As a
rough general “significant figure” rule we can say that 

the final result of a multiplication or division should have no more digits than
the numerical value with the fewest significant figures.

In our example, 6.8 cm has the least number of significant figures, namely two. Thus
the result needs to be rounded off to 

EXERCISE A The area of a rectangle 4.5 cm by 3.25 cm is correctly given by (a) 
(b) (c) (d) 

When adding or subtracting numbers, the final result should contain no more
decimal places than the number with the fewest decimal places. For example, the
result of subtracting 0.57 from 3.6 is 3.0 (not 3.03). Similarly not 44.2.

Be careful not to confuse significant figures with the number of decimal places.

EXERCISE B For each of the following numbers, state the number of significant
figures and the number of decimal places: (a) 1.23; (b) 0.123; (c) 0.0123.

Keep in mind when you use a calculator that all the digits it produces may
not be significant. When you divide 2.0 by 3.0, the proper answer is 0.67, and
not 0.666666666 as calculators give (Fig. 1–6a). Digits should not be quoted in a
result unless they are truly significant figures. However, to obtain the most
accurate result, you should normally keep one or more extra significant figures
throughout a calculation, and round off only in the final result. (With a calcu-
lator, you can keep all its digits in intermediate results.) Note also that
calculators sometimes give too few significant figures. For example, when you
multiply a calculator may give the answer as simply 8. But the answer is
accurate to two significant figures, so the proper answer is 8.0. See Fig. 1–6b.

Significant figures. Using a protractor 
(Fig. 1–7), you measure an angle to be 30°. (a) How many significant figures
should you quote in this measurement? (b) Use a calculator to find the cosine
of the angle you measured.

RESPONSE (a) If you look at a protractor, you will see that the precision
with which you can measure an angle is about one degree (certainly not 0.1°).
So you can quote two significant figures, namely 30° (not 30.0°). (b) If you
enter cos 30° in your calculator, you will get a number like 0.866025403.
But the angle you entered is known only to two significant figures, so its cosine
is correctly given by 0.87; you must round your answer to two significant figures.

NOTE Trigonometric functions, like cosine, are reviewed in Chapter 3 and Appendix A.

Scientific Notation
We commonly write numbers in “powers of ten,” or “scientific” notation—for
instance 36,900 as or 0.0021 as One advantage of
scientific notation (reviewed in Appendix A) is that it allows the number of
significant figures to be clearly expressed. For example, it is not clear whether
36,900 has three, four, or five significant figures. With powers of 10 notation 
the ambiguity can be avoided: if the number is known to three significant
figures, we write but if it is known to four, we write

EXERCISE C Write each of the following in scientific notation and state the number of
significant figures for each: (a) 0.0258; (b) 42,300; (c) 344.50.

3.690 * 104.3.69 * 104,

2.1 * 10–3.3.69 * 104,

CONCEPTUAL EXAMPLE 1;2

2.5 * 3.2,

36 + 8.2 = 44,

15 cm2.14.6 cm2;14.63 cm2;
14.625 cm2;

77 cm2.76.84 cm2

76.84 cm2
2 cm2.

77 cm2,11.4 cm * 6.9 cm = 78.66 cm2.
11.2 cm * 6.7 cm = 75.04 cm2

0.01 cm2
76.84 cm2.

SECTION 1–4 Measurement and Uncertainty; Significant Figures 7

P R O B L E M  S O L V I N G

Report only the proper number of
significant figures in the final result. But
keep extra digits during the calculation

FIGURE 1;7 Example 1–2.
A protractor used to measure an
angle.

(a)

(b)
FIGURE 1;6 These two calculations
show the wrong number of significant
figures. In (a), 2.0 was divided by 3.0.
The correct final result would be
0.67. In (b), 2.5 was multiplied by 3.2.
The correct result is 8.0.
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Percent Uncertainty vs. Significant Figures
The significant figures rule is only approximate, and in some cases may under-
estimate the accuracy (or uncertainty) of the answer. Suppose for example we
divide 97 by 92:

Both 97 and 92 have two significant figures, so the rule says to give the answer
as 1.1. Yet the numbers 97 and 92 both imply an uncertainty of if no other
uncertainty is stated. Both and imply an uncertainty of 
about 1% But the final result to two significant figures 
is 1.1, with an implied uncertainty of which is an uncertainty of about 10%

It is better in this case to give the answer as 1.05 (which
is three significant figures). Why? Because 1.05 implies an uncertainty of 
which is just like the uncertainty in the original
numbers 92 and 97.

SUGGESTION: Use the significant figures rule, but consider the % uncertainty
too, and add an extra digit if it gives a more realistic estimate of uncertainty.

Approximations
Much of physics involves approximations, often because we do not have the
means to solve a problem precisely. For example, we may choose to ignore air
resistance or friction in doing a Problem even though they are present in the
real world, and then our calculation is only an approximation. In doing Problems,
we should be aware of what approximations we are making, and be aware 
that the precision of our answer may not be nearly as good as the number of
significant figures given in the result.

Accuracy vs.Precision
There is a technical difference between “precision” and “accuracy.” Precision in
a strict sense refers to the repeatability of the measurement using a given instru-
ment. For example, if you measure the width of a board many times, getting
results like 8.81 cm, 8.85 cm, 8.78 cm, 8.82 cm (interpolating between the 0.1 cm
marks as best as possible each time), you could say the measurements give a
precision a bit better than 0.1 cm. Accuracy refers to how close a measurement
is to the true value. For example, if the ruler shown in Fig. 1–5 was manufac-
tured with a 2% error, the accuracy of its measurement of the board’s width
(about 8.8 cm) would be about 2% of 8.8 cm or about Estimated
uncertainty is meant to take both accuracy and precision into account.

1–5 Units, Standards, and 
the SI System

The measurement of any quantity is made relative to a particular standard or unit,
and this unit must be specified along with the numerical value of the quantity.
For example, we can measure length in British units such as inches,
feet, or miles, or in the metric system in centimeters, meters, or kilometers. To
specify that the length of a particular object is 18.6 is insufficient. The unit
must be given, because 18.6 meters is very different from 18.6 inches or 
18.6 millimeters.

For any unit we use, such as the meter for distance or the second for time,
we need to define a standard which defines exactly how long one meter or one
second is. It is important that standards be chosen that are readily reproducible
so that anyone needing to make a very accurate measurement can refer to the
standard in the laboratory and communicate with other people.

&0.2 cm.

0.01�1.05 L 0.01 L 1%,
&0.01

(0.1�1.1 L 0.1 L 10%).
&0.1,

(1�92 L 0.01 = 1%).
97619261

&1

97
92

= 1.05  L   1.1.

*

8 CHAPTER 1 Introduction, Measurement, Estimating
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Length
The first truly international standard was the meter (abbreviated m) established
as the standard of length by the French Academy of Sciences in the 1790s. The
standard meter was originally chosen to be one ten-millionth of the distance
from the Earth’s equator to either pole,† and a platinum rod to represent this
length was made. (One meter is, very roughly, the distance from the tip of your
nose to the tip of your finger, with arm and hand stretched out horizontally.) In
1889, the meter was defined more precisely as the distance between two finely
engraved marks on a particular bar of platinum–iridium alloy. In 1960, to
provide even greater precision and reproducibility, the meter was redefined as
1,650,763.73 wavelengths of a particular orange light emitted by the gas
krypton-86. In 1983 the meter was again redefined, this time in terms of the
speed of light (whose best measured value in terms of the older definition of the
meter was with an uncertainty of ). The new definition
reads: “The meter is the length of path traveled by light in vacuum during a
time interval of of a second.”‡

British units of length (inch, foot, mile) are now defined in terms of the
meter. The inch (in.) is defined as exactly 2.54 centimeters (cm; ).
Other conversion factors are given in the Table on the inside of the front cover
of this book. Table 1–1 presents some typical lengths, from very small to very
large, rounded off to the nearest power of 10. See also Fig. 1–8. [Note that the
abbreviation for inches (in.) is the only one with a period, to distinguish it from
the word “in”.]

Time
The standard unit of time is the second (s). For many years, the second was
defined as of a mean solar day

The standard second is now defined more precisely in terms of
the frequency of radiation emitted by cesium atoms when they pass between
two particular states. [Specifically, one second is defined as the time required
for 9,192,631,770 oscillations of this radiation.] There are, by definition, 60 s in
one minute (min) and 60 minutes in one hour (h). Table 1–2 presents a range of
measured time intervals, rounded off to the nearest power of 10.

86,400 s�day).
=(24 h�day * 60 min�h * 60 s�min1�86,400

1 cm = 0.01 m

1�299,792,458

1 m�s299,792,458 m�s,

SECTION 1–5 Units, Standards, and the SI System 9

(a)

(b)

FIGURE 1;8 Some lengths:
(a) viruses (about long) 
attacking a cell; (b) Mt. Everest’s 
height is on the order of 
(8850 m above sea level, to be precise).

104 m

10–7 m

†Modern measurements of the Earth’s circumference reveal that the intended length is off by about
one-fiftieth of 1%. Not bad!
‡The new definition of the meter has the effect of giving the speed of light the exact value of
299,792,458 m�s.

TABLE 1;1 Some Typical Lengths or Distances 
(order of magnitude)

Length (or Distance) Meters (approximate)

Neutron or proton (diameter) m
Atom (diameter) m
Virus [see Fig. 1–8a] m
Sheet of paper (thickness) m
Finger width m
Football field length m
Height of Mt. Everest [see Fig. 1–8b] m
Earth diameter m
Earth to Sun m
Earth to nearest star m
Earth to nearest galaxy m
Earth to farthest galaxy visible m1026 

1022 

1016 

1011 

107 

104 

102 

10–2 

10–4 

10–7 

10–10 

10–15 

TABLE 1;2 Some Typical Time Intervals
(order of magnitude)

Time Interval Seconds (approximate)

Lifetime of very unstable 
subatomic particle

Lifetime of radioactive elements to

Lifetime of muon

Time between human heartbeats

One day

One year

Human life span

Length of recorded history

Humans on Earth

Age of Earth

Age of Universe 4 * 1017  s

1017  s

1013  s

1011  s

2 * 109  s

3 * 107  s

105  s

(  = 1 s)100  s

10–6  s

1028 s10–22 s

10–23 s
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Mass
The standard unit of mass is the kilogram (kg). The standard mass is a partic-
ular platinum–iridium cylinder, kept at the International Bureau of Weights
and Measures near Paris, France, whose mass is defined as exactly 1 kg. A range
of masses is presented in Table 1–3. [For practical purposes, 1 kg weighs about
2.2 pounds on Earth.]

When dealing with atoms and molecules, we usually use the unified atomic
mass unit (u or amu). In terms of the kilogram,

Precise values of this and other useful numbers are given on page A-72.
The definitions of other standard units for other quantities will be given as

we encounter them in later Chapters.

Unit Prefixes
In the metric system, the larger and smaller units are defined in multiples of 10
from the standard unit, and this makes calculation particularly easy. Thus 
1 kilometer (km) is 1000 m, 1 centimeter is 1 millimeter (mm) is or 
and so on. The prefixes “centi-,” “kilo-,” and others are listed in Table 1–4 and
can be applied not only to units of length but to units of volume, mass, or any
other unit. For example, a centiliter (cL) is (L), and a kilogram (kg) is
1000 grams (g). An 8.2-megapixel camera has a detector with 8,200,000 pixels
(individual “picture elements”).

In common usage, is called 1 micron.

Systems of Units
When dealing with the laws and equations of physics it is very important to use a
consistent set of units. Several systems of units have been in use over the years.
Today the most important is the Système International (French for International
System), which is abbreviated SI. In SI units, the standard of length is the meter,
the standard for time is the second, and the standard for mass is the kilogram.
This system used to be called the MKS (meter-kilogram-second) system.

A second metric system is the cgs system, in which the centimeter, gram, and
second are the standard units of length, mass, and time, as abbreviated in the title.
The British engineering system (although more used in the U.S. than Britain) has 
as its standards the foot for length, the pound for force, and the second for time.

We use SI units almost exclusively in this book.

Base vs. Derived Quantities
Physical quantities can be divided into two categories: base quantities and
derived quantities. The corresponding units for these quantities are called base
units and derived units. A base quantity must be defined in terms of a standard.
Scientists, in the interest of simplicity, want the smallest number of base quanti-
ties possible consistent with a full description of the physical world. This
number turns out to be seven, and those used in the SI are given in Table 1–5.

*

1 mm (= 10–6 m)

1
100 liter

1
10 cm,1

1000 m1
100 m,

1 u = 1.6605 * 10–27 kg.

10 CHAPTER 1 Introduction, Measurement, Estimating

TABLE 1;3 Some Masses

Kilograms 
Object (approximate)

Electron kg
Proton, neutron kg
DNA molecule kg
Bacterium kg
Mosquito kg
Plum kg
Human kg
Ship kg
Earth kg
Sun kg 
Galaxy kg1041 

2 * 1030 

6 * 1024 

108 

102 

10–1 

10–5 

10–15 

10–17 

10–27 

10–30 

TABLE 1;4 Metric (SI) Prefixes

Prefix Abbreviation Value

yotta Y
zetta Z
exa E
peta P
tera T
giga G
mega M
kilo k
hecto h
deka da
deci d
centi c
milli m
micro†

nano n
pico p
femto f
atto a
zepto z
yocto y
† is the Greek letter “mu.”m

10–24
10–21
10–18
10–15
10–12
10–9
10–6m

10–3
10–2
10–1
101
102
103
106
109
1012
1015
1018
1021
1024

TABLE 1–5 SI Base Quantities and Units

Quantity Unit Unit Abbreviation

Length meter m
Time second s
Mass kilogram kg
Electric current ampere A
Temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

P R O B L E M  S O L V I N G

Always use a consistent set of units
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All other quantities can be defined in terms of these seven base quantities,† and
hence are referred to as derived quantities. An example of a derived quantity is
speed, which is defined as distance divided by the time it takes to travel that
distance. A Table on page A-73 lists many derived quantities and their units in
terms of base units. To define any quantity, whether base or derived, we can
specify a rule or procedure, and this is called an operational definition.

1–6 Converting Units
Any quantity we measure, such as a length, a speed, or an electric current,
consists of a number and a unit. Often we are given a quantity in one set of
units, but we want it expressed in another set of units. For example, suppose we
measure that a shelf is 21.5 inches wide, and we want to express this in centi-
meters. We must use a conversion factor, which in this case is, by definition, exactly

or, written another way,

Since multiplying by the number one does not change anything, the width of our
shelf, in cm, is

Note how the units (inches in this case) cancelled out (thin red lines). A Table
containing many unit conversions is found on page A-73. Let’s consider some
Examples.

The 8000-m peaks. There are only 14 peaks whose sum-
mits are over 8000 m above sea level. They are the tallest peaks in the 
world (Fig. 1–9 and Table 1–6) and are referred to as “eight-thousanders.”
What is the elevation, in feet, of an elevation of 8000 m?

APPROACH We need to convert meters to feet, and we can start with the
conversion factor which is exact. That is,
to any number of significant figures, because it is defined to be.

SOLUTION One foot is 12 in., so we can write

which is exact. Note how the units cancel (colored slashes). We can rewrite
this equation to find the number of feet in 1 meter:

(We could carry the result to 6 significant figures because 0.3048 is exact,
0.304800 .) We multiply this equation by 8000.0 (to have five significant figures):

An elevation of 8000 m is 26,247 ft above sea level.

NOTE We could have done the unit conversions all in one line:

The key is to multiply conversion factors, each equal to one and
to make sure which units cancel.

(= 1.0000),

8000.0 m = (8000.0  m ) ¢ 100  cm 

1  m 
≤ ¢ 1  in. 

2.54  cm 
≤ ¢ 1 ft

12  in. 
≤ = 26,247 ft.

8000.0 m = (8000.0  m ) ¢3.28084 
ft

 m 
≤ = 26,247 ft.

p

1 m =

1 ft
0.3048

= 3.28084 ft.

1 ft = (12  in. ) ¢2.54 
cm
 in. 

≤ = 30.48 cm = 0.3048 m,

1 in. = 2.5400 cm1 in. = 2.54 cm,

EXAMPLE 1;3

21.5 inches = (21.5  in. ) * a2.54 
cm
 in. 

b = 54.6 cm.

1 = 2.54 cm�in.

1 in. = 2.54 cm

SECTION 1–6 Converting Units 11

†Some exceptions are for angle (radians—see Chapter 8), solid angle (steradian), and sound level 
(bel or decibel, Chapter 12). No general agreement has been reached as to whether these are base
or derived quantities.

P H Y S I C S  A P P L I E D

The world’s tallest peaks

TABLE 1;6 The 8000-m Peaks

Peak Height (m)

Mt. Everest 8850
K2 8611
Kangchenjunga 8586
Lhotse 8516
Makalu 8462
Cho Oyu 8201
Dhaulagiri 8167
Manaslu 8156
Nanga Parbat 8125
Annapurna 8091
Gasherbrum I 8068
Broad Peak 8047
Gasherbrum II 8035
Shisha Pangma 8013

FIGURE 1;9 The world’s second
highest peak, K2, whose summit is
considered the most difficult of the
“8000-ers.” K2 is seen here from the
south (Pakistan). Example 1–3.
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Apartment area. You have seen a nice apartment whose
floor area is 880 square feet What is its area in square meters?

APPROACH We use the same conversion factor, but this time
we have to use it twice.

SOLUTION Because then

So

NOTE As a rule of thumb, an area given in is roughly 10 times the number
of square meters (more precisely, about ).10.8   *

ft2

880 ft2
= A880 ft2B A0.0929 m2�ft2B   L

 82 m2.

1 ft2
= (12 in.)2(0.0254 m�in.)2

= 0.0929 m2.

1 in. = 2.54 cm = 0.0254 m,

1 in. = 2.54 cm,

Aft2B.EXAMPLE 1;4

12 CHAPTER 1 Introduction, Measurement, Estimating

P R O B L E M  S O L V I N G

Conversion factors = 1

P R O B L E M  S O L V I N G

Unit conversion is wrong if 
units do not cancel

Speeds. Where the posted speed limit is 55 miles per hour
( or mph), what is this speed (a) in meters per second and (b) in 
kilometers per hour 

APPROACH We again use the conversion factor and we
recall that there are 5280 ft in a mile and 12 inches in a foot; also, one hour
contains 

SOLUTION (a) We can write 1 mile as

We also know that 1 hour contains 3600 s, so

where we rounded off to two significant figures.
(b) Now we use then

NOTE Each conversion factor is equal to one. You can look up most conver-
sion factors in the Table inside the front cover.

 = 88 
km
h

.

 55 
mi
h

= ¢55 
 mi 
h
≤ ¢1.609 

km
 mi 

≤
1 mi = 1609 m = 1.609 km;

 = 25 
m
s

,

 55 
mi
h

= ¢55 
 mi 
 h 
≤ ¢1609 

m
 mi 

≤ ¢ 1  h 

3600 s
≤

 = 1609 m.

 1 mi = (5280  ft ) ¢12 
 in. 
 ft 
≤ ¢2.54 

 cm 

 in. 
≤ ¢ 1 m

100  cm 
≤

(60 min�h) * (60 s�min) = 3600 s�h.

1 in. = 2.54 cm,

(km�h)?
(m�s)mi�h

EXAMPLE 1;5

EXERCISE D Return to the first Chapter-Opening Question, page 1, and answer it
again now. Try to explain why you may have answered differently the first time.

EXERCISE E Would a driver traveling at in a zone be exceeding the
speed limit? Why or why not?

35 mi�h15 m�s

When changing units, you can avoid making an error in the use of conver-
sion factors by checking that units cancel out properly. For example, in our
conversion of 1 mi to 1609 m in Example 1–5(a), if we had incorrectly used the
factor instead of the centimeter units would not have cancelled
out; we would not have ended up with meters.

A 1 m
100 cmB,A100 cm

1 m B
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Volume of a lake. Estimate how much water
there is in a particular lake, Fig. 1–10a, which is roughly circular, about 1 km
across, and you guess it has an average depth of about 10 m.

APPROACH No lake is a perfect circle, nor can lakes be expected to have a
perfectly flat bottom. We are only estimating here. To estimate the volume,
we can use a simple model of the lake as a cylinder: we multiply the average
depth of the lake times its roughly circular surface area, as if the lake were a
cylinder (Fig. 1–10b).

SOLUTION The volume V of a cylinder is the product of its height h times
the area of its base: where r is the radius of the circular base.† The
radius r is so the volume is approximately

where was rounded off to 3. So the volume is on the order of 
ten million cubic meters. Because of all the estimates that went into this
calculation, the order-of-magnitude estimate is probably better to
quote than the figure.

NOTE To express our result in U.S. gallons, we see in the Table on the inside
front cover that Hence, the lake contains

of water.A8 * 106 m3B A1 gallon�4 * 10–3 m3B L 2 * 109 gallons
1 liter = 10–3 m3

L
1
4 gallon.

8 * 106 m3
A107 m3B

107 m3,p

V = hpr2
L (10 m) * (3) * A5 * 102 mB2 L 8 * 106 m3

L 107 m3,

1
2 km = 500 m,

V = hpr2,

EXAMPLE 1;6 ESTIMATE

SECTION 1–7 Order of Magnitude: Rapid Estimating 13

P R O B L E M  S O L V I N G

How to make a rough estimate

P H Y S I C S  A P P L I E D

Estimating the volume (or mass) of 
a lake; see also Fig. 1–10

†Formulas like this for volume, area, etc., are found inside the back cover of this book.

(b)

(a)

10 m

r = 500 m

FIGURE 1;10 Example 1–6. (a) How much water is in this 
lake? (Photo is one of the Rae Lakes in the Sierra Nevada
of California.) (b) Model of the lake as a cylinder. [We could 
go one step further and estimate the mass or weight of this 
lake. We will see later that water has a density of 
so this lake has a mass of about 
which is about 10 billion kg or 10 million metric tons.
(A metric ton is 1000 kg, about 2200 lb, slightly larger than a 
British ton, 2000 lb.)]

A103 kg�m3B A107 m3B L 1010 kg,
1000 kg�m3,

1–7 Order of Magnitude:
Rapid Estimating

We are sometimes interested only in an approximate value for a quantity. This
might be because an accurate calculation would take more time than it is worth
or would require additional data that are not available. In other cases, we may
want to make a rough estimate in order to check a calculation made on a calcu-
lator, to make sure that no blunders were made when the numbers were entered.

A rough estimate can be made by rounding off all numbers to one significant
figure and its power of 10, and after the calculation is made, again keeping only
one significant figure. Such an estimate is called an order-of-magnitude estimate
and can be accurate within a factor of 10, and often better. In fact, the phrase
“order of magnitude” is sometimes used to refer simply to the power of 10.

Let’s do some Examples.
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16 m
18 m

2 m
1.5 m

(b)

x = ?

1.5 m

3 m

(a)

1.5 m

?

2 m

It cannot be emphasized enough how important it is to draw a diagram
when solving a physics Problem, as the next Example shows.

14 CHAPTER 1 Introduction, Measurement, Estimating

FIGURE 1;12 Example 1–8.
Diagrams are really useful!

FIGURE 1;13 Enrico Fermi. Fermi
contributed significantly to both
theoretical and experimental physics,
a feat almost unique in modern times.

FIGURE 1;11 Example 1–7.
Micrometer used for measuring
small thicknesses.

Thickness of a sheet of paper. Estimate the
thickness of a page of this book.

APPROACH At first you might think that a special measuring device, a
micrometer (Fig. 1–11), is needed to measure the thickness of one page since
an ordinary ruler can not be read so finely. But we can use a trick or, to put it in
physics terms, make use of a symmetry: we can make the reasonable assump-
tion that all the pages of this book are equal in thickness.

SOLUTION We can use a ruler to measure hundreds of pages at once. If you
measure the thickness of the first 500 pages of this book (page 1 to page 500),
you might get something like 1.5 cm. Note that 500 numbered pages, counted
front and back, is 250 separate pieces of paper. So one sheet must have a
thickness of about

or less than a tenth of a millimeter (0.1 mm).

1.5 cm
250 sheets

 L  6 * 10–3 cm = 6 * 10–2 mm,

EXAMPLE 1;7 ESTIMATE

Height by triangulation. Estimate the height
of the building shown in Fig. 1–12, by “triangulation,” with the help of a bus-stop
pole and a friend.

APPROACH By standing your friend next to the pole, you estimate the height
of the pole to be 3 m. You next step away from the pole until the top of the
pole is in line with the top of the building, Fig. 1–12a. You are 5 ft 6 in. tall, so
your eyes are about 1.5 m above the ground. Your friend is taller, and when
she stretches out her arms, one hand touches you, and the other touches the
pole, so you estimate that distance as 2 m (Fig. 1–12a). You then pace off the
distance from the pole to the base of the building with big, 1-m-long steps, and
you get a total of 16 steps or 16 m.

SOLUTION Now you draw, to scale, the diagram shown in Fig. 1–12b using
these measurements. You can measure, right on the diagram, the last side of
the triangle to be about Alternatively, you can use similar triangles
to obtain the height x:

so

Finally you add in your eye height of 1.5 m above the ground to get your final
result: the building is about 15 m tall.

x L  13 
1
2 m.

1.5 m
2 m

=

x

18 m
,

x = 13 m.

EXAMPLE 1;8 ESTIMATE

Another approach, this one made famous by Enrico Fermi (1901–1954,
Fig. 1–13), was to show his students how to estimate the number of piano tuners in
a city, say, Chicago or San Francisco. To get a rough order-of-magnitude estimate
of the number of piano tuners today in San Francisco, a city of about 800,000
inhabitants, we can proceed by estimating the number of functioning pianos,
how often each piano is tuned, and how many pianos each tuner can tune. To
estimate the number of pianos in San Francisco, we note that certainly not
everyone has a piano. A guess of 1 family in 3 having a piano would corre-
spond to 1 piano per 12 persons, assuming an average family of 4 persons.
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SECTION 1–7 Order of Magnitude: Rapid Estimating 15

†A check of the San Francisco Yellow Pages (done after this calculation) reveals about 60 listings.
Each of these listings may employ more than one tuner, but on the other hand, each may also do
repairs as well as tuning. In any case, our estimate is reasonable.

P R O B L E M  S O L V I N G

Estimating how many piano tuners
there are in a city

As an order of magnitude, let’s say 1 piano per 10 people. This is certainly 
more reasonable than 1 per 100 people, or 1 per every person, so let’s 
proceed with the estimate that 1 person in 10 has a piano, or about 
80,000 pianos in San Francisco. Now a piano tuner needs an hour or two to 
tune a piano. So let’s estimate that a tuner can tune 4 or 5 pianos a day. A piano
ought to be tuned every 6 months or a year—let’s say once each year.
A piano tuner tuning 4 pianos a day, 5 days a week, 50 weeks a year can tune about
1000 pianos a year. So San Francisco, with its (very) roughly 80,000 pianos,
needs about 80 piano tuners. This is, of course, only a rough estimate.† It tells 
us that there must be many more than 10 piano tuners, and surely not as many
as 1000.

A Harder Example—But Powerful

Estimating the radius of Earth. Believe it or
not, you can estimate the radius of the Earth without having to go into space
(see the photograph on page 1). If you have ever been on the shore of a large
lake, you may have noticed that you cannot see the beaches, piers, or rocks at
water level across the lake on the opposite shore. The lake seems to bulge out
between you and the opposite shore—a good clue that the Earth is round.
Suppose you climb a stepladder and discover that when your eyes are 10 ft (3.0 m)
above the water, you can just see the rocks at water level on the opposite shore.
From a map, you estimate the distance to the opposite shore as Use
Fig. 1–14 with to estimate the radius R of the Earth.

APPROACH We use simple geometry, including the theorem of Pythagoras,

where c is the length of the hypotenuse of any right triangle, and a and b are
the lengths of the other two sides.

SOLUTION For the right triangle of Fig. 1–14, the two sides are the radius of
the Earth R and the distance The hypotenuse is approx-
imately the length where By the Pythagorean theorem,

We solve algebraically for R, after cancelling on both sides:

NOTE Precise measurements give 6380 km. But look at your achievement!
With a few simple rough measurements and simple geometry, you made a
good estimate of the Earth’s radius. You did not need to go out in space, nor
did you need a very long measuring tape.

 = 6200 km.

 = 6.2 * 106 m

 R  L   
d2

- h2

2h
=

(6100 m)2
- (3.0 m)2

6.0 m

R2

   L   R2
+ 2hR + h2.

 R2
+ d2

  L   (R + h)2

h = 3.0 m.R + h,
d = 6.1 km = 6100 m.

c2
= a2

+ b2,

h = 3.0 m
d L 6.1 km.

EXAMPLE 1;9 ESTIMATE

EXERCISE F Return to the second Chapter-Opening Question, page 1, and answer it
again now. Try to explain why you may have answered differently the first time.

Earth

Center
of Earth

Lake

R R

d

h

FIGURE 1;14 Example 1–9, but
not to scale. You can just barely see
rocks at water level on the opposite
shore of a lake 6.1 km wide if you
stand on a stepladder.
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16 CHAPTER 1 Introduction, Measurement, Estimating

*Some Sections of this book, such as this one, may be considered optional at the discretion of the
instructor, and they are marked with an asterisk See the Preface for more details.(*).

1–8 Dimensions and 
Dimensional Analysis

When we speak of the dimensions of a quantity, we are referring to the type of
base units or base quantities that make it up. The dimensions of area, for
example, are always length squared, abbreviated using square brackets;
the units can be square meters, square feet, and so on. Velocity, on the
other hand, can be measured in units of or but the dimen-
sions are always a length [L] divided by a time [T]: that is,

The formula for a quantity may be different in different cases, but the dimen-
sions remain the same. For example, the area of a triangle of base b and height h
is whereas the area of a circle of radius r is The formulas
are different in the two cases, but the dimensions of area are always 

Dimensions can be used as a help in working out relationships, a procedure
referred to as dimensional analysis. One useful technique is the use of dimen-
sions to check if a relationship is incorrect. Note that we add or subtract
quantities only if they have the same dimensions (we don’t add centimeters 
and hours); and the quantities on each side of an equals sign must have the
same dimensions. (In numerical calculations, the units must also be the same on
both sides of an equation.)

For example, suppose you derived the equation where is
the speed of an object after a time , is the object’s initial speed, and the
object undergoes an acceleration a. Let’s do a dimensional check to see if this
equation could be correct or is surely incorrect. Note that numerical factors,
like the here, do not affect dimensional checks. We write a dimensional
equation as follows, remembering that the dimensions of speed are and
(as we shall see in Chapter 2) the dimensions of acceleration are 

The dimensions are incorrect: on the right side, we have the sum of quantities
whose dimensions are not the same. Thus we conclude that an error was made
in the derivation of the original equation.

A dimensional check can only tell you when a relationship is wrong. It can’t
tell you if it is completely right. For example, a dimensionless numerical factor
(such as or ) could be missing.

Dimensional analysis can also be used as a quick check on an equation you
are not sure about. For example, consider a simple pendulum of length . Suppose
that you can’t remember whether the equation for the period T (the time to make
one back-and-forth swing) is or where g is the
acceleration due to gravity and, like all accelerations, has dimensions 
(Do not worry about these formulas—the correct one will be derived in 
Chapter 11; what we are concerned about here is a person’s recalling whether it
contains or ) A dimensional check shows that the former is correct:

whereas the latter is not:

The constant has no dimensions and so can’t be checked using dimensions.2p

[T]  Z   D
CL�T2 D

[L]
= C

1

CT2 D
=

1
[T]

.

(g�l)

[T] = C
[L]
CL�T2 D

= 3 CT2 D = [T],

(l�g)g�l.l�g

CL�T2 D .
T = 2p1g�l ,T = 2p1l�g

l

2p1
2

 �  BL

T
R  + [L].

 BL

T
R  �  BL

T
R  + B L

T2
R CT2 D

CL�T2 D :
[L�T]

1
2

v0t
vv = v0 +

1
2 at2,

CL2 D .
A = pr2.A =

1
2 bh,

[L�T].
mi�h,km�h, m�s,

cm2,
CL2 D ,

*
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MisConceptual Questions 17

[The Summary that appears at the end of each Chapter in this book
gives a brief overview of the main ideas of the Chapter. The Summary
cannot serve to give an understanding of the material, which can be
accomplished only by a detailed reading of the Chapter.]

Physics, like other sciences, is a creative endeavor. It is
not simply a collection of facts. Important theories are
created with the idea of explaining observations. To be
accepted, theories are “tested” by comparing their predictions
with the results of actual experiments. Note that, in general,
a theory cannot be “proved” in an absolute sense.

Scientists often devise models of physical phenomena.
A model is a kind of picture or analogy that helps to describe
the phenomena in terms of something we already know.
A theory, often developed from a model, is usually deeper
and more complex than a simple model.

A scientific law is a concise statement, often expressed in
the form of an equation, which quantitatively describes a
wide range of phenomena.

Measurements play a crucial role in physics, but can
never be perfectly precise. It is important to specify the

uncertainty of a measurement either by stating it directly
using the notation, and/or by keeping only the correct
number of significant figures.

Physical quantities are always specified relative to a
particular standard or unit, and the unit used should always
be stated. The commonly accepted set of units today is the
Système International (SI), in which the standard units of
length, mass, and time are the meter, kilogram, and second.

When converting units, check all conversion factors for
correct cancellation of units.

Making rough, order-of-magnitude estimates is a very
useful technique in science as well as in everyday life.

[*The dimensions of a quantity refer to the combination
of base quantities that comprise it. Velocity, for example, has
dimensions of or Working with only the
dimensions of the various quantities in a given relationship
(this technique is called dimensional analysis) makes it
possible to check a relationship for correct form.]

[L�T].[length�time]

&

Summary

1. What are the merits and drawbacks of using a person’s
foot as a standard? Consider both (a) a particular
person’s foot, and (b) any person’s foot. Keep in mind
that it is advantageous that fundamental standards be
accessible (easy to compare to), invariable (do not
change), indestructible, and reproducible.

2. What is wrong with this road sign:

3. Why is it incorrect to think that the more digits you
include in your answer, the more accurate it is?

Memphis 7 mi (11.263 km)?

4. For an answer to be complete, the units need to be speci-
fied. Why?

5. You measure the radius of a wheel to be 4.16 cm. If you
multiply by 2 to get the diameter, should you write the
result as 8 cm or as 8.32 cm? Justify your answer.

6. Express the sine of 30.0° with the correct number of
significant figures.

7. List assumptions useful to estimate the number of car
mechanics in (a) San Francisco, (b) your hometown, and
then make the estimates.

Questions

1. A student weighs herself on a digital bathroom scale as
117.4 lb. If all the digits displayed reflect the true preci-
sion of the scale, then probably her weight is 
(a) within 1% of 117.4 lb.
(b) exactly 117.4 lb.
(c) somewhere between 117.38 and 117.42 lb.
(d) roughly between 117.2 and 117.6 lb.

2. Four students use different instruments to measure the
length of the same pen. Which measurement implies the
greatest precision?
(a) 160.0 mm. (b) 16.0 cm. (c) 0.160 m. (d) 0.00016 km.
(e) Need more information.

3. The number 0.0078 has how many significant figures?
(a) 1. (b) 2. (c) 3. (d) 4.

4. How many significant figures does have?
(a) 2. (b) 3. (c) 4. (d) 5.

5. Accuracy represents 
(a) repeatability of a measurement, using a given instrument.
(b) how close a measurement is to the true value.
(c) an ideal number of measurements to make.
(d) how poorly an instrument is operating.

1.362 + 25.2

6. To convert from to , you should
(a) multiply by 3.
(b) multiply by 1 3.
(c) multiply by 9.
(d) multiply by 1 9.
(e) multiply by 6.
( ) multiply by 1 6.

7. Which is not true about an order-of-magnitude estimation?
(a) It gives you a rough idea of the answer.
(b) It can be done by keeping only one significant figure.
(c) It can be used to check if an exact calculation is

reasonable.
(d) It may require making some reasonable assumptions

in order to calculate the answer.
(e) It will always be accurate to at least two significant figures.

*8. represents the dimensions for which of the following?
(a)
(b) square feet.
(c)
(d) All of the above.

m2.

cm2.
[L2]

�f

�

�

yd2ft2

MisConceptual Questions
[List all answers that are valid.]
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18 CHAPTER 1 Introduction, Measurement, Estimating

FIGURE 1;15

Problem 28.

29. (II) Estimate the number of gallons of gasoline consumed by
the total of all automobile drivers in the U.S., per year.

30. (II) Estimate the number of dentists (a) in San Francisco
and (b) in your town or city.

[The Problems at the end of each Chapter are ranked I, II, or III
according to estimated difficulty, with (I) Problems being easiest.
Level III are meant as challenges for the best students. The Prob-
lems are arranged by Section, meaning that the reader should 
have read up to and including that Section, but not only that
Section—Problems often depend on earlier material. Next is 
a set of “General Problems” not arranged by Section and not
ranked. Finally, there are “Search and Learn” Problems that require
rereading parts of the Chapter.]

1;4 Measurement, Uncertainty, Significant Figures

(Note: In Problems, assume a number like 6.4 is accurate to
; and 950 is unless 950 is said to be “precisely” or

“very nearly” 950, in which case assume )

1. (I) How many significant figures do each of the following
numbers have: (a) 214, (b) 81.60, (c) 7.03, (d) 0.03,
(e) 0.0086, ( ) 3236, and (g) 8700?

2. (I) Write the following numbers in powers of 10 notation:
(a) 1.156, (b) 21.8, (c) 0.0068, (d) 328.65, (e) 0.219, and ( ) 444.

3. (I) Write out the following numbers in full with the
correct number of zeros: (a) (b) 
(c) (d) and (e) 

4. (II) The age of the universe is thought to be about 
14 billion years. Assuming two significant figures, write
this in powers of 10 in (a) years, (b) seconds.

5. (II) What is the percent uncertainty in the measurement

6. (II) Time intervals measured with a stopwatch typically have
an uncertainty of about 0.2 s, due to human reaction time at
the start and stop moments. What is the percent uncertainty of
a hand-timed measurement of (a) 5.5 s, (b) 55 s, (c) 5.5 min?

7. (II) Add
8. (II) Multiply by taking into

account significant figures.
9. (II) What, approximately, is the percent uncertainty for

a measurement given as 
10. (III) What, roughly, is the percent uncertainty in the volume

of a spherical beach ball of radius
11. (III) What is the area, and its approximate uncertainty, of

a circle of radius 

1;5 and 1;6 Units, Standards, SI, Converting Units

12. (I) Write the following as full (decimal) numbers without
prefixes on the units: (a) 286.6 mm, (b) (c) 760 mg,
(d) 62.1 ps, (e) 22.5 nm, ( ) 2.50 gigavolts.

13. (I) Express the following using the prefixes of Table 1–4:
(a) (b) (c) 
(d) and (e) 

14. (I) One hectare is defined as One acre is
How many acres are in one hectare?

15. (II) The Sun, on average, is 93 million miles from Earth.
How many meters is this? Express (a) using powers of 
10, and (b) using a metric prefix (km).

16. (II) Express the following sum with the correct number of
significant figures: 1.80 m + 142.5 cm + 5.34 * 105 mm.

4.356 * 104 ft2.
1.000 * 104 m2.

7 * 10–7 seconds.18 * 102 bucks,
6 * 103 days,2 * 10–6 meters,1 * 106 volts,

f
85 mV,

3.1 * 104 cm?

r = 0.8460.04 m?

1.57 m2?

0.068 * 10–1 m,3.079 * 102 m
A9.2 * 103 sB + A8.3 * 104 sB + A0.008 * 106 sB.

5.4860.25 m?

3.62 * 10–5.4.76 * 102,8.8 * 10–1,
9.1 * 103,8.69 * 104,

f

f

95061.
&10&0.1

17. (II) Determine the conversion factor between (a) 
and (b) and  and (c) and 

18. (II) A light-year is the distance light travels in one year (at
speed (a) How many meters are
there in 1.00 light-year? (b) An astronomical unit (AU) is
the average distance from the Sun to Earth,
How many AU are there in 1.00 light-year?

19. (II) How much longer (percentage) is a one-mile race
than a 1500-m race (“the metric mile”)?

20. (II) American football uses a field that is 100.0 yd long,
whereas a soccer field is 100.0 m long. Which field is longer,
and by how much (give yards, meters, and percent)?

21. (II) (a) How many seconds are there in 1.00 year? (b) How
many nanoseconds are there in 1.00 year? (c) How many
years are there in 1.00 second?

22. (II) Use Table 1–3 to estimate the total number of protons
or neutrons in (a) a bacterium, (b) a DNA molecule, (c) the
human body, (d) our Galaxy.

23. (III) A standard baseball has a circumference of approxi-
mately 23 cm. If a baseball had the same mass per unit
volume (see Tables in Section 1–5) as a neutron or a proton,
about what would its mass be?

1–7 Order-of-Magnitude Estimating

(Note: Remember that for rough estimates, only round numbers
are needed both as input to calculations and as final results.)

24. (I) Estimate the order of magnitude (power of 10) of:
(a) 2800, (b) (c) 0.0076, and (d) 

25. (II) Estimate how many books can be shelved in a college
library with of floor space. Assume 8 shelves high,
having books on both sides, with corridors 1.5 m wide.
Assume books are about the size of this one, on average.

26. (II) Estimate how many hours it would take to run (at
) across the U.S. from New York to California.

27. (II) Estimate the number of liters of water a human
drinks in a lifetime.

28. (II) Estimate how long it would take one person to mow
a football field using an ordinary home lawn mower
(Fig. 1–15). (State your assumption, such as the mower
moves with a speed, and has a 0.5-m width.)1-km�h

10 km�h

3500 m2

15.0 * 108.86.30 * 103,

1.50 * 108 km.

2.998 * 108 m�s).=

m�s.km�hft�s,m�smi�h,
km�h

Problems
For assigned homework and other learning materials, go to the MasteringPhysics website.
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31. (III) I agree to hire you for 30 days. You can decide between
two methods of payment: either (1) $1000 a day, or (2) one
penny on the first day, two pennies on the second day and
continue to double your daily pay each day up to day 30.
Use quick estimation to make your decision, and justify it.

32. (III) Many sailboats are docked at a marina 4.4 km away on
the opposite side of a lake. You stare at one of the sailboats
because, when you are lying flat at the water’s edge, you
can just see its deck but none of the side of the sailboat.
You then go to that sailboat on the other side of the
lake and measure that the deck is 1.5 m above
the level of the water. Using
Fig. 1–16, where 
estimate the radius R of the
Earth.

h = 1.5 m,

General Problems 19

*1;8 Dimensions

*33. (I) What are the dimensions of density, which is mass per
volume?

*34. (II) The speed of an object is given by the equation
where refers to time. (a) What are the

dimensions of A and B? (b) What are the SI units for the
constants A and B?

*35. (III) The smallest meaningful measure of length is called the
Planck length, and is defined in terms of three fundamental
constants in nature: the speed of light 
the gravitational constant and
Planck’s constant The Planck
length is given by the following combination of these
three constants:

Show that the dimensions of are length [L], and find the
order of magnitude of [Recent theories (Chapters 32
and 33) suggest that the smallest particles (quarks, leptons)
are “strings” with lengths on the order of the Planck length,

These theories also suggest that the “Big Bang,”
with which the universe is believed to have begun, started
from an initial size on the order of the Planck length.]

10–35 m.

lP .
lP

lP = BGh

c3
.

lP

h = 6.63 * 10–34 kg �m2�s.
G = 6.67 * 10–11 m3�kg �s2,

c = 3.00 * 108 m�s,

tv = At3
- Bt,

v

Earth

Earth center

Lake

R R

d

h

36. Global positioning satellites (GPS) can be used to determine
your position with great accuracy. If one of the satellites is
20,000 km from you, and you want to know your position to

what percent uncertainty in the distance is required?
How many significant figures are needed in the distance?

37. Computer chips (Fig. 1–17) are etched on circular silicon
wafers of thickness 0.300 mm that are sliced from a solid
cylindrical silicon crystal of length 25 cm. If each wafer can
hold 400 chips, what is the maximum number of chips
that can be produced from one entire cylinder?

&2 m,

39. If you used only a keyboard to enter data, how many years
would it take to fill up the hard drive in a computer that can
store 1.0 terabytes of data? Assume 40-hour
work weeks, and that you can type 180 characters per minute,
and that one byte is one keyboard character.

40. An average family of four uses roughly 1200 L (about
300 gallons) of water per day How much
depth would a lake lose per year if it covered an area of

with uniform depth and supplied a local town with
a population of 40,000 people? Consider only population
uses, and neglect evaporation, rain, creeks and rivers.

41. Estimate the number of 
jelly beans in the jar of 
Fig. 1–18.

50 km2

A1 L = 1000 cm3B.

(1.0 * 1012 bytes)

General Problems

38. A typical adult human lung contains about 300 million
tiny cavities called alveoli. Estimate the average diameter
of a single alveolus.

FIGURE 1;18

Problem 41. Estimate 
the number of jelly 
beans in the jar.

FIGURE 1;17 Problem 37.
The wafer held by the hand 
is shown below, enlarged 
and illuminated by colored 
light. Visible are rows of 
integrated circuits (chips).

FIGURE 1;16 Problem 32.
You see a sailboat across a 
lake (not to scale). R is the 
radius of the Earth. Because 
of the curvature of the Earth,
the water “bulges out” between
you and the boat.
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42. How big is a ton? That is, what is the volume of something
that weighs a ton? To be specific, estimate the diameter of
a 1-ton rock, but first make a wild guess: will it be 1 ft
across, 3 ft, or the size of a car? [Hint: Rock has mass per
volume about 3 times that of water, which is 1 kg per liter

or 62 lb per cubic foot.]
43. A certain compact disc (CD) contains 783.216 megabytes

of digital information. Each byte consists of exactly 8 bits.
When played, a CD player reads the CD’s information 
at a constant rate of 1.4 megabits per second. How many
minutes does it take the player to read the entire CD?

44. Hold a pencil in front of your eye at a position where its
blunt end just blocks out the Moon (Fig. 1–19). Make
appropriate measurements
to estimate the diameter
of the Moon, given that
the Earth–Moon distance
is 3.8 * 105 km.

A103 cm3B

20 CHAPTER 1 Introduction, Measurement, Estimating

45. A storm dumps 1.0 cm of rain on a city 6 km wide and 8 km
long in a 2-h period. How many metric tons 

of water fell on the city? ( of water has a mass
of ) How many gallons of water was this?

46. Estimate how many days it would take to walk around
the Earth, assuming 12 h walking per day at 

47. A watch manufacturer claims that its watches gain or lose
no more than 8 seconds in a year. How accurate are these
watches, expressed as a percentage?

48. An angstrom (symbol Å) is a unit of length, defined as
which is on the order of the diameter of an atom.

(a) How many nanometers are in 1.0 angstrom? (b) How
many femtometers or fermis (the common unit of length
in nuclear physics) are in 1.0 angstrom? (c) How many
angstroms are in 1.0 m? (d) How many angstroms are in
1.0 light-year (see Problem 18)?

10–10 m,

4 km�h.

1 g = 10–3 kg.
1 cm3103 kgB

A1 metric ton =

1. Galileo is to Aristotle as Copernicus is to Ptolemy. See
Section 1–1 and explain this analogy.

2. Using the French Academy of Sciences’ original defini-
tion of the meter, determine Earth’s circumference and
radius in those meters.

3. To the correct number of significant figures, use the infor-
mation inside the front cover of this book to determine
the ratio of (a) the surface area of Earth compared to the
surface area of the Moon; (b) the volume of Earth
compared to the volume of the Moon.

Search and Learn

A: (d).
B: All three have three significant figures; the number of

decimal places is (a) 2, (b) 3, (c) 4.
C: (a) (b) 

(c) 5.3.4450 * 102,
4.23 * 104,  3 (probably);2.58 * 10–2,  3;

D: ( ).
E: No:
F: (c).

15 m�s L 34 mi�h.
f

A N S W E R S  TO  E X E R C I S E S

49. Jim stands beside a wide river and wonders how wide it 
is. He spots a large rock on the bank directly across from
him. He then walks upstream
65 strides and judges that
the angle between him and
the rock, which he can still
see, is now at an angle of
30° downstream (Fig. 1–20).
Jim measures his stride
to be about 0.8 m long.
Estimate the width of the
river.

FIGURE 1;19

Problem 44. How big 
is the Moon?

65 Strides

30°

FIGURE 1;20

Problem 49.

50. Determine the percent uncertainty in and in 
when (a) (b) 

51. If you walked north along one of Earth’s lines of longi-
tude until you had changed latitude by 1 minute of arc
(there are 60 minutes per degree), how far would you
have walked (in miles)? This distance is a nautical mile.

52. Make a rough estimate of the volume of your body (in ).
53. One mole of atoms consists of individual atoms.

If a mole of atoms were spread uniformly over the Earth’s
surface, how many atoms would there be per square meter?

54. The density of an object is defined as its mass divided by its
volume. Suppose a rock’s mass and volume are measured to
be 6 g and To the correct number of significant
figures, determine the rock’s density (mass volume).

55. Recent findings in astrophysics suggest that the observ-
able universe can be modeled as a sphere of radius

light-years with an aver-
age total mass density of about Only
about 4% of total mass is due to “ordinary” matter (such as
protons, neutrons, and electrons). Estimate how much
ordinary matter (in kg) there is in the observable universe.
(For the light-year, see Problem 18.)

1 * 10–26 kg�m3.
= 13.0 * 1025 mR = 13.7 * 109

�
2.8325 cm3.

6.02 * 1023
m3

u = 75.0°60.5°.u = 15.0°60.5°,
sin u,u,
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Describing Motion:
Kinematics in One Dimension

C

H
A P T E

R

The space shuttle has released 
a parachute to reduce its 
speed quickly. The directions 
of the shuttle’s velocity and 
acceleration are shown by the 
green and gold arrows.

Motion is described using 
the concepts of velocity and 
acceleration. In the case 
shown here, the velocity is 
to the right, in the direction
of motion. The acceleration 
is in the opposite direction 
from the velocity which 
means the object is slowing 
down.

We examine in detail motion
with constant acceleration,
including the vertical motion 
of objects falling under gravity.

vB,

aB

vB

AaBBAvBB

21

CONTENTS

2–1 Reference Frames and
Displacement

2–2 Average Velocity

2–3 Instantaneous Velocity

2–4 Acceleration

2–5 Motion at Constant 
Acceleration

2–6 Solving Problems

2–7 Freely Falling Objects

2–8 Graphical Analysis of 
Linear Motion

CHAPTER-OPENING QUESTION—Guess now!
[Don’t worry about getting the right answer now—you will get another chance later in the
Chapter. See also p. 1 of Chapter 1 for more explanation.]

Two small heavy balls have the same diameter but one weighs twice as much as
the other. The balls are dropped from a second-story balcony at the exact same
time. The time to reach the ground below will be:

(a) twice as long for the lighter ball as for the heavier one.
(b) longer for the lighter ball, but not twice as long.
(c) twice as long for the heavier ball as for the lighter one.
(d) longer for the heavier ball, but not twice as long.
(e) nearly the same for both balls.

T he motion of objects—baseballs, automobiles, joggers, and even the Sun
and Moon—is an obvious part of everyday life. It was not until the
sixteenth and seventeenth centuries that our modern understanding of

motion was established. Many individuals contributed to this understanding,
particularly Galileo Galilei (1564–1642) and Isaac Newton (1642–1727).

The study of the motion of objects, and the related concepts of force and energy,
form the field called mechanics. Mechanics is customarily divided into two parts:
kinematics, which is the description of how objects move, and dynamics, which
deals with force and why objects move as they do. This Chapter and the next deal
with kinematics.

2
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22 CHAPTER 2 Describing Motion: Kinematics in One Dimension

FIGURE 2;2 A person walks toward the front of a train at 
The train is moving with respect to the ground, so the 
walking person’s speed, relative to the ground, is 85 km�h.

80 km�h
5 km�h.

For now we only discuss objects that move without rotating (Fig. 2–1a).
Such motion is called translational motion. In this Chapter we will be concerned
with describing an object that moves along a straight-line path, which is one-
dimensional translational motion. In Chapter 3 we will describe translational
motion in two (or three) dimensions along paths that are not straight. (Rotation,
shown in Fig. 2–1b, is discussed in Chapter 8.)

We will often use the concept, or model, of an idealized particle which is
considered to be a mathematical point with no spatial extent (no size). A point
particle can undergo only translational motion. The particle model is useful in
many real situations where we are interested only in translational motion and
the object’s size is not significant. For example, we might consider a billiard ball,
or even a spacecraft traveling toward the Moon, as a particle for many purposes.

2–1 Reference Frames and Displacement
Any measurement of position, distance, or speed must be made with respect to a
reference frame, or frame of reference. For example, while you are on a train
traveling at suppose a person walks past you toward the front of the
train at a speed of, say, (Fig. 2–2). This is the person’s speed 
with respect to the train as frame of reference. With respect to the ground,
that person is moving at a speed of It is always
important to specify the frame of reference when stating a speed. In everyday
life, we usually mean “with respect to the Earth” without even thinking about it,
but the reference frame must be specified whenever there might be confusion.

80 km�h + 5 km�h = 85 km�h.

5 km�h5 km�h
80 km�h,

(a) (b)

FIGURE 2;1 A falling pinecone
undergoes (a) pure translation;
(b) it is rotating as well as translating.

When specifying the motion of an object, it is important to specify not only
the speed but also the direction of motion. Often we can specify a direction by
using north, east, south, and west, and by “up” and “down.” In physics, we
often draw a set of coordinate axes, as shown in Fig. 2–3, to represent a frame
of reference. We can always place the origin 0, and the directions of the x and
y axes, as we like for convenience. The x and y axes are always perpendicular
to each other. The origin is where Objects positioned to the right
of the origin of coordinates (0) on the x axis have an x coordinate which we
almost always choose to be positive; then points to the left of 0 have a negative
x coordinate. The position along the y axis is usually considered positive when
above 0, and negative when below 0, although the reverse convention can be used
if convenient. Any point on the plane can be specified by giving its x and y coor-
dinates. In three dimensions, a z axis perpendicular to the x and y axes is added.

For one-dimensional motion, we often choose the x axis as the line along
which the motion takes place. Then the position of an object at any moment is
given by its x coordinate. If the motion is vertical, as for a dropped object, we
usually use the y axis.

y = 0.x = 0,

− y

+ y

+ x− x
0

FIGURE 2;3 Standard set of xy
coordinate axes, sometimes called
“rectangular coordinates.”
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SECTION 2–2 Average Velocity 23

C A U T I O N

The displacement may not equal the
total distance traveled

We need to make a distinction between the distance an object has traveled
and its displacement, which is defined as the change in position of the 
object. That is, displacement is how far the object is from its starting point.
To see the distinction between total distance and displacement, imagine a person
walking 70 m to the east and then turning around and walking back (west) a
distance of 30 m (see Fig. 2–4). The total distance traveled is 100 m, but the
displacement is only 40 m since the person is now only 40 m from the starting point.

Displacement is a quantity that has both magnitude and direction. Such
quantities are called vectors, and are represented by arrows in diagrams. For
example, in Fig. 2–4, the blue arrow represents the displacement whose magni-
tude is 40 m and whose direction is to the right (east).

We will deal with vectors more fully in Chapter 3. For now, we deal only with
motion in one dimension, along a line. In this case, vectors which point in one direc-
tion will be positive (typically to the right along the x axis). Vectors that point
in the opposite direction will have a negative sign in front of their magnitude.

Consider the motion of an object over a particular time interval. Suppose that
at some initial time, call it the object is on the x axis at the position in the
coordinate system shown in Fig. 2–5. At some later time, suppose the object 
has moved to position The displacement of our object is and is
represented by the arrow pointing to the right in Fig. 2–5. It is convenient to write

where the symbol (Greek letter delta) means “change in.” Then means
“the change in x,” or “change in position,” which is the displacement. The change in
any quantity means the final value of that quantity, minus the initial value.
Suppose and as in Fig. 2–5. Then

so the displacement is 20.0 m in the positive direction, Fig. 2–5.
Now consider an object moving to the left as shown in Fig. 2–6. Here the

object, a person, starts at and walks to the left to the point
In this case her displacement is

and the blue arrow representing the vector displacement points to the left. For
one-dimensional motion along the x axis, a vector pointing to the right is 
positive, whereas a vector pointing to the left has a negative sign.

EXERCISE A An ant starts at on a piece of graph paper and walks along
the x axis to It then turns around and walks back to
Determine (a) the ant’s displacement and (b) the total distance traveled.

2–2 Average Velocity
An important aspect of the motion of a moving object is how fast it is 
moving—its speed or velocity.

The term “speed” refers to how far an object travels in a given time interval,
regardless of direction. If a car travels 240 kilometers (km) in 3 hours (h), we say
its average speed was In general, the average speed of an object is
defined as the total distance traveled along its path divided by the time it takes to
travel this distance:

(2;1)

The terms “velocity” and “speed” are often used interchangeably in ordi-
nary language. But in physics we make a distinction between the two. Speed is
simply a positive number, with units. Velocity, on the other hand, is used to
signify both the magnitude (numerical value) of how fast an object is moving
and also the direction in which it is moving. Velocity is therefore a vector.

average speed =

distance traveled
time elapsed

.

80 km�h.

x = –10 cm.x = –20 cm.
x = 20 cm

¢x = x2 - x1 = 10.0 m - 30.0 m = –20.0 m,

x2 = 10.0 m.
x1 = 30.0 m

¢x = x2 - x1 = 30.0 m - 10.0 m = 20.0 m,

x2 = 30.0 m,x1 = 10.0 m

¢x¢

¢x = x2 - x1 ,

x2 - x1 ,x2 .
t2 ,

x1t1 ,

y

x

x2 x1

100 20 30 40
Distance (m)

�x

x
0

70 m

West East40 m

Displacement

30 m

y

FIGURE 2;4 A person walks 70 m 
east, then 30 m west. The total distance
traveled is 100 m (path is shown dashed
in black); but the displacement, shown 
as a solid blue arrow, is 40 m to the east.

x

y

x1 x2

100 20 30 40
Distance (m)

FIGURE 2;5 The arrow represents
the displacement
Distances are in meters.

x2 - x1 .

FIGURE 2;6 For the displacement

the displacement vector points left.
¢x =  x2 - x1 =  10.0 m - 30.0 m,
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There is a second difference between speed and velocity: namely, the average
velocity is defined in terms of displacement, rather than total distance traveled:

Average speed and average velocity have the same magnitude when the
motion is all in one direction. In other cases, they may differ: recall the walk we
described earlier, in Fig. 2–4, where a person walked 70 m east and then 30 m west.
The total distance traveled was but the displacement was
40 m. Suppose this walk took 70 s to complete. Then the average speed was:

The magnitude of the average velocity, on the other hand, was:

To discuss one-dimensional motion of an object in general, suppose that at
some moment in time, call it the object is on the x axis at position in a
coordinate system, and at some later time, suppose it is at position The
elapsed time ( in time) is during this time interval the
displacement of our object is Then the average velocity,
defined as the displacement divided by the elapsed time, can be written

[average velocity] (2;2)

where stands for velocity and the bar over the is a standard symbol
meaning “average.”

For one-dimensional motion in the usual case of the axis to the right,
note that if is less than the object is moving to the left, and then

is less than zero. The sign of the displacement, and thus of the
average velocity, indicates the direction: the average velocity is positive for an
object moving to the right along the axis and negative when the object 
moves to the left. The direction of the average velocity is always the same as 
the direction of the displacement.

It is always important to choose (and state) the elapsed time, or time interval,
the time that passes during our chosen period of observation.

Runner’s average velocity. The position of a runner is
plotted as moving along the x axis of a coordinate system. During a 3.00-s time
interval, the runner’s position changes from to as
shown in Fig. 2–7. What is the runner’s average velocity?

APPROACH We want to find the average velocity, which is the displacement
divided by the elapsed time.

SOLUTION The displacement is

The elapsed time, or time interval, is given as The average velocity 
(Eq. 2–2) is

The displacement and average velocity are negative, which tells us that the
runner is moving to the left along the x axis, as indicated by the arrow in Fig. 2–7.
The runner’s average velocity is to the left.6.50 m�s

v =

¢x
¢t

=

–19.5 m
3.00 s

= –6.50 m�s.

¢t = 3.00 s.

 = 30.5 m - 50.0 m = –19.5 m.
 ¢x = x2 - x1

x2 = 30.5 m,x1 = 50.0 m

EXAMPLE 2;1

t2 - t1 ,

x

¢x = x2 - x1

x1 ,x2

±x

v(  )v

v =

x2 - x1

t2 - t1
=

¢x
¢t

,

¢x = x2 - x1 .
¢t = t2 - t1 ;= change

x2 .t2 ,
x1t1 ,

displacement
time elapsed

=

40 m
70 s

= 0.57 m�s.

distance
time elapsed

=

100 m
70 s

= 1.4 m�s.

70 m + 30 m = 100 m,

average velocity =

displacement
time elapsed

=

final position - initial position
time elapsed

.
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P R O B L E M  S O L V I N G

or sign can signify the direction
for linear motion

––++

C A U T I O N

Average speed is not necessarily 
equal to the magnitude of the 

average velocity

y

x
100 20 30 40 50 60

Distance (m)

Start
(x1)

Finish
(x2)

�x

FIGURE 2;7 Example 2–1.
A person runs from
to The displacement
is –19.5 m.

x2 = 30.5 m.
x1 = 50.0 m

C A U T I O N

Time interval elapsed time=
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SECTION 2–3 25

Distance a cyclist travels. How far can a cyclist travel in 
2.5 h along a straight road if her average velocity is 

APPROACH We want to find the distance traveled, so we solve Eq. 2–2 for 

SOLUTION In Eq. 2–2, we multiply both sides by and obtain

¢x = v ¢t = (18 km�h)(2.5 h) = 45 km.

¢tv = ¢x�¢t,
¢x.

18 km�h?
EXAMPLE 2;2

FIGURE 2;8 Car speedometer
showing in white, and 
in orange.

km�hmi�h

60

20

40

V
el

oc
ity

 (
km

/h
)

Time (h)(a)

0.20
Time (h)(b)

0.50.1 0.3 0.4

0.20 0.50.1 0.3 0.4

Average velocity

0

60

20

40

V
el

oc
ity

 (
km

/h
)

0

FIGURE 2;9 Velocity of a car as a 
function of time: (a) at constant velocity;
(b) with velocity varying in time.

Car changes speed. A car travels at a constant for
100 km. It then speeds up to and is driven another 100 km. What is
the car’s average speed for the 200-km trip?

APPROACH At the car takes 2.0 h to travel 100 km. At it
takes only 1.0 h to travel 100 km.We use the defintion of average velocity, Eq. 2–2.

SOLUTION Average velocity (Eq. 2–2) is

NOTE Averaging the two speeds, gives
a wrong answer. Can you see why? You must use the definition of Eq. 2–2.v,

75 km�h,(50 km�h + 100 km�h)�2 =

v =

¢x

¢t
=

100 km + 100 km
2.0 h + 1.0 h

= 67 km�h.

100 km�h50 km�h,

100 km�h
50 km�hEXAMPLE 2;3

2–3 Instantaneous Velocity
If you drive a car along a straight road for 150 km in 2.0 h, the magnitude of
your average velocity is It is unlikely, though, that you were moving
at precisely at every instant. To describe this situation we need the
concept of instantaneous velocity, which is the velocity at any instant of time.
(Its magnitude is the number, with units, indicated by a speedometer, Fig. 2–8.)
More precisely, the instantaneous velocity at any moment is defined as the
average velocity over an infinitesimally short time interval. That is, Eq. 2–2 is to be
evaluated in the limit of becoming extremely small, approaching zero. We can
write the definition of instantaneous velocity, for one-dimensional motion as

[instantaneous velocity] (2;3)

The notation means the ratio is to be evaluated in the limit of
approaching zero.†

For instantaneous velocity we use the symbol whereas for average
velocity we use with a bar above. In the rest of this book, when we use the
term “velocity” it will refer to instantaneous velocity. When we want to speak of
the average velocity, we will make this clear by including the word “average.”

Note that the instantaneous speed always equals the magnitude of the
instantaneous velocity. Why? Because distance traveled and the magnitude of
the displacement become the same when they become infinitesimally small.

If an object moves at a uniform (that is, constant) velocity during a partic-
ular time interval, then its instantaneous velocity at any instant is the same as its
average velocity (see Fig. 2–9a). But in many situations this is not the case. For
example, a car may start from rest, speed up to remain at that velocity
for a time, then slow down to in a traffic jam, and finally stop at its
destination after traveling a total of 15 km in 30 min. This trip is plotted on the
graph of Fig. 2–9b. Also shown on the graph is the average velocity (dashed
line), which is  

Graphs are often useful for analysis of motion; we discuss additional insights
graphs can provide as we go along, especially in Section 2–8.

v = ¢x�¢t = 15 km�0.50 h = 30 km�h.

20 km�h
50 km�h,

v,
v,

¢t
¢x�¢tlim

¢t S 0

v = lim
¢t S 0

 
¢x
¢t

.

v,
¢t

75 km�h
75 km�h.

†We do not simply set in this definition, for then would also be zero, and we would have
an undetermined number. Rather, we consider the ratio as a whole. As we let approach
zero, approaches zero as well. But the ratio approaches some definite value, which is the
instantaneous velocity at a given instant.

¢x�¢t¢x
¢t¢x�¢t,

¢x¢t = 0

EXERCISE B What is your instantaneous speed at the instant you turn around to move
in the opposite direction? (a) Depends on how quickly you turn around; (b) always zero;
(c) always negative; (d) none of the above.
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26 CHAPTER 2 Describing Motion: Kinematics in One Dimension

2–4 Acceleration
An object whose velocity is changing is said to be accelerating. For instance, a car
whose velocity increases in magnitude from zero to is accelerating.
Acceleration specifies how rapidly the velocity of an object is changing.

Average acceleration is defined as the change in velocity divided by the 
time taken to make this change:

In symbols, the average acceleration, , over a time interval during
which the velocity changes by is defined as

[average acceleration] (2;4)

We saw that velocity is a vector (it has magnitude and direction), so acceleration
is a vector too. But for one dimensional motion, we need only use a plus or minus
sign to indicate acceleration direction relative to a chosen coordinate axis.
(Usually, right is left is .)

The instantaneous acceleration, a, can be defined in analogy to instantaneous
velocity as the average acceleration over an infinitesimally short time interval at
a given instant:

[instantaneous acceleration] (2;5)

Here is the very small change in velocity during the very short time interval ¢t.¢v

a = lim
¢t S 0

 
¢v

¢t
.

–± ,

a =

v2 - v1

t2 - t1
=

¢v

¢t
.

¢v = v2 - v1 ,
¢t = t2 - t1 ,a

average acceleration =

change of velocity
time elapsed

.

80 km�h

FIGURE 2;10 Example 2–4. The car
is shown at the start with at

The car is shown three more
times, at and at
the end of our time interval,
The green arrows represent the
velocity vectors, whose length 
represents the magnitude of the
velocity at that moment. The 
acceleration vector is the orange
arrow, whose magnitude is constant
and equals or 
(see top of next page). Distances are
not to scale.

4.2 m�s215 km�h�s

t2 = 5.0 s.
t = 2.0 s,t = 1.0 s,

t1 = 0.
v1 = 0

Average acceleration. A car accelerates on a straight road from
rest to in 5.0 s, Fig. 2–10. What is the magnitude of its average acceleration?

APPROACH Average acceleration is the change in velocity divided by the elapsed
time, 5.0 s. The car starts from rest, so The final velocity is .

SOLUTION From Eq. 2–4, the average acceleration is

This is read as “fifteen kilometers per hour per second” and means that, on
average, the velocity changed by 15 km h during each second. That is, assuming
the acceleration was constant, during the first second the car’s velocity increased
from zero to 15 km h. During the next second its velocity increased by another
15 km h, reaching a velocity of 30 km h at and so on. See Fig. 2–10.t = 2.0 s,��

�

�

a =

v2 - v1

t2 - t1
=

75 km�h - 0 km�h
5.0 s

= 15 
km�h

s
.

v2 = 75 km�hv1 = 0.

75 km�h
EXAMPLE 2;4

Acceleration

a  =  15 km/h
s

v1  =  0
t1  =  0

at  t  =  2.0 s
    v  =  30 km/h

at  t  =  1.0 s
    v  =  15 km/h

at  t = t2  =  5.0 s
    v = v2 =  75 km/h
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SECTION 2–4 Acceleration 27

Our result in Example 2–4 contains two different time units: hours and seconds.
We usually prefer to use only seconds. To do so we can change km h to m s
(see Section 1–6, and Example 1–5):

Then

We almost always write the units for acceleration as (meters per
second squared) instead of This is possible because:

Note that acceleration tells us how quickly the velocity changes, whereas
velocity tells us how quickly the position changes.

m�s
s =

m
s �s =

m
s2

.

m�s�s.
m�s2

a =

21 m�s - 0.0 m�s
5.0 s

= 4.2 
m�s

s = 4.2 
m
s2

.

75 km�h = a75 
 km 

 h 
b a 1000 m

1  km 
b a 1  h 

3600 s
b = 21 m�s.

��

Velocity and acceleration. (a) If the velocity
of an object is zero, does it mean that the acceleration is zero? (b) If the
acceleration is zero, does it mean that the velocity is zero? Think of some examples.

RESPONSE A zero velocity does not necessarily mean that the acceleration
is zero, nor does a zero acceleration mean that the velocity is zero. (a) For
example, when you put your foot on the gas pedal of your car which is at rest,
the velocity starts from zero but the acceleration is not zero since the velocity
of the car changes. (How else could your car start forward if its velocity weren’t
changing—that is, accelerating?) (b) As you cruise along a straight highway at
a constant velocity of , your acceleration is zero: a = 0,  v Z 0.100 km�h

CONCEPTUAL EXAMPLE 2;5

C A U T I O N

Distinguish velocity from
acceleration

C A U T I O N

If v or a is zero, is the other zero too?

Acceleration

a = −2.0 m/s2
v1  =  15.0 m/s

at  t1  =  0

v2  =  5.0 m/s
at  t2  =  5.0 s

FIGURE 2;11 Example 2–6,
showing the position of the car at 
times and as well as the car’s 
velocity represented by the green 
arrows. The acceleration vector 
(orange) points to the left because the 
car slows down as it moves to the right.

t2 ,t1

v1  =  −15.0 m/sv2  =  −5.0 m/s

a

FIGURE 2;12 The car of 
Example 2–6, now moving to the left
and decelerating. The acceleration is

, or

= ±2.0 m�s2. =

–5.0 m�s + 15.0 m�s
5.0 s

 a =

(–5.0 m�s) - (–15.0 m�s)

5.0 s

a = (v2 - v1)�¢t

Car slowing down. An automobile is moving to the right
along a straight highway, which we choose to be the positive x axis (Fig. 2–11).
Then the driver steps on the brakes. If the initial velocity (when the driver hits 
the brakes) is and it takes 5.0 s to slow down to
what was the car’s average acceleration?

APPROACH We put the given initial and final velocities, and the elapsed
time, into Eq. 2–4 for 

SOLUTION In Eq. 2–4, we call the initial time and set

The negative sign appears because the final velocity is less than the initial velocity.
In this case the direction of the acceleration is to the left (in the negative x direc-
tion)—even though the velocity is always pointing to the right. We say that the
acceleration is to the left, and it is shown in Fig. 2–11 as an orange arrow.2.0 m�s2

a =

5.0 m�s - 15.0 m�s
5.0 s

= –2.0 m�s2.

t2 = 5.0 s:t1 = 0,

a.

v2 = 5.0 m�s,v1 = 15.0 m�s,

EXAMPLE 2;6

Deceleration
When an object is slowing down, we can say it is decelerating. But be careful:
deceleration does not mean that the acceleration is necessarily negative. The
velocity of an object moving to the right along the positive x axis is positive;
if the object is slowing down (as in Fig. 2–11), the acceleration is negative. But
the same car moving to the left (decreasing x), and slowing down, has positive
acceleration that points to the right, as shown in Fig. 2–12. We have a decelera-
tion whenever the magnitude of the velocity is decreasing; thus the velocity 
and acceleration point in opposite directions when there is deceleration.

EXERCISE C A car moves along the x axis. What is the sign of the car’s acceleration if
it is moving in the positive x direction with (a) increasing speed or (b) decreasing
speed? What is the sign of the acceleration if the car moves in the negative x direction
with (c) increasing speed or (d) decreasing speed?
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2–5 Motion at Constant Acceleration
We now examine motion in a straight line when the magnitude of the acceleration
is constant. In this case, the instantaneous and average accelerations are equal.
We use the definitions of average velocity and acceleration to derive a set of
valuable equations that relate x, a, and when a is constant, allowing us to
determine any one of these variables if we know the others. We can then solve
many interesting Problems.

Notation in physics varies from book to book; and different instructors use
different notation. We are now going to change our notation, to simplify it a bit
for our discussion here of motion at constant acceleration. First we choose the
initial time in any discussion to be zero, and we call it That is,
(This is effectively starting a stopwatch at ) We can then let be the
elapsed time. The initial position and the initial velocity of an object
will now be represented by and since they represent x and at At
time the position and velocity will be called x and (rather than and ).
The average velocity during the time interval will be (Eq. 2–2)

since we chose The acceleration, assumed constant in time, is
(Eq. 2–4), so

A common problem is to determine the velocity of an object after any elapsed
time when we are given the object’s constant acceleration. We can solve such
problems† by solving for in the last equation: first we multiply both sides by ,

Then, adding to both sides, we obtain

[constant acceleration] (2;6)

If an object, such as a motorcycle (Fig. 2–13), starts from rest and
accelerates at after an elapsed time its velocity will be

Next, let us see how to calculate the position x of an object after a time when
it undergoes constant acceleration. The definition of average velocity (Eq. 2–2) 
is which we can rewrite by multiplying both sides by

(2;7)

Because the velocity increases at a uniform rate, the average velocity, will be
midway between the initial and final velocities:

[constant acceleration] (2;8)

(Careful: Equation 2–8 is not necessarily valid if the acceleration is not constant.)
We combine the last two Equations with Eq. 2–6 and find, starting with Eq. 2–7,

or
[constant acceleration] (2;9)

Equations 2–6, 2–8, and 2–9 are three of the four most useful equations for
motion at constant acceleration. We now derive the fourth equation, which is useful

 x = x0 + v0 t +
1
2 at2.

 = x0 + ¢ v0 + v0 + at
2

≤ t

 = x0 + ¢ v0 + v

2
≤ t

 x = x0 + v  t

v =

v0 + v

2
.

 v, 

x = x0 + vt.

t:v = Ax - x0B�t,

t
v = 0 + at = A4.0 m�s2B(6.0 s) = 24 m�s.

t = 6.0 s4.0 m�s2,
Av0 = 0B

v = v0 + at.

v0

at = v - v0        or         v - v0 = at.

tv
t,

a =

v - v0

t
.

a = ¢v�¢tt0 = 0.

v =

¢x
¢t

=

x - x0

t - t0
=

x - x0

t

t - t0

v2x2vt
t = 0.vv0 ,x0

Av1BAx1B
t2 = t t0 .

t1 = t0 = 0.t0 .

tv,

28 CHAPTER 2

C A U T I O N

Average velocity, but only if
a = constant

FIGURE 2;13 An accelerating
motorcycle.

†Appendix A–4 summarizes simple algebraic manipulations.
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SECTION 2–5 Motion at Constant Acceleration 29

in situations where the time is not known. We substitute Eq. 2–8 into Eq. 2–7:

Next we solve Eq. 2–6 for obtaining (see Appendix A–4 for a quick review)

and substituting this into the previous equation we have

We solve this for and obtain

[constant acceleration] (2;10)

which is the other useful equation we sought.
We now have four equations relating position, velocity, acceleration, and

time, when the acceleration a is constant. We collect these kinematic equations
for constant acceleration here in one place for future reference (the tan background
screen emphasizes their usefulness):

(2;11a)

(2;11b)

(2;11c)

(2;11d)

These useful equations are not valid unless a is a constant. In many cases we
can set and this simplifies the above equations a bit. Note that x repre-
sents position (not distance), also that is the displacement, and that is the
elapsed time. Equations 2–11 are useful also when a is approximately constant
to obtain reasonable estimates.

tx - x0

x0 = 0,

[a = constant] v =

v + v0

2
.

[a = constant] v2
= v0

2
+ 2aAx - x0B

[a = constant] x = x0 + v0 t +
1
2 at2

[a = constant] v = v0 + at

v2
= v0

2
+ 2aAx - x0B,

v2

x = x0 + ¢ v + v0

2
≤ ¢ v - v0

a
≤ = x0 +

v2
- v0

2

2a
.

t =

v - v0

a
,

t,

x = x0 + v  t = x0 + ¢ v + v0

2
≤ t.

t

P R O B L E M  S O L V I N G

Equations 2–11 are valid only when
the acceleration is constant, which we
assume in this Example

P H Y S I C S  A P P L I E D

Airport design

Kinematic equations

for constant acceleration 

(we’ll use them a lot)

Known Wanted

 a = 2.00 m�s2
 x = 150 m

 v0 = 0
v x0 = 0

SOLUTION (a) Of the above four equations, Eq. 2–11c will give us when
we know a, x, and

This runway length is not sufficient, because the minimum speed is not reached.
(b) Now we want to find the minimum runway length, for a plane to reach

given We again use Eq. 2–11c, but rewritten as

A 200-m runway is more appropriate for this plane.

NOTE We did this Example as if the plane were a particle, so we round off
our answer to 200 m.

Ax - x0B =

v2
- v0

2

2a
=

(27.8 m�s)2
- 0

2A2.00 m�s2B = 193 m.

a = 2.00 m�s2.v = 27.8 m�s,
x - x0 ,

 v = 3600 m2�s2
= 24.5 m�s.

 = 0 + 2A2.00 m�s2B(150 m) = 600 m2�s2

 v2
= v0

2
+ 2aAx - x0B
x0 :v0 ,

v

Runway design. You are designing an airport for small
planes. One kind of airplane that might use this airfield must reach a speed 
before takeoff of at least and can accelerate at 
(a) If the runway is 150 m long, can this airplane reach the required speed for
takeoff? (b) If not, what minimum length must the runway have?

APPROACH Assuming the plane’s acceleration is constant, we use the kinematic
equations for constant acceleration. In (a), we want to find and what we are
given is shown in the Table in the margin.

v,

2.00 m�s2.27.8 m�s (100 km�h),

EXAMPLE 2;7
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EXERCISE D A car starts from rest and accelerates at a constant during a 
-mile ( ) race. How fast is the car going at the finish line? (a) 

(b) (c) (d) 

2–6 Solving Problems
Before doing more worked-out Examples, let us look at how to approach problem
solving. First, it is important to note that physics is not a collection of equations to
be memorized. Simply searching for an equation that might work can lead you
to a wrong result and will not help you understand physics (Fig. 2–14).
A better approach is to use the following (rough) procedure, which we present as
a special “Problem Solving Strategy.” (Other such Problem Solving Strategies
will be found throughout the book.)

804 m�s.81 m�s;90 m�s;
8040 m�s;402 m1

4

10 m�s2

30 CHAPTER 2 Describing Motion: Kinematics in One Dimension

equation that involves only known quantities and
one desired unknown, solve the equation alge-
braically for the unknown. Sometimes several
sequential calculations, or a combination of equa-
tions, may be needed. It is often preferable to solve
algebraically for the desired unknown before
putting in numerical values.

7. Carry out the calculation if it is a numerical problem.
Keep one or two extra digits during the calculations,
but round off the final answer(s) to the correct number
of significant figures (Section 1–4).

8. Think carefully about the result you obtain: Is it
reasonable? Does it make sense according to your
own intuition and experience? A good check is to
do a rough estimate using only powers of 10, as
discussed in Section 1–7. Often it is preferable to
do a rough estimate at the start of a numerical
problem because it can help you focus your 
attention on finding a path toward a solution.

9. A very important aspect of doing problems is keep-
ing track of units. An equals sign implies the units on
each side must be the same, just as the numbers must.
If the units do not balance, a mistake has been
made. This can serve as a check on your solution
(but it only tells you if you’re wrong, not if you’re
right). Always use a consistent set of units.

P
R

O
B

L
E

M

 S
O LV I N G

1. Read and reread the whole problem carefully before
trying to solve it.

2. Decide what object (or objects) you are going to
study, and for what time interval. You can often
choose the initial time to be

3. Draw a diagram or picture of the situation, with
coordinate axes wherever applicable. [You can place
the origin of coordinates and the axes wherever you
like to make your calculations easier. You also choose
which direction is positive and which is negative.
Usually we choose the x axis to the right as positive.]

4. Write down what quantities are “known” or “given,”
and then what you want to know. Consider quan-
tities both at the beginning and at the end of the
chosen time interval. You may need to “translate”
language into physical terms, such as “starts from
rest” means

5. Think about which principles of physics apply in
this problem. Use common sense and your own
experiences. Then plan an approach.

6. Consider which equations (and/or definitions) relate
the quantities involved. Before using them, be sure
their range of validity includes your problem (for
example, Eqs. 2–11 are valid only when the accel-
eration is constant). If you find an applicable

v0 = 0.

t = 0.

FIGURE 2;14 Read the book, study
carefully, and work the Problems using
your reasoning abilities.
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SECTION 2–6 Solving Problems 31

Acceleration of a car. How long does it take a car to cross 
a 30.0-m-wide intersection after the light turns green, if the car accelerates from
rest at a constant 

APPROACH We follow the Problem Solving Strategy on the previous page,
step by step.

SOLUTION

1. Reread the problem. Be sure you understand what it asks for (here, a time
interval: “how long does it take”).

2. The object under study is the car. We need to choose the time interval
during which we look at the car’s motion: we choose the initial time,
to be the moment the car starts to accelerate from rest the time 
is the instant the car has traveled the full 30.0-m width of the intersection.

3. Draw a diagram: the situation is shown in Fig. 2–15, where the car is shown
moving along the positive x axis. We choose at the front bumper of
the car before it starts to move.

4. The “knowns” and the “wanted” information are shown in the Table in the
margin. Note that “starting from rest” means at that is,
The wanted time is how long it takes the car to travel 

5. The physics: the car, starting from rest at increases in speed as it
covers more distance. The acceleration is constant, so we can use the kine-
matic equations, Eqs. 2–11.

6. Equations: we want to find the time, given the distance and acceleration;
Eq. 2–11b is perfect since the only unknown quantity is Setting
and in Eq. 2–11b we have

We solve for by multiplying both sides by :

Taking the square root, we get :

7. The calculation:

This is our answer. Note that the units come out correctly.
8. We can check the reasonableness of the answer by doing an alternate calcu-

lation: we first find the final velocity

and then find the distance traveled 

which checks with our given distance.
9. We checked the units in step 7, and they came out correctly (seconds).

NOTE In steps 6 and 7, when we took the square root, we should have written
Mathematically there are two solutions. But the

second solution, is a time before our chosen time interval and
makes no sense physically. We say it is “unphysical” and ignore it.

We explicitly followed the steps of the Problem Solving Strategy in
Example 2–8. In upcoming Examples, we will use our usual “Approach” and
“Solution” to avoid being wordy.

t = –5.48 s,
t = &22x�a = &5.48 s.

x = x0 + vt = 0 +
1
2 (10.96 m�s + 0)(5.48 s) = 30.0 m,

v = at = A2.00 m�s2B(5.48 s) = 10.96 m�s,

t = B2x
a

= C2(30.0 m)

2.00 m�s2
= 5.48 s.

t = B2x
a

.

t

2x
a

= t2.

2
a

t

x =

1
2 at2.

Ax = x0 + v0 t +
1
2 at2B,x0 = 0

v0 = 0t.

t0 = 0B,A
30.0 m.t

v0 = 0.t = 0;v = 0

x0 = 0

tAv0 = 0B;t = 0,

2.00 m�s2?

EXAMPLE 2;8

P R O B L E M  S O L V I N G

Check your answer

P R O B L E M  S O L V I N G

“Starting from rest” means
at [i.e., ]v0 = 0t = 0v = 0

Known Wanted

 v0 = 0
 a = 2.00 m�s2
 x = 30.0 m

t x0 = 0

0

a  =  2.00 m/s2 a  =  2.00 m/s2

x0  = 0
v

x =
30.0 m=  0

FIGURE 2;15 Example 2–8.

P R O B L E M  S O L V I N G

“Unphysical” solutions
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Braking distances. Estimate the minimum
stopping distance for a car, which is important for traffic safety and traffic design.
The problem is best dealt with in two parts, two separate time intervals. (1) The
first time interval begins when the driver decides to hit the brakes, and ends 
when the foot touches the brake pedal. This is the “reaction time” during which
the speed is constant, so (2) The second time interval is the actual 
braking period when the vehicle slows down and comes to a stop. The
stopping distance depends on the reaction time of the driver, the initial speed of
the car (the final speed is zero), and the deceleration of the car. For a dry road 
and good tires, good brakes can decelerate a car at a rate of about to

Calculate the total stopping distance for an initial velocity of 
and assume the acceleration of the car is

(the minus sign appears because the velocity is taken to be in the positive 
x direction and its magnitude is decreasing). Reaction time for normal drivers
varies from perhaps 0.3 s to about 1.0 s; take it to be 0.50 s.

APPROACH During the “reaction time,” part (1), the car moves at constant
speed of so  Once the brakes are applied, part (2), the acceler-
ation is  and is constant over this time interval. For both parts
a is constant, so we can use Eqs. 2–11.

SOLUTION Part (1). We take  for the first time interval, when the driver
is reacting (0.50 s): the car travels at a constant speed of so
See Fig. 2–16 and the Table in the margin. To find x, the position of the car 
at (when the brakes are applied), we cannot use Eq. 2–11c because
x is multiplied by a, which is zero. But Eq. 2–11b works:

Thus the car travels 7.0 m during the driver’s reaction time, until the instant
the brakes are applied. We will use this result as input to part (2).
Part (2). During the second time interval, the brakes are applied and the car is
brought to rest. The initial position is (result of part (1)), and other
variables are shown in the second Table in the margin. Equation 2–11a doesn’t
contain x; Eq. 2–11b contains x but also the unknown Equation 2–11c,

is what we want; after setting we solve 
for x, the final position of the car (when it stops):

The car traveled 7.0 m while the driver was reacting and another 16 m during
the braking period before coming to a stop, for a total distance traveled of
23 m. Figure 2–17 shows a graph of vs. is constant from until

and after it decreases linearly to zero.

NOTE From the equation above for x, we see that the stopping distance after
the driver hit the brakes  increases with the square of the initial
speed, not just linearly with speed. If you are traveling twice as fast, it takes
four times the distance to stop.

A   = x - x0B
t = 0.50 st = 0.50 s,

t = 0vt:v

   = 7.0 m + 16 m = 23 m.

 = 7.0 m +

0 - (14 m�s)2

2A–6.0 m�s2B  = 7.0 m +

–196 m2�s2

–12 m�s2

v2
- v0

2

2a
+ x =    x0

x0 = 7.0 m,v2
- v0

2 
=

 2aAx - x0B,
t.

x0 = 7.0 m

x = v0 t + 0 = (14 m�s)(0.50 s) = 7.0 m.

t = 0.50 s

a = 0.14 m�s
x0 = 0

a = –6.0 m�s2
a = 0.14 m�s,

–6.0 m�s2(  = 14 m�s L 31 mi�h)
50 km�h8 m�s2.

5 m�s2

(a Z 0)
a = 0.

EXAMPLE 2;9 ESTIMATE

32 CHAPTER 2 Describing Motion: Kinematics in One Dimension

P H Y S I C S  A P P L I E D

Car stopping distances

Travel during
reaction time

Travel during
braking

    = constant = 14 m/s
 t = 0.50 s
a = 0

a = − 6.0 m/s2

x

decreases from 14 m/s to zerovv

FIGURE 2;16 Example 2–9:
stopping distance for a
braking car.

Part 1: Reaction time

Known Wanted

x

 x0 = 0
 a = 0
 v = 14 m�s

 v0 = 14 m�s
 t = 0.50 s

Part 2: Braking

Known Wanted

x

 a = –6.0 m�s2
 v = 0

 v0 = 14 m�s
 x0 = 7.0 m

10
8
6

2
4

14
12

t (s)

v 
(m

/s
)

t = 0.5 s

0 2.00.5 1.0 1.5 2.5

FIGURE 2;17 Example 2–9.
Graph of vs. t.v
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SECTION 2–7 Freely Falling Objects 33

2–7 Freely Falling Objects
One of the most common examples of uniformly accelerated motion is that of
an object allowed to fall freely near the Earth’s surface. That a falling object is
accelerating may not be obvious at first. And beware of thinking, as was widely
believed before the time of Galileo (Fig. 2–18), that heavier objects fall faster
than lighter objects and that the speed of fall is proportional to how heavy the
object is. The speed of a falling object is not proportional to its mass.

Galileo made use of his new technique of imagining what would happen in
idealized (simplified) cases. For free fall, he postulated that all objects would
fall with the same constant acceleration in the absence of air or other resistance.
He showed that this postulate predicts that for an object falling from rest, the
distance traveled will be proportional to the square of the time (Fig. 2–19); that
is, We can see this from Eq. 2–11b for constant acceleration; but Galileo
was the first to derive this mathematical relation.

To support his claim that falling objects increase in speed as they fall,
Galileo made use of a clever argument: a heavy stone dropped from a height of
2 m will drive a stake into the ground much further than will the same stone
dropped from a height of only 0.2 m. Clearly, the stone must be moving faster
in the former case.

Galileo claimed that all objects, light or heavy, fall with the same accel-
eration, at least in the absence of air. If you hold a piece of paper flat and
horizontal in one hand, and a heavier object like a baseball in the other, and
release them at the same time as in Fig. 2–20a, the heavier object will reach the
ground first. But if you repeat the experiment, this time crumpling the paper 
into a small wad, you will find (see Fig. 2–20b) that the two objects reach the floor
at nearly the same time.

Galileo was sure that air acts as a resistance to very light objects that have
a large surface area. But in many ordinary circumstances this air resistance is
negligible. In a chamber from which the air has been removed, even light
objects like a feather or a horizontally held piece of paper will fall with the
same acceleration as any other object (see Fig. 2–21). Such a demonstration in
vacuum was not possible in Galileo’s time, which makes Galileo’s achievement
all the greater. Galileo is often called the “father of modern science,” not only
for the content of his science (astronomical discoveries, inertia, free fall) but
also for his new methods of doing science (idealization and simplification, mathe-
matization of theory, theories that have testable consequences, experiments to test
theoretical predictions).

d r t2.

FIGURE 2;18 Painting of Galileo demonstrating to the Grand Duke of Tuscany
his argument for the action of gravity being uniform acceleration. He used an inclined
plane to slow down the action. A ball rolling down the plane still accelerates.
Tiny bells placed at equal distances along the inclined plane would ring at shorter
time intervals as the ball “fell,” indicating that the speed was increasing.

FIGURE 2;19 Multiflash photograph
of a falling apple, at equal time 
intervals. The apple falls farther 
during each successive interval,
which means it is accelerating.

(a) (b)

FIGURE 2;20 (a) A ball and a light 
piece of paper are dropped at the 
same time. (b) Repeated, with the 
paper wadded up.

Air-filled tube

(a)

Evacuated tube

(b)

FIGURE 2;21 A rock and a feather
are dropped simultaneously 
(a) in air, (b) in a vacuum.
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Galileo’s specific contribution to our understanding of the motion of falling
objects can be summarized as follows:

at a given location on the Earth and in the absence of air resistance, all
objects fall with the same constant acceleration.

We call this acceleration the acceleration due to gravity at the surface of the
Earth, and we give it the symbol g. Its magnitude is approximately

In British units g is about Actually, g varies slightly according to lati-
tude and elevation on the Earth’s surface, but these variations are so small that
we will ignore them for most purposes. (Acceleration of gravity in space beyond
the Earth’s surface is treated in Chapter 5.) The effects of air resistance are
often small, and we will neglect them for the most part. However, air resistance
will be noticeable even on a reasonably heavy object if the velocity becomes
large.† Acceleration due to gravity is a vector, as is any acceleration, and its
direction is downward toward the center of the Earth.

When dealing with freely falling objects we can make use of Eqs. 2–11,
where for a we use the value of g given above. Also, since the motion is vertical
we will substitute y in place of x, and in place of We take unless
otherwise specified. It is arbitrary whether we choose y to be positive in the
upward direction or in the downward direction; but we must be consistent about
it throughout a problem’s solution.

EXERCISE E Return to the Chapter-Opening Question, page 21, and answer it again
now, assuming minimal air resistance. Try to explain why you may have answered
differently the first time.

Falling from a tower. Suppose that a ball is dropped
from a tower. How far will it have fallen after a time  

and  Ignore air resistance.

APPROACH Let us take y as positive downward, so the acceleration is
We set  and  We want to find the posi-

tion y of the ball after three different time intervals. Equation 2–11b, with 
x replaced by y, relates the given quantities ( a, and ) to the unknown y.

SOLUTION We set  in Eq. 2–11b:

The ball has fallen a distance of 4.90 m during the time interval  to
Similarly, after 2.00 s the ball’s position is

Finally, after 3.00 s the ball’s position is (see Fig. 2–22)

NOTE Whenever we say “dropped,” it means  Note also the graph of
y vs. (Fig. 2–22b): the curve is not straight but bends upward because y is
proportional to t2.

t
v0 = 0.

y3 =

1
2 at3

2
=

1
2 A9.80 m�s2B(3.00 s)2

= 44.1 m.

A   = t3B,
y2 =

1
2 at2

2
=

1
2 A9.80 m�s2B(2.00 s)2

= 19.6 m.

A   = t2B,t1 = 1.00 s.
t = 0

 = 0 +
1
2 at2

1 =

1
2 A9.80 m�s2B(1.00 s)2

= 4.90 m.

 y1 = v0 t1 +
1
2 at2

1

t = t1 = 1.00 s

v0t,

y0 = 0.v0 = 0a = g = ±9.80 m�s2.

t3 = 3.00 s?t2 = 2.00 s,
t1 = 1.00 s,(v0 = 0)

EXAMPLE 2;10

y0 = 0x0 .y0

32 ft�s2.

cacceleration due to gravity
at surface of Earth

dg = 9.80 m�s2.

P R O B L E M  S O L V I N G

You can choose y to be positive 
either up or down

†The speed of an object falling in air (or other fluid) does not increase indefinitely. If the object falls
far enough, it will reach a maximum velocity called the terminal velocity due to air resistance.

34 CHAPTER 2 Describing Motion: Kinematics in One Dimension

(a)

(b)

40
30
20
10

y 
(m

)

20 1 3
t (s)

y = 0

y3 = 44.1 m
(After 3.00 s)

y2 = 19.6 m
(After 2.00 s)

y1 = 4.90 m
(After 1.00 s)

+y

Acceleration
due to
gravity

+y

FIGURE 2;22 Example 2–10. (a) An
object dropped from a tower falls
with progressively greater speed 
and covers greater distance with
each successive second. (See also
Fig. 2–19.) (b) Graph of y vs. t.
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SECTION 2–7 Freely Falling Objects 35

Thrown down from a tower. Suppose the ball in 
Example 2–10 is thrown downward with an initial velocity of instead of
being dropped. (a) What then would be its position after 1.00 s and 2.00 s?
(b) What would its speed be after 1.00 s and 2.00 s? Compare with the speeds 
of a dropped ball.

APPROACH Again we use Eq. 2–11b, but now is not zero, it is

SOLUTION (a) At the position of the ball as given by Eq. 2–11b is

At (time interval to ), the position is

As expected, the ball falls farther each second than if it were dropped with

(b) The velocity is obtained from Eq. 2–11a:

[at ]

[at ]

In Example 2–10, when the ball was dropped  the first term in
these equations was zero, so

[at ]
[at ]

NOTE For both Examples 2–10 and 2–11, the speed increases linearly in time by
during each second. But the speed of the downwardly thrown ball at

any instant is always (its initial speed) higher than that of a dropped ball.

Ball thrown upward. A person throws a ball upward
into the air with an initial velocity of Calculate how high it goes. Ignore
air resistance.

APPROACH We are not concerned here with the throwing action, but only
with the motion of the ball after it leaves the thrower’s hand (Fig. 2–23) and
until it comes back to the hand again. Let us choose y to be positive in the
upward direction and negative in the downward direction. (This is a different
convention from that used in Examples 2–10 and 2–11, and so illustrates our
options.) The acceleration due to gravity is downward and so will have a nega-
tive sign, As the ball rises, its speed decreases until it
reaches the highest point (B in Fig. 2–23), where its speed is zero for an
instant; then it descends, with increasing speed.

SOLUTION We consider the time interval from when the ball leaves the
thrower’s hand until the ball reaches the highest point. To determine the
maximum height, we calculate the position of the ball when its velocity equals
zero ( at the highest point). At  (point A in Fig. 2–23) we have

and At time (maximum height),
and we wish to find y. We use Eq. 2–11c, replacing x

with y: We solve this equation for y:

The ball reaches a height of 11.5 m above the hand.

y =

v2
- v0

2

2a
=

0 - (15.0 m�s)2

2A–9.80 m�s2B = 11.5 m.

v2
= v0

2
+ 2ay.

a = –9.80 m�s2,v = 0,
ta = –9.80 m�s2.v0 = 15.0 m�s,y0 = 0,

t = 0v = 0

a = –g = –9.80 m�s2.

15.0 m�s.
EXAMPLE 2;12

3.00 m�s
9.80 m�s

t2 = 2.00 s = A9.80 m�s2B(2.00 s) = 19.6 m�s.
t1 = 1.00 s = A9.80 m�s2B(1.00 s) = 9.80 m�s

 v = 0 + at

Av0BAv0 = 0B,
t2 = 2.00 s = 3.00 m�s + A9.80 m�s2B(2.00 s) = 22.6 m�s.

t1 = 1.00 s = 3.00 m�s + A9.80 m�s2B(1.00 s) = 12.8 m�s

 v = v0 + at

v0 = 0.

y = v0 t +
1
2 at2

= (3.00 m�s)(2.00 s) +
1
2 A9.80 m�s2B(2.00 s)2

= 25.6 m.

t = 2.00 st = 0t2 = 2.00 s

y = v0 t +
1
2 at2

= (3.00 m�s)(1.00 s) +
1
2 A9.80 m�s2B(1.00 s)2

= 7.90 m.

t1 = 1.00 s,

v0 = 3.00 m�s.
v0

3.00 m�s,
EXAMPLE 2;11

A C

(v = 0)B

v v

g g

FIGURE 2;23 An object thrown 
into the air leaves the thrower’s 
hand at A, reaches its maximum 
height at B, and returns to the 
original position at C.
Examples 2–12, 2–13, 2–14, and 2–15.
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Ball thrown upward, II. In Fig. 2–23, Example 2–12, how
long is the ball in the air before it comes back to the hand?

APPROACH We need to choose a time interval to calculate how long the 
ball is in the air before it returns to the hand. We could do this calculation 
in two parts by first determining the time required for the ball to reach its
highest point, and then determining the time it takes to fall back down.
However, it is simpler to consider the time interval for the entire motion from
A to B to C (Fig. 2–23) in one step and use Eq. 2–11b. We can do this because
y is position or displacement, and not the total distance traveled. Thus, at both
points A and C,

SOLUTION We use Eq. 2–11b with  and find

This equation can be factored (we factor out one ):

There are two solutions:

The first solution corresponds to the initial point (A) in Fig. 2–23,
when the ball was first thrown from  The second solution,
corresponds to point C, when the ball has returned to  Thus the ball is
in the air 3.06 s.

NOTE We have ignored air resistance in these last two Examples, which could
be significant, so our result is only an approximation to a real, practical situation.

y = 0.
t = 3.06 s,y = 0.

(t = 0)

t = 0 and t =

15.0 m�s

4.90 m�s2
= 3.06 s.

A15.0 m�s - 4.90 m�s2 tB     t = 0.

t

 0 = 0 + (15.0 m�s)  t +
1
2 A–9.80 m�s2B     t2.

 y = y0 + v0 t +
1
2 at2

a = –9.80 m�s2

y = 0.

EXAMPLE 2;13

36 CHAPTER 2 Describing Motion: Kinematics in One Dimension

C A U T I O N

Quadratic equations have two
solutions. Sometimes only one

corresponds to reality,
sometimes both

C A U T I O N

(1) Velocity and acceleration are 
not always in the same direction;

the acceleration (of gravity) always
points down

(2) even at the highest point 
of a trajectory

a Z 0

Two possible misconceptions. Give
examples to show the error in these two common misconceptions: (1) that
acceleration and velocity are always in the same direction, and (2) that 
an object thrown upward has zero acceleration at the highest point (B in 
Fig. 2–23).

RESPONSE Both are wrong. (1) Velocity and acceleration are not necessarily
in the same direction. When the ball in Fig. 2–23 is moving upward, its
velocity is positive (upward), whereas the acceleration is negative (down-
ward). (2) At the highest point (B in Fig. 2–23), the ball has zero velocity for
an instant. Is the acceleration also zero at this point? No. The velocity near
the top of the arc points upward, then becomes zero for an instant (zero time) at
the highest point, and then points downward. Gravity does not stop acting, so

even there. Thinking that at point B would lead
to the conclusion that upon reaching point B, the ball would stay there: if the
acceleration ( of change of velocity) were zero, the velocity would stay
zero at the highest point, and the ball would stay up there without falling.
Remember: the acceleration of gravity always points down toward the Earth, even
when the object is moving up.

  = rate

a = 0a = –g = –9.80 m�s2

CONCEPTUAL EXAMPLE 2;14

We did not consider the throwing action in these Examples. Why? Because during
the throw, the thrower’s hand is touching the ball and accelerating the ball at a
rate unknown to us—the acceleration is not g. We consider only the time when
the ball is in the air and the acceleration is equal to g.

Every quadratic equation (where the variable is squared) mathematically
produces two solutions. In physics, sometimes only one solution corresponds to
the real situation, as in Example 2–8, in which case we ignore the “unphysical”
solution. But in Example 2–13, both solutions to our equation in are physi-
cally meaningful: and t = 3.06 s.t = 0

t2

A C

(v = 0)B

v v

g g

FIGURE 2;23 (Repeated.) 
An object thrown into the air leaves
the thrower’s hand at A, reaches its
maximum height at B, and returns 
to the original position at C.
Examples 2–12, 2–13, 2–14, and 2–15.
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SECTION 2–7 Freely Falling Objects 37

Ball thrown upward, III. Let us consider again the ball
thrown upward of Examples 2–12 and 2–13, and make more calculations. Calculate
(a) how much time it takes for the ball to reach the maximum height (point B in
Fig. 2–23), and (b) the velocity of the ball when it returns to the thrower’s hand
(point C).

APPROACH Again we assume the acceleration is constant, so we can use 
Eqs. 2–11. We have the maximum height of 11.5 m and initial speed of 
from Example 2–12. Again we take y as positive upward.

SOLUTION (a) We consider the time interval between the throw
and the top of the path  and we want

to find The acceleration is constant at Both 
Eqs. 2–11a and 2–11b contain the time with other quantities known. Let us
use Eq. 2–11a with  and  

setting gives , which we rearrange to solve for :
or

This is just half the time it takes the ball to go up and fall back to its original
position [3.06 s, calculated in Example 2–13]. Thus it takes the same time to
reach the maximum height as to fall back to the starting point.
(b) Now we consider the time interval from the throw  
until the ball’s return to the hand, which occurs at  (as calculated in
Example 2–13), and we want to find when  

NOTE The ball has the same speed (magnitude of velocity) when it returns to
the starting point as it did initially, but in the opposite direction (this is the
meaning of the negative sign). And, as we saw in part (a), the time is the same
up as down. Thus the motion is symmetrical about the maximum height.

 = 15.0 m�s - A9.80 m�s2B(3.06 s) = –15.0 m�s.

 v = v0 + at

t = 3.06 s:v
t = 3.06 s
At = 0, v0 = 15.0 m�sB

 = –  
15.0 m�s

–9.80 m�s2
= 1.53 s.

 t = –  
v0

a

at = –v0t0 = v0 + atv = 0

v = v0 + at;

v = 0:a = –9.80 m�s2, v0 = 15.0 m�s,
t

a = –g = –9.80 m�s2.t.
(y = ±11.5 m,  v = 0),v0 = 15.0 m�sB At = 0,

15.0 m�s

EXAMPLE 2;15

The acceleration of objects such as rockets and fast airplanes is often given as
a multiple of  For example, a plane pulling out of a dive 
(see Fig. 2–24) and undergoing 3.00 g’s would have an acceleration of

.(3.00)A9.80 m�s2B = 29.4 m�s2

g = 9.80 m�s2.
P R O B L E M  S O L V I N G

Acceleration in g’s

FIGURE 2;24 Several planes, in
formation, are just coming out of a
downward dive.
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38 CHAPTER 2 Describing Motion: Kinematics in One Dimension

Ball thrown upward at edge of cliff. Suppose that the 
person of Examples 2–12, 2–13, and 2–15 throws the ball upward at 

while standing on the edge of a cliff, so that the ball can fall to the 
base of the cliff 50.0 m below, as shown in Fig. 2–25a. (a) How long does it 
take the ball to reach the base of the cliff? (b) What is the total distance trav-
eled by the ball? Ignore air resistance (likely to be significant, so our result is an
approximation).

APPROACH We again use Eq. 2–11b, with y as upward, but this time we set
the bottom of the cliff, which is 50.0 m below the initial position

hence the minus sign.

SOLUTION (a) We use Eq. 2–11b with
and  

To solve any quadratic equation of the form 

where a, b, and c are constants (a is not acceleration here), we use the quadratic
formula (see Appendix A–4):

We rewrite our y equation just above in standard form,

Using the quadratic formula, we find as solutions  

and

The first solution, is the answer we are seeking: the time it takes
the ball to rise to its highest point and then fall to the base of the cliff. To rise
and fall back to the top of the cliff took 3.06 s (Example 2–13); so it took 
an additional 2.01 s to fall to the base. But what is the meaning of the other
solution, This is a time before the throw, when our calculation
begins, so it isn’t relevant here. It is outside our chosen time interval, and so is
an unphysical solution (also in Example 2–8).
(b) From Example 2–12, the ball moves up 11.5 m, falls 11.5 m back down to
the top of the cliff, and then down another 50.0 m to the base of the cliff, for a
total distance traveled of 73.0 m. [Note that the displacement, however, was

] Figure 2–25b shows the y vs. graph for this situation.t–50.0 m.

t = –2.01 s?

t = 5.07 s,

t = –2.01 s.

t = 5.07 s

A4.90 m�s2B     t2
- (15.0 m�s)  t - (50.0 m) = 0.

at2
+ bt + c = 0 :

t =

–b63b2
- 4ac

2a
.

at2
+ bt + c = 0,

 –50.0 m = 0 + (15.0 m�s)  t -
1
2 A9.80 m�s2B     t2.

 y = y0 + v0 t +
1
2 at2

y = –50.0 m:y0 = 0,
v0 = 15.0 m�s,a = –9.80 m�s2,

Ay0 = 0B;y = –50.0 m,
+

15.0 m�s

EXAMPLE 2;16
y

y = 0

y = �50 m

(a)

(b)

10 2 4 53 6

−40

−50

−30

−20

−10

0

10

t (s)

y 
(m

)

Base
of cliff

Hand

t =
5.07 s

FIGURE 2;25 Example 2–16.
(a) A person stands on the edge 
of a cliff. A ball is thrown upward,
then falls back down past the
thrower to the base of the cliff,
50.0 m below. (b) The y vs. graph.t

Additional Example—Using the Quadratic Formula

EXERCISE F Two balls are thrown from a cliff. One is thrown directly up, the other
directly down. Both balls have the same initial speed, and both hit the ground below the
cliff but at different times. Which ball hits the ground at the greater speed: (a) the ball
thrown upward, (b) the ball thrown downward, or (c) both the same? Ignore air resistance.

C A U T I O N

Sometimes a solution to a
quadratic equation does not
apply to the actual physical
conditions of the Problem
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SECTION 2–8 Graphical Analysis of Linear Motion 39

2–8 Graphical Analysis of Linear Motion
Velocity as Slope
Analysis of motion using graphs can give us additional insight into kinematics.
Let us draw a graph of x vs. making the choice that at  the position of an
object is  and the object is moving at a constant velocity,

Our graph starts at  (the origin). The graph of the
position increases linearly in time because, by Eq. 2–2, and is a
constant. So the graph of x vs. is a straight line, as shown in Fig. 2–26. The
small (shaded) triangle on the graph indicates the slope of the straight line:

We see, using the definition of average velocity (Eq. 2–2), that the slope of the
x vs. graph is equal to the velocity. And, as can be seen from the small triangle
on the graph, which is the given velocity.

If the object’s velocity changes in time, we might have an x vs. graph like 
that shown in Fig. 2–27. (Note that this graph is different from showing the
“path” of an object on an x vs. y plot.) Suppose the object is at position 
at time and at position at time and represent these two points on 
the graph. A straight line drawn from point to point 
forms the hypotenuse of a right triangle whose sides are and The 
ratio is the slope of the straight line But is also the 
average velocity of the object during the time interval Therefore,
we conclude that the average velocity of an object during any time interval

is equal to the slope of the straight line (or chord) connecting the two
points and on an x vs. graph.

Consider now a time intermediate between and call it at which moment
the object is at (Fig. 2–28). The slope of the straight line is less than the slope
of . Thus the average velocity during the time interval is less than
during the time interval t2 - t1 .

t3 - t1P1 P2

P1 P3x3

t3 ,t2 ,t1

tt2BAx2 ,t1BAx1 ,
¢t = t2 - t1

¢t = t2 - t1 .
¢x�¢tP1 P2 .¢x�¢t

¢t.¢x
t2BP2 Ax2 ,t1BP1 Ax1 ,

P2P1t2 .x2t1 ,
x1

t
¢x�¢t = (11 m)�(1.0 s) = 11 m�s,

t

slope =

¢x
¢t

.

t
v¢x = v ¢t

t = 0x = 0,(40 km�h).
v = v = 11 m�sx = 0,

t = 0,t,

†The tangent is a straight line that touches the curve only at the one chosen point, without passing
across or through the curve at that point.

Δ t =
1.0 s

Δ x = 
11 m

50

40

30

20

10

0
1.0 2.0 3.0 4.0 5.00

Po
si

tio
n,

 x
 (

m
)

Time, t (s)

FIGURE 2;26 Graph of position vs.
time for an object moving at a
constant velocity of 11 m�s.

P1

P2

Δx = x2 − x1

Δt = t2 − t1

t2t1

x1

x2

0

x

t

FIGURE 2;27 Graph of an object’s 
position x vs. time . The slope of 
the straight line represents the
average velocity of the object during
the time interval ¢t = t2 - t1 .

P1 P2

t

P1

P2

t3

tangent at P1

0 t2t1

x1

x2

x

t

P3
x3

x2 FIGURE 2;28 Same position vs. time curve 
as in Fig. 2–27. Note that the average 
velocity over the time interval 
(which is the slope of ) is less than the 
average velocity over the time interval 

The slope of the line tangent 
to the curve at point equals the 
instantaneous velocity at time t1 .

P1

t2 - t1 .

P1 P3

t3 - t1

Next let us take point in Fig. 2–28 to be closer and closer to point 
That is, we let the interval which we now call to become smaller and
smaller. The slope of the line connecting the two points becomes closer and
closer to the slope of a line tangent† to the curve at point The average
velocity (equal to the slope of the chord) thus approaches the slope of 
the tangent at point The definition of the instantaneous velocity (Eq. 2–3) is
the limiting value of the average velocity as approaches zero. Thus the
instantaneous velocity equals the slope of the tangent to the curve of x vs. at any
chosen point (which we can simply call “the slope of the curve” at that point).

t
¢t

P1 .

P1 .

¢t,t3 - t1 ,
P1 .P3

P R O B L E M  S O L V I N G

Velocity equals slope of 
x vs. graph at any instantt
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40 CHAPTER 2 Describing Motion: Kinematics in One Dimension

[The Summary that appears at the end of each Chapter in this book
gives a brief overview of the main ideas of the Chapter. The Summary
cannot serve to give an understanding of the material, which can be
accomplished only by a detailed reading of the Chapter.]

Kinematics deals with the description of how objects
move. The description of the motion of any object must
always be given relative to some particular reference frame.

The displacement of an object is the change in position of
the object.

Summary
Average speed is the distance traveled divided by the elapsed

time or time interval, (the time period over which we choose
to make our observations). An object’s average velocity over
a particular time interval is

(2;2)

where is the displacement during the time interval 
The instantaneous velocity, whose magnitude is the same

as the instantaneous speed, is defined as the average velocity
taken over an infinitesimally short time interval.

¢t.¢x

v =

¢x
¢t

,

¢t

We can obtain the velocity of an object at any instant from its graph of x vs. .
For example, in Fig. 2–29 (which shows the same graph as in Figs. 2–27 and 2–28), as
our object moves from to the slope continually increases, so the velocity is
increasing. For times after the slope begins to decrease and reaches zero ( )
where x has its maximum value, at point in Fig. 2–29. Beyond point the
slope is negative, as for point The velocity is therefore negative, which
makes sense since x is now decreasing—the particle is moving toward decreasing
values of x, to the left on a standard xy plot.

P5 .
P4 ,P4

v = 0t2 ,
x2 ,x1

t

P4

P5

0

P1

P2

t2t1

x1

x2

x

t
t4

FIGURE 2;29 Same x vs. curve as in 
Figs. 2–27 and 2–28, but here showing the slope 
at four different points: At the slope is zero,
so At the slope is negative, so v 6 0.P5v = 0.

P4 ,

t

Analyzing with graphs. Figure 2–31 
shows the velocity as a function of time for two cars accelerating from 0 to

in a time of 10.0 s. Compare (a) the average acceleration; (b) the 
instantaneous acceleration; and (c) the total distance traveled for the two cars.

RESPONSE (a) Average acceleration is Both cars have the same 
over the same time interval 10.0 s, so the average acceleration

is the same for both cars. (b) Instantaneous acceleration is the slope of the tangent
to the vs. curve. For the first 4 s or so, the top curve (car A) is steeper than the
bottom curve, so car A has a greater acceleration during this interval. The
bottom curve is steeper during the last 6 s, so car B has the larger acceleration
for this period. (c) Except at and car A is always going 
faster than car B. Since it is going faster, it will go farther in the same time.

t = 10.0 s,t = 0

tv

¢t =(100 km�h)¢v
¢v�¢t.

100 km�h

CONCEPTUAL EXAMPLE 2;17

P1

P2

Slope of P1P2 is average
acceleration during Δt = t2 − t1

Slope of tangent
is instantaneous
acceleration at t1

Δ   =

t20 t1

v2 v1

v1

v2

v

v

t

−

Δt = t2 − t1

108642
0

100

t (s)

v 
(k

m
/h

)

Car A

Car B

FIGURE 2;31 (below) Example 2–17.

Slope and Acceleration
We can also draw a graph of the velocity, vs. time, , as shown in Fig. 2–30. Then the
average acceleration over a time interval is represented by the slope
of the straight line connecting the two points and as shown. [Compare this to
the position vs. time graph of Fig. 2–27 for which the slope of the straight line
represents the average velocity.] The instantaneous acceleration at any time, say 
is the slope of the tangent to the vs. curve at that time, which is also shown in
Fig. 2–30. Using this fact for the situation graphed in Fig. 2–30, as we go from
time to time the velocity continually increases, but the acceleration (the rate at
which the velocity changes) is decreasing since the slope of the curve is decreasing.

t2t1

tv
t1 ,

P2P1

¢t = t2 - t1

tv,

FIGURE 2;30 A graph of velocity 
vs. time . The average acceleration
over a time interval is
the slope of the straight line 

The instantaneous
acceleration at time is the slope of
the vs. curve at that instant.tv

t1

a = ¢v�¢t.
P1 P2 :

¢t = t2 - t1

t
v
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Questions 41

Acceleration is the change of velocity per unit time. An
object’s average acceleration over a time interval is

(2;4)

where is the change of velocity during the time interval 
Instantaneous acceleration is the average acceleration taken
over an infinitesimally short time interval.

If an object has position and velocity at time and
moves in a straight line with constant acceleration, the velocity 
and position x at a later time are related to the acceleration a,
the initial position and the initial velocity by Eqs. 2–11:

(2;11)

 v =

v + v0

2
.

 v2
= v0

2
+ 2a Ax - x0B,

 x = x0 + v0 t +
1
2 at2,

 v = v0 + at,

v0x0 ,
t

v
t = 0v0x0

¢t.¢v

a =

¢v

¢t
,

¢t

1. Does a car speedometer measure speed, velocity, or both?
Explain.

2. When an object moves with constant velocity, does its
average velocity during any time interval differ from its
instantaneous velocity at any instant? Explain.

3. If one object has a greater speed than a second object,
does the first necessarily have a greater acceleration?
Explain, using examples.

4. Compare the acceleration of a motorcycle that accelerates
from to with the acceleration of a bicycle
that accelerates from rest to in the same time.

5. Can an object have a northward velocity and a southward
acceleration? Explain.

6. Can the velocity of an object be negative when its accel-
eration is positive? What about vice versa? If yes, give
examples in each case.

7. Give an example where both the velocity and acceleration
are negative.

8. Can an object be increasing in speed as its acceleration
decreases? If so, give an example. If not, explain.

9. Two cars emerge side by side from a tunnel. Car A is trav-
eling with a speed of and has an acceleration of

Car B has a speed of and has an
acceleration of Which car is passing the other
as they come out of the tunnel? Explain your reasoning.

10. A baseball player hits a ball straight up into the air. It
leaves the bat with a speed of In the absence of
air resistance, how fast would the ball be traveling when it is
caught at the same height above the ground as it left the
bat? Explain.

11. As a freely falling object speeds up, what is happening to
its acceleration—does it increase, decrease, or stay the
same? (a) Ignore air resistance. (b) Consider air resistance.

12. You travel from point A to point B in a car moving at a
constant speed of Then you travel the same
distance from point B to another point C, moving at a
constant speed of Is your average speed for the
entire trip from A to C equal to Explain why or
why not.

80 km�h?
90 km�h.

70 km�h.

120 km�h.

60 km�h�min.
40 km�h40 km�h�min.

60 km�h

10 km�h
90 km�h80 km�h

13. Can an object have zero velocity and nonzero accelera-
tion at the same time? Give examples.

14. Can an object have zero acceleration and nonzero
velocity at the same time? Give examples.

15. Which of these motions is not at constant acceleration:
a rock falling from a cliff, an elevator moving from the
second floor to the fifth floor making stops along the way,
a dish resting on a table? Explain your answers.

16. Describe in words the motion plotted in Fig. 2–32 in
terms of velocity, acceleration, etc. [Hint: First try to dupli-
cate the motion plotted by walking or moving your hand.]

Questions

Objects that move vertically near the surface of the Earth,
either falling or having been projected vertically up or down,
move with the constant downward acceleration due to gravity,
whose magnitude is if air resistance can be
ignored. We can apply Eqs. 2–11 for constant acceleration to
objects that move up or down freely near the Earth’s surface.

The slope of a curve at any point on a graph is the slope
of the tangent to the curve at that point. On a graph of posi-
tion vs. time, the slope is equal to the instantaneous velocity.
On a graph of velocity vs. time, the slope is the acceleration.

g = 9.80 m�s2

20

10

0
0 10 20 30 40 50

t (s)

x 
(m

)

FIGURE 2;32 Question 16.

   
(m

/s
)

v

t (s)

40

30

20

10

0
0 10 20 30 40 50 60 70 80 90 100 110 120

FIGURE 2;33 Question 17.

17. Describe in words the motion of the object graphed in
Fig. 2–33.
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42 CHAPTER 2 Describing Motion: Kinematics in One Dimension

1. Which of the following should be part of solving any prob-
lem in physics? Select all that apply:
(a) Read the problem carefully.
(b) Draw a picture of the situation.
(c) Write down the variables that are given.
(d) Think about which physics principles to apply.
(e) Determine which equations can be used to apply the

correct physics principles.
(f) Check the units when you have completed your

calculation.
(g) Consider whether your answer is reasonable.

2. In which of the following cases does a car have a negative
velocity and a positive acceleration? A car that is traveling
in the
(a) direction at a constant 
(b) direction increasing in speed.
(c) direction increasing in speed.
(d) direction decreasing in speed.
(e) direction decreasing in speed.

3. At time an object is traveling to the right along the
axis at a speed of with acceleration 

Which statement is true?
(a) The object will slow down, eventually coming to a

complete stop.
(b) The object cannot have a negative acceleration and

be moving to the right.
(c) The object will continue to move to the right, slowing

down but never coming to a complete stop.
(d) The object will slow down, momentarily stopping,

then pick up speed moving to the left.

4. A ball is thrown straight up. What are the velocity and
acceleration of the ball at the highest point in its path?
(a)
(b)
(c)
(d)
(e)

5. You drop a rock off a bridge. When the rock has fallen 4 m,
you drop a second rock. As the two rocks continue to fall,
what happens to their velocities?
(a) Both increase at the same rate.
(b) The velocity of the first rock increases faster than the

velocity of the second.
(c) The velocity of the second rock increases faster than

the velocity of the first.
(d) Both velocities stay constant.

6. You drive 4 km at and then another 4 km at
What is your average speed for the whole 8-km

trip?
(a) More than 
(b) Equal to 
(c) Less than 
(d) Not enough information.

40 km�h.
40 km�h.

40 km�h.

50 km�h.
30 km�h

v = 9.8 m�s down,  a = 0.
v = 9.8 m�s up,  a = 0.

a = 9.8 m�s2 down.v = 0,
a = 9.8 m�s2 up.v = 0,
a = 0.v = 0,

–2.0 m�s2.10.0 m�s±x
t = 0

±x
–x
±x
–x

20 m�s.–x

7. A ball is dropped from the top of a tall building. At the
same instant, a second ball is thrown upward from
ground level. When the two balls pass one another, one on
the way up, the other on the way down, compare the magni-
tudes of their acceleration:
(a) The acceleration of the dropped ball is greater.
(b) The acceleration of the ball thrown upward is greater.
(c) The acceleration of both balls is the same.
(d) The acceleration changes during the motion, so you

cannot predict the exact value when the two balls
pass each other.

(e) The accelerations are in opposite directions.

8. A ball is thrown downward at a speed of Choosing
the y axis pointing up and neglecting air resistance, which
equation(s) could be used to solve for other variables? The
acceleration due to gravity is downward.
(a)
(b)
(c)
(d)
(e) All of the above.

9. A car travels along the x axis with increasing speed. We
don’t know if to the left or the right. Which of the graphs
in Fig. 2–34 most closely represents the motion of the
car?

(20 m�s) = (v + v0)�2.
v2

= (20 m�s)2
- 2g(y - y0).

y = y0 + (–20 m�s) t - (1�2)gt2.
v = (20 m�s) - gt.

g = 9.8 m�s2

±
20 m�s.

MisConceptual Questions
[List all answers that are valid.]

x

t
(a)

x

t
(b)

x

t
(c)

x

t
(d)

x

t
(e)

FIGURE 2;34

MisConceptual 
Question 9.
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Problems 43

[The Problems at the end of each Chapter are ranked I, II, or III
according to estimated difficulty, with level I Problems being easiest.
Level III are meant as challenges for the best students. The Prob-
lems are arranged by Section, meaning that the reader should 
have read up to and including that Section, but not only that
Section—Problems often depend on earlier material. Next is 
a set of “General Problems” not arranged by Section and not
ranked. Finally, there are “Search and Learn” Problems that require
rereading parts of the Chapter and sometimes earlier Chapters.]

(Note: In Problems, assume a number like 6.4 is accurate to
and 950 is unless 950 is said to be “precisely” or “very

nearly” 950, in which case assume . See Section 1–4.)

2;1 to 2;3 Speed and Velocity

1. (I) If you are driving along a straight road and
you look to the side for 2.0 s, how far do you travel during
this inattentive period?

2. (I) What must your car’s average speed be in order to
travel 235 km in 2.75 h?

3. (I) A particle at is at and at
is at What is its average velocity

over this time interval? Can you calculate its average speed
from these data?Why or why not?

4. (I) A rolling ball moves from to
during the time from  to What is its
average velocity over this time interval?

5. (I) A bird can fly How long does it take to fly
3.5 km?

6. (II) According to a rule-of-thumb, each five seconds
between a lightning flash and the following thunder gives
the distance to the flash in miles. (a) Assuming that the
flash of light arrives in essentially no time at all, estimate
the speed of sound in from this rule. (b) What would
be the rule for kilometers?

7. (II) You are driving home from school steadily at
for 180 km. It then begins to rain and you slow

to You arrive home after driving 4.5 h. (a) How
far is your hometown from school? (b) What was your
average speed?

8. (II) A horse trots away from its trainer in a straight 
line, moving 38 m away in 9.0 s. It then turns abruptly 
and gallops halfway back in 1.8 s. Calculate (a) its average
speed and (b) its average velocity for the entire trip, using
“away from the trainer” as the positive direction.

9. (II) A person jogs eight complete laps around a 400-m
track in a total time of 14.5 min. Calculate (a) the average
speed and (b) the average velocity, in 

10. (II) Every year the Earth travels about as it orbits the
Sun. What is Earth’s average speed in 

11. (II) A car traveling is 210 m behind a truck trav-
eling How long will it take the car to reach the
truck?

12. (II) Calculate the average speed and average velocity of a
complete round trip in which the outgoing 250 km is
covered at followed by a 1.0-h lunch break, and
the return 250 km is covered at 55 km�h.

95 km�h,

75 km�h.
95 km�h

km�h?
109 km

m�s.

65 km�h.
95 km�h

m�s

25 km�h.

t2 = 6.1 s.t1 = 3.0 s
x2 = –4.2 cmx1 = 8.4 cm

x2 = 8.5 cm.t2 = 4.5 s
x1 = 4.8 cmt1 = –2.0 s

95 km�h

95061
&10&0.1;

Problems

8.5 km

v  =
155 km/h

v  =  
155 km/h

FIGURE 2;35 Problem 13.

14. (II) Digital bits on a 12.0-cm diameter audio CD are encoded
along an outward spiraling path that starts at radius

and finishes at radius The 
distance between the centers of neighboring spiral-
windings is (a) Determine the
total length of the spiraling path. [Hint: Imagine “unwinding”
the spiral into a straight path of width and note
that the original spiral and the straight path both occupy
the same area.] (b) To read information, a CD player
adjusts the rotation of the CD so that the player’s readout
laser moves along the spiral path at a constant speed of
about Estimate the maximum playing time of such 
a CD.

15. (III) A bowling ball traveling with constant speed hits the
pins at the end of a bowling lane 16.5 m long. The bowler
hears the sound of the ball hitting the pins 2.80 s after the
ball is released from his hands. What is the speed of the
ball, assuming the speed of sound is 

16. (III) An automobile traveling overtakes a 1.30-km-
long train traveling in the same direction on a track parallel
to the road. If the train’s speed is how long does
it take the car to pass it, and how far will the car have
traveled in this time? See Fig. 2–36. What are the results
if the car and train are traveling in opposite directions?

75 km�h,

95 km�h
340 m�s?

1.2 m�s.

1.6 mm,

A   = 1.6 * 10–6 mB.1.6 mm

R2 = 5.8 cm.R1 = 2.5 cm

13. (II) Two locomotives approach each other on parallel
tracks. Each has a speed of with respect to the
ground. If they are initially 8.5 km apart, how long will it
be before they reach each other? (See Fig. 2–35.)

155 km�h

� 95 km/h

� 75 km/h

1.30 km

v

v

FIGURE 2;36 Problem 16.

2;4 Acceleration

17. (I) A sports car accelerates from rest to in 4.3 s.
What is its average acceleration in 

18. (I) A sprinter accelerates from rest to in 1.38 s.
What is her acceleration in (a) (b) 

19. (II) A sports car moving at constant velocity travels 120 m
in 5.0 s. If it then brakes and comes to a stop in 4.0 s, what
is the magnitude of its acceleration (assumed constant) in

and in g’s Ag = 9.80 m�s2B?m�s2,

km�h2?m�s2;
9.00 m�s

m�s2?
95 km�h

For assigned homework and other learning materials, go to the MasteringPhysics website.
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44 CHAPTER 2 Describing Motion: Kinematics in One Dimension

26. (II) A world-class sprinter can reach a top speed (of about
) in the first 18.0 m of a race. What is the average

acceleration of this sprinter and how long does it take her
to reach that speed?

27. (II) A car slows down uniformly from a speed of 
to rest in 8.00 s. How far did it travel in that time?

28. (II) In coming to a stop, a car leaves skid marks 65 m long
on the highway. Assuming a deceleration of 
estimate the speed of the car just before braking.

29. (II) A car traveling slows down at a constant
just by “letting up on the gas.” Calculate (a) the

distance the car coasts before it stops, (b) the time it
takes to stop, and (c) the distance it travels during the
first and fifth seconds.

30. (II) Determine the stopping distances for an automobile
going a constant initial speed of and human reac-
tion time of 0.40 s: (a) for an acceleration  
(b) for

31. (II) A driver is traveling when she sees a red
light ahead. Her car is capable of decelerating at a rate of

If it takes her 0.350 s to get the brakes on and
she is 20.0 m from the intersection when she sees the light,
will she be able to stop in time? How far from the beginning
of the intersection will she be, and in what direction?

3.65 m�s2.

18.0 m�s

a = –6.0 m�s2.
a = –3.0 m�s2;

95 km�h

0.50 m�s2
75 km�h

4.00 m�s2,

28.0 m�s

11.5 m�s

75 m

v  =  18 m/s

FIGURE 2;38 Problem 32.

Finish

5.0 m

22 m

Mary Sally
4.0 m/s 5.0 m/s

FIGURE 2;39 Problem 35.

20. (II) At highway speeds, a particular automobile is capable
of an acceleration of about At this rate, how long
does it take to accelerate from to 

21. (II) A car moving in a straight line starts at at
It passes the point with a speed of 
at It passes the point with a speed
of at Find (a) the average velocity,
and (b) the average acceleration, between and

2;5 and 2;6 Motion at Constant Acceleration

22. (I) A car slows down from to rest in a distance of
88 m. What was its acceleration, assumed constant?

23. (I) A car accelerates from to in 6.0 s. What
was its acceleration? How far did it travel in this time?
Assume constant acceleration.

24. (I) A light plane must reach a speed of for takeoff.
How long a runway is needed if the (constant) accelera-
tion is 

25. (II) A baseball pitcher throws a baseball with a speed of
Estimate the average acceleration of the ball

during the throwing
motion. In throwing
the baseball, the pitcher
accelerates it through
a displacement of about
3.5 m, from behind
the body to the point
where it is released
(Fig. 2–37).

43 m�s.

3.0 m�s2?

35 m�s

21 m�s14 m�s

28 m�s

t = 20.0 s.
t = 3.00 s

t = 20.0 s.45.0 m�s
x = 385 mt = 3.00 s.

11.0 m�sx = 25.0 m
t = 0.x = 0

120 km�h?65 km�h
1.8 m�s2.

3.5 m

FIGURE 2;37 Problem 25.

32. (II) A 75-m-long train begins uniform acceleration from
rest. The front of the train has a speed of when it
passes a railway worker who is standing 180 m from where
the front of the train started. What will be the speed of the
last car as it passes the worker? (See Fig. 2–38.)

18 m�s

36. (III) An unmarked police car traveling a constant 
is passed by a speeder traveling Precisely 1.00 s
after the speeder passes, the police officer steps on the
accelerator; if the police car’s acceleration is 
how much time passes before the police car overtakes the
speeder (assumed moving at constant speed)?

2;7 Freely Falling Objects (neglect air resistance)

37. (I) A stone is dropped from the top of a cliff. It is seen to
hit the ground below after 3.55 s. How high is the cliff?

38. (I) Estimate (a) how long it took King Kong to fall
straight down from the top of the Empire State Building
(380 m high), and (b) his velocity just before “landing.”

2.60 m�s2,

135 km�h.
95 km�h

33. (II) A space vehicle accelerates uniformly from 
at to at How far did it move
between and

34. (III) A fugitive tries to hop on a freight train traveling at a
constant speed of Just as an empty box car passes
him, the fugitive starts from rest and accelerates at

to his maximum speed of which he
then maintains. (a) How long does it take him to catch up
to the empty box car? (b) What is the distance traveled to
reach the box car?

35. (III) Mary and Sally are in a foot race (Fig. 2–39). When
Mary is 22 m from the finish line, she has a speed of 
and is 5.0 m behind Sally, who has a speed of Sally
thinks she has an easy win and so, during the remaining
portion of the race, decelerates at a constant rate of

to the finish line. What constant acceleration does
Mary now need during the remaining portion of the race, if
she wishes to cross the finish line side-by-side with Sally?

0.40 m�s2

5.0 m�s.
4.0 m�s

6.0 m�s,a = 1.4 m�s2

5.0 m�s.

t = 6.0 s?t = 2.0 s
t = 10.0 s.162 m�st = 0

85 m�s
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To travel
this
distance
took
0.31 s

2.2 m

FIGURE 2;41

Problem 49.

49. (III) A falling stone takes 0.31 s to travel past a window
2.2 m tall (Fig. 2–41). From what height above the top of
the window did the
stone fall?

39. (II) A ball player catches a ball 3.4 s after throwing it
vertically upward. With what speed did he throw it, and
what height did it reach?

40. (II) A baseball is hit almost straight up into the air with a
speed of Estimate (a) how high it goes, (b) how
long it is in the air. (c) What factors make this an estimate?

41. (II) The best rebounders in basketball have a vertical leap
(that is, the vertical movement of a fixed point on their
body) of about 120 cm. (a) What is their initial “launch”
speed off the ground? (b) How long are they in the air?

42. (II) An object starts from rest and falls under the influ-
ence of gravity. Draw graphs of (a) its speed and (b) the
distance it has fallen, as a function of time from  to

Ignore air resistance.

43. (II) A stone is thrown vertically upward with a speed of
(a) How fast is it moving when it is at a 

height of 13.0 m? (b) How much time is required to reach
this height? (c) Why are there two answers to (b)?

44. (II) For an object falling freely from rest, show that the
distance traveled during each successive second increases
in the ratio of successive odd integers (1, 3, 5, etc.). (This
was first shown by Galileo.) See Figs. 2–19 and 2–22.

45. (II) A rocket rises vertically, from rest, with an accelera-
tion of until it runs out of fuel at an altitude of
775 m. After this point, its acceleration is that of gravity,
downward. (a) What is the velocity of the rocket when it
runs out of fuel? (b) How long does it take to reach this
point? (c) What maximum altitude does the rocket reach?
(d) How much time (total) does it take to reach
maximum altitude? (e) With what velocity does it strike
the Earth? (f) How long (total) is it in the air?

46. (II) A helicopter is ascending vertically with a speed of
At a height of 105 m above the Earth, a package

is dropped from the helicopter. How much time does it take
for the package to reach the ground? [Hint: What is for
the package?]

47. (II) Roger sees water balloons fall past his window. He
notices that each balloon strikes the sidewalk 0.83 s after
passing his window. Roger’s room is on the third floor, 15 m
above the sidewalk. (a) How fast are the balloons trav-
eling when they pass Roger’s window? (b) Assuming the
balloons are being released from rest, from what floor are
they being released? Each floor of the dorm is 5.0 m high.

48. (II) Suppose you adjust your garden hose nozzle for a fast
stream of water. You point
the nozzle vertically upward at
a height of 1.8 m above the
ground (Fig. 2–40). When you
quickly turn off the nozzle, you
hear the water striking the
ground next to you for another
2.5 s. What is the water speed
as it leaves the nozzle?

v0

5.40 m�s.

3.2 m�s2

24.0 m�s.

t = 5.00 s.
t = 0

25 m�s.

Problems 45

52. (II) A sports car accelerates approximately as shown in the
velocity–time graph of Fig. 2–43. (The short flat spots in the
curve represent manual shifting of the gears.) Estimate the car’s
average acceleration in (a) second gear and (b) fourth gear.

50. (III) A rock is dropped from a sea cliff, and the sound of
it striking the ocean is heard 3.4 s later. If the speed of
sound is how high is the cliff?

2;8 Graphical Analysis

51. (II) Figure 2–42 shows the velocity of a train as a function of
time. (a) At what time was its velocity greatest? (b) During
what periods, if any, was the velocity constant? (c) During
what periods, if any, was the acceleration constant?
(d) When was the magnitude of the acceleration greatest?

340 m�s,

   
(m

/s
)

v

t (s)

40

30

20

10

0
0 10 20 30 40 50 60 70 80 90 100 110 120

FIGURE 2;42 Problem 51.

   
(m

/s
)

v

t (s)
0 10 20 30 40

10

20

30

40

50

0

1st gear

2nd gear

5th gear

3rd gear

4th gear

FIGURE 2;43 Problem 52. The velocity of a car
as a function of time, starting from a dead stop.
The flat spots in the curve represent gear shifts.

1.8 m

FIGURE 2;40

Problem 48.
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46 CHAPTER 2 Describing Motion: Kinematics in One Dimension

60. Consider the street pattern shown in Fig. 2–46. Each inter-
section has a traffic signal, and the speed limit is 
Suppose you are driving from the west at the speed limit.
When you are 10.0 m from the first intersection, all the lights
turn green. The lights are green for 13.0 s each. (a) Calculate
the time needed to reach the third stoplight. Can you make
it through all three lights without stopping? (b) Another car
was stopped at the first light when all the lights turned green.
It can accelerate at the rate of to the speed limit.
Can the second car make it through all three lights without
stopping? By how many seconds would it make it, or not
make it?

2.00 m�s2

40 km�h.

EastWest

Speed limit
40 km/h

50 m
15 m

Your
car

15 m
70 m

15 m

10 m

FIGURE 2;46 Problem 60.

59. A bicyclist in the Tour de France crests a mountain pass
as he moves at At the bottom, 4.0 km farther,
his speed is Estimate his average acceleration
(in ) while riding down the mountain.m�s2

65 km�h.
15 km�h.

56. The acceleration due to gravity on the Moon is about one-
sixth what it is on Earth. If an object is thrown vertically
upward on the Moon, how many times higher will it go
than it would on Earth, assuming the same initial velocity?

57. A person who is properly restrained by an over-the-shoulder
seat belt has a good chance of surviving a car collision if the
deceleration does not exceed 30 “g’s”
Assuming uniform deceleration at 30 g’s, calculate the dis-
tance over which the front end of the car must be designed
to collapse if a crash brings the car to rest from 

58. A person jumps out a fourth-story window 18.0 m above
a firefighter’s safety net. The survivor stretches the net
1.0 m before coming
to rest, Fig. 2–45.
(a) What was the
average deceleration
experienced by the
survivor when she was
slowed to rest by the
net? (b) What would
you do to make it
“safer” (that is, to
generate a smaller
deceleration): would
you stiffen or loosen
the net? Explain.

95 km�h.

A1.00 g = 9.80 m�s2B.

General Problems

18.0 m

1.0 m

FIGURE 2;45

Problem 58.

20

10

0
0 10 20 30 40 50

t (s)

x 
(m

)

FIGURE 2;44 Problems 53, 54, and 55.

53. (II) The position of a rabbit along a straight tunnel as a
function of time is plotted in Fig. 2–44. What is its instan-
taneous velocity (a) at and (b) at
What is its average velocity (c) between and

(d) between and and 
(e) between and t = 50.0 s?t = 40.0 s

t = 30.0 s,t = 25.0 st = 5.0 s,
t = 0
t = 30.0 s?t = 10.0 s

54. (II) In Fig. 2–44, (a) during what time periods, if any, is
the velocity constant? (b) At what time is the velocity
greatest? (c) At what time, if any, is the velocity zero?
(d) Does the object move in one direction or in both
directions during the time shown?

55. (III) Sketch the v vs. graph for the object whose displace-
ment as a function of time is given by Fig. 2–44.

t

61. An airplane travels 2100 km at a speed of and
then encounters a tailwind that boosts its speed to 
for the next 2800 km. What was the total time for the trip?
What was the average speed of the plane for this trip?
[Hint: Does Eq. 2–11d apply?]

62. A stone is dropped from the roof of a high building. A second
stone is dropped 1.30 s later. How far apart are the stones
when the second one has reached a speed of 

63. A person jumps off a diving board 4.0 m above the water’s
surface into a deep pool. The person’s downward motion
stops 2.0 m below the surface of the water. Estimate the
average deceleration of the person while under the water.

12.0 m�s?

990 km�h
720 km�h,
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99

7.0 m

7.0 mDownhill
lie

Uphill
lie

FIGURE 2;47 Problem 64.

65. A stone is thrown vertically upward with a speed of
from the edge of a cliff 75.0 m high (Fig. 2–48).

(a) How much later
does it reach the
bottom of the cliff?
(b) What is its speed
just before hitting?
(c) What total distance
did it travel?

15.5 m�s

y

y = 0

y = �75 mFIGURE 2;48

Problem 65.

68. A car is behind a truck going on the highway. The
car’s driver looks for an opportunity to pass, guessing that
his car can accelerate at and that he has to
cover the 20-m length of the truck, plus 10-m extra space at
the rear of the truck and 10 m more at the front of it. In the
oncoming lane, he sees a car approaching, probably at the
speed limit, (55 mph). He estimates that the car is
about 500 m away. Should he attempt the pass? Give details.

69. Agent Bond is standing on a bridge, 15 m above the road
below, and his pursuers are getting too close for comfort.
He spots a flatbed truck approaching at which he
measures by knowing that the telephone poles the truck is
passing are 25 m apart in this region. The roof of the truck
is 3.5 m above the road, and Bond quickly calculates how
many poles away the truck should be when he drops down
from the bridge onto the truck, making his getaway. How
many poles is it?

70. A conveyor belt is used to send burgers through a grill-
ing machine. If the grilling machine is 1.2 m long and 
the burgers require 2.8 min to cook, how fast must 
the conveyor belt travel? If the burgers are spaced 25 cm
apart, what is the rate of burger production (in burgers/min)?

71. Two students are asked to find the height of a particular
building using a barometer. Instead of using the barometer
as an altitude measuring device, they take it to the roof of the
building and drop it off, timing its fall. One student reports a
fall time of 2.0 s, and the other, 2.3 s. What % difference does
the 0.3 s make for the estimates of the building’s height?

25 m�s,

25 m�s

0.60 m�s2

18 m�s

15 m28 m
+x

FIGURE 2;49 Problem 67.

66. In the design of a rapid transit system, it is necessary to
balance the average speed of a train against the distance
between station stops. The more stops there are, the slower
the train’s average speed. To get an idea of this problem,
calculate the time it takes a train to make a 15.0-km trip
in two situations: (a) the stations at which the trains must
stop are 3.0 km apart (a total of 6 stations, including those
at the ends); and (b) the stations are 5.0 km apart (4 stations
total). Assume that at each station the train accelerates at
a rate of until it reaches then stays at
this speed until its brakes are applied for arrival at the next
station, at which time it decelerates at Assume
it stops at each intermediate station for 22 s.

67. A person driving her car at approaches an inter-
section just as the traffic light turns yellow. She knows that
the yellow light lasts only 2.0 s before turning to red, and
she is 28 m away from the near side of the intersection
(Fig. 2–49). Should she try to stop, or should she speed up
to cross the intersection before the light turns red? The
intersection is 15 m wide. Her car’s maximum deceleration
is whereas it can accelerate from to

in 6.0 s. Ignore the length of her car and her
reaction time.
65 km�h

45 km�h–5.8 m�s2,

35 km�h

–2.0 m�s2.

95 km�h,1.1 m�s2

64. In putting, the force with which a golfer strikes a ball is
planned so that the ball will stop within some small distance
of the cup, say 1.0 m long or short, in case the putt is missed.
Accomplishing this from an uphill lie (that is, putting the
ball downhill, see Fig. 2–47) is more difficult than from a
downhill lie. To see why, assume that on a particular green
the ball decelerates constantly at going downhill,
and constantly at going uphill. Suppose we have an
uphill lie 7.0 m from the cup. Calculate the allowable range
of initial velocities we may impart to the ball so that it stops
in the range 1.0 m short to 1.0 m long of the cup. Do the
same for a downhill lie 7.0 m from the cup. What in your
results suggests that the downhill putt is more difficult?

2.6 m�s2
1.8 m�s2
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1. Discuss two conditions given in Section 2–7 for being able
to use a constant acceleration of magnitude .
Give an example in which one of these conditions would
not be met and would not even be a reasonable approxima-
tion of motion.

2. In a lecture demonstration, a 3.0-m-long vertical string
with ten bolts tied to it at equal intervals is dropped from
the ceiling of the lecture hall. The string falls on a tin
plate, and the class hears the clink of each bolt as it hits
the plate. (a) The sounds will not occur at equal time inter-
vals. Why? (b) Will the time between clinks increase or
decrease as the string falls? (c) How could the bolts be tied
so that the clinks occur at equal intervals? (Assume the
string is vertical with the bottom bolt touching the tin plate
when the string is released.)

g = 9.8 m�s2
3. The position of a ball rolling in a straight line is given by

where x is in meters and in seconds.
(a) What do the numbers 2.0, 3.6, and 1.7 refer to? (b) What
are the units of each of these numbers? (c) Determine the
position of the ball at 2.0 s, and 3.0 s. (d) What is
the average velocity over the interval to t = 3.0 s?t = 1.0 s

t = 1.0 s,

tx = 2.0 - 3.6  t + 1.7t2,

Search and Learn 

A: (a) displacement (b) total distance 50 cm.
B: (b).
C: (a) (b) (c) (d) ± .– ;– ;± ;

== –30 cm; D: (b).
E: (e).
F: (c).

A N S W E R S  TO  E X E R C I S E S

72. Two children are playing on two trampolines. The first
child bounces up one-and-a-half times higher than the
second child. The initial speed up of the second child is

(a) Find the maximum height the second child
reaches. (b) What is the initial speed of the first child?
(c) How long was the first child in the air?

73. If there were no air resistance, how long would it take a
free-falling skydiver to fall from a plane at 3200 m to an
altitude of 450 m, where she will open her parachute? What
would her speed be at 450 m? (In reality, the air resis-
tance will restrict her speed to perhaps )

74. You stand at the top of a cliff while your friend stands on
the ground below you. You drop a ball from rest and see
that she catches it 1.4 s later. Your friend then throws the
ball up to you, such that it just comes to rest in your hand.
What is the speed with which your friend threw the ball?

150 km�h.

4.0 m�s.

75. On an audio compact disc (CD), digital bits of infor-
mation are encoded sequentially along a spiral path. Each
bit occupies about A CD player’s readout laser
scans along the spiral’s sequence of bits at a constant
speed of about as the CD spins. (a) Determine
the number N of digital bits that a CD player reads every
second. (b) The audio information is sent to each of the
two loudspeakers 44,100 times per second. Each of these
samplings requires 16 bits, and so you might expect the
required bit rate for a CD player to be

where the 2 is for the 2 loudspeakers (the 2 stereo channels).
Note that is less than the number N of bits actually
read per second by a CD player. The excess number of
bits is needed for encoding and error-
correction. What percentage of the bits on a CD are
dedicated to encoding and error-correction?

A   = N - N0B
N0

= 1.4 * 106 
bits

s
,N0 = 2 a44,100 

samplings
s b a16 

bits
sampling

b

1.2 m�s

0.28 mm.
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3

This snowboarder flying through 
the air shows an example of 
motion in two dimensions. In 
the absence of air resistance, the
path would be a perfect parabola.
The gold arrow represents the 
downward acceleration of 
gravity, Galileo analyzed the
motion of objects in 2 dimensions
under the action of gravity near 
the Earth’s surface (now called 
“projectile motion”) into its 
horizontal and vertical components.

We will discuss vectors and how 
to add them. Besides analyzing 
projectile motion, we will also see
how to work with relative velocity.

gB.

49

(b)(a)

A B

(c) (d) (e)

I n Chapter 2 we dealt with motion along a straight line. We now consider the
motion of objects that move in paths in two (or three) dimensions. In par-
ticular, we discuss an important type of motion known as projectile motion:

objects projected outward near the Earth’s surface, such as struck baseballs and
golf balls, kicked footballs, and other projectiles. Before beginning our discussion
of motion in two dimensions, we will need a new tool, vectors, and how to add them.

gB

CHAPTER-OPENING QUESTION—Guess now!
[Don’t worry about getting the right answer now—you will get another chance later in the
Chapter. See also p. 1 of Chapter 1 for more explanation.]

A small heavy box of emergency supplies is dropped from a moving helicopter at
point A as it flies at constant speed in a horizontal direction. Which path in the
drawing below best describes the path of the box (neglecting air resistance) as
seen by a person standing on the ground?

*
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3–1 Vectors and Scalars
We mentioned in Chapter 2 that the term velocity refers not only to how fast an
object is moving but also to its direction. A quantity such as velocity, which has
direction as well as magnitude, is a vector quantity. Other quantities that are also
vectors are displacement, force, and momentum. However, many quantities have no
direction associated with them, such as mass, time, and temperature. They are speci-
fied completely by a number and units. Such quantities are called scalar quantities.

Drawing a diagram of a particular physical situation is always helpful in
physics, and this is especially true when dealing with vectors. On a diagram, each
vector is represented by an arrow. The arrow is always drawn so that it points in
the direction of the vector quantity it represents. The length of the arrow is drawn
proportional to the magnitude of the vector quantity. For example, in Fig. 3–1,
green arrows have been drawn representing the velocity of a car at various places
as it rounds a curve. The magnitude of the velocity at each point can be read off
Fig. 3–1 by measuring the length of the corresponding arrow and using the scale
shown

When we write the symbol for a vector, we will always use boldface type, with a
tiny arrow over the symbol. Thus for velocity we write If we are concerned only
with the magnitude of the vector, we will write simply v, in italics, as we do for
other symbols.

3–2 Addition of Vectors—Graphical
Methods

Because vectors are quantities that have direction as well as magnitude, they must
be added in a special way. In this Chapter, we will deal mainly with displacement
vectors, for which we now use the symbol and velocity vectors, But the results
will apply for other vectors we encounter later.

We use simple arithmetic for adding scalars. Simple arithmetic can also be
used for adding vectors if they are in the same direction. For example, if a 
person walks 8 km east one day, and 6 km east the next day, the person will be

east of the point of origin. We say that the net or resultant
displacement is 14 km to the east (Fig. 3–2a). If, on the other hand, the person
walks 8 km east on the first day, and 6 km west (in the reverse direction) on the
second day, then the person will end up 2 km from the origin (Fig. 3–2b), so the
resultant displacement is 2 km to the east. In this case, the resultant displacement
is obtained by subtraction:

But simple arithmetic cannot be used if the two vectors are not along the same
line. For example, suppose a person walks 10.0 km east and then walks 5.0 km
north. These displacements can be represented on a graph in which the positive 
y axis points north and the positive x axis points east, Fig. 3–3. On this graph, we
draw an arrow, labeled to represent the 10.0-km displacement to the east.
Then we draw a second arrow, to represent the 5.0-km displacement to 
the north. Both vectors are drawn to scale, as in Fig. 3–3.

D
B

2 ,
D
B

1 ,

8 km - 6 km = 2 km.

8 km + 6 km = 14 km

vB.D
B

,

vB.

(1 cm = 90 km�h).
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Scale for velocity:
1 cm = 90 km/h

FIGURE 3;1 Car traveling on a
road, slowing down to round the
curve. The green arrows represent
the velocity vector at each position.

Resultant  = 14 km (east)

Resultant  = 2 km (east)

6 km

8 km

8 km

6 km
x (km)
East

x (km)
East

(a)

(b)

0

0

FIGURE 3;2 Combining vectors in
one dimension.

0

2

1

South

Resultant displacement

West
θ

2

2

4

6

4 6 8 10

D
B

D
B

y (km)
North

x (km)
East

     
R
 =     1

 +    2D
B

D
B

D
B

FIGURE 3;3 A person walks 10.0 km east and then 5.0 km
north. These two displacements are represented by the 
vectors and which are shown as arrows. Also shown
is the resultant displacement vector, which is the 
vector sum of and Measurement on the graph 
with ruler and protractor shows that has a magnitude 
of 11.2 km and points at an angle north of east.u = 27°

D
B

R

D
B

2 .D
B

1

D
B

R ,
D
B

2 ,D
B

1
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After taking this walk, the person is now 10.0 km east and 5.0 km north of the
point of origin. The resultant displacement is represented by the arrow labeled 
in Fig. 3–3. (The subscript R stands for resultant.) Using a ruler and a protractor,
you can measure on this diagram that the person is 11.2 km from the origin at an
angle north of east. In other words, the resultant displacement vector has
a magnitude of 11.2 km and makes an angle with the positive x axis. The
magnitude (length) of can also be obtained using the theorem of Pythagoras
in this case, because and form a right triangle with as the 
hypotenuse. Thus

You can use the Pythagorean theorem only when the vectors are perpendicular
to each other.

The resultant displacement vector, is the sum of the vectors and 
That is,

This is a vector equation. An important feature of adding two vectors that are not
along the same line is that the magnitude of the resultant vector is not equal to the
sum of the magnitudes of the two separate vectors, but is smaller than their sum.
That is,

where the equals sign applies only if the two vectors point in the same direction.
In our example (Fig. 3–3), whereas equals 15 km,
which is the total distance traveled. Note also that we cannot set equal to
11.2 km, because we have a vector equation and 11.2 km is only a part of the
resultant vector, its magnitude. We could write something like this, though:

Figure 3–3 illustrates the general rules for graphically adding two vectors
together, no matter what angles they make, to get their sum. The rules are as
follows:

1. On a diagram, draw one of the vectors—call it —to scale.
2. Next draw the second vector, to scale, placing its tail at the tip of the 

first vector and being sure its direction is correct.
3. The arrow drawn from the tail of the first vector to the tip of the second

vector represents the sum, or resultant, of the two vectors.

The length of the resultant vector represents its magnitude. Note that vectors can
be moved parallel to themselves on paper (maintaining the same length and
angle) to accomplish these manipulations. The length of the resultant can be 
measured with a ruler and compared to the scale. Angles can be measured 
with a protractor. This method is known as the tail-to-tip method of adding 
vectors.

The resultant is not affected by the order in which the vectors are added.
For example, a displacement of 5.0 km north, to which is added a displacement
of 10.0 km east, yields a resultant of 11.2 km and angle (see Fig. 3–4),
the same as when they were added in reverse order (Fig. 3–3). That is, now
using to represent any type of vector,

[Mathematicians call this equation the commutative property of vector addition.]

V
B

1 + V
B

2 = V
B

2 + V
B

1 .

V
B

u = 27°

D
B

2 ,
D
B

1

D
B

R = D
B

1 + D
B

2 = (11.2 km,  27° N of E).

D
B

R

D1 + D2DR = 11.2 km,

DR  �   AD1 + D2B ,

D
B

R = D
B

1 + D
B

2 .

D
B

2 .D
B

1D
B

R ,

 = 3125 km2
= 11.2 km.

 DR = 3D1
2

+ D2
2

= 3(10.0 km)2
+ (5.0 km)2

DRDRD1 ,  D2 ,
D
B

R

u = 27°
u = 27°

D
B

R
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0
West

South

1

     
R
 =     2

 +    1

θ

2

2

4

6

4 6 8 10

2

x (km)
East

North
y (km)

D
B D

B

D
B

D
B

D
B

FIGURE 3;4 If the vectors are
added in reverse order, the resultant
is the same. (Compare to Fig. 3–3.)
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The tail-to-tip method of adding vectors can be extended to three or more
vectors. The resultant is drawn from the tail of the first vector to the tip of the last
one added. An example is shown in Fig. 3–5; the three vectors could represent
displacements (northeast, south, west) or perhaps three forces. Check for yourself
that you get the same resultant no matter in which order you add the three vectors.
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+ + =1

1

R

2 2
3

3

V
B

V
B

V
B

V
B

V
B

V
B

V
B

FIGURE 3;5 The resultant of three
vectors: V

B

R = V
B

1 + V
B

2 + V
B

3 .

C A U T I O N

Be sure to use the correct diagonal on
the parallelogram to get the resultant

INCORRECT

(a)

(b)

(c)

Tail-to-tip

Parallelogram

Wrong

+ =

=

=

1

1

1

1

2

2

2

2

R

V
B V

B
V
B

V
B

V
B

V
B

RV
B

V
B

V
B

V
B

FIGURE 3;6 Vector addition by two
different methods, (a) and (b).
Part (c) is incorrect.

It is a common error to draw the sum vector as the diagonal running between
the tips of the two vectors, as in Fig. 3–6c. This is incorrect: it does not represent
the sum of the two vectors. (In fact, it represents their difference, as we
will see in the next Section.)

Range of vector lengths. Suppose two
vectors each have length 3.0 units. What is the range of possible lengths for the
vector representing the sum of the two?

RESPONSE The sum can take on any value from where the
vectors point in the same direction, to when the vectors are
antiparallel. Magnitudes between 0 and 6.0 occur when the two vectors are at
an angle other than 0° and 180°.

EXERCISE A If the two vectors of Example 3–1 are perpendicular to each other, what is
the resultant vector length?

3–3 Subtraction of Vectors, and
Multiplication of a Vector by a Scalar
Given a vector we define the negative of this vector to be a vector with
the same magnitude as but opposite in direction, Fig. 3–7. Note, however, that
no vector is ever negative in the sense of its magnitude: the magnitude of every
vector is positive. Rather, a minus sign tells us about its direction.

V
B

A–V
B BV

B

,

0  (  = 3.0 - 3.0)
6.0  (  = 3.0 + 3.0)

CONCEPTUAL EXAMPLE 3;1

V
B

2 - V
B

1 ,

–V
B

V
B

A second way to add two vectors is the parallelogram method. It is fully equiva-
lent to the tail-to-tip method. In this method, the two vectors are drawn starting
from a common origin, and a parallelogram is constructed using these two vectors
as adjacent sides as shown in Fig. 3–6b. The resultant is the diagonal drawn from
the common origin. In Fig. 3–6a, the tail-to-tip method is shown, and we can see that
both methods yield the same result.

FIGURE 3;7 The negative of a
vector is a vector having the same
length but opposite direction.
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We can now define the subtraction of one vector from another: the difference
between two vectors is defined as

That is, the difference between two vectors is equal to the sum of the first plus
the negative of the second. Thus our rules for addition of vectors can be applied as
shown in Fig. 3–8 using the tail-to-tip method.

V
B

2 - V
B

1 = V
B

2 + A–V
B

1B.
V
B

2 - V
B

1
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– += =– 1

– 1

1
2

– 12
22V

B

V
B

V
B

V
B

V
B

V
B

V
B

V
B

FIGURE 3;8 Subtracting two 
vectors: V

B

2 - V
B

1 .

FIGURE 3;10 Resolving a vector into its 
components along a chosen set of x and y axes.
The components, once found, themselves 
represent the vector. That is, the components 
contain as much information as the vector itself.

V
B

= 1.52

= −2.03

V
B

V
B

V
B

V
B

V
B

FIGURE 3;9 Multiplying a vector 
by a scalar c gives a vector whose
magnitude is c times greater and in 
the same direction as (or opposite
direction if c is negative).

V
B

V
B

θ

C

North

East

North

East

y

x
B

A

(a)

y

x

(b)

0 0

(= 30°) (= 30°)θ

x

y

V
B

V
B

V
B

V
B

A vector can be multiplied by a scalar c. We define their product so that 
has the same direction as and has magnitude cV. That is, multiplication of a
vector by a positive scalar c changes the magnitude of the vector by a factor c but
doesn’t alter the direction. If c is a negative scalar (such as ), the magnitude
of the product is changed by the factor (where means the magnitude of c),
but the direction is precisely opposite to that of See Fig. 3–9.V

B

.
∑c∑∑c∑cV

B
–2.0

V
B

cV
B

V
B

EXERCISE B What does the “incorrect” vector in Fig. 3–6c represent? (a) 
(b) (c) something else (specify).V

B

1 - V
B

2 ;
V
B

2 - V
B

1 ;

3–4 Adding Vectors by Components
Adding vectors graphically using a ruler and protractor is often not sufficiently
accurate and is not useful for vectors in three dimensions. We discuss now a more
powerful and precise method for adding vectors. But do not forget graphical
methods—they are useful for visualizing, for checking your math, and thus for
getting the correct result.

Components
Consider first a vector that lies in a particular plane. It can be expressed as 
the sum of two other vectors, called the components of the original vector. The
components are usually chosen to be along two perpendicular directions, such as
the x and y axes. The process of finding the components is known as resolving the
vector into its components. An example is shown in Fig. 3–10; the vector could
be a displacement vector that points at an angle north of east, where we
have chosen the positive x axis to be to the east and the positive y axis north.
This vector is resolved into its x and y components by drawing dashed lines 
(AB and AC) out from the tip (A) of the vector, making them perpendicular to
the x and y axes. Then the lines 0B and 0C represent the x and y components 
of respectively, as shown in Fig. 3–10b. These vector components are written 

and In this book we usually show vector components as arrows, like vectors,
but dashed. The scalar components, and are the magnitudes of the vector
components, with units, accompanied by a positive or negative sign depending on
whether they point along the positive or negative x or y axis. As can be seen in
Fig. 3–10, by the parallelogram method of adding vectors.

Space is made up of three dimensions, and sometimes it is necessary to
resolve a vector into components along three mutually perpendicular directions.
In rectangular coordinates the components are and V

B

z .V
B

x ,  V
B

y ,

V
B

x + V
B

y = V
B

Vy ,Vx

V
B

y .V
B

x

V
B

,

V
B

u = 30°
V
B

V
B
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Vy

V
sin     =

Vx
V

cos     =

Vy

Vx
tan     =

V2 = V2 + V2

θ

θ

θ

θ 90°

yx

x

y

0
x

y

V
B

V
B

V
B

FIGURE 3;12 Finding the 
components of a vector using
trigonometric functions. The 
equations are valid only if is the
angle makes with the positive 
x axis.

V
B

u

To add vectors using the method of components, we need to use the trigo-
nometric functions sine, cosine, and tangent, which we now review.

Given any angle as in Fig. 3–11a, a right triangle can be constructed by
drawing a line perpendicular to one of its sides, as in Fig. 3–11b. The longest 
side of a right triangle, opposite the right angle, is called the hypotenuse, which
we label h. The side opposite the angle is labeled o, and the side adjacent is
labeled a. We let h, o, and a represent the lengths of these sides, respectively.

u

u,

θ θ θ

(c)

o

a

h o
h

a

h'

a'

(a) (b)

o'
FIGURE 3;11 Starting with an angle as 
in (a), we can construct right triangles of 
different sizes, (b) and (c), but the ratio of
the lengths of the sides does not depend on
the size of the triangle.

u

We now define the three trigonometric functions, sine, cosine, and tangent (abbre-
viated sin, cos, tan), in terms of the right triangle, as follows:

(3;1)

If we make the triangle bigger, but keep the same angles, then the ratio of the
length of one side to the other, or of one side to the hypotenuse, remains the same.
That is, in Fig. 3–11c we have: and
Thus the values of sine, cosine, and tangent do not depend on how big the trian-
gle is. They depend only on the size of the angle. The values of sine, cosine, and
tangent for different angles can be found using a scientific calculator, or from the
Table in Appendix A.

A useful trigonometric identity is

(3;2)

which follows from the Pythagorean theorem ( in Fig. 3–11). That is:

(See Appendix A and inside the rear cover for other details on trigonometric
functions and identities.)

The use of trigonometric functions for finding the components of a vector is
illustrated in Fig. 3–12, where a vector and its two components are thought of as
making up a right triangle. We then see that the sine, cosine, and tangent are as
given in Fig. 3–12, where is the angle makes with the axis. If we multiply
the definition of by V on both sides, we get

(3;3a)

Similarly, from the definition of we obtain

(3;3b)

Note that if is not the angle the vector makes with the positive x axis, Eqs. 3–3
are not valid.

u

Vx = V cos u.

cos u,

Vy = V sin u.

sin u = Vy�V
±xV

B

u

sin2 u + cos2 u =

o2

h2
+

a2

h2
=

o2
+ a2

h2
=

h2

h2
= 1.

o2
+ a2

= h2

sin2 u + cos2 u = 1

o�a = o¿�a¿.o�h = o¿�h¿;a�h = a¿�h¿;

 tan u =

side opposite
side adjacent

 =

o
a

.

 cos u =

side adjacent
hypotenuse

 =

a

h

 sin u =

side opposite
hypotenuse

 =

o

h
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Using Eqs. 3–3, we can calculate and for any vector, such as that illus-
trated in Fig. 3–10 or Fig. 3–12. Suppose represents a displacement of 500 m in
a direction 30° north of east, as shown in Fig. 3–13. Then From a
calculator or Tables, and Then

There are two ways to specify a vector in a given coordinate system:

1. We can give its components, and 
2. We can give its magnitude V and the angle it makes with the positive x axis.

We can shift from one description to the other using Eqs. 3–3, and, for the reverse,
by using the theorem of Pythagoras† and the definition of tangent:

(3;4a)

(3;4b)

as can be seen in Fig. 3–12.

Adding Vectors
We can now discuss how to add vectors using components. The first step is to
resolve each vector into its components. Next we can see, using Fig. 3–14, that the
addition of any two vectors and to give a resultant, implies that

(3;5)

That is, the sum of the x components equals the x component of the resultant vector,
and the sum of the y components equals the y component of the resultant, as can
be verified by a careful examination of Fig. 3–14. Note that we do not add x compo-
nents to y components.

If the magnitude and direction of the resultant vector are desired, they can
be obtained using Eqs. 3–4.

 VRy = V1y + V2y .

 VRx = V1x + V2x

V
B

R = V
B

1 + V
B

2 ,V
B

2V
B

1

 tan u =

Vy

Vx

 V = 3V
 x
2

+ V
 y
2

u

Vy .Vx

 Vy = V sin u = (500 m)(0.500) = 250 m (north).

 Vx = V cos u = (500 m)(0.866) = 433 m (east),

cos 30° = 0.866.sin 30° = 0.500
V = 500 m.

V
B

VyVx
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Vy = V sin    = 250 mθ
Vx = V cos    = 433 mθ

V   =    V 2 + V 2
yx = 500 m

North

East

(a)

y

x

(b)

0

θ = 30°

North

East

y

x
0

θ = 30°

(V = 500 m)

x

y
V
B

V
B V

B

V
B

FIGURE 3;13 (a) Vector 
represents a displacement of 500 m
at a 30° angle north of east. (b) The
components of are and 
whose magnitudes are given on 
the right in the diagram.

V
B

y ,V
B

xV
B

V
B

†In three dimensions, the theorem of Pythagoras becomes where is the
component along the third, or z, axis.

VzV = 3V
 x
2

+ V
 y
2

+ V
 z
2 ,

y

x

VRx

VRy

V1x

V2x

V1y

V2y

0

1

=
+

1

2
2

VR
B

V
B

V
B

V
B

V
B

FIGURE 3;14 The components of
are

and VRy = V1y + V2y .
VRx = V1x + V2xV

B

R = V
B

1 + V
B

2
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The components of a given vector depend on the choice of coordinate axes.
You can often reduce the work involved in adding vectors by a good choice of
axes—for example, by choosing one of the axes to be in the same direction as one
of the vectors. Then that vector will have only one nonzero component.

Mail carrier’s displacement. A rural mail carrier leaves the
post office and drives 22.0 km in a northerly direction. She then drives in a direc-
tion 60.0° south of east for 47.0 km (Fig. 3–15a). What is her displacement from
the post office?

APPROACH We choose the positive x axis to be east and the positive y axis to
be north, since those are the compass directions used on most maps. The origin
of the xy coordinate system is at the post office. We resolve each vector into its
x and y components. We add the x components together, and then the y compo-
nents together, giving us the x and y components of the resultant.

SOLUTION Resolve each displacement vector into its components, as shown
in Fig. 3–15b. Since has magnitude 22.0 km and points north, it has only a 
y component:

has both x and y components:

Notice that is negative because this vector component points along the
negative y axis. The resultant vector, has components:

This specifies the resultant vector completely:

We can also specify the resultant vector by giving its magnitude and angle using
Eqs. 3–4:

A calculator with a key labeled INV TAN, or ARC TAN, or gives
The negative sign means below the 

x axis, Fig. 3–15c. So, the resultant displacement is 30.0 km directed at 38.5°
in a southeasterly direction.

NOTE Always be attentive about the quadrant in which the resultant vector
lies. An electronic calculator does not fully give this information, but a good
diagram does.

As we saw in Example 3–2, any component that points along the negative x or
y axis gets a minus sign. The signs of trigonometric functions depend on which
“quadrant” the angle falls in: for example, the tangent is positive in the first and
third quadrants (from 0° to 90°, and 180° to 270°), but negative in the second
and fourth quadrants; see Appendix A, Fig. A–7. The best way to keep track of
angles, and to check any vector result, is always to draw a vector diagram, like
Fig. 3–15. A vector diagram gives you something tangible to look at when analyzing
a problem, and provides a check on the results.

The following Problem Solving Strategy should not be considered a prescrip-
tion. Rather it is a summary of things to do to get you thinking and involved in the
problem at hand.

u = 38.5°tan–1(–0.796) = –38.5°.u =

tan–1

 tan u =

DRy

DRx
=

–18.7 km
   23.5 km

= –0.796.

 DR = 3DRx
2

+ DRy
2

= 3(23.5 km)2
+ (–18.7 km)2

= 30.0 km

DRx = 23.5 km,  DRy = –18.7 km.

 DRy = D1y + D2y = 22.0 km + (–40.7 km) = –18.7 km.

 DRx = D1x + D2x =    0 km  +    23.5 km  = ±23.5 km

D
B

R ,
D2y

 D2y = –(47.0 km)(sin 60°)  = –(47.0 km)(0.866) = –40.7 km.

 D2x = ±(47.0 km)(cos 60°) = ±(47.0 km)(0.500) = ±23.5 km

D
B

2

D1x = 0,  D1y = 22.0 km.

D
B

1

EXAMPLE 3;2
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Identify the correct quadrant by
drawing a careful diagram

y

x
East

(a)

y

x

(b)

0

0

0

D2x

y

x

(c)

D2y

Post
office

North

60°

θ

60°

1

2

2

2

1

1

D
B

D
B

D
B

D
B

D
B

DR
B

D
B

FIGURE 3;15 Example 3–2.
(a) The two displacement vectors,

and (b) is resolved into 
its components. (c) and are
added to obtain the resultant 
The component method of adding
the vectors is explained in the 
Example.

D
B

R .
D
B

2D
B

1

D
B

2D
B

2 .D
B

1

GIAN_PPA7_GE_03_049-074v5.2HR2.1.QXD  29-08-2014  14:04  Page 56



Three short trips. An airplane trip involves three legs, with
two stopovers, as shown in Fig. 3–16a. The first leg is due east for 620 km; the
second leg is southeast (45°) for 440 km; and the third leg is at 53° south of 
west, for 550 km, as shown. What is the plane’s total displacement?

APPROACH We follow the steps in the Problem Solving Strategy above.

SOLUTION

1. Draw a diagram such as Fig. 3–16a, where and represent the
three legs of the trip, and is the plane’s total displacement.

2. Choose axes: Axes are also shown in Fig. 3–16a: x is east, y north.
3. Resolve components: It is imperative to draw a good diagram. The components

are drawn in Fig. 3–16b. Instead of drawing all the vectors starting from 
a common origin, as we did in Fig. 3–15b, here we draw them “tail-to-tip”
style, which is just as valid and may make it easier to see.

4. Calculate the components:

We have given a minus sign to each component that in Fig. 3–16b points in the
or direction. The components are shown in the Table in the margin.

5. Add the components: We add the x components together, and we add the 
y components together to obtain the x and y components of the resultant:

The x and y components of the resultant are 600 km and and point
respectively to the east and south. This is one way to give the answer.

6. Magnitude and direction: We can also give the answer as

Thus, the total displacement has magnitude 960 km and points 51° below the
x axis (south of east), as was shown in our original sketch, Fig. 3–16a.

so  u = –51°. tan u =

DRy

DRx
=

–750 km
600 km

= –1.25,

 DR = 3DRx
2

+ DRy
2

= 3(600)2
+ (–750)2 km = 960 km

–750 km,
 DRy = D1y + D2y + D3y = 0 km - 311 km - 439 km = –750 km.
 DRx = D1x + D2x + D3x = 620 km + 311 km - 331 km = 600 km

–y–x

 D3y = –D3 sin 53°  = –(550 km)(0.799) = –439 km.
 D
B

3 : D3x = –D3 cos 53° = –(550 km)(0.602) = –331 km

 D2y = –D2 sin 45°  = –(440 km)(0.707) = –311 km
 D
B

2 : D2x = ±D2 cos 45° = ±(440 km)(0.707) = ±311 km

 D1y = ±D1 sin 0°  = 0 km   
 D
B

1 : D1x = ±D1 cos 0°  = D1 = 620 km   

D
B

R

D
B

3D
B

1 ,  D
B

2 ,

EXAMPLE 3;3
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Pay careful attention to signs: any component that
points along the negative x or y axis gets a minus sign.

5. Add the x components together to get the x compo-
nent of the resultant. Similarly for y:

This is the answer: the components of the resultant
vector. Check signs to see if they fit the quadrant
shown in your diagram (point 1 above).

6. If you want to know the magnitude and direction of
the resultant vector, use Eqs. 3–4:

The vector diagram you already drew helps to obtain
the correct position (quadrant) of the angle u.

VR = 3VRx
2

+ VRy
2 ,  tan u =

VRy

VRx

.

 VRy = V1y + V2y + any others.

 VRx = V1x + V2x + any others

P
R

O
B

L
E

M

 S
O LV I N G

Adding Vectors
Here is a brief summary of how to add two or more
vectors using components:
1. Draw a diagram, adding the vectors graphically by

either the parallelogram or tail-to-tip method.
2. Choose x and y axes. Choose them in a way, if possible,

that will make your work easier. (For example, choose
one axis along the direction of one of the vectors, which
then will have only one component.)

3. Resolve each vector into its x and y components,
showing each component along its appropriate
(x or y) axis as a (dashed) arrow.

4. Calculate each component (when not given) using
sines and cosines. If is the angle that vector 
makes with the positive x axis, then:

V1x = V1 cos u1 ,  V1y = V1 sin u1 .

V
B

1u1

Components
Vector x (km) y (km)

620 0
311 

600 –750D
B

R

–439–331D
B

3

–311D
B

2

D
B

1

= ?θ 45°
–x

0

53°

+x

+y

–y

(a)

D2y

D3y

D3x

–x
0

+x

+y

–y

(b)

45°

D2x

53°

North

East

East

North

1D
B

2D
B

3D
B

RD
B

1D
B

3D
B

2D
B

FIGURE 3;16 Example 3–3.
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3–5 Projectile Motion
In Chapter 2, we studied the one-dimensional motion of an object in terms of dis-
placement, velocity, and acceleration, including purely vertical motion of a falling
object undergoing acceleration due to gravity. Now we examine the more general
translational motion of objects moving through the air in two dimensions near the
Earth’s surface, such as a golf ball, a thrown or batted baseball, kicked footballs,
and speeding bullets. These are all examples of projectile motion (see Fig. 3–17),
which we can describe as taking place in two dimensions if there is no wind.

Although air resistance is often important, in many cases its effect can be
ignored, and we will ignore it in the following analysis. We will not be concerned 
now with the process by which the object is thrown or projected. We consider only 
its motion after it has been projected, and before it lands or is caught—that is,
we analyze our projected object only when it is moving freely through the air under
the action of gravity alone. Then the acceleration of the object is that due to gravity,
which acts downward with magnitude and we assume it is constant.†

Galileo was the first to describe projectile motion accurately. He showed that
it could be understood by analyzing the horizontal and vertical components of
the motion separately. For convenience, we assume that the motion begins at
time at the origin of an xy coordinate system (so ).

Let us look at a (tiny) ball rolling off the end of a horizontal table with an 
initial velocity in the horizontal (x) direction, See Fig. 3–18, where an object
falling vertically is also shown for comparison. The velocity vector at each instant
points in the direction of the ball’s motion at that instant and is thus always tangent
to the path. Following Galileo’s ideas, we treat the horizontal and vertical compo-
nents of velocity and acceleration separately, and we can apply the kinematic
equations (Eqs. 2–11a through 2–11c) to the x and y components of the motion.

First we examine the vertical (y) component of the motion. At the instant 
the ball leaves the table’s top it has only an x component of velocity.
Once the ball leaves the table (at ), it experiences a vertically downward
acceleration g, the acceleration due to gravity. Thus is initially zero
but increases continually in the downward direction (until the ball hits the
ground). Let us take y to be positive upward. Then the acceleration due to gravity
is in the direction, so From Eq. 2–11a (using y in place of x) we 
can write since we set The vertical displacement
is given by Eq. 2–11b written in terms of y:
Given and then y = –  

1
2 gt 2.ay = –g,vy 0 = 0,y0 = 0,

y = y0 + vy 0 +
1
2 ay t2.

vy 0 = 0.vy = vy 0 + ay t = –gt
ay = –g.–y

Avy 0 = 0Bvy

t = 0
(t = 0),

vB
vBx 0 .

x0 = y0 = 0t = 0

g = 9.80 m�s2,
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†This restricts us to objects whose distance traveled and maximum height above the Earth are small
compared to the Earth’s radius (6400 km).

(b)

(a)

FIGURE 3;17 Photographs of 
(a) a bouncing ball and (b) a thrown
basketball, each showing the
characteristic “parabolic” path of
projectile motion.

y

x

Vertical
fall

Projectile
motion

=
x0

x

x

y

y

vB

vB

vB

vB

vB

vB vB

aB gB

FIGURE 3;18 Projectile motion of a small
ball projected horizontally with initial 
velocity  The dashed black line 
represents the path of the object. The 
velocity vector is in the direction of 
motion at each point, and thus is tangent to 
the path. The velocity vectors are green 
arrows, and velocity components are dashed.
(A vertically falling object starting from rest 
at the same place and time is shown at the 
left for comparison; is the same at each
instant for the falling object and the 
projectile.)

vy

vB

vBx 0 .vB =
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In the horizontal direction, on the other hand, there is no acceleration (we are
ignoring air resistance). With the horizontal component of velocity,
remains constant, equal to its initial value, and thus has the same magnitude
at each point on the path. The horizontal displacement (with ) is given by

The two vector components, and can be added
vectorially at any instant to obtain the velocity at that time (that is, for each
point on the path), as shown in Fig. 3–18.

One result of this analysis, which Galileo himself predicted, is that an object
projected horizontally will reach the ground in the same time as an object dropped
vertically. This is because the vertical motions are the same in both cases, as shown
in Fig. 3–18. Figure 3–19 is a multiple-exposure photograph of an experiment
that confirms this.

vB
vBy ,vBxx = vx 0 t +

1
2 ax t2

= vx 0 t.
ax = 0

vx 0 ,
vx ,ax = 0,
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x

y

θ

0

= 0 at this point

0

0

y

y

y0
xvS y

x

y

x

x0

vS

=vB

vB vB

vB

vB

vB

vB

vB

vB
vB

vB

vB

vB

vB

gBaB

FIGURE 3;20 Path of a projectile launched with
initial velocity at angle to the horizontal.
Path is shown dashed in black, the velocity 
vectors are green arrows, and velocity 
components are dashed. The figure does 
not show where the projectile hits the ground 
(at that point, projectile motion ceases).

u0vB0

FIGURE 3;19 Multiple-exposure
photograph showing positions of 
two balls at equal time intervals.
One ball was dropped from rest at
the same time the other ball was
projected horizontally outward.
The vertical position of each ball is
seen to be the same at each instant.

EXERCISE C Two balls having different speeds roll off the edge of a horizontal table at
the same time. Which hits the floor sooner, the faster ball or the slower one?

EXERCISE D Where in Fig. 3–20 is (i) (ii) and (iii) vx = 0?vy = 0,vB = 0,

If an object is projected at an upward angle, as in Fig. 3–20, the analysis is
similar, except that now there is an initial vertical component of velocity,
Because of the downward acceleration of gravity, the upward component of
velocity gradually decreases with time until the object reaches the highest
point on its path, at which point Subsequently the object moves down-
ward (Fig. 3–20) and increases in the downward direction, as shown (that is,
becoming more negative). As before, remains constant.vx

vy

vy = 0.
vy

vy 0 .

EXERCISE E Return to the Chapter-Opening Question, page 49, and answer it again
now. Try to explain why you may have answered differently the first time. Describe the
role of the helicopter in this example of projectile motion.

Where does the apple land? A child sits
upright in a wagon which is moving to the right at constant speed as shown in
Fig. 3–21. The child extends her hand and throws an apple straight upward
(from her own point of view, Fig. 3–21a), while the wagon continues to travel
forward at constant speed. If air resistance is neglected, will the apple land
(a) behind the wagon, (b) in the wagon, or (c) in front of the wagon?

RESPONSE The child throws the apple straight up from her own reference frame
with initial velocity (Fig. 3–21a). But when viewed by someone on the ground,
the apple also has an initial horizontal component of velocity equal to the speed of
the wagon, Thus, to a person on the ground, the apple will follow the path of
a projectile as shown in Fig. 3–21b. The apple experiences no horizontal accel-
eration, so will stay constant and equal to the speed of the wagon. As the
apple follows its arc, the wagon will be directly under the apple at all times
because they have the same horizontal velocity. When the apple comes down, it
will drop right into the outstretched hand of the child. The answer is (b).

vBx 0

vBx 0 .

vBy 0

CONCEPTUAL EXAMPLE 3;4

y

x

(b) Ground reference frame

(a) Wagon reference frame

0

0x

y0vB

y0vB vB

vB

v 0xvB

FIGURE 3;21 Example 3–4.
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Choice of time interval

TABLE 3;2 Kinematic Equations for Projectile Motion 
(y positive upward; )

Horizontal Motion Vertical Motion†

(Eq. 2–11a) 
(Eq. 2–11b) 
(Eq. 2–11c) 

† If y is taken positive downward, the minus signs in front of g become signs.±(–)

 vy
2

= vy 0
2

- 2g Ay - y0B
 y = y0 + vy 0 t -

1
2 gt2 x = x0 + vx 0 t

 vy = vy 0 - gt vx = vx 0

(ay �  �g �  constant)(ax � 0,   vx � constant)

ax � 0,  ay � �g � �9.80 m�s2

5. Examine the horizontal (x) and vertical (y) motions
separately. If you are given the initial velocity, you
may want to resolve it into its x and y components.

6. List the known and unknown quantities, choosing
and  or where  

and using the or sign, depending on whether
you choose y positive up or down. Remember that

never changes throughout the trajectory, and that
at the highest point of any trajectory that

returns downward. The velocity just before landing is
generally not zero.

7. Think for a minute before jumping into the equations.
A little planning goes a long way. Apply the relevant
equations (Table 3–2), combining equations if neces-
sary. You may need to combine components of a
vector to get magnitude and direction (Eqs. 3–4).

vy = 0
vx

±–
g = 9.80 m�s2,±g,ay = –gax = 0P

R
O

B
L

E
M

 S
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Projectile Motion
Our approach to solving Problems in Section 2–6 also
applies here. Solving Problems involving projectile
motion can require creativity, and cannot be done just
by following some rules. Certainly you must avoid just
plugging numbers into equations that seem to “work.”
1. As always, read carefully; choose the object (or

objects) you are going to analyze.
2. Draw a careful diagram showing what is happening

to the object.
3. Choose an origin and an xy coordinate system.
4. Decide on the time interval, which for projectile

motion can only include motion under the effect of
gravity alone, not throwing or landing. The time inter-
val must be the same for the x and y analyses. The x
and y motions are connected by the common time, .t

TABLE 3;1 General Kinematic Equations for Constant Acceleration 
in Two Dimensions

x component (horizontal) y component (vertical)

(Eq. 2–11a) 

(Eq. 2–11b) 

(Eq. 2–11c)  vy
2

= vy 0
2

+ 2ayAy - y0B vx
2

= vx 0
2

+ 2axAx - x0B
 y = y0 + vy 0 t +

1
2 ay t2 x = x0 + vx 0 t +

1
2 ax t2

 vy = vy 0 + ay t vx = vx 0 + ax t

3–6 Solving Projectile Motion Problems
We now work through several Examples of projectile motion quantitatively. We
use the kinematic equations (2–11a through 2–11c) separately for the vertical and
horizontal components of the motion. These equations are shown separately for
the x and y components of the motion in Table 3–1, for the general case of two-
dimensional motion at constant acceleration. Note that x and y are the respective
displacements, that and are the components of the velocity, and that 

and are the components of the acceleration, each of which is constant.
The subscript 0 means “at ”t = 0.

ayax

vyvx

We can simplify Eqs.2–11 to use for projectile motion because we can set
See Table 3–2, which assumes y is positive upward, so –9.80 m�s2.ay = –g =

ax = 0.

If the projection angle is chosen relative to the axis (Fig. 3–20), then
and

In doing Problems involving projectile motion, we must consider a time interval for
which our chosen object is in the air, influenced only by gravity. We do not consider
the throwing (or projecting) process, nor the time after the object lands or is caught,
because then other influences act on the object, and we can no longer set aB = gB.

vy 0 = v0 sin u0 .vx 0 = v0 cos u0 ,
±xu0
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Driving off a cliff. A movie stunt driver on a motorcycle
speeds horizontally off a 50.0-m-high cliff. How fast must the motorcycle leave
the cliff top to land on level ground below, 90.0 m from the base of the cliff where
the cameras are? Ignore air resistance.

APPROACH We explicitly follow the steps of the Problem Solving Strategy 
on the previous page.

SOLUTION

1. and 2. Read, choose the object, and draw a diagram. Our object is the motor-
cycle and driver, taken as a single unit. The diagram is shown in Fig. 3–22.

3. Choose a coordinate system. We choose the y direction to be positive
upward, with the top of the cliff as The x direction is horizontal with

at the point where the motorcycle leaves the cliff.
4. Choose a time interval. We choose our time interval to begin just as

the motorcycle leaves the cliff top at position Our time
interval ends just before the motorcycle touches the ground below.

5. Examine x and y motions. In the horizontal (x) direction, the acceleration
so the velocity is constant. The value of x when the motorcycle

reaches the ground is In the vertical direction, the accelera-
tion is the acceleration due to gravity, The value of
y when the motorcycle reaches the ground is The initial veloc-
ity is horizontal and is our unknown, the initial vertical velocity is zero,

6. List knowns and unknowns. See the Table in the margin. Note that in addition
to not knowing the initial horizontal velocity (which stays constant until
landing), we also do not know the time when the motorcycle reaches the
ground.

7. Apply relevant equations. The motorcycle maintains constant as long as it
is in the air. The time it stays in the air is determined by the y motion—when
it reaches the ground. So we first find the time using the y motion, and then
use this time value in the x equations. To find out how long it takes the
motorcycle to reach the ground below, we use Eq. 2–11b (Tables 3–1 and 3–2) 
for the vertical (y) direction with and

or

We solve for and set

To calculate the initial velocity, we again use Eq. 2–11b, but this time for
the horizontal (x) direction, with and

or

Then

which is about (roughly ).

NOTE In the time interval of the projectile motion, the only acceleration is g in
the negative y direction. The acceleration in the x direction is zero.

60 mi�h100 km�h

vx 0 =

x

t
=

90.0 m
3.19 s

= 28.2 m�s,

 x = vx 0 t.

 =  0  + vx 0 t +  0

x = x0 + vx 0 t +
1
2 ax t2

x0 = 0:ax = 0
vx 0 ,

t = B 2y
–g

= B2(–50.0 m)

–9.80 m�s2
= 3.19 s.

y = –50.0 m:t

 y = –  
1
2 gt2.

 =  0  +    0  +
1
2 (–g)t2

 y = y0 + vy 0 t +
1
2 ay t2

vy 0 = 0:y0 = 0

vx

t
vx 0

vy 0 = 0.
vx 0 ;

y = –50.0 m.
ay = –g = –9.80 m�s2.

x = ±90.0 m.
ax = 0,

x0 = 0,  y0 = 0.
(t = 0)

x0 = 0
y0 = 0.

EXAMPLE 3;5

SECTION 3–6 Solving Projectile Motion Problems 61

Known Unknown

 vy 0 = 0
 ay = –g = –9.80 m�s2
 ax = 0
 y = –50.0 m

t x = 90.0 m
vx 0 x0 = y0 = 0

y = −50.0 m

50.0 m

= gBaB

90.0 m

+ x

+ y

FIGURE 3;22 Example 3–5.
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A kicked football. A kicked football leaves the ground at
an angle  with a velocity of as shown in Fig. 3–23. Calculate
(a) the maximum height, (b) the time of travel before the football hits the ground,
and (c) how far away it hits the ground. Assume the ball leaves the foot at ground
level, and ignore air resistance and rotation of the ball.

APPROACH This may seem difficult at first because there are so many questions.
But we can deal with them one at a time. We take the y direction as positive
upward, and treat the x and y motions separately. The total time in the air is again
determined by the y motion. The x motion occurs at constant velocity. The y com-
ponent of velocity varies, being positive (upward) initially, decreasing to zero at
the highest point, and then becoming negative as the football falls.

SOLUTION We resolve the initial velocity into its components (Fig. 3–23):

(a) To find the maximum height, we consider a time interval that begins just after
the football loses contact with the foot until the ball reaches its maximum height.
During this time interval, the acceleration is g downward. At the maximum
height, the velocity is horizontal (Fig. 3–23), so This occurs at a time given
by with (see Eq. 2–11a in Table 3–2), so and

From Eq. 2–11b, with we can solve for y at this time :

The maximum height is 7.35 m. [Solving Eq. 2–11c for y gives the same result.]
(b) To find the time it takes for the ball to return to the ground, we consider a
different time interval, starting at the moment the ball leaves the foot  

and ending just before the ball touches the ground ( again).
We can use Eq. 2–11b with and also set (ground level):

This equation can be factored:

There are two solutions, (which corresponds to the initial point, ), and

which is the total travel time of the football.
(c) The total distance traveled in the x direction is found by applying Eq. 2–11b
with , and :

NOTE In (b), the time needed for the whole trip, is double
the time to reach the highest point, calculated in (a). That is, the time to go up
equals the time to come back down to the same level (ignoring air resistance).

t = 2vy 0 �g = 2.45 s,

x = vx 0 t = (16.0 m�s)(2.45 s) = 39.2 m.

t = 2.45 sx0 = 0,   ax = 0,   vx 0 = 16.0 m�s

t =

2vy 0

g
=

2(12.0 m�s)

A9.80 m�s2B = 2.45 s,

y0t = 0

t A12 gt - vy 0B = 0.

 0 = 0 + vy 0 t -
1
2 gt2.

 y = y0 + vy 0 t -
1
2 gt2

y = 0y0 = 0
y = 0y0 = 0B At = 0,

=

vy 0
2

g
-

1
2

 
vy 0

2

g
=

vy 0
2

2g
=

(12.0 m�s)2

2 A9.80 m�s2B = 7.35 m. y = vy 0 t -
1
2 gt2

(t = vy 0�g)y0 = 0,

t =

vy 0

g
=

(12.0 m�s)

A9.80 m�s2B = 1.224 s L  1.22 s.

vy 0 = gtvy = 0vy = vy 0 - gt
vy = 0.

 vy 0 = v0 sin 37.0°  = (20.0 m�s)(0.602) = 12.0 m�s.

 vx 0 = v0 cos 37.0° = (20.0 m�s)(0.799) = 16.0 m�s

20.0 m�s,u0 = 37.0°
EXAMPLE 3;6
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P H Y S I C S  A P P L I E D

Sports

FIGURE 3;23 Example 3–6.

37.0°

y = 0 at this point

0

yvBvB

vB

x0vB

y0vB

0vB
vB

vB

= gBaB
x

P R O B L E M  S O L V I N G

Symmetry
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y = 0
v0

y

d

FIGURE 3;24 Example 3–7.
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EXERCISE F In Example 3–6, what is (a) the velocity vector at the maximum height, and
(b) the acceleration vector at maximum height?

The wrong strategy. A boy on a small hill
aims his water-balloon slingshot horizontally, straight at a second boy hanging from
a tree branch a distance d away, Fig. 3–24. At the instant the water balloon is released,
the second boy lets go and falls from the tree, hoping to avoid being hit. Show that
he made the wrong move. (He hadn’t studied physics yet.) Ignore air resistance.

RESPONSE Both the water balloon and the boy in the tree start falling at the
same instant, and in a time they each fall the same vertical distance
much like Fig. 3–19. In the time it takes the water balloon to travel the horizontal
distance d, the balloon will have the same y position as the falling boy. Splat. If
the boy had stayed in the tree, he would have avoided the humiliation.

y =
1
2 gt2,t

CONCEPTUAL EXAMPLE 3;7

Level Horizontal Range
The total distance the football traveled in Example 3–6 is called the horizontal
range R. We now derive a formula for the range, which applies to a projectile that
lands at the same level it started : that is, (see Fig. 3–25a).
Looking back at Example 3–6 part (c), we see that where (from
part b) Thus

[ ]

where and This can be rewritten, using the trigon-
ometric identity (Appendix A or inside the rear cover):

[only if ]

Note that the maximum range, for a given initial velocity is obtained when
takes on its maximum value of 1.0, which occurs for so

The maximum range increases by the square of so doubling the muzzle velocity
of a cannon increases its maximum range by a factor of 4.

When air resistance is important, the range is less for a given and the maxi-
mum range is obtained at an angle smaller than 45°.

v0 ,

v0 ,

u0 = 45°  for maximum range,  and  Rmax = v0
2�g.

2u0 = 90°;sin 2u
v0 ,

y (final) = y0R =

v0
2 sin 2u0

g
.

2 sin u cos u = sin 2u
vy 0 = v0 sin u0 .vx 0 = v0 cos u0

y = y0R = vx 0 t = vx 0 ¢ 2vy 0

g
≤ =

2vx 0 vy 0

g
=

2v0
2 sin u0 cos u0

g
,

t = 2vy 0�g.
x = R = vx 0 t

y (final) = y0(�y0)

Range of a cannon ball. Suppose one of Napoleon’s cannons
had a muzzle speed, of At what angle should it have been aimed
(ignore air resistance) to strike a target 320 m away?

APPROACH We use the equation just derived for the range,
with

SOLUTION We solve for in the range formula:

We want to solve for an angle that is between 0° and 90°, which means in
this equation can be as large as 180°. Thus, is a solution, so .
But is also a solution (see Appendix A–7), so

can also be . In general we have two solutions (see Fig. 3–25b),
which in the present case are given by

Either angle gives the same range. Only when (so )  is there
a single solution (that is, both solutions are the same).

u0 = 45°sin 2u0 = 1

u0 = 30.3° or 59.7°.

u0 = 59.7°u0

2u0 = 180° - 60.6° = 119.4°
u0 = 30.3°2u0 = 60.6°

2u0u0

sin 2u0 =

Rg

v0
2

=

(320 m)A9.80 m�s2B
(60.0 m�s)2

= 0.871.

sin 2u0

R = 320 m.
R = v0

2 sin 2u0�g,

60.0 m�s.v0 ,
EXAMPLE 3;8

y = 0 again here
(where x = R)

y

x

x0 = 0
y0 = 0

0

(b)

60°

30°

y

x

(a)
R

45°

θ

FIGURE 3;25 (a) The range R of a
projectile. (b) There are generally
two angles that will give the 
same range. If one angle is 
the other is  
Example 3–8.

u02 = 90° - u01 .
u01 ,

u0

In Example 3–6, we treated the football as if it were a particle, ignoring its
rotation. We also ignored air resistance. Because air resistance is significant on a
football, our results are only estimates (mainly overestimates).
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A punt. Suppose the football in Example 3–6 was punted,
and left the punter’s foot at a height of 1.00 m above the ground. How far did
the football travel before hitting the ground? Set

APPROACH The only difference here from Example 3–6 is that the football hits
the ground below its starting point of That is, the ball hits the ground at

See Fig. 3–26. Thus we cannot use the range formula which is valid
only if As in Example 3–6,

SOLUTION With and (see Example 3–6), we use
the y version of Eq. 2–11b with

and obtain

We rearrange this equation into standard form so we can
use the quadratic formula:

The quadratic formula (Appendix A–4) gives

The second solution would correspond to a time prior to the kick, so it doesn’t
apply. With for the time at which the ball touches the ground, the
horizontal distance the ball traveled is (using from Example 3–6):

Our assumption in Example 3–6 that the ball leaves the foot at ground level
would result in an underestimate of about 1.3 m in the distance our punt traveled.

x = vx 0 t = (16.0 m�s)(2.53 s) = 40.5 m.

vx 0 = 16.0 m�s
t = 2.53 s

 = 2.53 s or –0.081 s.

 t =

12.0 m�s63(–12.0 m�s)2
- 4A4.90 m�s2B(–1.00 m)

2A4.90 m�s2B

A4.90 m�s2B     t2
- (12.0 m�s)  t - (1.00 m) = 0.

Aax2
+ bx + c = 0B

–1.00 m = 0 + (12.0 m�s)  t - A4.90 m�s2B     t2.

y = y0 + vy 0 t -
1
2 gt2,

ay = –g,
vy 0 = 12.0 m�sy = –1.00 m

u0 = 37.0°.v0 = 20.0 m�s,y (final) = y0 .
y = –1.00 m.

y0 = 0.

x0 = 0,  y0 = 0.

EXAMPLE 3;9

64 CHAPTER 3

P H Y S I C S  A P P L I E D

Sports

P R O B L E M  S O L V I N G

Do not use any formula unless you
are sure its range of validity fits the

problem; the range formula does 
not apply here because  y Z y0

Ground

y

x
y0  =  0

y  =  −1.00 m

FIGURE 3;26 Example 3–9: the 
football leaves the punter’s foot at  

and reaches the ground 
where  y = –1.00 m.
y = 0,

3–7 Projectile Motion Is Parabolic
We now show that the path followed by any projectile is a parabola, if we can
ignore air resistance and can assume that is constant. To do so, we need to find
y as a function of x by eliminating between the two equations for horizontal and
vertical motion (Eq. 2–11b in Table 3–2), and for simplicity we set

From the first equation, we have and we substitute this into the second
one to obtain

(3;6)

We see that y as a function of x has the form

where A and B are constants for any specific projectile motion. This is the standard
equation for a parabola. See Figs. 3–17 and 3–27.

The idea that projectile motion is parabolic was, in Galileo’s day, at the fore-
front of physics research. Today we discuss it in Chapter 3 of introductory physics!

y = Ax - Bx2,

y = ¢ vy 0

vx 0
≤x - ¢ g

2vx 0
2
≤x2.

t = x�vx 0 ,

 y = vy 0 t -
1
2 gt2.

 x = vx 0 t
x0 = y0 = 0 :

t
gB

*

FIGURE 3;27 Examples of 
projectile motion: a boy jumping,
and glowing lava from the volcano
Stromboli.

*Some Sections of this book, such as this one, may be considered optional at the discretion of the
instructor. See the Preface for more details.
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SECTION 3–8 Relative Velocity 65

3–8 Relative Velocity
We now consider how observations made in different frames of reference are
related to each other. For example, consider two trains approaching one another,
each with a speed of with respect to the Earth. Observers on the Earth
beside the train tracks will measure for the speed of each of the trains.
Observers on either one of the trains (a different frame of reference) will mea-
sure a speed of for the train approaching them.

Similarly, when one car traveling passes a second car traveling in
the same direction at the first car has a speed relative to the second car
of

When the velocities are along the same line, simple addition or subtraction is
sufficient to obtain the relative velocity. But if they are not along the same line, we
must make use of vector addition. We emphasize, as mentioned in Section 2–1, that
when specifying a velocity, it is important to specify what the reference frame is.

When determining relative velocity, it is easy to make a mistake by adding
or subtracting the wrong velocities. It is important, therefore, to draw a diagram
and use a careful labeling process. Each velocity is labeled by two subscripts:
the first refers to the object, the second to the reference frame in which it has this
velocity. For example, suppose a boat heads directly across a river, as shown 
in Fig. 3–28. We let be the velocity of the Boat with respect to the Water.
(This is also what the boat’s velocity would be relative to the shore if the 
water were still.) Similarly, is the velocity of the Boat with respect to the Shore,
and is the velocity of the Water with respect to the Shore (this is the river
current). Note that is what the boat’s motor produces (against the water),
whereas is equal to plus the effect of the current, Therefore, the
velocity of the boat relative to the shore is (see vector diagram, Fig. 3–28)

(3;7)

By writing the subscripts using this convention, we see that the inner subscripts
(the two W’s) on the right-hand side of Eq. 3–7 are the same; also, the outer 
subscripts on the right of Eq. 3–7 (the B and the S) are the same as the two
subscripts for the sum vector on the left, By following this convention (first
subscript for the object, second for the reference frame), you can write down the
correct equation relating velocities in different reference frames.†

Equation 3–7 is valid in general and can be extended to three or more
velocities. For example, if a fisherman on the boat walks with a velocity rela-
tive to the boat, his velocity relative to the shore is  The
equations involving relative velocity will be correct when adjacent inner subscripts
are identical and when the outermost ones correspond exactly to the two on the
velocity on the left of the equation. But this works only with plus signs (on the
right), not minus signs.

It is often useful to remember that for any two objects or reference frames,
A and B, the velocity of A relative to B has the same magnitude, but opposite
direction, as the velocity of B relative to A:

(3;8)

For example, if a train is traveling relative to the Earth in a certain
direction, objects on the Earth (such as trees) appear to an observer on the train
to be traveling in the opposite direction.100 km�h

100 km�h

vBBA = –vBAB .

vBFS = vBFB + vBBW + vBWS .
vBFB

vBBS .

vBBS = vBBW + vBWS .

vBWS .vBBWvBBS

vBBW

vBWS

vBBS

vBBW

90 km�h - 75 km�h = 15 km�h.
75 km�h,

90 km�h
160 km�h

80 km�h
80 km�h

†We thus can see, for example, that the equation  is wrong: the inner subscripts are
not the same, and the outer ones on the right do not correspond to the subscripts on the left.

vBBW = vBBS + vBWS

E

N

W

S

BS
BW

WSvB

vB
vB

θ

River current

FIGURE 3;28 A boat heads north
directly across a river which flows
west. Velocity vectors are shown as
green arrows:

As it crosses the river, the boat is
dragged downstream by the current.

 (river current).
 respect to the Shore

 vBWS = velocity of Water with
 respect to the Water,

 vBBW = velocity of Boat with
 respect to the Shore,

 vBBS = velocity of Boat with
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Heading across the river. The same boat  
now heads directly across the river whose current is still (a) What is the velocity
(magnitude and direction) of the boat relative to the shore? (b) If the river is 110 m
wide, how long will it take to cross and how far downstream will the boat be then?

APPROACH The boat now heads directly across the river and is pulled down-
stream by the current, as shown in Fig. 3–30. The boat’s velocity with respect to
the shore, is the sum of its velocity with respect to the water, plus the
velocity of the water with respect to the shore, just as before,

SOLUTION (a) Since is perpendicular to we can get using the
theorem of Pythagoras:

We can obtain the angle (note how is defined in  Fig. 3–30) from:

A calculator with a key INV TAN or ARC TAN or  gives
Note that this angle is not equal to the angle calculated in Example 3–10.

(b) The travel time for the boat is determined by the time it takes to cross the
river. Given the river’s width we can use the velocity component in the
direction of D, Solving for we get  
The boat will have been carried downstream, in this time, a distance

NOTE There is no acceleration in this Example, so the motion involves only
constant velocities (of the boat or of the river).

d = vWS t = (1.20 m�s)(59.5 s) = 71.4 m  L   71 m.

59.5 s.t = 110 m�1.85 m�s =t,vBW = D�t.
D = 110 m,

= 33.0°.
tan–1 (0.6486)u =tan–1

tan u = vWS�vBW = (1.20 m�s)�(1.85 m�s) = 0.6486.

u

vBS = 3vBW
2

 +  vWS
2

= 3(1.85 m�s)2
 +  (1.20 m�s)2

= 2.21 m�s.

vBSvBWS ,vBBW

vBBS = vBBW + vBWS .

vBWS :
vBBW ,vBBS ,

1.20 m�s.
AvBW = 1.85 m�sBEXAMPLE 3;11

66 CHAPTER 3 Kinematics in Two Dimensions; Vectors

BS
BW

WSvB

vB
vB

θ

River current

FIGURE 3;30 Example 3–11.
A boat heading directly across a 
river whose current moves at
1.20 m�s.

A quantity such as velocity, that has both a magnitude and a
direction, is called a vector. A quantity such as mass, that has
only a magnitude, is called a scalar. On diagrams, vectors are
represented by arrows.

Addition of vectors can be done graphically by placing the
tail of each successive arrow at the tip of the previous one. The
sum, or resultant vector, is the arrow drawn from the tail of the
first vector to the tip of the last vector. Two vectors can also be
added using the parallelogram method.

Vectors can be added more accurately by adding their
components along chosen axes with the aid of trigonometric
functions. A vector of magnitude V making an angle with the

axis has components

(3;3)Vx = V cos u,  Vy = V sin u.

±x
u

Given the components, we can find a vector’s magnitude and
direction from

(3;4)

Projectile motion is the motion of an object in the air near the
Earth’s surface under the effect of gravity alone. It can be analyzed
as two separate motions if air resistance can be ignored. The hori-
zontal component of motion is at constant velocity, whereas the
vertical component is at constant acceleration, just as for an
object falling vertically under the action of gravity.

The velocity of an object relative to one frame of refer-
ence can be found by vector addition if its velocity relative to a
second frame of reference, and the relative velocity of the two
reference frames, are known.

gB,

V = 3V
 x
2

+ V
 y
2 ,  tan u =

Vy

Vx
.

Summary

Heading upstream. A boat’s speed in still water is
. If the boat is to travel north directly across a river whose westward current has 

speed at what upstream angle must the boat head? (See Fig. 3–29.)

APPROACH If the boat heads straight across the river, the current will drag 
the boat downstream (westward). To overcome the river’s current, the boat
must have an upstream (eastward) component of velocity as well as a cross-stream
(northward) component. Figure 3–29 has been drawn with the velocity of
the Boat relative to the Shore, pointing directly across the river because this is
where the boat is supposed to go. (Note that  )

SOLUTION Vector points upstream at angle as shown. From the diagram,

Thus  so the boat must head upstream at a 40.4° angle.u = 40.4°,

sin u =

vWS

vBW
=

1.20 m�s
1.85 m�s

= 0.6486.

uvBBW

vBBS = vBBW + vBWS .

vBBS ,

vWS = 1.20 m�s,
1.85 m�s

vBW =EXAMPLE 3;10

E

N

W

S

BS BW

WS

vB

vB

vBθ

River current

FIGURE 3;29 Example 3–10.
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MisConceptual Questions 67

1. One car travels due east at and a second car travels
north at Are their velocities equal? Explain.

2. Can you conclude that a car is not accelerating if its speed-
ometer indicates a steady Explain.

3. Give several examples of an object’s motion in which a great
distance is traveled but the displacement is zero.

4. Can the displacement vector for a particle moving in two
dimensions be longer than the length of path traveled by the
particle over the same time interval? Can it be less? Discuss.

5. During baseball practice, a player hits a very high fly ball
and then runs in a straight line and catches it. Which had
the greater displacement, the player or the ball? Explain.

6. If is V necessarily greater than and/or 
Discuss.

7. Two vectors have length  and  
What are the maximum and minimum magnitudes of their
vector sum?

8. Can two vectors, of unequal magnitude, add up to give the zero
vector? Can three unequal vectors? Under what conditions?

9. Can the magnitude of a vector ever (a) equal, or (b) be less
than, one of its components?

10. Does the odometer of a car measure a scalar or a vector
quantity? What about the speedometer?

11. How could you determine the speed a slingshot imparts to
a rock, using only a meter stick, a rock, and the slingshot?

12. In archery, should the arrow be aimed directly at the target?
How should your angle of aim depend on the distance to
the target?

13. It was reported in World War I that a pilot flying at an alti-
tude of 2 km caught in his bare hands a bullet fired at the
plane! Using the fact that a bullet slows down considerably
due to air resistance, explain how this incident occurred.

V2 = 4.0 km.V1 = 3.5 km

V2 ?V1V
B

= V
B

1 + V
B

2 ,

60 km�h?

40 km�h.
40 km�h, 14. You are on the street trying to hit a friend in his dorm

window with a water balloon. He has a similar idea and is
aiming at you with his water balloon. You aim straight at
each other and throw at the same instant. Do the water
balloons hit each other? Explain why or why not.

15. A projectile is launched at an upward angle of 30° to the
horizontal with a speed of How does the horizon-
tal component of its velocity 1.0 s after launch compare
with its horizontal component of velocity 2.0 s after launch,
ignoring air resistance? Explain.

16. A projectile has the least speed at what point in its path?

17. Two cannonballs, A and B, are fired from the ground with
identical initial speeds, but with larger than (a) Which
cannonball reaches a higher elevation? (b) Which stays
longer in the air? (c) Which travels farther? Explain.

18. A person sitting in an enclosed train car, moving at constant
velocity, throws a ball straight up into the air in her reference
frame. (a) Where does the ball land? What is your answer
if the car (b) accelerates, (c) decelerates, (d) rounds a curve,
(e) moves with constant velocity but is open to the air?

19. If you are riding on a train that speeds past another train
moving in the same direction on an adjacent track, it
appears that the other train is moving backward. Why?

20. Two rowers, who can row at the same speed in still water,
set off across a river at the same time. One heads straight
across and is pulled downstream somewhat by the current.
The other one heads upstream at an angle so as to arrive at
a point opposite the starting point. Which rower reaches
the opposite side first? Explain.

21. If you stand motionless under an umbrella in a rainstorm
where the drops fall vertically, you remain relatively dry.
However, if you start running, the rain begins to hit your
legs even if they remain under the umbrella. Why?

uB .uA

30 m�s.

Questions

1. You are adding vectors of length 20 and 40 units. Which of
the following choices is a possible resultant magnitude?
(a) 0.
(b) 18.
(c) 37.
(d) 64.
(e) 100.

2. The magnitude of a component of a vector must be
(a) less than or equal to the magnitude of the vector.
(b) equal to the magnitude of the vector.
(c) greater than or equal to the magnitude of the vector.
(d) less than, equal to, or greater than the magnitude of

the vector.

3. You are in the middle of a large field. You walk in a straight
line for 100 m, then turn left and walk 100 m more in a
straight line before stopping. When you stop, you are 100 m
from your starting point. By how many degrees did you turn?
(a) 90°.
(b) 120°.
(c) 30°.
(d) 180°.
(e) This is impossible. You cannot walk 200 m and be only

100 m away from where you started.

4. A bullet fired from a rifle begins to fall 
(a) as soon as it leaves the barrel.
(b) after air friction reduces its speed.
(c) not at all if air resistance is ignored.

5. A baseball player hits a ball that
soars high into the air. After the
ball has left the bat, and while it is
traveling upward (at point P in 
Fig. 3–31), what is the direction of
acceleration? Ignore air resistance.

MisConceptual Questions

(b)(a) (c)

P

FIGURE 3;31

MisConceptual 
Question 5.

6. One ball is dropped vertically from a window. At the same
instant, a second ball is thrown horizontally from the same
window. Which ball has the greater speed at ground level?
(a) The dropped ball.
(b) The thrown ball.
(c) Neither—they both have the same speed on impact.
(d) It depends on how hard the ball was thrown.
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(835 km/h)
41.5°vB

7. You are riding in an enclosed train car moving at If
you throw a baseball straight up, where will the baseball land?
(a) In front of you.
(b) Behind you.
(c) In your hand.
(d) Can’t decide from the given information.

8. Which of the three kicks in Fig. 3–32 is in the air for the
longest time? They all reach the same maximum height h.
Ignore air resistance.
(a), (b), (c), or (d) all the same time.

90 km�h.

68 CHAPTER 3 Kinematics in Two Dimensions; Vectors

10. A hunter is aiming horizontally at a monkey who is sitting
in a tree. The monkey is so terrified when it sees the gun
that it falls off the tree. At that very instant, the hunter
pulls the trigger. What will happen?
(a) The bullet will miss the monkey because the monkey

falls down while the bullet speeds straight forward.
(b) The bullet will hit the monkey because both the

monkey and the bullet are falling downward at the
same rate due to gravity.

(c) The bullet will miss the monkey because although 
both the monkey and the bullet are falling downward
due to gravity, the monkey is falling faster.

(d) It depends on how far the hunter is from the monkey.

11. Which statements are not valid for a projectile? Take up as
positive.
(a) The projectile has the same x velocity at any point on

its path.
(b) The acceleration of the projectile is positive and

decreasing when the projectile is moving upwards,
zero at the top, and increasingly negative as the 
projectile descends.

(c) The acceleration of the projectile is a constant negative
value.

(d) The y component of the velocity of the projectile is
zero at the highest point of the projectile’s path.

(e) The velocity at the highest point is zero.

12. A car travels east. Another car travels north.
The relative speed of the first car with respect to the second is
(a) less than 
(b) exactly 
(c) more than 20 m�s.

20 m�s.
20 m�s.

10 m�s10 m�s

3;2 to 3;4 Vector Addition

1. (I) A car is driven 225 km west and then 98 km southwest
(45°). What is the displacement of the car from the point 
of origin (magnitude and direction)? Draw a diagram.

2. (I) A delivery truck travels 21 blocks north, 16 blocks east,
and 26 blocks south. What is its final displacement from
the origin? Assume the blocks are equal length.

3. (I) If  and  determine
the magnitude and direction of 

4. (II) Graphically determine the resultant of the following
three vector displacements: (1) 24 m, 36° north of east;
(2) 18 m, 37° east of north; and (3) 26 m, 33° west of south.

5. (II) is a vector 24.8 units in magnitude and points at an
angle of 23.4° above the negative x axis. (a) Sketch this
vector. (b) Calculate and (c) Use and to
obtain (again) the magnitude and direction of [Note:
Part (c) is a good way to check if you’ve resolved your
vector correctly.]

6. (II) Vector is 6.6 units long and points along the nega-
tive x axis. Vector is 8.5 units long and points at to
the positive x axis. (a) What are the x and y components of
each vector? (b) Determine the sum (magnitude
and angle).

V
B

1 + V
B

2

±55°V
B

2

V
B

1

V
B

.
VyVxVy .Vx

V
B

V
B

.
Vy = –6.40 units,Vx = 9.80 units

Problems

9. A baseball is hit high and far. Which of the following state-
ments is true? At the highest point,
(a) the magnitude of the acceleration is zero.
(b) the magnitude of the velocity is zero.
(c) the magnitude of the velocity is the slowest.
(d) more than one of the above is true.
(e) none of the above are true.

8. (II) An airplane is traveling in a direction 41.5°
west of north (Fig. 3–34).
(a) Find the components
of the velocity vector
in the northerly 
and westerly direc-
tions. (b) How far
north and how far
west has the plane
traveled after 1.75 h?

835 km�h

FIGURE 3;34

Problem 8.

x

y

A
B

B
B

FIGURE 3;33

Problem 7.

7. (II) Figure 3–33 shows two vectors, and whose magni-
tudes are and Determine 
if (a) (b) 
(c) Give the 
magnitude and direction
for each.

C
B

= B
B

- A
B

.
C
B

= A
B

- B
B

,C
B

= A
B

+ B
B

,
C
B

B = 5.5 units.A = 6.8 units
B
B

,A
B

h

(a) (b) (c)

FIGURE 3;32 MisConceptual Question 8.

For assigned homework and other learning materials, go to the MasteringPhysics website.
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10. (II) (a) Given the vectors and shown in Fig. 3–35,
determine (b) Determine without using
your answer in (a). Then compare your results and see if
they are opposite.

11. (II) Determine the vector given the vectors and
in Fig. 3–35.

12. (II) For the vectors shown in Fig. 3–35, determine
(a) (b) 

13. (II) For the vectors given in Fig. 3–35, determine
(a) (b) and (c) 

14. (II) Suppose a vector makes an angle with respect to
the y axis. What could be the x and y components of the
vector

15. (II) The summit of a mountain, 2450 m above base camp,
is measured on a map to be 4580 m horizontally from the
camp in a direction 38.4° west of north. What are the compo-
nents of the displacement vector from camp to summit?
What is its magnitude? Choose the x axis east, y axis north,
and z axis up.

16. (III) You are given a vector in the xy plane that has a magni-
tude of 90.0 units and a y component of 
(a) What are the two possibilities for its x component?
(b) Assuming the x component is known to be positive,
specify the vector which, if you add it to the original one,
would give a resultant vector that is 80.0 units long and
points entirely in the direction.

3;5 and 3;6 Projectile Motion (neglect air resistance)
17. (I) A tiger leaps horizontally from a 7.5-m-high rock with

a speed of How far from the base of the rock will
she land?

18. (I) A diver running dives out horizontally from the
edge of a vertical cliff and 3.0 s later reaches the water
below. How high was the cliff and how far from its base did
the diver hit the water?

19. (II) Estimate by what factor a person can jump farther on
the Moon as compared to the Earth if the takeoff speed
and angle are the same. The acceleration due to gravity on
the Moon is one-sixth what it is on Earth.

20. (II) A ball is thrown horizontally from the roof of a build-
ing 7.5 m tall and lands 9.5 m from the base. What was the
ball’s initial speed?

21. (II) A ball thrown horizontally at from the roof of
a building lands 21.0 m from the base of the building. How
high is the building?

12.2 m�s

2.5 m�s

3.0 m�s.
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–65.0 units.

V
B

?

fV
B

C
B

- A
B

- B
B

.A
B

+ B
B

- C
B

,A
B

- B
B

+ C
B

,

2A
B

- 3B
B

+ 2C
B

.B
B

- 3A
B

,

C
B

A
B

A
B

- C
B

,

A
B

- B
B

B
B

- A
B

.
B
B

A
B

Problems 69

9. (II) Three vectors are shown in Fig. 3–35. Their magnitudes
are given in arbitrary units. Determine the sum of the three
vectors. Give the resultant in terms of (a) components,
(b) magnitude and angle with the x axis.±

(C = 31.0)C
B

(B = 26.5)

(A =  44.0)

B B

A
B

x

y

56.0° 28.0°

FIGURE 3;35

Problems 9, 10, 11, 12, and 13.
Vector magnitudes are given 
in arbitrary units.

FIGURE 3;36

Problem 23.

4.0 m/s

150 m

910 m

FIGURE 3;37

Problem 26.

24. (II) You buy a plastic dart gun, and being a clever physics
student you decide to do a quick calculation to find its
maximum horizontal range. You shoot the gun straight up,
and it takes 4.0 s for the dart to land back at the barrel.
What is the maximum horizontal range of your gun?

25. (II) A grasshopper hops along a level road. On each hop,
the grasshopper launches itself at angle and
achieves a range  What is the average hori-
zontal speed of the grasshopper as it hops along the
road? Assume that the time spent on the ground between
hops is negligible.

26. (II) Extreme-sports enthusiasts have been known to jump
off the top of El Capitan, a sheer granite cliff of height 
910 m in Yosemite National Park. Assume a jumper runs
horizontally off the top of El Capitan with speed 
and enjoys a free fall until she is 150 m above the valley
floor, at which time she opens her parachute (Fig. 3–37).
(a) How long is the jumper in free fall? Ignore air resis-
tance. (b) It is important to be as far away from the cliff
as possible before opening the parachute. How far from
the cliff is this jumper when she opens her chute?

4.0 m�s

R = 0.80 m.
u0 = 45°

27. (II) A projectile is fired with an initial speed of 
at an angle of 42.2° above the horizontal on a long flat
firing range. Determine (a) the maximum height reached
by the projectile, (b) the total time in the air, (c) the total
horizontal distance covered (that is, the range), and (d) the
speed of the projectile 1.50 s after firing.

36.6 m�s

2.5 m

u
  0

22. (II) A football is kicked at ground level with a speed of
at an angle of 31.0° to the horizontal. How much

later does it hit the ground?
23. (II) A fire hose held near the ground shoots water at a

speed of At what angle(s) should the nozzle point
in order that the water land 2.5 m away (Fig. 3–36)? Why
are there two different angles?
Sketch the two trajectories.

6.5 m�s.

18.0 m�s
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   u0

v0

FIGURE 3;40 Problem 34.

22 m

Must clear
this point!

1.5 m

FIGURE 3;41 Problem 35.

35. (III) A stunt driver wants to make his car jump over 8 cars
parked side by side below a horizontal ramp (Fig. 3–41).
(a) With what minimum speed must he drive off the hori-
zontal ramp? The vertical height of the ramp is 1.5 m above
the cars and the horizontal distance he must clear is 22 m.
(b) If the ramp is now tilted upward, so that “takeoff angle”
is 7.0° above the horizontal, what is the new minimum
speed?

3;8 Relative Velocity

36. (I) Huck Finn walks at a speed of across his raft
(that is, he walks perpendicular to the raft’s motion relative
to the shore). The heavy raft is traveling down the Mississippi
River at a speed of

relative to the
river bank (Fig. 3–42).
What is Huck’s velocity
(speed and direction)
relative to the river
bank?

1.50 m�s

0.70 m�s

x

   vx0

“Dropped”
(vy0 = 0)

235 m

FIGURE 3;38 Problem 30.

425 m

235 m

Thrown upward?
(vy0 > 0)

Thrown downward?
(vy0 < 0)

FIGURE 3;39 Problem 31.

31. (III) Suppose the rescue plane of Problem 30 releases the
supplies a horizontal distance of 425 m in advance of the
mountain climbers. What vertical velocity (up or down)
should the supplies be given so that they arrive precisely at
the climbers’ position (Fig. 3–39)? With what speed do the
supplies land?

32. (III) Show that the time required for a projectile to reach
its highest point is equal to the time for it to return to its
original height if air resistance is neglible.

33. (III) Suppose the kick in Example 3–6 is attempted 36.0 m
from the goalposts, whose crossbar is 3.05 m above the
ground. If the football is directed perfectly between the
goalposts, will it pass over the bar and be a field goal?
Show why or why not. If not, from what horizontal distance
must this kick be made if it is to score?

28. (II) An athlete performing a long jump leaves the ground
at a 27.0° angle and lands 7.80 m away. (a) What was the
takeoff speed? (b) If this speed were increased by just
5.0%, how much longer would the jump be?

29. (II) A baseball is hit with a speed of at an angle of
45.0°. It lands on the flat roof of a 13.0-m-tall nearby build-
ing. If the ball was hit when it was 1.0 m above the ground,
what horizontal distance does it travel before it lands on
the building?

30. (II) A rescue plane wants to drop supplies to isolated moun-
tain climbers on a rocky ridge 235 m below. If the plane is
traveling horizontally with a speed of 
how far in advance of the recipients (horizontal distance)
must the goods be dropped (Fig. 3–38)?

(69.4 m�s),250 km�h

27.0 m�s

River
current

0.70 m/s

FIGURE 3;42

Problem 36.

34. (III) Revisit Example 3–7, and assume that the boy with
the slingshot is below the boy in the tree (Fig. 3–40) and
so aims upward, directly at the boy in the tree. Show that
again the boy in the tree makes the wrong move by letting
go at the moment the water balloon is shot.
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40. (II) An airplane is heading due south at a speed of
If a wind begins blowing from the southwest at

a speed of (average), calculate (a) the velocity
(magnitude and direction) of the plane, relative to the
ground, and (b) how far from its intended position it will
be after 11.0 min if the pilot takes no corrective action.
[Hint: First draw a diagram.]

41. (II) In what direction should the pilot aim the plane in
Problem 40 so that it will fly due south?

42. (II) A swimmer is capable of swimming 0.60 m s in still
water. (a) If she aims her body directly across a 45-m-wide
river whose current is 0.50 m s, how far downstream (from
a point opposite her starting point) will she land? (b) How
long will it take her to reach the other side?

�

�

90.0 km�h
688 km�h.

Problems 71

0.60 m/s = 1.70 m/s
45 x

y v

FIGURE 3;43 Problem 38.

37. (II) Two planes approach each other head-on. Each has a
speed of and they spot each other when they are
initially 10.0 km apart. How much time do the pilots have
to take evasive action?

38. (II) A passenger on a boat moving at on a still lake
walks up a flight of stairs at a speed of Fig. 3–43.
The stairs are angled at 45° pointing in the direction of
motion as shown. What is the velocity of the passenger rel-
ative to the water?

0.60 m�s,
1.70 m�s

780 km�h,

10.0 m/s

FIGURE 3;44

Problem 39.

39. (II) A person in the passenger basket of a hot-air balloon
throws a ball horizontally outward from the basket with
speed (Fig. 3–44). What initial velocity (magni-
tude and direction) does the ball have relative to a person
standing on the ground (a) if the hot-air balloon is rising
at relative to the ground during this throw, (b) if
the hot-air balloon is descending at relative to the
ground?

3.0 m�s
3.0 m�s

10.0 m�s

43. (II) A boat, whose speed in still water is must
cross a 285-m-wide river and arrive at a point 118 m
upstream from where it starts (Fig. 3–45). To do so, the
pilot must head the boat at a 45.0° upstream angle. What
is the speed of the
river’s current?

2.50 m�s,

45 m

2.0 m/s

1.0 m/s

FIGURE 3;46 Problem 44.

45. (III) Two cars approach a street corner at right angles to
each other (Fig. 3–47). Car 1 travels at a speed relative 
to Earth and car 2 at  
What is the relative
velocity of car 1 as
seen by car 2? What
is the velocity of car 2
relative to car 1?

v2E = 55 km�h.v1E = 35 km�h,

1

2

1E

2EvB

vB

FIGURE 3;47

Problem 45.

44. (II) A child, who is 45 m from the bank of a river, is being
carried helplessly downstream by the river’s swift current
of As the child passes a lifeguard on the river’s
bank, the lifeguard starts swimming in a straight line 
(Fig. 3–46) until she reaches the child at a point downstream.
If the lifeguard can swim at a speed of relative 
to the water, how long does it take her to reach the child?
How far downstream does the lifeguard intercept the
child?

2.0 m�s

1.0 m�s.

current

Start

Finish

118 m

River

285 m

Pa
th

 o
f

bo
at

45.0°

FIGURE 3;45

Problem 43.
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35.0°

P

h = 115 m

X

  0 = 65.0 m/sv

FIGURE 3;51 Problem 52.

52. A projectile is shot from the edge of a cliff 115 m above
ground level with an initial speed of at an angle of
35.0° with the horizontal, as shown in Fig. 3–51. (a) Deter-
mine the time taken by the projectile to hit point P at
ground level. (b) Determine the distance X of point P
from the base of the vertical cliff. At the instant just before
the projectile hits point P, find (c) the horizontal and the
vertical components of its velocity, (d) the magnitude of
the velocity, and (e) the angle made by the velocity vector
with the horizontal. (f) Find the maximum height above
the cliff top reached by the projectile.

65.0 m�s
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Main road
downhill

Escape
route

FIGURE 3;48 Problem 47.

8.5 m

8.0 m

FIGURE 3;49

Problem 49.

48. A light plane is headed due south with a speed relative to
still air of After 1.00 h, the pilot notices that
they have covered only 135 km and their direction is not
south but 15.0° east of south. What is the wind velocity?

49. Romeo is throwing pebbles gently up to Juliet’s window,
and he wants the pebbles to hit the window with only a
horizontal component of velocity. He is standing at the
edge of a rose garden 8.0 m below her window and 8.5 m
from the base of the wall (Fig. 3–49). How fast are the
pebbles going when they hit her window?

185 km�h.

51. (a) A long jumper leaves the ground at 45° above the
horizontal and lands 8.0 m away. What is her “takeoff”
speed (b) Now she is out on a hike and comes to the
left bank of a river. There is no bridge and the right bank 
is 10.0 m away horizontally and 2.5 m vertically below. If
she long jumps from the edge of the left bank at 45° with
the speed calculated in (a), how long, or short, of the
opposite bank will she land (Fig. 3–50)?

v0 ?

v0

45°

2.5 m

10.0 m

FIGURE 3;50 Problem 51.

46. Two vectors, and add to a resultant
Describe and if (a) (b) 
(c) 

47. On mountainous downhill roads, escape routes are some-
times placed to the side of the road for trucks whose brakes
might fail. Assuming a constant upward slope of 26°, calcu-
late the horizontal and vertical components of the acceleration
of a truck that slowed from to rest in 7.0 s. See
Fig. 3–48.

110 km�h

V1 + V2 = V1 - V2 .
VR

2
= V1

2
+ V2

2 ,VR = V1 + V2 ,V
B

2V
B

1

V
B

R = V
B

1 + V
B

2 .V
B

2 ,V
B

1

General Problems

50. Apollo astronauts took a “nine iron” to the Moon and hit
a golf ball about 180 m. Assuming that the swing, launch
angle, and so on, were the same as on Earth where the
same astronaut could hit it only 32 m, estimate the accel-
eration due to gravity on the surface of the Moon. (We
neglect air resistance in both cases, but on the Moon there
is none.)
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53. Raindrops make an angle with the vertical when viewed
through a moving train window (Fig. 3–52). If the speed
of the train is what is the speed of the raindrops in the
reference frame of
the Earth in which
they are assumed to
fall vertically?

vT ,

u

5.0 m

35 m

FIGURE 3;53

Problem 55.

General Problems 73

uFIGURE 3;52

Problem 53.

54. A hunter aims directly at a target (on the same level)
38.0 m away. (a) If the arrow leaves the bow at a speed of

by how much will it miss the target? (b) At what
angle should the bow be aimed so the target will be hit?

55. The cliff divers of Acapulco push off horizontally from rock
platforms about 35 m above the water, but they must clear
rocky outcrops at water level that extend out into the water
5.0 m from the base of the cliff directly under their launch
point. See Fig. 3–53. What minimum pushoff speed is neces-
sary to clear the rocks? How long are they in the air?

23.1 m�s,

56. When Babe Ruth hit a homer over the 8.0-m-high right-
field fence 98 m from home plate, roughly what was the
minimum speed of the ball when it left the bat? Assume the
ball was hit 1.0 m above the ground and its path initially
made a 36° angle with the ground.

57. At serve, a tennis player aims to hit the ball horizontally.
What minimum speed is required for the ball to clear the
0.90-m-high net about 15.0 m from the server if the ball is
“launched” from a height of 2.50 m? Where will the ball
land if it just clears the net (and will it be “good” in the
sense that it lands within 7.0 m of the net)? How long will
it be in the air? See Fig. 3–54.

58. Spymaster Chris, flying a constant horizontally
in a low-flying helicopter, wants to drop secret documents
into her contact’s open car which is traveling on
a level highway 78.0 m below. At what angle (with the hori-
zontal) should the car be in her sights when the packet is
released (Fig. 3–55)?

156 km�h

208 km�h

15.0 m 7.0 m

2.50 m

FIGURE 3;54 Problem 57.

156 km/h

78.0 m

208 km/h

θ

FIGURE 3;55 Problem 58.

135 m

195 m

Landing point

v0

u

FIGURE 3;56

Problem 60.

35°

x � ?

v0 � 12 m/s

10 ft
� 3.05 m2.40 m

FIGURE 3;57

Problem 61.

59. A boat can travel in still water. (a) If the boat
points directly across a stream whose current is 
what is the velocity (magnitude and direction) of the boat
relative to the shore? (b) What will be the position of the
boat, relative to its point of origin, after 3.00 s?

60. A projectile is launched from ground level to the top of a
cliff which is 195 m away and 135 m high (see Fig. 3–56).
If the projectile lands on top of the cliff 6.6 s after it is
fired, find the initial velocity of the projectile (magnitude
and direction). Neglect air resistance.

1.20 m�s,
2.20 m�s

61. A basketball is shot from an initial height of 2.40 m
(Fig. 3–57) with an initial speed directed at
an angle above the horizontal. (a) How far from
the basket was the player if he made a basket? (b) At what
angle to the horizontal did the ball enter the basket?

u0 = 35°
v0 = 12 m�s
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62. A rock is kicked horizontally at from a hill with a
45° slope (Fig. 3–58). How long does it take for the rock to
hit the ground?

15 m�s

74 CHAPTER 3 Kinematics in Two Dimensions; Vectors

15 m/s

45�

FIGURE 3;58 Problem 62.

63. A ball is shot from the top of a building with an initial
velocity of at an angle above the horizontal.
(a) What are the horizontal and vertical components of the
initial velocity? (b) If a nearby building is the same height
and 55 m away, how far below the top of the building will
the ball strike the nearby building?

64 If a baseball pitch leaves the pitcher’s hand horizontally at
a velocity of by what % will the pull of gravity
change the magnitude of the velocity when the ball reaches
the batter, 18 m away? For this estimate, ignore air resis-
tance and spin on the ball.

150 km�h,

u = 42°18 m�s

θ

v0

0

h

FIGURE 3;59 Search and Learn 1.

1. Here is something to try at a sporting event. Show that
the maximum height h attained by an object projected
into the air, such as a baseball, football, or soccer ball, is
approximately given by

where is the total time of flight for the object in sec-
onds. Assume that the object returns to the same level
as that from which it was launched, as in Fig. 3–59. For
example, if you count to find that a baseball was in the
air for the maximum height attained was

The fun of this relation is that
h can be determined without knowledge of the launch
speed or launch angle Why is that exactly? See 
Section 3–6.

u0 .v0

h = 1.2 * (5.0)2
= 30 m.

t = 5.0 s,

t

h  L   1.2 t2 m,

2. The initial angle of projectile A is 30°, while that of projec-
tile B is 60°. Both have the same level horizontal range.
How do the initial velocities and flight times (elapsed time
from launch until landing) compare for A and B?

3. You are driving south on a highway at (approxi-
mately ) in a snowstorm. When you last stopped,
you noticed that the snow was coming down vertically, but
it is passing the windows of the moving car at an angle of
7.0° to the horizontal. Estimate the speed of the vertically
falling snowflakes relative to the ground. [Hint: Construct
a relative velocity diagram similar to Fig. 3–29 or 3–30. Be
careful about which angle is the angle given.]

25 mi�h
12 m�s

Search and Learn 

A:
B: (a).
C: They hit at the same time.

3.0 22 L 4.2 units. D: (i) Nowhere; (ii) at the highest point; (iii) nowhere.
E: (d). It provides the initial velocity of the box.
F: (a) , horizontal; (b) down.9.80 m�s2v = vx 0 = 16.0 m�s

A N S W E R S  TO  E X E R C I S E S
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Dynamics:
Newton’s Laws of Motion

75

4

A space shuttle 
is carried out into space by 
powerful rockets. They are 
accelerating, increasing in 
speed rapidly. To do so,
a force must be exerted on 
them according to Newton’s 
second law,
What exerts this force? The 
rocket engines exert a force 
on the gases they push out 
(expel) from the rear of the 
rockets (labeled ).
According to Newton’s third 
law, these ejected gases 
exert an equal and opposite 
force on the rockets in the 
forward direction. It is this 
“reaction” force exerted on
the rockets by the gases,
labeled that 
accelerates the rockets 
forward.

F
B

RG ,

F
B

GR

©F
B

= maB.

CONTENTS

4–1 Force

4–2 Newton’s First Law of Motion

4–3 Mass

4–4 Newton’s Second Law of Motion

4–5 Newton’s Third Law of Motion

4–6 Weight—the Force of Gravity;
and the Normal Force

4–7 Solving Problems with Newton’s
Laws: Free-Body Diagrams

4–8 Problems Involving Friction,
Inclines

RGRGF
B

GRF
B

CHAPTER-OPENING QUESTIONS—Guess now!
1. A 150-kg football player collides head-on with a 75-kg running back. During
the collision, the heavier player exerts a force of magnitude on the smaller
player. If the smaller player exerts a force back on the heavier player, which
response is most accurate?

(a)
(b)
(c)
(d)
(e) We need more information.

2. A line by the poet T. S. Eliot (from Murder in the Cathedral) has the women of
Canterbury say “the earth presses up against our feet.” What force is this?

(a) Gravity.
(b) The normal force.
(c) A friction force.
(d) Centrifugal force.
(e) No force—they are being poetic.

FB = 0.
FB 7 FA.
FB 6 FA.
FB = FA.

FB

FA
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W e have discussed how motion is described in terms of velocity and
acceleration. Now we deal with the question of why objects move as
they do: What makes an object at rest begin to move? What causes 

an object to accelerate or decelerate? What is involved when an object moves 
in a curved path? We can answer in each case that a force is required. In this
Chapter†, we will investigate the connection between force and motion, which is
the subject called dynamics.

4–1 Force
Intuitively, we experience force as any kind of a push or a pull on an object. When
you push a stalled car or a grocery cart (Fig. 4–1), you are exerting a force on it.
When a motor lifts an elevator, or a hammer hits a nail, or the wind blows the
leaves of a tree, a force is being exerted. We often call these contact forces because
the force is exerted when one object comes in contact with another object. On
the other hand, we say that an object falls because of the force of gravity (which is
not a contact force).

If an object is at rest, to start it moving requires force—that is, a force is
needed to accelerate an object from zero velocity to a nonzero velocity. For an
object already moving, if you want to change its velocity—either in direction or in
magnitude—a force is required. In other words, to accelerate an object, a force 
is always required. In Section 4–4 we discuss the precise relation between accel-
eration and net force, which is Newton’s second law.

One way to measure the magnitude (or strength) of a force is to use a spring
scale (Fig. 4–2). Normally, such a spring scale is used to find the weight of an
object; by weight we mean the force of gravity acting on the object (Section 4–6).
The spring scale, once calibrated, can be used to measure other kinds of forces 
as well, such as the pulling force shown in Fig. 4–2.

A force exerted in a different direction has a different effect. Force has direc-
tion as well as magnitude, and is indeed a vector that follows the rules of vector
addition discussed in Chapter 3. We can represent any force on a diagram by an
arrow, just as we did with velocity. The direction of the arrow is the direction of the
push or pull, and its length is drawn proportional to the magnitude of the force.

76 CHAPTER 4 Dynamics: Newton’s Laws of Motion

†We treat everyday objects in motion here. When velocities are extremely high, close to the speed of
light we use the theory of relativity (Chapter 26), and in the submicroscopic world
of atoms and molecules we use quantum theory (Chapter 27 ff).

A3.0 * 108 m�sB,

0 1 2 3 4 5 6 7 8 9 10

FIGURE 4;2 A spring scale
used to measure a force.

FIGURE 4;1 A force exerted on a
grocery cart—in this case exerted by
a person.

4–2 Newton’s First Law of Motion
What is the relationship between force and motion? Aristotle (384–322 B.C.)
believed that a force was required to keep an object moving along a horizontal
plane. To Aristotle, the natural state of an object was at rest, and a force was
believed necessary to keep an object in motion. Furthermore, Aristotle argued,
the greater the force on the object, the greater its speed.

Some 2000 years later, Galileo disagreed: he maintained that it is just as natural
for an object to be in motion with a constant velocity as it is for it to be at rest.

GIAN_PPA7_GE_04_075-108v8.3HR2.1.QXD  29-08-2014  14:08  Page 76



To understand Galileo’s idea, consider the following observations involving
motion along a horizontal plane. To push an object with a rough surface along a
tabletop at constant speed requires a certain amount of force. To push an equally
heavy object with a very smooth surface across the table at the same speed will
require less force. If a layer of oil or other lubricant is placed between the surface
of the object and the table, then almost no force is required to keep the object
moving. Notice that in each successive step, less force is required. As the next 
step, we imagine there is no friction at all, that the object does not rub against the
table—or there is a perfect lubricant between the object and the table—and
theorize that once started, the object would move across the table at constant
speed with no force applied. A steel ball bearing rolling on a hard horizontal
surface approaches this situation. So does a puck on an air table, in which a thin
layer of air reduces friction almost to zero.

It was Galileo’s genius to imagine such an idealized world—in this case, one
where there is no friction—and to see that it could lead to a more accurate and
richer understanding of the real world. This idealization led him to his remark-
able conclusion that if no force is applied to a moving object, it will continue to
move with constant speed in a straight line. An object slows down only if a force
is exerted on it. Galileo thus interpreted friction as a force akin to ordinary pushes
and pulls.

To push an object across a table at constant speed requires a force from your
hand that can balance the force of friction (Fig. 4–3). When the object moves at
constant speed, your pushing force is equal in magnitude to the friction force; but
these two forces are in opposite directions, so the net force on the object (the vector
sum of the two forces) is zero. This is consistent with Galileo’s viewpoint, for the
object moves with constant velocity when no net force is exerted on it.

Upon this foundation laid by Galileo, Isaac Newton (Fig. 4–4) built his great
theory of motion. Newton’s analysis of motion is summarized in his famous
“three laws of motion.” In his great work, the Principia (published in 1687),
Newton readily acknowledged his debt to Galileo. In fact, Newton’s first law 
of motion is close to Galileo’s conclusions. It states that

Every object continues in its state of rest, or of uniform velocity in a straight
line, as long as no net force acts on it.

The tendency of an object to maintain its state of rest or of uniform velocity in a
straight line is called inertia. As a result, Newton’s first law is often called the 
law of inertia.
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FIGURE 4;4

Isaac Newton (1642–1727). Besides
developing mechanics, including his
three great laws of motion and the law
of universal gravitation, he also tried
to understand the nature of light.
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FIGURE 4;3 represents the force
applied by the person and 
represents the force of friction.
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Newton’s first law. A school bus comes 
to a sudden stop, and all of the backpacks on the floor start to slide forward.
What force causes them to do that?

RESPONSE It isn’t “force” that does it. By Newton’s first law, the backpacks
continue their state of motion, maintaining their velocity. The backpacks slow
down if a force is applied, such as friction with the floor.

CONCEPTUAL EXAMPLE 4;1

Inertial Reference Frames
Newton’s first law does not hold in every reference frame. For example, if your
reference frame is an accelerating car, an object such as a cup resting on the 
dashboard may begin to move toward you (it stayed at rest as long as the car’s
velocity remained constant). The cup accelerated toward you, but neither you nor
anything else exerted a force on it in that direction. Similarly, in the reference frame
of the decelerating bus in Example 4–1, there was no force pushing the backpacks
forward. In accelerating reference frames, Newton’s first law does not hold. Physics
is easier in reference frames in which Newton’s first law does hold, and they 
are called inertial reference frames (the law of inertia is valid in them). For most
purposes, we usually make the approximation that a reference frame fixed on the
Earth is an inertial frame. This is not precisely true, due to the Earth’s rotation,
but usually it is close enough.
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Any reference frame that moves with constant velocity (say, a car or an air-
plane) relative to an inertial frame is also an inertial reference frame. Reference
frames where the law of inertia does not hold, such as the accelerating reference
frames discussed above, are called noninertial reference frames. How can we be
sure a reference frame is inertial or not? By checking to see if Newton’s first law
holds. Thus Newton’s first law serves as the definition of inertial reference frames.

4–3 Mass
Newton’s second law, which we come to in the next Section, makes use of the
concept of mass. Newton used the term mass as a synonym for “quantity of matter.”
This intuitive notion of the mass of an object is not very precise because the
concept “quantity of matter” is not very well defined. More precisely, we can say
that mass is a measure of the inertia of an object. The more mass an object has,
the greater the force needed to give it a particular acceleration. It is harder to start
it moving from rest, or to stop it when it is moving, or to change its velocity sideways
out of a straight-line path. A truck has much more inertia than a baseball moving
at the same speed, and a much greater force is needed to change the truck’s
velocity at the same rate as the ball’s. The truck therefore has much more mass.

To quantify the concept of mass, we must define a standard. In SI units, the
unit of mass is the kilogram (kg) as we discussed in Chapter 1, Section 1–5.

The terms mass and weight are often confused with one another, but it is
important to distinguish between them. Mass is a property of an object itself
(a measure of an object’s inertia, or its “quantity of matter”). Weight, on the other
hand, is a force, the pull of gravity acting on an object. To see the difference,
suppose we take an object to the Moon. The object will weigh only about one-sixth
as much as it did on Earth, since the force of gravity is weaker. But its mass will
be the same. It will have the same amount of matter as on Earth, and will have
just as much inertia—in the absence of friction, it will be just as hard to start it
moving on the Moon as on Earth, or to stop it once it is moving. (More on weight
in Section 4–6.)

4–4 Newton’s Second Law of Motion
Newton’s first law states that if no net force is acting on an object at rest, the
object remains at rest; or if the object is moving, it continues moving with constant
speed in a straight line. But what happens if a net force is exerted on an object?
Newton perceived that the object’s velocity will change (Fig. 4–5). A net force
exerted on an object may make its velocity increase. Or, if the net force is in a
direction opposite to the motion, that force will reduce the object’s velocity. If the
net force acts sideways on a moving object, the direction of the object’s velocity
changes. That change in the direction of the velocity is also an acceleration. So a
sideways net force on an object also causes acceleration. In general, we can say
that a net force causes acceleration.

What precisely is the relationship between acceleration and force? Everyday
experience can suggest an answer. Consider the force required to push a cart
when friction is small enough to ignore. (If there is friction, consider the net
force, which is the force you exert minus the force of friction.) If you push the 
cart horizontally with a gentle but constant force for a certain period of time,
you will make the cart accelerate from rest up to some speed, say If you
push with twice the force, the cart will reach in half the time. The accel-
eration will be twice as great. If you triple the force, the acceleration is tripled,
and so on. Thus, the acceleration of an object is directly proportional† to the net
applied force. But the acceleration depends on the mass of the object as well.
If you push an empty grocery cart with the same force as you push one that 
is filled with groceries, you will find that the full cart accelerates more slowly.

3 km�h
3 km�h.
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Distinguish mass from weight

†A review of proportionality is given in Appendix A.

FIGURE 4;5 The bobsled 
accelerates because the team exerts 
a force.
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The greater the mass, the less the acceleration for the same net force. The mathe-
matical relation, as Newton argued, is that the acceleration of an object is inversely
proportional to its mass. These relationships are found to hold in general and can
be summarized as follows:

The acceleration of an object is directly proportional to the net force acting
on it, and is inversely proportional to the object’s mass. The direction of the
acceleration is in the direction of the net force acting on the object.

This is Newton’s second law of motion.
Newton’s second law can be written as an equation:

where stands for acceleration, m for the mass, and for the net force on the
object. The symbol (Greek “sigma”) stands for “sum of”; stands for force,
so means the vector sum of all forces acting on the object, which we define as
the net force.

We rearrange this equation to obtain the familiar statement of Newton’s
second law:

(4;1)

Newton’s second law relates the description of motion to the cause of motion,
force. It is one of the most fundamental relationships in physics. From Newton’s
second law we can make a more precise definition of force as an action capable 
of accelerating an object.

Every force is a vector, with magnitude and direction. Equation 4–1 is 
a vector equation valid in any inertial reference frame. It can be written in 
component form in rectangular coordinates as

If the motion is all along a line (one-dimensional), we can leave out the sub-
scripts and simply write Again, a is the acceleration of an object of
mass m, and includes all the forces acting on that object, and only forces
acting on that object. (Sometimes the net force is written as so  .)

In SI units, with the mass in kilograms, the unit of force is called the newton (N).
One newton is the force required to impart an acceleration of to a 
mass of 1 kg. Thus  

In cgs units, the unit of mass is the gram† (g). The unit of force is the dyne, which
is defined as the net force needed to impart an acceleration of to a mass
of 1 g. Thus  Because  and  then  

In the British system, which we rarely use, the unit of force is the pound
(abbreviated lb), where  The unit of mass is the slug,
which is defined as that mass which will undergo an acceleration of when 
a force of 1 lb is applied to it. Thus  Table 4–1 summarizes the
units in the different systems.

It is very important that only one set of units be used in a given calculation 
or Problem, with the SI being what we almost always use. If the force is given in,
say, newtons, and the mass in grams, then before attempting to solve for the
acceleration in SI units, we must change the mass to kilograms. For example, if the
force is given as 2.0 N along the x axis and the mass is 500 g, we change the latter
to 0.50 kg, and the acceleration will then automatically come out in when
Newton’s second law is used:

where we set  .1 N = 1 kg �m�s2

ax =

©Fx

m
=

2.0 N
0.50 kg

=

2.0 kg �m�s2

0.50 kg
= 4.0 m�s2,

m�s2

1 lb = 1 slug � ft�s2.
1 ft�s2

1 lb = 4.44822 N L 4.45 N.

1 dyne = 10–5 N.
1 cm = 10–2 m,1 g = 10–3 kg1 dyne = 1 g �cm�s2.

1 cm�s2

1 N = 1 kg �m�s2.
1 m�s2

Fnet = maFnet ,©F
©F

©F = ma.

©Fx = max ,  ©Fy = may ,  ©Fz = maz .

F
B

©F
B

= maB.

©F
B

F
B

©

©F
B

aB

aB =

©F
B

m
,
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Use a consistent set of units

TABLE 4;1

Units for Mass and Force

System Mass Force

SI kilogram newton (N) 
(kg)

cgs gram (g) dyne 

British slug pound (lb)

Conversion factors:

 1 slug L 14.6 kg.
 1 lb L 4.45 N;

 1 dyne = 10–5 N;

A   = g �cm�s2B
A   = kg �m�s2B

†Be careful not to confuse g for gram with g for the acceleration due to gravity. The latter is always
italicized (or boldface when shown as a vector).
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Force to accelerate a fast car. Estimate the
net force needed to accelerate (a) a 1000-kg car at (b) a 200-gram apple at
the same rate.

APPROACH We use Newton’s second law to find the net force needed for each
object; we are given the mass and the acceleration. This is an estimate (the is
not said to be precise) so we round off to one significant figure.

SOLUTION (a) The car’s acceleration is We
use Newton’s second law to get the net force needed to achieve this acceleration:

(If you are used to British units, to get an idea of what a 5000-N force is, you can
divide by and get a force of about 1000 lb.)
(b) For the apple, so

Force to stop a car. What average net force is required to
bring a 1500-kg car to rest from a speed of within a distance of 55 m?

APPROACH We use Newton’s second law, to determine the force,
but first we need to calculate the acceleration a. We assume the acceleration is
constant so that we can use the kinematic equations, Eqs. 2–11, to calculate it.

©F = ma,

100 km�h
EXAMPLE 4;3

©F = ma   L   (0.2 kg)A5 m�s2B = 1 N.

m = 200 g = 0.2 kg,
4.45 N�lb

©F = ma   L   (1000 kg)A5 m�s2B = 5000 N.

a =
1
2 g =

1
2 A9.8 m�s2B L 5 m�s2.

1
2

1
2 g;

EXAMPLE 4;2 ESTIMATE
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v = 0v0 = 100 km/h

x = 0 x = 55m
x (m)

FIGURE 4;6

Example 4–3.

SOLUTION We assume the motion is along the axis (Fig. 4–6). We are
given the initial velocity (Section 1–6), the final
velocity  and the distance traveled  From Eq. 2–11c, we
have

so

The net force required is then

or The force must be exerted in the direction opposite to the initial
velocity, which is what the negative sign means.

NOTE If the acceleration is not precisely constant, then we are determining an
“average” acceleration and we obtain an “average” net force.

Newton’s second law, like the first law, is valid only in inertial reference frames
(Section 4–2). In the noninertial reference frame of a car that begins accelerating,
a cup on the dashboard starts sliding—it accelerates—even though the net force on
it is zero. Thus does not work in such an accelerating reference frame
( but in this noninertial frame).

EXERCISE A Suppose you watch a cup slide on the (smooth) dashboard of an acceler-
ating car as we just discussed, but this time from an inertial reference frame outside the
car, on the street. From your inertial frame, Newton’s laws are valid. What force pushes
the cup off the dashboard?

aB Z 0©F
B

= 0,
©F

B

= maB

11,000 N.

©F = ma = (1500 kg)A–7.0 m�s2B = –1.1 * 104 N,

 a =

v2
- v0

2

2(x - x0)
=

0 - (27.8 m�s)2

2(55 m)
= –7.0 m�s2.

 v2
= v0

2
+ 2a Ax - x0B,

x - x0 = 55 m.v = 0,
v0 = 100 km�h = 27.8 m�s

±x
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4–5 Newton’s Third Law of Motion
Newton’s second law of motion describes quantitatively how forces affect motion.
But where, we may ask, do forces come from? Observations suggest that a force
exerted on any object is always exerted by another object. A horse pulls a wagon,
a person pushes a grocery cart, a hammer pushes on a nail, a magnet attracts a
paper clip. In each of these examples, a force is exerted on one object, and that
force is exerted by another object. For example, the force exerted on the nail is
exerted by the hammer.

But Newton realized that things are not so one-sided. True, the hammer exerts
a force on the nail (Fig. 4–7). But the nail evidently exerts a force back on the
hammer as well, for the hammer’s speed is rapidly reduced to zero upon contact.
Only a strong force could cause such a rapid deceleration of the hammer. Thus,
said Newton, the two objects must be treated on an equal basis. The hammer
exerts a force on the nail, and the nail exerts a force back on the hammer. This 
is the essence of Newton’s third law of motion:

Whenever one object exerts a force on a second object, the second object
exerts an equal force in the opposite direction on the first.

This law is sometimes paraphrased as “to every action there is an equal and oppo-
site reaction.” This is perfectly valid. But to avoid confusion, it is very important
to remember that the “action” force and the “reaction” force are acting on different
objects.

As evidence for the validity of Newton’s third law, look at your hand when
you push against the edge of a desk, Fig. 4–8. Your hand’s shape is distorted, clear
evidence that a force is being exerted on it. You can see the edge of the desk press-
ing into your hand. You can even feel the desk exerting a force on your hand;
it hurts! The harder you push against the desk, the harder the desk pushes back 
on your hand. (You only feel forces exerted on you; when you exert a force on
another object, what you feel is that object pushing back on you.)
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Action and reaction forces act 
on different objects

FIGURE 4;7 A hammer striking a
nail. The hammer exerts a force on the
nail and the nail exerts a force back on
the hammer. The latter force decelerates
the hammer and brings it to rest.

Force exerted
on hand
by desk

Force exerted
on desk by hand

FIGURE 4;8 If your hand pushes
against the edge of a desk (the force
vector is shown in red), the desk
pushes back against your hand (this
force vector is shown in a different
color, violet, to remind us that this
force acts on a different object).

Force
on

skater

Force
on

wall

FIGURE 4;9 An example of
Newton’s third law: when an ice
skater pushes against the wall, the
wall pushes back and this force
causes her to accelerate away.

The force the desk exerts on your hand has the same magnitude as the force
your hand exerts on the desk. This is true not only if the desk is at rest but is true
even if the desk is accelerating due to the force your hand exerts.

As another demonstration of Newton’s third law, consider the ice skater in
Fig. 4–9. There is very little friction between her skates and the ice, so she will
move freely if a force is exerted on her. She pushes against the wall; and then she
starts moving backward. The force she exerts on the wall cannot make her start
moving, because that force acts on the wall. Something had to exert a force on her
to start her moving, and that force could only have been exerted by the wall.
The force with which the wall pushes on her is, by Newton’s third law, equal and
opposite to the force she exerts on the wall.

When a person throws a package out of a small boat (initially at rest), the
boat starts moving in the opposite direction. The person exerts a force on the
package. The package exerts an equal and opposite force back on the person,
and this force propels the person (and the boat) backward slightly.
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Rocket propulsion also is explained using Newton’s third law (Fig. 4–10).
A common misconception is that rockets accelerate because the gases rushing
out the back of the engine push against the ground or the atmosphere. Not true.
What happens, instead, is that a rocket exerts a strong force on the gases, expel-
ling them; and the gases exert an equal and opposite force on the rocket. It is this
latter force that propels the rocket forward—the force exerted on the rocket by the
gases (see Chapter-Opening Photo, page 75). Thus, a space vehicle is maneuvered
in empty space by firing its rockets in the direction opposite to that in which it
needs to accelerate. When the rocket pushes on the gases in one direction, the
gases push back on the rocket in the opposite direction. Jet aircraft too accelerate
because the gases they thrust out backwards exert a forward force on the engines
(Newton’s third law).

Consider how we walk. A person begins walking by pushing with the foot
backward against the ground. The ground then exerts an equal and opposite
force forward on the person (Fig. 4–11), and it is this force, on the person, that
moves the person forward. (If you doubt this, try walking normally where there
is no friction, such as on very smooth slippery ice.) In a similar way, a bird flies
forward by exerting a backward force on the air, but it is the air pushing 
forward (Newton’s third law) on the bird’s wings that propels the bird forward.

What exerts the force to move a car?

What makes a car go forward?

RESPONSE A common answer is that the engine makes the car move for-
ward. But it is not so simple. The engine makes the wheels go around. But if the
tires are on slick ice or wet mud, they just spin. Friction is needed. On firm
ground, the tires push backward against the ground because of friction. By
Newton’s third law, the ground pushes on the tires in the opposite direction,
accelerating the car forward.

We tend to associate forces with active objects such as humans, animals,
engines, or a moving object like a hammer. It is often difficult to see how an 
inanimate object at rest, such as a wall or a desk, or the wall of an ice rink
(Fig. 4–9), can exert a force. The explanation is that every material, no matter
how hard, is elastic (springy) at least to some degree. A stretched rubber band
can exert a force on a wad of paper and accelerate it to fly across the room.
Other materials may not stretch as readily as rubber, but they do stretch or
compress when a force is applied to them. And just as a stretched rubber band
exerts a force, so does a stretched (or compressed) wall, desk, or car fender.

From the examples discussed above, we can see how important it is to
remember on what object a given force is exerted and by what object that force 
is exerted. A force influences the motion of an object only when it is applied on
that object. A force exerted by an object does not influence that same object; it
only influences the other object on which it is exerted. Thus, to avoid confusion,
the two prepositions on and by must always be used—and used with care.

One way to keep clear which force acts on which object is to use double sub-
scripts. For example, the force exerted on the Person by the Ground as the person
walks in Fig. 4–11 can be labeled And the force exerted on the ground by
the person is By Newton’s third law

(4;2)

and have the same magnitude (Newton’s third law), and the minus sign
reminds us that these two forces are in opposite directions.

Note carefully that the two forces shown in Fig. 4–11 act on different
objects—to emphasize this we used slightly different colors for the vector arrows
representing these forces. These two forces would never appear together in a 
sum of forces in Newton’s second law, Why not? Because they act on
different objects: is the acceleration of one particular object, and must
include only the forces on that one object.
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Horizontal
force exerted
on the ground
by person’s
foot

Horizontal
force exerted
on the
person’s foot
by the ground

GP PGF
B

F
B

FIGURE 4;11 We can walk forward
because, when one foot pushes
backward against the ground, the
ground pushes forward on that foot
(Newton’s third law). The two forces
shown act on different objects.

FIGURE 4;10 Another example of
Newton’s third law: the launch of a
rocket. The rocket engine pushes the
gases downward, and the gases exert
an equal and opposite force upward
on the rocket, accelerating it upward.
(A rocket does not accelerate as a
result of its expelled gases pushing
against the ground.)
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Third law clarification. Michelangelo’s
assistant has been assigned the task of moving a block of marble using a sled
(Fig. 4–12). He says to his boss, “When I exert a forward force on the sled, the 
sled exerts an equal and opposite force backward. So how can I ever start it
moving? No matter how hard I pull, the backward reaction force always equals
my forward force, so the net force must be zero. I’ll never be able to move this
load.” Is he correct?

RESPONSE No. Although it is true that the action and reaction forces are equal
in magnitude, the assistant has forgotten that they are exerted on different
objects. The forward (“action”) force is exerted by the assistant on the sled 
(Fig. 4–12), whereas the backward “reaction” force is exerted by the sled on the
assistant. To determine if the assistant moves or not, we must consider only 
the forces on the assistant and then apply  where is the net force
on the assistant, is the acceleration of the assistant, and m is the assistant’s mass.
There are two forces on the assistant that affect his forward motion; they are
shown as bright red (magenta) arrows in Figs. 4–12 and 4–13: they are (1) the hori-
zontal force exerted on the assistant by the ground (the harder he pushes
backward against the ground, the harder the ground pushes forward on him—
Newton’s third law), and (2) the force exerted on the assistant by the sled,
pulling backward on him; see Fig. 4–13. If he pushes hard enough on the ground,
the force on him exerted by the ground, will be larger than the sled pulling
back, and the assistant accelerates forward (Newton’s second law). The sled,
on the other hand, accelerates forward when the force on it exerted by the assis-
tant is greater than the frictional force exerted backward on it by the ground (that
is, when has greater magnitude than in Fig. 4–12).

Using double subscripts to clarify Newton’s third law can become cumbersome,
and we won’t usually use them in this way. We will usually use a single subscript
referring to what exerts the force on the object being discussed. Nevertheless,
if there is any confusion in your mind about a given force, go ahead and use two
subscripts to identify on what object and by what object the force is exerted.

EXERCISE B Return to the first Chapter-Opening Question, page 75, and answer it
again now. Try to explain why you may have answered differently the first time.

EXERCISE C A tennis ball collides head-on with a more massive baseball. (i) Which ball
experiences the greater force of impact? (ii) Which experiences the greater acceleration
during the impact? (iii) Which of Newton’s laws are useful to obtain the correct answers?

EXERCISE D If you push on a heavy desk, does it always push back on you? (a) No.
(b) Yes. (c) Not unless someone else also pushes on it. (d) Yes, if it is out in space.
(e) A desk never pushes to start with.
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A study of Newton’s second and
third laws

FIGURE 4;12 Example 4–5,
showing only horizontal forces.
Michelangelo has selected a fine
block of marble for his next 
sculpture. Shown here is his assistant
pulling it on a sled away from the
quarry. Forces on the assistant are
shown as red (magenta) arrows.
Forces on the sled are purple arrows.
Forces acting on the ground are
orange arrows. Action–reaction
forces that are equal and opposite
are labeled by the same subscripts
but reversed (such as and )
and are of different colors because
they act on different objects.
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Force on
assistant
exerted
by sled

Force on
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exerted 
by ground

AG

AS

F
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F
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FIGURE 4;13 Example 4–5. The
horizontal forces on the assistant.
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4–6 Weight—the Force of Gravity;
and the Normal Force

As we saw in Chapter 2, Galileo claimed that all objects dropped near the surface
of the Earth would fall with the same acceleration, if air resistance was negligible.
The force that causes this acceleration is called the force of gravity or gravitational
force. What exerts the gravitational force on an object? It is the Earth, as we will
discuss in Chapter 5, and the force acts vertically† downward, toward the center of
the Earth. Let us apply Newton’s second law to an object of mass m falling freely
due to gravity. For the acceleration, we use the downward acceleration due to
gravity, Thus, the gravitational force on an object, can be written as

(4;3)

The direction of this force is down toward the center of the Earth. The magnitude
of the force of gravity on an object, mg, is commonly called the object’s weight.

In SI units, ‡ so the weight of a 1.00-kg mass on
Earth is  We will mainly be concerned with the
weight of objects on Earth, but we note that on the Moon, on other planets, or in
space, the weight of a given mass will be different than it is on Earth. For exam-
ple, on the Moon the acceleration due to gravity is about one-sixth what it is on
Earth, and a 1.0-kg mass weighs only 1.6 N. Although we will not use British
units, we note that for practical purposes on the Earth, a mass of 1.0 kg weighs
about 2.2 lb. (On the Moon, 1 kg weighs only about 0.4 lb.)

The force of gravity acts on an object when it is falling. When an object is at
rest on the Earth, the gravitational force on it does not disappear, as we know if
we weigh it on a spring scale. The same force, given by Eq. 4–3, continues to act.
Why, then, doesn’t the object move? From Newton’s second law, the net force 
on an object that remains at rest is zero. There must be another force on the
object to balance the gravitational force. For an object resting on a table, the table
exerts this upward force; see Fig. 4–14a. The table is compressed slightly beneath
the object, and due to its elasticity, it pushes up on the object as shown. The force
exerted by the table is often called a contact force, since it occurs when two objects
are in contact. (The force of your hand pushing on a cart is also a contact force.)
When a contact force acts perpendicular to the common surface of contact, it 
is referred to as the normal force (“normal” means perpendicular); hence it is
labeled in Fig. 4–14a.

The two forces shown in Fig. 4–14a are both acting on the statue, which
remains at rest, so the vector sum of these two forces must be zero (Newton’s second
law). Hence and must be of equal magnitude and in opposite directions.
But they are not the equal and opposite forces spoken of in Newton’s third law. The
action and reaction forces of Newton’s third law act on different objects, whereas the
two forces shown in Fig. 4–14a act on the same object. For each of the forces shown
in Fig. 4–14a, we can ask, “What is the reaction force?” The upward force 
on the statue is exerted by the table. The reaction to this force is a force exerted by
the statue downward on the table. It is shown in Fig. 4–14b, where it is labeled 
This force, exerted on the table by the statue, is the reaction force to in
accord with Newton’s third law. What about the other force on the statue, the force
of gravity exerted by the Earth? Can you guess what the reaction is to this
force? We will see in Chapter 5 that the reaction force is also a gravitational force,
exerted on the Earth by the statue.

EXERCISE E Return to the second Chapter-Opening Question, page 75, and answer it
again now. Try to explain why you may have answered differently the first time.
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1.00 kg * 9.80 m�s2
= 9.80 N.

g = 9.80 m�s2
= 9.80 N�kg,

F
B

G = mgB.

F
B

G ,gB.
aB,
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†The concept of “vertical” is tied to gravity. The best definition of vertical is that it is the direction in
which objects fall. A surface that is “horizontal,” on the other hand, is a surface on which a round
object won’t start rolling: gravity has no effect. Horizontal is perpendicular to vertical.
‡Since (Section 4–4), then 1 m�s2

= 1 N�kg.1 N = 1 kg �m�s2

C A U T I O N

Weight and normal force are not
action–reaction pairs

(a)
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FIGURE 4;14 (a) The net force on
an object at rest is zero according to
Newton’s second law. Therefore the
downward force of gravity on
an object at rest must be balanced
by an upward force (the normal
force ) exerted by the table in this
case. (b) is the force exerted on
the table by the statue and is the
reaction force to by Newton’s
third law. ( is shown in a different
color to remind us it acts on a
different object.) The reaction force
to is not shown.F
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Weight, normal force, and a box. A friend has given you 
a special gift, a box of mass 10.0 kg with a mystery surprise inside. The box is
resting on the smooth (frictionless) horizontal surface of a table (Fig. 4–15a).
(a) Determine the weight of the box and the normal force exerted on it by 
the table. (b) Now your friend pushes down on the box with a force of 40.0 N,
as in Fig. 4–15b. Again determine the normal force exerted on the box by 
the table. (c) If your friend pulls upward on the box with a force of 40.0 N 
(Fig. 4–15c), what now is the normal force exerted on the box by the table?

APPROACH The box is at rest on the table, so the net force on the box in each
case is zero (Newton’s first or second law). The weight of the box has magni-
tude mg in all three cases.

SOLUTION (a) The weight of the box is  
and this force acts downward. The only other force on the box is the normal
force exerted upward on it by the table, as shown in Fig. 4–15a. We chose the
upward direction as the positive y direction; then the net force on the box
is  the minus sign means mg acts in the negative y direction
(m and g are magnitudes). The box is at rest, so the net force on it must be 
zero (Newton’s second law, and  ). Thus

so we have

The normal force on the box, exerted by the table, is 98.0 N upward, and has
magnitude equal to the box’s weight.
(b) Your friend is pushing down on the box with a force of 40.0 N. So instead 
of only two forces acting on the box, now there are three forces acting on the
box, as shown in Fig. 4–15b. The weight of the box is still  The net
force is  and is equal to zero because the box remains
at rest  Newton’s second law gives

We solve this equation for the normal force:

which is greater than in (a). The table pushes back with more force when a person
pushes down on the box. The normal force is not always equal to the weight!
(c) The box’s weight is still 98.0 N and acts downward. The force exerted by
your friend and the normal force both act upward (positive direction), as shown
in Fig. 4–15c. The box doesn’t move since your friend’s upward force is less 
than the weight. The net force, again set to zero in Newton’s second law because

is

so

The table does not push against the full weight of the box because of the upward
force exerted by your friend.

NOTE The weight of the box does not change as a result of your friend’s
push or pull. Only the normal force is affected.

Recall that the normal force is elastic in origin (the table in Fig. 4–15 sags
slightly under the weight of the box). The normal force in Example 4–6 is verti-
cal, perpendicular to the horizontal table. The normal force is not always vertical,
however. When you push against a wall, for example, the normal force with
which the wall pushes back on you is horizontal (Fig. 4–9). For an object on a
plane inclined at an angle to the horizontal, such as a skier or car on a hill, the
normal force acts perpendicular to the plane and so is not vertical.

(  = mg)

FN = mg - 40.0 N = 98.0 N - 40.0 N = 58.0 N.

©Fy = FN - mg + 40.0 N = 0,

a = 0,

FN = mg + 40.0 N = 98.0 N + 40.0 N = 138.0 N,

©Fy = FN - mg - 40.0 N = 0.

(a = 0).
©Fy = FN - mg - 40.0 N,

mg = 98.0 N.

FN = mg.

 FN - mg = 0,

 ©Fy = may

ay = 0©Fy = may ,

©Fy = FN - mg;
©Fy

mg = (10.0 kg)A9.80 m�s2B = 98.0 N,
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C A U T I O N

The normal force is not 
always equal to the weight

40.0 N

40.0 N
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mgB

mgB

mgB

(b)

(a)

(c)

�Fy � FN � mg � 40.0 N � 0

�Fy � FN � mg � 40.0 N � 0

�Fy � FN � mg � 0

FIGURE 4;15 Example 4–6.
(a) A 10-kg gift box is at rest on a 
table. (b) A person pushes down on 
the box with a force of 40.0 N.
(c) A person pulls upward on the 
box with a force of 40.0 N. The forces
are all assumed to act along a line;
they are shown slightly displaced in 
order to be distinguishable. Only 
forces acting on the box are shown.

C A U T I O N

The normal force, is 
not necessarily vertical

F
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N ,
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Accelerating the box. What happens when a person pulls
upward on the box in Example 4–6c with a force equal to, or greater than,
the box’s weight? For example, let (Fig. 4–16) rather than the
40.0 N shown in Fig. 4–15c.

APPROACH We can start just as in Example 4–6, but be ready for a surprise.

SOLUTION The net force on the box is

and if we set this equal to zero (thinking the acceleration might be zero), we
would get  This is nonsense, since the negative sign implies 
points downward, and the table surely cannot pull down on the box (unless
there’s glue on the table). The least can be is zero, which it will be in this case.
What really happens here is that the box accelerates upward ( ) because
the net force is not zero. The net force (setting the normal force  ) is

upward. See Fig. 4–16. We apply Newton’s second law and see that the box
moves upward with an acceleration

 = 0.20 m�s2 .

 ay =

©Fy

m
=

2.0 N
10.0 kg

 = 2.0 N

 ©Fy = FP - mg = 100.0 N - 98.0 N

FN = 0
a Z 0

FN

FNFN = –2.0 N.

 = FN - 98.0 N + 100.0 N,

 ©Fy = FN - mg + FP

FP = 100.0 N

EXAMPLE 4;7
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(100.0 N)

(98.0 N)m

PF
B

gB

aB

FIGURE 4;16 Example 4–7. The
box accelerates upward because
FP 7 mg.

NF
B

aB
mgB

FIGURE 4;17 Example 4–8. The
acceleration vector is shown in gold
to distinguish it from the red force
vectors.

Apparent weight loss. A 65-kg woman descends in an
elevator that briefly accelerates at 0.20g downward. She stands on a scale that
reads in kg. (a) During this acceleration, what is her weight and what does 
the scale read? (b) What does the scale read when the elevator descends at a
constant speed of 

APPROACH Figure 4–17 shows all the forces that act on the woman (and only
those that act on her). The direction of the acceleration is downward, so 
we choose the positive direction as down (this is the opposite choice from
Examples 4–6 and 4–7).

SOLUTION (a) From Newton’s second law,

We solve for 

and it acts upward. The normal force is the force the scale exerts on the
person, and is equal and opposite to the force she exerts on the scale:

downward. Her weight (force of gravity on her) is still
But the scale, needing to exert a force of 

only 0.80mg, will give a reading of
(b) Now there is no acceleration, so by Newton’s second law,

and  The scale reads her true mass of 65 kg.

NOTE The scale in (a) gives a reading of 52 kg (as an “apparent mass”), but 
her mass doesn’t change as a result of the acceleration: it stays at 65 kg.

FN = mg.mg - FN = 0
a = 0,

0.80m = 52 kg.
mg = (65 kg)A9.8 m�s2B = 640 N.
FN

œ

= 0.80mg

F
B

N

 = 0.80mg,

 FN = mg - 0.20mg

FN :

 mg - FN = m(0.20g).

 ©F = ma

2.0 m�s?

EXAMPLE 4;8
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4–7 Solving Problems with Newton’s Laws:
Free-Body Diagrams

Newton’s second law tells us that the acceleration of an object is proportional to
the net force acting on the object. The net force, as mentioned earlier, is the
vector sum of all forces acting on the object. Indeed, extensive experiments have
shown that forces do add together as vectors precisely according to the rules 
we developed in Chapter 3. For example, in Fig. 4–18, two forces of equal magni-
tude (100 N each) are shown acting on an object at right angles to each other.
Intuitively, we can see that the object will start moving at a 45° angle and thus 
the net force acts at a 45° angle. This is just what the rules of vector addition 
give. From the theorem of Pythagoras, the magnitude of the resultant force is

Adding force vectors. Calculate the sum of the two forces
exerted on the boat by workers A and B in Fig. 4–19a.

APPROACH We add force vectors like any other vectors as described in
Chapter 3. The first step is to choose an xy coordinate system (see Fig. 4–19a),
and then resolve vectors into their components.

SOLUTION The two force vectors are shown resolved into components in 
Fig. 4–19b. We add the forces using the method of components. The compo-
nents of are

The components of are

is negative because it points along the negative y axis. The components of
the resultant force are (see Fig. 4–19c)

To find the magnitude of the resultant force, we use the Pythagorean theorem,

The only remaining question is the angle that the net force makes with the
x axis. We use:

and  The net force on the boat has magnitude 53.3 N and
acts at an 11.0° angle to the x axis.

When solving problems involving Newton’s laws and force, it is very important
to draw a diagram showing all the forces acting on each object involved. Such a dia-
gram is called a free-body diagram, or force diagram: choose one object, and draw
an arrow to represent each force acting on it. Include every force acting on that
object. Do not show forces that the chosen object exerts on other objects. To help
you identify each and every force that is exerted on your chosen object, ask yourself
what other objects could exert a force on it. If your problem involves more than one
object, a separate free-body diagram is needed for each object. For now, the likely
forces that could be acting are gravity and contact forces (one object pushing or
pulling another, normal force, friction). Later we will consider other types of force
such as buoyancy, fluid pressure, and electric and magnetic forces.

tan–1(0.195) = 11.0°.

tan u =

FRy

FRx
=

10.2 N
52.3 N

= 0.195,

F
B

Ru

FR = 3FRx
2

+ FRy
2

= 3(52.3)2
+ (10.2)2 N = 53.3 N.

 FRy = FAy + FBy = 28.3 N - 18.1 N = 10.2 N.

 FRx = FAx + FBx = 28.3 N + 24.0 N = 52.3 N,

FBy

 FBy = –FB sin 37.0° = –(30.0 N)(0.602) = –18.1 N.

 FBx = ±FB cos 37.0° = ±(30.0 N)(0.799) = ±24.0 N,

F
B

B

 FAy = FA sin 45.0° = (40.0 N)(0.707) = 28.3 N.

 FAx = FA cos 45.0° = (40.0 N)(0.707) = 28.3 N,

F
B

A
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FR = 3(100 N)2
+ (100 N)2

= 141 N.
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FB = 100 N

FA = 100 N

(a) (b)
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FIGURE 4;18 (a) Two horizontal
forces, and exerted by 
workers A and B, act on a crate 
(we are looking down from above).
(b) The sum, or resultant, of 
and is F
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FIGURE 4;19 Example 4–9: Two
force vectors act on a boat.

P R O B L E M  S O L V I N G

Free-body diagram
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