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What Is Number Theory?

There is a buzz about number theory: Thousands of people work on communal number
theory problems over the Internet . . . the solution of a famous problem in number

theory is reported on the PBS television series NOVA . . . people study number theory
to understand systems for making messages secret . . . What is this subject, and why are
so many people interested in it today?

Number theory is the branch of mathematics that studies the properties of, and the
relationships between, particular types of numbers. Of the sets of numbers studied in
number theory, the most important is the set of positive integers. More specifically,
the primes, those positive integers with no positive proper factors other than 1, are
of special importance. A key result of number theory shows that the primes are the
multiplicative building blocks of the positive integers. This result, called the fundamental
theorem of arithmetic, tells us that every positive integer can be uniquely written as
the product of primes in nondecreasing order. Interest in prime numbers goes back
at least 2500 years, to the studies of ancient Greek mathematicians. Perhaps the first
question about primes that comes to mind is whether there are infinitely many. In The
Elements, the ancient Greek mathematician Euclid provided a proof, that there are
infinitely many primes. This proof is considered to be one of the most beautiful proofs
in all of mathematics. Interest in primes was rekindled in the seventeenth and eighteenth
centuries, when mathematicians such as Pierre de Fermat and Leonhard Euler proved
many important results and conjectured approaches for generating primes. The study of
primes progressed substantially in the nineteenth century; results included the infinitude
of primes in arithmetic progressions, and sharp estimates for the number of primes not
exceeding a positive number x. The last 100 years has seen the development of many
powerful techniques for the study of primes, but even with these powerful techniques,
many questions remain unresolved. An example of a notorious unsolved question is
whether there are infinitely many twin primes, which are pairs of primes that differ by 2.
New results will certainly follow in the coming decades, as researchers continue working
on the many open questions involving primes.

The development of modern number theory was made possible by the German
mathematician Carl Friedrich Gauss, one of the greatest mathematicians in history, who
in the early nineteenth century developed the language of congruences. We say that two
integers a and b are congruent modulo m, where m is a positive integer, if m divides
a − b. This language makes it easy to work with divisibility relationships in much the
same way that we work with equations. Gauss developed many important concepts in
number theory; for example, he proved one of its most subtle and beautiful results, the law
of quadratic reciprocity. This law relates whether a prime p is a perfect square modulo
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2 What Is Number Theory?

a second prime q to whether q is a perfect square modulo p. Gauss developed many
different proofs of this law, some of which have led to whole new areas of number theory.

Distinguishing primes from composite integers is a key problem of number theory.
Work on this problem has produced an arsenal of primality tests. The simplest primality
test is simply to check whether a positive integer is divisible by each prime not exceeding
its square root. Unfortunately, this test is too inefficient to use for extremely large positive
integers. Many different approaches have been used to determine whether an integer is
prime. For example, in the nineteenth century, Pierre de Fermat showed that p divides
2p − 2 whenever p is prime. Some mathematicians thought that the converse also was
true (that is, that if n divides 2n − 2, then n must be prime). However, it is not; by the early
nineteenth century, composite integers n, such as 341, were known for which n divides
2n − 2. Such integers are called pseudoprimes. Though pseudoprimes exist, primality
tests based on the fact that most composite integers are not pseudoprimes are now used
to quickly find extremely large integers which are are extremely likely to be primes.
However, they cannot be used to prove that an integer is prime. Finding an efficient
method to prove that an integer is prime was an open question for hundreds of years.
In a surprise to the mathematical community, this question was solved in 2002 by three
Indian computer scientists, Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Their
algorithms can prove that an integer n is prime in polynomial time (in terms of the number
of digits of n).

Factoring a positive integer into primes is another central problem in number theory.
The factorization of a positive integer can be found using trial division, but this method
is extremely time-consuming. Fermat, Euler, and many other mathematicians devised
imaginative factorization algorithms, which have been extended in the past 30 years
into a wide array of factoring methods. Using the best-known techniques, we can easily
find primes with hundreds or even thousands of digits; factoring integers with the same
number of digits, however, is beyond our most powerful computers.

The dichotomy between the time required to find large integers which are almost
certainly prime and the time required to factor large integers is the basis of an extremely
important secrecy system, the RSA cryptosystem. The RSA system is a public key
cryptosystem, a security system in which each person has a public key and an associated
private key. Messages can be encrypted by anyone using another person’s public key,
but these messages can be decrypted only by the owner of the private key. Concepts
from number theory are essential to understanding the basic workings of the RSA
cryptosystem, as well as many other parts of modern cryptography. The overwhelming
importance of number theory in cryptography contradicts the earlier belief, held by many
mathematicians, that number theory was unimportant for real-world applications. It is
ironic that some famous mathematicians, such as G. H. Hardy, took pride in the notion
that number theory would never be applied in the way that it is today.

The search for integer solutions of equations is another important part of number
theory. An equation with the added proviso that only integer solutions are sought is called
diophantine, after the ancient Greek mathematician Diophantus. Many different types of
diophantine equations have been studied, but the most famous is the Fermat equation
xn + yn = zn. Fermat’s last theorem states that if n is an integer greater than 2, this

2



What Is Number Theory? 3

equation has no solutions in integers x, y, and z, where xyz �= 0. Fermat conjectured
in the seventeenth century that this theorem was true, and mathematicians (and others)
searched for proofs for more than three centuries, but it was not until 1995 that the first
proof was given by Andrew Wiles.

As Wiles’s proof shows, number theory is not a static subject! New discoveries
continue steadily to be made, and researchers frequently establish significant theoretical
results. The fantastic power available when today’s computers are linked over the Internet
yields a rapid pace of new computational discoveries in number theory. Everyone can
participate in this quest; for instance, you can join the quest for the new Mersenne primes,
primes of the form 2p − 1, where p itself is prime. In August 2008, the first prime with
more than 10 million decimal digits was found: the Mersenne prime 243,112,609 − 1. This
discovery qualified for a $100,000 prize from the Electronic Frontier Foundation. A
concerted effort is under way to find a prime with more than 100 million digits, with a
$150,000 prize offered. After learning about some of the topics covered in this text, you
may decide to join the hunt yourself, putting your idle computing resources to good use.

What is elementary number theory? You may wonder why the word “elementary”
is part of the title of this book. This book considers only that part of number theory called
elementary number theory, which is the part not dependent on advanced mathematics,
such as the theory of complex variables, abstract algebra, or algebraic geometry. Students
who plan to continue the study of mathematics will learn about more advanced areas of
number theory, such as analytic number theory (which takes advantage of the theory
of complex variables) and algebraic number theory (which uses concepts from abstract
algebra to prove interesting results about algebraic number fields).

Some words of advice. As you embark on your study, keep in mind that number
theory is a classical subject with results dating back thousands of years, yet is also the
most modern of subjects, with new discoveries being made at a rapid pace. It is pure
mathematics with the greatest intellectual appeal, yet it is also applied mathematics, with
crucial applications to cryptography and other aspects of computer science and electrical
engineering. I hope that you find the many facets of number theory as captivating as
aficionados who have preceded you, many of whom retained an interest in number theory
long after their school days were over.

Experimentation and exploration play a key role in the study of number theory. The
results in this book were found by mathematicians who often examined large amounts of
numerical evidence, looking for patterns and making conjectures. They worked diligently
to prove their conjectures; some of these were proved and became theorems, others were
rejected when counterexamples were found, and still others remain unresolved. As you
study number theory, I recommend that you examine many examples, look for patterns,
and formulate your own conjectures. You can examine small examples by hand, much as
the founders of number theory did, but unlike these pioneers, you can also take advantage
of today’s vast computing power and computational engines. Working through examples,
either by hand or with the aid of computers, will help you to learn the subject—and you
may even find some new results of your own!
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1 The Integers

In the most general sense, number theory deals with the properties of different sets of
numbers. In this chapter, we will discuss some particularly important sets of numbers,

including the integers, the rational numbers, and the algebraic numbers. We will briefly
introduce the notion of approximating real numbers by rational numbers. We will also
introduce the concept of a sequence, and particular sequences of integers, including some
figurate numbers studied in ancient Greece. A common problem is the identification of
a particular integer sequence from its initial terms; we will briefly discuss how to attack
such problems.

Using the concept of a sequence, we will define countable sets and show that the set
of rational numbers is countable. We will also introduce notations for sums and products,
and establish some useful summation formulas.

One of the most important proof techniques in number theory (and in much of
mathematics) is mathematical induction. We will discuss the two forms of mathematical
induction, illustrate how they can be used to prove various results, and explain why
mathematical induction is a valid proof technique.

Continuing, we will introduce the intriguing sequence of Fibonacci numbers, and
describe the original problem from which they arose. We will establish some identities
and inequalities involving the Fibonacci numbers, using mathematical induction for
some of our proofs.

The final section of this chapter deals with a fundamental notion in number theory,
that of divisibility. We will establish some of the basic properties of division of integers,
including the “division algorithm.” We will show how the quotient and remainder of a
division of one integer by another can be expressed using values of the greatest integer
function (we will describe a few of the many useful properties of this function, as well).

1.1 Numbers and Sequences

In this section, we introduce basic material that will be used throughout the text. In
particular, we cover the important sets of numbers studied in number theory, the concept
of integer sequences, and summations and products.

From Chapter 1 of Elementary Number Theory, Sixth Edition. Kenneth H. Rosen  .
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6 The Integers

Numbers

To begin, we will introduce several different types of numbers. The integers are the
numbers in the set

{. . . , −3, −2, −1, 0, 1, 2, 3, . . .}.
The integers play center stage in the study of number theory. One property of the positive
integers deserves special mention.

The Well-Ordering Property Every nonempty set of positive integers has a least
element.

The well-ordering property may seem obvious, but it is the basic principle that allows
us to prove many results about sets of integers, as we will see in Section 1.3.

The well-ordering property can be taken as one of the axioms defining the set of
positive integers or it may be derived from a set of axioms in which it is not included.
(See Appendix A for axioms for the set of integers.) We say that the set of positive
integers is well ordered. However, the set of all integers (positive, negative, and zero)
is not well ordered, as there are sets of integers without a smallest element, such as the
set of negative integers, the set of even integers less than 100, and the set of all integers
itself.

Another important class of numbers in the study of number theory is the set of
numbers that can be written as a ratio of integers.

Definition. The real number r is rational if there are integers p and q, with q �= 0,
such that r = p/q. If r is not rational, it is said to be irrational.

Example 1.1. The numbers −22/7, 0 = 0/1, 2/17, and 1111/41are rational numbers.
�

Note that every integer n is a rational number, because n = n/1. Examples of irrational
numbers are

√
2, π , and e. We can use the well-ordering property of the set of positive

integers to show that
√

2 is irrational. The proof that we provide, although quite clever,
is not the simplest proof that

√
2 is irrational. You may prefer the proof that we will give

in Chapter 4, which depends on concepts developed in that chapter. (The proof that e is
irrational is left as Exercise 44. We refer the reader to [HaWr08] for a proof that π is
irrational. It is not easy.)

Theorem 1.1.
√

2 is irrational.

Proof. Suppose that
√

2 were rational. Then there would exist positive integers a and b

such that
√

2 = a/b. Consequently, the set S = {k√
2 | k and k

√
2 are positive integers}

is a nonempty set of positive integers (it is nonempty because a = b
√

2 is a member
of S). Therefore, by the well-ordering property, S has a smallest element, say, s = t

√
2.

6



1.1 Numbers and Sequences 7

We have s
√

2 − s = s
√

2 − t
√

2 = (s − t)
√

2. Because s
√

2 = 2t and s are both
integers, s

√
2 − s = s

√
2 − t

√
2 = (s − t)

√
2 must also be an integer. Furthermore, it

is positive, because s
√

2 − s = s(
√

2 − 1) and
√

2 > 1. It is less than s, because
√

2 < 2
so that

√
2 − 1< 1. This contradicts the choice of s as the smallest positive integer in S.

It follows that
√

2 is irrational.

The sets of integers, positive integers, rational numbers, and real numbers are
traditionally denoted by Z, Z+, Q, and R, respectively. Also, we write x ∈ S to indicate
that x belongs to the set S. Such notation will be used occasionally in this book.

We briefly mention several other types of numbers here, though we do not return to
them until Chapter 12.

Definition. A number α is algebraic if it is the root of a polynomial with integer
coefficients; that is, α is algebraic if there exist integers a0, a1, . . . , an such that anα

n +
an−1α

n−1 + . . . + a0 = 0. The number α is called transcendental if it is not algebraic.

Example 1.2. The irrational number
√

2 is algebraic, because it is a root of the
polynomial x2 − 2. �

Note that every rational number is algebraic. This follows from the fact that the number
a/b, where a and b are integers and b �= 0, is the root of bx − a. In Chapter 12,
we will give an example of a transcendental number. The numbers e and π are also
transcendental, but the proofs of these facts (which can be found in [HaWr08]) are beyond
the scope of this book.

The Greatest Integer Function

In number theory, a special notation is used for the largest integer that is less than or
equal to a particular real number.

Definition. The greatest integer in a real number x, denoted by [x], is the largest integer
less than or equal to x. That is, [x] is the integer satisfying

[x] ≤ x < [x] + 1.

Example 1.3. We have [5/2] = 2, [−5/2] = −3, [π ] = 3, [−2] = −2, and [0]= 0. �

Remark. The greatest integer function is also known as the floor function. Instead of
using the notation [x] for this function, computer scientists usually use the notation �x�.
The ceiling function is a related function often used by computer scientists. The ceiling
function of a real number x, denoted by �x	, is the smallest integer greater than or equal
to x. For example, �5/2	 = 3 and �−5/2	 = −2.

The greatest integer function arises in many contexts. Besides being important in
number theory, as we will see throughout this book, it plays an important role in the
analysis of algorithms, a branch of computer science. The following example establishes

7



8 The Integers

a useful property of this function. Additional properties of the greatest integer function
are found in the exercises at the end of this section and in [GrKnPa94].

Example 1.4. Show that if n is an integer, then [x + n] = [x] + n whenever x is a
real number. To show that this property holds, let [x] = m, so that m is an integer. This
implies that m ≤ x < m + 1. We can add n to this inequality to obtain m + n ≤ x + n <

m + n + 1. This shows that m + n = [x] + n is the greatest integer less than or equal to
x + n. Hence, [x + n] = [x] + n. �

Definition. The fractional part of a real number x, denoted by {x}, is the difference
between x and the largest integer less than or equal to x, namely, [x]. That is, {x} =
x − [x].

Because [x] ≤ x < [x] + 1, it follows that 0 ≤ {x} = x − [x] < 1 for every real
number x. The greatest integer in x is also called the integral part of x because x =
[x] + {x}.

Example 1.5. We have {5/4} = 5/4 − [5/4] = 5/4 − 1 = 1/4 and {−2/3} = −2/3 −
[−2/3] = −2/3 − (−1) = 1/3. �

Diophantine Approximation

We know that the distance of a real number to the integer closest to it is at most 1/2.
But can we show that one of the first k multiples of a real number must be much closer
to an integer? An important part of number theory called diophantine approximation
studies questions such as this. In particular, it concentrates on questions that involve
the approximation of real numbers by rational numbers. (The adjective diophantine
comes from the Greek mathematician Diophantus, whose biography can be found in
Section 13.1.)

Here we will show that among the first n multiples of a real number α, there must
be at least one at a distance less than 1/n from the integer nearest it. The proof will
depend on the famous pigeonhole principle, introduced by the German mathematician
Dirichlet.1 Informally, this principle tells us if we have more objects than boxes, when
these objects are placed in the boxes, at least two must end up in the same box. Although
this seems like a particularly simple idea, it turns out to be extremely useful in number
theory and combinatorics. We now state and prove this important fact, which is known
as the pigeonhole principle, because if you have more pigeons than roosts, two pigeons
must end up in the same roost.

Theorem 1.2. The Pigeonhole Principle. If k + 1 or more objects are placed into k

boxes, then at least one box contains two or more of the objects.

1 Instead of calling Theorem 1.2 the pigeonhole principle, Dirichlet called it the Schubfachprinzip in German,
which translates to the drawer principle in English. A biography of Dirichlet can be found in Section 3.1.

8



1.1 Numbers and Sequences 9

Proof. If none of the k boxes contains more than one object, then the total number of
objects would be at most k. This contradiction shows that one of the boxes contains at
least two or more of the objects.

We now state and prove the approximation theorem, which guarantees that one of
the first n multiples of a real number must be within 1/n of an integer. The proof we
give illustrates the utility of the pigeonhole principle. (See [Ro07] for more applications
of the pigeonhole principle.) (Note that in the proof we make use of the absolute value
function. Recall that |x|, the absolute value of x, equals x if x ≥ 0 and −x if x < 0. Also
recall that |x − y| gives the distance between x and y.)

Theorem 1.3. Dirichlet’s Approximation Theorem. If α is a real number and n is a
positive integer, then there exist integers a and b with 1≤ a ≤ n such that |aα − b| < 1/n.

Proof. Consider the n + 1 numbers 0, {α}, {2α}, . . . , {nα}. These n + 1 numbers
are the fractional parts of the numbers jα, j = 0, 1, . . . , n, so that 0 ≤ {jα} < 1 for
j = 0, 1, . . . , n. Each of these n + 1 numbers lies in one of the n disjoint intervals
0 ≤ x < 1/n, 1/n ≤ x < 2/n, . . . , (j − 1)/n ≤ x < j/n, . . . , (n − 1)/n ≤ x < 1. Be-
cause there are n + 1 numbers under consideration, but only n intervals, the pigeonhole
principle tells us that at least two of these numbers lie in the same interval. Because each
of these intervals has length 1/n and does not include its right endpoint, we know that
the distance between two numbers that lie in the same interval is less than 1/n. It follows
that there exist integers j and k with 0 ≤ j < k ≤ n such that |{kα} − {jα}| < 1/n. We
will now show that when a = k − j , the product aα is within 1/n of an integer, namely,
the integer b = [kα] − [jα]. To see this, note that

|aα − b| = |(k − j)α − ([kα] − [jα])|
= |(kα − [kα]) − (jα − [jα])|
= |{kα} − {jα}| < 1/n.

Furthermore, note that because 0 ≤ j < k ≤ n, we have 1 ≤ a = k − j ≤ n. Conse-
quently, we have found integers a and b with 1≤ a ≤ n and |aα − b| < 1/n, as desired.

Example 1.6. Suppose that α = √
2 and n = 6. We find that 1 .

√
2 ≈ 1.414, 2 .

√
2 ≈

2.828, 3 .
√

2 ≈ 4.243, 4 .
√

2 ≈ 5.657, 5 .
√

2 ≈ 7.071, and 6 .
√

2 ≈ 8.485. Among these
numbers 5 .

√
2 has the smallest fractional part. We see that |5 .

√
2 − 7| ≈ |7.071− 7| =

0.071 ≤ 1/6. It follows that when α = √
2 and n = 6, we can take a = 5 and b = 7 to

make |aα − b| < 1/n. �

Our proof of Theorem 1.3 follows Dirichlet’s original 1834 proof. Proving a stronger
version of Theorem 1.3 with 1/(n + 1) replacing 1/n in the approximation is not diffi-
cult (see Exercise 32). Furthermore, in Exercise 34 we show how to use the Dirichlet
approximation theorem to show that, given an irrational number α, there are infinitely
many different rational numbers p/q such that |α − p/q| < 1/q2, an important result in
the theory of diophantine approximation. We will return to this topic in Chapter 12.

9



10 The Integers

Sequences

A sequence {an} is a list of numbers a1, a2, a3, . . . . We will consider many particular
integer sequences in our study of number theory. We introduce several useful sequences
in the following examples.

Example 1.7. The sequence {an}, where an = n2, begins with the terms 1, 4, 9, 16, 25,
36, 49, 64, . . . . This is the sequence of the squares of integers. The sequence {bn}, where
bn = 2n, begins with the terms 2, 4, 8, 16, 32, 64, 128, 256, . . . . This is the sequence of
powers of 2. The sequence {cn}, where cn = 0 if n is odd and cn = 1 if n is even, begins
with the terms 0, 1, 0, 1, 0, 1, 0, 1, . . . . �

There are many sequences in which each successive term is obtained from the
previous term by multiplying by a common factor. For example, each term in the
sequence of powers of 2 is 2 times the previous term. This leads to the following
definition.

Definition. A geometric progression is a sequence of the form a, ar , ar2, ar3, . . . ,

ark, . . . , where a, the initial term, and r , the common ratio, are real numbers.

Example 1.8. The sequence {an}, where an = 3 . 5n, n = 0, 1, 2, . . ., is a geometric
sequence with initial term 3 and common ratio 5. (Note that we have started the sequence
with the term a0. We can start the index of the terms of a sequence with 0 or any other
integer that we choose.) �

A common problem in number theory is finding a formula or rule for constructing
the terms of a sequence, even when only a few terms are known (such as trying to find
a formula for the nth triangular number 1 + 2 + 3 + . . . + n). Even though the initial
terms of a sequence do not determine the sequence, knowing the first few terms can lead
to a conjecture for a formula or rule for the terms. Consider the following examples.

Example 1.9. Conjecture a formula for an, where the first eight terms of {an} are
4, 11, 18, 25, 32, 39, 46, 53. We note that each term, starting with the second, is obtained
by adding 7 to the previous term. Consequently, the nth term could be the initial term
plus 7(n − 1). A reasonable conjecture is that an = 4 + 7(n − 1) = 7n − 3. �

The sequence proposed in Example 1.9 is an arithmetic progression, that is, a
sequence of the form a, a + d, a + 2d, . . . , a + nd, . . . . The particular sequence in
Example 1.9 has a = 4 and d = 7.

Example 1.10. Conjecture a formula for an, where the first eight terms of the sequence
{an} are 5, 11, 29, 83, 245, 731, 2189, 6563. We note that each term is approximately 3
times the previous term, suggesting a formula for an in terms of 3n. The integers 3n for
n = 1, 2, 3, . . . are 3, 9, 27, 81, 243, 729, 2187, 6561. Looking at these two sequences
together, we find that the formula an = 3n + 2 produces these terms. �

10



1.1 Numbers and Sequences 11

Example 1.11. Conjecture a formula for an, where the first ten terms of the sequence
{an} are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55. After examining this sequence from different
perspectives, we notice that each term of this sequence, after the first two terms, is the
sum of the two preceding terms. That is, we see that an = an−1 + an−2 for 3 ≤ n ≤ 10.
This is an example of a recursive definition of a sequence, discussed in Section 1.3. The
terms listed in this example are the initial terms of the Fibonacci sequence, which is
discussed in Section 1.4. �

Integer sequences arise in many contexts in number theory. Among the sequences
we will study are the Fibonacci numbers, the prime numbers (covered in Chapter 3), and
the perfect numbers (introduced in Section 7.3). Integer sequences appear in an amazing
range of subjects besides number theory. Neil Sloane has amassed a fantastically diverse
collection of more than 170,000 integer sequences (as of early 2010) in his On-Line
Encyclopedia of Integer Sequences. This collection is available on the Web. (Note that
in early 2010, the OEIS Foundation took over maintenance of this collection.) (The
book [SlPl95] is an earlier printed version containing only a small percentage of the
current contents of the encyclopdia.) This site provides a program for finding sequences
that match initial terms provided as input. You may find this a valuable resource as you
continue your study of number theory (as well as other subjects).

We now define what it means for a set to be countable, and show that a set is countable
if and only if its elements can be listed as the terms of a sequence.

Definition. A set is countable if it is finite or it is infinite and there exists a one-to-
one correspondence between the set of positive integers and the set. A set that is not
countable is called uncountable.

An infinite set is countable if and only if its elements can be listed as the terms of a
sequence indexed by the set of positive integers. To see this, simply note that a one-to-
one correspondence f from the set of positive integers to a set S is exactly the same as
a listing of the elements of the set in a sequence a1, a2, . . . , an, . . . , where ai = f (i).

Example 1.12. The set of integers is countable, because the integers can be listed
starting with 0, followed by 1 and −1, followed by 2 and −2, and so on. This produces
the sequence 0, 1, −1, 2, −2, 3, −3, . . . , where a1 = 0, a2n = n, and a2n+1 = −n for
n = 1, 2, . . . . �

Is the set of rational numbers countable? At first glance, it may seem unlikely that
there would be a one-to-one correspondence between the set of positive integers and the
set of all rational numbers. However, there is such a correspondence, as the following
theorem shows.

Theorem 1.4. The set of rational numbers is countable.

Proof. We can list the rational numbers as the terms of a sequence, as follows. First, we
arrange all the rational numbers in a two-dimensional array, as shown in Figure 1.1. We
put all fractions with a denominator of 1 in the first row. We arrange these by placing the
fraction with a particular numerator in the position this numerator occupies in the list of

11



12 The Integers

all integers given in Example 1.12. Next, we list all fractions on successive diagonals,
following the order shown in Figure 1.1. Finally, we delete from the list all fractions that
represent rational numbers that have already been listed. (For example, we do not list
2/2, because we have already listed 1/1.)

0
1

2
1

3
1

1
2

1
3

1
4

1
1

–1
1

–2
1

–1
2

–2
2

–1
3

–2
3

–1
4

–2
4

0
2

2
2

3
2

0
3

2
3

3
3

0
4

2
4

3
4

Figure 1.1 Listing the rational numbers.

The initial terms of the sequence are 0/1= 0, 1/1= 1, −1/1= −1, 1/2, 1/3, −1/2,
2/1= 2, −2/1= −2, −1/3, 1/4, and so on.) We leave it to the reader to fill in the details,
to see that this procedure lists all rational numbers as the terms of a sequence.

We have shown that the set of rational numbers is countable, but we have not given an
example of an uncountable set. Such an example is provided by the set of real numbers,
as shown in Exercise 45.

1.1 Exercises

1. Determine whether each of the following sets is well ordered. Either give a proof using the
well-ordering property of the set of positive integers, or give an example of a subset of the
set that has no smallest element.
a) the set of integers greater than 3
b) the set of even positive integers
c) the set of positive rational numbers
d) the set of positive rational numbers that can be written in the form a/2, where a is a

positive integer
e) the set of nonnegative rational numbers

➢ 2. Show that if a and b are positive integers, then there is a smallest positive integer of the form
a − bk, k ∈ Z.

3. Prove that both the sum and the product of two rational numbers are rational.

4. Prove or disprove each of the following statements.
a) The sum of a rational and an irrational number is irrational.
b) The sum of two irrational numbers is irrational.

12



1.1 Numbers and Sequences 13

c) The product of a rational number and an irrational number is irrational.
d) The product of two irrational numbers is irrational.

∗ 5. Use the well-ordering property to show that
√

3 is irrational.

6. Show that every nonempty set of negative integers has a greatest element.

7. Find the following values of the greatest integer function.

a) [1/4] c) [22/7] e) [[1/2] + [1/2]]
b) [−3/4] d) [−2] f ) [−3 + [−1/2]]

8. Find the following values of the greatest integer function.

a) [−1/4] c) [5/4] e) [[3/2] + [−3/2]]
b) [−22/7] d) [[1/2]] f ) [3 − [1/2]]

9. Find the fractional part of each of these numbers:

a) 8/5 b) 1/7 c) −11/4 d) 7

10. Find the fractional part of each of these numbers:

a) −8/5 b) 22/7 c) −1 d) −1/3

11. What is the value of [x] + [−x] where x is a real number?

12. Show that [x] + [x + 1/2] = [2x] whenever x is a real number.

13. Show that [x + y] ≥ [x] + [y] for all real numbers x and y.

14. Show that [2x] + [2y] ≥ [x] + [y] + [x + y] whenever x and y are real numbers.

15. Show that if x and y are positive real numbers, then [xy] ≥ [x][y]. What is the situation when
both x and y are negative? When one of x and y is negative and the other positive?

16. Show that −[−x] is the least integer greater than or equal to x when x is a real number.

17. Show that [x + 1/2] is the integer nearest to x (when there are two integers equidistant from
x, it is the larger of the two).

18. Show that if m and n are integers, then [(x + n)/m] = [([x] + n)/m] whenever x is a real
number.

∗ 19. Show that
[√

[x]
] = [√

x
]

whenever x is a nonnegative real number.

∗ 20. Show that if m is a positive integer, then

[mx] = [x] + [x + (1/m)] + [x + (2/m)] + . . . + [x + (m − 1)/m]

whenever x is a real number.

21. Conjecture a formula for the nth term of {an} if the first ten terms of this sequence are as
follows.

a) 3, 11, 19, 27, 35, 43, 51, 59, 67, 75 c) 1, 0, 0, 1, 0, 0, 0, 0, 1, 0
b) 5, 7, 11, 19, 35, 67, 131, 259, 515, 1027 d) 1, 3, 4, 7, 11, 18, 29, 47, 76, 123

22. Conjecture a formula for the nth term of {an} if the first ten terms of this sequence are as
follows.
a) 2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366
b) 1, 1, 0, 1, 1, 0, 1, 1, 0, 1

13



14 The Integers

c) 1, 2, 3, 5, 7, 10, 13, 17, 21, 26
d) 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365

23. Find three different formulas or rules for the terms of a sequence {an} if the first three terms
of this sequence are 1, 2, 4.

24. Find three different formulas or rules for the terms of a sequence {an} if the first three terms
of this sequence are 2, 3, 6.

25. Show that the set of all integers greater than −100 is countable.

26. Show that the set of all rational numbers of the form n/5, where n is an integer, is countable.

27. Show that the set of all numbers of the form a + b
√

2, where a and b are integers, is countable.

∗ 28. Show that the union of two countable sets is countable.

∗ 29. Show that the union of a countable number of countable sets is countable.

30. Using a computational aid, if needed, find integers a and b such that 1≤ a ≤ 8 and |aα − b| <
1/8, where α has these values:

a)
√

2 b) 3
√

2 c) π d) e

31. Using a computational aid, if needed, find integers a and b such that 1 ≤ a ≤ 10 and |aα −
b| < 1/10, where α has these values:

a)
√

3 b) 3
√

3 c) π2 d) e3

32. Prove the following stronger version of Dirichlet’s approximation. If α is a real number
and n is a positive integer, there are integers a and b such that 1 ≤ a ≤ n and |aα − b| ≤
1/(n + 1). (Hint: Consider the n + 2 numbers 0, . . . , {jα}, . . . , 1 and the n + 1 intervals
(k − 1)/(n + 1) ≤ x < k/(n + 1) for k = 1, . . . , n + 1.)

33. Show that if α is a real number and n is a positive integer, then there is an integer k such that
|α − n/k| ≤ 1/2k.

34. Use Dirichlet’s approximation theorem to show that if α is an irrational number, then there are
infinitely many positive integers q for which there is an integer p such that |α − p/q| ≤ 1/q2.

35. Find four rational numbers p/q with |√2 − p/q| ≤ 1/q2.

36. Find five rational numbers p/q with | 3
√

5 − p/q| ≤ 1/q2.

37. Show that if α = a/b is a rational number, then there are only finitely many rational numbers
p/q such that |p/q − a/b| < 1/q2.

The spectrum sequence of a real number α is the sequence that has [nα] as its nth term.

38. Find the first ten terms of the spectrum sequence of each of the following numbers.

a) 2 b)
√

2 c) 2 + √
2 d) e e) (1 + √

5)/2

39. Find the first ten terms of the spectrum sequence of each of the following numbers.

a) 3 b)
√

3 c) (3 + √
3)/2 d) π

40. Prove that if α �= β, then the spectrum sequence of α is different from the spectrum sequence
of β.

∗∗ 41. Show that every positive integer occurs exactly once in the spectrum sequence of α or in
the spectrum sequence of β if and only if α and β are positive irrational numbers such that
1/α + 1/β = 1.

14



1.1 Numbers and Sequences 15

The Ulam numbers un, n = 1, 2, 3, . . . are defined as follows. We specify that u1 = 1 and u2 = 2.
For each successive integer m, m > 2, this integer is an Ulam number if and only if it can be written
uniquely as the sum of two distinct Ulam numbers. These numbers are named for Stanislaw Ulam,
who first described them in 1964.

42. Find the first ten Ulam numbers.

∗ 43. Show that there are infinitely many Ulam numbers.

∗ 44. Prove that e is irrational. (Hint: Use the fact that e = 1 + 1/1! + 1/2! + 1/3! + . . . .)

∗ 45. Show that the set of real numbers is uncountable. (Hint: Suppose it is possible to list the real
numbers between 0 and 1. Show that the number whose ith decimal digit is 4 when the ith
decimal digit of the ith real number in the list is 5 and is 5 otherwise is not on the list.)

Computations and Explorations

1. Find 10 rational numbers p/q such that |π − p/q| ≤ 1/q2.

2. Find 20 rational numbers p/q such that |e − p/q| ≤ 1/q2.

3. Find as many terms as you can of the spectrum sequence of
√

2. (See the preamble to
Exercise 38 for the definition of spectrum.)

STANISLAW M. ULAM (1909–1984) was born in Lvov, Poland. He became
interested in astronomy and physics at age 12, after receiving a telescope from
his uncle. He decided to learn the mathematics required to understand relativity
theory, and at the age of 14 he used textbooks to learn calculus and other
mathematics.

Ulam received his Ph.D. from the Polytechnic Institute in Lvov in 1933,
completing his degree under the mathematician Banach, in the area of real
analysis. In 1935, he was invited to spend several months at the Institute for

Advanced Study; in 1936, he joined Harvard University as a member of the Society of Fellows,
remaining in this position until 1940. During these years he returned each summer to Poland where
he spent time in cafes, such as the Scottish Cafe, intensely doing mathematics with his fellow Polish
mathematians.

Luckily for Ulam, he left Poland in 1939, just one month before the outbreak of World War
II. In 1940, he was appointed to a position as an assistant professor at the University of Wisconsin,
and in 1943, he was enlisted to work in Los Alamos on the development of the first atomic bomb,
as part of the Manhattan Project. Ulam made several key contributions that led to the creation of
thermonuclear bombs. At Los Alamos, Ulam also developed the Monte Carlo method, which uses a
sampling technique with random numbers to find solutions of mathematical problems.

Ulam remained at Los Alamos after the war until 1965. He served on the faculties of the
University of Southern California, the University of Colorado, and the University of Florida. Ulam
had a fabulous memory and was an extremely verbal person. His mind was a repository of stories,
jokes, puzzles, quotations, formulas, problems, and many other types of information. He wrote several
books, including Sets, Numbers, and Universes and Adventures of a Mathematician.He was interested
in and contributed to many areas of mathematics, including number theory, real analysis, probability
theory, and mathematical biology.
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16 The Integers

4. Find as many terms as you can of the spectrum sequence of π . (See the preamble to Exercise 38
for the definition of spectrum.)

5. Find the first 1000 Ulam numbers.

6. How many pairs of consecutive integers can you find where both are Ulam numbers?

7. Can the sum of any two consecutive Ulam numbers, other than 1 and 2, be another Ulam
number? If so, how many examples can you find?

8. How large are the gaps between consecutive Ulam numbers? Do you think that these gaps
can be arbitrarily long?

9. What conjectures can you make about the number of Ulam numbers less than an integer n?
Do your computations support these conjectures?

Programming Projects

1. Given a number α, find rational numbers p/q such that |α − p/q| ≤ 1/q2.

2. Given a number α, find its spectrum sequence.

3. Find the first n Ulam numbers, where n is a positive integer.

1.2 Sums and Products

Because summations and products arise so often in the study of number theory, we now
introduce notation for summations and products. The following notation represents the
sum of the numbers a1, a2, . . . , an:

n∑
k=1

ak = a1 + a2 + . . . + an.

The letter k, the index of summation, is a “dummy variable” and can be replaced by any
letter. For instance,

n∑
k=1

ak =
n∑

j=1

aj =
n∑

i=1

ai, and so forth.

Example 1.13. We see that
∑5

j=1 j = 1+ 2 + 3 + 4 + 5 = 15,
∑5

j=1 2 = 2 + 2 + 2 +
2 + 2 = 10, and

∑5
j=1 2j = 2 + 22 + 23 + 24 + 25 = 62.

We also note that, in summation notation, the index of summation may range
between any two integers, as long as the lower limit does not exceed the upper limit.
If m and n are integers such that m ≤ n, then

∑n
k=m

ak = am + am+1 + . . . + an. For

instance, we have
∑5

k=3 k2 = 32 + 42 + 52 = 50,
∑2

k=0 3k = 30 + 31 + 32 = 13, and∑1
k=−2 k3 = (−2)3 + (−1)3 + 03 + 13 = −8. �
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1.2 Sums and Products 17

We will often need to consider sums in which the index of summation ranges over
all those integers that possess a particular property. We can use summation notation to
specify the particular property or properties the index must have for a term with that index
to be included in the sum. This use of notation is illustrated in the following example.

Example 1.14. We see that

∑
j≤10

j∈{n2|n∈Z}

1/(j + 1) = 1/1 + 1/2 + 1/5 + 1/10 = 9/5,

because the terms in the sum are all those for which j is an integer not exceeding 10 that
is a perfect square. �

The following three properties for summations are often useful. We leave their proofs
to the reader.

n∑
j=m

caj = c

n∑
j=m

aj(1.1)

n∑
j=m

(aj + bj) =
n∑

j=m

aj +
n∑

j=m

bj(1.2)

n∑
i=m

q∑
j=p

aibj =
(

n∑
i=m

ai

) ⎛
⎝ q∑

j=p

bj

⎞
⎠ =

q∑
j=p

n∑
i=m

aibj(1.3)

Next, we develop several useful summation formulas. We often need to evaluate
sums of consecutive terms of a geometric series. The following example shows how a
formula for such sums can be derived.

Example 1.15. To evaluate

S =
n∑

j=0

arj ,

the sum of the first n + 1 terms of the geometric series a, ar, . . . , ark, . . . , we multiply
both sides by r and manipulate the resulting sum to find:

17



18 The Integers

rS = r

n∑
j=0

arj

=
n∑

j=0

arj+1

=
n+1∑
k=1

ark (shifting the index of summation, taking k = j + 1)

=
n∑

k=0

ark + (arn+1 − a) (removing the term with k = n + 1
from the set and adding the term with k = 0)

= S + (arn+1 − a).

It follows that

rS − S = (arn+1 − a).

Solving for S shows that when r �= 1,

S = arn+1 − a

r − 1
.

Note that when r = 1, we have
∑n

j=0 arj = ∑n
j=0 a = (n + 1)a. �

Example 1.16. Taking a = 3, r = −5, and n = 6 in the formula found in Example 1.15,

we see that
∑6

j=0 3(−5)j = 3(−5)7−3
−5−1 = 39,063. �

The following example shows that the sum of the first n consecutive powers of 2 is
1 less than the next power of 2.

Example 1.17. Let n be a positive integer. To find the sum

n∑
k=0

2k = 1 + 2 + 22 + . . . + 2n,

we use Example 1.15, with a = 1 and r = 2, to obtain

1 + 2 + 22 + . . . + 2n = 2n+1 − 1

2 − 1
= 2n+1 − 1.

�

A summation of the form
∑n

j=1(aj − aj−1), where a0, a1, a2, . . . , an is a sequence
of numbers, is said to be telescoping. Telescoping sums are easily evaluated because

n∑
j=1

aj − aj−1 = (a1 − a0) + (a2 − a1) + . . . + (an − an−1)

= an − a0.

18



1.2 Sums and Products 19

The ancient Greeks were interested in sequences of numbers that can be represented
by regular arrangements of equally spaced points. The following example illustrates one
such sequence of numbers.

Example 1.18. The triangular numbers t1, t2, t3, . . . , tk, . . . is the sequence where tk
is the number of dots in the triangular array of k rows with j dots in the j th row. �

Figure 1.2 illustrates that tk counts the dots in successively larger regular triangles
for k = 1, 2, 3, 4, and 5.

1 3 6 10 15

Figure 1.2 The Triangular Numbers.

Next, we will determine an explicit formula for the nth triangular number tn.

Example 1.19. How can we find a formula for the nth triangular number? One approach
is to use the identity (k + 1)2 − k2 = 2k + 1. When we isolate the factor k, we find
that k = ((k + 1)2 − k2)/2 − 1/2. When we sum this expression for k over the values
k = 1, 2, . . . , n, we obtain

tn =
n∑

k=1

k

=
( n∑

k=1

((k + 1)2 − k2)/2

)
−

n∑
k=1

1/2 (replacing k with (((k + 1)2 − k2)/2) − 1/2)

= ((n + 1)2/2 − 1/2) − n/2 (simplifying a telescoping sum)

= (n2 + 2n)/2 − n/2

= (n2 + n)/2

= n(n + 1)/2.

The second equality here follows by the formula for the sum of a telescoping series with
ak = (k + 1)2 − k2. We conclude that the nth triangular number tn = n(n + 1)/2. (See
Exercise 7 for another way to find tn.) �

We also define a notation for products, analogous to that for summations. The
product of the numbers a1, a2, . . . , an is denoted by

n∏
j=1

aj = a1a2
. . . an.

19



20 The Integers

The letter j above is a “dummy variable,” and can be replaced arbitrarily.

Example 1.20. To illustrate the notation for products, we have

5∏
j=1

j = 1 . 2 . 3 . 4 . 5 = 120,

5∏
j=1

2 = 2 . 2 . 2 . 2 . 2 = 25 = 32, and

5∏
j=1

2j = 2 . 22 . 23 . 24 . 25 = 215.
�

The factorial function arises throughout number theory.

Definition. Let n be a positive integer. Then n! (read as “n factorial”) is the product of
the integers 1, 2, . . . , n. We also specify that 0! = 1. In terms of product notation, we
have n! = ∏n

j=1 j.

Example 1.21. We have 1! = 1, 4! = 1 . 2 . 3 . 4 = 24, and 12! =1 . 2 . 3 . 4 . 5 . 6 . 7 .

8 . 9 . 10 . 11 . 12 = 479,001,600. �

1.2 Exercises

1. Find each of the following sums.

a)
∑5

j=1 j2 b)
∑5

j=1(−3) c)
∑5

j=1 1/(j + 1)

2. Find each of the following sums.

a)
∑4

j=0 3 b)
∑4

j=0(j − 3) c)
∑4

j=0(j + 1)/(j + 2)

3. Find each of the following sums.

a)
∑8

j=1 2j b)
∑8

j=1 5(−3)j c)
∑8

j=1 3(−1/2)j

4. Find each of the following sums.

a)
∑10

j=0 8 . 3j b)
∑10

j=0(−2)j+1 c)
∑10

j=0(1/3)j

∗ 5. Find and prove a formula for
∑n

k=1[
√

k] in terms of n and [
√

n]. (Hint: Use the formula∑t
k=1 k2 = t (t + 1)(2t + 1)/6.)

6. By putting together two triangular arrays, one with n rows and one with n − 1 rows, to form
a square (as illustrated for n = 4), show that tn−1 + tn = n2, where tn is the nth triangular
number.

20



1.2 Sums and Products 21

7. By putting together two triangular arrays, each with n rows, to form a rectangular array of
dots of size n by n + 1(as illustrated for n = 4), show that 2tn = n(n + 1). From this, conclude
that tn = n(n + 1)/2.

8. Show that 3tn + tn−1 = t2n, where tn is the nth triangular number.

9. Show that t2
n+1 − t2

n
= (n + 1)3, where tn is the nth triangular number.

The pentagonal numbers p1, p2, p3, . . . , pk, . . . , are the integers that count the number of dots
in k nested pentagons, as shown in the following figure.

1 5 12 22

➢ 10. Show that p1 = 1and pk = pk−1 + (3k − 2) for k ≥ 2. Conclude that pn = ∑n
k=1 (3k − 2) and

evaluate this sum to find a simple formula for pn.

➢ 11. Prove that the sum of the (n − 1)st triangular number and the nth square number is the nth
pentagonal number.

12. a) Define the hexagonal numbers hn for n = 1, 2, . . . in a manner analogous to the definitions
of triangular, square, and pentagonal numbers. (Recall that a hexagon is a six-sided
polygon.)

b) Find a closed formula for hexagonal numbers.

13. a) Define the heptagonal numbers in a manner analogous to the definitions of triangular,
square, and pentagonal numbers. (Recall that a heptagon is a seven-sided polygon.)

b) Find a closed formula for heptagonal numbers.

14. Show that hn = t2n−1 for all positive integers n where hn is the nth hexagonal number, defined
in Exercise 12, and t2n−1 is the (2n − 1)st triangular number.

15. Show that pn = t3n−1/3 where pn is the nth pentagonal number and t3n−1 is the (3n − 1)st
triangular number.

The tetrahedral numbers T1, T2, T3, . . . , Tk, . . . , are the integers that count the number of dots
on the faces of k nested tetrahedra, as shown in the following figure.
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22 The Integers

1 4 10 20

16. Show that the nth tetrahedral number is the sum of the first n triangular numbers.

17. Find and prove a closed formula for the nth tetrahedral number.

18. Find n! for n equal to each of the first ten positive integers.

19. List the integers 100!, 100100, 2100, and (50!)2 in order of increasing size. Justify your answer.

20. Express each of the following products in terms of
∏n

i=1 ai, where k is a constant.

a)
∏n

i=1 kai b)
∏n

i=1 iai c)
∏n

i=1 ak
i

21. Use the identity 1
k(k+1) = 1

k
− 1

k+1 to evaluate
∑n

k=1
1

k(k+1) .

22. Use the identity 1
k2−1

= 1
2

(
1

k−1 − 1
k+1

)
to evaluate

∑n
k=2

1
k2−1

.

23. Find a formula for
∑n

k=1 k2 using a technique analogous to that in Example 1.21 and the
formula found there.

24. Find a formula for
∑n

k=1 k3 using a technique analogous to that in Example 1.19, and the
results of that example and Exercise 21.

25. Without multiplying all the terms, verify these equalities.

a) 10! = 6! 7! b) 10! = 7! 5! 3! c) 16! = 14! 5! 2! d) 9! = 7! 3! 3! 2!

26. Let a1, a2, . . . , an be positive integers. Let b = (a1! a2! . . . an!) − 1, and c = a1! a2! . . . an!.
Show that c! = a1! a2! . . . an!b!.

27. Find all positive integers x, y, and z such that x! + y! = z!.

28. Find the values of the following products.

a)
∏n

j=2(1 − 1/j) b)
∏n

j=2(1 − 1/j2)

Computations and Explorations

1. What are the largest values of n for which n! has fewer than 100 decimal digits, fewer than
1000 decimal digits, and fewer than 10,000 decimal digits?

2. Find as many triangular numbers that are perfect squares as you can. (We will study this
question in the Exercises in Section 13.4.)

3. Find as many tetrahedral numbers that are perfect squares as you can.

Programming Projects

1. Given the terms of a sequence a1, a2, . . . , an, compute
∑n

j=1 aj and
∏n

j=1 aj .

2. Given the terms of a geometric progression, find the sum of its terms.
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1.3 Mathematical Induction 23

3. Given a positive integer n, find the nth triangular number, the nth perfect square, the nth
pentagonal number, and the nth tetrahedral number.

1.3 Mathematical Induction

By examining the sums of the first n odd positive integers for small values of n, we can
conjecture a formula for this sum. We have

1 = 1,

1 + 3 = 4,

1 + 3 + 5 = 9,

1 + 3 + 5 + 7 = 16,

1 + 3 + 5 + 7 + 9 = 25,

1 + 3 + 5 + 7 + 9 + 11 = 36.

From these values, we conjecture that
∑n

j=1(2j − 1) = 1+ 3 + 5 + 7 + . . . + 2n − 1=
n2 for every positive integer n.

How can we prove that this formula holds for all positive integers n?

The principle of mathematical induction is a valuable tool for proving results
about the integers—such as the formula just conjectured for the sum of the first n odd
positive integers. First, we will state this principle, and then we will show how it is
used. Subsequently, we will use the well-ordering principle to show that mathematical
induction is a valid proof technique. We will use the principle of mathematical induction,
and the well-ordering property, many times in our study of number theory.

We must accomplish two things to prove by mathematical induction that a particular
statement holds for every positive integer. Letting S be the set of positive integers for
which we claim the statement to be true, we must show that 1 belongs to S; that is, that
the statement is true for the integer 1. This is called the basis step.

Second, we must show, for each positive integer n, that n + 1 belongs to S if n does;
that is, that the statement is true for n + 1if it is true for n. This is called the inductive step.
Once these two steps are completed, we can conclude by the principle of mathematical
induction that the statement is true for all positive integers.

Theorem 1.5. The Principle of Mathematical Induction. A set of positive integers
that contains the integer 1, and that has the property that, if it contains the integer k, then
it also contains k + 1, must be the set of all positive integers.

We illustrate the use of mathematical induction by several examples; first, we prove
the conjecture made at the start of this section.
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24 The Integers

Example 1.22. We will use mathematical induction to show that

n∑
j=1

(2j − 1) = 1 + 3 + . . . + (2n − 1) = n2

for every positive integer n. (By the way, if our conjecture for the value of this sum was
incorrect, mathematical induction would fail to produce a proof!)

We begin with the basis step, which follows because

1∑
j=1

(2j − 1) = 2 . 1 − 1 = 1 = 12.

For the inductive step, we assume the inductive hypothesis that the formula holds
for n; that is, we assume that

∑n
j=1(2j − 1) = n2. Using the inductive hypothesis, we

have

n+1∑
j=1

(2j − 1) =
n∑

j=1

(2j − 1) + (2(n + 1) − 1) (splitting off the term with j = n + 1)

(using the inductive hypothesis)= n2 + 2(n + 1) − 1

= n2 + 2n + 1

= (n + 1)2.

Because both the basis and the inductive steps have been completed, we know that the
result holds. �

Next, we prove an inequality via mathematical induction.

Example 1.23. We can show by mathematical induction that n!≤ nn for every positive
integer n. The basis step, namely, the case where n = 1, holds because 1! = 1 ≤ 11 = 1.
Now, assume that n! ≤ nn; this is the inductive hypothesis. To complete the proof, we
must show, under the assumption that the inductive hypothesis is true, that (n + 1)! ≤
(n + 1)n+1. Using the inductive hypothesis, we have

The Origin of Mathematical Induction
The first known use of mathematical induction appears in the work of the sixteenth-century
mathematician Francesco Maurolico (1494–1575). In his book Arithmeticorum Libri Duo,
Maurolico presented various properties of the integers, together with proofs. He devised the
method of mathematical induction so that he could complete some of the proofs. The first
use of mathematical induction in his book was in the proof that the sum of the first n odd
positive integers equals n2.
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1.3 Mathematical Induction 25

(n + 1)! = (n + 1) . n!

≤ (n + 1)nn

< (n + 1)(n + 1)n

≤ (n + 1)n+1.

This completes both the inductive step and the proof. �

We now show that the principle of mathematical induction follows from the well-
ordering principle.

Proof. Let S be a set of positive integers containing the integer 1, and the integer n + 1
whenever it contains n. Assume (for the sake of contradiction) that S is not the set of
all positive integers. Therefore, there are some positive integers not contained in S. By
the well-ordering property, because the set of positive integers not contained in S is
nonempty, there is a least positive integer n that is not in S. Note that n �= 1, because 1
is in S.

Now, because n > 1 (as there is no positive integer n with n < 1), the integer n − 1
is a positive integer smaller than n, and hence must be in S. But because S contains
n − 1, it must also contain (n − 1) + 1= n, which is a contradiction, as n is supposedly
the smallest positive integer not in S. This shows that S must be the set of all positive
integers.

A slight variant of the principle of mathematical induction is also sometimes useful
in proofs.

Theorem 1.6. The Second Principle of Mathematical Induction. A set of positive
integers that contains the integer 1, and that has the property that, for every positive
integer n, if it contains all the positive integers 1, 2, . . . , n, then it also contains the
integer n + 1, must be the set of all positive integers.

The second principle of mathematical induction is sometimes called strong induc-
tion to distinguish it from the principle of mathematical induction, which is also called
weak induction.

Before proving that the second principle of mathematical induction is valid, we will
give an example to illustrate its use.

Example 1.24. We will show that any amount of postage more than one cent can be
formed using just two-cent and three-cent stamps. For the basis step, note that postage
of two cents can be formed using one two-cent stamp and postage of three cents can be
formed using one three-cent stamp.

For the inductive step, assume that every amount of postage not exceeding n cents,
n ≥ 3, can be formed using two-cent and three-cent stamps. Then a postage amount of
n + 1 cents can be formed by taking stamps of n − 1 cents together with a two-cent
stamp. This completes the proof. �
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26 The Integers

We will now show that the second principle of mathematical induction is a valid
technique.

Proof. Let T be a set of integers containing 1 and such that for every positive integer n,
if it contains 1, 2, . . . , n, it also contains n + 1. Let S be the set of all positive integers
n such that all the positive integers less than or equal to n are in T . Then 1 is in S, and
by the hypotheses, we see that if n is in S, then n + 1 is in S. Hence, by the principle
of mathematical induction, S must be the set of all positive integers, so clearly T is also
the set of all positive integers, because S is a subset of T .

Recursive Definitions

The principle of mathematical induction provides a method for defining the values of
functions at positive integers. Instead of explicitly specifying the value of the function
at n, we give the value of the function at 1 and give a rule for finding, for each positive
integer n, the value of the function at n + 1 from the value of the function at n.

Definition. We say that the function f is defined recursively if the value of f at 1 is
specified and if for each positive integer n a rule is provided for determining f (n + 1)
from f (n).

The principle of mathematical induction can be used to show that a function that is
defined recursively is defined uniquely at each positive integer (see Exercise 25 at the
end of this section). We illustrate how to define a function recursively with the following
definition.

Example 1.25. We will recursively define the factorial function f (n) = n!. First, we
specify that

f (1) = 1.

Then we give a rule for finding f (n + 1) from f (n) for each positive integer, namely,

f (n + 1) = (n + 1) . f (n).

These two statements uniquely define n! for the set of positive integers.

To find the value of f (6) = 6! from the recursive definition, use the second property
successively, as follows:

f (6) = 6 . f (5) = 6 . 5 . f (4) = 6 . 5 . 4 . f (3) = 6 . 5 . 4 . 3 . f (2) = 6 . 5 . 4 . 3 . 2 . f (1).

Then use the first statement of the definition to replace f (1) by its stated value 1, to
conclude that

6! = 6 . 5 . 4 . 3 . 2 . 1 = 720. �

The second principle of mathematical induction also serves as a basis for recursive
definitions. We can define a function whose domain is the set of positive integers by
specifying its value at 1 and giving a rule, for each positive integer n, for finding f (n)
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1.3 Mathematical Induction 27

from the values f (j) for each integer j with 1≤ j ≤ n − 1. This will be the basis for the
definition of the sequence of Fibonacci numbers discussed in Section 1.4.

1.3 Exercises

1. Use mathematical induction to prove that n < 2n whenever n is a positive integer.

2. Conjecture a formula for the sum of the first n even positive integers. Prove your result using
mathematical induction.

3. Use mathematical induction to prove that
∑n

k=1
1
k2 = 1

12 + 1
22 + . . . + 1

n2 ≤ 2 − 1
n

whenever
n is a positive integer.

4. Conjecture a formula for
∑n

k=1
1

k(k+1) = 1
1.2 + 1

2.3 + . . . + 1
n(n+1) from the value of this sum

for small integers n. Prove that your conjecture is correct using mathematical induction.
(Compare this to Exercise 17 in Section 1.2.)

5. Conjecture a formula for An where A =
(

1 1
0 1

)
. Prove your conjecture using mathematical

induction.

6. Use mathematical induction to prove that
∑n

j=1 j = 1 + 2 + 3 + . . . + n = n(n + 1)/2 for
every positive integer n. (Compare this to Example 1.19 in Section 1.2.)

7. Use mathematical induction to prove that
∑n

j=1 j2 = 12 + 22 + 32 + . . . + n2 =
n(n + 1)(2n + 1)/6 for every positive integer n.

8. Use mathematical induction to prove that
∑n

j=1 j3 = 13 + 23 + 33 + . . . + n3 =
[n(n + 1)/2]2 for every positive integer n.

9. Use mathematical induction to prove that
∑n

j=1 j (j + 1) = 1 . 2 + 2 . 3 + . . . + n.

(n + 1) = n(n + 1)(n + 2)/3 for every positive integer n.

10. Use mathematical induction to prove that
∑n

j=1(−1)j−1j2 = 12 − 22 + 32 − . . . +
(−1)n−1n2 = (−1)n−1n(n + 1)/2 for every positive integer n.

11. Find a formula for
∏n

j=1 2j .

12. Show that
∑n

j=1 j . j ! = 1 . 1! + 2 . 2! + . . . + n . n! = (n + 1)! − 1 for every positive inte-
ger n.

13. Show that any amount of postage that is an integer number of cents greater than 11 cents can
be formed using just 4-cent and 5-cent stamps.

14. Show that any amount of postage that is an integer number of cents greater than 53 cents can
be formed using just 7-cent and 10-cent stamps.

Let Hn be the nth partial sum of the harmonic series, that is, Hn = ∑n
j=1 1/j .

∗ 15. Use mathematical induction to show that H2n ≥ 1 + n/2.

∗ 16. Use mathematical induction to show that H2n ≤ 1 + n.

17. Show by mathematical induction that if n is a positive integer, then (2n)! < 22n(n!)2.

18. Use mathematical induction to prove that x − y is a factor of xn − yn, where x and y are
variables.
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28 The Integers

➢ 19. Use the principle of mathematical induction to show that a set of integers that contains the
integer k, such that this set contains n + 1 whenever it contains n, contains the set of integers
that are greater than or equal to k.

20. Use mathematical induction to prove that 2n < n! for n ≥ 4.

21. Use mathematical induction to prove that n2 < n! for n ≥ 4.

22. Show by mathematical induction that if h ≥ −1, then 1 + nh ≤ (1 + h)n for all nonnegative
integers n.

23. A jigsaw puzzle is solved by putting its pieces together in the correct way. Show that exactly
n − 1 moves are required to solve a jigsaw puzzle with n pieces, where a move consists of
putting together two blocks of pieces, with a block consisting of one or more assembled
pieces. (Hint: Use the second principle of mathematical induction.)

24. Explain what is wrong with the following proof by mathematical induction that all horses are
the same color: Clearly all horses in any set of 1 horse are all the same color. This completes
the basis step. Now assume that all horses in any set of n horses are the same color. Consider
a set of n + 1 horses, labeled with the integers 1, 2, . . . , n + 1. By the induction hypothesis,
horses 1, 2, . . . , n are all the same color, as are horses 2, 3, . . . , n, n + 1. Because these two
sets of horses have common members, namely, horses 2, 3, 4, . . . , n, all n + 1 horses must
be the same color. This completes the induction argument.

25. Use the principle of mathematical induction to show that the value at each positive integer of
a function defined recursively is uniquely determined.

26. What function f (n) is defined recursively by f (1) = 2 and f (n + 1) = 2f (n) for n ≥ 1?
Prove your answer using mathematical induction.

27. If g is defined recursively by g(1) = 2 and g(n) = 2g(n−1) for n ≥ 2, what is g(4)?

28. Use the second principle of mathematical induction to show that if f (1) is specified and a
rule for finding f (n + 1) from the values of f at the first n positive integers is given, then
f (n) is uniquely determined for every positive integer n.

29. We define a function recursively for all positive integers n by f (1) = 1, f (2) = 5, and
for n ≥ 2, f (n + 1) = f (n) + 2f (n − 1). Show that f (n) = 2n + (−1)n, using the second
principle of mathematical induction.

30. Show that 2n > n2 whenever n is an integer greater than 4.

31. Suppose that a0 = 1, a1 = 3, a2 = 9, and an = an−1 + an−2 + an−3 for n ≥ 3. Show that an ≤ 3n

for every nonnegative integer n.

32. The tower of Hanoi was a popular puzzle of the late nineteenth century. The puzzle includes
three pegs and eight rings of different sizes placed in order of size, with the largest on the
bottom, on one of the pegs. The goal of the puzzle is to move all of the rings, one at a time,
without ever placing a larger ring on top of a smaller ring, from the first peg to the second,
using the third as an auxiliary peg.
a) Use mathematical induction to show that the minimum number of moves to transfer n

rings from one peg to another, with the rules we have described, is 2n − 1.
b) An ancient legend tells of the monks in a tower with 64 gold rings and 3 diamond pegs.

They started moving the rings, one move per second, when the world was created. When
they finish transferring the rings to the second peg, the world will end. How long will the
world last?
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∗ 33. The arithmetic mean and the geometric mean of the positive real numbers a1, a2, . . . , an

are A = (a1 + a2 + . . . + an)/n and G = (a1a2
. . . an)

1/n, respectively. Use mathematical
induction to prove that A ≥ G for every finite sequence of positive real numbers. When does
equality hold?

34. Use mathematical induction to show that a 2n × 2n chessboard with one square missing can
be covered with L-shaped pieces, where each L-shaped piece covers three squares.

∗ 35. A unit fraction is a fraction of the form 1/n, where n is a positive integer. Because the
ancient Egyptians represented fractions as sums of distinct unit fractions, such sums are called
Egyptian fractions. Show that every rational number p/q, where p and q are integers with
0 < p < q, can be written as a sum of distinct unit fractions, that is, as an Egyptian fraction.
(Hint: Use strong induction on the numerator p to show that the greedy algorithm that adds
the largest possible unit fraction at each stage always terminates. For example, running this
algorithm shows that 5/7 = 1/2 + 1/5 + 1/70.)

36. Using the algorithm in Exercise 35, write each of these numbers as Egyptian fractions.

a) 2/3 b) 5/8 c) 11/17 d) 44/101

Computations and Explorations

1. Complete the basis and inductive steps, using both numerical and symbolic computation, to
prove that

∑n
j=1 j = n(n + 1)/2 for all positive integers n.

2. Complete the basis and inductive steps, using both numerical and symbolic computation, to
prove that

∑n
j=1 j2 = n(n + 1)(2n + 1)/6 for all positive integers n.

3. Complete the basis and inductive steps, using both numerical and symbolic computation, to
prove that

∑n
j=1 j3 = (n(n + 1)/2)2 for all positive integers n.

4. Use the values
∑n

j=1 j4 for n = 1, 2, 3, 4, 5, 6 to conjecture a formula for this sum that is a
polynomial of degree 5 in n. Attempt to prove your conjecture via mathematical induction
using numerical and symbolic computation.

5. Paul Erdős and E. Strauss have conjectured that the fraction 4/n can be written as the sum
of three unit fractions, that is, 4/n = 1/x + 1/y + 1/z, where x, y, and z are distinct positive
integers for all integers n with n > 1. Find such representation for as many positive integers
n as you can.

6. It is conjectured that the rational number p/q, where p and q are integers with 0 < p < q

and q is odd, can be expressed as an Egyptian fraction that is the sum of unit fractions
with odd denominators. Explore this conjecture using the greedy algorithm that successively
adds the unit fraction with the least positive odd denominator q at each stage. (For example,
2/7 = 1/5 + 1/13 + 1/115 + 1/10,465.)

Programming Projects

∗ 1. List the moves in the tower of Hanoi puzzle (see Exercise 32). If you can, animate these
moves.

∗∗ 2. Cover a 2n × 2n chessboard that is missing one square using L-shaped pieces (see Exercise
34).
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30 The Integers

3. Given a rational number p/q, express p/q as an Egyptian fraction using the algorithm
described in Exercise 35.

1.4 The Fibonacci Numbers

In his book Liber Abaci, written in 1202, the mathematician Fibonacci posed a problem
concerning the growth of the number of rabbits in a certain area. This problem can be
phrased as follows: A young pair of rabbits, one of each sex, is placed on an island.
Assuming that rabbits do not breed until they are two months old and after they are two
months old, each pair of rabbits produces another pair each month, how many pairs are
there after n months?

Let fn be the number of pairs of rabbits after n months. We have f1 = 1 because
only the original pair is on the island after one month. As this pair does not breed during
the second month, f2 = 1. To find the number of pairs after n months, add the number
on the island the previous month, fn−1, to the number of newborn pairs, which equals
fn−2, because each newborn pair comes from a pair at least two months old. This leads
to the following definition.

Definition. The Fibonacci sequence is defined recursively by f1 = 1, f2 = 1, and
fn = fn−1 + fn−2 for n ≥ 3. The terms of this sequence are called the Fibonacci numbers.

The mathematician Edouard Lucas named this sequence after Fibonacci in the
nineteenth century when he established many of its properties. The answer to Fibonacci’s
question is that there are fn rabbits on the island after n months.

Examining the initial terms of the Fibonacci sequence will be useful as we study
their properties.

Example 1.26. We compute the first ten Fibonacci numbers as follows:

FIBONACCI (c. 1180–1228) (short for filus Bonacci, son of Bonacci), also
known as Leonardo of Pisa, was born in the Italian commercial center of Pisa.
Fibonacci was a merchant who traveled extensively throughout the Mideast,
where he came into contact with mathematical works from the Arabic world.
In his Liber Abaci Fibonacci introduced Arabic notation for numerals and their
algorithms for arithmetic into the European world. It was in this book that his
famous rabbit problem appeared. Fibonacci also wrote Practica geometriae,
a treatise on geometry and trigonometry, and Liber quadratorum, a book on

diophantine equations.
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f3 = f2 + f1 = 1 + 1 = 2,

f4 = f3 + f2 = 2 + 1 = 3,

f5 = f4 + f3 = 3 + 2 = 5,

f6 = f5 + f4 = 5 + 3 = 8,

f7 = f6 + f5 = 8 + 5 = 13,

f8 = f7 + f6 = 13 + 8 = 21,

f9 = f8 + f7 = 21 + 13 = 34,

f10 = f9 + f8 = 34 + 21 = 55. �

We can define the value of f0 = 0, so that f2 = f1 + f0. We can also define fn where
n is a negative number so that the equality in the recursive definition is satisfied (see
Exercise 37).

The Fibonacci numbers occur in an amazing variety of applications. For example,
in botany the number of spirals in plants with a pattern known as phyllotaxis is always
a Fibonacci number. They occur in the solution of a tremendous variety of counting
problems, such as counting the number of bit strings with no two consecutive 1s (see
[Ro07]).

The Fibonacci numbers also satisfy an extremely large number of identities. For
example, we can easily find an identity for the sum of the first n consecutive Fibonacci
numbers.

Example 1.27. The sum of the first n Fibonacci numbers for 3 ≤ n ≤ 8 equals 1, 2, 4,
7, 12, 20, 33, and 54. Looking at these numbers, we see that they are all just 1 less than
the Fibonacci number fn+2. This leads us to the conjecture that

n∑
k=1

fk = fn+2 − 1.

Can we prove this identity for all positive integers n?

We will show, in two different ways, that this identity does hold for all integers n.
We provide two different demonstrations, to show that there is often more than one way
to prove that an identity is true.

First, we use the fact that fn = fn−1 + fn−2 for n = 2, 3, . . . to see that fk =
fk+2 − fk+1 for k = 1, 2, 3, . . . . This means that

n∑
k=1

fk =
n∑

k=1

(fk+2 − fk+1).

We can easily evaluate this sum because it is telescoping. Using the formula for a
telescoping sum found in Section 1.2, we have

n∑
k=1

fk = fn+2 − f2 = fn+2 − 1.
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This proves the result.

We can also prove this identity using mathematical induction. The basis step holds
because

∑1
k=1 fk = 1 and this equals f1+2 − 1 = f3 − 1 = 2 − 1 = 1. The inductive

hypothesis is
n∑

k=1

fk = fn+2 − 1.

We must show that, under this assumption,

n+1∑
k=1

fk = fn+3 − 1.

To prove this, note that by the inductive hypothesis we have

n+1∑
k=1

fk =
( n∑

k=1

fk

)
+ fn+1

= (fn+2 − 1) + fn+1

= (fn+1 + fn+2) − 1

= fn+3 − 1. �

The exercise set at the end of this section asks you to prove many other identities of
the Fibonacci numbers.

How Fast Do the Fibonacci Numbers Grow?

The following inequality, which shows that the Fibonacci numbers grow faster than a
geometric series with common ratio α = (1 + √

5)/2, will be used in Chapter 3.

Example 1.28. We can use the second principle of mathematical induction to prove
that fn > αn−2 for n ≥ 3 where α = (1+ √

5)/2. The basis step consists of verifying this
inequality for n = 3 and n = 4. We have α < 2 = f3, so the theorem is true for n = 3.
Because α2 = (3 + √

5)/2 < 3 = f4, the theorem is true for n = 4.

The inductive hypothesis consists of assuming that αk−2 < fk for all integers k with
k ≤ n. Because α = (1 + √

5)/2 is a solution of x2 − x − 1 = 0, we have α2 = α + 1.
Hence,

αn−1 = α2 . αn−3 = (α + 1) . αn−3 = αn−2 + αn−3.

By the inductive hypothesis, we have the inequalities

αn−2 < fn, αn−3 < fn−1.

By adding these two inequalities, we conclude that

αn−1 < fn + fn−1 = fn+1.

This finishes the proof. �
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We conclude this section with an explicit formula for the nth Fibonacci number. We
will not provide a proof in the text, but Exercises 41 and 42 at the end of this section
outline how this formula can be found using linear homogeneous recurrence relations
and generating functions, respectively. Furthermore, Exercise 40 asks that you prove this
identity by showing that the terms satisfy the same recursive definition as the Fibonacci
numbers do, and Exercise 45 asks for a proof via mathematical induction. The advantage
of the first two approaches is that they can be used to find the formula, while the second
two approaches cannot.

Theorem 1.7. Let n be a positive integer and let α = 1+√
5

2 and β = 1−√
5

2 . Then the
nth Fibonacci number fn is given by

fn = 1√
5
(αn − βn).

We have presented a few important results involving the Fibonacci numbers. There
is a vast literature concerning these numbers and their many applications to botany,
computer science, geography, physics, and other areas (see [Va89]). There is even a
scholarly journal, The Fibonacci Quarterly, devoted to their study.

1.4 Exercises

1. Find the following Fibonacci numbers.

a) f10 c) f15 e) f20

b) f13 d) f18 f ) f25

2. Find each of the following Fibonacci numbers.

a) f12 c) f24 e) f32

b) f16 d) f30 f ) f36

3. Prove that fn+3 + fn = 2fn+2 whenever n is a positive integer.

4. Prove that fn+3 − fn = 2fn+1 whenever n is a positive integer.

5. Prove that f2n = f 2
n

+ 2fn−1fn whenever n is a positive integer. (Recall that f0 = 0.)

6. Prove that fn−2 + fn+2 = 3fn whenever n is an integer with n ≥ 2. (Recall that f0 = 0.)

7. Find and prove a simple formula for the sum of the first n Fibonacci numbers with odd indices
when n is a positive integer. That is, find a simple formula for f1 + f3 + . . . + f2n−1.

8. Find and prove a simple formula for the sum of the first n Fibonacci numbers with even
indices when n is a positive integer. That is, find a simple formula for f2 + f4 + . . . + f2n.

9. Find and prove a simple formula for the expression fn − fn−1 + fn−2 − . . . + (−1)n+1f1
when n is a positive integer.

10. Prove that f2n+1 = f 2
n+1 + f 2

n
whenever n is a positive integer.

11. Prove that f2n = f 2
n+1 − f 2

n−1 whenever n is a positive integer. (Recall that f0 = 0.)

12. Prove that fn + fn−1 + fn−2 + 2fn−3 + 4fn−4 + 8fn−5 + . . . + 2n−3 = 2n−1 whenever n is
an integer with n ≥ 3.

13. Prove that
∑n

j=1 f 2
j

= f 2
1 + f 2

2 + . . . + f 2
n

= fnfn+1 for every positive integer n.
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14. Prove that fn+1fn−1 − f 2
n

= (−1)n for every positive integer n.

15. Prove that fn+1fn − fn−1fn−2 = f2n−1 for every positive integer n, n > 2.

16. Prove that f1f2 + f2f3 + . . . + f2n−1f2n = f 2
2n

if n is a positive integer.

17. Prove that fm+n = fmfn+1 + fnfm−1 whenever m and n are positive integers.

The Lucas numbers, named after François-Eduoard-Anatole Lucas (see Chapter 7 for a biogra-
phy), are defined recursively by

Ln = Ln−1 + Ln−2, n ≥ 3,

with L1 = 1 and L2 = 3. They satisfy the same recurrence relation as the Fibonacci numbers, but
the two initial values are different.

18. Find the first 12 Lucas numbers.

19. Find and prove a formula for the sum of the first n Lucas numbers when n is a positive integer.

20. Find and prove a formula for the sum of the first n Lucas numbers with odd indices when n

is a positive integer.

21. Find and prove a formula for the sum of the first n Lucas numbers with even indices when n

is a positive integer.

22. Prove that L2
n
− Ln+1Ln−1 = 5(−1)n when n is an integer with n ≥ 2.

23. Prove that L2
1 + L2

2 + . . . + L2
n
= LnLn+1 − 2 when n is an integer with n ≥ 1.

24. Show that the nth Lucas number Ln is the sum of the (n + 1)st and (n − 1)st Fibonacci
numbers, fn+1 and fn−1, respectively.

25. Show that f2n = fnLn for all integers n with n ≥ 1, where fn is the nth Fibonacci number
and Ln is the nth Lucas number.

26. Prove that 5fn+1 = Ln + Ln+2 whenever n is a positive integer, fn is the nth Fibonacci
number, and Ln is the nth Lucas number.

∗ 27. Prove that Lm+n = fm+1Ln + fmLn−1 whenever m and n are positive integers with n > 1, fn

is the nth Fibonacci number, and Ln is the nth Lucas number.

28. Show that Ln, the nth Lucas number, is given by

Ln = αn + βn,

where α = (1 + √
5)/2 and β = (1 − √

5)/2.

The Zeckendorf representation of a positive integer is the unique expression of this integer as the
sum of distinct Fibonacci numbers, where no two of these Fibonacci numbers are consecutive
terms in the Fibonacci sequence and where the term f1 = 1 is not used (but the term f2 = 1 may
be used).

29. Find the Zeckendorf representation of each of the integers 50, 85, 110, and 200.

∗ 30. Show that every positive integer has a unique Zeckendorf representation.

31. Show that fn ≤ αn−1 for every integer n with n ≥ 2, where α = (1 + √
5)/2.

32. Show that (
n

0

)
+

(
n − 1

1

)
+

(
n − 2

2

)
+ . . . = fn+1,
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where n is a nonnegative integer and fn+1 is the (n + 1)st Fibonacci number. (See Appendix B

for a review of binomial coefficients. Here, the sum ends with the term
(

1
n−1

)
.)

33. Prove that whenever n is a nonegative integer,
∑n

j=1

(
n
j

)
fj = f2n, where fj is the j th

Fibonacci number.

34. Let F =
(

1
1

1
0

)
. Show that Fn =

(
fn+1
fn

fn

fn−1

)
when n ∈ Z+.

35. By taking determinants of both sides of the result of Exercise 34, prove the identity in
Exercise 14.

36. Define the generalized Fibonacci numbers recursively by g1 = a, g2 = b, and gn = gn−1 +
gn−2 for n ≥ 3. Show that gn = afn−2 + bfn−1 for n ≥ 3.

37. Give a recursive definition of the Fibonacci number fn when n is a negative integer. Use your
definition to find fn for n = −1, −2, −3, . . . , −10.

38. Use the results of Exercise 37 to formulate a conjecture that relates the values of f−n and fn

when n is a positive integer. Prove this conjecture using mathematical induction.

39. What is wrong with the claim that an 8 × 8 square can be broken into pieces that can be
reassembled to form a 5 × 13 rectangle as shown?

3 3

3

3

3

3

5 5

5

5

8

8

5 5

5

13

(Hint: Look at the identity in Exercise 14. Where is the extra square unit?)

40. Show that if an = 1√
5
(αn − βn), where α = (1 + √

5)/2 and β = (1 − √
5)/2, then an =

an−1 + an−2 and a1 = a2 = 1. Conclude that fn = an, where fn is the nth Fibonacci number.

A linear homogeneous recurrence relation of degree 2 with constant coefficients is an equation
of the form

an = c1an−1 + c2an−2,

where c1 and c2 are real numbers with c2 �= 0. It is not difficult to show (see [Ro07]) that if the
equation r2 − c1r − c2 = 0 has two distinct roots r1 and r2, then the sequence {an} is a solution of
the linear homogeneous recurrence relation an = c1an−1 + c2an−2 if and only if an = C1r

n
1 + C2r

n
2

for n = 0, 1, 2, . . . , where C1 and C2 are constants. The values of these constants can be found
using the two initial terms of the sequence.

41. Find an explicit formula for fn, proving Theorem 1.7, by solving the recurrence relation
fn = fn−1 + fn−2 for n = 2, 3, . . . with initial conditions f0 = 0 and f1 = 1.

The generating function for the sequence a0, a1, . . . , ak, . . . is the infinite series

G(x) =
∞∑

k=0

akx
k.
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36 The Integers

42. Use the generating function G(x) = ∑∞
k=0 fkx

k where fk is the kth Fibonacci number to find
an explicit formula for fk, proving Theorem 1.7. (Hint: Use the fact that fk = fk−1 + fk−2
for k = 2, 3, . . . to show that G(x) − xG(x) − x2G(x) = x. Solve this to show that G(x) =
x/(1− x − x2) and then write G(x) in terms of partial fractions, as is done in calculus.) (See
[Ro07] for information on using generating functions.)

43. Find an explicit formula for the Lucas numbers using the technique of Exercise 41.

44. Find an explicit formula for the Lucas numbers using the technique of Exercise 42.

45. Use mathematical induction to prove Theorem 1.7.

Computations and Explorations

1. Find the Fibonacci numbers f100, f200, and f500.

2. Find the Lucas numbers L100, L200, and L500.

3. Examine as many Fibonacci numbers as possible to determine which are perfect squares.
Formulate a conjecture based on your evidence.

4. Examine as many Fibonacci numbers as possible to determine which are triangular numbers.
Formulate a conjecture based on your evidence.

5. Examine as many Fibonacci numbers as possible to determine which are perfect cubes.
Formulate a conjecture based on your evidence.

6. Find the largest Fibonacci number less than 10,000, less than 100,000, and less than
1,000,000.

7. A surprising theorem states that the Fibonacci numbers are the positive values of the polyno-
mial 2xy4 + x2y3 − 2x3y2 − y5 − x4y + 2y as x and y range over all nonnegative integers.
Verify this conjecture for the values of x and y where x and y are nonnegative integers with
x + y ≤ 100.

Programming Projects

1. Given a positive integer n, find the first n terms of the Fibonacci sequence.

2. Given a positive integer n, find the first n terms of the Lucas sequence.

3. Give a positive integer n, find its Zeckendorf representation (defined in the preamble to
Exercise 29).

1.5 Divisibility

The concept of the divisibility of one integer by another is central in number theory.

Definition. If a and b are integers with a �= 0, we say that a divides b if there is an
integer c such that b = ac. If a divides b, we also say that a is a divisor or factor of b

and that b is a multiple of a.
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1.5 Divisibility 37

If a divides b we write a | b, and if a does not divide b we write a � | b. (Be careful
not to confuse the notations a | b, which denotes that a divides b, and a/b, which is the
quotient obtained when a is divided by b.)

Example 1.29. The following statements illustrate the concept of the divisibility of
integers: 13 | 182, −5 | 30, 17 | 289, 6 � | 44, 7 � | 50, −3 | 33, and 17 | 0. �

Example 1.30. The divisors of 6 are ±1, ±2, ±3, ±6. The divisors of 17 are ±1, ±17.
The divisors of 100 are ±1, ±2, ±4, ±5, ±10, ±20, ±25, ±50, ±100. �

In subsequent chapters, we will need some simple properties of divisibility, which
we now state and prove.

Theorem 1.8. If a, b, and c are integers with a | b and b | c, then a | c.

Proof. Because a | b and b | c, there are integers e and f such that ae = b and bf = c.
Hence, c = bf = (ae)f = a(ef ), and we conclude that a | c.

Example 1.31. Because 11 | 66 and 66 | 198, Theorem 1.8 tells us that 11 | 198. �

Theorem 1.9. If a, b, m, and n are integers, and if c | a and c | b, then c | (ma + nb).

Proof. Because c | a and c | b, there are integers e and f such that a = ce and b = cf .
Hence, ma + nb = mce + ncf = c(me + nf ). Consequently, we see that c | (ma + nb).

Example 1.32. As 3 | 21 and 3 | 33, Theorem 1.9 tells us that 3 divides

5 . 21 − 3 . 33 = 105 − 99 = 6. �

The following theorem states an important fact about division.

Theorem 1.10. The Division Algorithm. If a and b are integers such that b > 0, then
there are unique integers q and r such that a = bq + r with 0 ≤ r < b.

In the equation given in the division algorithm, we call q the quotient and r the
remainder. We also call a the dividend and b the divisor. (Note: We use the traditional
name for this theorem even though the division algorithm is not actually an algorithm.
We discuss algorithms in Section 2.2.)

We note that a is divisible by b if and only if the remainder in the division algorithm
is 0. Before we prove the division algorithm, consider the following examples.

Example 1.33. If a = 133 and b = 21, then q = 6 and r = 7, because 133 = 21 . 6 + 7
and 0 ≤ 7 < 21. Likewise, if a = −50 and b = 8, then q = −7 and r = 6, because
−50 = 8(−7) + 6 and 0 ≤ 6 < 8. �

We now prove the division algorithm using the well-ordering property.
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38 The Integers

Proof. Consider the set S of all integers of the form a − bk where k is an integer, that
is, S = {a − bk | k ∈ Z}. Let T be the set of all nonnegative integers in S. T is nonempty,
because a − bk is positive whenever k is an integer with k < a/b.

By the well-ordering property, T has a least element r = a − bq. (These are the
values for q and r specified in the theorem.) We know that r ≥ 0 by construction, and
it is easy to see that r < b. If r ≥ b, then r > r − b = a − bq − b = a − b(q + 1) ≥ 0,
which contradicts the choice of r = a − bq as the least nonnegative integer of the form
a − bk. Hence, 0 ≤ r < b.

To show that these values for q and r are unique, assume that we have two equations
a = bq1 + r1 and a = bq2 + r2, with 0 ≤ r1 < b and 0 ≤ r2 < b. By subtracting the second
of these equations from the first, we find that

0 = b(q1 − q2) + (r1 − r2).

Hence, we see that

r2 − r1 = b(q1 − q2).

This tells us that b divides r2 − r1. Because 0 ≤ r1 < b and 0 ≤ r2 < b, we have −b <

r2 − r1 < b. Hence, b can divide r2 − r1 only if r2 − r1 = 0 or, in other words, if r1 = r2.
Because bq1 + r1 = bq2 + r2 and r1 = r2, we also see that q1 = q2. This shows that the
quotient q and the remainder r are unique.

We now use the greatest integer function (defined in Section 1.1) to give explicit
formulas for the quotient and remainder in the division algorithm. Because the quotient
q is the largest integer such that bq ≤ a, and r = a − bq, it follows that

(1.4) q = [a/b], r = a − b[a/b].

The following examples display the quotient and remainder of a division.

Example 1.34. Let a = 1028 and b = 34. Then a = bq + r with 0 ≤ r < b, where
q = [1028/34] = 30 and r = 1028 − [1028/34] . 34 = 1028 − 30 . 34 = 8. �

Example 1.35. Let a = −380 and b = 75. Then a = bq + r with 0 ≤ r < b, where
q = [−380/75] = −6 and r = −380 − [−380/75] . 75 = −380 − (−6)75 = 70. �

We can use Equation (1.4) to prove a useful property of the greatest integer function.

Example 1.36. Show that if n is a positive integer, then [x/n] = [[x]/n] whenever x

is a real number. To prove this identity, suppose that [x] = m. By the division algorithm,
we have integers q and r such that m = nq + r , where 0 ≤ r ≤ n − 1. By Equation (1.4),
we have q = [[x]/n]. Because [x] ≤ x < [x] + 1, it follows that x = [x] + ε, where
0 ≤ ε < 1. We see that [x/n] = [([x] + ε)/n] = [(m + ε)/n] = [((nq + r) + ε)/n] =
[q + (r + ε)/n]. Because 0 ≤ ε < 1, we have 0 ≤ r + ε < (n − 1) + 1 = n. It follows
that [x/n] = [q]. �

Given a positive integer d, we can classify integers according to their remainders
when divided by d . For example, with d = 2, we see from the division algorithm that
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1.5 Divisibility 39

every integer when divided by 2 leaves a remainder of either 0 or 1. This leads to the
following definition of some common terminology.

Definition. If the remainder when n is divided by 2 is 0, then n = 2k for some integer
k, and we say that n is even, whereas if the remainder when n is divided by 2 is 1, then
n = 2k + 1 for some integer k, and we say that n is odd.

Similarly, when d = 4, we see from the division algorithm that when an integer n

is divided by 4, the remainder is either 0, 1, 2, or 3. Hence, every integer is of the form
4k, 4k + 1, 4k + 2, or 4k + 3, where k is a positive integer.

We will pursue these matters further in Chapter 4.

Greatest Common Divisors

If a and b are integers, not both 0, then the set of common divisors of a and b is a finite
set of integers, always containing the integers +1and −1. We are interested in the largest
integer among the common divisors of the two integers.

Definition. The greatest common divisor of two integers a and b, which are not both
0, is the largest integer that divides both a and b.

The greatest common divisor of a and b is written as (a, b). (Note that the notation
gcd(a, b) is also used, especially outside of number theory. We will use the traditional
notation (a, b) here, even though it is the same notation used for ordered pairs.) Note that
(0, n) = (n, 0) = n whenever n is a positive integer. Even though every positive integer
divides 0, we define (0, 0) = 0. This is done to ensure that the results we prove about
greatest common divisors hold in all cases.

Example 1.37. The common divisors of 24 and 84 are ±1, ±2, ±3, ±4, ±6, and
±12. Hence, (24, 84) = 12. Similarly, looking at sets of common divisors, we find
that (15, 81) = 3, (100, 5) = 5, (17, 25) = 1, (0, 44) = 44, (−6, −15) = 3, and
(−17, 289) = 17. �

We are particularly interested in pairs of integers sharing no common divisors greater
than 1. Such pairs of integers are called relatively prime.

Definition. The integers a and b, with a �= 0 and b �= 0, are relatively prime if a and b

have greatest common divisor (a, b) = 1.

Example 1.38. Because (25, 42) = 1, 25 and 42 are relatively prime. �

We will study greatest common divisors at length in Chapter 4. In that chapter, we
will give an algorithm for computing greatest common divisors. We will also prove many
important results about them that lead to key theorems in number theory.
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40 The Integers

1.5 Exercises

1. Show that 3 | 99, 5 | 145, 7 | 343, and 888 | 0.

2. Show that 1001 is divisible by 7, by 11, and by 13.

3. Decide which of the following integers are divisible by 7.

a) 0 c) 1717 e) −285,714
b) 707 d) 123,321 f) −430,597

4. Decide which of the following integers are divisible by 22.

a) 0 c) 1716 e) −32,516
b) 444 d) 192,544 f) −195,518

5. Find the quotient and remainder in the division algorithm, with divisor 17 and dividend

a) 100. b) 289. c) −44. d) −100.

6. Find all positive integers that divide each of these integers.

a) 12 b) 22 c) 37 d) 41

7. Find all positive integers that divide each of these integers.

a) 13 b) 21 c) 36 d) 44

8. Find these greatest common divisors by finding all positive integers that divide each integer
in the pair and selecting the largest that divides both.

a) (8, 12) b) (7, 9) c) (15, 25) d) (16, 27)

9. Find these greatest common divisors by finding all positive integers that divide each integer
in the pair and selecting the largest that divides both.

a) (11, 22) b) (36, 42) c) (21, 22) d) (16, 64)

10. Find all positive integers less than 10 that are relatively prime to it.

11. Find all positive integers less than 11 that are relatively prime to it.

12. Find all pairs of positive integers not exceeding 10 that are relatively prime.

13. Find all pairs of positive integers between 10 and 20, inclusive, that are relatively prime.

14. What can you conclude if a and b are nonzero integers such that a | b and b | a?

15. Show that if a, b, c, and d are integers with a and c nonzero, such that a | b and c | d, then
ac | bd.

16. Are there integers a , b, and c such that a | bc, but a � | b and a � | c?

17. Show that if a, b, and c �= 0 are integers, then a | b if and only if ac | bc.

18. Show that if a and b are positive integers and a | b, then a ≤ b.

19. Show that if a and b are integers such that a | b, then ak | bk for every positive integer k.

20. Show that the sum of two even or of two odd integers is even, whereas the sum of an odd and
an even integer is odd.

21. Show that the product of two odd integers is odd, whereas the product of two integers is even
if either of the integers is even.

22. Show that if a and b are odd positive integers and b � | a, then there are integers s and t such
that a = bs + t , where t is odd and | t |< b.
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23. When the integer a is divided by the integer b, where b > 0, the division algorithm gives a
quotient of q and a remainder of r . Show that if b � | a, when −a is divided by b, the division
algorithm gives a quotient of −(q + 1) and a remainder of b − r , whereas if b | a, the quotient
is −q and the remainder is 0.

24. Show that if a, b, and c are integers with b > 0 and c > 0, such that when a is divided by b

the quotient is q and the remainder is r , and when q is divided by c the quotient is t and the
remainder is s, then when a is divided by bc, the quotient is t and the remainder is bs + r .

25. a) Extend the division algorithm by allowing negative divisors. In particular, show that
whenever a and b �= 0 are integers, there are unique integers q and r such that a = bq + r ,
where 0 ≤ r <| b |.

b) Find the remainder when 17 is divided by −7.

➢ 26. Show that if a and b are positive integers, then there are unique integers q and r such that
a = bq + r , where −b/2 < r ≤ b/2. This result is called the modified division algorithm.

27. Show that if m and n > 0 are integers, then[
m + 1

n

]
=

{ [
m
n

]
if m �= kn − 1 for some integer k;[

m
n

] +1 if m = kn − 1 for some integer k.

28. Show that the integer n is even if and only if n − 2[n/2] = 0.

29. Show that the number of positive integers less than or equal to x, where x is a positive real
number, that are divisible by the positive integer d equals [x/d].

30. Find the number of positive integers not exceeding 1000 that are divisible by 5, by 25, by
125, and by 625.

31. How many integers between 100 and 1000 are divisible by 7? by 49?

32. Find the number of positive integers not exceeding 1000 that are not divisible by 3 or 5.

33. Find the number of positive integers not exceeding 1000 that are not divisible by 3, 5, or 7.

34. Find the number of positive integers not exceeding 1000 that are divisible by 3 but not by 4.

35. In early 2010, to mail a first-class letter in the United States of America it cost 44 cents for
the first ounce and 17 cents for each additional ounce or fraction thereof. Find a formula
involving the greatest integer function for the cost of mailing a letter in early 2010. Could it
possibly have cost $1.81 or $2.65 to mail a first-class letter in the United States of America
in early 2010?

36. Show that if a is an integer, then 3 divides a3 − a.

37. Show that the product of two integers of the form 4k + 1 is again of this form, whereas the
product of two integers of the form 4k + 3 is of the form 4k + 1.

38. Show that the square of every odd integer is of the form 8k + 1.

39. Show that the fourth power of every odd integer is of the form 16k + 1.

40. Show that the product of two integers of the form 6k + 5 is of the form 6k + 1.

41. Show that the product of any three consecutive integers is divisible by 6.

42. Use mathematical induction to show that n5 − n is divisible by 5 for every positive integer n.

43. Use mathematical induction to show that the sum of the cubes of three consecutive integers
is divisible by 9.
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In Exercises 44–48, let fn denote the nth Fibonacci number.

44. Show that fn is even if and only if n is divisible by 3.

45. Show that fn is divisible by 3 if and only if n is divisible by 4.

46. Show that fn is divisible by 4 if and only if n is divisible by 6.

47. Show that fn = 5fn−4 + 3fn−5 whenever n is a positive integer with n > 5. Use this result to
show that fn is divisible by 5 whenever n is divisible by 5.

∗ 48. Show that fn+m = fmfn+1 + fm−1fn whenever m and n are positive integers with m > 1. Use
this result to show that fn | fm when m and n are positive integers with n | m.

Let n be a positive integer. We define

T (n) =
{

n/2 if n is even;

(3n + 1)/2 if n is odd.

We then form the sequence obtained by iterating T : n, T (n), T (T (n)), T (T (T (n))),
. . . . For instance, starting with n = 7, we have 7, 11, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1, 2,
1, 2, 1, . . . . A well-known conjecture, sometimes called the Collatz conjecture, asserts that the
sequence obtained by iterating T always reaches the integer 1 no matter which positive integer n

begins the sequence.

49. Find the sequence obtained by iterating T starting with n = 39.

50. Show that the sequence obtained by iterating T starting with n = (22k − 1)/3, where k is a
positive integer greater than 1, always reaches the integer 1.

51. Show that the Collatz conjecture is true if it can be shown that for every positive integer n

with n ≥ 2 there is a term in the sequence obtained by iterating T that is less than n.

52. Verify that there is a term in the sequence obtained by iterating T , starting with the positive
integer n, that is less than n for all positive integers n with 2 ≤ n ≤ 100. (Hint: Begin by
considering sets of positive integers for which it is easy to show that this is true.)

∗ 53. Show that [(2 + √
3)n] is odd whenever n is a nonnegative integer.

∗ 54. Determine the number of positive integers n such that [a/2] + [a/3] + [a/5] = a, where, as
usual, [x] is the greatest integer function.

55. Prove the divison algorithm using the second principle of mathematical induction.

Computations and Explorations

1. Find the quotient and remainder when 111,111,111,111 is divided by 987,654,321.

2. Verify the Collatz conjecture described in the preamble to Exercise 49 for all integers n not
exceeding 10,000.

3. Using numerical evidence, what sort of conjectures can you make concerning the number of
iterations needed before the sequence of iterations T (n) reaches 1, where n is a given positive
integer?

4. Using numerical evidence, make conjectures about the divisibility of Fibonacci numbers by
7, by 8, by 9, by 11, and by 13.

42



1.5 Divisibility 43

Programming Projects

1. Decide whether an integer is divisible by a given integer.

2. Find the quotient and remainder in the division algorithm.

3. Find the quotient, remainder, and sign in the modified division algorithm given in Exercise 26.

4. Compute the terms of the sequence n, T (n), T (T (n)), T (T (T (n))), . . . for a given positive
integer n, as defined in the preamble to Exercise 49.
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2 Integer Representations
and Operations

The way in which integers are represented has a major impact on how easily people
and computers can do arithmetic with these integers. The purpose of this chapter is to

explain how integers are represented using base b expansions, and how basic arithmetic
operations can be carried out using these expansions. In particular, we will show that
when b is a positive integer, every positive integer has a unique base b expansion. For
example, when b is 10, we have the decimal expansion of an integer; when b is 2, we
have the binary expansion of this integer; and when b is 16, we have the hexadecimal
expansion. We will describe a procedure for finding the base b expansion of an integer,
and describe the basic algorithms used to carry out integer arithmetic with base b

expansions. Finally, after introducing big-O notation, we will analyze the computational
complexity of these basic operations in terms of big-O estimates of the number of bit
operations that they use.

2.1 Representations of Integers

In daily life, we use decimal notation to represent integers. We write out numbers using
digits to represent powers of ten. For instance, when we write out the integer 37,465, we
mean

3 . 104 + 7 . 103 + 4 . 102 + 6 . 10 + 5.

Decimal notation is an example of a positional number system, in which the position
a digit occupies in a representation determines the quantity it represents. Throughout
ancient and modern history, many other notations for integers have been used. For
example, Babylonian mathematicians who lived more than 3000 years ago expressed
integers using sixty as a base. The Romans employed Roman numerals, which are used
even today to represent years. The ancient Mayans used a positional notation with twenty
as a base. Many other systems of integer notation have been invented and used over time.

There is no special reason for using ten as the base in a fixed positional number
system, other than that we have ten fingers. As we will see, any positive integer greater
than 1 can be used as a base. With the invention and proliferation of computers, bases
other than ten have become increasingly important. In particular, base 2, base 8, and base
16 representations of integers are used extensively by computers for various purposes.

In this section, we will demonstrate that no matter which positive integer b is chosen
as a base, every positive integer can be expressed uniquely in base b notation. In Section

From Chapter 2 of Elementary Number Theory, Sixth Edition. Kenneth H. Rosen  .

Copyright © 2011 by Pearson Education, Inc. All rights reserved. 
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46 Integer Representations and Operations

2.2, we will show how these expansions can be used to do arithmetic with integers.
(See the exercise set at the end of this section to learn about one’s and two’s complement
notations, which are used by computers to represent both positive and negative integers.)

For more information about the fascinating history of positional number systems, the
reader is referred to [Or88] or [Kn97], where extensive surveys and numerous references
may be found.

We now show that every positive integer greater than 1 may be used as a base.

Theorem 2.1. Let b be a positive integer with b > 1. Then every positive integer n can
be written uniquely in the form

n = akb
k + ak−1b

k−1 + . . . + a1b + a0,

where k is a nonnegative integer, aj is an integer with 0 ≤ aj ≤ b − 1for j = 0, 1, . . . , k,
and the initial coefficient ak �= 0.

Proof. We obtain an expression of the desired type by successively applying the division
algorithm in the following way. We first divide n by b to obtain

n = bq0 + a0, 0 ≤ a0 ≤ b − 1.

If q0 �= 0, we continue by dividing q0 by b to find that

q0 = bq1 + a1, 0 ≤ a1 ≤ b − 1.

We continue this process to obtain

q1 = bq2 + a2, 0 ≤ a2 ≤ b − 1,

q2 = bq3 + a3, 0 ≤ a3 ≤ b − 1,
...

qk−2 = bqk−1 + ak−1, 0 ≤ ak−1 ≤ b − 1,

qk−1 = b . 0 + ak, 0 ≤ ak ≤ b − 1.

The last step of the process occurs when a quotient of 0 is obtained. To see that we must
reach such a step, first note that the sequence of quotients satisfies

n > q0 > q1 > q2 > . . . ≥ 0.

Because the sequence q0, q1, q2, . . . is a decreasing sequence of nonnegative integers
that continues as long as its terms are positive, there are at most q0 terms in this sequence,
and the last term equals 0.

From the first equation above, we find that

n = bq0 + a0.

We next replace q0 using the second equation, to obtain

n = b(bq1 + a1) + a0 = b2q1 + a1b + a0.
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Successively substituting for q1, q2, . . . , qk−1, we have

n = b3q2 + a2b
2 + a1b + a0,

...

= bk−1qk−2 + ak−2b
k−2 + . . . + a1b + a0,

= bkqk−1 + ak−1b
k−1 + . . . + a1b + a0

= akb
k + ak−1b

k−1 + . . . + a1b + a0,

where 0 ≤ aj ≤ b − 1 for j = 0, 1, . . . , k and ak �= 0, given that ak = qk−1 is the last
nonzero quotient. Consequently, we have found an expansion of the desired type.

To see that the expansion is unique, assume that we have two such expansions equal
to n, that is,

n = akb
k + ak−1b

k−1 + . . . + a1b + a0

= ckb
k + ck−1b

k−1 + . . . + c1b + c0,

where 0 ≤ ak < b and 0 ≤ ck < b (and where, if necessary, we have added initial terms
with zero coefficients to one of the expansions to have the number of terms agree).
Subtracting one expansion from the other, we have

(ak − ck)b
k + (ak−1 − ck−1)b

k−1 + . . . + (a1 − c1)b + (a0 − c0) = 0.

If the two expansions are different, there is a smallest integer j , 0 ≤ j ≤ k, such that
aj �= cj . Hence,

bj
(
(ak − ck)b

k−j + . . . + (aj+1 − cj+1)b + (aj − cj)
) = 0,

so that

(ak − ck)b
k−j + . . . + (aj+1 − cj+1)b + (aj − cj) = 0.

Solving for aj − cj , we obtain

aj − cj = (ck − ak)b
k−j + . . . + (cj+1 − aj+1)b

= b
(
(ck − ak)b

k−j−1 + . . . + (cj+1 − aj+1)
)
.

Hence, we see that

b | (aj − cj).

But because 0 ≤ aj < b and 0 ≤ cj < b, we know that −b < aj − cj < b. Consequently,
b | (aj − cj) implies that aj = cj . This contradicts the assumption that the two expan-
sions are different. We conclude that our base b expansion of n is unique.

For b = 2, we see by Theorem 2.1 that the following corollary holds.

Corollary 2.1.1. Every positive integer may be represented as the sum of distinct
powers of 2.
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48 Integer Representations and Operations

Proof. Let n be a positive integer. From Theorem 2.1 with b = 2, we know that
n = ak2k + ak−12

k−1 + . . . + a12 + a0, where each aj is either 0 or 1. Hence, every
positive integer is the sum of distinct powers of 2.

In the expansions described in Theorem 2.1, b is called the base or radix of the
expansion. We call base 10 notation, our conventional way of writing integers, decimal
notation. Base 2 expansions are called binary expansions, base 8 expansions are called
octal expansions, and base 16 expansions are called hexadecimal, or hex for short. The
coefficients aj are called the digits of the expansion. Binary digits are called bits (binary
digits) in computer terminology.

To distinguish representations of integers with different bases, we use a special
notation. We write (akak−1 . . . a1a0)b to represent the number akb

k + ak−1b
k−1 + . . . +

a1b + a0.

Example 2.1. To illustrate base b notation, note that (236)7 = 2 . 72 + 3 . 7 + 6 = 125
and (10010011)2 = 1 . 27 + 1 . 24 + 1 . 21 + 1 = 147. �

The proof of Theorem 2.1 provides a method of finding the base b expansion
(akak−1 . . . a1a0)b of any positive integer n. Specifically, to find the base b expansion
of n, we first divide n by b. The remainder is the digit a0. Then, we divide the quotient
[n/b] = q0 by b. The remainder is the digit a1. We continue this process, successively
dividing the quotient obtained by b, to obtain the digits in the base b expansion of n.
The process stops once a quotient of 0 is obtained. In other words, to find the base b

expansion of n, we perform the division algorithm repeatedly, replacing the dividend
each time with the quotient, and stop when we come to a quotient that is 0. We then read
up the list of remainders to find the base b expansion. We illustrate this procedure in
Example 2.2.

Example 2.2. To find the base 2 expansion of 1864, we use the division algorithm
successively:

1864 = 2 . 932 + 0,

932 = 2 . 466 + 0,

466 = 2 . 233 + 0,

233 = 2 . 116 + 1,

116 = 2 . 58 + 0,

58 = 2 . 29 + 0,

29 = 2 . 14 + 1,

14 = 2 . 7 + 0,

7 = 2 . 3 + 1,

3 = 2 . 1 + 1,

1 = 2 . 0 + 1.

To obtain the base 2 expansion of 1864, we simply take the remainders of these divisions.
This shows that (1864)10 = (11101001000)2. �
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Computers represent numbers internally by using a series of “switches” that may be
either “on” or “off.” (This may be done electrically or mechanically, or by other means.)
Hence, we have two possible states for each switch. We can use “on” to represent the
digit 1 and “off” to represent the digit 0; this is why computers use binary expansions to
represent integers internally.

Computers use base 8 or base 16 for display purposes. In base 16 (hexadecimal) no-
tation there are 16 digits, usually denoted by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
The letters A, B, C, D, E, and F are used to represent the digits that correspond to 10, 11,
12, 13, 14, and 15 (written in decimal notation). The following example demonstrates
the conversion from hexadecimal to decimal notation.

Example 2.3. To convert (A35B0F)16 from hexadecimal to decimal notation, we write

(A35B0F)16 = 10 . 165 + 3 . 164 + 5 . 163 + 11 . 162 + 0 . 16 + 15

= (10705679)10. �

A simple conversion is possible between binary and hexadecimal notation. We can
write each hex digit as a block of four binary digits according to the correspondences
given in Table 2.1.

Example 2.4. An example of conversion from hex to binary is (2FB3)16 =
(10111110110011)2. Each hex digit is converted to a block of four binary digits (the
initial zeros in the initial block (0010)2 corresponding to the digit (2)16 are omitted).

To convert from binary to hex, consider (11110111101001)2. We break this into
blocks of four, starting from the right. The blocks are, from right to left, 1001, 1110,

1101, and 0011 (with two initial zeros added). Translating each block to hex, we obtain
(3DE9)16. �

Hex Binary Hex Binary
Digit Digits Digit Digits

0 0000 8 1000

1 0001 9 1001

2 0010 A 1010

3 0011 B 1011

4 0100 C 1100

5 0101 D 1101

6 0110 E 1110

7 0111 F 1111

Table 2.1 Conversion from hex digits to blocks of binary digits.
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50 Integer Representations and Operations

We note that a conversion between two different bases is as easy as binary–hex
conversion whenever one of the bases is a power of the other.

2.1 Exercises

1. Convert (1999)10 from decimal to base 7 notation. Convert (6105)7 from base 7 to decimal
notation.

2. Convert (89156)10 from decimal to base 8 notation. Convert (706113)8 from base 8 to decimal
notation.

3. Convert (10101111)2 from binary to decimal notation and (999)10 from decimal to binary
notation.

4. Convert (101001000)2 from binary to decimal notation and (1984)10 from decimal to binary
notation.

5. Convert (100011110101)2 and (11101001110)2 from binary to hexadecimal.

6. Convert (ABCDEF)16, (DEFACED)16, and (9A0B)16 from hexadecimal to binary.

7. Explain why we really are using base 1000 notation when we break large decimal integers
into blocks of three digits, separated by commas.

8. Show that if b is a negative integer less than −1, then every nonzero integer n can be uniquely
written in the form

n = akb
k + ak−1b

k−1 + . . . + a1b + a0,

where ak �= 0 and 0 ≤ aj < | b | for j = 0, 1, 2, . . . , k. We write n = (akak−1 . . . a1a0)b, just
as we do for positive bases.

9. Find the decimal representation of (101001)−2 and (12012)−3.

10. Find the base −2 representations of the decimal numbers −7, −17, and 61.

11. Show that any weight not exceeding 2k − 1 may be measured using weights of 1, 2, 22, . . . ,

2k−1, when all the weights are placed in one pan.

12. Show that every nonzero integer can be uniquely represented in the form

ek3k + ek−13
k−1 + . . . + e13 + e0,

where ej = −1, 0, or 1 for j = 0, 1, 2, . . . , k and ek �= 0. This expansion is called a bal-
anced ternary expansion.

13. Use Exercise 12 to show that any weight not exceeding (3k − 1)/2 may be measured using
weights of 1, 3, 32, . . . , 3k−1, when the weights may be placed in either pan.

14. Explain how to convert from base 3 to base 9 notation, and from base 9 to base 3 notation.

15. Explain how to convert from base r to base rn notation, and from base rn to base r notation,
when r > 1 and n are positive integers.

16. Show that if n = (akak−1 . . . a1a0)b, then the quotient and remainder when n is divided by bj

are q = (akak−1 . . . aj)b and r = (aj−1 . . . a1a0)b, respectively.

17. If the base b expansion of n is n = (akak−1 . . . a1a0)b, what is the base b expansion of bmn?
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One’s complement representations of integers are used to simplify computer arithmetic. To
represent positive and negative integers with absolute value less than 2n, a total of n + 1 bits
is used.

The leftmost bit is used to represent the sign. A 0 in this position is used for positive integers,
and a 1 in this position is used for negative integers.

For positive integers, the remaining bits are identical to the binary expansion of the integer.
For negative integers, the remaining bits are obtained by first finding the binary expansion of the
absolute value of the integer, and then taking the complement of each of these bits, where the
complement of a 1 is a 0 and the complement of a 0 is a 1.

18. Find the one’s complement representations, using bit strings of length six, of the following
integers.

a) 22 b) 31 c) −7 d) −19

19. What integer does each of the following one’s complement representations of length five
represent?

a) 11001 b) 01101 c) 10001 d) 11111

20. How is the one’s complement representation of −m obtained from the one’s complement of
m, when bit strings of length n are used?

21. Show that if m is an integer with one’s complement representation an−1an−2 . . . a1a0, then
m = −an−1(2

n−1 − 1) + ∑n−2
i=0 ai2

i.

Two’s complement representations of integers also are used to simplify computer arithmetic (in
fact, they are used much more commonly than one’s complement representations). To represent
an integer x with −2n−1 ≤ x ≤ 2n−1 − 1, n bits are used.

The leftmost bit represents the sign, with a 0 used for positive integers and a 1 for negative
integers.

For a positive integer, the remaining n − 1 bits are identical to the binary expansion of the
integer. For a negative integer, the remaining bits are the bits of the binary expansion of 2n−1− |x |.
22. Find the two’s complement representations, using bit strings of length six, of the integers in

Exercise 18.

23. What integers do the representations in Exercise 19 represent if each is the two’s complement
representation of an integer?

24. Show that if m is an integer with two’s complement representation an−1an−2 . . . a1a0, then
m = −an−1

. 2n−1 + ∑n−2
i=0 ai2

i.

25. How is the two’s complement representation of −m obtained from the two’s complement
representation of m, when bit strings of length n are used?

26. How can the two’s complement representation of an integer be found from its one’s comple-
ment representation?

27. Sometimes integers are encoded by using four-digit binary expansions to represent each
decimal digit. This produces the binary coded decimal form of the integer. For instance,
791 is encoded in this way by 011110010001. How many bits are required to represent a
number with n decimal digits using this type of encoding?
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A Cantor expansion of a positive integer n is a sum

n = amm! + am−1(m − 1)! + . . . + a22! + a11!,

where each aj is an integer with 0 ≤ aj ≤ j and am �= 0.

28. Find Cantor expansions of 14, 56, and 384.

∗ 29. Show that every positive integer has a unique Cantor expansion. (Hint: For each positive
integer n there is a positive integer m such that m! ≤ n < (m + 1)!. For am, take the quotient
from the division algorithm when n is divided by m!, then iterate.)

The Chinese game of nim is played as follows. There are several piles of matches, each containing
an arbitrary number of matches at the start of the game. To make a move, a player removes one
or more matches from one of the piles. The players take turns, and the player who removes the
last match wins the game.

A winning position is an arrangement of matches in piles such that if a player can move to
this position, then (no matter what the second player does) the first player can continue to play in a
way that will win the game. An example is the position where there are two piles, each containing
one match; this is a winning position, because the second player must remove a match, leaving
the first player the opportunity to win by removing the last match.

30. Show that the position in nim where there are two piles, each with two matches, is a winning
position.

31. For each arrangement of matches into piles, write the number of matches in each pile in
binary notation, and then line up the digits of these numbers into columns (adding initial
zeros where necessary). Show that a position is a winning one if and only if the number of
1s in each column is even. (For example: Three piles of 3, 4, and 7 give

0 1 1
1 0 0
1 1 1

where each column has exactly two 1s.) (Hint: Show that any move from a winning position
produces a nonwinning one. Show that there is a move from any nonwinning position to a
winning one.)

Let a be an integer with a four-digit decimal expansion, where not all digits are the same. Let a′
be the integer with a decimal expansion obtained by writing the digits of a in descending order,
and let a′′ be the integer with a decimal expansion obtained by writing the digits of a in ascending
order. Define T (a) = a′ − a′′. For instance, T (7318) = 8731 − 1378 = 7353.

∗ 32. Show that the only integer with a four-digit decimal expansion (where not all digits are the
same) such that T (a) = a is a = 6174. The integer 6174 is called Kaprekar’s constant, after
the Indian mathematician D. R. Kaprekar, because it is the only integer with this property.

∗∗ 33. a) Show that if a is a positive integer with a four-digit decimal expansion where not all
digits are the same, then the sequence a, T (a), T (T (a)), T (T (T (a))), . . . , obtained by
iterating T , eventually reaches the integer 6174.

b) Determine the maximum number of steps required for the sequence defined in part (a) to
reach 6174.

Let b be a positive integer and let a be an integer with a four-digit base b expansion, with not all
digits the same. Define Tb(a) = a′ − a′′, where a′ is the integer with base b expansion obtained
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by writing the base b digits of a in descending order, and a′′ is the integer with base b expansion
obtained by writing the base b digits of a in ascending order.

∗∗ 34. Let b = 5. Find the unique integer a0 with a four-digit base 5 expansion such that T5(a0) =
a0. Show that this integer a0 is a Kaprekar constant for base 5; in other words, that
a, T (a), T (T (a)), T (T (T (a))), . . . eventually reaches a0, whenever a is an integer with
a four-digit base 5 expansion where not all digits are the same.

∗ 35. Show that no Kaprekar constant exists for four-digit numbers to the base 6.

∗ 36. Determine whether there is a Kaprekar constant for three-digit integers to the base 10. Prove
that your answer is correct.

37. A sequence aj , j = 1, 2, . . . is called a Sidon sequence, after the Hungarian mathematician
Simon Sidon, if all the pairwise sums ai + aj where i ≤ j are different. Use Theorem 2.1 to
show that the sequence aj , j = 1, 2, . . . is a Sidon sequence when aj = 2j .

Computations and Explorations

1. Find the binary, octal, and hexadecimal expansions of each of the following integers.

a) 9876543210 b) 1111111111 c) 10000000001

2. Find the decimal expansion of each of the following integers.

a) (1010101010101)2 b) (765432101234567)8 c) (ABBAFADACABA)16

3. Evaluate each of the following sums, expressing your answer in the same base used to
represent the summands.
a) (11011011011011011)2 + (1001001001001001001001)2

b) (12345670123456)8 + (765432107654321)8

c) (123456789ABCD)16 + (BABACACADADA)16

4. Find the Cantor expansions of the integers 100,000, 10,000,000, and 1,000,000,000. (See the
preamble to Exercise 28 for the definition of Cantor expansions.)

5. Verify the result described in Exercise 33 for several different four-digit integers, in which
not all digits are the same.

6. Use numerical evidence to make conjectures about the behavior of the sequence a, T (a),
T (T (a)), . . . where a is a five-digit integer in base 10 notation in which not all digits are the
same, and T (a) is defined as in the preamble to Exercise 32.

D. R. KAPREKAR (1905–1986) was born in Dahanu, India, and was interested
in numbers even as a small child. He received his secondary school education
in Thana and studied at Ferguson College in Poona. Kaprekar attended the
University of Bombay, receiving his bachelor’s degree in 1929. From 1930
until his retirement in 1962, he worked as a schoolteacher in Devlali, India.
Kaprekar discovered many interesting properties in recreational number theory.
He published extensively, writing about such topics as recurring decimals,
magic squares, and integers with special properties.
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7. Explore the behavior for different bases b of the sequence a, T (a), T (T (a)), . . . where a

is a three-digit integer in base b notation. What conjectures can you make? Repeat your
exploration using four-digit and then five-digit integers in base b notation.

Programming Projects

1. Find the binary expansion of an integer from the decimal expansion of this integer, and
vice versa.

2. Convert from base b1 notation to base b2 notation, where b1 and b2 are arbitrary positive
integers greater than 1.

3. Convert from binary notation to hexadecimal notation, and vice versa.

4. Find the base (−2) notation of an integer from its decimal notation (see Exercise 8).

5. Find the balanced ternary expansion of an integer from its decimal expansion (see Exercise
12).

6. Find the Cantor expansion of an integer from its decimal expansion (see the preamble to
Exercise 28).

7. Play a winning strategy in the game of nim (see the preamble to Exercise 30).

∗ 8. Investigate the sequence a, T (a), T (T (a)), T (T (T (a))), . . . (defined in the preamble to
Exercise 32), where a is a positive integer, to discover the minimum number of iterations
required to reach 6174.

2.2 Computer Operations with Integers

Before computers were invented, mathematicians did computations either by hand or
by using mechanical devices. Either way, they were only able to work with integers of
rather limited size. Many number theoretic problems, such as factoring and primality
testing, require computations with integers of as many as 100 or even 200 digits. In this
section, we will study some of the basic algorithms for doing computer arithmetic. In
the following section, we will study the number of basic computer operations required
to carry out these algorithms.

We have mentioned that computers internally represent numbers using bits, or binary
digits. Computers have a built-in limit on the size of integers that can be used in machine
arithmetic. This upper limit is called the word size,which we denote by w. The word size
is usually a power of 2, such as 232 for Pentium machines or 235, although sometimes
the word size is a power of 10.

To do arithmetic with integers larger than the word size, it is necessary to devote
more than one word to each integer. To store an integer n > w, we express n in base w

notation, and for each digit of this expansion we use one computer word. For instance, if
the word size is 235, using ten computer words we can store integers as large as 2350 − 1,
because integers less than 2350 have no more than ten digits in their base 235 expansions.
Also note that to find the base 235 expansion of an integer, we need only group together
blocks of 35 bits.
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The first step in discussing computer arithmetic with large integers is to describe
how the basic arithmetic operations are methodically performed.

We will describe the classical methods for performing the basic arithmetic oper-
ations with integers in base r notation, where r > 1 is an integer. These methods are
examples of algorithms.

Definition. An algorithm is a finite set of precise instructions for performing a com-
putation or for solving a problem.

We will describe algorithms for performing addition, subtraction, and multiplication
of two n-digit integers a = (an−1an−2 . . . a1a0)r and b = (bn−1bn−2 . . . b1b0)r , where
initial digits of zero are added if necessary to make both expansions the same length.
The algorithms described are used for both binary arithmetic with integers less than the
word size of a computer, and multiple precision arithmetic with integers larger than the
word size w, using w as the base.

Addition When we add a and b, we obtain the sum

a + b =
n−1∑
j=0

ajr
j +

n−1∑
j=0

bjr
j =

n−1∑
j=0

(aj + bj)r
j .

To find the base r expansion of a + b, first note that by the division algorithm, there are
integers C0 and s0 such that

a0 + b0 = C0r + s0, 0 ≤ s0 < r.

Because a0 and b0 are positive integers not exceeding r , we know that 0 ≤ a0 + b0 ≤
2r − 2, so that C0 = 0 or 1; here, C0 is the carry to the next place. Next, we find that
there are integers C1 and s1 such that

a1 + b1 + C0 = C1r + s1, 0 ≤ s1 < r.

Because 0 ≤ a1 + b1 + C0 ≤ 2r − 1, we know that C1 = 0 or 1. Proceeding inductively,
we find integers Ci and si for 1 ≤ i ≤ n − 1 by

ai + bi + Ci−1 = Cir + si, 0 ≤ si < r,

with Ci = 0 or 1. Finally, we let sn = Cn−1, because the sum of two integers with n

digits has n + 1 digits when there is a carry in the nth place. We conclude that the base
r expansion for the sum is a + b = (snsn−1 . . . s1s0)r .

When performing base r addition by hand, we can use the same familiar technique
as is used in decimal addition.

Example 2.5. To add (1101)2 and (1001)2, we write
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1 1

1 1 0 1

+ 1 0 0 1

1 0 1 1 0

where we have indicated carries by 1s in italics written above the appropriate column.
We found the binary digits of the sum by noting that 1 + 1 = 1 . 2 + 0, 0 + 0 + 1 =
0 . 2 + 1, 1 + 0 + 0 = 0 . 2 + 1, and 1 + 1 + 0 = 1 . 2 + 0. �

Subtraction Assume that a > b. Consider

a − b =
n−1∑
j=0

ajr
j −

n−1∑
j=0

bjr
j =

n−1∑
j=0

(aj − bj)r
j .

Note that by the division algorithm, there are integers B0 and d0 such that

a0 − b0 = B0r + d0, 0 ≤ d0 < r,

and because a0 and b0 are positive integers less than r , we have

−(r − 1) ≤ a0 − b0 ≤ r − 1.

When a0 − b0 ≥ 0, we have B0 = 0. Otherwise, when a0 − b0 < 0, we have B0 = −1;
B0 is the borrow from the next place of the base r expansion of a. We use the division
algorithm again to find integers B1 and d1 such that

a1 − b1 + B0 = B1r + d1, 0 ≤ d1 < r.

From this equation, we see that the borrow B1 = 0 as long as a1 − b1 + B0 ≥ 0, and that
B1 = −1 otherwise, because −r ≤ a1 − b1 + B0 ≤ r − 1. We proceed inductively to find
integers Bi and di, such that

ai − bi + Bi−1 = Bir + di, 0 ≤ di < r

with Bi = 0 or −1, for 1 ≤ i ≤ n − 1. We see that Bn−1 = 0, because a > b. We can
conclude that

a − b = (dn−1dn−2 . . . d1d0)r.

Where the Word “Algorithm” Comes From
“Algorithm” is a corruption of the original term “algorism,” which originally comes from
the name of the author of the ninth-century book Kitab al-jabr w’al-muqabala (Rules
of Restoration and Reduction), Abu Ja‘far Mohammed ibn Mûsâ al-Khwârizmı̂ (see his
biography included on the next page). The word “algorism” originally referred only to the
rules of performing arithmetic using Hindu-Arabic numerals, but evolved into “algorithm”
by the eighteenth century. With growing interest in computing machines, the concept of an
algorithm became more general, to include all definite procedures for solving problems, not
just the procedures for performing arithmetic with integers expressed in Arabic notation.
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When performing base r subtraction by hand, we use the familiar technique used in
decimal subtraction.

Example 2.6. To subtract (10110)2 from (11011)2, we have

–1

1 1 0 1 1

−1 0 1 1 0

1 0 1

where the −1 in italics above a column indicates a borrow. We found the binary digits
of the difference by noting that 1 − 0 = 0 . 2 + 1, 1 − 1 + 0 = 0 . 2 + 0, 0 − 1 + 0 =
−1 . 2 + 1, 1 − 0 − 1 = 0 . 2 + 0, and 1 − 1 + 0 = 0 . 2 + 0. �

Multiplication Before discussing multiplication, we describe shifting. To multiply
(an−1 . . . a1a0)r by rm, we need only shift the expansion left m places, appending the
expansion with m zero digits.

Example 2.7. To multiply (101101)2 by 25, we shift the digits to the left five places
and append the expansion with five zeros, obtaining (10110100000)2. �

We first discuss the multiplication of an n-place integer by a one-digit integer. To
multiply (an−1 . . . a1a0)r by (b)r , we first note that

a0b = q0r + p0, 0 ≤ p0 < r,

and 0 ≤ q0 ≤ r − 2, because 0 ≤ a0b ≤ (r − 1)2. Next, we have

a1b + q0 = q1r + p1, 0 ≤ p1 < r,

and 0 ≤ q1 ≤ r − 1. In general, we have

aib + qi−1 = qir + pi, 0 ≤ pi < r,

ABU JA‘FAR MOHAMMED IBN MÛSÂ AL-KHWÂRIZMÎ (c. 780–
c. 850), an astronomer and mathematician, was a member of the House of
Wisdom, an academy of scientists in Baghdad. The name al-Khwârizmı̂ means
“from the town of Kowarzizm,” now known as Khiva in modern Uzbekistan.
Al-Khwârizmı̂ was the author of books on mathematics, astronomy, and geog-
raphy. People in the West first learned about algebra from his works; the word
“algebra” comes from al-jabr, part of the title of his book Kitab al-jabr w’al
muqabala, which was translated into Latin and widely used as a text. Another

book describes procedures for arithmetic operations using Hindu-Arabic numerals.
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58 Integer Representations and Operations

and 0 ≤ qi ≤ r − 1. Furthermore, we have pn = qn−1. This yields (an−1 . . . a1a0)r(b)r =
(pnpn−1 . . . p1p0)r .

To perform a multiplication of two n-place integers, we write

ab = a

(n−1∑
j=0

bjr
j

)
=

n−1∑
j=0

(abj)r
j .

For each j , we first multiply a by the digit bj , then shift j places to the left, and finally
add all of the n integers we have obtained to find the product.

When multiplying two integers with base r expansions, we use the familiar method
of multiplying decimal integers by hand.

Example 2.8. To multiply (1101)2 and (1110)2, we write

1 1 0 1

× 1 1 1 0

0 0 0 0

1 1 0 1

1 1 0 1

1 1 0 1

1 0 1 1 0 1 1 0

Note that we first multiplied (1101)2 by each digit of (1110)2, shifting each time by the
appropriate number of places, and then we added the appropriate integers to find our
product. �

Division We wish to find the quotient q in the division algorithm

a = bq + R, 0 ≤ R < b.

If the base r expansion of q is q = (qn−1qn−2 . . . q1q0)r , then we have

a = b

(n−1∑
j=0

qjr
j

)
+ R, 0 ≤ R < b.

To determine the first digit qn−1 of q, notice that

a − bqn−1r
n−1 = b

(n−2∑
j=0

qjr
j

)
+ R.

The right-hand side of this equation is not only positive, but also less than brn−1, because∑n−2
j=0 qjr

j ≤ ∑n−2
j=0(r − 1)rj = ∑n−1

j=1 rj − ∑n−2
j=0 rj = rn−1 − 1. Therefore, we know

that

0 ≤ a − bqn−1r
n−1 < brn−1.
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This tells us that

qn−1 =
[

a

brn−1

]
.

We can obtain qn−1 by successively subtracting brn−1 from a until we obtain a negative
result; qn−1 is then one less than the number of subtractions.

To find the other digits of q, we define the sequence of partial remainders Ri by

R0 = a

and

Ri = Ri−1 − bqn−ir
n−i

for i = 1, 2, . . . , n. By mathematical induction, we show that

(2.1) Ri =
(n−i−1∑

j=0

qjr
j

)
b + R.

For i = 0, this is clearly correct, because R0 = a = qb + R. Now assume that

Rk =
(n−k−1∑

j=0

qjr
j

)
b + R.

Then

Rk+1 = Rk − bqn−k−1r
n−k−1

=
(n−k−1∑

j=0

qjr
j

)
b + R − bqn−k−1r

n−k−1

=
(n−(k+1)−1∑

j=0

qjr
j

)
b + R,

establishing (2.1).

By (2.1), we see that 0 ≤ Ri < rn−ib, for i = 1, 2, . . . , n, because
∑n−i−1

j=0 qjr
j ≤

rn−i − 1. Consequently, because Ri = Ri−1 − bqn−ir
n−i and 0 ≤ Ri < rn−1b, we see that

the digit qn−i is given by [Ri−1/(brn−i)] and can be obtained by successively subtracting
brn−i from Ri−1 until a negative result is obtained, and then qn−i is one less than the
number of subtractions. This is how we find the digits of q.

Example 2.9. To divide (11101)2 by (111)2, we let q = (q2q1q0)2. We subtract
22(111)2 = (11100)2 once from (11101)2 to obtain (1)2, and once more to obtain a
negative result, so that q2 = 1. Now, R1 = (11101)2 − (11100)2 = (1)2. We find that
q1 = 0, because R1 − 2(111)2 is less than zero, and likewise q0 = 0. Hence, the quotient
of the division is (100)2 and the remainder is (1)2 . �
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2.2 Exercises

1. Add (101111011)2 and (1100111011)2.

2. Add (10001000111101)2 and (11111101011111)2.

3. Subtract (11010111)2 from (1111000011)2.

4. Subtract (101110101)2 from (1101101100)2.

5. Multiply (11101)2 and (110001)2.

6. Multiply (1110111)2 and (10011011)2.

7. Find the quotient and remainder when (110011111)2 is divided by (1101)2.

8. Find the quotient and remainder when (110100111)2 is divided by (11101)2.

9. Add (1234321)5 and (2030104)5.

10. Subtract (434421)5 from (4434201)5.

11. Multiply (1234)5 and (3002)5.

12. Find the quotient and remainder when (14321)5 is divided by (334)5.

13. Add (ABAB)16 and (BABA)16.

14. Subtract (CAFE)16 from (FEED)16.

15. Multiply (FACE)16 and (BAD)16.

16. Find the quotient and remainder when (BEADED)16 is divided by (ABBA)16.

17. Explain how to add, subtract, and multiply the integers 18235187 and 22135674 on a
computer with word size 1000.

18. Write algorithms for the basic operations with integers in base (−2) notation (see Exercise
8 of Section 2.1).

19. How is the one’s complement representation of the sum of two integers obtained from the
one’s complement representations of those integers?

20. How is the one’s complement representation of the difference of two integers obtained from
the one’s complement representations of those integers?

21. Give an algorithm for adding and an algorithm for subtracting Cantor expansions (see the
preamble to Exercise 28 of Section 2.1).

22. A dozen equals 12, and a gross equals 122. Using base 12, or duodecimal arithmetic, answer
the following questions.
a) If 3 gross, 7 dozen, and 4 eggs are removed from a total of 11 gross and 3 dozen eggs, how

many eggs are left?
b) If 5 truckloads of 2 gross, 3 dozen, and 7 eggs each are delivered to the supermarket, how

many eggs are delivered?
c) If 11 gross, 10 dozen, and 6 eggs are divided in 3 groups of equal size, how many eggs

are in each group?

23. A well-known rule used to find the square of an integer with decimal expansion (anan−1 . . .

a1a0)10 and final digit a0 = 5 is to find the decimal expansion of the product (anan−1 . . . a1)10
[(anan−1 . . . a1)10 + 1], and append this with the digits (25)10. For instance, we see that the
decimal expansion of (165)2 begins with 16 . 17 = 272, so that (165)2 = 27,225. Show that
this rule is valid.
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24. In this exercise, we generalize the rule given in Exercise 23 to find the squares of integers
with final base 2B digit B, where B is a positive integer. Show that the base 2B expansion of
the integer (anan−1 . . . a1a0)2B starts with the digits of the base 2B expansion of the integer
(anan−1 . . . a1)2B [(anan−1 . . . a1)2B + 1] and ends with the digits B/2 and 0 when B is even,
and the digits (B − 1)/2 and B when B is odd.

Computations and Explorations

1. Verify the rules given in Exercises 23 and 24 for examples of your choice.

Programming Projects

1. Perform addition with arbitrarily large integers.

2. Perform subtraction with arbitrarily large integers.

3. Multiply two arbitrarily large integers using the conventional algorithm.

4. Divide arbitrarily large integers, finding the quotient and remainder.

2.3 Complexity of Integer Operations

Once an algorithm has been specified for an operation, we can consider the amount of
time required to perform this algorithm on a computer. We will measure the amount of
time in terms of bit operations. By a bit operation we mean the addition, subtraction, or
multiplication of two binary digits, the division of a two-bit by a one-bit integer (obtain-
ing a quotient and a remainder), or the shifting of a binary integer one place. (The actual
amount of time required to carry out a bit operation on a computer varies depending on
the computer architecture and capacity.) When we describe the number of bit operations
needed to perform an algorithm, we are describing the computational complexity of this
algorithm.

In describing the number of bit operations needed to perform calculations, we will
use big-O notation. Big-O notation provides an upper bound on the size of a function in
terms of a particular well-known reference function whose size at large values is easily
understood.

To motivate the definition of this notation, consider the following situation. Suppose
that to perform a specified operation on an integer n requires at most n3 + 8n2 log n

bit operations. Because 8n2 log n < 8n3 for every positive integer, less than 9n3 bit
operations are required for this operation for every integer n. Because the number of
bit operations required is always less than a constant times n3, namely, 9n3, we say that
O(n3) bit operations are needed. In general, we have the following definition.

Definition. If f and g are functions taking positive values, defined for all x ∈ S, where
S is a specified set of real numbers, then f is O(g) on S if there is a positive constant K

such that f (x) < Kg(x) for all sufficiently large x ∈ S. (Normally, we take S to be the
set of positive integers, and we drop all reference to S.)
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62 Integer Representations and Operations

Big-O notation is used extensively throughout number theory and in the analysis
of algorithms. Paul Bachmann introduced big-O notation in 1892 ([Ba94]). The big-O
notation is sometimes called a Landau symbol, after Edmund Landau, who used this
notation throughout his work in the estimation of various functions in number theory.
The use of big-O notation in the analysis of algorithms was popularized by renowned
computer scientist Donald Knuth.

We illustrate this concept of big-O notation with several examples.

Example 2.10. We can show on the set of positive integers that n4 + 2n3 + 5 is O(n4).
To do this, note that n4 + 2n3 + 5 ≤ n4 + 2n4 + 5n4 = 8n4 for all positive integers. (We
take K = 8 in the definition.) The reader should also note that n4 is O(n4 + 2n3 + 5).

�

Example 2.11. We can easily give a big-O estimate for
∑n

j=1 j . Noting that each

summand is less than n tells us that
∑n

j=1 j ≤ ∑n
j=1 n = n . n = n2. Note that we could

also derive this estimate easily from the formula
∑n

j=1 j = n(n + 1)/2. �

We now will give some useful results for working with big-O estimates for combi-
nations of functions.

Theorem 2.2. If f is O(g) and c is a positive constant, then cf is O(g).

PAUL GUSTAV HEINRICH BACHMANN (1837–1920), the son of a pas-
tor, shared his father’s pious lifestyle, as well as his love of music. His talent for
mathematics was discovered by one of his early teachers. After recovering from
tuberculosis, he studied at the University of Berlin and later in Göttingen, where
he attended lectures presented by Dirichlet. In 1862, he received his doctorate
under the supervision of the number theorist Kummer. Bachmann became a pro-
fessor at Breslau and later at Münster. After retiring, he continued mathematical
research, played the piano, and served as a music critic for newspapers. His

writings include a five-volume survey of number theory, a two-volume work on elementary number
theory, a book on irrational numbers, and a book on Fermat’s last theorem (this theorem is discussed
in Chapter 13). Bachmann introduced big-O notation in 1892.

EDMUND LANDAU (1877–1938) was the son of a Berlin gynecologist, and
attended high school in Berlin. He received his doctorate in 1899 under the
direction of Frobenius. Landau first taught at the University of Berlin and then
moved to Göttingen, where he was full professor until the Nazis forced him
to stop teaching. His main contributions to mathematics were in the field of
analytic number theory; he established several important results concerning the
distribution of primes. He authored a three-volume work on number theory and
many other books on mathematical analysis and analytic number theory.
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Proof. If f is O(g), then there is a constant K with f (x) < Kg(x) for all x under
consideration. Hence cf (x) < (cK)g(x), so cf is O(g).

Theorem 2.3. If f1 is O(g1) and f2 is O(g2), then f1 + f2 is O(g1 + g2), and f1f2 is
O(g1g2).

Proof. If f is O(g1) and f2 is O(g2), then there are constants K1 and K2 such that
f1(x) < K1g1(x) and f2(x) < K2g2(x) for all x under consideration. Hence,

f1(x) + f2(x) < K1g1(x) + K2g2(x)

≤ K(g1(x) + g2(x)),

where K is the maximum of K1 and K2. Hence, f1 + f2 is O(g1 + g2).

Also,

f1(x)f2(x) < K1g1(x)K2g2(x)

= (K1K2)(g1(x)g2(x)),

so f1f2 is O(g1g2).

Corollary 2.3.1. If f1 and f2 are O(g), then f1 + f2 is O(g).

Proof. Theorem 2.3 tells us that f1 + f2 is O(2g). But if f1 + f2 < K(2g), then
f1 + f2 < (2K)g, so f1 + f2 is O(g).

DONALD KNUTH (b. 1938) grew up in Milwaukee, where his father owned
a small printing business and taught bookkeeping. He was an excellent student
who also applied his intelligence in unconventional ways, such as finding more
than 4500 words that could be spelled from the letters in “Ziegler’s Giant Bar,”
winning a television set for his school and candy bars for everyone in his class.

Knuth graduated from Case Institute of Technology in 1960 with B.S. and
M.S. degrees in mathematics, by special award of the faculty who considered
his work outstanding. At Case, he managed the basketball team and applied his

mathematical talents by evaluating each player using a formula he developed (receiving coverage on
CBS television and in Newsweek). Knuth received his doctorate in 1963 from the California Institute
of Technology.

Knuth taught at the California Institute of Technology and Stanford University, retiring in 1992
to concentrate on writing. He is especially interested in updating and adding to his famous series,
The Art of Computer Programming. This series has had a profound influence on the development of
computer science. Knuth is the founder of the modern study of computational complexity and has
made fundamental contributions to the theory of compilers. Knuth has also invented the widely used
TeX and Metafont systems used for mathematical (and general) typography. TeX played an important
role in the development of HTML and the Internet. He popularized the big-O notation in his work on
the analysis of algorithms.

Knuth has written for a wide range of professional journals in computer science and mathematics.
However, his first publication, in 1957, when he was a college freshman, was the “The Potrzebie
System of Weights and Measures,” a parody of the metric system, which appeared in MAD Magazine.

63



64 Integer Representations and Operations

The goal in using big-O estimates is to give the best big-O estimate possible while
using the simplest reference function possible. Well-known reference functions used in
big-O estimates include 1, log n, n, n log n, n log n log log n, n2, and 2n, as well as some
other important functions. Calculus can be used to show that each function in this list is
smaller than the next function in the list, in the sense that the ratio of the function and the
next function tends to 0 as n grows without bound. Note that more complicated functions
than these occur in big-O estimates, as you will see in later chapters.

We illustrate how to use theorems for working with big-O estimates with the fol-
lowing example.

Example 2.12. To give a big-O estimate for (n + 8 log n) (10n log n + 17n2), first
note that n + 8 log n is O(n) and 10n log n + 17n2 is O(n2) (because log n is O(n) and
n log n is O(n2)) by Theorems 2.2 and 2.3 and Corollary 2.3.1. By Theorem 2.3, we see
that (n + 8 log n)(10n log n + 17n2) is O(n3). �

Using big-O notation, we can see that to add or subtract two n-bit integers takes
O(n) bit operations, whereas to multiply two n-bit integers in the conventional way
takes O(n2) bit operations (see Exercises 12 and 13 at the end of this section). Sur-
prisingly, there are faster algorithms for multiplying large integers. To develop one
such algorithm, we first consider the multiplication of two 2n-bit integers, say, a =
(a2n−1a2n−2 . . . a1a0)2 and b = (b2n−1b2n−2 . . . b1b0)2. We write

a = 2nA1 + A0 b = 2nB1 + B0,

where

A1 = (a2n−1a2n−2 . . . an+1an)2 A0 = (an−1an−2 . . . a1a0)2

B1 = (b2n−1b2n−2 . . . bn+1bn)2 B0 = (bn−1bn−2 . . . b1b0)2.

We will use the identity

(2.2) ab = (22n + 2n)A1B1 + 2n(A1 − A0)(B0 − B1) + (2n + 1)A0B0.

To find the product of a and b using (2.2) requires that we perform three multiplications
of n-bit integers (namely, A1B1, (A1 − A0)(B0 − B1), and A0B0), as well as a number
of additions and shifts. This is illustrated by the following example.

Example 2.13. We can use (2.2) to multiply (1101)2 and (1011)2. We have (1101)2 =
22(11)2 + (01)2 and (1011)2 = 22(10)2 + (11)2. Using (2.2), we find that

(1101)2(1011)2 = (24 + 22)(11)2(10)2 + 22((11)2 − (01)2) . ((11)2 − (10)2)+
(22 + 1)(01)2(11)2

= (24 + 22)(110)2 + 22(10)2(01)2 + (22 + 1)(11)2

= (1100000)2 + (11000)2 + (1000)2 + (1100)2 + (11)2

= (10001111)2.
�

We will now estimate the number of bit operations required to multiply two n-bit integers
by using (2.2) repeatedly. If we let M(n) denote the number of bit operations needed to
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multiply two n-bit integers, we find from (2.2) that

(2.3) M(2n) ≤ 3M(n) + Cn,

where C is a constant, because each of the three multiplications of n-bit integers takes
M(n) bit operations, whereas the number of additions and shifts needed to compute ab

via (2.2) does not depend on n, and each of these operations takes O(n) bit operations.

From (2.3), using mathematical induction, we can show that

(2.4) M(2k) ≤ c(3k − 2k),

where c is the maximum of the quantities M(2) and C (the constant in (2.3)). To carry out
the induction argument, we first note that with k = 1, we have M(2) ≤ c(31 − 21) = c,
because c is the maximum of M(2) and C.

As the induction hypothesis, we assume that

M(2k) ≤ c(3k − 2k).

Then, using (2.3), we have

M(2k+1) ≤ 3M(2k) + C2k

≤ 3c(3k − 2k) + C2k

≤ c3k+1 − c . 3 . 2k + c2k

≤ c(3k+1 − 2k+1).

This establishes that (2.4) is valid for all positive integers k.

Using inequality (2.4), we can prove the following theorem.

Theorem 2.4. Multiplication of two n-bit integers can be performed using O(nlog2 3)

bit operations. (Note: log2 3 is approximately 1.585, which is considerably less than the
exponent 2 that occurs in the estimate of the number of bit operations needed for the
conventional multiplication algorithm.)

Proof. From (2.4), we have

M(n) = M(2log2 n) ≤ M(2[log2 n]+1)

≤ c(3[log2 n]+1 − 2[log2 n]+1)

≤ 3c . 3[log2 n] ≤ 3c . 3log2 n = 3cnlog2 3 (because 3log2 n = nlog2 3).

Hence, M(n) is O(nlog2 3).

We now state, without proof, two pertinent theorems. Proofs may be found in [Kn97]
or [Kr79].

Theorem 2.5. Given a positive number ε > 0, there is an algorithm for multiplication
of two n-bit integers using O(n1+ε) bit operations.

65



66 Integer Representations and Operations

Note that Theorem 2.4 is a special case of Theorem 2.5 with ε = log2 3 − 1, which
is approximately 0.585.

Theorem 2.6. There is an algorithm to multiply two n-bit integers using O(n log2 n

log2 log2 n) bit operations.

Because log2 n and log2 log2 n are much smaller than nε for large numbers n,
Theorem 2.6 is an improvement over Theorem 2.5. Although we know that M(n) is
O(n log2 n log2 log2 n), for simplicity we will use the obvious fact that M(n) is O(n2)

in our subsequent discussions.

The conventional algorithm described in Section 2.2 performs a division of a 2n-
bit integer by an n-bit integer with O(n2) bit operations. However, the number of bit
operations needed for integer division can be related to the number of bit operations
needed for integer multiplication. We state the following theorem, which is based on an
algorithm discussed in [Kn97].

Theorem 2.7. There is an algorithm to find the quotient q = [a/b], when the 2n-bit
integer a is divided by the integer b (having no more than n bits), using O(M(n))

bit operations, where M(n) is the number of bit operations needed to multiply two n-
bit integers.

2.3 Exercises

1. Determine whether each of the following functions is O(n) on the set of positive integers.

a) 2n + 7 c) 10 e)
√

n2 + 1

b) n2/3 d) log(n2 + 1) f ) (n2 + 1)/(n + 1)

2. Show that 2n4 + 3n3 + 17 is O(n4) on the set of positive integers.

3. Show that (n3 + 4n2 log n + 101n2)(14n log n + 8n) is O(n4 log n).

4. Show that n! is O(nn) on the set of positive integers.

5. Show that (n! + 1)(n + log n) + (n3 + nn)((log n)3 + n + 7) is O(nn+1).

6. Suppose that m is a positive real number. Show that
∑n

j=1 jm is O(nm+1).

∗ 7. Show that n log n is O(log n!) on the set of positive integers.

8. Show that if f1 and f2 are O(g1) and O(g2), respectively, and c1 and c2 are constants, then
c1f1 + c2f2 is O(g1 + g2).

9. Show that if f is O(g), then f k is O(gk) for all positive integers k.

10. Let r be a positive real number greater than 1. Show that a function f is O(log2 n) if and
only if f is O(logr n). (Hint: Recall that loga n/ logb n = loga b.)

11. Show that the base b expansion of a positive integer n has [logb n] + 1 digits.

12. Analyzing the conventional algorithms for subtraction and addition, show that these opera-
tions require O(n) bit operations with n-bit integers.
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