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Chapter 1

Introduction

When engineers analyze and design nonlinear dynamical systems in electrical cir-
cuits, mechanical systems, control systems, and other engineering disciplines, they
need to absorb and digest a wide range of nonlinear analysis tools. In this book, we
introduce some of the these tools. In particular, we present tools for the stability
analysis of nonlinear systems, with emphasis on Lyapunov’s method. We give spe-
cial attention to the stability of feedback systems from input–output and passivity
perspectives. We present tools for the detection and analysis of “free” oscillations,
including the describing function method. We introduce the asymptotic tools of
perturbation theory, including averaging and singular perturbations. Finally, we
introduce nonlinear feedback control tools, including linearization, gain scheduling,
integral control, feedback linearization, sliding mode control, Lyapunov redesign,
backstepping, passivity-based control, and high-gain observers.

1.1 Nonlinear Models and Nonlinear Phenomena

We will deal with dynamical systems that are modeled by a finite number of coupled
first-order ordinary differential equations

ẋ1 = f1(t, x1, . . . , xn, u1, . . . , up)
ẋ2 = f2(t, x1, . . . , xn, u1, . . . , up)

...
...

ẋn = fn(t, x1, . . . , xn, u1, . . . , up)

where ẋi denotes the derivative of xi with respect to the time variable t and u1, u2,
. . ., up are specified input variables. We call the variables x1, x2, . . ., xn the state
variables. They represent the memory that the dynamical system has of its past.

From Chapter 1 of Nonlinear Systems, Third Edition. Hassan K. Khalil.  
Copyright © 2002 by Pearson Education, Inc. All rights reserved. 
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2 CHAPTER 1. INTRODUCTION

We usually use vector notation to write these equations in a compact form. Define

x =




x1

x2

...

...

xn




, u =




u1

u2

...

up



, f(t, x, u) =




f1(t, x, u)

f2(t, x, u)

...

...

fn(t, x, u)




and rewrite the n first-order differential equations as one n-dimensional first-order
vector differential equation

ẋ = f(t, x, u) (1.1)

We call (1.1) the state equation and refer to x as the state and u as the input.
Sometimes, another equation

y = h(t, x, u) (1.2)

is associated with (1.1), thereby defining a q-dimensional output vector y that com-
prises variables of particular interest in the analysis of the dynamical system, (e.g.,
variables that can be physically measured or variables that are required to behave in
a specified manner). We call (1.2) the output equation and refer to equations (1.1)
and (1.2) together as the state-space model, or simply the state model. Mathemat-
ical models of finite-dimensional physical systems do not always come in the form
of a state model. However, more often than not, we can model physical systems
in this form by carefully choosing the state variables. Examples and exercises that
will appear later in the chapter will demonstrate the versatility of the state model.

A good part of our analysis in this book will deal with the state equation, many
times without explicit presence of an input u, that is, the so-called unforced state
equation

ẋ = f(t, x) (1.3)

Working with an unforced state equation does not necessarily mean that the input
to the system is zero. It could be that the input has been specified as a given
function of time, u = γ(t), a given feedback function of the state, u = γ(x), or
both, u = γ(t, x). Substituting u = γ in (1.1) eliminates u and yields an unforced
state equation.

A special case of (1.3) arises when the function f does not depend explicitly on
t; that is,

ẋ = f(x) (1.4)

in which case the system is said to be autonomous or time invariant. The behavior
of an autonomous system is invariant to shifts in the time origin, since changing the

2



1.1. NONLINEAR MODELS 3

time variable from t to τ = t − a does not change the right-hand side of the state
equation. If the system is not autonomous, then it is called nonautonomous or time
varying.

An important concept in dealing with the state equation is the concept of an
equilibrium point. A point x = x∗ in the state space is said to be an equilibrium
point of (1.3) if it has the property that whenever the state of the system starts at
x∗, it will remain at x∗ for all future time. For the autonomous system (1.4), the
equilibrium points are the real roots of the equation

f(x) = 0

An equilibrium point could be isolated; that is, there are no other equilibrium points
in its vicinity, or there could be a continuum of equilibrium points.

For linear systems, the state model (1.1)–(1.2) takes the special form

ẋ = A(t)x+B(t)u
y = C(t)x+D(t)u

We assume that the reader is familiar with the powerful analysis tools for linear
systems, founded on the basis of the superposition principle. As we move from linear
to nonlinear systems, we are faced with a more difficult situation. The superposi-
tion principle does not hold any longer, and analysis tools involve more advanced
mathematics. Because of the powerful tools we know for linear systems, the first
step in analyzing a nonlinear system is usually to linearize it, if possible, about
some nominal operating point and analyze the resulting linear model. This is a
common practice in engineering, and it is a useful one. There is no question that,
whenever possible, we should make use of linearization to learn as much as we can
about the behavior of a nonlinear system. However, linearization alone will not
be sufficient; we must develop tools for the analysis of nonlinear systems. There
are two basic limitations of linearization. First, since linearization is an approxi-
mation in the neighborhood of an operating point, it can only predict the “local”
behavior of the nonlinear system in the vicinity of that point. It cannot predict the
“nonlocal” behavior far from the operating point and certainly not the “global” be-
havior throughout the state space. Second, the dynamics of a nonlinear system are
much richer than the dynamics of a linear system. There are “essentially nonlinear
phenomena” that can take place only in the presence of nonlinearity; hence, they
cannot be described or predicted by linear models. The following are examples of
essentially nonlinear phenomena:

• Finite escape time. The state of an unstable linear system goes to infinity
as time approaches infinity; a nonlinear system’s state, however, can go to
infinity in finite time.

• Multiple isolated equilibria. A linear system can have only one isolated equi-
librium point; thus, it can have only one steady-state operating point that

3



4 CHAPTER 1. INTRODUCTION

attracts the state of the system irrespective of the initial state. A nonlinear
system can have more than one isolated equilibrium point. The state may
converge to one of several steady-state operating points, depending on the
initial state of the system.

• Limit cycles. For a linear time-invariant system to oscillate, it must have
a pair of eigenvalues on the imaginary axis, which is a nonrobust condition
that is almost impossible to maintain in the presence of perturbations. Even
if we do, the amplitude of oscillation will be dependent on the initial state.
In real life, stable oscillation must be produced by nonlinear systems. There
are nonlinear systems that can go into an oscillation of fixed amplitude and
frequency, irrespective of the initial state. This type of oscillation is known
as a limit cycle.

• Subharmonic, harmonic, or almost-periodic oscillations. A stable linear sys-
tem under a periodic input produces an output of the same frequency. A
nonlinear system under periodic excitation can oscillate with frequencies that
are submultiples or multiples of the input frequency. It may even generate
an almost-periodic oscillation, an example is the sum of periodic oscillations
with frequencies that are not multiples of each other.

• Chaos. A nonlinear system can have a more complicated steady-state behavior
that is not equilibrium, periodic oscillation, or almost-periodic oscillation.
Such behavior is usually referred to as chaos. Some of these chaotic motions
exhibit randomness, despite the deterministic nature of the system.

• Multiple modes of behavior. It is not unusual for two or more modes of be-
havior to be exhibited by the same nonlinear system. An unforced system
may have more than one limit cycle. A forced system with periodic excita-
tion may exhibit harmonic, subharmonic, or more complicated steady-state
behavior, depending upon the amplitude and frequency of the input. It may
even exhibit a discontinuous jump in the mode of behavior as the amplitude
or frequency of the excitation is smoothly changed.

In this book, we will encounter only the first three of these phenomena.1 Multiple
equilibria and limit cycles will be introduced in the next chapter, as we examine
second-order autonomous systems, while the phenomenon of finite escape time will
be introduced in Chapter 3.

1To read about forced oscillation, chaos, bifurcation, and other important topics, the reader
may consult [70], [74], [187], and [207].
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1.2. EXAMPLES 5

θ
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  l

 •

Figure 1.1: Pendulum.

1.2 Examples

1.2.1 Pendulum Equation

Consider the simple pendulum shown in Figure 1.1, where l denotes the length of
the rod and m denotes the mass of the bob. Assume the rod is rigid and has zero
mass. Let θ denote the angle subtended by the rod and the vertical axis through
the pivot point. The pendulum is free to swing in the vertical plane. The bob of
the pendulum moves in a circle of radius l. To write the equation of motion of
the pendulum, let us identify the forces acting on the bob. There is a downward
gravitational force equal to mg, where g is the acceleration due to gravity. There
is also a frictional force resisting the motion, which we assume to be proportional
to the speed of the bob with a coefficient of friction k. Using Newton’s second law
of motion, we can write the equation of motion in the tangential direction as

mlθ̈ = −mg sin θ − klθ̇

Writing the equation of motion in the tangential direction has the advantage that
the rod tension, which is in the normal direction, does not appear in the equation.
We could have arrived at the same equation by writing the moment equation about
the pivot point. To obtain a state model for the pendulum, let us take the state
variables as x1 = θ and x2 = θ̇. Then, the state equations are

ẋ1 = x2 (1.5)

ẋ2 = − g

l
sinx1 − k

m
x2 (1.6)

To find the equilibrium points, we set ẋ1 = ẋ2 = 0 and solve for x1 and x2:

0 = x2

0 = − g

l
sinx1 − k

m
x2

5



6 CHAPTER 1. INTRODUCTION

The equilibrium points are located at (nπ, 0), for n = 0,±1,±2, . . .. From the phys-
ical description of the pendulum, it is clear that the pendulum has only two equi-
librium positions corresponding to the equilibrium points (0, 0) and (π, 0). Other
equilibrium points are repetitions of these two positions, which correspond to the
number of full swings the pendulum would make before it rests at one of the two
equilibrium positions. For example, if the pendulum makes m complete 360◦ revolu-
tions before it rests at the downward vertical position, then, mathematically, we say
that the pendulum approaches the equilibrium point (2mπ, 0). In our investigation
of the pendulum, we will limit our attention to the two “nontrivial” equilibrium
points at (0, 0) and (π, 0). Physically, we can see that these two equilibrium posi-
tions are quite distinct from each other. While the pendulum can indeed rest at the
(0, 0) equilibrium point, it can hardly maintain rest at the (π, 0) equilibrium point
because infinitesimally small disturbance from that equilibrium will take the pen-
dulum away. The difference between the two equilibrium points is in their stability
properties, a topic we will study in some depth.

Sometimes it is instructive to consider a version of the pendulum equation where
the frictional resistance is neglected by setting k = 0. The resulting system

ẋ1 = x2 (1.7)

ẋ2 = − g

l
sinx1 (1.8)

is conservative in the sense that if the pendulum is given an initial push, it will
keep oscillating forever with a nondissipative energy exchange between kinetic and
potential energies. This, of course, is not realistic, but gives insight into the behavior
of the pendulum. It may also help in finding approximate solutions of the pendulum
equation when the friction coefficient k is small. Another version of the pendulum
equation arises if we can apply a torque T to the pendulum. This torque may be
viewed as a control input in the equation

ẋ1 = x2 (1.9)

ẋ2 = − g

l
sinx1 − k

m
x2 +

1
ml2

T (1.10)

Interestingly enough, several unrelated physical systems are modeled by equations
similar to the pendulum equation. Such examples are the model of a synchronous
generator connected to an infinite bus (Exercise 1.8), the model of a Josephson
junction circuit (Exercise 1.9), and the model of a phase-locked loop (Exercise 1.11).
Consequently, the pendulum equation is of great practical importance.

1.2.2 Tunnel-Diode Circuit

Consider the tunnel-diode circuit shown in Figure 1.2,2 where the tunnel diode is
characterized by iR = h(vR). The energy-storing elements in this circuit are the

2This figure, as well as Figures 1.3 and 1.7, are taken from [39].
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0.5
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v,V

i,mA

(b)(a)

Figure 1.2: (a) Tunnel-diode circuit; (b) Tunnel-diode vR–iR characteristic.

capacitor C and the inductor L. Assuming they are linear and time invariant, we
can model them by the equations

iC = C
dvC

dt
and vL = L

diL
dt

where i and v are the current through and the voltage across an element, with the
subscript specifying the element. To write a state model for the system, let us take
x1 = vC and x2 = iL as the state variables and u = E as a constant input. To write
the state equation for x1, we need to express iC as a function of the state variables
x1, x2 and the input u. Using Kirchhoff’s current law, we can write an equation
that the algebraic sum of all currents leaving node c© is equal to zero:

iC + iR − iL = 0

Therefore,
iC = −h(x1) + x2

Similarly, we need to express vL as a function of the state variables x1, x2 and the
input u. Using Kirchhoff’s voltage law, we can write an equation that the algebraic
sum of all voltages across elements in the left loop is equal to zero:

vC − E +RiL + vL = 0

Hence,
vL = −x1 −Rx2 + u

We can now write the state model for the circuit as

ẋ1 =
1
C

[−h(x1) + x2] (1.11)

ẋ2 =
1
L

[−x1 −Rx2 + u] (1.12)

7



8 CHAPTER 1. INTRODUCTION
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Figure 1.3: Equilibrium points of the tunnel-diode circuit.

The equilibrium points of the system are determined by setting ẋ1 = ẋ2 = 0 and
solving for x1 and x2:

0 = −h(x1) + x2

0 = −x1 −Rx2 + u

Therefore, the equilibrium points correspond to the roots of the equation

h(x1) =
E

R
− 1
R
x1

Figure 1.3 shows graphically that, for certain values of E and R, this equation has
three isolated roots which correspond to three isolated equilibrium points of the
system. The number of equilibrium points might change as the values of E and R
change. For example, if we increase E for the same value of R, we will reach a point
beyond which only the point Q3 will exist. On the other hand, if we decrease E
for the same value of R, we will end up with the point Q1 as the only equilibrium.
Suppose that we are in the multiple equilibria situation, which of these equilibrium
points can we observe in an experimental setup of this circuit? The answer depends
on the stability properties of the equilibrium points. We will come back to this
example in Chapter 2 and answer the question.

1.2.3 Mass–Spring System

In the mass–spring mechanical system, shown in Figure 1.4, we consider a mass m
sliding on a horizontal surface and attached to a vertical surface through a spring.
The mass is subjected to an external force F . We define y as the displacement from
a reference position and write Newton’s law of motion

mÿ + Ff + Fsp = F

8
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Figure 1.4: Mass-spring mechanical system.

where Ff is a resistive force due to friction and Fsp is the restoring force of the
spring. We assume that Fsp is a function only of the displacement y and write it as
Fsp = g(y). We assume also that the reference position has been chosen such that
g(0) = 0. The external force F is at our disposal. Depending upon F , Ff , and g,
several interesting autonomous and nonautonomous second-order models arise.

For a relatively small displacement, the restoring force of the spring can be
modeled as a linear function g(y) = ky, where k is the spring constant. For a
large displacement, however, the restoring force may depend nonlinearly on y. For
example, the function

g(y) = k(1 − a2y2)y, |ay| < 1

models the so-called softening spring, where, beyond a certain displacement, a large
displacement increment produces a small force increment. On the other hand, the
function

g(y) = k(1 + a2y2)y

models the so-called hardening spring, where, beyond a certain displacement, a
small displacement increment produces a large force increment.

The resistive force Ff may have components due to static, Coulomb, and viscous
friction. When the mass is at rest, there is a static friction force Fs that acts parallel
to the surface and is limited to ±µsmg, where 0 < µs < 1 is the static friction
coefficient. This force takes whatever value, between its limits, to keep the mass at
rest. For motion to begin, there must be a force acting on the mass to overcome
the resistance to motion caused by static friction. In the absence of an external
force, F = 0, the static friction force will balance the restoring force of the spring
and maintain equilibrium for |g(y)| ≤ µsmg. Once motion has started, the resistive
force Ff , which acts in the direction opposite to motion, is modeled as a function
of the sliding velocity v = ẏ. The resistive force due to Coulomb friction Fc has a
constant magnitude µkmg, where µk is the kinetic friction coefficient, that is,

Fc =
{ −µkmg, for v < 0

µkmg, for v > 0

As the mass moves in a viscous medium, such as air or lubricant, there will be
a frictional force due to viscosity. This force is usually modeled as a nonlinear

9



10 CHAPTER 1. INTRODUCTION
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F
f

(d)

(a)

F
f

F
f

Figure 1.5: Examples of friction models. (a) Coulomb friction; (b) Coulomb plus linear
viscous friction; (c) static, Coulomb, and linear viscous friction; (d) static, Coulomb,
and linear viscous friction—Stribeck effect.

function of the velocity; that is, Fv = h(v), where h(0) = 0. For small velocity,
we can assume that Fv = cv. Figures 1.5(a) and (b) show examples of friction
models for Coulomb friction and Coulombs plus linear viscous friction, respectively.
Figure 1.5(c) shows an example where the static friction is higher than the level of
Coulomb friction, while Figure 1.5(d) shows a similar situation, but with the force
decreasing continuously with increasing velocity, the so-called Stribeck effect.

The combination of a hardening spring, linear viscous friction, and a periodic
external force F = A cosωt results in the Duffing’s equation

mÿ + cẏ + ky + ka2y3 = A cosωt (1.13)

which is a classical example in the study of periodic excitation of nonlinear systems.
The combination of a linear spring, static friction, Coulomb friction, linear vis-

cous friction, and zero external force results in

mÿ + ky + cẏ + η(y, ẏ) = 0

10



1.2. EXAMPLES 11

where

η(y, ẏ) =




µkmg sign(ẏ), for |ẏ| > 0
−ky, for ẏ = 0 and |y| ≤ µsmg/k
−µsmg sign(y), for ẏ = 0 and |y| > µsmg/k

The value of η(y, ẏ) for ẏ = 0 and |y| ≤ µsmg/k is obtained from the equilibrium
condition ÿ = ẏ = 0. With x1 = y and x2 = ẏ, the state model is

ẋ1 = x2 (1.14)

ẋ2 = − k

m
x1 − c

m
x2 − 1

m
η(x1, x2) (1.15)

Let us note two features of this state model. First, it has an equilibrium set,
rather than isolated equilibrium points. Second, the right-hand side function is
a discontinuous function of the state. The discontinuity is a consequence of the
idealization we adopted in modeling friction. One would expect the physical friction
to change from its static friction mode into its sliding friction mode in a smooth way,
not abruptly as our idealization suggests.3 The discontinuous idealization, however,
simplifies the analysis. For example, when x2 > 0, we can model the system by the
linear model

ẋ1 = x2

ẋ2 = − k

m
x1 − c

m
x2 − µkg

Similarly, when x2 < 0, we can model it by the linear model

ẋ1 = x2

ẋ2 = − k

m
x1 − c

m
x2 + µkg

Thus, in each region, we can predict the behavior of the system via linear analysis.
This is an example of the so-called piecewise linear analysis, where a system is
represented by linear models in various regions of the state space, certain coefficients
changing from region to region.

1.2.4 Negative-Resistance Oscillator

Figure 1.6 shows the basic circuit structure of an important class of electronic
oscillators. The inductor and capacitor are assumed to be linear, time invariant
and passive, that is, L > 0 and C > 0. The resistive element is an active circuit
characterized by the v–i characteristic i = h(v), shown in the figure. The function

3The smooth transition from static to sliding friction can be captured by dynamic friction
models; see, for example, [12] and [144].

11



12 CHAPTER 1. INTRODUCTION

v

(b)(a)

i = h(v)

Figure 1.6: (a) Basic oscillator circuit; (b) Typical driving-point characteristic.
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Figure 1.7: A negative-resistance twin-tunnel-diode circuit.

h(·) satisfies the conditions

h(0) = 0, h′(0) < 0

h(v) → ∞ as v → ∞, and h(v) → −∞ as v → −∞
where h′(v) is the first derivative of h(v) with respect to v. Such v–i characteristic
can be realized, for example, by the twin-tunnel-diode circuit of Figure 1.7, with
the tunnel-diode characteristic shown in Figure 1.2. Using Kirchhoff’s current law,
we can write the equation

iC + iL + i = 0

Hence,

C
dv

dt
+

1
L

∫ t

−∞
v(s) ds+ h(v) = 0

Differentiating once with respect to t and multiplying through by L, we obtain

CL
d2v

dt2
+ v + Lh′(v)

dv

dt
= 0

12



1.2. EXAMPLES 13

The foregoing equation can be written in a form that coincides with some well-
known equations in nonlinear systems theory. To do that, let us change the time
variable from t to τ = t/

√
CL. The derivatives of v with respect to t and τ are

related by
dv

dτ
=

√
CL

dv

dt
and

d2v

dτ2 = CL
d2v

dt2

Denoting the derivative of v with respect to τ by v̇, we can rewrite the circuit
equation as

v̈ + εh′(v)v̇ + v = 0

where ε =
√
L/C. This equation is a special case of Liénard’s equation

v̈ + f(v)v̇ + g(v) = 0 (1.16)

When
h(v) = −v + 1

3v
3

the circuit equation takes the form

v̈ − ε(1 − v2)v̇ + v = 0 (1.17)

which is known as the Van der Pol equation. This equation, which was used by
Van der Pol to study oscillations in vacuum tube circuits, is a fundamental example
in nonlinear oscillation theory. It possesses a periodic solution that attracts every
other solution except the zero solution at the unique equilibrium point v = v̇ = 0.
To write a state model for the circuit, let us take x1 = v and x2 = v̇ to obtain

ẋ1 = x2 (1.18)
ẋ2 = −x1 − εh′(x1)x2 (1.19)

Note that an alternate state model could have been obtained by choosing the state
variables as the voltage across the capacitor and the current through the inductor.
Denoting the state variables by z1 = iL and z2 = vC , the state model is given by

dz1
dt

=
1
L
z2

dz2
dt

= − 1
C

[z1 + h(z2)]

Since the first state model has been written with respect to the time variable τ =
t/

√
CL, let us write this model with respect to τ .

ż1 =
1
ε
z2 (1.20)

ż2 = −ε[z1 + h(z2)] (1.21)

13



14 CHAPTER 1. INTRODUCTION
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Figure 1.8: Hopfield neural network model.

The state models in x and z look different, but they are equivalent representations
of the system. This equivalence can be seen by noting that these models can be
obtained from each other by a change of coordinates

z = T (x)

Since we have chosen both x and z in terms of the physical variables of the circuit,
it is not hard to find the map T (·). We have

x1 = v = z2

x2 =
dv

dτ
=

√
CL

dv

dt
=

√
L

C
[−iL − h(vC)] = ε[−z1 − h(z2)]

Thus,

z = T (x) =
[ −h(x1) − (1/ε)x2

x1

]

and the inverse mapping is

x = T−1(z) =
[

z2
−εz1 − εh(z2)

]

1.2.5 Artificial Neural Network

Artificial neural networks, in analogy to biological structures, take advantage of
distributed information processing and their inherent potential for parallel compu-
tation. Figure 1.8 shows an electric circuit that implements one model of neural
networks, known as the Hopfield model. The circuit is based on an RC network con-

14
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V
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−V
M

u

g(u)

Figure 1.9: A typical input–output characteristic for the amplifiers in Hopfield network.

necting amplifiers. The input–output characteristics of the amplifiers are given by
vi = gi(ui), where ui and vi are the input and output voltages of the ith amplifier.
The function gi(·) : R → (−VM , VM ) is a sigmoid function with asymptotes −VM

and VM , as shown in Figure 1.9. It is continuously differentiable, odd, monoton-
ically increasing, and gi(ui) = 0 if and only if ui = 0. Examples of possible gi(·)
are

gi(ui) =
2VM

π
tan−1

(
λπui

2VM

)
, λ > 0

and

gi(ui) = VM
eλui − e−λui

eλui + e−λui
= VM tanh(λui), λ > 0

where λ determines the slope of gi(ui) at ui = 0. Such sigmoid input–output char-
acteristics can be realized by using operational amplifiers. For each amplifier, the
circuit contains an inverting amplifier whose output is −vi, which permits a choice of
the sign of the amplifier output that is connected to a given input line. The outputs
vi and −vi are usually provided by two output terminals of the same operational
amplifier circuit. The pair of nonlinear amplifiers is referred to as a “neuron.” The
circuit also contains an RC section at the input of each amplifier. The capacitance
Ci > 0 and the resistance ρi > 0 represent the total shunt capacitance and shunt
resistance at the ith amplifier input. Writing Kirchhoff’s current law at the input
node of the ith amplifier, we obtain

Ci
dui

dt
=
∑

j

1
Rij

(±vj − ui) − 1
ρi
ui + Ii =

∑
j

Tijvj − 1
Ri
ui + Ii

where
1
Ri

=
1
ρi

+
∑

j

1
Rij

Tij is a signed conductance whose magnitude is 1/Rij , and whose sign is determined
by the choice of the positive or negative output of the jth amplifier, and Ii is a
constant input current. For a circuit containing n amplifiers, the motion is described

15



16 CHAPTER 1. INTRODUCTION

by n first-order differential equations. To write a state model for the circuit, let us
choose the state variables as xi = vi for i = 1, 2, . . . , n. Then

ẋi =
dgi

dui
(ui) × u̇i =

dgi

dui
(ui) × 1

Ci


∑

j

Tijxj − 1
Ri
ui + Ii




By defining

hi(xi) =
dgi

dui
(ui)

∣∣∣∣
ui=g−1

i
(xi)

we can write the state equation as

ẋi =
1
Ci
hi(xi)


∑

j

Tijxj − 1
Ri
g−1

i (xi) + Ii


 (1.22)

for i = 1, 2, . . . , n. Note that, due to the sigmoid characteristic of gi(·), the function
hi(·) satisfies

hi(xi) > 0, ∀ xi ∈ (−VM , VM )

The equilibrium points of the system are the roots of the n simultaneous equations

0 =
∑

j

Tijxj − 1
Ri
g−1

i (xi) + Ii, 1 ≤ i ≤ n

They are determined by the sigmoid characteristics, the linear resistive connection,
and the input currents. We can obtain an equivalent state model by choosing the
state variables as ui for i = 1, 2, . . . , n.

Stability analysis of this neural network depends critically on whether the sym-
metry condition Tij = Tji is satisfied. An example of the analysis when Tij = Tji

is given in Section 4.2, while an example when Tij �= Tji is given in Section 9.5.

1.2.6 Adaptive Control

Consider a first-order linear system described by the model

ẏp = apyp + kpu

where u is the control input and yp is the measured output. We refer to this system
as the plant. Suppose that it is desirable to obtain a closed-loop system whose
input–output behavior is described by the reference model

ẏm = amym + kmr

where r is the reference input and the model has been chosen such that ym(t)
represents the desired output of the closed-loop system. This goal can be achieved
by the linear feedback control

u(t) = θ∗
1r(t) + θ∗

2yp(t)

16
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provided that the plant parameters ap and kp are known, kp �= 0, and the controller
parameters θ∗

1 and θ∗
2 are chosen as

θ∗
1 =

km

kp
and θ∗

2 =
am − ap

kp

When ap and kp are unknown, we may consider the controller

u(t) = θ1(t)r(t) + θ2(t)yp(t)

where the time-varying gains θ1(t) and θ2(t) are adjusted on-line by using the avail-
able data, namely, r(τ), ym(τ), yp(τ), and u(τ) for τ < t. The adaptation should
be such that θ1(t) and θ2(t) evolve to their nominal values θ∗

1 and θ∗
2 . The adapta-

tion rule is chosen based on stability considerations. One such rule, known as the
gradient algorithm,4 is to use

θ̇1 = −γ(yp − ym)r

θ̇2 = −γ(yp − ym)yp

where γ is a positive constant that determines the speed of adaptation. This adap-
tive control law assumes that the sign of kp is known and, without loss of generality,
takes it to be positive. To write a state model that describes the closed-loop system
under the adaptive control law, it is more convenient to define the output error eo

and the parameter errors φ1 and φ2 as

eo = yp − ym, φ1 = θ1 − θ∗
1 , and φ2 = θ2 − θ∗

2

By using the definition of θ∗
1 and θ∗

2 , the reference model can be rewritten as

ẏm = apym + kp(θ∗
1r + θ∗

2ym)

On the other hand, the plant output yp satisfies the equation

ẏp = apyp + kp(θ1r + θ2yp)

Subtracting the above two equations, we obtain the error equation

ėo = apeo + kp(θ1 − θ∗
1)r + kp(θ2yp − θ∗

2ym)
= apeo + kp(θ1 − θ∗

1)r + kp(θ2yp − θ∗
2ym + θ∗

2yp − θ∗
2yp)

= (ap + kpθ
∗
2)eo + kp(θ1 − θ∗

1)r + kp(θ2 − θ∗
2)yp

Thus, the closed-loop system is described by the nonlinear, nonautonomous, third-
order state model

ėo = ameo + kpφ1r(t) + kpφ2[eo + ym(t)] (1.23)

φ̇1 = −γeor(t) (1.24)
φ̇2 = −γeo[eo + ym(t)] (1.25)

4This adaptation rule will be justified in Section 8.3.

17



18 CHAPTER 1. INTRODUCTION

where we used φ̇i(t) = θ̇i(t) and wrote r(t) and ym(t) as explicit functions of time
to emphasize the nonautonomous nature of the system. The signals r(t) and ym(t)
are the external driving inputs of the closed-loop system.

A simpler version of this model arises if we know kp. In this case, we can take
θ1 = θ∗

1 and only θ2 needs to be adjusted on-line. The closed-loop model reduces to

ėo = ameo + kpφ[eo + ym(t)] (1.26)

φ̇ = −γeo[eo + ym(t)] (1.27)

where we dropped the subscript from φ2. If the goal of the control design is to
regulate the plant output yp to zero, we take r(t) ≡ 0 (hence, ym(t) ≡ 0) and the
closed-loop model simplifies to the autonomous second-order model

ėo = (am + kpφ)eo

φ̇ = −γe2o
The equilibrium points of this system are determined by setting ėo = φ̇ = 0 to
obtain the algebraic equations

0 = (am + kpφ)eo

0 = −γe2o
The system has equilibrium at eo = 0 for all values of φ; that is, it has an equilibrium
set eo = 0. There are no isolated equilibrium points.

The particular adaptive control scheme described here is called direct model ref-
erence adaptive control. The term “model reference” stems from the fact that the
controller’s task is to match a given closed-loop reference model, while the term
“direct” is used to indicate that the controller parameters are adapted directly as
opposed, for example, to an adaptive control scheme that would estimate the plant
parameters ap and kp on-line and use their estimates to calculate the controller
parameters.5 The adaptive control problem generates some interesting nonlinear
models that will be used to illustrate some of the stability and perturbation tech-
niques of this book.

1.2.7 Common Nonlinearities

In the foregoing examples, we saw some typical nonlinearities that arise in modeling
physical systems, such as nonlinear resistance, nonlinear friction, and sigmoid non-
linearities. In this section, we cover some other typical nonlinearities. Figure 1.10
shows four typical memoryless nonlinearities. They are called memoryless, zero
memory, or static because the output of the nonlinearity at any instant of time is

5For a comprehensive treatment of adaptive control, the reader may consult [5], [15], [87], [139],
or [168].
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Figure 1.10: Typical memoryless nonlinearities.

determined uniquely by its input at that instant; it does not depend on the history
of the input.

Figure 1.10(a) shows an ideal relay described by the signum function

sgn(u) =




1, if u > 0
0, if u = 0

−1, if u < 0
(1.28)

Such nonlinear characteristic can model electromechanical relays, thyristor circuits,
and other switching devices.

Figure 1.10(b) shows an ideal saturation nonlinearity. Saturation character-
istics are common in all practical amplifiers (electronic, magnetic, pneumatic, or
hydraulic), motors, and other devices. They are also used, intentionally, as limiters
to restrict the range of a variable. We define the saturation function

sat(u) =
{

u, if |u| ≤ 1
sgn(u), if |u| > 1 (1.29)

to represent a normalized saturation nonlinearity and generate the graph of Fig-

19
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Figure 1.11: Practical characteristics (dashed) of saturation and dead-zone nonlineari-
ties are approximated by piecewise linear characteristics (solid).
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Figure 1.12: Relay with hysteresis.

ure 1.10(b) as k sat(u/δ).
Figure 1.10(c) shows an ideal dead-zone nonlinearity. Such characteristic is

typical of valves and some amplifiers at low input signals. The piecewise linear
functions used in Figure 1.10(b) and (c) to represent saturation and dead-zone
characteristics are approximations of more realistic smooth functions, as shown in
Figure 1.11

Figure 1.10(d) shows a quantization nonlinearity, which is typical in analog-to-
digital conversion of signals.

Quite frequently, we encounter nonlinear elements whose input–output charac-
teristics have memory; that is, the output at any instant of time may depend on
the whole history of the input. Figures 1.12, 1.15(b), and 1.16 show three such
characteristics of the hysteresis type. The first of the three elements, Figure 1.12,
is a relay with hysteresis. For highly negative values of the input, the output will

20
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Figure 1.13: An operational amplifier circuit that realizes the relay with hysteresis
characteristic of Figure 1.12.

be at the lower level L−. As the input is increased, the output stays at L− until
the input reaches S+. Increasing the input beyond S+, the output switches to the
higher level L+ and stays there for higher values of the input. Now, if we decrease
the input, the output stays at the higher level L+ until the input crosses the value
S− at which point the output switches to the lower level L− and stays there for
lower values of the input. Such input–output characteristic can be generated, for
example, by the operational amplifier circuit of Figure 1.13.6 The circuit features
ideal operational amplifiers and ideal diodes. An ideal operational amplifier has the
voltage at its inverting (-) input equal to the voltage at its noninverting (+) input
and has zero input currents at both inputs. An ideal diode has the v–i characteristic
shown in Figure 1.14. When the input voltage u is highly negative, the diodes D1
and D3 will be on while D2 and D4 will be off.7 Because the inverting inputs of
both amplifiers are at virtual ground, the currents in R5 and D3 will be zero and
the output of D3 will be at virtual ground. Therefore, the output voltage y will be
given by y = −(R3/R4)E. This situation will remain as long as the current in D1

6This circuit is taken from [204].
7To see why D3 is on when D1 is on, notice that when D1 is on, the voltage at the output

of A1 will be Vd, the offset voltage of the diode. This will cause a current Vd/R5 to flow in R5
heading towards A2. Since the input current to A2 is zero, the current in R5 must flow through
D3. In modeling the diodes, we neglect the offset voltage Vd; therefore, the currents in R5 and
D3 are neglected.
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�

�

off

on

v

i

Figure 1.14: v–i characteristic of an ideal diode.

is positive; that is,

iD1 =
R3E

R4R7
− u

R6
> 0 ⇔ u <

R3R6E

R4R7

As we increase the input u, the output y will stay at −(R3/R4)E until the input
reaches the value R3R6E/R4R7. Beyond this value, the diodes D1 and D3 will be
off while D2 and D4 will be on. Once again, because the inverting inputs of both
amplifiers are at virtual ground, the currents in R5 and D4 will be zero, and the
input of D4 will be at virtual ground. Therefore, the output y will be given by
y = (R2/R1)E. This situation will remain as long as the current in D2 is positive;
that is,

iD2 =
u

R6
+

R2E

R1R7
> 0 ⇔ u > − R2R6E

R1R7

Thus, we obtain the input–output characteristic of Figure 1.12 with

L− = − R3E

R4
, L+ =

R2E

R1
, S− = − R2R6E

R1R7
, S+ =

R3R6E

R4R7

We will see in Example 2.1 that the tunnel-diode circuit of Section 1.2.2 produces
a similar characteristic when its input voltage is much slower than the dynamics of
the circuit.

Another type of hysteresis nonlinearity is the backlash characteristic shown in
Figure 1.15(b), which is common in gears. To illustrate backlash, the sketch of
Figure 1.15(a) shows a small gap between a pair of mating gears. Suppose that the
driven gear has a high friction to inertia ratio so that when the driving gear starts to
decelerate, the surfaces will remain in contact at L. The input–output characteristic
shown in Figure 1.15(b) depicts the angle of the driven gear y versus the angle of the
driving gear u. Starting from the position shown in Figure 1.15(a), when the driving
gear rotates an angle smaller than a, the driven gear does not move. For rotation
larger than a, a contact is established at L and the driven gear follows the driving
one, corresponding to the AoA piece of the input–output characteristic. When the
driving gear reverses direction, it rotates an angle 2a before a contact is established
at U . During this motion, the angle y remains constant, producing the AB piece of
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Figure 1.15: Backlash nonlinearity.

u

y

Figure 1.16: Hysteresis nonlinearity.

the characteristic. After a contact is established at U , the driven gear follows the
driving one, producing the BC piece, until another reversal of direction produces
the CDA piece. Thus, a periodic input of amplitude higher than a produces the
ABCD hysteresis loop of Figure 1.15(b). Notice that for a larger amplitude, the
hysteresis loop will be A′B′C ′D′—an important difference between this type of
hysteresis characteristic and the relay with hysteresis characteristic of Figure 1.12,
where the hysteresis loop is independent of the amplitude of the input.

Similar to backlash, the hysteresis characteristic of Figure 1.16, which is typical
in magnetic material, has a hysteresis loop that is dependent on the amplitude of
the input.8

8Modeling the hysteresis characteristics of Figures 1.15(b) and 1.16 is quite complex. Various
modeling approaches are given in [106], [126] and [203].
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1.3 Exercises

1.1 A mathematical model that describes a wide variety of physical nonlinear
systems is the nth-order differential equation

y(n) = g
(
t, y, ẏ, . . . , y(n−1), u

)
where u and y are scalar variables. With u as input and y as output, find a state
model.

1.2 Consider a single-input–single-output system described by the nth-order dif-
ferential equation

y(n) = g1

(
t, y, ẏ, . . . , y(n−1), u

)
+ g2

(
t, y, ẏ, . . . , y(n−2)

)
u̇

where g2 is a differentiable function of its arguments. With u as input and y as
output, find a state model.
Hint: Take xn = y(n−1) − g2

(
t, y, ẏ, . . . , y(n−2)

)
u.

1.3 Consider a single-input–single-output system described by the nth-order dif-
ferential equation

y(n) = g
(
y, . . . , y(n−1), z, . . . , z(m)

)
, m < n

where z is the input and y is the output. Extend the dynamics of the system by
adding a series of m integrators at the input side and define u = z(m) as the input
to the extended system; see Figure 1.17. Using y, . . . , y(n−1) and z, . . . , z(m−1) as
state variables, find a state model of the extended system.

� ∫ � � ∫ � Given System �u = z(m)

m integrators
z y

Figure 1.17: Exercise 1.3.

1.4 The nonlinear dynamic equations for an m-link robot [171, 185] take the form

M(q)q̈ + C(q, q̇)q̇ + +Dq̇ + g(q) = u

where q is an m-dimensional vector of generalized coordinates representing joint
positions, u is an m-dimensional control (torque) input, and M(q) is a symmetric
inertia matrix, which is positive definite for all q ∈ Rm. The term C(q, q̇)q̇ accounts
for centrifugal and Coriolis forces. The matrix C has the property that Ṁ − 2C is
a skew-symmetric matrix for all q, q̇ ∈ Rm, where Ṁ is the total derivative of M(q)
with respect to t. The term Dq̇ account for viscous damping, where D is a positive
semidefinite symmetric matrix. The term g(q), which accounts for gravity forces, is
given by g(q) = [∂P (q)/∂q]T , where P (q) is the total potential energy of the links
due to gravity. Choose appropriate state variables and find the state equation.
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1.5 The nonlinear dynamic equations for a single-link manipulator with flexible
joints [185], damping ignored, is given by

Iq̈1 +MgL sin q1 + k(q1 − q2) = 0
Jq̈2 − k(q1 − q2) = u

where q1 and q2 are angular positions, I and J are moments of inertia, k is a spring
constant, M is the total mass, L is a distance, and u is a torque input. Choose
state variables for this system and write down the state equation.

1.6 The nonlinear dynamic equations for an m-link robot with flexible joints [185]
take the form

M(q1)q̈1 + h(q1, q̇1) +K(q1 − q2) = 0
Jq̈2 −K(q1 − q2) = u

where q1 and q2 are m-dimensional vectors of generalized coordinates, M(q1) and
J are symmetric nonsingular inertia matrices, and u is an m-dimensional control
input. The term h(q, q̇) accounts for centrifugal, Coriolis, and gravity forces, and
K is a diagonal matrix of joint spring constants. Choose state variables for this
system and write down the state equation.

1.7 Figure 1.18 shows a feedback connection of a linear time-invariant system rep-
resented by the transfer function G(s) and a nonlinear time-varying element defined
by z = ψ(t, y). The variables r, u, y, and z are vectors of the same dimension, and
ψ(t, y) is a vector-valued function. With r as input and y as output, find a state
model.

���
��

� G(s) = C(sI −A)−1B �

�ψ(t, y)

�

r u

z

y

−
+

Figure 1.18: Exercise 1.7.

1.8 A synchronous generator connected to an infinite bus can be represented [148]
by

Mδ̈ = P −Dδ̇ − η1Eq sin δ

τĖq = −η2Eq + η3 cos δ + EFD

25
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where δ is an angle in radians, Eq is voltage, P is mechanical input power, EFD is
field voltage (input), D is damping coefficient, M is inertial coefficient, τ is time
constant, and η1, η2, and η3 are constant parameters.

(a) Using δ, δ̇, and Eq as state variables, find the state equation.

(b) Let P = 0.815, EFD = 1.22, η1 = 2.0, η2 = 2.7, η3 = 1.7, τ = 6.6, M = 0.0147,
and D/M = 4. Find all equilibrium points.

(c) Suppose that τ is relatively large so that Ėq ≈ 0. Show that assuming Eq to
be constant reduces the model to a pendulum equation.

1.9 The circuit shown in Figure 1.19 contains a nonlinear inductor and is driven
by a time-dependent current source. Suppose that the nonlinear inductor is a
Josephson junction [39], described by iL = I0 sin kφL, where φL is the magnetic
flux of the inductor and I0 and k are constants.

(a) Using φL and vC as state variables, find the state equation.

(b) Is it easier to choose iL and vC as state variables?

�
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���
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Figure 1.19: Exercises 1.9 and 1.10.

1.10 The circuit shown in Figure 1.19 contains a nonlinear inductor and is driven
by a time-dependent current source. Suppose that the nonlinear inductor is de-
scribed by iL = LφL + µφ3

L, where φL is the magnetic flux of the inductor and L
and µ are positive constants.

(a) Using φL and vC as state variables, find the state equation.

(b) Find all equilibrium points when is = 0.

1.11 A phase-locked loop [64] can be represented by the block diagram of Fig-
ure 1.20. Let {A,B,C} be a minimal realization of the scalar, strictly proper
transfer function G(s). Assume that all eigenvalues of A have negative real parts,
G(0) �= 0, and θi = constant. Let z be the state of the realization {A,B,C}.
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Figure 1.20: Exercise 1.11.
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Figure 1.21: Exercise 1.12.

(a) Show that the closed-loop system can be represented by the state equations

ż = Az +B sin e, ė = −Cz

(b) Find all equilibrium points of the system.

(c) Show that when G(s) = 1/(τs + 1), the closed-loop model coincides with the
model of a pendulum equation.

1.12 Consider the mass–spring system shown in Figure 1.21. Assuming a linear
spring and nonlinear viscous damping described by c1ẏ+c2ẏ|ẏ|, find a state equation
that describes the motion of the system.

1.13 An example of a mechanical system in which friction can be negative in a
certain region is the structure shown in Figure 1.22 [7]. On a belt moving uniformly
with velocity v0, there lies a mass m fixed by linear springs, with spring constants
k1 and k2. The friction force h(v) exerted by the belt on the mass is a function
of the relative velocity v = v0 − ẏ. We assume that h(v) is a smooth function for
|v| > 0. In addition to this friction, assume that there is a linear viscous friction
proportional to ẏ.

(a) Write down the equation of motion of the mass m.

(b) By restricting our analysis to the region |ẏ| � v0, we can use a Taylor series to
approximate h(v) by h(v0) − ẏh′(v0). Using this approximation, simplify the
model of the system.

(c) In view of the friction models discussed in Section 1.3, describe what kind of
friction characteristic h(v) would result in a system with negative friction.

1.14 Figure 1.23 shows a vehicle moving on a road with grade angle θ, where v
the vehicle’s velocity, M is its mass, and F is the tractive force generated by the
engine. Assume that the friction is due to Coulomb friction, linear viscous friction,
and a drag force proportional to v2. Viewing F as the control input and θ as a
disturbance input, find a state model of the system.
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Figure 1.22: Exercise 1.13. 
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Figure 1.23: Exercise 1.14.

1.15 Consider the inverted pendulum of Figure 1.24 [110]. The pivot of the pen-
dulum is mounted on a cart that can move in a horizontal direction. The cart is
driven by a motor that exerts a horizontal force F on the cart. The figure shows also
the forces acting on the pendulum, which are the force mg at the center of gravity,
a horizontal reaction force H, and a vertical reaction force V at the pivot. Writ-
ing horizontal and vertical Newton’s laws at the center of gravity of the pendulum
yields

m
d2

dt2
(y + L sin θ) = H and m

d2

dt2
(L cos θ) = V −mg

Taking moments about the center of gravity yields the torque equation

Iθ̈ = V L sin θ −HL cos θ

while a horizontal Newton’s law for the cart yields

Mÿ = F −H − kẏ

Here m is the mass of the pendulum, M is the mass of the cart, L is the distance
from the center of gravity to the pivot, I is the moment of inertia of the pendulum
with respect to the center of gravity, k is a friction coefficient, y is the displacement
of the pivot, θ is the angular rotation of the pendulum (measured clockwise), and
g is the acceleration due to gravity.

(a) Carrying out the indicated differentiation and eliminating V and H, show that
the equations of motion reduce to

Iθ̈ = mgL sin θ −mL2θ̈ −mLÿ cos θ

Mÿ = F −m
(
ÿ + Lθ̈ cos θ − Lθ̇2 sin θ

)
− kẏ

(b) Solving the foregoing equations for θ̈ and ÿ, show that[
θ̈
ÿ

]
=

1
∆(θ)

[
m+M −mL cos θ

−mL cos θ I +mL2

] [
mgL sin θ

F +mLθ̇2 sin θ − kẏ

]
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Figure 1.24: Inverted pendulum of Exercise 1.15.

where

∆(θ) = (I +mL2)(m+M) −m2L2 cos2 θ ≥ (I +mL2)M +mI > 0

(c) Using x1 = θ, x2 = θ̇, x3 = y, and x4 = ẏ as the state variables and u = F as
the control input, write down the state equation.

1.16 Figure 1.25 shows a schematic diagram of a Translational Oscillator with
Rotating Actuator (TORA) system [205]. The system consists of a platform of
mass M connected to a fixed frame of reference by a linear spring, with spring
constant k. The platform can only move in the horizontal plane, parallel to the
spring axis. On the platform, a rotating proof mass is actuated by a DC motor.
It has mass m and moment of inertial I around its center of mass, located at a
distance L from its rotational axis. The control torque applied to the proof mass
is denoted by u. The rotating proof mass creates a force which can be controlled
to dampen the translational motion of the platform. We will derive a model for
the system, neglecting friction. Figure 1.25 shows that the proof mass is subject to
forces Fx and Fy and a torque u. Writing Newton’s law at the center of mass and
taking moments about the center of mass yield the equations

m
d2

dt2
(xc+L sin θ) = Fx, m

d2

dt2
(L cos θ) = Fy, and Iθ̈ = u+FyL sin θ−FxL cos θ

where θ is the angular position of the proof mass (measured counter clockwise).
The platform is subject to the forces Fx and Fy, in the opposite directions, as well
as the restoring force of the spring. Newton’s law for the platform yields

Mẍc = −Fx − kxc

where xc is the translational position of the platform.
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(a) Carrying out the indicated differentiation and eliminating Fx and Fy, show
that the equations of motion reduce to

D(θ)
[
θ̈
ẍc

]
=
[

u

mLθ̇2 sin θ − kxc

]
, whereD(θ) =

[
I +mL2 mL cos θ
mL cos θ M +m

]

(b) Solving the foregoing equation for θ̈ and ẍc, show that[
θ̈
ẍc

]
=

1
∆(θ)

[
m+M −mL cos θ

−mL cos θ I +mL2

] [
u

mLθ̇2 sin θ − kxc

]

where

∆(θ) = (I +mL2)(m+M) −m2L2 cos2 θ ≥ (I +mL2)M +mI > 0

(c) Using x1 = θ, x2 = θ̇, x3 = xc, and x4 = ẋc as the state variables and u as the
control input, write down the state equation.

(d) Find all equilibrium points of the system.
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Figure 1.25: Translational Oscillator with Rotating Actuator (TORA) system.

1.17 The dynamics of a DC motor [178] can be described by

vf = Rf if + Lf
dif
dt

va = c1ifω + La
dia
dt

+Raia

J
dω

dt
= c2if ia − c3ω

The first equation is for the field circuit with vf , if , Rf , and Lf being its voltage,
current, resistance, and inductance. The variables va, ia, Ra, and La are the corre-
sponding variables for the armature circuit described by the second equation. The
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third equation is a torque equation for the shaft, with J as the rotor inertia and c3
as a damping coefficient. The term c1ifω is the back e.m.f. induced in the armature
circuit, and c2if ia is the torque produced by the interaction of the armature current
with the field circuit flux.

(a) For a separately excited DC motor, the voltages va and vf are independent
control inputs. Choose appropriate state variables and find the state equation.

(b) Specialize the state equation of part(a) to the field controlled DC motor, where
vf is the control input, while va is held constant.

(c) Specialize the state equation of part(a) to the armature controlled DC motor,
where va is the control input, while vf is held constant. Can you reduce the
order of the model in this case?

(d) In a shunt wound DC motor, the field and armature windings are connected
in parallel and an external resistance Rx is connected in series with the field
winding to limit the field flux; that is, v = va = vf + Rxif . With v as the
control input, write down the state equation.

1.18 Figure 1.26 shows a schematic diagram of a magnetic suspension system,
where a ball of magnetic material is suspended by means of an electromagnet whose
current is controlled by feedback from the, optically measured, ball position [211,
pp. 192–200]. This system has the basic ingredients of systems constructed to
levitate mass, used in gyroscopes, accelerometers, and fast trains. The equation of
motion of the ball is

mÿ = −kẏ +mg + F (y, i)

where m is the mass of the ball, y ≥ 0 is the vertical (downward) position of the
ball measured from a reference point (y = 0 when the ball is next to the coil), k is
a viscous friction coefficient, g is the acceleration due to gravity, F (y, i) is the force
generated by the electromagnet, and i is its electric current. The inductance of the
electromagnet depends on the position of the ball and can be modeled as

L(y) = L1 +
L0

1 + y/a

where L1, L0, and a are positive constants. This model represents the case that the
inductance has its highest value when the ball is next to the coil and decreases to
a constant value as the ball is removed to y = ∞. With E(y, i) = 1

2L(y)i2 as the
energy stored in the electromagnet, the force F (y, i) is given by

F (y, i) =
∂E

∂y
= − L0i

2

2a(1 + y/a)2

When the electric circuit of the coil is driven by a voltage source with voltage v,
Kirchhoff’s voltage law gives the relationship v = φ̇ + Ri, where R is the series
resistance of the circuit and φ = L(y)i is the magnetic flux linkage.
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Figure 1.26: Magnetic suspension system of Exercise 1.18.

(a) Using x1 = y, x2 = ẏ, and x3 = i as state variables and u = v as control input,
find the state equation.

(b) Suppose it is desired to balance the ball at a certain position r > 0. Find the
steady-state values Iss and Vss of i and v, respectively, which are necessary
to maintain such balance.

The next three exercises give examples of hydraulic systems [41].

1.19 Figure 1.27 shows a hydraulic system where liquid is stored in an open tank.
The cross-sectional area of the tank, A(h), is a function of h, the height of the liquid
level above the bottom of the tank. The liquid volume v is given by v =

∫ h

0 A(λ) dλ.
For a liquid of density ρ, the absolute pressure p is given by p = ρgh + pa, where
pa is the atmospheric pressure (assumed constant) and g is the acceleration due
to gravity. The tank receives liquid at a flow rate wi and loses liquid through a
valve that obeys the flow-pressure relationship wo = k

√
∆p. In the current case,

∆p = p− pa. Take u = wi to be the control input and y = h to be the output.

(a) Using h as the state variable, determine the state model.

(b) Using p− pa as the state variable, determine the state model.

(c) Find uss that is needed to maintain the output at a constant value r.

1.20 The hydraulic system shown in Figure 1.28 consists of a constant speed cen-
trifugal pump feeding a tank from which liquid flows through a pipe and a valve that
obeys the relationship wo = k

√
p− pa. The pump characteristic for the specified

pump speed is shown in Figure 1.29. Let us denote this relationship by ∆p = φ(wi)
and denote its inverse, whenever defined, by wi = φ−1(∆p). For the current pump,
∆p = p−pa. The cross-sectional area of the tank is uniform; therefore, v = Ah and
p = pa + ρgv/A, where the variables are defined in the previous exercise.
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Figure 1.27: Exercise 1.19.
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Figure 1.28: Exercise 1.20.

∆ p

w

Figure 1.29: Typical centrifugal pump characteristic.

(a) Using (p− pa) as the state variable, find the state model.

(b) Find all equilibrium points of the system.

1.21 The valves in the hydraulic system of Figure 1.30 obey the flow relationships
w1 = k1

√
p1 − p2 and w2 = k2

√
p2 − pa. The pump has the characteristic shown

in Figure 1.29 for (p1 − pa) versus wp. The various components and variables are
defined in the previous two exercises.

(a) Using (p1 − pa) and (p2 − pa) as the state variables, find the state equation.

(b) Find all equilibrium points of the system.

1.22 Consider a biochemical reactor with two components—biomass and substrate—
where the biomass cells consume the substrate [23]; a schematic is shown in Fig-
ure 1.31. Assume that the reactor is perfectly mixed and the volume V is constant.
Let x1 and x2 be the concentrations (mass/volume) of the biomass cells and sub-
strate, respectively, and x1f and x2f be the corresponding concentrations in the
feed stream. Let r1 be the rate of biomass cell generation (mass/volume/time), r2
be the rate of the substrate consumption, and F be the flow rate (volume/time).
The dynamic model is developed by writing material balances on the biomass and
substrate; that is,

rate of biomass accumulation = in by flow − out by flow + generation
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Figure 1.30: The hydraulic system of Exercise 1.21.

rate of substrate accumulation = in by flow − out by flow − consumption

The generation rate r1 is modeled as r1 = µx1, where the specific growth coefficient
µ is a function of x2. We assume that there is no biomass in the feed stream, so
x1f = 0, the dilution rate d = F/V is constant, and the yield Y = r1/r2 is constant.

(a) Using x1 and x2 as state variables, find the state model.

(b) Find all equilibrium points when µ = µmx2/(km + x2) for some positive con-
stants µm and km. Assume that d < µm.

(c) Find all equilibrium points when µ = µmx2/(km +x2 +k1x
2
2) for some positive

constants µm, km, and k1. Assume that d < maxx2≥0{µ(x2)}.
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Figure 1.31: Biochemical reactor of Exercise 1.22.
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Chapter 2

Second-Order Systems

Second-order autonomous systems occupy an important place in the study of non-
linear systems because solution trajectories can be represented by curves in the
plane. This allows for easy visualization of the qualitative behavior of the system.
The purpose of this chapter is to use second-order systems to introduce, in an ele-
mentary context, some of the basic ideas of nonlinear systems. In particular, we will
look at the behavior of a nonlinear system near equilibrium points, the phenomenon
of nonlinear oscillation, and bifurcation.

A second-order autonomous system is represented by two scalar differential equa-
tions

ẋ1 = f1(x1, x2) (2.1)
ẋ2 = f2(x1, x2) (2.2)

Let x(t) = (x1(t), x2(t)) be the solution1 of (2.1)–(2.2) that starts at a certain initial
state x0 = (x10, x20); that is, x(0) = x0. The locus in the x1–x2 plane of the solution
x(t) for all t ≥ 0 is a curve that passes through the point x0. This curve is called
a trajectory or orbit of (2.1)–(2.2) from x0. The x1–x2 plane is usually called the
state plane or phase plane. The right-hand side of (2.1)–(2.2) expresses the tangent
vector ẋ(t) = (ẋ1(t), ẋ2(t)) to the curve. Using the vector notation

ẋ = f(x)

where f(x) is the vector (f1(x), f2(x)), we consider f(x) as a vector field on the
state plane, which means that to each point x in the plane, we assign a vector f(x).
For easy visualization, we represent f(x) as a vector based at x; that is, we assign
to x the directed line segment from x to x+ f(x). For example, if f(x) = (2x2

1, x2),
then at x = (1, 1), we draw an arrow pointing from (1, 1) to (1, 1) + (2, 1) = (3, 2).
(See Figure 2.1.) Repeating this at every point in a grid covering the plane, we

1It is assumed that there is a unique solution.

From Chapter 2 of Nonlinear Systems, Third Edition. Hassan K. Khalil.  
Copyright © 2002 by Pearson Education, Inc. All rights reserved. 
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Figure 2.1: Vector field representation.

obtain a vector field diagram, such as the one shown in Figure 2.2 for the pendulum
equation without friction:

ẋ1 = x2

ẋ2 = −10 sinx1

In the figure, the length of the arrow at a given point x is proportional to the
length of f(x), that is,

√
f2
1 (x) + f2

2 (x). Sometimes, for convenience, we draw
arrows of equal length at all points. Since the vector field at a point is tangent to
the trajectory through that point, we can, in essence, construct trajectories from
the vector field diagram. Starting at a given initial point x0, we can construct the
trajectory from x0 by moving along the vector field at x0. This motion takes us to
a new point xa, where we continue the trajectory along the vector field at xa. If the
process is repeated carefully and the consecutive points are chosen close enough to
each other, we can obtain a reasonable approximation of the trajectory through x0.
In the case of Figure 2.2, a careful implementation of the foregoing process would
show that the trajectory through (2, 0) is a closed curve.

The family of all trajectories or solution curves is called the phase portrait of
(2.1)–(2.2). An (approximate) picture of the phase portrait can be constructed
by plotting trajectories from a large number of initial states spread all over the
x1–x2 plane. Since numerical subroutines for solving general nonlinear differential
equations are widely available, we can easily construct the phase portrait by using
computer simulations. (Some hints are given in Section 2.5.) Note that since
the time t is suppressed in a trajectory, it is not possible to recover the solution
(x1(t), x2(t)) associated with a given trajectory. Hence, a trajectory gives only the
qualitative, but not quantitative, behavior of the associated solution. For example,
a closed trajectory shows that there is a periodic solution; that is, the system has
a sustained oscillation, whereas a shrinking spiral shows a decaying oscillation. In
the rest of this chapter, we will qualitatively analyze the behavior of second-order
systems by using their phase portraits.
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Figure 2.2: Vector field diagram of the pendulum equation without friction.

2.1 Qualitative Behavior of Linear Systems

Consider the linear time-invariant system

ẋ = Ax (2.3)

where A is a 2 × 2 real matrix. The solution of (2.3) for a given initial state x0 is
given by

x(t) = M exp(Jrt)M−1x0

where Jr is the real Jordan form of A and M is a real nonsingular matrix such that
M−1AM = Jr. Depending on the eigenvalues of A, the real Jordan form may take
one of three forms[

λ1 0
0 λ2

]
,

[
λ k
0 λ

]
, and

[
α −β
β α

]

where k is either 0 or 1. The first form corresponds to the case when the eigenval-
ues λ1 and λ2 are real and distinct, the second form corresponds to the case when
the eigenvalues are real and equal, and the third form corresponds to the case of
complex eigenvalues λ1,2 = α± jβ. In our analysis, we have to distinguish between
these three cases. Moreover, with real eigenvalues, we have to isolate the case when
at least one of the eigenvalues is zero. In that situation, the origin is not an isolated
equilibrium point and the qualitative behavior is quite different from the behavior
in the other cases.
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Case 1. Both eigenvalues are real: λ1 �= λ2 �= 0.

In this case, M = [v1, v2], where v1 and v2 are the real eigenvectors associated
with λ1 and λ2. The change of coordinates z = M−1x transforms the system into
two decoupled first-order differential equations,

ż1 = λ1z1, ż2 = λ2z2

whose solution, for a given initial state (z10, z20), is given by

z1(t) = z10e
λ1t, z2(t) = z20e

λ2t

Eliminating t between the two equations, we obtain

z2 = cz
λ2/λ1
1 (2.4)

where c = z20/(z10)λ2/λ1 . The phase portrait of the system is given by the family
of curves generated from (2.4) by allowing the constant c to take arbitrary values
in R. The shape of the phase portrait depends on the signs of λ1 and λ2.

Consider first the case when both eigenvalues are negative. Without loss of
generality, let λ2 < λ1 < 0. Here, both exponential terms eλ1t and eλ2t tend to zero
as t → ∞. Moreover, since λ2 < λ1 < 0, the term eλ2t tends to zero faster than
the term eλ1t. Hence, we call λ2 the fast eigenvalue and λ1 the slow eigenvalue.
For later reference, we call v2 the fast eigenvector and v1 the slow eigenvector. The
trajectory tends to the origin of the z1–z2 plane along the curve of (2.4), which now
has a ratio λ2/λ1 that is greater than one. The slope of the curve is given by

dz2
dz1

= c
λ2

λ1
z
[(λ2/λ1)−1]
1

Since [(λ2/λ1) − 1] is positive, the slope of the curve approaches zero as |z1| → 0
and approaches ∞ as |z1| → ∞. Therefore, as the trajectory approaches the origin,
it becomes tangent to the z1-axis; as it approaches ∞, it becomes parallel to the
z2-axis. These observations allow us to sketch the typical family of trajectories
shown in Figure 2.3. When transformed back into the x-coordinates, the family
of trajectories will have the typical portrait shown in Figure 2.4(a). Note that in
the x1–x2 plane, the trajectories become tangent to the slow eigenvector v1 as they
approach the origin and parallel to the fast eigenvector v2 far from the origin. In
this situation, the equilibrium point x = 0 is called a stable node.

When λ1 and λ2 are positive, the phase portrait will retain the character of Fig-
ure 2.4(a), but with the trajectory directions reversed, since the exponential terms
eλ1t and eλ2t grow exponentially as t increases. Figure 2.4(b) shows the phase por-
trait for the case λ2 > λ1 > 0. The equilibrium point x = 0 is referred to in this
instance as an unstable node.

38



2.1. LINEAR SYSTEMS 39

z1

z2

Figure 2.3: Phase portrait of a stable node in modal coordinates.

x2

x 1

v1

v2

(b)

x1

x 2

v1

v2

(a)

Figure 2.4: Phase portraits for (a) a stable node; (b) an unstable node.

Suppose now that the eigenvalues have opposite signs. In particular, let λ2 < 0 <
λ1. In this case, eλ1t → ∞, while eλ2t → 0 as t → ∞. Hence, we call λ2 the stable
eigenvalue and λ1 the unstable eigenvalue. Correspondingly, v2 and v1 are called the
stable and unstable eigenvectors, respectively. Equation (2.4) will have a negative
exponent (λ2/λ1). Thus, the family of trajectories in the z1–z2 plane will take the
typical form shown in Figure 2.5(a). Trajectories have hyperbolic shapes. They
become tangent to the z1-axis as |z1| → ∞ and tangent to the z2-axis as |z1| → 0.
The only exception to these hyperbolic shapes are the four trajectories along the
axes. The two trajectories along the z2-axis are called the stable trajectories since
they approach the origin as t → ∞, while the two trajectories along the z1-axis are
called the unstable trajectories since they approach infinity as t → ∞. The phase
portrait in the x1–x2 plane is shown in Figure 2.5(b). Here the stable trajectories are
along the stable eigenvector v2 and the unstable trajectories are along the unstable
eigenvector v1. In this case, the equilibrium point is called a saddle.
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z1

z2

(a)

x 1

x 2
v1v2

(b)

Figure 2.5: Phase portrait of a saddle point (a) in modal coordinates; (b) in original
coordinates.

Case 2. Complex eigenvalues: λ1,2 = α± jβ.

The change of coordinates z = M−1x transforms the system (2.3) into the form

ż1 = αz1 − βz2, ż2 = βz1 + αz2

The solution of these equations is oscillatory and can be expressed more conveniently
in the polar coordinates

r =
√
z2
1 + z2

2 , θ = tan−1
(
z2
z1

)

where we have two uncoupled first-order differential equations:

ṙ = αr and θ̇ = β

The solution for a given initial state (r0, θ0) is given by

r(t) = r0e
αt and θ(t) = θ0 + βt

which define a logarithmic spiral in the z1–z2 plane. Depending on the value of α,
the trajectory will take one of the three forms shown in Figure 2.6. When α < 0,
the spiral converges to the origin; when α > 0, it diverges away from the origin.
When α = 0, the trajectory is a circle of radius r0. Figure 2.7 shows the trajectories
in the x1–x2 plane. The equilibrium point x = 0 is referred to as a stable focus if
α < 0, unstable focus if α > 0, and center if α = 0.
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Figure 2.6: Typical trajectories in the case of complex eigenvalues.
(a) α < 0; (b) α > 0; (c) α = 0.
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Figure 2.7: Phase portraits for (a) a stable focus; (b) an unstable focus; (c) a center.

Case 3. Nonzero multiple eigenvalues: λ1 = λ2 = λ �= 0.

The change of coordinates z = M−1x transforms the system (2.3) into the form

ż1 = λz1 + kz2, ż2 = λz2

whose solution, for a given initial state (z10, z20), is given by

z1(t) = eλt(z10 + kz20t), z2(t) = eλtz20

Eliminating t, we obtain the trajectory equation

z1 = z2

[
z10
z20

+
k

λ
ln
(
z2
z20

)]

Figure 2.8 shows the form of the trajectories when k = 0, while Figure 2.9 shows
their form when k = 1. The phase portrait has some similarity with the portrait
of a node. Therefore, the equilibrium point x = 0 is usually referred to as a stable
node if λ < 0 and unstable node if λ > 0. Note, however, that the phase portraits
of Figures 2.8 and 2.9 do not have the asymptotic slow–fast behavior that we saw
in Figures 2.3 and 2.4.

Before we discuss the degenerate case when one or both of the eigenvalues are
zero, let us summarize our findings about the qualitative behavior of the system
when the equilibrium point x = 0 is isolated. We have seen that the system can dis-
play six qualitatively different phase portraits, which are associated with different
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Figure 2.8: Phase portraits for the case of nonzero multiple eigenvalues when k = 0:
(a) λ < 0; (b) λ > 0.
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Figure 2.9: Phase portraits for the case of nonzero multiple eigenvalues when k = 1:
(a) λ < 0; (b) λ > 0.

types of equilibria: stable node, unstable node, saddle point, stable focus, unstable
focus, and center. The type of equilibrium point is completely specified by the lo-
cation of the eigenvalues of A. Note that the global (throughout the phase plane)
qualitative behavior of the system is determined by the type of equilibrium point.
This is a characteristic of linear systems. When we study the qualitative behavior
of nonlinear systems in the next section, we shall see that the type of equilibrium
point can only determine the qualitative behavior of the trajectories in the vicinity
of that point.

Case 4. One or both eigenvalues are zero.

When one or both eigenvalues of A are zero, the phase portrait is in some sense
degenerate. Here, the matrix A has a nontrivial null space. Any vector in the
null space of A is an equilibrium point for the system; that is, the system has an
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Figure 2.10: Phase portraits for (a) λ1 = 0, λ2 < 0; (b) λ1 = 0, λ2 > 0.

equilibrium subspace, rather than an equilibrium point. The dimension of the null
space could be one or two; if it is two, the matrix A will be the zero matrix. This
is a trivial case where every point in the plane is an equilibrium point. When the
dimension of the null space is one, the shape of the Jordan form of A will depend
on the multiplicity of the zero eigenvalue. When λ1 = 0 and λ2 �= 0, the matrix M
is given by M = [v1, v2] where v1 and v2 are the associated eigenvectors. Note that
v1 spans the null space of A. The change of variables z = M−1x results in

ż1 = 0, ż2 = λ2z2

whose solution is
z1(t) = z10, z2(t) = z20e

λ2t

The exponential term will grow or decay, depending on the sign of λ2. Figure 2.10
shows the phase portrait in the x1–x2 plane. All trajectories converge to the equi-
librium subspace when λ2 < 0, and diverge away from it when λ2 > 0.

When both eigenvalues are at the origin, the change of variables z = M−1x
results in

ż1 = z2, ż2 = 0

whose solution is
z1(t) = z10 + z20t, z2(t) = z20

The term z20t will increase or decrease, depending on the sign of z20. The z1-axis is
the equilibrium subspace. Figure 2.11 shows the phase portrait in the x1–x2 plane;
the dashed line is the equilibrium subspace. The phase portrait in Figure 2.11 is
quite different from that in Figure 2.10. Trajectories starting off the equilibrium
subspace move parallel to it.

The study of the behavior of linear systems about the equilibrium point x = 0 is
important because, in many cases, the local behavior of a nonlinear system near an
equilibrium point can be deduced by linearizing the system about that point and
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Figure 2.11: Phase portrait when λ1 = λ2 = 0.

studying the behavior of the resultant linear system. How conclusive the lineariza-
tion approach is depends to a great extent on how the various qualitative phase
portraits of a linear system persist under perturbations. We can gain insight into
the behavior of a linear system under perturbations by examining the special case
of linear perturbations. Suppose A has distinct eigenvalues and consider A + ∆A,
where ∆A is a 2 × 2 real matrix whose elements have arbitrarily small magnitudes.
From the perturbation theory of matrices,2 we know that the eigenvalues of a ma-
trix depend continuously on its parameters. This means that, given any positive
number ε, there is a corresponding positive number δ such that if the magnitude
of the perturbation in each element of A is less than δ, the eigenvalues of the per-
turbed matrix A+ ∆A will lie in open discs of radius ε centered at the eigenvalues
of A. Consequently, any eigenvalue of A that lies in the open right-half plane (pos-
itive real part) or in the open left-half plane (negative real part) will remain in
its respective half of the plane after arbitrarily small perturbations. On the other
hand, eigenvalues on the imaginary axis, when perturbed, might go into either the
right-half or the left-half of the plane, since a disc centered on the imaginary axis
will extend in both halves no matter how small ε is. Consequently, we can conclude
that if the equilibrium point x = 0 of ẋ = Ax is a node, focus, or saddle point,
then the equilibrium point x = 0 of ẋ = (A + ∆A)x will be of the same type for
sufficiently small perturbations. The situation is quite different if the equilibrium
point is a center. Consider the perturbation of the real Jordan form in the case of
a center [

µ 1
−1 µ

]

where µ is a perturbation parameter. When µ is positive, the equilibrium point of
the perturbed system is an unstable focus; when µ is negative, it is a stable focus.

2See [67, Chapter 7].

44



2.1. LINEAR SYSTEMS 45

This is true no matter how small µ is, as long as it is different from zero. Because
the phase portraits of a stable focus and unstable focus are qualitatively different
from the phase portrait of a center, we see that a center equilibrium point will
not persist under perturbations. The node, focus, and saddle equilibrium points
are said to be structurally stable because they maintain their qualitative behavior
under infinitesimally small perturbations,3 while the center equilibrium point is not
structurally stable. The distinction between the two cases is due to the location of
the eigenvalues of A, with the eigenvalues on the imaginary axis being vulnerable to
perturbations. This brings in the definition of a hyperbolic equilibrium point. The
origin x = 0 is said to be a hyperbolic equilibrium point of ẋ = Ax if A has no
eigenvalues with zero real part.4

When A has multiple nonzero real eigenvalues, infinitesimally small perturba-
tions could result in a pair of complex eigenvalues. Hence, a stable (respectively,
unstable) node would either remain a stable (respectively, unstable) node or become
a stable (respectively, unstable) focus.

When A has eigenvalues at zero, one would expect perturbations to move these
eigenvalues away from zero, resulting in a major change in the phase portrait. It
turns out, however, that there is an important difference between the case when
there is only one eigenvalue at zero and the case when both eigenvalues are at
zero (A �= 0). In the first case, perturbation of the zero eigenvalue results in a
real eigenvalue λ1 = µ, where µ could be positive or negative. Since the other
eigenvalue λ2 is different from zero, its perturbation will keep it away from zero.
Moreover, since we are talking about arbitrarily small perturbations, |λ1| = |µ| will
be much smaller than |λ2|. Thus, we end up with two real distinct eigenvalues,
which means that the equilibrium point of the perturbed system will be a node or
a saddle point, depending on the signs of λ2 and µ. This is already an important
change in the phase portrait. However, a careful examination of the phase portrait
gives more insight into the qualitative behavior of the system. Since |λ1| � |λ2|, the
exponential term eλ2t will change with t much faster than the exponential term eλ1t,
resulting in the typical phase portraits of a node and a saddle shown in Figure 2.12,
for the case λ2 < 0. Comparing these phase portraits with Figure 2.10(a) shows
some similarity. In particular, similar to Figure 2.10, trajectories starting off the
eigenvector v1 converge to that vector along lines (almost) parallel to the eigenvector
v2. As they approach the vector v1, they become tangent to it and move along it.
When µ < 0, the motion along v1 converges to the origin (stable node), while
when µ > 0 the motion along v1 tends to infinity (saddle point). This qualitative
behavior is characteristic of singularly perturbed systems, which will be studied in
Chapter 11.

When both eigenvalues of A are zeros, the effect of perturbations is more dra-

3See [81, Chapter 16] for a rigorous and more general definition of structural stability.
4This definition of a hyperbolic equilibrium point extends to higher-dimensional systems. It

also carries over to equilibria of nonlinear systems by applying it to the eigenvalues of the linearized
system.

45



46 CHAPTER 2. SECOND-ORDER SYSTEMS

x
1

x 2
v
1

v
2

(a)

x 1

x 2

v1

v
2

(b)

Figure 2.12: Phase portraits of a perturbed system when λ1 = 0 and λ2 < 0: (a)
µ < 0; (b) µ > 0.

matic. Consider the four possible perturbations of the Jordan form[
0 1

−µ2 0

]
,

[
µ 1

−µ2 µ

]
,

[
µ 1
0 µ

]
, and

[
µ 1
0 −µ

]

where µ is a perturbation parameter that could be positive or negative. It can easily
be seen that the equilibrium points in these four cases are a center, a focus, a node,
and a saddle point, respectively. In other words, all the possible phase portraits of
an isolated equilibrium point could result from perturbations.

2.2 Multiple Equilibria

The linear system ẋ = Ax has an isolated equilibrium point at x = 0 if A has no
zero eigenvalues, that is, if detA �= 0. When detA = 0, the system has a continuum
of equilibrium points. These are the only possible equilibria patterns that a linear
system may have. A nonlinear system can have multiple isolated equilibrium points.
In the following two examples, we explore the qualitative behavior of the tunnel-
diode circuit of Section 1.2.2 and the pendulum equation of Section 1.2.1. Both
systems exhibit multiple isolated equilibria.

Example 2.1 The state model of a tunnel-diode circuit is given by

ẋ1 =
1
C

[−h(x1) + x2]

ẋ2 =
1
L

[−x1 −Rx2 + u]

Assume that the circuit parameters are5 u = 1.2 V , R = 1.5 kΩ = 1.5 × 103 Ω,
C = 2 pF = 2 × 10−12 F , and L = 5 µH = 5 × 10−6 H. Measuring time in

5The numerical data are taken from [39].
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Figure 2.13: Phase portrait of the tunnel-diode circuit of Example 2.1.

nanoseconds and the currents x2 and h(x1) in mA, the state model is given by

ẋ1 = 0.5[−h(x1) + x2]
ẋ2 = 0.2(−x1 − 1.5x2 + 1.2)

Suppose that h(·) is given by

h(x1) = 17.76x1 − 103.79x2
1 + 229.62x3

1 − 226.31x4
1 + 83.72x5

1

By setting ẋ1 = ẋ2 = 0 and solving for the equilibrium points, we can verify that
there are three equilibrium points at (0.063, 0.758), (0.285, 0.61), and (0.884, 0.21).
The phase portrait of the system, generated by a computer program, is shown in
Figure 2.13. The three equilibrium points are denoted in the portrait by Q1, Q2,
and Q3, respectively. Examination of the phase portrait shows that, except for
two special trajectories, which approach Q2, all trajectories eventually approach
either Q1 or Q3. Near the equilibrium points, the trajectories take the form of a
saddle for Q2 and stable nodes for Q1 and Q3. The two special trajectories, which
approach Q2, are the stable trajectories of the saddle. They form a curve that
divides the plane into two halves. All trajectories originating from the left side of
the curve will approach Q1, while all trajectories originating from the right side
will approach Q3. This special curve is called a separatrix, because it partitions the
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Figure 2.14: Adjustment of the load line of the tunnel-diode circuit during triggering.

plane into two regions of different qualitative behavior.6 In an experimental setup,
we shall observe one of the two steady-state operating points Q1 or Q3, depending
on the initial capacitor voltage and inductor current. The equilibrium point at Q2
is never observed in practice because the ever-present physical noise would cause
the trajectory to diverge from Q2 even if it were possible to set up the exact initial
conditions corresponding to Q2.

The phase portrait in Figure 2.13 tells us the global qualitative behavior of
the tunnel-diode circuit. The range of x1 and x2 was chosen so that all essential
qualitative features are displayed. The portrait outside this range does not contain
any new qualitative features.

The tunnel-diode circuit with multiple equilibria is referred to as a bistable cir-
cuit, because it has two steady-state operating points. It has been used as a com-
puter memory, where the equilibrium point Q1 is associated with the binary state
“0” and the equilibrium point Q3 is associated with the binary state “1.” Triggering
from Q1 to Q3 or vice versa is achieved by a triggering signal of sufficient amplitude
and duration that allows the trajectory to move to the other side of the separatrix.
For example, if the circuit is initially at Q1, then a positive pulse added to the
supply voltage u will carry the trajectory to the right side of the separatrix. The
pulse must be adequate in amplitude to raise the load line beyond the dashed line
in Figure 2.14 and long enough to allow the trajectory to reach the right side of the
separatrix.

Another feature of this circuit can be revealed if we view it as a system with
input u = E and output y = vR. Suppose we start with a small value of u such that
the only equilibrium point is Q1. After a transient period, the system settles at Q1.
Let us now increase u gradually, allowing the circuit to settle at an equilibrium point

6In general, the state plane decomposes into a number of regions, within each of which the
trajectories may show a different type of behavior. The curves separating these regions are called
separatrices.
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Figure 2.15: Hysteresis characteristics of the tunnel-diode circuit.

after each increment of u. For a range of values of u, Q1 will be the only equilibrium
point. On the input–output characteristic of the system, shown in Figure 2.15, this
range corresponds to the segment EA. As the input is increased beyond the point
A, the circuit will have two steady-state operating points at Q1, on the segment
AB, and Q3, on the segment CD. Since we are increasing u gradually, the initial
conditions will be near Q1 and the circuit will settle there. Hence, the output will
be on the segment AB. With further increase of u, we will reach a point where
the circuit will have only one equilibrium point at Q3. Therefore, after a transient
period the circuit will settle at Q3. On the input–output characteristic, it will
appear as a jump from B to C. For higher values of u, the output will remain
on the segment CF . Suppose now that we start decreasing u gradually. First,
there will be only one equilibrium point Q3; that is, the output will move along
the segment FC. Beyond a certain value of u, corresponding to the point C, the
circuit will have two steady-state operating points at Q1 and Q3, but will settle
at Q3 because its initial conditions will be closer to it. Hence, the output will be
on the segment CD. Eventually, as we decrease u beyond the value corresponding
to D, the circuit will have only one equilibrium point at Q1 and the characteristic
will exhibit another jump from D to A. Thus, the input–output characteristic of
the system features a hysteresis behavior. Notice that by drawing the input–output
characteristic of Figure 2.15, we ignore the dynamics of the system. Such viewpoint
will be reasonable when the input is slowly varying relative to the dynamics of the
system so that the transient time between different steady-state operating points
can be neglected.7 �

Example 2.2 Consider the following pendulum equation with friction:

ẋ1 = x2

7This statement can be justified by the singular perturbation theory presented in Chapter 11.
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Figure 2.16: Phase portrait of the pendulum equation of Example 2.2.

ẋ2 = −10 sinx1 − x2

A computer-generated phase portrait is shown in Figure 2.16. The phase portrait
is periodic in x1 with period 2π. Consequently, all distinct features of the system’s
qualitative behavior can be captured by drawing the portrait in the vertical strip
−π ≤ x1 ≤ π. As we noted earlier, the equilibrium points (0, 0), (2π, 0), (−2π, 0),
etc., correspond to the downward equilibrium position (0, 0). Trajectories near
these equilibrium points have the pattern of a stable focus. On the other hand,
the equilibrium points at (π, 0), (−π, 0), etc., correspond to the upward equilibrium
position (π, 0). Trajectories near these equilibrium points have the pattern of a
saddle. The stable trajectories of the saddles at (π, 0) and (−π, 0) form separatrices
which contain a region with the property that all trajectories in its interior approach
the equilibrium point (0, 0). This picture is repeated periodically. The fact that
trajectories could approach different equilibrium points correspond to the number
of full swings a trajectory would take before it settles at the downward equilibrium
position. For example, the trajectories starting at points A and B have the same
initial position, but different speeds. The trajectory starting at A oscillates with
decaying amplitude until it settles down at equilibrium. The trajectory starting at
B, on the other hand, has more initial kinetic energy. It makes a full swing before it
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starts to oscillate with decaying amplitude. Once again, notice that the “unstable”
equilibrium position (π, 0) cannot be maintained in practice, because noise would
cause trajectories to diverge away from that position. �

2.3 Qualitative Behavior Near Equilibrium Points

Examination of the phase portraits in Examples 2.1 and 2.2 shows that the qual-
itative behavior in the vicinity of each equilibrium point looks just like those we
saw in Section 2.1 for linear systems. In particular, in Figure 2.13 the trajectories
near Q1, Q2, and Q3 are similar to those associated with a stable node, saddle
point, and stable node, respectively. Similarly, in Figure 2.16 the trajectories near
(0, 0) and (π, 0) are similar to those associated with a stable focus and saddle point,
respectively. In this section, we will see that we could have seen this behavior near
the equilibrium points without drawing the phase portrait. It will follow from the
general property that, except for some special cases, the qualitative behavior of a
nonlinear system near an equilibrium point can be determined via linearization with
respect to that point.

Let p = (p1, p2) be an equilibrium point of the nonlinear system (2.1)–(2.2) and
suppose that the functions f1 and f2 are continuously differentiable. Expanding
the right-hand side of (2.1)–(2.2) into its Taylor series about the point (p1, p2), we
obtain

ẋ1 = f1(p1, p2) + a11(x1 − p1) + a12(x2 − p2) + H.O.T.
ẋ2 = f2(p1, p2) + a21(x1 − p1) + a22(x2 − p2) + H.O.T.

where

a11 =
∂f1(x1, x2)

∂x1

∣∣∣∣
x1=p1,x2=p2

, a12 =
∂f1(x1, x2)

∂x2

∣∣∣∣
x1=p1,x2=p2

a21 =
∂f2(x1, x2)

∂x1

∣∣∣∣
x1=p1,x2=p2

, a22 =
∂f2(x1, x2)

∂x2

∣∣∣∣
x1=p1,x2=p2

and H.O.T. denotes higher order terms of the expansion, that is, terms of the form
(x1−p1)2, (x2−p2)2, (x1−p1)×(x2−p2), and so on. Since (p1, p2) is an equilibrium
point, we have

f1(p1, p2) = f2(p1, p2) = 0

Moreover, since we are interested in the trajectories near (p1, p2), we define

y1 = x1 − p1 and y2 = x2 − p2

and rewrite the state equations as

ẏ1 = ẋ1 = a11y1 + a12y2 + H.O.T.
ẏ2 = ẋ2 = a21y1 + a22y2 + H.O.T.
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If we restrict attention to a sufficiently small neighborhood of the equilibrium point
such that the higher-order terms are negligible, then we may drop these terms and
approximate the nonlinear state equations by the linear state equations

ẏ1 = a11y1 + a12y2

ẏ2 = a21y1 + a22y2

Rewriting the equations in a vector form, we obtain

ẏ = Ay

where

A =


 a11 a12

a21 a22


 =




∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2



∣∣∣∣∣∣
x=p

=
∂f

∂x

∣∣∣∣
x=p

The matrix [∂f/∂x] is called the Jacobian matrix of f(x), and A is the Jacobian
matrix evaluated at the equilibrium point p.

It is reasonable to expect the trajectories of the nonlinear system in a small
neighborhood of an equilibrium point to be “close” to the trajectories of its lin-
earization about that point. Indeed, it is true that8 if the origin of the linearized
state equation is a stable (respectively, unstable) node with distinct eigenvalues, a
stable (respectively, unstable) focus, or a saddle point, then, in a small neighborhood
of the equilibrium point, the trajectories of the nonlinear state equation will behave
like a stable (respectively, unstable) node, a stable (respectively, unstable) focus, or
a saddle point. Consequently, we call an equilibrium point of the nonlinear state
equation (2.1)–(2.2) a stable (respectively, unstable) node, a stable (respectively,
unstable) focus, or a saddle point if the linearized state equation about the equilib-
rium point has the same behavior. The type of equilibrium points in Examples 2.1
and 2.2 could have been determined by linearization without the need to construct
the global phase portrait of the system.

Example 2.3 The Jacobian matrix of the function f(x) of the tunnel-diode circuit
in Example 2.1 is given by

∂f

∂x
=


 −0.5h′(x1) 0.5

−0.2 −0.3




where

h′(x1) =
dh

dx1
= 17.76 − 207.58x1 + 688.86x2

1 − 905.24x3
1 + 418.6x4

1

8The proof of this linearization property can be found in [76]. It is valid under the assumption
that f1(x1, x2) and f2(x1, x2) have continuous first partial derivatives in a neighborhood of the
equilibrium point (p1, p2). A related, but different, linearization result will be proved in Chapter
3 for higher-dimensional systems. (See Theorem 4.7.)
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