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Communicating Mathematics

Quite likely, the mathematics you have already encountered consists of doing prob-
lems using a specific approach or procedure. These may include solving equations

in algebra, simplifying algebraic expressions, verifying trigonometric identities, using
certain rules to find and simplify the derivatives of functions and setting up and evaluat-
ing a definite integral that give the area of a region or the volume of a solid. Accomplishing
all of these is often a matter of practice.

Many of the methods that one uses to solve problems in mathematics are based on
results in mathematics that were discovered by people and shown to be true. This kind
of mathematics may very well be new to you and, as with anything that’s new, there are
things to be learned. But learning something new can be (in fact should be) fun. There
are several steps involved here. The first step is discovering something in mathematics
that we believe to be true. How does one discover new mathematics? This usually comes
about by considering examples and observing that a pattern seems to be occurring with
the examples. This may lead to a guess on our part as to what appears to be happening.
We then have to convince ourselves that our guess is correct. In mathematics this involves
constructing a proof of what we believe to be true is, in fact, true. But this is not enough.
We need to convince others that we are right. So we need to write a proof that is written
so clearly and so logically that people who know the methods of mathematics will be
convinced. Where mathematics differs from all other scholarly fields is that once a proof
has been given of a certain mathematical statement, there is no longer any doubt. This
statement is true. Period. There is no other alternative.

Our main emphasis here will be in learning how to construct mathematical proofs
and learning to write the proof in such a manner that it will be clear to and understood
by others. Even though learning to guess new mathematics is important and can be fun,
we will spend only a little time on this as it often requires an understanding of more
mathematics than can be discussed at this time. But why would we want to discover new
mathematics? While one possible answer is that it comes from the curiosity that most
mathematicians possess, a more common explanation is that we have a problem to solve
that requires knowing that some mathematical statement is true.

From Chapter 0 of Mathematical Proofs: A Transition to Advanced Mathematics, Third Edition. Gary Chartrand, Albert
D. Polimeni and Ping Zhang. Copyright c© 2013 by Pearson Education, Inc. All rights reserved.
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Communicating Mathematics

Learning Mathematics

One of the major goals of this text is to assist you as you progress from an individual
who uses mathematics to an individual who understands mathematics. Perhaps this will
mark the beginning of you becoming someone who actually develops mathematics of
your own. This is an attainable goal if you have the desire.

The fact that you’ve gone this far in your study of mathematics suggests that you
have ability in mathematics. This is a real opportunity for you. Much of the mathematics
that you will encounter in the future is based on what you are about to learn here. The
better you learn the material and the mathematical thought process now, the more you
will understand later. To be sure, any area of study is considerably more enjoyable when
you understand it. But getting to that point will require effort on your part.

There are probably as many excuses for doing poorly in mathematics as there are
strategies for doing well in mathematics. We have all heard students say (sometimes,
remarkably, even with pride) that they are not good at mathematics. That’s only an alibi.
Mathematics can be learned like any other subject. Even some students who have done
well in mathematics say that they are not good with proofs. This, too, is unacceptable.
What is required is determination and effort. To have done well on an exam with little
or no studying is nothing to be proud of. Confidence based on being well-prepared is
good, however.

Here is some advice that has worked for several students. First, it is important to
understand what goes on in class each day. This means being present and being prepared
for every class. After each class, recopy any lecture notes. When recopying the notes,
express sentences in your own words and add details so that everything is as clear as
possible. If you run into snags (and you will), talk them over with a classmate or your
instructor. In fact, it’s a good idea (at least in our opinion) to have someone with whom
to discuss the material on a regular basis. Not only does it often clarify ideas, it gets you
into the habit of using correct terminology and notation.

In addition to learning mathematics from your instructor, solidifying your under-
standing by careful note-taking and by talking with classmates, your text is (or at least
should be) an excellent source as well. Read your text carefully with pen (or pencil)
and paper in hand. Make a serious effort to do every homework problem assigned and,
eventually, be certain that you know how to solve them. If there are exercises in the text
that have not been assigned, you might even try to solve these as well. Another good idea
is to try to create your own problems. In fact, when studying for an exam, try creating
your own exam. If you start doing this for all of your classes, you might be surprised at
how good you become. Creativity is a major part of mathematics. Discovering mathe-
matics not only contributes to your understanding of the subject but has the potential to
contribute to mathematics itself. Creativity can come in all forms. The following quote
is due to the well-known writer J. K. Rowling (author of the Harry Potter novels).

Sometimes ideas just come to me. Other times I have to sweat and almost bleed
to make ideas come. It’s a mysterious process, but I hope I never find out exactly
how it works.
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Communicating Mathematics

In the book Defying Gravity: The Creative Career of Stephen Schwartz from
Godspell to Wicked, the author Carol de Giere writes a biography of Stephen Schwartz,
one of the most successful composer-lyricists, in which she discusses not only creativ-
ity in music but how an idea can lead to something special and interesting and how
creative people may have to deal with disappointment. Indeed, de Giere dedicates her
book to the creative spirit within each of us. While he wrote the music for such famous
shows as Godspell and Wicked, Schwartz discusses creativity head-on in the song “The
Spark of Creation” he wrote for the musical Children of Eden. In her book, de Giere
writes:

In many ways, this song expresses the theme of Stephen Schwartz’s life—the
naturalness and importance of the creative urge within us. At the same time he
created an anthem for artists.

In mathematics our goal is to seek the truth. Finding answers to mathematical
questions is important, but we cannot be satisfied with this alone. We must be
certain that we are right and that our explanation for why we believe we are correct
is convincing to others. The reasoning we use as we proceed from what we know
to what we wish to show must be logical. It must make sense to others, not just to
ourselves.

There is joint responsibility here. As writers, it is our responsibility to give an
accurate clear argument with enough details provided to allow the reader to understand
what we have written and to be convinced. It is the reader’s responsibility to know the
basics of logic and to study the concepts involved so that a well-presented argument
will be understood. Consequently, in mathematics writing is important, very important.
Is it really important to write mathematics well? After all, isn’t mathematics mainly
equations and symbols? Not at all. It is not only important to write mathematics well,
it is important to write well. You will be writing the rest of your life, at least reports,
letters and e-mail. Many people who never meet you will know you only by what you
write and how you write.

Mathematics is a sufficiently complicated subject that we don’t need vague, hazy
and boring writing to add to it. A teacher has a very positive impression of a student
who hands in well-written and well-organized assignments and examinations. You want
people to enjoy reading what you’ve written. It is important to have a good reputation
as a writer. It’s part of being an educated person. Especially with the large number of
e-mail letters that so many of us write, it has become commonplace for writing to be
more casual. Although all people would probably subscribe to this (since it is more
efficient), we should know how to write well formally and professionally when the
situation requires it.

You might think that considering how long you’ve been writing and that you’re set
in your ways, it will be very difficult to improve your writing. Not really. If you want
to improve, you can and will. Even if you are a good writer, your writing can always be
improved. Ordinarily, people don’t think much about their writing. Often just thinking
about your writing is the first step to writing better.
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Communicating Mathematics

What Others Have Said about Writing

Many people who are well known in their areas of expertise have expressed their thoughts
about writing. Here are quotes by some of these individuals.

Anything that helps communication is good. Anything that hurts it is bad.

I like words more than numbers, and I always did—conceptual more than com-
putational.

Paul Halmos, mathematician

Writing is easy. All you have to do is cross out all the wrong words.

Mark Twain, author (The Adventures of Huckleberry Finn)

You don’t write because you want to say something; you write because you’ve
got something to say.

F. Scott Fitzgerald, author (The Great Gatsby)

Writing comes more easily if you have something to say.

Scholem Asch, author
Either write something worth reading or do something worth writing.

Benjamin Franklin, statesman, writer, inventor

What is written without effort is in general read without pleasure.

Samuel Johnson, writer

Easy reading is damned hard writing.

Nathaniel Hawthorne, novelist (The Scarlet Letter)

Everything that is written merely to please the author is worthless.

The last thing one knows when writing a book is what to put first.

I have made this letter longer because I lack the time to make it short.

Blaise Pascal, mathematician and physicist

The best way to become acquainted with a subject is to write a book about it.

Benjamin Disraeli, prime minister of England

In a very real sense, the writer writes in order to teach himself, to understand him-
self, to satisfy himself; the publishing of his ideas, though it brings gratification,
is a curious anticlimax.

Alfred Kazin, literary critic

The skill of writing is to create a context in which other people can think.

Edwin Schlossberg, exhibit designer

A writer needs three things, experience, observation, and imagination, any two
of which, at times any one of which, can supply the lack of the other.

William Faulkner, writer (The Sound and the Fury)

If confusion runs rampant in the passage just read,
It may very well be that too much has been said.
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So that’s what he meant! Then why didn’t he say so?

Frank Harary, mathematician

A mathematical theory is not to be considered complete until you have made it
so clear that you can explain it to the first man whom you meet on the street.

David Hilbert, mathematician

Everything should be made as simple as possible, but not simpler.

Albert Einstein, physicist

Never let anything you write be published without having had others critique it.

Donald E. Knuth, computer scientist and writer

Some books are to be tasted, others to be swallowed, and some few to be chewed
and digested.

Reading maketh a full man, conference a ready man, and writing an exact man.

Francis Bacon, writer and philosopher

Judge an article not by the quality of what is framed and hanging on the wall,
but by the quality of what’s in the wastebasket.

Anonymous (Quote by Leslie Lamport)
We are all apprentices in a craft where no-one ever becomes a master.

Ernest Hemingway, author (For Whom the Bell Tolls)

There are three rules for writing a novel. Unfortunately, no one knows what they
are.

W. Somerset Maugham, author (Of Human Bondage)

Mathematical Writing

Most of the quotes given above pertain to writing in general, not to mathematical writing
in particular. However these suggestions for writing apply as well to writing mathemat-
ics. For us, mathematical writing means writing assignments for a mathematics course
(particularly a course with proofs). Such an assignment might consist of writing a single
proof, writing solutions to a number of problems or perhaps writing a term paper which,
more than likely, includes definitions, examples, background and proofs. We’ll refer to
any of these as an assignment. Your goal should be to write correctly, clearly and in an
interesting manner.

Before you even begin to write, you should have already thought about a number
of things. First, you should know what examples and proofs you plan to include if this
is appropriate for your assignment. You should not be overly concerned about writing
good proofs on your first attempt—but be certain that you do have proofs.

As you’re writing your assignment, you must be aware of your audience. What is the
target group for your assignment? Of course, it should be written for your instructor. But
it should be written so that a classmate would understand it. As you grow mathematically,
your audience will grow with you and you will adapt your writing to this new audience.

Give yourself enough time to write your assignment. Don’t try to put it together
just a few minutes before it’s due. The disappointing result will be obvious to your
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Communicating Mathematics

instructor. And to you! Find a place to write that is comfortable for you: your room,
an office, a study room, the library and sitting at a desk, at a table, in a chair. Do what
works best for you. Perhaps you write best when it’s quiet or when there is background
music.

Now that you’re comfortably settled and have allowed enough time to do a good
job, let’s put a plan together. If the assignment is fairly lengthy, you may need an outline,
which, most likely, will include one or more of the following:

1. Background and motivation

2. The definitions to be presented and possibly the notation to be used

3. The examples to include

4. The results to be presented (whose proofs have already been written, probably
in rough form)

5. References to other results you intend to use

6. The order of everything mentioned above.

If the assignment is a term paper, it may include extensive background material
and may need to be carefully motivated. The subject of the paper should be placed in
perspective. Where does it fit in with what we already know?

Many writers write in spirals. Even though you have a plan for your assignment
which includes an ordered list of things you want to say, it is likely that you will reach
some point (perhaps sooner than you think) when you realize that you should have in-
cluded something earlier—perhaps a definition, a theorem, an example, some notation.
(This happened to us many times while writing this textbook.) Insert the missing material,
start over again and write until once again you realize that something is missing. It is im-
portant, as you reread, that you start at the beginning each time. Then repeat the steps listed
above.

We are about to give you some advice, some pointers, about writing mathematics.
Such advice is necessarily subjective. Not everyone subscribes to these suggestions on
writing. Indeed, writing experts don’t agree on all issues. For the present, your instructor
will be your best guide. But writing does not follow a list of rules. As you mature
mathematically, perhaps the best advice about your writing is the same advice given by
Jiminy Cricket to Disney’s Pinocchio: Always let your conscience be your guide. You
must be yourself. And one additional piece of advice: Be careful about accepting advice
on writing. Originality and creativity don’t follow rules. Until you reach the stage of
being comfortable and confident with your own writing, however, we believe that it is
useful to consider a few writing tips.

Since a number of these writing tips may not make sense (since, after all, we don’t
even have anything to write as yet), it will probably be most useful to return to this
chapter periodically.

Using Symbols

Since mathematics is a symbol-oriented subject, mathematical writing involves a mixture
of words and symbols. Here are several guidelines to which a number of mathematicians
subscribe.
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1. Never start a sentence with a symbol.
Writing mathematics follows the same practice as writing all sentences,
namely that the first word should be capitalized. This is confusing if the
sentence were to begin with a symbol since the sentence appears to be
incomplete. Also, in general, a sentence sounds better if it starts with a word.
Instead of writing:

x2 − 6x + 8 = 0 has two distinct roots.

write:

The equation x2 − 6x + 8 = 0 has two distinct roots.

2. Separate symbols not in a list by words if possible.
Separating symbols by words makes the sentence easier to read and therefore
easier to understand. The sentence:

Except for a, b is the only root of (x − a) (x − b) = 0.

would be clearer if it were written as:

Except for a, the number b is the only root of (x − a) (x − b) = 0.

3. Except when discussing logic, avoid writing the following symbols in your
assignment:

⇒, ∀, ∃, �, etc.

The first four symbols stand for “implies”, “for every”, “there exists” and
“such that”, respectively. You may have already seen these symbols and
know what they mean. If so, this is good. It is useful when taking notes or
writing early drafts of an assignment to use shorthand symbols but many
mathematicians avoid such symbols in their professional writing.

4. Be careful about using i.e. and e.g.
These stand for that is and for example, respectively. There are situations
when writing the words is preferable to writing the abbreviations as there
may be confusion with nearby symbols. For example,

√−1 and

lim
n→∞

(
1 + 1

n

)n

are not rational numbers, that is, i and e are not rational

numbers.

5. Write out integers as words when they are used as adjectives and when the
numbers are relatively small or are easy to describe in words. Write out
numbers numerically when they specify the value of something.

There are exactly two groups of order 4.
Fifty million Frenchmen can’t be wrong.

There are one million positive integers less than 1,000,001.

6. Don’t mix words and symbols improperly.
Instead of writing:

Every integer ≥ 2 is a prime or is composite.

7
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it is preferable to write:

Every integer exceeding 1 is a prime or is composite.

or

If n ≥ 2 is an integer, then n is prime or composite.

Although

Since (x − 2)(x − 3) = 0, it follows that x = 2 or 3.

sounds correct, it is not written correctly. It should be:

Since (x − 2)(x − 3) = 0, it follows that x = 2 or x = 3.

7. Avoid using a symbol in the statement of a theorem when it’s not needed.
Don’t write:

Theorem Every bijective function f has an inverse.

Delete “ f ”. It serves no useful purpose. The theorem does not depend on
what the function is called. A symbol should not be used in the statement of a
theorem (or in its proof) exactly once. If it is useful to have a name for an
arbitrary bijective function in the proof (as it probably will be), then “ f ” can
be introduced there.

8. Explain the meaning of every symbol that you introduce.
Although what you intended may seem clear, don’t assume this. For
example, if you write n = 2k + 1 and k has never appeared before, then say
that k is an integer (if indeed k is an integer).

9. Use “frozen symbols” properly.
If m and n are typically used for integers (as they probably are), then don’t
use them for real numbers. If A and B are used for sets, then don’t use these
as typical elements of a set. If f is used for a function, then don’t use this as
an integer. Write symbols that the reader would expect. To do otherwise
could very well confuse the reader.

10. Use consistent symbols.
Unless there is some special reason to the contrary, use symbols that “fit”
together. Otherwise, it is distracting to the reader.
Instead of writing

If x and y are even integers, then x = 2a
and y = 2r for some integers a and r.

replace 2r by 2b (where then, of course, we write “for some integers a and
b”). On the other hand, you might prefer to write x = 2r and y = 2s.

Writing Mathematical Expressions

There will be numerous occasions when you will want to write mathematical expres-
sions in your assignment, such as algebraic equations, inequalities, and formulas. If
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these expressions are relatively short, then they should probably be written within the
text of the proof or discussion. (We’ll explain this in a moment.) If the expressions
are rather lengthy, then it is probably preferred for these expressions to be written as
displays.

For example, suppose that we are discussing the Binomial Theorem. (It’s not im-
portant if you don’t recall what this theorem is.) It’s possible that what we are writing
includes the following passage:

For example, if we expand (a + b)4, then we obtain (a + b)4 = a4 + 4a3b +
6a2b2 + 4ab3 + b4.

It would probably be better to write the expansion of (a + b)4 as a display, where
the mathematical expression is placed on a line or lines by itself and is centered. This is
illustrated below.

For example, if we expand (a + b)4, then we obtain

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4.

If there are several mathematical expressions that are linked by equal signs and
inequality symbols, then we would almost certainly write this as a display. For example,
suppose that we wanted to write n3 + 3n2 − n + 4 in terms of k, where n = 2k + 1. A
possible display is given next:

Since n = 2k + 1, it follows that

n3 + 3n2 − n + 4 = (2k + 1)3 + 3(2k + 1)2 − (2k + 1) + 4

= (8k3 + 12k2 + 6k + 1) + 3(4k2 + 4k + 1) − 2k − 1 + 4

= 8k3 + 24k2 + 16k + 7 = 8k3 + 24k2 + 16k + 6 + 1

= 2(4k3 + 12k2 + 8k + 3) + 1.

Notice how the equal signs are lined up. (We wrote two equal signs on one line since
that line would have contained very little material otherwise, as well as to balance the
lengths of the lines better.)

Let’s return to the expression (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 for the
moment. If we were to write this expression in the text of a paragraph (as we are doing)
and if we find it necessary to write portions of this expression on two separate lines,
then this expression should be broken so that the first line ends with an operation or
comparative symbol such as +, −, <, ≥ or =. In other words, the second line should not
begin with one of these symbols. The reason for doing this is that ending the line with
one of these symbols alerts the reader that more will follow; otherwise, the reader might
conclude (incorrectly) that the portion of the expression appearing on the first line is the
entire expression. Consequently, write

For example, if we expand (a + b)4, then we obtain (a + b)4 = a4 + 4a3b +
6a2b2 + 4ab3 + b4.

and not

For example, if we expand (a + b)4, then we obtain (a + b)4 = a4 + 4a3b
+ 6a2b2 + 4ab3 + b4.
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If there is an occasion to refer to an expression that has already appeared, then this
expression should have been written as a display and labeled as below:

(a + b)4 = a4 + 4a3b + 6a2b2 + 6ab2 + b4. (1)

Then we can simply refer to expression (1) rather than writing it out each time.

Common Words and Phrases in Mathematics

There are some words and phrases that appear so often in mathematical writing that it is
useful to discuss them.

1. I We One Let’s

I will now show that n is even.
We will now show that n is even.
One now shows that n is even.
Let’s now show that n is even.

These are four ways that we might write a sentence in a proof. Which of
these sounds the best to you? It is not considered good practice to use “I”
unless you are writing a personal account of something. Otherwise, “I” sounds
egotistical and can be annoying. Using “one” is often awkward. Using “we” is
standard practice in mathematics. This word also brings the reader into the
discussion with the author and gives the impression of a team effort. The word
“let’s” accomplishes this as well but is much less formal. There is a danger of
being too casual, however. In general, your writing should be balanced,
maintaining a professional style. Of course, there is the possibility of avoiding
all of these words:

The integer n is now shown to be even.

2. Clearly Obviously Of course Certainly
These and similar words can turn a reader off if what’s written is not clear

to the reader. It can give the impression that the author is putting the reader
down. These words should be used sparingly and with caution. If they are
used, then at least be certain that what you say is true. There is also the
possibility that the writer (a student?) has a lack of understanding of the
mathematics or is not being careful and is using these words as a cover-up.
This gives us even more reasons to avoid these words.

3. Any Each Every

This statement is true for any integer n.

Does this mean that the statement is true for some integer n or all integers
n? Since the word any can be vague, perhaps it is best to avoid it. If by any, we
mean each or every, then use one of these two words instead. When the word
any is encountered, most of the time the author means each or every.
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4. Since · · ·, then · · ·
A number of people connect these two words. You should use either

“If · · ·, then · · ·” (should this be the intended meaning) or “Since · · ·, it follows
that · · ·” or, possibly, “Since · · ·, we have · · ·”. For example, it is correct to write

If n2 is even, then n is even.

or

Since n2 is even, it follows that n is even.

or perhaps

Since n2 is even, n is even.

but avoid

Since n2 is even, then n is even.

In this context, the word since can be replaced by because.

5. Therefore Thus Hence Consequently So It follows that This
implies that

This is tricky. Mathematicians cannot survive without these words. Often
within a proof, we proceed from something we’ve just learned to something
else that can be concluded from it. There are many (many!) openings
to sentences which attempt to say this. Although each of the words or phrases

Therefore Thus Hence Consequently So It follows that This implies that

is suitable, it is good to introduce some variety into your writing and not use the
same words or phrases any more often than necessary.

6. That Which
These words are often confused with each other. Sometimes they are

interchangeable; more often they are not.

The solution to the equation is the number less than 5 that is positive. (2)

The solution to the equation is the number less than 5 which is positive. (3)

Which of these two sentences is correct? The simple answer is: Both are correct—or,
at least, both might be correct.

For example, sentence (2) could be the response to the question: Which of the
numbers 2, 3, and 5 is the solution of the equation? Sentence (3) could be the response
to the question: Which of the numbers 4.9 and 5.0 is the solution of the equation?

The word that introduces a restrictive clause and, as such, the clause is essential to
the meaning of the sentence. That is, if sentence (2) were written only as “The solution
to the equation is the number less than 5” then the entire meaning is changed. Indeed,
we no longer know what the solution of the equation is.

On the other hand, the word which does not introduce a restrictive clause. It intro-
duces a nonrestrictive (or parenthetical) clause. A nonrestrictive clause only provides
additional information that is not essential to the meaning of the sentence. In sentence (3)
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the phrase “which is positive” simply provides more information about the solution. This
clause may have been added because the solution to an earlier equation is negative. In
fact, it would be more appropriate to add a comma:

The solution to the equation is the number less than 5, which is positive.

For another illustration, consider the following two statements:

I always keep the math text that I like with me. (4)

I always keep the math text which I like with me. (5)

What is the difference between these two sentences? In (4), the writer of the sentence
clearly has more than one math text and is referring to the one that he/she likes. In (5),
the writer has only one math text and is providing the added information that he/she likes
it. The nonrestrictive clause in (5) should be set off by commas:

I always keep the math text, which I like, with me.

A possible guideline to follow as you seek to determine whether that or which is
the proper word to use is to ask yourself: Does it sound right if it reads “which, by the
way”? In general, that is normally used considerably more often than which. Hence the
advice here is: Beware of wicked which’s!

While we are discussing the word that, we mention that the words assume and
suppose often precede restrictive clauses and, as such, the word that should immedi-
ately follow one of these words. Omitting that leaves us with an implied that. Many
mathematicians prefer to include it rather than omit it.

In other words, instead of writing:

Assume N is a normal subgroup.

many would write

Assume that N is a normal subgroup.

Some Closing Comments about Writing

1. Use good English. Write in complete sentences, ending each sentence with a
period (or a question mark when appropriate) and capitalize the first word of
each sentence. (Remember: No sentence begins with a symbol!)

2. Capitalize theorem and lemma as in Theorem 1 and Lemma 4.

3. Many mathematicians do not hyphenate words containing the prefix non, such
as

nonempty, nonnegative, nondecreasing, nonzero.

4. Many words that occur often in mathematical writing are commonly
misspelled. Among these are:

commutative (independent of order)
complement (supplement, balance, remainder)
consistent (conforming, agreeing)

12
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feasible (suitable, attainable)
its (possessive, not “it is”)
occurrence (incident)
parallel (non-intersecting)
preceding (foregoing, former)
principle (postulate, regulation, rule)
proceed (continue, move on)

and, of course,
corollary, lemma, theorem.

5. There are many pairs of words that fit together in mathematics (while
interchanging words among the pairs do not). For example,

We ask questions.
We pose problems.
We present solutions.
We prove theorems.
We solve problems.

and
We conclude this chapter.

13
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Logic

In mathematics our goal is to seek the truth. Are there connections between two given
mathematical concepts? If so, what are they? Under what conditions does an object

possess a particular property? Finding answers to questions such as these is important,
but we cannot be satisfied only with this. We must be certain that we are right and that
our explanation for why we believe we are correct is convincing to others. The reasoning
we use as we proceed from what we know to what we wish to show must be logical. It
must make sense to others, not just to ourselves.

There is joint responsibility here, however. It is the writer’s responsibility to use the
rules of logic to give a valid and clear argument with enough details provided to allow
the reader to understand what we have written and to be convinced. It is the reader’s
responsibility to know the basics of logic and to study the concepts involved sufficiently
well so that he or she will not only be able to understand a well-presented argument
but can decide as well whether it is valid. Consequently, both writer and reader must be
familiar with logic.

Although it is possible to spend a great deal of time studying logic, we will present
only what we actually need and will instead use the majority of our time putting what
we learn into practice.

1 Statements

In mathematics we are constantly dealing with statements. By a statement we mean a
declarative sentence or assertion that is true or false (but not both). Statements therefore
declare or assert the truth of something. Of course, the statements in which we will be
primarily interested deal with mathematics. For example, the sentences

The integer 3 is odd.
The integer 57 is prime.

are statements (only the first of which is true).
Every statement has a truth value, namely true (denoted by T ) or false (denoted

by F). We often use P , Q and R to denote statements, or perhaps P1, P2, . . . , Pn if there

From Chapter 2 of Mathematical Proofs: A Transition to Advanced Mathematics, Third Edition. Gary Chartrand, Albert

D. Polimeni and Ping Zhang. Copyright c© 2013 by Pearson Education, Inc. All rights reserved.
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are several statements involved. We have seen that

P1 : The integer 3 is odd.

and

P2 : The integer 57 is prime.

are statements, where P1 has truth value T and P2 has truth value F .
Sentences that are imperative (commands) such as

Substitute the number 2 for x .

Find the derivative of f (x) = e−x cos 2x .

or are interrogative (questions) such as

Are these sets disjoint?
What is the derivative of f (x) = e−x cos 2x?

or are exclamatory such as

What an interesting question!
How difficult this problem is!

are not statements since these sentences are not declarative.
It may not be immediately clear whether a statement is true or false. For example, the

sentence “The 100th digit in the decimal expansion of π is 7.” is a statement, but it may
be necessary to find this information in a Web site on the Internet to determine whether
this statement is true. Indeed, for a sentence to be a statement, it is not a requirement
that we be able to determine its truth value.

The sentence “The real number r is rational.” is a statement provided we know what
real number r is being referred to. Without this additional information, however, it is
impossible to assign a truth value to it. This is an example of what is often referred to as
an open sentence. In general, an open sentence is a declarative sentence that contains
one or more variables, each variable representing a value in some prescribed set, called
the domain of the variable, and which becomes a statement when values from their
respective domains are substituted for these variables. For example, the open sentence
“3x = 12” where the domain of x is the set of integers is a true statement only when
x = 4.

An open sentence that contains a variable x is typically represented by P(x), Q(x)
or R(x). If P(x) is an open sentence, where the domain of x is S, then we say P(x) is
an open sentence over the domain S. Also, P(x) is a statement for each x ∈ S. For
example, the open sentence

P(x) : (x − 3)2 ≤ 1

over the domain Z is a true statement when x ∈ {2, 3, 4} and is a false statement
otherwise.

Example 1 For the open sentence

P(x, y) : |x + 1| + |y| = 1

16
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Figure 1 Truth tables for one, two and three statements

in two variables, suppose that the domain of the variable x is S = {−2, −1, 0, 1} and
the domain of the variable y is T = {−1, 0, 1}. Then

P(−1, 1) : |(−1) + 1| + |1| = 1

is a true statement, while

P(1, −1) : |1 + 1| + | − 1| = 1

is a false statement. In fact, P(x, y) is a true statement when

(x, y) ∈ {(−2, 0), (−1, −1), (−1, 1), (0, 0)},

while P(x, y) is a false statement for all other elements (x, y) ∈ S × T . �

The possible truth values of a statement are often listed in a table, called a truth
table. The truth tables for two statements P and Q are given in Figure 1. Since there are
two possible truth values for each of P and Q, there are four possible combinations of
truth values for P and Q. The truth table showing all these combinations is also given in
Figure 1. If a third statement R is involved, then there are eight possible combinations of
truth values for P, Q and R. This is displayed in Figure 1 as well. In general, a truth table
involving n statements P1, P2, · · · , Pn contains 2n possible combinations of truth values
for these statements and a truth table showing these combinations would have n columns
and 2n rows. Much of the time, we will be dealing with two statements, usually denoted
by P and Q; so the associated truth table will have four rows with the first two columns
headed by P and Q. In this case, it is customary to consider the four combinations of
the truth values in the order TT, TF, FT, FF, from top to bottom.

2 The Negation of a Statement

Much of the interest in integers and other familiar sets of numbers comes not only from
the numbers themselves but from properties of the numbers that result by performing
operations on them (such as taking their negatives, adding or multiplying them or
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combinations of these). Similarly, much of our interest in statements comes from in-
vestigating the truth or falseness of new statements that can be produced from one or
more given statements by performing certain operations on them. Our first example
concerns producing a new statement from a single given statement.

The negation of a statement P is the statement:

not P .

and is denoted by ∼P . Although ∼P could always be expressed as

It is not the case that P .

there are usually better ways to express the statement ∼P .

Example 2 For the statement

P1 : The integer 3 is odd.

described above, we have

∼P1 : It is not the case that the integer 3 is odd.

but it would be much preferred to write

∼P1 : The integer 3 is not odd.

or better yet to write

∼P1 : The integer 3 is even.

Similarly, the negation of the statement

P2 : The integer 57 is prime.

considered above is

∼P2 : The integer 57 is not prime.

Note that ∼P1 is false, while ∼P2 is true. �
Indeed, the negation of a true statement is always false and the negation of a false

statement is always true; that is, the truth value of ∼P is opposite to that of P . This is
summarized in Figure 2, which gives the truth table for ∼P (in terms of the possible
truth values of P).

P ∼ P

F

T

T

F

Figure 2 The truth table for negation
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3 The Disjunction and Conjunction of Statements

For two given statements P and Q, a common way to produce a new statement from
them is by inserting the word “or” or “and” between P and Q. The disjunction of the
statements P and Q is the statement

P or Q

and is denoted by P ∨ Q. The disjunction P ∨ Q is true if at least one of P and Q is
true; otherwise, P ∨ Q is false. Therefore, P ∨ Q is true if exactly one of P and Q is
true or if both P and Q are true.

Example 3 For the statements

P1 : The integer 3 is odd. and P2 : The integer 57 is prime.

described earlier, the disjunction is the new statement

P1 ∨ P2: Either 3 is odd or 57 is prime.

which is true since at least one of P1 and P2 is true (namely, P1 is true). Of course, in
this case exactly one of P1 and P2 is true. �

For two statements P and Q, the truth table for P ∨ Q is shown in Figure 3. This
truth table then describes precisely when P ∨ Q is true (or false).

Although the truth of “P or Q” allows for both P and Q to be true, there are
instances when the use of “or” does not allow that possibility. For example, for an
integer n, if we were to say “n is even or n is odd,” then surely it is not possible for
both “n is even” and “n is odd” to be true. When “or” is used in this manner, it is called
the exclusive or. Suppose, for example, that P = {S1, S2, . . . , Sk}, where k ≥ 2, is a
partition of a set S and x is some element of S. If

x ∈ S1 or x ∈ S2

is true, then it is impossible for both x ∈ S1 and x ∈ S2 to be true.

T

T

T

FF

T

F

T

F

F

T

T

P Q P ∨Q

Figure 3 The truth table for disjunction
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Figure 4 The truth table for conjunction

The conjunction of the statements P and Q is the statement:

P and Q

and is denoted by P ∧ Q. The conjunction P ∧ Q is true only when both P and Q are
true; otherwise, P ∧ Q is false.

Example 4 For P1 : The integer 3 is odd. and P2 : The integer 57 is prime., the statement

P1 ∧ P2 : 3 is odd and 57 is prime.

is false since P2 is false and so not both P1 and P2 are true. �
The truth table for the conjunction of two statements is shown in Figure 4.

4 The Implication

A statement formed from two given statements in which we will be most interested is
the implication (also called the conditional). For statements P and Q, the implication
(or conditional) is the statement

If P, then Q.

and is denoted by P ⇒ Q. In addition to the wording “If P, then Q,” we also express
P ⇒ Q in words as

P implies Q.

The truth table for P ⇒ Q is given in Figure 5.
Notice that P ⇒ Q is false only when P is true and Q is false (P ⇒ Q is true

otherwise).

Example 5 For P1 : The integer 3 is odd. and P2 : The integer 57 is prime., the implication

P1 ⇒ P2 : If 3 is an odd integer, then 57 is prime.

T

F

T

T

P Q P ⇒ Q

T

F

T

FF

F

T

T

Figure 5 The truth table for implication
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is a false statement. The implication

P2 ⇒ P1 : If 57 is prime, then 3 is odd.

is true, however. �

While the truth tables for the negation ∼ P, the disjunction P ∨ Q and the conjunc-
tion P ∧ Q are probably what one would expect, this may not be so for the implication
P ⇒ Q. There is ample justification, however, for the truth values in the truth table of
P ⇒ Q. We illustrate this with an example.

Example 6 A student is taking a math class (let’s say this one) and is currently receiving a B+. He
visits his instructor a few days before the final examination and asks her, “Is there any
chance that I can get an A in this course?” His instructor looks through her grade book
and says, “If you earn an A on the final exam, then you will receive an A for your final
grade.” We now check the truth or falseness of this implication based on the various
combinations of truth values of the statements

P : You earn an A on the final exam.

and

Q : You receive an A for your final grade.

which make up the implication.

Analysis Suppose first that P and Q are both true. That is, the student receives an A on his
final exam and later learns that he got an A for his final grade in the course. Did his
instructor tell the truth? I think we would all agree that she did. So if P and Q are
both true, then so too is P ⇒ Q, which agrees with the first row of the truth table of
Figure 5.

Second, suppose that P is true and Q is false. So the student got an A on his final
exam but did not receive an A as a final grade, say he received a B. Certainly, his instructor
did not do as she promised (as she will soon be reminded by her student). What she said
was false, which agrees with the second row of the table in Figure 5.

Third, suppose that P is false and Q is true. In this case, the student did not get an
A on his final exam (say he earned a B) but when he received his final grades, he learned
(and was pleasantly surprised) that his final grade was an A. How could this happen?
Perhaps his instructor was lenient. Perhaps the final exam was unusually difficult and
a grade of B on it indicated an exceptionally good performance. Perhaps the instructor
made a mistake. In any case, the instructor did not lie; so she told the truth. Indeed, she
never promised anything if the student did not get an A on his final exam. This agrees
with the third row of the table in Figure 5.

Finally, suppose that P and Q are both false. That is, suppose the student did not
get an A on his final exam and he also did not get an A for a final grade. The instructor
did not lie here either. She only promised the student an A if he got an A on the final
exam. Once again, she did not promise anything if the student did not get an A on the
final exam. So the instructor told the truth and this agrees with the fourth and final row
of the table. �
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In summary then, the only situation for which P ⇒ Q is false is when P is true and
Q is false (so ∼ Q is true). That is, the truth tables for

∼(P ⇒ Q) and P ∧ (∼Q)

are the same. We’ll revisit this observation again soon.
We have already mentioned that the implication P ⇒ Q can be expressed as both

“If P , then Q” and “P implies Q.” In fact, there are several ways of expressing P ⇒ Q
in words, namely:

If P , then Q.

Q if P .
P implies Q.

P only if Q.

P is sufficient for Q.

Q is necessary for P .

It is probably not surprising that the first three of these say the same thing, but perhaps
not at all obvious that the last three say the same thing as the first three. Consider the
statement “P only if Q.” This says that P is true only under the condition that Q is true;
in other words, it cannot be the case that P is true and Q is false. Thus it says that if P is
true, then necessarily Q must be true. We can also see from this that the statement “Q is
necessary for P” has the same meaning as “P only if Q.” The statement “P is sufficient
for Q” states that the truth of P is sufficient for the truth of Q. In other words, the truth
of P implies the truth of Q; that is, “P implies Q.”

5 More on Implications

We have just discussed four ways to create new statements from one or two given
statements. In mathematics, however, we are often interested in declarative sentences
containing variables and whose truth or falseness is only known once we have assigned
values to the variables. The values assigned to the variables come from their respective
domains. These sentences are, of course, precisely the sentences we have referred to
as open sentences. Just as new statements can be formed from statements P and Q by
negation, disjunction, conjunction or implication, new open sentences can be constructed
from open sentences in the same manner.

Example 7 Consider the open sentences

P1(x) : x = −3. and P2(x) : |x | = 3,

where x ∈ R, that is, where the domain of x is R in each case. We can then form the
following open sentences:

∼ P1(x) : x 	= −3.

P1(x) ∨ P2(x) : x = −3 or |x | = 3.

P1(x) ∧ P2(x) : x = −3 and |x | = 3.

P1(x) ⇒ P2(x) : If x = −3, then |x | = 3.
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T1 : T2 :

Figure 6 Isosceles and equilateral triangles

For a specific real number x, the truth value of each resulting statement can be deter-
mined. For example, ∼ P1(−3) is a false statement, while each of the remaining sentences
above results in a true statement when x = −3. Both P1(2) ∨ P2(2) and P1(2) ∧ P2(2)
are false statements. On the other hand, both ∼ P1(2) and P1(2) ⇒ P2(2) are true state-
ments. In fact, for each real number x 	= −3, the implication P1(x) ⇒ P2(x) is a true
statement since P1(x) : x = −3 is a false statement. Thus P1(x) ⇒ P2(x) is true for all
x ∈ R. We will see that open sentences which result in true statements for all values of
the domain will be especially interesting to us.

Listed below are various ways of wording the implication P1(x) ⇒ P2(x) :

If x = −3, then |x | = 3.
|x | = 3 if x = −3.

x = −3 implies that |x | = 3.
x = −3 only if |x | = 3.

x = −3 is sufficient for |x | = 3.
|x | = 3 is necessary for x = −3. �

We now consider another example, this time from geometry. You may recall that a
triangle is called equilateral if the lengths of its three sides are the same, while a triangle
is isosceles if the lengths of any two of its three sides are the same. Figure 6 shows an
isosceles triangle T1 and an equilateral triangle T2. Actually, since the lengths of any two
of the three sides of T2 are the same, T2 is isosceles as well. Indeed, this is precisely the
fact we wish to discuss.

Example 8 For a triangle T , let

P(T ) : T is equilateral. and Q(T ) : T is isosceles.

Thus, P(T ) and Q(T ) are open sentences over the domain S of all triangles. Consider
the implication P(T ) ⇒ Q(T ), where the domain then of the variable T is the set
S. For an equilateral triangle T1, both P(T1) and Q(T1) are true statements and so
P(T1) ⇒ Q(T1) is a true statement as well. If T2 is not an equilateral triangle, then
P(T2) is a false statement and so P(T2) ⇒ Q(T2) is true. Therefore, P(T ) ⇒ Q(T ) is
a true statement for all T ∈ S. We now state P(T ) ⇒ Q(T ) in a variety of ways:

If T is an equilateral triangle, then T is isosceles.
A triangle T is isosceles if T is equilateral.
A triangle T being equilateral implies that T is isosceles.
A triangle T is equilateral only if T is isosceles.
For a triangle T to be isosceles, it is sufficient that T be equilateral.
For a triangle T to be equilateral, it is necessary that T be isosceles. �
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Notice that at times we change the wording to make the sentence sound better.
In general, the sentence P in the implication P ⇒ Q is commonly referred to as the
hypothesis or premise of P ⇒ Q, while Q is called the conclusion of P ⇒ Q.

It is often easier to deal with an implication when expressed in an “if, then” form.
This allows us to identify the hypothesis and conclusion more easily. Indeed, since
implications can be stated in a wide variety of ways (even in addition to those mentioned
above), being able to reword an implication as “if, then” is especially useful. For example,
the implication P(T ) ⇒ Q(T ) described in Example 8 can be encountered in many ways,
including the following:

• Let T be an equilateral triangle. Then T is isosceles.
• Suppose that T is an equilateral triangle. Then T is isosceles.
• Every equilateral triangle is isosceles.
• Whenever a triangle is equilateral, it is isosceles.

We now investigate the truth or falseness of implications involving open sentences
for values of their variables.

Example 9 Let S = {2, 3, 5} and let

P(n) : n2 − n + 1 is prime. and Q(n) : n3 − n + 1 is prime.

be open sentences over the domain S. Determine the truth or falseness of the implication
P(n) ⇒ Q(n) for each n ∈ S.

Solution In this case, we have the following:

P(2) : 3 is prime. P(3) : 7 is prime. P(5) : 21 is prime.
Q(2) : 7 is prime. Q(3) : 25 is prime. Q(5) : 121 is prime.

Consequently, P(2) ⇒ Q(2) and P(5) ⇒ Q(5) are true, while P(3) ⇒ Q(3) is false. �

Example 10 Let S = {1, 2} and let T = {−1, 4}. Also, let

P(x, y) : ||x + y| − |x − y|| = 2. and Q(x, y) : x y+1 = yx .

be open sentences, where the domain of the variable x is S and the domain of y is T . Deter-
mine the truth or falseness of the implication P(x, y) ⇒ Q(x, y) for all (x, y) ∈ S × T .

Solution For (x, y) = (1, −1), we have

P(1, −1) ⇒ Q(1, −1) : If 2 = 2, then 1 = −1.

which is false. For (x, y) = (1, 4), we have

P(1, 4) ⇒ Q(1, 4) : If 2 = 2, then 1 = 4.

which is also false. For (x, y) = (2, −1), we have

P(2, −1) ⇒ Q(2, −1) : If 2 = 2, then 1 = 1.

which is true; while for (x, y) = (2, 4), we have

P(2, 4) ⇒ Q(2, 4) : If 2 = 4, then 32 = 16.

which is true. �
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6 The Biconditional

For statements (or open sentences) P and Q, the implication Q ⇒ P is called the
converse of P ⇒ Q. The converse of an implication will often be of interest to us,
either by itself or in conjunction with the original implication.

Example 11 For the statements

P1 : 3 is an odd integer. P2 : 57 is prime.

the converse of the implication

P1 ⇒ P2 : If 3 is an odd integer, then 57 is prime.

is the implication

P2 ⇒ P1 : If 57 is prime, then 3 is an odd integer. �

For statements (or open sentences) P and Q, the conjunction

(P ⇒ Q) ∧ (Q ⇒ P)

of the implication P ⇒ Q and its converse is called the biconditional of P and Q and
is denoted by P ⇔ Q. For statements P and Q, the truth table for P ⇔ Q can therefore
be determined. This is given in Figure 7. From this table, we see that P ⇔ Q is true
whenever the statements P and Q are both true or are both false, while P ⇔ Q is false
otherwise. That is, P ⇔ Q is true precisely when P and Q have the same truth values.

The biconditional P ⇔ Q is often stated as

P is equivalent to Q.

P � Q

T

T

F

F
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Q ⇒ P (P ⇒ Q) ∧ (Q ⇒ P )

T

Figure 7 The truth table for a biconditional
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or

P if and only if Q.

or as

P is a necessary and sufficient condition for Q.

For statements P and Q, it then follows that the biconditional “P if and only if Q” is
true only when P and Q have the same truth values.

Example 12 The biconditional

3 is an odd integer if and only if 57 is prime.

is false; while the biconditional

100 is even if and only if 101 is prime.

is true. Furthermore, the biconditional

5 is even if and only if 4 is odd.

is also true. �
The phrase “if and only if” occurs often in mathematics and we shall discuss this

at greater length later. For the present, we consider two examples involving statements
containing the phrase “if and only if.”

Example 13 We noted in Example 7 that for the open sentences

P1(x) : x = −3. and P2(x) : |x | = 3.

over the domain R, the implication

P1(x) ⇒ P2(x) : If x = −3, then |x | = 3.

is a true statement for each x ∈ R. However, the converse

P2(x) ⇒ P1(x) : If |x | = 3, then x = −3.

is a false statement when x = 3 since P2(3) is true and P1(3) is false. For all other real
numbers x, the implication P2(x) ⇒ P1(x) is true. Therefore, the biconditional

P1(x) ⇔ P2(x) : x = −3 if and only if |x | = 3.

is false when x = 3 and is true for all other real numbers x. �

Example 14 For the open sentences

P(T ) : T is equilateral. and Q(T ) : T is isosceles.
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over the domain S of all triangles, the converse of the implication

P(T ) ⇒ Q(T ) : If T is equilateral, then T is isosceles.

is the implication

Q(T ) ⇒ P(T ) : If T is isosceles, then T is equilateral.

We noted that P(T ) ⇒ Q(T ) is a true statement for all triangles T , while Q(T ) ⇒ P(T )
is a false statement when T is an isosceles triangle that is not equilateral. On the
other hand, the second implication becomes a true statement for all other triangles T .
Therefore, the biconditional

P(T ) ⇔ Q(T ) : T is equilateral if and only if T is isosceles.

is false for all triangles that are isosceles and not equilateral, while it is true for all other
triangles T . �

We now investigate the truth or falseness of biconditionals obtained by assigning to
a variable each value in its domain.

Example 15 Let S = {0, 1, 4}. Consider the following open sentences over the domain S:

P(n) :
n(n + 1)(2n + 1)

6
is odd.

Q(n) : (n + 1)3 = n3 + 1.

Determine three distinct elements a, b, c in S such that P(a) ⇒ Q(a) is false, Q(b) ⇒
P(b) is false, and P(c) ⇔ Q(c) is true.

Solution Observe that

P(0) : 0 is odd. P(1) : 1 is odd. P(4) : 30 is odd.

Q(0) : 1 = 1. Q(1) : 8 = 2. Q(4) : 125 = 65.

Thus P(0) and P(4) are false, while P(1) is true. Also, Q(1) and Q(4) are false, while
Q(0) is true. Thus P(1) ⇒ Q(1) and Q(0) ⇒ P(0) are false, while P(4) ⇔ Q(4) is true.
Hence we may take a = 1, b = 0 and c = 4. �

Analysis Notice in Example 15 that both P(0) ⇔ Q(0) and P(1) ⇔ Q(1) are false biconditionals.
Hence the value 4 in S is the only choice for c. �

7 Tautologies and Contradictions

The symbols ∼, ∨, ∧, ⇒ and ⇔ are sometimes referred to as logical connectives. From
given statements, we can use these logical connectives to form more intricate statements.
For example, the statement (P ∨ Q) ∧ (P ∨ R) is a statement formed from the given
statements P , Q and R and the logical connectives ∨ and ∧. We call (P ∨ Q) ∧ (P ∨ R) a
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compound statement. More generally, a compound statement is a statement composed
of one or more given statements (called component statements in this context) and
at least one logical connective. For example, for a given component statement P , its
negation ∼P is a compound statement.

The compound statement P ∨ (∼ P), whose truth table is given in Figure 8, has the
feature that it is true regardless of the truth value of P .

A compound statement S is called a tautology if it is true for all possible combina-
tions of truth values of the component statements that comprise S. Hence P ∨ (∼ P) is
a tautology, as is (∼Q) ∨ (P ⇒ Q). This latter fact is verified in the truth table shown
in Figure 9.

Letting

P1 : 3 is odd. and P2 : 57 is prime.

we see that not only is

57 is not prime, or 57 is prime if 3 is odd.

a true statement, but (∼P2) ∨ (P1 ⇒ P2) is true regardless of which statements P1 and
P2 are being considered.

On the other hand, a compound statement S is called a contradiction if it is false
for all possible combinations of truth values of the component statements that are used
to form S. The statement P ∧ (∼P) is a contradiction, as is shown in Figure 10. Hence
the statement

3 is odd and 3 is not odd.

is false.
Another example of a contradiction is (P ∧ Q) ∧ (Q ⇒ (∼ P)), which is verified

in the truth table shown in Figure 11.
Indeed, if a compound statement S is a tautology, then its negation ∼S is a contra-

diction.

P ∨ (∼ P )∼ PP

T

F

F

T

T

T

Figure 8 An example of a tautology
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QP P ⇒ Q

T
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∼ Q (∼ Q) ∨ (P ⇒ Q)

Figure 9 Another tautology
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Figure 10 An example of a contradiction
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Q ⇒ (P ∧Q) ∧ ( ( Q ⇒∼ P ))( ∼P )

Figure 11 Another contradiction

8 Logical Equivalence

Figure 12 shows a truth table for the two statements P ⇒ Q and (∼ P) ∨ Q. The
corresponding columns of these compound statements are identical; in other words,
these two compound statements have exactly the same truth value for every combination
of truth values of the statements P and Q. Let R and S be two compound statements
involving the same component statements. Then R and S are called logically equivalent
if R and S have the same truth values for all combinations of truth values of their
component statements. If R and S are logically equivalent, then this is denoted by R ≡ S.
Hence P ⇒ Q and (∼ P) ∨ Q are logically equivalent and so P ⇒ Q ≡ (∼ P) ∨ Q.

Another, even simpler, example of logical equivalence concerns P ∧ Q and Q ∧ P .
That P ∧ Q ≡ Q ∧ P is verified in the truth table shown in Figure 13.

What is the practical significance of logical equivalence? Suppose that R and S are
logically equivalent compound statements. Then we know that R and S have the same
truth values for all possible combinations of truth values of their component statements.
But this means that the biconditional R ⇔ S is true for all possible combinations of truth
values of their component statements and hence R ⇔ S is a tautology. Conversely, if
R ⇔ S is a tautology, then R and S are logically equivalent.

Let R be a mathematical statement that we would like to show is true and suppose
that R and some statement S are logically equivalent. If we can show that S is true,
then R is true as well. For example, suppose that we want to verify the truth of an

T
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F

QP
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F

T

T

F

T

T

F T

F

T

T

P ⇒ Q∼ P (∼ P ) ∨Q

T

F

T

F

Figure 12 Verification of P ⇒ Q ≡ (∼P) ∨ Q
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Q QP ∧ PP ∧Q

Figure 13 Verification of P ∧ Q ≡ Q ∧ P

implication P ⇒ Q. If we can establish the truth of the statement (∼P) ∨ Q, then the
logical equivalence of P ⇒ Q and (∼P) ∨ Q guarantees that P ⇒ Q is true as well.

Example 16 Returning to the mathematics instructor in Example 6 and whether she kept her promise
that

If you earn an A on the final exam, then you will receive an A for the final grade.

we need only know that the student did not receive an A on the final exam or the student
received an A as a final grade to see that she kept her promise. �

Since the logical equivalence of P ⇒ Q and (∼P) ∨ Q, verified in Figure 12, is
especially important and we will have occasion to use this fact often, we state it as a
theorem.

Theorem 17 Let P and Q be two statements. Then

P ⇒ Q and (∼P) ∨ Q

are logically equivalent.

Let’s return to the truth table in Figure 13, where we showed that P ∧ Q and Q ∧ P
are logically equivalent for any two statements P and Q. In particular, this says that

(P ⇒ Q) ∧ (Q ⇒ P) and (Q ⇒ P) ∧ (P ⇒ Q)

are logically equivalent. Of course, (P ⇒ Q) ∧ (Q ⇒ P) is precisely what is called the
biconditional of P and Q. Since (P ⇒ Q) ∧ (Q ⇒ P) and (Q ⇒ P) ∧ (P ⇒ Q) are
logically equivalent, (Q ⇒ P) ∧ (P ⇒ Q) represents the biconditional of P and Q as
well. Since Q ⇒ P can be written as “P if Q” and P ⇒ Q can be expressed as “P only
if Q,” their conjunction can be written as “P if Q and P only if Q” or, more simply, as

P if and only if Q.

Consequently, expressing P ⇔ Q as “P if and only if Q” is justified. Furthermore, since
Q ⇒ P can be phrased as “P is necessary for Q” and P ⇒ Q can be expressed as “P
is sufficient for Q,” writing P ⇔ Q as “P is necessary and sufficient for Q” is likewise
justified.
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9 Some Fundamental Properties of Logical Equivalence

It probably comes as no surprise that the statements P and ∼ (∼P) are logically equiv-
alent. This fact is verified in Figure 14.

We mentioned in Figure 13 that, for two statements P and Q, the statements P ∧ Q
and Q ∧ P are logically equivalent. There are other fundamental logical equivalences
that we often encounter as well.

Theorem 18 For statements P, Q and R,

(1) Commutative Laws
(a) P ∨ Q ≡ Q ∨ P
(b) P ∧ Q ≡ Q ∧ P

(2) Associative Laws
(a) P ∨ (Q ∨ R) ≡ (P ∨ Q) ∨ R
(b) P ∧ (Q ∧ R) ≡ (P ∧ Q) ∧ R

(3) Distributive Laws
(a) P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)
(b) P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)

(4) De Morgan’s Laws
(a) ∼ (P ∨ Q) ≡ (∼P) ∧ (∼Q)
(b) ∼ (P ∧ Q) ≡ (∼P) ∨ (∼Q).

Each part of Theorem 18 is verified by means of a truth table. We have already estab-
lished the commutative law for conjunction (namely P ∧ Q ≡ Q ∧ P) in Figure 13. In
Figure 15 P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R) is verified by observing that the columns
corresponding to the statements P ∨ (Q ∧ R) and (P ∨ Q) ∧ (P ∨ R) are identical.

The laws given in Theorem 18, together with other known logical equivalences,
can be used to good advantage at times to prove other logical equivalences (without
introducing a truth table).

Example 19 Suppose we are asked to verify that

∼ (P ⇒ Q) ≡ P ∧ (∼Q)

for every two statements P and Q. Using the logical equivalence of P ⇒ Q and
(∼P) ∨ Q from Theorem 17 and Theorem 18(4a), we see that

∼ (P ⇒ Q) ≡ ∼ ((∼P) ∨ Q) ≡ (∼ (∼P)) ∧ (∼Q) ≡ P ∧ (∼Q), (1)

P

F

T F

T F

T

∼ P ∼ (∼ P )

Figure 14 Verification of P ≡ ∼ (∼ P)
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Figure 15 Verification of the distributive law P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)

implying that the statements ∼ (P ⇒ Q) and P ∧ (∼Q) are logically equivalent, which
we alluded to earlier. �

It is important to keep in mind what we have said about logical equivalence. For
example, the logical equivalence of P ∧ Q and Q ∧ P allows us to replace a statement
of the type P ∧ Q by Q ∧ P without changing its truth value. As an additional example,
according to De Morgan’s Laws in Theorem 18, if it is not the case that an integer a is
even or an integer b is even, then it follows that a and b are both odd.

Example 20 Using the second of De Morgan’s Laws and statement (1), we can establish a useful
logically equivalent form of the negation of P ⇔ Q by the following string of logical
equivalences:

∼ (P ⇔ Q) ≡ ∼ ((P ⇒ Q) ∧ (Q ⇒ P))

≡ (∼ (P ⇒ Q)) ∨ (∼ (Q ⇒ P))

≡ (P ∧ (∼Q)) ∨ (Q ∧ (∼P)). �

What we have observed about the negation of an implication and a biconditional is
repeated in the following theorem.

Theorem 21 For statements P and Q,

(a) ∼ (P ⇒ Q) ≡ P ∧ (∼Q)
(b) ∼ (P ⇔ Q) ≡ (P ∧ (∼Q)) ∨ (Q ∧ (∼P)).

Example 22 Once again, let’s return to what the mathematics instructor in Example 6 said:

If you earn an A on the final exam, then you will receive an A for your final
grade.

If this instructor was not truthful, then it follows by Theorem 21(a) that

You earned an A on the final exam and did not receive A as your final grade.
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Suppose, on the other hand, that the mathematics instructor had said:

If you earn an A on the final exam, then you will receive an A for the final
grade—and that’s the only way that you will get an A for a final grade.

If this instructor was not truthful, then it follows by Theorem 21(b) that

Either you earned an A on the final exam and didn’t receive A as your final grade
or you received an A for your final grade and you didn’t get an A on the final
exam. �

10 Quantified Statements

We have mentioned that if P(x) is an open sentence over a domain S, then P(x) is a
statement for each x ∈ S. We illustrate this again.

Example 23 If S = {1, 2, · · · , 7}, then

P(n) :
2n2 + 5 + (−1)n

2
is prime.

is a statement for each n ∈ S. Therefore,

P(1) : 3 is prime.
P(2) : 7 is prime.
P(3) : 11 is prime.
P(4) : 19 is prime.

are true statements; while

P(5) : 27 is prime.
P(6) : 39 is prime.
P(7) : 51 is prime.

are false statements. �

There are other ways that an open sentence can be converted into a statement, namely
by a method called quantification. Let P(x) be an open sentence over a domain S.
Adding the phrase “For every x ∈ S” to P(x) produces a statement called a quantified
statement. The phrase “for every” is referred to as the universal quantifier and is
denoted by the symbol ∀. Other ways to express the universal quantifier are “for each”
and “for all.” This quantified statement is expressed in symbols by

∀x ∈ S, P(x) (2)

and is expressed in words by

For every x ∈ S, P(x). (3)

The quantified statement (2) (or (3)) is true if P(x) is true for every x ∈ S, while the
quantified statement (2) is false if P(x) is false for at least one element x ∈ S.
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Another way to convert an open sentence P(x) over a domain S into a statement
through quantification is by the introduction of a quantifier called an existential quantifier.
Each of the phrases there exists, there is, for some and for at least one is referred to as
an existential quantifier and is denoted by the symbol ∃. The quantified statement

∃x ∈ S, P(x) (4)

can be expressed in words by

There exists x ∈ S such that P(x). (5)

The quantified statement (4) (or (5)) is true if P(x) is true for at least one element x ∈ S,
while the quantified statement (4) is false if P(x) is false for all x ∈ S.

We now consider two quantified statements constructed from the open sentence we
saw in Example 23.

Example 24 For the open sentence

P(n) :
2n2 + 5 + (−1)n

2
is prime.

over the domain S = {1, 2, · · · , 7}, the quantified statement

∀n ∈ S, P(n) : For every n ∈ S,
2n2 + 5 + (−1)n

2
is prime.

is false since P(5) is false, for example; while the quantified statement

∃n ∈ S, P(n) : There exists n ∈ S such that
2n2 + 5 + (−1)n

2
is prime.

is true since P(1) is true, for example. �

The quantified statement ∀x ∈ S, P(x) can also be expressed as

If x ∈ S, then P(x).

Consider the open sentence P(x) : x2 ≥ 0. over the set R of real numbers. Then

∀x ∈ R, P(x)

or, equivalently,

∀x ∈ R, x2 ≥ 0

can be expressed as

For every real number x , x2 ≥ 0.

or

If x is a real number, then x2 ≥ 0.

as well as

The square of every real number is nonnegative.
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In general, the universal quantifier is used to claim that the statement resulting from
a given open sentence is true when each value of the domain of the variable is assigned
to the variable. Consequently, the statement ∀x ∈ R, x2 ≥ 0 is true since x2 ≥ 0 is true
for every real number x .

Suppose now that we were to consider the open sentence Q(x) : x2 ≤ 0. The state-
ment ∀x ∈ R, Q(x) (that is, for every real number x , we have x2 ≤ 0) is false since,
for example, Q(1) is false. Of course, this means that its negation is true. If it were not
the case that for every real number x , we have x2 ≤ 0, then there must exist some real
number x such that x2 > 0. This negation

There exists a real number x such that x2 > 0.

can be written in symbols as

∃x ∈ R, x2 > 0 or ∃x ∈ R, ∼Q(x).

More generally, if we are considering an open sentence P(x) over a domain S, then

∼ (∀x ∈ S, P(x)) ≡ ∃x ∈ S, ∼P(x).

Example 25 Suppose that we are considering the set A = {1, 2, 3} and its power set P(A), the set of
all subsets of A. Then the quantified statement

For every set B ∈ P(A), A − B 	= ∅. (6)

is false since for the subset B = A = {1, 2, 3}, we have A − B = ∅. The negation of the
statement (6) is

There exists B ∈ P(A) such that A − B = ∅. (7)

The statement (7) is therefore true since for B = A ∈ P(A), we have A − B = ∅. The
statement (6) can also be written as

If B ⊆ A, then A − B 	= ∅. (8)

Consequently, the negation of (8) can be expressed as

There exists some subset B of A such that A − B = ∅. �

The existential quantifier is used to claim that at least one statement resulting from
a given open sentence is true when the values of a variable are assigned from its domain.
We know that for an open sentence P(x) over a domain S, the quantified statement
∃x ∈ S, P(x) is true provided P(x) is a true statement for at least one element x ∈ S.
Thus the statement ∃x ∈ R, x2 > 0 is true since, for example, x2 > 0 is true for x = 1.

The quantified statement

∃x ∈ R, 3x = 12

is therefore true since there is some real number x for which 3x = 12, namely x = 4 has
this property. (Indeed, x = 4 is the only real number for which 3x = 12.) On the other
hand, the quantified statement

∃n ∈ Z, 4n − 1 = 0

35



Logic

is false as there is no integer n for which 4n − 1 = 0. (Of course, 4n − 1 = 0 when
n = 1/4, but 1/4 is not an integer.)

Suppose that Q(x) is an open sentence over a domain S. If the statement ∃x ∈ S,

Q(x) is not true, then it must be the case that for every x ∈ S, Q(x) is false. That is,

∼ (∃x ∈ S, Q(x)) ≡ ∀x ∈ S, ∼Q(x)

is true. We illustrate this with a specific example.

Example 26 The following statement contains the existential quantifier:

There exists a real number x such that x2 = 3. (9)

If we let P(x) : x2 = 3, then (9) can be rewritten as ∃x ∈ R, P(x). The statement
(9) is true since P(x) is true when x = √

3 (or when x = −√
3). Hence the negation of

(9) is:

For every real number x, x2 	= 3. (10)

The statement (10) is therefore false. �

Let P(x, y) be an open sentence, where the domain of the variable x is S and the
domain of the variable y is T . Then the quantified statement

For all x ∈ S and y ∈ T , P(x, y).

can be expressed symbolically as

∀x ∈ S, ∀y ∈ T, P(x, y). (11)

The negation of the statement (11) is

∼ (∀x ∈ S, ∀y ∈ T, P(x, y)) ≡ ∃x ∈ S, ∼ (∀y ∈ T, P(x, y))

≡ ∃x ∈ S, ∃y ∈ T, ∼P(x, y). (12)

We now consider examples of quantified statements involving two variables.

Example 27 Consider the statement

For every two real numbers x and y, x2 + y2 ≥ 0. (13)

If we let

P(x, y) : x2 + y2 ≥ 0

where the domain of both x and y is R, then statement (13) can be expressed as

∀x ∈ R, ∀y ∈ R, P(x, y) (14)

or as

∀x, y ∈ R, P(x, y).

Since x2 ≥ 0 and y2 ≥ 0 for all real numbers x and y, it follows that x2 + y2 ≥ 0 and
so P(x, y) is true for all real numbers x and y. Thus the quantified statement (14) is
true.
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The negation of statement (14) is therefore

∼ (∀x ∈ R, ∀y ∈ R, P(x, y)) ≡ ∃x ∈ R, ∃y ∈ R, ∼ P(x, y) ≡ ∃x, y ∈ R, ∼ P(x, y),
(15)

which, in words, is

There exist real numbers x and y such that x2 + y2 < 0. (16)

The statement (16) is therefore false. �

For an open sentence containing two variables, the domains of the variables need
not be the same.

Example 28 Consider the statement

For every s ∈ S and t ∈ T , st + 2 is a prime. (17)

where the domain of the variable s is S = {1, 3, 5} and the domain of the variable t is
T = {3, 9}. If we let

Q(s, t) : st + 2 is a prime.

then the statement (17) can be expressed as

∀s ∈ S, ∀t ∈ T, Q(s, t). (18)

Since all of the statements

Q(1, 3): 1 · 3 + 2 is a prime. Q(3, 3): 3 · 3 + 2 is a prime.
Q(5, 3): 5 · 3 + 2 is a prime.

Q(1, 9): 1 · 9 + 2 is a prime. Q(3, 9): 3 · 9 + 2 is a prime.
Q(5, 9): 5 · 9 + 2 is a prime.

are true, the quantified statement (18) is true.
As we saw in (12), the negation of the quantified statement (18) is

∼ (∀s ∈ S, ∀t ∈ T, Q(s, t)) ≡ ∃s ∈ S, ∃t ∈ T, ∼Q(s, t)

and so the negation of (17) is

There exist s ∈ S and t ∈ T such that st + 2 is not a prime. (19)

The statement (19) is therefore false. �

Again, let P(x, y) be an open sentence, where the domain of the variable x is S and
the domain of the variable y is T . The quantified statement

There exist x ∈ S and y ∈ T such that P(x, y)

can be expressed in symbols as

∃x ∈ S, ∃y ∈ T, P(x, y). (20)
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The negation of the statement (20) is then

∼ (∃x ∈ S, ∃y ∈ T, P(x, y)) ≡ ∀x ∈ S, ∼ (∃y ∈ T, P(x, y))

≡ ∀x ∈ S, ∀y ∈ T, ∼P(x, y). (21)

We now illustrate this situation.

Example 29 Consider the open sentence

R(s, t) : |s − 1| + |t − 2| ≤ 2.

where the domain of the variable s is the set S of even integers and the domain of the
variable t is the set T of odd integers. Then the quantified statement

∃s ∈ S, ∃t ∈ T, R(s, t). (22)

can be expressed in words as

There exist an even integer s and an odd integer t such that |s − 1| + |t − 2| ≤ 2.
(23)

Since R(2, 3) : 1 + 1 ≤ 2 is true, the quantified statement (23) is true.
The negation of (22) is therefore

∼ (∃s ∈ S, ∃t ∈ T, R(s, t)) ≡ ∀s ∈ S, ∀t ∈ T, ∼R(s, t). (24)

and so the negation of (22), in words, is

For every even integer s and every odd integer t , |s − 1| + |t − 2| > 2. (25)

The quantified statement (25) is therefore false. �
In the next two examples of negations of quantified statements, De Morgan’s laws

are also used.

Example 30 The negation of

For all integers a and b, if ab is even, then a is even and b is even.

is

There exist integers a and b such that ab is even and a or b is odd. �

Example 31 The negation of

There exists a rational number r such that r ∈ A = {√2, π} or
r ∈ B = {−√

2,
√

3, e}.
is

For every rational number r , both r /∈ A and r /∈ B. �

Quantified statements may contain both universal and existential quantifiers. Some
examples are presented here.
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