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Preface

I was motivated from the beginning to write a textbook different from others that
present physics as a sequence of facts, like a Sears catalog: “here are the facts and
you better learn them.” Instead of that approach in which topics are begun
formally and dogmatically, I have sought to begin each topic with concrete
observations and experiences students can relate to: start with specifics and only then
go to the great generalizations and the more formal aspects of a topic, showing why
we believe what we believe. This approach reflects how science is actually practiced.

Why a Fourth Edition?

Two recent trends in physics texbooks are disturbing: (1) their revision cycles
have become short—they are being revised every 3 or 4 years; (2) the books are
getting larger, some over 1500 pages. I don’t see how either trend can be of
benefit to students. My response: (1) It has been 8 years since the previous
edition of this book. (2) This book makes use of physics education research,
although it avoids the detail a Professor may need to say in class but in a book shuts
down the reader. And this book still remains among the shortest.

This new edition introduces some important new pedagogic tools. It contains
new physics (such as in cosmology) and many new appealing applications (list on
previous page). Pages and page breaks have been carefully formatted to make the
physics easier to follow: no turning a page in the middle of a derivation or Example.
Great efforts were made to make the book attractive so students will want to read it.

Some of the new features are listed below.

What's New

Chapter-Opening Questions: Each Chapter begins with a multiple-choice question,
whose responses include common misconceptions. Students are asked to answer
before starting the Chapter, to get them involved in the material and to get any
preconceived notions out on the table. The issues reappear later in the Chapter,
usually as Exercises, after the material has been covered. The Chapter-Opening
Questions also show students the power and usefulness of Physics.

APPROACH paragraph in worked-out numerical Examples: A short introductory
paragraph before the Solution, outlining an approach and the steps we can take to
get started. Brief NOTES after the Solution may remark on the Solution, may give
an alternate approach, or mention an application.

Step-by-Step Examples: After many Problem Solving Strategies (more than 20 in
the book), the next Example is done step-by-step following precisely the steps just
seen.

Exercises within the text, after an Example or derivation, give students a chance to
see if they have understood enough to answer a simple question or do a simple
calculation. Many are multiple choice.

Greater clarity: No topic, no paragraph in this book was overlooked in the search
to improve the clarity and conciseness of the presentation. Phrases and sentences
that may slow down the principal argument have been eliminated: keep to the
essentials at first, give the elaborations later.

Vector notation, arrows: The symbols for vector quantities in the text and Figures
now have a tiny arrow over them, so they are similar to what we write by hand.
Cosmological Revolution: With generous help from top experts in the field,
readers have the latest results.



Preface

Page layout: more than in the previous edition, serious attention has been paid to
how each page is formatted. Examples and all important derivations and
arguments are on facing pages. Students then don’t have to turn back and forth.
Throughout, readers see, on two facing pages, an important slice of physics.

New Applications: LCDs, digital cameras and electronic sensors (CCD, CMOS),
electric hazards, GFCls, photocopiers, inkjet and laser printers, metal detectors,
underwater vision, curve balls, airplane wings, DNA, how we actually see images.
(Turn back a page to see a longer list.)

Examples modified: more math steps are spelled out, and many new Examples
added. About 10% of all Examples are Estimation Examples.

This Book is Shorter than other complete full-service books at this level. Shorter
explanations are easier to understand and more likely to be read.

Content and Organizational Changes

e Rotational Motion: Chapters 10 and 11 have been reorganized. All of angular
momentum is now in Chapter 11.

e  First law of thermodynamics, in Chapter 19, has been rewritten and extended.
The full formis given: AK + AU + AE;,, = Q — W, where internal energy is
E;,, and U is potential energy; the form Q — W iskeptso that dW = P dV.

e Kinematics and Dynamics of Circular Motion are now treated together in
Chapter 5.

e  Work and Energy, Chapters 7 and 8, have been carefully revised.

e Work done by friction is discussed now with energy conservation (energy
terms due to friction).

e Chapters on Inductance and AC Circuits have been combined into one:
Chapter 30.

e  Graphical Analysis and Numerical Integration is a new optional Section 2-9.
Problems requiring a computer or graphing calculator are found at the end
of most Chapters.

e Length of an object is a script £ rather than normal /, which looks like 1 or I
(moment of inertia, current), as in F = [{B. Capital L is for angular
momentum, latent heat, inductance, dimensions of length [L].

e Newton’s law of gravitation remains in Chapter 6. Why? Because the 1/r?
law is too important to relegate to a late chapter that might not be covered
at all late in the semester; furthermore, it is one of the basic forces in nature.
In Chapter 8 we can treat real gravitational potential energy and have a fine
instance of using U = — [F-dL.

e New Appendices include the differential form of Maxwell’s equations and
more on dimensional analysis.

e Problem Solving Strategies are found on pages 30, 58, 64, 96, 102, 125, 166,
198,229,261, 314, 504, 551, 571, 600, 685, 716, 740, 763, 849, 871, and 913.

Organization

Some instructors may find that this book contains more material than can be
covered in their courses. The text offers great flexibility. Sections marked with a
star * are considered optional. These contain slightly more advanced physics
material, or material not usually covered in typical courses and/or interesting
applications; they contain no material needed in later Chapters (except perhaps in
later optional Sections). For a brief course, all optional material could be dropped
as well as major parts of Chapters 1, 13, 16, 26, 30, and 35, and selected parts of
Chapters 9, 12, 19, 20, 33, and the modern physics Chapters. Topics not covered in
class can be a valuable resource for later study by students. Indeed, this text can
serve as a useful reference for years because of its wide range of coverage.

Versions of this Book

Complete version: 44 Chapters
including 9 Chapters of modern
physics.

Classic version: 37 Chapters
including one each on relativity
and quantum theory.

3 Volume version: Available
separately or packaged together
(Vols. 1 & 2 or all 3 Volumes):

Volume 1: Chapters 1-20 on
mechanics, including fluids,
oscillations, waves, plus heat
and thermodynamics.

Volume 2: Chapters 21-35 on
electricity and magnetism, plus
light and optics.

Volume 3: Chapters 36—44 on
modern physics: relativity,
quantum theory, atomic physics,
condensed matter, nuclear
physics, elementary particles,
cosmology and astrophysics.
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To Students

HOW TO STUDY

1. Read the Chapter. Learn new vocabulary and notation. Try to respond to
questions and exercises as they occur.

2. Attend all class meetings. Listen. Take notes, especially about aspects you do
not remember seeing in the book. Ask questions (everyone else wants to, but
maybe you will have the courage). You will get more out of class if you read
the Chapter first.

3. Read the Chapter again, paying attention to details. Follow derivations and

worked-out Examples. Absorb their logic. Answer Exercises and as many of
the end of Chapter Questions as you can.

. Solve 10 to 20 end of Chapter Problems (or more), especially those assigned.

In doing Problems you find out what you learned and what you didn’t. Discuss
them with other students. Problem solving is one of the great learning tools.
Don’t just look for a formula—it won’t cut it.

NOTES ON THE FORMAT AND PROBLEM SOLVING

1.

Sections marked with a star (*) are considered optional. They can be omitted
without interrupting the main flow of topics. No later material depends on
them except possibly later starred Sections. They may be fun to read, though.

. The customary conventions are used: symbols for quantities (such as m for

mass) are italicized, whereas units (such as m for meter) are not italicized.
Symbols for vectors are shown in boldface with a small arrow above: F.

. Few equations are valid in all situations. Where practical, the limitations of

important equations are stated in square brackets next to the equation. The
equations that represent the great laws of physics are displayed with a tan
background, as are a few other indispensable equations.

. At the end of each Chapter is a set of Problems which are ranked as Level I, 11, or

III, according to estimated difficulty. Level I Problems are easiest, Level II are
standard Problems, and Level III are “challenge problems.” These ranked
Problems are arranged by Section, but Problems for a given Section may depend
on earlier material too. There follows a group of General Problems, which are not
arranged by Section nor ranked as to difficulty. Problems that relate to optional
Sections are starred (*). Most Chapters have 1 or 2 Computer/Numerical
Problems at the end, requiring a computer or graphing calculator. Answers to
odd-numbered Problems are given at the end of the book.

. Being able to solve Problems is a crucial part of learning physics, and provides

a powerful means for understanding the concepts and principles. This book
contains many aids to problem solving: (a) worked-out Examples and their
solutions in the text, which should be studied as an integral part of the text;
(b) some of the worked-out Examples are Estimation Examples, which show
how rough or approximate results can be obtained even if the given data are
sparse (see Section 1-6); (c) special Problem Solving Strategies placed
throughout the text to suggest a step-by-step approach to problem solving
for a particular topic—but remember that the basics remain the same;
most of these “Strategies” are followed by an Example that is solved by
explicitly following the suggested steps; (d) special problem-solving Sections;
(e) “Problem Solving” marginal notes which refer to hints within the text for
solving Problems; (f) Exercises within the text that you should work out imme-
diately, and then check your response against the answer given at the bottom of
the last page of that Chapter; (g) the Problems themselves at the end of each
Chapter (point 4 above).

. Conceptual Examples pose a question which hopefully starts you to think and

come up with a response. Give yourself a little time to come up with your own
response before reading the Response given.

. Math review, plus some additional topics, are found in Appendices. Useful data,

conversion factors, and math formulas are found inside the front and back covers.
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[ntroduction,
Measurement, Estimating

CHAPTER-OPENING QUESTION—Guess now!
[Don’t worry about getting the right answer now—the idea is to get your preconceived notions out on
the table.]
Suppose you wanted to actually measure the radius of the Earth, at least roughly,
rather than taking other people’s word for what it is. Which response below
describes the best approach?
(a) Give up; it is impossible using ordinary means.
(b) Use an extremely long measuring tape.
(¢) Itis only possible by flying high enough to see the actual curvature of the Earth.
(d) Use a standard measuring tape, a step ladder, and a large smooth lake.
(e) Use a laser and a mirror on the Moon or on a satellite.

© Reuters/Corbis
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FIGURE 1 (a) This Roman
aqueduct was built 2000 years ago
and still stands. (b) The Hartford
Civic Center collapsed in 1978, just
two years after it was built.

Introduction, Measurement, Estimating

hysics is the most basic of the sciences. It deals with the behavior and

structure of matter. The field of physics is usually divided into classical physics

which includes motion, fluids, heat, sound, light, electricity and magnetism;

and modern physics which includes the topics of relativity, atomic structure,

condensed matter, nuclear physics, elementary particles, and cosmology and astrophysics.

An understanding of physics is crucial for anyone making a career in science

or technology. Engineers, for example, must know how to calculate the forces within

a structure to design it so that it remains standing (Fig. 1a). Indeed, a simple physics

calculation—or even intuition based on understanding the physics of forces—

can save hundreds of lives (Fig. 1b). Physics is useful in many fields, and in
everyday life.

1 The Nature of Science

The principal aim of all sciences, including physics, is generally considered to be
the search for order in our observations of the world around us. Many people
think that science is a mechanical process of collecting facts and devising theories.
But it is not so simple. Science is a creative activity that in many respects resem-
bles other creative activities of the human mind.

One important aspect of science is observation of events, which includes the
design and carrying out of experiments. But observation and experiment require
imagination, for scientists can never include everything in a description of what
they observe. Hence, scientists must make judgments about what is relevant in
their observations and experiments.

Consider, for example, how two great minds, Aristotle (384-322 B.C.) and
Galileo (1564-1642), interpreted motion along a horizontal surface. Aristotle
noted that objects given an initial push along the ground (or on a tabletop) always
slow down and stop. Consequently, Aristotle argued that the natural state of an
object is to be at rest. Galileo, in his reexamination of horizontal motion in the
1600s, imagined that if friction could be eliminated, an object given an initial
push along a horizontal surface would continue to move indefinitely without
stopping. He concluded that for an object to be in motion was just as natural as for
it to be at rest. By inventing a new approach, Galileo founded our modern view of
motion, and he did so with a leap of the imagination. Galileo made this leap
conceptually, without actually eliminating friction.

Observation, with careful experimentation and measurement, is one side of the
scientific process. The other side is the invention or creation of theories to explain
and order the observations. Theories are never derived directly from observations.
Observations may help inspire a theory, and theories are accepted or rejected based
on the results of observation and experiment.

The great theories of science may be compared, as creative achievements, with
great works of art or literature. But how does science differ from these other
creative activities? One important difference is that science requires testing of its
ideas or theories to see if their predictions are borne out by experiment.

Although the testing of theories distinguishes science from other creative
fields, it should not be assumed that a theory is “proved” by testing. First of all, no
measuring instrument is perfect, so exact confirmation is not possible. Further-
more, it is not possible to test a theory in every single possible circumstance. Hence
a theory cannot be absolutely verified. Indeed, the history of science tells us that
long-held theories can be replaced by new ones.

2 Models, Theories, and Laws

When scientists are trying to understand a particular set of phenomena, they often
make use of a model. A model, in the scientist’s sense, is a kind of analogy or
mental image of the phenomena in terms of something we are familiar with. One
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example is the wave model of light. We cannot see waves of light as we can water
waves. But it is valuable to think of light as made up of waves because experiments
indicate that light behaves in many respects as water waves do.

The purpose of a model is to give us an approximate mental or visual picture—
something to hold on to—when we cannot see what actually is happening. Models
often give us a deeper understanding: the analogy to a known system (for instance,
water waves in the above example) can suggest new experiments to perform and can
provide ideas about what other related phenomena might occur.

You may wonder what the difference is between a theory and a model. Usually
a model is relatively simple and provides a structural similarity to the phenomena
being studied. A theory is broader, more detailed, and can give quantitatively testable
predictions, often with great precision.

It is important, however, not to confuse a model or a theory with the real
system or the phenomena themselves.

Scientists give the title law to certain concise but general statements about
how nature behaves (that energy is conserved, for example). Sometimes the state-
ment takes the form of a relationship or equation between quantities (such as
Newton’s second law, F = ma).

To be called a law, a statement must be found experimentally valid over a wide
range of observed phenomena. For less general statements, the term principle is
often used (such as Archimedes’ principle).

Scientific laws are different from political laws in that the latter are
prescriptive: they tell us how we ought to behave. Scientific laws are descriptive:
they do not say how nature should behave, but rather are meant to describe how
nature does behave. As with theories, laws cannot be tested in the infinite variety
of cases possible. So we cannot be sure that any law is absolutely true. We use the
term “law” when its validity has been tested over a wide range of cases, and when
any limitations and the range of validity are clearly understood.

Scientists normally do their research as if the accepted laws and theories were
true. But they are obliged to keep an open mind in case new information should
alter the validity of any given law or theory.

3 Measurement and Uncertainty;
Significant Figures

In the quest to understand the world around us, scientists seek to find relationships
among physical quantities that can be measured.

Uncertainty

Reliable measurements are an important part of physics. But no measurement is
absolutely precise. There is an uncertainty associated with every measurement. Among
the most important sources of uncertainty, other than blunders, are the limited accuracy
of every measuring instrument and the inability to read an instrument beyond some
fraction of the smallest division shown. For example, if you were to use a centimeter
ruler to measure the width of a board (Fig. 2), the result could be claimed to be precise
to about 0.1 cm (1 mm), the smallest division on the ruler, although half of this value
might be a valid claim as well. The reason is that it is difficult for the observer to esti-
mate (or interpolate) between the smallest divisions. Furthermore, the ruler itself may
not have been manufactured to an accuracy very much better than this.

When giving the result of a measurement, it is important to state the estimated
uncertainty in the measurement. For example, the width of a board might be
written as 8.8 £ 0.1cm. The £0.1cm (“plus or minus 0.1cm”) represents the
estimated uncertainty in the measurement, so that the actual width most likely lies
between 8.7 and 8.9 cm. The percent uncertainty is the ratio of the uncertainty
to the measured value, multiplied by 100. For example, if the measurement is 8.8
and the uncertainty about 0.1 cm, the percent uncertainty is

% X 100% ~ 1%,
where ~ means “is approximately equal to.”

FIGURE 2 Measuring the width
of a board with a centimeter ruler.
The uncertainty is about +1mm.
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FIGURE 3 These two calculators
show the wrong number of significant
figures. In (a), 2.0 was divided by 3.0.
The correct final result would be 0.67.
In (b), 2.5 was multiplied by 3.2. The
correct result is 8.0.

PROBLEM SOLVING
Significant figure rule:
Number of significant figures in final
result should be same as the least
significant input value

/A CAUTION
Calculators err with significant figures

PROBLEM SOLVING
Report only the proper number of
significant figures in the final result.
Keep extra digits during
the calculation

FIGURE 4 Example 1.
A protractor used to measure an angle.

Paul Silverman/Fundamental Photographs, NYC
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Often the uncertainty in a measured value is not specified explicitly. In such cases,
the uncertainty is generally assumed to be one or a few units in the last digit specified.
For example, if a length is given as 8.8 cm, the uncertainty is assumed to be about
0.1cm or 0.2cm. It is important in this case that you do not write 8.80cm, for this
implies an uncertainty on the order of 0.01 cm; it assumes that the length is probably
between 8.79 cm and 8.81 cm, when actually you believe it is between 8.7 and 8.9 cm.

Significant Figures

The number of reliably known digits in a number is called the number of
significant figures. Thus there are four significant figures in the number 23.21 cm
and two in the number 0.062 cm (the zeros in the latter are merely place holders
that show where the decimal point goes). The number of significant figures may
not always be clear. Take, for example, the number 80. Are there one or two signif-
icant figures? We need words here: If we say it is roughly 80 km between two
cities, there is only one significant figure (the 8) since the zero is merely a place
holder. If there is no suggestion that the 80 is a rough approximation, then we can
often assume that it is 80 km within an accuracy of about 1 or 2km, and then the
80 has two significant figures. If it is precisely 80 km, to within + 0.1 km, then we
write 80.0 km (three significant figures).

When making measurements, or when doing calculations, you should avoid the
temptation to keep more digits in the final answer than is justified. For example, to
calculate the area of a rectangle 11.3 cm by 6.8 cm, the result of multiplication would
be 76.84 cm?. But this answer is clearly not accurate to 0.01 cm?, since (using the
outer limits of the assumed uncertainty for each measurement) the result could be
between 11.2cm X 6.7cm = 75.04cm” and 11.4cm X 6.9cm = 78.66cm?. At best,
we can quote the answer as 77 cm?, which implies an uncertainty of about 1 or 2 cm?.
The other two digits (in the number 76.84 cm?) must be dropped because they are not
significant. As a rough general rule (i.e., in the absence of a detailed consideration
of uncertainties), we can say that the final result of a multiplication or division should
have only as many digits as the number with the least number of significant figures
used in the calculation. In our example, 6.8 cm has the least number of significant
figures, namely two. Thus the result 76.84 cm® needs to be rounded off to 77 cm?.

EXERCISE A The area of a rectangle 4.5 cm by 3.25 cm is correctly given by (a) 14.625 cm?;
(b) 14.63 cm?; (c) 14.6 cm?; (d) 15 cm?.

When adding or subtracting numbers, the final result is no more precise than
the least precise number used. For example, the result of subtracting 0.57 from 3.6
is 3.0 (and not 3.03).

Keep in mind when you use a calculator that all the digits it produces may not
be significant. When you divide 2.0 by 3.0, the proper answer is 0.67, and not some
such thing as 0.666666666. Digits should not be quoted in a result, unless they are
truly significant figures. However, to obtain the most accurate result, you should
normally keep one or more extra significant figures throughout a calculation, and
round off only in the final result. (With a calculator, you can keep all its digits in
intermediate results.) Note also that calculators sometimes give too few significant
figures. For example, when you multiply 2.5 X 3.2, a calculator may give the
answer as simply 8. But the answer is accurate to two significant figures, so the proper
answer is 8.0. See Fig. 3.

CONCEPTUAL EXAMPLE 1| Significant figures. Using a protractor (Fig. 4), you
measure an angle to be 30°. (¢) How many significant figures should you quote in this
measurement? (b) Use a calculator to find the cosine of the angle you measured.

RESPONSE (a) If you look at a protractor, you will see that the precision with
which you can measure an angle is about one degree (certainly not 0.1°). So you
can quote two significant figures, namely, 30° (not 30.0°). (b) If you enter cos 30°
in your calculator, you will get a number like 0.866025403. However, the angle
you entered is known only to two significant figures, so its cosine is correctly
given by 0.87; you must round your answer to two significant figures.
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| EXERCISE B Do 0.00324 and 0.00056 have the same number of significant figures?
Be careful not to confuse significant figures with the number of decimal places.

EXERCISE C For each of the following numbers, state the number of significant figures
and the number of decimal places: (a) 1.23; (b) 0.123; (¢) 0.0123.

Scientific Notation

We commonly write numbers in “powers of ten,” or “scientific” notation—for
instance 36,900 as 3.69 X 10* or 0.0021 as 2.1 X 107, One advantage of scientific
notation is that it allows the number of significant figures to be clearly expressed.
For example, it is not clear whether 36,900 has three, four, or five significant
figures. With powers of ten notation the ambiguity can be avoided: if the number is
known to three significant figures, we write 3.69 X 10* but if it is known to four,
we write 3.690 X 10%.

EXERCISE D Write each of the following in scientific notation and state the number of
significant figures for each: (a) 0.0258, (b) 42,300, (c) 344.50.

Percent Uncertainty versus Significant Figures

The significant figures rule is only approximate, and in some cases may underestimate
the accuracy (or uncertainty) of the answer. Suppose for example we divide 97 by 92:

97
92

Both 97 and 92 have two significant figures, so the rule says to give the answer
as 1.1. Yet the numbers 97 and 92 both imply an uncertainty of + 1 if no other
uncertainty is stated. Now 92 £ 1 and 97 £ 1 both imply an uncertainty of
about 1% (1/92 ~ 0.01 = 1%). But the final result to two significant figures
is 1.1, with an implied uncertainty of =+ 0.1, which is an uncertainty of
0.1/1.1 = 0.1 = 10%. In this case it is better to give the answer as 1.05 (which is
three significant figures). Why? Because 1.05 implies an uncertainty of % 0.01
which is 0.01/1.05 =~ 0.01 = 1%, just like the uncertainty in the original
numbers 92 and 97.

SUGGESTION: Use the significant figures rule, but consider the % uncer-
tainty too, and add an extra digit if it gives a more realistic estimate of uncertainty.

= 105 = 1.1.

Approximations

Much of physics involves approximations, often because we do not have the
means to solve a problem precisely. For example, we may choose to ignore air
resistance or friction in doing a Problem even though they are present in the real
world, and then our calculation is only an approximation. In doing Problems, we
should be aware of what approximations we are making, and be aware that the
precision of our answer may not be nearly as good as the number of significant
figures given in the result.

Accuracy versus Precision

There is a technical difference between “precision” and “accuracy.” Precision in a strict
sense refers to the repeatability of the measurement using a given instrument. For
example, if you measure the width of a board many times, getting results like 8.81 cm,
8.85cm, 8.78 cm, 8.82 cm (interpolating between the 0.1 cm marks as best as possible
each time), you could say the measurements give a precision a bit better than 0.1 cm.
Accuracy refers to how close a measurement is to the true value. For example, if the
ruler shown in Fig. 2 was manufactured with a 2% error, the accuracy of its measure-
ment of the board’s width (about 8.8cm) would be about 2% of 8.8cm or about
+ 0.2 cm. Estimated uncertainty is meant to take both accuracy and precision into
account.

11
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TABLE 1 Some Typical

Lengths or Distances
(order of magnitude)

Length Meters
(or Distance) (approximate)
Neutron or proton

(diameter) 1075 m
Atom

(diameter) 107m
Virus [see Fig. 5a] 1077 m
Sheet of paper

(thickness) 107 m
Finger width 1072 m
Football field length 10> m
Height of Mt. Everest

[see Fig. 5b] 10* m
Earth diameter 107 m
Earth to Sun 101 m
Earth to nearest star 10" m
Earth to nearest galaxy 102 m
Earth to farthest

galaxy visible 10 m

Inc.

Oliver Meckes/Ottawa/Photo Researchers

Douglas C. Giancoli

FIGURE 5 Some lengths:
(a) viruses (about 10”7 m long)
attacking a cell; (b) Mt. Everest’s
height is on the order of 10*m
(8850 m, to be precise).
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4 Units, Standards, and the SI System

The measurement of any quantity is made relative to a particular standard or unit,
and this unit must be specified along with the numerical value of the quantity. For
example, we can measure length in British units such as inches, feet, or miles, or in
the metric system in centimeters, meters, or kilometers. To specify that the length
of a particular object is 18.6 is meaningless. The unit must be given; for clearly,
18.6 meters is very different from 18.6 inches or 18.6 millimeters.

For any unit we use, such as the meter for distance or the second for time, we
need to define a standard which defines exactly how long one meter or one second
is. It is important that standards be chosen that are readily reproducible so that
anyone needing to make a very accurate measurement can refer to the standard in
the laboratory.

Length

The first truly international standard was the meter (abbreviated m) established as
the standard of length by the French Academy of Sciences in the 1790s. The stan-
dard meter was originally chosen to be one ten-millionth of the distance from the
Earth’s equator to either pole,” and a platinum rod to represent this length was
made. (One meter is, very roughly, the distance from the tip of your nose to the tip
of your finger, with arm and hand stretched out to the side.) In 1889, the meter was
defined more precisely as the distance between two finely engraved marks on a
particular bar of platinum—iridium alloy. In 1960, to provide greater precision and
reproducibility, the meter was redefined as 1,650,763.73 wavelengths of a particular
orange light emitted by the gas krypton-86. In 1983 the meter was again redefined,
this time in terms of the speed of light (whose best measured value in terms of the
older definition of the meter was 299,792,458 m/s, with an uncertainty of 1 m/s).
The new definition reads: “The meter is the length of path traveled by light in
vacuum during a time interval of 1/299,792,458 of a second.”*

British units of length (inch, foot, mile) are now defined in terms of the
meter. The inch (in.) is defined as precisely 2.54 centimeters (cm; 1cm = 0.01 m).
Table 1 presents some typical lengths, from very small to very large, rounded off
to the nearest power of ten. See also Fig. 5. [Note that the abbreviation for
inches (in.) is the only one with a period, to distinguish it from the word “in”.

Time

The standard unit of time is the second (s). For many years, the second was defined as
1/86,400 of a mean solar day (24 h/day X 60 min/h X 60s/min = 86,400 s/day).
The standard second is now defined more precisely in terms of the frequency of radi-
ation emitted by cesium atoms when they pass between two particular states.
[Specifically, one second is defined as the time required for 9,192,631,770 periods of
this radiation.] There are, by definition, 60s in one minute (min) and 60 minutes in
one hour (h). Table 2 presents a range of measured time intervals, rounded off to the
nearest power of ten.

Mass

The standard unit of mass is the kilogram (kg). The standard mass is a particular
platinum—iridium cylinder, kept at the International Bureau of Weights and
Measures near Paris, France, whose mass is defined as exactly 1kg. A range of
masses is presented in Table 3. [For practical purposes, 1kg weighs about
2.2 pounds on Earth.]

"Modern measurements of the Earth’s circumference reveal that the intended length is off by about
one-fiftieth of 1%. Not bad!

*The new definition of the meter has the effect of giving the speed of light the exact value of
299,792,458 m/s.
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TABLE 2 Some Typical Time Intervals TABLE 3 Some Masses

Time Interval Seconds (approximate) Object Kilograms (approximate)
Lifetime of very unstable subatomic particle 10735 Electron 107 kg
Lifetime of radioactive elements 10725 to 108 s Proton, neutron 10727 kg
Lifetime of muon 107 s DNA molecule 10717 kg
Time between human heartbeats 10° s(= 1s) Bacterium 107" kg
One day 10° s Mosquito 107 kg
One year 3x 107 s Plum 107! kg
Human life span 2x10° s Human 10* kg
Length of recorded history 101 s Ship 108 kg
Humans on Earth 10" s Earth 6 X 10** kg
Life on Earth 107 s Sun 2 X 10 kg
Age of Universe 10" s Galaxy 10" kg

When dealing with atoms and molecules, we usually use the unified atomic
mass unit (u). In terms of the kilogram,

Tu = 1.6605 X 107 kg.

Unit Prefixes

In the metric system, the larger and smaller units are defined in multiples of 10 from
the standard unit, and this makes calculation particularly easy. Thus 1 kilometer (km)
is 1000m, 1 centimeter is 155 m, 1 millimeter (mm) is 5 m or 7;cm, and so on.
The prefixes “centi-,” “kilo-,” and others are listed in Table 4 and can be applied not
only to units of length but to units of volume, mass, or any other metric unit. For
example, a centiliter (cL) is 15 liter (L), and a kilogram (kg) is 1000 grams (g).

Systems of Units

When dealing with the laws and equations of physics it is very important to use a
consistent set of units. Several systems of units have been in use over the years.
Today the most important is the Systeme International (French for International
System), which is abbreviated SI. In SI units, the standard of length is the meter,
the standard for time is the second, and the standard for mass is the kilogram. This
system used to be called the MKS (meter-kilogram-second) system.

A second metric system is the egs system, in which the centimeter, gram, and
second are the standard units of length, mass, and time, as abbreviated in the title.
The British engineering system has as its standards the foot for length, the pound
for force, and the second for time.

We use SI units almost exclusively in this text.

Base versus Derived Quantities

Physical quantities can be divided into two categories: base quantities and derived
quantities. The corresponding units for these quantities are called base units and
derived units. A base quantity must be defined in terms of a standard. Scientists, in the
interest of simplicity, want the smallest number of base quantities possible consistent
with a full description of the physical world. This number turns out to be seven, and
those used in the SI are given in Table 5. All other quantities can be defined in terms
of these seven base quantities,” and hence are referred to as derived quantities. An
example of a derived quantity is speed, which is defined as distance divided by the time
it takes to travel that distance. To define any quantity, whether base or derived, we can
specify a rule or procedure, and this is called an operational definition.

"The only exceptions are for angle (radians) and solid angle (steradian). No general agreement has
been reached as to whether these are base or derived quantities.

TABLE 4 Metric (SI) Prefixes

Prefix Abbreviation Value

yotta Y 10%
zetta Z 102!
exa E 10'8
peta P 1013
tera T 1012
giga G 10°
mega M 10°
kilo k 10°
hecto h 107
deka da 10"
deci d 107!
centi c 1072
milli m 1073
micro’ n 10°°
nano n 1070
pico P 10712
femto f 1075
atto a 10718
zepto z 1072
yocto y 1072

T is the Greek letter “mu

TABLE 5
SI Base Quantities and Units
Unit

Quantity Unit Abbreviation
Length meter m
Time second S
Mass kilogram kg
Electric

current ampere A
Temperature kelvin K
Amount

of substance mole mol
Luminous

intensity candela cd

13
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The world’s tallest peaks

A.Viansson

FIGURE 6 The world’s second
highest peak, K2, whose summit is
considered the most difficult of the
“8000-ers.” K2 is seen here from
the north (China).

TABLE 6

The 8000-m Peaks

Peak Height (m)
Mt. Everest 8850
K2 8611
Kangchenjunga 8586
Lhotse 8516
Makalu 8462
Cho Oyu 8201
Dhaulagiri 8167
Manaslu 8156
Nanga Parbat 8125
Annapurna 8091
Gasherbrum I 8068
Broad Peak 8047
Gasherbrum II 8035
Shisha Pangma 8013

14
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5 Converting Units

Any quantity we measure, such as a length, a speed, or an electric current, consists
of a number and a unit. Often we are given a quantity in one set of units, but we
want it expressed in another set of units. For example, suppose we measure that a
table is 21.5 inches wide, and we want to express this in centimeters. We must use a
conversion factor, which in this case is (by definition) exactly

lin. = 2.54cm

or, written another way,
1 = 2.54cm/in.

Since multiplying by one does not change anything, the width of our table, in cm, is
21.5inches = (21.57m.) X <2.54 %) = 546cm.

Note how the units (inches in this case) cancelled out. Let’s consider some conversion
Examples.

IETYTJTFY The 8000-m peaks. The fourteen tallest peaks in the world
(Fig. 6 and Table 6) are referred to as “eight-thousanders,” meaning their
summits are over 8000 m above sea level. What is the elevation, in feet, of an
elevation of 8000 m?

APPROACH We need simply to convert meters to feet, and we can start with the
conversion factor 1in. = 2.54 cm, which is exact. That is, 1in. = 2.5400 cm to
any number of significant figures, because it is defined to be.

SOLUTION One foot is 12 in., so we can write
. cm
1ft = (12 m)<2.54 7) = 3048cm = 0.3048 m,
Th.-
which is exact. Note how the units cancel (colored slashes). We can rewrite this

equation to find the number of feet in 1 meter:

11t
1m = 03043 3.28084 ft.

We multiply this equation by 8000.0 (to have five significant figures):
8000.0m = (8000.0 m)<3.28084 %) = 26,247 ft.

An elevation of 8000 m is 26,247 ft above sea level.

NOTE We could have done the conversion all in one line:

100 ear 11n. 11t
8000.0m = (8000.0 m)( > ( ) < ) = 26,247 ft.

1 m 2.54 car )\ 12 1n.

The key is to multiply conversion factors, each equal to one (= 1.0000), and to
make sure the units cancel.

EXERCISE E There are only 14 eight-thousand-meter peaks in the world (see Example 2),
and their names and elevations are given in Table 6. They are all in the Himalaya moun-
tain range in India, Pakistan, Tibet, and China. Determine the elevation of the world’s
three highest peaks in feet.
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Apartment area. You have seen a nice apartment whose floor
area is 880 square feet (ft?). What is its area in square meters?

APPROACH We use the same conversion factor, 1in. = 2.54 cm, but this time
we have to use it twice.

SOLUTION Because lin.=2.54cm = 0.0254m, then 1{t* = (12in)*(0.0254 m/in.)? =
0.0929 m2. So 880 ft> = (880 ft*)(0.0929 m?/ft*) ~ 82 m?.

NOTE As a rule of thumb, an area given in ft? is roughly 10 times the number of
square meters (more precisely, about 10.8X).

lm:m Speeds. Where the posted speed limit is 55 miles per hour (mi/h
or mph), what is this speed (@) in meters per second (m/s) and (b) in kilometers
per hour (km/h)?

APPROACH We again use the conversion factor 1in. = 2.54 cm, and we recall
that there are 5280 ft in a mile and 12 inches in a foot; also, one hour contains
(60 min/h) X (60s/min) = 3600 s/h.
SOLUTION (a) We can write 1 mile as

1mi = (5280K)<1zh><2.54,ﬁ>< Lm ) = 1609 m.

st in.. / \ 100 car

We also know that 1 hour contains 3600 s, so

mi ™i m 1 m
BT (55?)(1609ﬁ>(36005> =B

where we rounded off to two significant figures.
(b) Now we use 1 mi = 1609 m = 1.609 km; then

55 _ (SSE)<1.6091{—“.1> _ ggkm.
™mi

h h h

NOTE Each conversion factor is equal to one.

EXERCISE F Would a driver traveling at 15 m/s in a 35 mi/h zone be exceeding the speed
limit?

When changing units, you can avoid making an error in the use of conversion
factors by checking that units cancel out properly. For example, in our conversion
100 cm

m

of 1mi to 1609 m in Example 4(a), if we had incorrectly used the factor (17)
instead of (13%;), the centimeter units would not have cancelled out; we

would not have ended up with meters.

6 Order of Magnitude: Rapid Estimating

We are sometimes interested only in an approximate value for a quantity. This
might be because an accurate calculation would take more time than it is worth
or would require additional data that are not available. In other cases, we may
want to make a rough estimate in order to check an accurate calculation made
on a calculator, to make sure that no blunders were made when the numbers
were entered.

A rough estimate is made by rounding off all numbers to one significant figure
and its power of 10, and after the calculation is made, again only one significant
figure is kept. Such an estimate is called an order-of-magnitude estimate and can
be accurate within a factor of 10, and often better. In fact, the phrase “order of
magnitude” is sometimes used to refer simply to the power of 10.

PROBLEM SOLVING
Conversion factors = 1

PROBLEM SOLVING
nit conversion is wrong if units do
not cancel

“PROBLEM SOLVING
How to make a rough estimate

15
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@PHYSICS APPLIED

Estimating the volume (or mass) of
a lake; see also Fig. 7

PROBLEM SOLVING
Use symmetry when possible

Introduction, Measurement, Estimating

(®)

FIGURE 7 Example 5. (a) How much
water is in this lake? (Photo is of one
of the Rae Lakes in the Sierra Nevada
of California.) (b) Model of the lake
as a cylinder. [We could go one step
further and estimate the mass or
weight of this lake. We will see later
that water has a density of 1000 kg/m?,
so this lake has a mass of about

(10° kg/m?)(10” m?) ~ 10'° kg, which is
about 10 billion kg or 10 million metric
tons. (A metric ton is 1000 kg, about
2200 1bs, slightly larger than a British
ton, 2000 1bs.)]

IEZYIIT3EN ESTIMATE | Volume of a lake. Estimate how much water there
is in a particular lake, Fig. 7a, which is roughly circular, about 1 km across, and
you guess it has an average depth of about 10 m.

APPROACH No lake is a perfect circle, nor can lakes be expected to have a
perfectly flat bottom. We are only estimating here. To estimate the volume, we
can use a simple model of the lake as a cylinder: we multiply the average depth
of the lake times its roughly circular surface area, as if the lake were a cylinder
(Fig. 7b).

SOLUTION The volume V of a cylinder is the product of its height / times the
area of its base: V = harr?, where r is the radius of the circular base. The radius r
is 2km = 500 m, so the volume is approximately

V = k=~ (10m) X (3) X (5 X 10m)’ ~ 8 X 10°m® ~ 107 m?,

where 7 was rounded off to 3. So the volume is on the order of 10’m’, ten
million cubic meters. Because of all the estimates that went into this calculation,
the order-of-magnitude estimate (107 m3) is probably better to quote than the
8 X 10%m? figure.

NOTE To express our result in U.S. gallons, we see in the Table on the inside
front cover that 1liter = 10°m® ~ Lgallon. Hence, the lake contains
(8 x 10°m®)(1 gallon/4 X 10 m?) ~ 2 X 10%allons of water.

XN ESTIMATE | Thickness of a page. Estimate the thickness

of a page of a text.

APPROACH At first you might think that a special measuring device, a micrometer
(Fig. 8), is needed to measure the thickness of one page since an ordinary
ruler clearly won’t do. But we can use a trick or, to put it in physics terms, make
use of a symmetry: we can make the reasonable assumption that all the pages of
a text are equal in thickness.

SOLUTION We can use a ruler to measure many pages at once. If you measure
the thickness of the first 500 pages of a book (page 1 to page 500), you might
get something like 1.5cm. Note that 500 numbered pages, counted front
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and back, is 250 separate sheets of paper. So one page must have a thickness of
about

1.5cm

———— ~ 6x 107 = 6x1072
250 pages om i

or less than a tenth of a millimeter (0.1 mm).

2GS ESTIMATE | Height by triangulation. Estimate the height
of the building shown in Fig. 9, by “triangulation,” with the help of a bus-stop
pole and a friend.

APPROACH By standing your friend next to the pole, you estimate the height of
the pole to be 3 m. You next step away from the pole until the top of the pole is in
line with the top of the building, Fig. 9a. You are 5ft 6in. tall, so your eyes are
about 1.5m above the ground. Your friend is taller, and when she stretches out her
arms, one hand touches you, and the other touches the pole, so you estimate that
distance as 2 m (Fig. 9a). You then pace off the distance from the pole to the base
of the building with big, 1-m-long steps, and you get a total of 16 steps or 16 m.
SOLUTION Now you draw, to scale, the diagram shown in Fig. 9b using these
measurements. You can measure, right on the diagram, the last side of the
triangle to be about x = 13 m. Alternatively, you can use similar triangles to
obtain the height x:

1.5m X N 1

m - 18m’ so x =~ 13;m.
Finally you add in your eye height of 1.5 m above the ground to get your final
result: the building is about 15 m tall.

Estimating the radius of Earth. Believe it or not,
you can estimate the radius of the Earth without having to go into space. If you
have ever been on the shore of a large lake, you may have noticed that you
cannot see the beaches, piers, or rocks at water level across the lake on the oppo-
site shore. The lake seems to bulge out between you and the opposite shore—a
good clue that the Earth is round. Suppose you climb a stepladder and discover
that when your eyes are 10 ft (3.0 m) above the water, you can just see the rocks
at water level on the opposite shore. From a map, you estimate the distance to
the opposite shore as d =~ 6.1 km. Use Fig. 10 with 2 = 3.0m to estimate the
radius R of the Earth.

APPROACH We use simple geometry, including the theorem of Pythagoras,
c> = @ + b, where c is the length of the hypotenuse of any right triangle, and a
and b are the lengths of the other two sides.

SOLUTION For the right triangle of Fig. 10, the two sides are the radius of the
Earth R and the distance d = 6.1 km = 6100 m. The hypotenuse is approxi-
mately the length R + h, where & = 3.0 m. By the Pythagorean theorem,

R* + d* = (R + h)?
R®> + 2hR + K.

Q

Q

We solve algebraically for R, after cancelling R* on both sides:
& — K (6100m)* — (3.0m)?
2h 6.0m

R =~ = 62X 10°m = 6200km.
NOTE Precise measurements give 6380 km. But look at your achievement! With a
few simple rough measurements and simple geometry, you made a good estimate
of the Earth’s radius. You did not need to go out in space, nor did you need a very long
measuring tape. Now you know the answer to the Chapter-Opening Question.

Larry Voight/Photo Researchers, Inc.

FIGURE 8 Example 6. Micrometer used
for measuring small thicknesses.

FIGURE 9 Example 7.
Diagrams are really useful!

\
EREDENEREE

FIGURE 10 Example 8, but not to
scale. You can see small rocks at
water level on the opposite shore of
a lake 6.1 km wide if you stand on a
stepladder.

17



18

PROBLEM SOLVING
Estimating how many piano tuners
there are in a city

Introduction, Measurement, Estimating

1IN ESTIMATE | Total number of heartbeats. Estimate the total

number of beats a typical human heart makes in a lifetime.
APPROACH A typical resting heart rate is 70 beats/min. But during exercise it
can be a lot higher. A reasonable average might be 80 beats/min.

SOLUTION One year in terms of seconds is (24 h)(3600s/h)(365d) ~ 3 X 107s.
If an average person lives 70 years = (70 yr)(3 X 10”s/yr) ~ 2 X 10° sthen the
total number of heartbeats would be about

beats \ [ 1 min
2 x10°s) =~ 3 x 10°
(80 min)( 6()5)( 0’s) ~ 3 X 10°,

or 3 trillion.

Another technique for estimating, this one made famous by Enrico Fermi to
his physics students, is to estimate the number of piano tuners in a city, say,
Chicago or San Francisco. To get a rough order-of-magnitude estimate of the
number of piano tuners today in San Francisco, a city of about 700,000 inhabitants,
we can proceed by estimating the number of functioning pianos, how often each
piano is tuned, and how many pianos each tuner can tune. To estimate the number
of pianos in San Francisco, we note that certainly not everyone has a piano.
A guess of 1 family in 3 having a piano would correspond to 1 piano per 12 persons,
assuming an average family of 4 persons. As an order of magnitude, let’s say
1 piano per 10 people. This is certainly more reasonable than 1 per 100 people, or
1 per every person, so let’s proceed with the estimate that 1 person in 10 has a
piano, or about 70,000 pianos in San Francisco. Now a piano tuner needs an hour
or two to tune a piano. So let’s estimate that a tuner can tune 4 or 5 pianos a day.
A piano ought to be tuned every 6 months or a year—Ilet’s say once each year.
A piano tuner tuning 4 pianos a day, 5 days a week, 50 weeks a year can tune
about 1000 pianos a year. So San Francisco, with its (very) roughly 70,000 pianos,
needs about 70 piano tuners. This is, of course, only a rough estimate.’ It tells us
that there must be many more than 10 piano tuners, and surely not as many as 1000.

*/ Dimensions and Dimensional Analysis

When we speak of the dimensions of a quantity, we are referring to the type of base
units or base quantities that make it up. The dimensions of area, for example, are
always length squared, abbreviated [L?], using square brackets; the units can be
square meters, square feet, cm?, and so on. Velocity, on the other hand, can be
measured in units of km/h, m/s, or mi/h, but the dimensions are always a length [L]
divided by a time [7]: that is, [L/T].

The formula for a quantity may be different in different cases, but the dimen-
sions remain the same. For example, the area of a triangle of base b and height /4 is
A = 1bh, whereas the area of a circle of radius r is A = 772 The formulas are

different in the two cases, but the dimensions of area are always [L?*].

Dimensions can be used as a help in working out relationships, a procedure
referred to as dimensional analysis. One useful technique is the use of dimensions
to check if a relationship is incorrect. Note that we add or subtract quantities only
if they have the same dimensions (we don’t add centimeters and hours); and
the quantities on each side of an equals sign must have the same dimensions. (In
numerical calculations, the units must also be the same on both sides of an equation.)

For example, suppose you derived the equation v = v, + 3at?, where v is the
speed of an object after a time 1, v, is the object’s initial speed, and the object
undergoes an acceleration a. Let’s do a dimensional check to see if this equation

A check of the San Francisco Yellow Pages (done after this calculation) reveals about 50 listings. Each
of these listings may employ more than one tuner, but on the other hand, each may also do repairs as
well as tuning. In any case, our estimate is reasonable.
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could be correct or is surely incorrect. Note that numerical factors, like the } here,
do not affect dimensional checks. We write a dimensional equation as follows,
remembering that the dimensions of speed are [L/T] and the dimensions of accel-
eration are [L/T?]:

) [ (e <[] v

The dimensions are incorrect: on the right side, we have the sum of quantities
whose dimensions are not the same. Thus we conclude that an error was made in
the derivation of the original equation.

A dimensional check can only tell you when a relationship is wrong. It can’t
tell you if it is completely right. For example, a dimensionless numerical factor (such
as 1 or 27r) could be missing.

Dimensional analysis can also be used as a quick check on an equation you are
not sure about. For example, suppose that you can’t remember whether the equa-
tion for the period of a simple pendulum 7 (the time to make one back-and-forth
swing) of length £is T = 2aVE/g or T = 27w\Vg/l, where g is the acceleration
due to gravity and, like all accelerations, has dimensions [L/T?]. (Do not worry
about these formulas; what we are concerned about here is a person’s recalling
whether it contains £/g or g/f.) A dimensional check shows that the former (£/g)
is correct:

1 = A o =,

[£/77]
whereas the latter (g/£) is not:

[L/7?] B T 1
M=\ N T m

Note that the constant 27 has no dimensions and so can’t be checked using dimensions.

IETYTITETN Planck length. The smallest meaningful measure of length is
called the “Planck length,” and is defined in terms of three fundamental constants
in nature, the speed of light ¢ = 3.00 X 10®°m/s, the gravitational constant
G = 6.67 X 10 ' m’/kg-s?>, and Planck’s constant # = 6.63 X 10 3*kg-m?/s.
The Planck length Ap (A is the Greek letter “lambda”) is given by the following
combination of these three constants:

Gh

Ap = o) —-
P
K

Show that the dimensions of Ap are length [L], and find the order of magnitude of Ap.
APPROACH We rewrite the above equation in terms of dimensions. The dimen-

sions of ¢ are [L/T], of G are [L3/MT?], and of h are [ML?/T].
SOLUTION The dimensions of A, are

\/[LB/MTZ][MLZ/T] VT = 1w

[23/T7]

which is a length. The value of the Planck length is

—11_ 3 L2 347, 0. 2
\ - %h _ \/(6.67 X 10 m/kg5%)(6.63 X 10 kg m’/s) _ , 105 m,
\ 2

(3.0 x 10° m/s)’

which is on the order of 107* or 107 m.

NOTE Some recent theories suggest that the smallest particles (quarks, leptons)
have sizes on the order of the Planck length, 107 m. These theories also suggest
that the “Big Bang,” with which the Universe is believed to have begun, started
from an initial size on the order of the Planck length.
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| Summary

Physics, like other sciences, is a creative endeavor. It is not
simply a collection of facts. Important theories are created with
the idea of explaining observations. To be accepted, theories are
tested by comparing their predictions with the results of actual
experiments. Note that, in general, a theory cannot be “proved”
in an absolute sense.

Scientists often devise models of physical phenomena. A
model is a kind of picture or analogy that helps to describe the
phenomena in terms of something we already know. A theory,
often developed from a model, is usually deeper and more
complex than a simple model.

A scientific law is a concise statement, often expressed in
the form of an equation, which quantitatively describes a wide
range of phenomena.

Measurements play a crucial role in physics, but can never
be perfectly precise. It is important to specify the uncertainty

| Answers to Exercises

of a measurement either by stating it directly using the =+
notation, and/or by keeping only the correct number of
significant figures.

Physical quantities are always specified relative to a partic-
ular standard or unit, and the unit used should always be stated.
The commonly accepted set of units today is the Systeme
International (SI), in which the standard units of length, mass,
and time are the meter, kilogram, and second.

When converting units, check all conversion factors for
correct cancellation of units.

Making rough, order-of-magnitude estimates is a very
useful technique in science as well as in everyday life.

[*The dimensions of a quantity refer to the combination of
base quantities that comprise it. Velocity, for example, has
dimensions of [length/time] or [L/T]. Dimensional analysis can
be used to check a relationship for correct form.]

A: (d).
B: No: they have 3 and 2, respectively.

C: All three have three significant figures, although the
number of decimal places is (a) 2, (b) 3, (c) 4.

D: (a) 2.58 X 1072, 3; (b) 4.23 X 10% 3 (probably);

(c) 3.4450 X 107 5.
E: Mt. Everest, 29,035 ft; K2, 28,251 ft; Kangchenjunga, 28,169 ft.
F: No:15m/s ~ 34 mi/h.
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§ Questions

1. What are the merits and drawbacks of using a person’s foot as
a standard? Consider both (@) a particular person’s foot, and
(b) any person’s foot. Keep in mind that it is advantageous
that fundamental standards be accessible (easy to compare to),
invariable (do not change), indestructible, and reproducible.

2. Why is it incorrect to think that the more digits you
represent in your answer, the more accurate it is?

3. When traveling a highway in the mountains, you may see
elevation signs that read “914m (3000 ft).” Critics of the
metric system claim that such numbers show the metric
system is more complicated. How would you alter such signs
to be more consistent with a switch to the metric system?

4. What is wrong with this road sign:

Memphis 7 mi (11.263 km)?

5. For an answer to be complete, the units need to be speci-
fied. Why?

6. Discuss how the notion of symmetry could be used to
estimate the number of marbles in a 1-liter jar.

7. You measure the radius of a wheel to be 4.16 cm. If you
multiply by 2 to get the diameter, should you write the
result as 8 cm or as 8.32 cm? Justify your answer.

8. Express the sine of 30.0° with the correct number of
significant figures.

9. A recipe for a soufflé specifies that the measured ingredients
must be exact, or the soufflé will not rise. The recipe calls for

| Problems

6 large eggs. The size of “large” eggs can vary by 10%,
according to the USDA specifications. What does this tell you
about how exactly you need to measure the other ingredients?
10. List assumptions useful to estimate the number of car
mechanics in (a) San Francisco, (b) your hometown, and
then make the estimates.
11. Suggest a way to measure the distance from Earth to the Sun.
#*]2, Can you set up a complete set of base quantities, as in
Table 5, that does not include length as one of them?

TABLE 5
SI Base Quantities and Units
Unit

Quantity Unit  Abbreviation
Length meter m
Time second s
Mass kilogram kg
Electric

current ampere A
Temperature kelvin K
Amount

of substance mole mol
Luminous

intensity candela cd

[The Problems in this Section are ranked I, IL, or III according to
estimated difficulty, with (I) Problems being easiest. Level (III)
Problems are meant mainly as a challenge for the best students, for
“extra credit.” The Problems are arranged by Sections, meaning that
the reader should have read up to and including that Section, but
this Chapter also has a group of General Problems that are not
arranged by Section and not ranked.]

3 Measurement, Uncertainty, Significant Figures
(Note: In Problems, assume a number like 6.4 is accurate to + 0.1;
and 950 is + 10 unless 950 is said to be “precisely” or “very nearly”
950, in which case assume 950 £ 1.)
1. (I) The age of the universe is thought to be about 14 billion
years. Assuming two significant figures, write this in powers
of ten in (a) years, (b) seconds.

2. (I) How many significant figures do each of the following
numbers have: (a) 214, (b) 81.60, (c¢) 7.03, (d) 0.03,
(e) 0.0086, (f) 3236, and (g) 87007

3. (I) Write the following numbers in powers of ten notation:
(a) 1.156, (b) 21.8, (c) 0.0068, (d) 328.65, () 0.219, and (f) 444.

4. (I) Write out the following numbers in full with the
correct number of zeros: (a) 8.69 X 10*, (b) 9.1 X 10°,
(c) 8.8 X 107!, (d) 4.76 X 107, and (e) 3.62 X 107>

5. (II) What is the percent uncertainty in the measurement
548 £ 0.25m?

6. (II) Time intervals measured with a stopwatch typically have
an uncertainty of about 0.2's, due to human reaction time at
the start and stop moments. What is the percent uncertainty
of a hand-timed measurement of (a) 55, (b) 50, (¢) 5min?

7. (I1) Add (92 X 10°s) + (8.3 X 10%s) + (0.008 X 10°s).

8. (II) Multiply 2.079 X 10>m by 0.082 X 107!, taking into
account significant figures.

9. (III) For small angles 6, the numerical value of sin6 is
approximately the same as the numerical value of tan 6.
Find the largest angle for which sine and tangent agree to
within two significant figures.

10. (III) What, roughly, is the percent uncertainty in the volume
of a spherical beach ball whose radius is » = 0.84 + 0.04 m?

4 and 5 Units, Standards, SI, Converting Units

11. (I) Write the following as full (decimal) numbers with stan-
dard units: () 286.6 mm, (b) 85wV, (c¢) 760 mg, (d) 60.0 ps,
(e) 22.5 fm, (f) 2.50 gigavolts.

12. (I) Express the following using the prefixes of Table 4:
(a) 1 X 10°volts, (b) 2 X 10 meters, (c) 6 X 103 days,
(d) 18 X 10%bucks, and (e) 8 X 10~®seconds.

From Chapter 1 of Physics for Scientists & Engineers with Modern Physics, Fourth Edition, Douglas C. Giancoli.
Copyright © 2009 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.
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TABLE 4 Metric (SI) Prefixes

Introduction, Measurement, Estimating: Problem Set

13. (D) Determine
your own height in

Prefix Abbreviation Value meters, and your mass
in kg.
tt Y o =
yotta 7 102 14. (I) The Sun, on
zetta g average, is 93 million
exa E 10 miles from Earth. How
peta P 10  many meters is this?
tera T 10'>  Express (a) using
eiga G 10? powers of :e.n, ant;. (b)
5 using a metric prefix.
mega M 103 15. (II) What is the
Ll k 102 conversion factor
hecto h 10 between (a) ft*> and
deka da 10" yd?, (b) m? and ft*?
deci d 107! 16. (II) An airplane
— © 1072 ;avells atd 950.km/kh.
il 1073 ow long does 1t take
me — 18*6 to travel 1.00 km?
micro m , 17. (I A typical
Hano m 10 atom has a diameter of
pico p 1072 about 1.0 X 1070m.
femto f 1075 (a) What is this in
atto 2 10-18 inches? (b) Approxi-
zepto s 10-21 mately how many
_,4 atoms are there along
yroite y 10 a 1.0-cm line?
" wis the Greek letter “mu 18. (II) Express the
following sum with the
correct number of significant figures: 1.80m +

19.

20.

21.

22.

23.

142.5cm + 5.34 X 10° pm.

(II) Determine the conversion factor between (a) km/h
and mi/h, (b) m/s and ft/s, and (c) km/h and m/s.

(IT) How much longer (percentage) is a one-mile race than
a 1500-m race (“the metric mile”)?

(IT) A light-year is the distance light travels in one year
(at speed = 2.998 X 10%m/s). (a¢) How many meters are
there in 1.00 light-year? (b) An astronomical unit (AU) is
the average distance from the Sun to Earth, 1.50 X 10% km.
How many AU are there in 1.00 light-year? (¢) What is the
speed of light in AU/h?

(II) If you used only a keyboard to enter data, how many
years would it take to fill up the hard drive in your
computer that can store 82 gigabytes (82 X 10° bytes) of
data? Assume “normal” eight-hour working days, and that
one byte is required to store one keyboard character, and
that you can type 180 characters per minute.

(III) The diameter of the Moon is 3480 km. (a) What is the
surface area of the Moon? (b) How many times larger is the
surface area of the Earth?

6 Order-of-Magnitude Estimating

(Note: Remember that for rough estimates, only round numbers are
needed both as input to calculations and as final results.)

24.

25.

26.

(I) Estimate the order of magnitude (power of ten) of: (a) 2800,
(b) 86.30 X 102, (c) 0.0076, and (d) 15.0 x 10%.

(IT) Estimate how many books can be shelved in a college
library with 3500 m? of floor space. Assume 8 shelves high,
having books on both sides, with corridors 1.5m wide.
Assume books are about the size of this one, on average.
(IT) Estimate how many hours it would take a runner to run (at
10km/h) across the United States from New York to California.

27.

28.

(IT) Estimate the number of liters of water a human drinks
in a lifetime.
(IT) Estimate how long it would take one person to mow a
football field using an ordinary home lawn mower (Fig. 11).
Assume the mower moves with a 1-km/h speed, and has a
0.5-m width.

FIGURE 11
Problem 28.

29.

30.

31.

32.

33.

(IT) Estimate the number of dentists (a) in San Francisco
and (b) in your town or city.

(III) The rubber worn from tires mostly enters the atmosphere
as particulate pollution. Estimate how much rubber (in kg) is
put into the air in the United States every year. To get started,
a good estimate for a tire tread’s depth is 1 cm when new, and
rubber has a mass of about 1200 kg per m® of volume.

(III) You are in a hot air balloon, 200 m above the flat Texas
plains. You look out toward the horizon. How far out can
you see—that is, how far is your horizon? The Earth’s
radius is about 6400 km.

(I1) I agree to hire you for 30 days and you can decide between
two possible methods of payment: either (1) $1000 a day, or
(2) one penny on the first day, two pennies on the second day
and continue to double your daily pay each day up to day 30.
Use quick estimation to make your decision, and justify it.
(IIT) Many sailboats are moored at a marina 4.4 km away on the
opposite side of a lake. You stare at one of the sailboats because,
when you are lying flat at the water’s edge, you can just see its
deck but none of the side of the sailboat. You then go to that
sailboat on the other side of the
lake and measure that the deck
is 1.5m above the level of the
water. Using Fig. 12, where
h = 1.5 m, estimate the radius R
of the Earth.

FIGURE 12 Problem 33.

You see a sailboat across a
lake (not to scale). R is the
radius of the Earth. You are a
distance d = 4.4km from the
sailboat when you can see only
its deck and not its side.
Because of the curvature of the
Earth, the water “bulges out”
between you and the boat.

. (IIT) Another experiment you can do also uses the radius of

the Earth. The Sun sets, fully disappearing over the horizon as
you lie on the beach, your eyes 20 cm above the sand. You
immediately jump up, your eyes now 150 cm above the sand,
and you can again see the top of the Sun. If you count the
number of seconds (= ) until the Sun fully disappears again,
you can estimate the radius of the Earth. But for this Problem,
use the known radius of the Earth and calculate the time f.
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*7 Dimensions

*35.

*36.

*37.

(I) What are the dimensions of density, which is mass per
volume?

(II) The speed v of an object is given by the equation
v = AP — Bt, where t refers to time. (a) What are the
dimensions of A and B? (b) What are the SI units for the
constants A and B?

(II) Three students derive the following equations in which
x refers to distance traveled, v the speed, a the acceleration
(m/s?), t the time, and the subscript zero () means a quantity
attime t = 0: (a) x = vt + 2at, (b) x = vyt + tat’, and
(¢) x =wot + 2ar’. Which of these could possibly be
correct according to a dimensional check?

| General Problems

*38. (II) Show that the following combination of the three funda-

mental constants of nature that we used in Example 10 of
“Introduction, Measurement, Estimating” (that is G, ¢, and &)
forms a quantity with the dimensions of time:

tp = —
This quantity, fp, is called the Planck time and is thought to

be the earliest time, after the creation of the Universe, at
which the currently known laws of physics can be applied.

39.

40.

FIGURE 13 Problem 40.

The wafer held by the hand (above)
is shown below, enlarged and
illuminated by colored light. Visible
are rows of integrated circuits (chips).

41.

42.

43.

44,

45.

46.

47.

Global positioning satellites (GPS) can be used to deter-
mine positions with great accuracy. If one of the satellites is
at a distance of 20,000 km from you, what percent uncertainty
in the distance does a 2-m uncertainty represent? How
many significant figures are needed in the distance?
Computer chips (Fig. 13) etched on circular silicon wafers of
thickness 0.300 mm are sliced from a solid cylindrical silicon
crystal of length 25 cm. If each
wafer can hold 100 chips, what
is the maximum number of
chips that can be produced
from one entire cylinder?

=

David Parker/Science Photo
Library/Photo Researchers, Inc.

(a) How many seconds are there in 1.00 year? (b) How
many nanoseconds are there in 1.00 year? (¢) How many
years are there in 1.00 second?

American football uses a field that is 100 yd long, whereas a
regulation soccer field is 100 m long. Which field is longer,
and by how much (give yards, meters, and percent)?

A typical adult human lung contains about 300 million tiny
cavities called alveoli. Estimate the average diameter of
a single alveolus.

One hectare is defined as 1.000 X 10*m% One acre is
4.356 X 10*ft>. How many acres are in one hectare?
Estimate the number of gallons of gasoline consumed by
the total of all automobile drivers in the United States,
per year.

Use Table 3 to estimate the total number of protons or
neutrons in (a) a bacterium, (b) a DNA molecule, (¢) the
human body, (d) our Galaxy.

An average family of four uses roughly 1200L (about
300 gallons) of water per day (1L = 1000 cm3). How much
depth would a lake lose per year if it uniformly covered an
area of 50 km? and supplied a local town with a population
of 40,000 people? Consider only population uses, and
neglect evaporation and so on.

48.

49.

50.

TABLE 3 Some Masses

Object Kilograms (approximate)
Electron 107 kg
Proton, neutron 1077 kg
DNA molecule 10717 kg
Bacterium 1075 kg
Mosquito 107 kg
Plum 107" kg
Human 10> kg
Ship 108 kg
Earth 6 X 10** kg
Sun 2 x 10% kg
Galaxy 10" kg

Estimate the number of gumballs in the machine of Fig. 14.

FIGURE 14 Problem 48.
Estimate the number of
gumballs in the machine.

Estimate how many kilograms of laundry soap are used in
the U.S. in one year (and therefore pumped out of washing
machines with the dirty water). Assume each load of
laundry takes 0.1 kg of soap.

How big is a ton? That is, what is the volume of something
that weighs a ton? To be specific, estimate the diameter of a
1-ton rock, but first make a wild guess: will it be 1 ft across,
31ft, or the size of a car? [Hint: Rock has mass per volume
about 3 times that of water, which is 1 kg per liter (10° cm®)
or 62 1b per cubic foot.]

The Image Works
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51.

52.

53.

54.

55.

56.

57.

Introduction, Measurement, Estimating: Problem Set

A certain audio compact disc (CD) contains 783.216 megabytes
of digital information. Each byte consists of exactly 8bits.
When played, a CD player reads the CD’s digital information
at a constant rate of 1.4megabits per second. How many
minutes does it take the player to read the entire CD?

Hold a pencil in front of your eye at a position where its
blunt end just blocks out the Moon (Fig. 15). Make appro-
priate measurements to estimate
the diameter of the Moon, given
that the Earth—Moon distance is
3.8 X 10°km.

FIGURE 15 Problem 52.
How big is the Moon? A

A heavy rainstorm dumps 1.0 cm of rain on a city 5 km wide
and 8km long in a 2-h period. How many metric tons
(1 metric ton = 10°kg) of water fell on the city? (1cm? of
water has a mass of 1g = 10"kg) How many gallons
of water was this?

Noah’s ark was ordered to be 300 cubits long, 50 cubits wide,
and 30 cubits high. The cubit was a unit of measure equal to
the length of a human forearm, elbow to the tip of the
longest finger. Express the dimensions of Noah’s ark in
meters, and estimate its volume (m?).

Estimate how many days it would take to walk around the
world, assuming 10 h walking per day at 4 km/h.

One liter (1000 cm?) of oil is spilled onto a smooth lake. If
the oil spreads out uniformly until it makes an oil slick just
one molecule thick, with adjacent molecules just touching,
estimate the diameter of the oil slick. Assume the oil mole-
cules have a diameter of 2 X 107 10m.

Jean camps beside a wide river and wonders how wide it is.
She spots a large rock on the bank directly across from her.
She then walks upstream until she judges that the angle
between her and the rock, which she can still see clearly, is
now at an angle of 30° downstream (Fig. 16). Jean measures
her stride to be
about 1 yard long.
The distance back
to her camp is 120
strides. About how
far across, both in
yards and in meters,

N . \ 300 I
9
is the river? \ \(_i
\\ |
FIGURE 16 @ ‘ coN
Problem 57. > S © 120 Strides -

58.

59.

60.

61.

62.

63.
64.

65.

66.

67.

68.

69.

A watch manufacturer claims that its watches gain or lose
no more than 8seconds in a year. How accurate is this
watch, expressed as a percentage?

An angstrom (symbol A) is a unit of length, defined as
107! m, which is on the order of the diameter of an atom.
(a) How many nanometers are in 1.0 angstrom? (b) How
many femtometers or fermis (the common unit of length in
nuclear physics) are in 1.0 angstrom? (c¢) How many
angstroms are in 1.0 m? (d) How many angstroms are in
1.0 light-year (see Problem 21)?

The diameter of the Moon is 3480 km. What is the volume
of the Moon? How many Moons would be needed to create
a volume equal to that of Earth?

Determine the percent uncertainty in 6, and in sin 6, when
(a) 6 =15.0° £ 0.5° (b) 6 = 75.0° £ 0.5°

If you began walking along one of Earth’s lines of longi-
tude and walked north until you had changed latitude by
1 minute of arc (there are 60 minutes per degree), how far
would you have walked (in miles)? This distance is called a
“nautical mile.”

Make a rough estimate of the volume of your body (in m?).
Estimate the number of bus drivers (@) in Washington, D.C.,
and (b) in your town.

The American Lung Association gives the following formula
for an average person’s expected lung capacity V (in liters,
where 1L = 10° cm®):

V = 41H — 0.0184 — 2.69,

where H and A are the person’s height (in meters), and
age (in years), respectively. In this formula, what are the
units of the numbers 4.1, 0.018, and 2.69?

The density of an object is defined as its mass divided by its
volume. Suppose the mass and volume of a rock are
measured to be 8 g and 2.8325 cm®. To the correct number
of significant figures, determine the rock’s density.

To the correct number of significant figures, use the infor-
mation inside the front cover of this book to determine the
ratio of (a) the surface area of Earth compared to the
surface area of the Moon; (b) the volume of Earth
compared to the volume of the Moon.

One mole of atoms consists of 6.02 X 10?3 individual atoms. If
a mole of atoms were spread uniformly over the surface of the
Earth, how many atoms would there be per square meter?
Recent findings in astrophysics suggest that the observable
Universe can be modeled as a sphere of radius
R = 13.7 X 10° light-years with an average mass density of
about 1 X 1072°kg/m? where only about 4% of the
Universe’s total mass is due to “ordinary” matter (such as
protons, neutrons, and electrons). Use this information to
estimate the total mass of ordinary matter in the observable
Universe. (1 light-year = 9.46 X 10" m.)

| Answers to Odd-Numbered Problems

1. (a) 1.4 X 10'0y;

3. (a) 1.156 x 10°

b) 4.4 X 1017 S.
(b)
(f)4.44 x 10

(b) 2.18 X 10%; 5. 4.6%.
(c) 6.8 X 1073, 7.1.00 X 10°s.
9. 0.24 rad.

(d) 3.2865 X 107
(e) 219 x 107Y;

11. (a) 0.2866 m;
(b) 0.000085 V;
(c) 0.00076 kg;
(d) 0.0000000000600 s;
(e) 0.0000000000000225 m;
(£)2,500,000,000 V.



21.

23,

25
27

Introduction, Measurement, Estimating: Problem Set

. 510" = 1.8 m, 1651bs = 75.2 kg.
. (a) 11t = 0.111 yd%;
(b) 1 m? = 10.8 ft2.
. (a) 3.9 X 10in,;
(b) 1.0 X 10% atoms.
. (a) 1km/h = 0.621 mi/h;
(b) 1 m/s = 3.28 ft/s;
(¢) 1km/h = 0278 m/s.
. (a) 9.46 X 10" m;
(b) 6.31 X 10* AU;
(c) 720 AU/h.
. (a) 3.80 X 103 m?;
(b) 13.4.
. 6 X 10° books.
.5 X 10%L.

29.
31.
33.
3s.
37.

39.
41.

43.
4s.
47.

(a) 1800.

5 % 10*m.
6.5 X 10°m.
[M/L3).

(a) Cannot;
(b) can;

(c) can.

(a) 3.16 X 107s;
(b) 3.16 X 10" ns;
(c) 3.17 x 107 8y.
2 X 104 m.

1 x 10" gal/y.
9cm/y.

. 2 X 10°kg/y.

(1 X 107°)%, 8 significant figures.

51,
53,
55
57.
59,

61.
63,
65
67.

69,

. 75 min.
. 4 X 10° metric tons, 1 X 10% gal.
. 1 X 10° days
. 210yd, 190 m.
. (a) 0.10 nm;
(b) 1.0 X 10° fm;
(¢) 1.0 X 100 A;
(d) 9.5 x 10 A.
. (@) 3%, 3%;
(b) 0.7%, 0.2%.
.8 X 1072 m’.
. L/m,L/y, L.
. (a) 13.4;
(b) 49.3.
. 4 X 10°! kg.

25
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A high-speed car has released a parachute to reduce
its speed quickly. The directions of the car’s velocity and
acceleration are shown by the green (V) and gold (&) arrows.

Motion is described using
the concepts of velocity and
acceleration. In the case shown
here, the acceleration a is in the
opposite  direction from the
velocity ¥, which means the object
is slowing down. We examine
in detail motion with constant
acceleration, including the vertical
motion of objects falling under
gravity.
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George D. Lepp/Corbis/Bettmann
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CHAPTER-OPENING QUESTION—Guess now!

[Don’t worry about getting the right answer now—the idea is to get your preconceived

notions out on the table.]
Two small heavy balls have the same diameter but one weighs twice as much as the
other. The balls are dropped from a second-story balcony at the exact same time.
The time to reach the ground below will be:

(a) twice as long for the lighter ball as for the heavier one.

(b) longer for the lighter ball, but not twice as long.

(¢) twice as long for the heavier ball as for the lighter one.

(d) longer for the heavier ball, but not twice as long.

(e) nearly the same for both balls.

he motion of objects—baseballs, automobiles, joggers, and even the Sun

and Moon—is an obvious part of everyday life. It was not until the

sixteenth and seventeenth centuries that our modern understanding of

motion was established. Many individuals contributed to this understanding,
particularly Galileo Galilei (1564-1642) and Isaac Newton (1642—1727).

Note: Sections marked with an asterisk (*) may be considered optional by the instructor.
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The study of the motion of objects, and the related concepts of force and
energy, form the field called mechanics. Mechanics is customarily divided into two
parts: kinematics, which is the description of how objects move, and dynamics,
which deals with force and why objects move as they do.

For now we only discuss objects that move without rotating (Fig. 1a). Such
motion is called translational motion. In this Chapter we will be concerned
with describing an object that moves along a straight-line path, which is
one-dimensional translational motion.

We will often use the concept, or model, of an idealized particle which is
considered to be a mathematical point with no spatial extent (no size). A point particle
can undergo only translational motion. The particle model is useful in many real
situations where we are interested only in translational motion and the object’s
size is not significant. For example, we might consider a billiard ball, or even a
spacecraft traveling toward the Moon, as a particle for many purposes.

1 Reference Frames and Displacement

Any measurement of position, distance, or speed must be made with respect to a

reference frame, or frame of reference. For example, while you are on a train trav- (a)
eling at 80 km/h, suppose a person walks past you toward the front of the train at  FIGURE1 The pinecone in (a)

a speed of, say, 5km/h (Fig. 2). This 5km/h is the person’s speed with respect to undergoes pure translation as it falls,
the train as frame of reference. With respect to the ground, that person is moving whereas in (b) it is rotating as well as
at a speed of 80km/h + 5km/h = 85km/h. It is always important to specify the translating.

frame of reference when stating a speed. In everyday life, we usually mean “with

respect to the Earth” without even thinking about it, but the reference frame must

be specified whenever there might be confusion.

¢
e
.

FIGURE 2 A person walks toward
the front of a train at 5 km/h. The
train is moving 80 km/h with respect
to the ground, so the walking
person’s speed, relative to the
ground, is 85 km/h.

SEOco

When specifying the motion of an object, it is important to specify not only the
speed but also the direction of motion. Often we can specify a direction by using
the cardinal points, north, east, south, and west, and by “up” and “down.” In
physics, we often draw a set of coordinate axes, as shown in Fig. 3, to represent a FIGURE 3 Standard set of xy
frame of reference. We can always place the origin 0, and the directions of the x = coordinate axes.
and y axes, as we like for convenience. The x and y axes are always perpendicular +y
to each other. Objects positioned to the right of the origin of coordinates (0) on
the x axis have an x coordinate which we usually choose to be positive; then points
to the left of 0 have a negative x coordinate. The position along the y axis is usually
considered positive when above 0, and negative when below 0, although the
reverse convention can be used if convenient. Any point on the plane can be  _x +x
specified by giving its x and y coordinates. In three dimensions, a z axis perpendicular
to the x and y axes is added.

For one-dimensional motion, we often choose the x axis as the line along
which the motion takes place. Then the position of an object at any moment is
given by its x coordinate. If the motion is vertical, as for a dropped object, we —y
usually use the y axis.

29



30

/\ CAUTION
The displacement may not equal the
total distance traveled

~

__________ 5

X
West 0 40 m 30 m East

Displacement

FIGURE 4 A person walks 70 m
east, then 30 m west. The total
distance traveled is 100 m (path is
shown dashed in black); but the
displacement, shown as a solid blue
arrow, is 40 m to the east.

FIGURE 5 The arrow represents
the displacement x, — x;. Distances
are in meters.

y
X X2
0 + t + } X
10 20 30 40

Distance (m)

FIGURE 6 For the displacement
Ax = x, — x; = 10.0m — 30.0m,
the displacement vector points to
the left.

X X1
L Ax —-E
4 } + t X
10 20 30 40
Distance (m)

0

Describing Motion: Kinematics in One Dimension

We need to make a distinction between the distance an object has traveled and
its displacement, which is defined as the change in position of the object. That is,
displacement is how far the object is from its starting point. To see the distinction
between total distance and displacement, imagine a person walking 70 m to the
east and then turning around and walking back (west) a distance of 30m
(see Fig. 4). The total distance traveled is 100 m, but the displacement is only 40 m
since the person is now only 40 m from the starting point.

Displacement is a quantity that has both magnitude and direction. Such quan-
tities are called vectors, and are represented by arrows in diagrams. For example, in
Fig. 4, the blue arrow represents the displacement whose magnitude is 40 m and
whose direction is to the right (east).

In this chapter, we deal only with motion in one dimension, along a line. In this
case, vectors which point in one direction will have a positive sign, whereas vectors
that point in the opposite direction will have a negative sign, along with their
magnitude.

Consider the motion of an object over a particular time interval. Suppose that
at some initial time, call it #;, the object is on the x axis at the position x; in the
coordinate system shown in Fig. 5. At some later time, #,, suppose the object has
moved to position x,. The displacement of our object is x, — x;, and is repre-
sented by the arrow pointing to the right in Fig. 5. It is convenient to write

Ax = x, — xq,

where the symbol A (Greek letter delta) means “change in.” Then Ax means “the

change in x,” or “change in position,” which is the displacement. Note that the “change

in” any quantity means the final value of that quantity, minus the initial value.
Suppose x; = 10.0m and x, = 30.0m. Then

Ax = x, — x; = 300m — 10.0m = 20.0m,

so the displacement is 20.0 m in the positive direction, Fig. 5.

Now consider an object moving to the left as shown in Fig. 6. Here the object,
say, a person, starts at x; = 30.0m and walks to the left to the point
X, = 10.0m. In this case her displacement is

Ax = x, — x; = 100m — 300m = —20.0m,

and the blue arrow representing the vector displacement points to the left. For
one-dimensional motion along the x axis, a vector pointing to the right has a
positive sign, whereas a vector pointing to the left has a negative sign.

EXERCISE A An ant starts at x = 20cm on a piece of graph paper and walks along the
x axis to x = —20cm. It then turns around and walks back to x = —10cm. What is
the ant’s displacement and total distance traveled?

2 Average Velocity

The most obvious aspect of the motion of a moving object is how fast it is
moving—its speed or velocity.

The term “speed” refers to how far an object travels in a given time interval,
regardless of direction. If a car travels 240 kilometers (km) in 3 hours (h), we say its
average speed was 80 km/h. In general, the average speed of an object is defined as the
total distance traveled along its path divided by the time it takes to travel this distance:

d distance traveled a
averagespeed = —— ——-
gesp time elapsed

The terms “velocity” and “speed” are often used interchangeably in ordinary
language. But in physics we make a distinction between the two. Speed is simply a
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positive number, with units. Velocity, on the other hand, is used to signify both the
magnitude (numerical value) of how fast an object is moving and also the direction
in which it is moving. (Velocity is therefore a vector.) There is a second difference
between speed and velocity: namely, the average velocity is defined in terms of
displacement, rather than total distance traveled:

displacement final position — initial position

average velocity = —; = -
& Y time elapsed time elapsed

Average speed and average velocity have the same magnitude when the A\ CAUTION
motion is all in one direction. In other cases, they may differ: recall the walk we Average speed is not necessarily
described earlier, in Fig. 4, where a person walked 70 m east and then 30 m west. ~ ¢qual (o the magnitude of the
The total distance traveled was 70m + 30m = 100m, but the displacement was ~ “V¢7age velocity
40 m. Suppose this walk took 70 s to complete. Then the average speed was:

distance _ 100m

= = 14 .
time elapsed 70s m/s

The magnitude of the average velocity, on the other hand, was:
displacement 40m

= = 0.57 .
time elapsed 70s m/s

This difference between the speed and the magnitude of the velocity can occur
when we calculate average values.

To discuss one-dimensional motion of an object in general, suppose that at
some moment in time, call it #;, the object is on the x axis at position x; in a coor-
dinate system, and at some later time, f,, suppose it is at position x,. The elapsed
time is A7 = f, — t;; during this time interval the displacement of our object is
Ax = x, — x;. Then the average velocity, defined as the displacement divided by
the elapsed time, can be written

X, — X Ax

LV @

where v stands for velocity and the bar (-) over the v is a standard symbol
meaning “average.”
For the usual case of the +x axis to the right, note that if x, is less than x;, the PROBLEM SOLVING

object is moving to the left, and then Ax = x, — x; is less than zero. The sign of + or — sign can signify the direction
the displacement, and thus of the average velocity, indicates the direction: the for linear motion
average velocity is positive for an object moving to the right along the +x axis and
negative when the object moves to the left. The direction of the average velocity is
always the same as the direction of the displacement.
Note that it is always important to choose (and state) the elapsed time, or time
interval, t, — t;, the time that passes during our chosen period of observation.

JETYTITEN Runner's average velocity. The position of a runner as a func-
tion of time is plotted as moving along the x axis of a coordinate system. During  giGURE 7 Example 1.
a 3.00-s time interval, the runner’s position changes from x; =50.0m to A person runsfrom x; = 50.0m to

X, = 30.5m, as shown in Fig. 7. What was the runner’s average velocity? x, = 30.5m. The displacement
APPROACH We want to find the average velocity, which is the displacement s ~19.5m.
divided by the elapsed time. y
SOLUTION The displacement is Ax = x, — x; = 30.5m — 50.0m = —19.5m. o
The elapsed time, or time interval,is Af = 3.00s. The average velocity is F(lms)h ?‘ar)t
X2 X
_ Ax —19.5m
= 2 = =0 = 650m/s. oA
v At 3.00s m/s o } } 5 :x + bx
The displacement and average velocity are negative, which tells us that the 10 Dzi(s)taige ?m) 5060
runner is moving to the left along the x axis, as indicated by the arrow in Fig. 7.
Thus we can say that the runner’s average velocity is 6.50 m/s to the left.
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FIGURE 8 Car speedometer
showing mi/h in white, and km/h in
orange.

FIGURE 9 Velocity of a car as a
function of time: (a) at constant
velocity; (b) with varying velocity.
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IETYTITFN Distance a cyclist travels. How far can a cyclist travel in 2.5h
along a straight road if her average velocity is 18 km/h?
APPROACH We want to find the distance traveled, so we solve Eq. 2 for Ax.
SOLUTION We rewrite Eq. 2 as Ax = v A¢, and find

Ax = v At = (18km/h)(2.5h) = 45km.
EXERCISE B A car travels at a constant 50 km/h for 100km. It then speeds up to

100 km/h and is driven another 100 km. What is the car’s average speed for the 200 km
trip? (a) 67 km/h; (b) 75 km/h; (c¢) 81 km/h; (d) 50 km/h.

3 Instantaneous Velocity

If you drive a car along a straight road for 150 km in 2.0 h, the magnitude of your
average velocity is 75km/h. It is unlikely, though, that you were moving at
precisely 75km/h at every instant. To describe this situation we need the concept
of instantaneous velocity, which is the velocity at any instant of time. (Its magni-
tude is the number, with units, indicated by a speedometer, Fig. 8.) More precisely,
the instantaneous velocity at any moment is defined as the average velocity over an
infinitesimally short time interval. That is, Eq. 2 is to be evaluated in the limit of Af
becoming extremely small, approaching zero. We can write the definition of instan-
taneous velocity, v, for one-dimensional motion as

. Ax
N v 3
The notation lim,,_,, means the ratio Ax/Af is to be evaluated in the limit of At
approaching zero. But we do not simply set A7 = 0 in this definition, for then Ax
would also be zero, and we would have an undefined number. Rather, we are
considering the ratio Ax/At, as a whole. As we let At approach zero, Ax
approaches zero as well. But the ratio Ax/At approaches some definite value,
which is the instantaneous velocity at a given instant.
In Eq. 3, the limit as At — Ois written in calculus notation as dx/dt and is
called the derivative of x with respect to t:

. Ax dx
v NN T a @
This equation is the definition of instantaneous velocity for one-dimensional
motion.

For instantaneous velocity we use the symbol v, whereas for average velocity
we use v, with a bar above. When we use the term “velocity” it will refer to instan-
taneous velocity. When we want to speak of the average velocity, we will make this
clear by including the word “average.”

Note that the instantaneous speed always equals the magnitude of the instan-
taneous velocity. Why? Because distance traveled and the magnitude of the
displacement become the same when they become infinitesimally small.

If an object moves at a uniform (that is, constant) velocity during a particular
time interval, then its instantaneous velocity at any instant is the same as its
average velocity (see Fig. 9a). But in many situations this is not the case. For
example, a car may start from rest, speed up to 50 km/h, remain at that velocity for
a time, then slow down to 20 km/h in a traffic jam, and finally stop at its destina-
tion after traveling a total of 15 km in 30 min. This trip is plotted on the graph of
Fig. 9b. Also shown on the graph is the average velocity (dashed line), which is
v = Ax/At = 15km/0.50 h = 30 km/h.
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To better understand instantaneous velocity, let us consider a graph of the
position of a particular particle versus time (x vs. ), as shown in Fig. 10. (Note that
this is different from showing the “path” of a particle on an x vs. y plot.) The
particle is at position x; at a time ¢,, and at position x, at time f,. P, and P, repre-
sent these two points on the graph. A straight line drawn from point P, (xl, ll) to
point P, (xz, lz) forms the hypotenuse of a right triangle whose sides are Ax and Af.
The ratio Ax/At is the slope of the straight line P, P,. But Ax/At is also the
average velocity of the particle during the time interval At = ¢, — t,. Therefore,
we conclude that the average velocity of a particle during any time interval
At = t, — t; is equal to the slope of the straight line (or chord) connecting the two
points (x;, #,) and (x,, £,) on an x vs. f graph.

Consider now a time f;, intermediate between ¢, and f,, at which time the
particle is at x; (Fig. 11). The slope of the straight line P, P;is less than the slope of
P, P, in this case. Thus the average velocity during the time interval #; — ¢, is less
than during the time interval ¢, — ¢,.

Now let us imagine that we take the point P;in Fig. 11 to be closer and closer
to point P;. That is, we let the interval #; — £, which we now call A¢, to become
smaller and smaller. The slope of the line connecting the two points becomes
closer and closer to the slope of a line tangent to the curve at point P,. The
average velocity (equal to the slope of the chord) thus approaches the slope of
the tangent at point P;. The definition of the instantaneous velocity (Eq. 3) is the
limiting value of the average velocity as Af approaches zero. Thus the
instantaneous velocity equals the slope of the tangent to the curve at that point
(which we can simply call “the slope of the curve” at that point).

Because the velocity at any instant equals the slope of the tangent to the x vs. ¢
graph at that instant, we can obtain the velocity at any instant from such a graph.
For example, in Fig. 12 (which shows the same curve as in Figs. 10 and 11), as our
object moves from x; to x,, the slope continually increases, so the velocity is
increasing. For times after f,, however, the slope begins to decrease and in fact
reaches zero (so v = 0) where x has its maximum value, at point P; in Fig. 12.
Beyond this point, the slope is negative, as for point P,. The velocity is therefore
negative, which makes sense since x is now decreasing—the particle is moving
toward decreasing values of x, to the left on a standard xy plot.

If an object moves with constant velocity over a particular time interval, its
instantaneous velocity is equal to its average velocity. The graph of x vs. ¢ in this
case will be a straight line whose slope equals the velocity. The curve of Fig. 10 has
no straight sections, so there are no time intervals when the velocity is constant.

X2
FIGURE 12 Same x vs.f curve as in

Figs. 10 and 11, but here showing the slope at
four different points: At P, the slope is zero, so

X v = 0. At P,the slope is negative,so v < 0.

0

EXERCISE C What is your speed at the instant you turn around to move in the opposite
direction? (a) Depends on how quickly you turn around; (b) always zero; (¢) always
negative; (d) none of the above.

The derivatives of polynomial functions (which we use a lot) are:
d dC

—(Ct") = nCt*! d — =0

a (€)= e e T

where C is any constant.

| |
IA1=1y—1
| |

| |
t
0 4] 1

FIGURE 10 Graph of a particle’s
position x vs. time f. The slope of the
straight line Py P,represents the
average velocity of the particle during
the time interval At = 1, — t;.

FIGURE 11 Same position vs. time
curve as in Fig. 10, but note that the
average velocity over the time interval
t; — t; (which is the slope of Py P;) is
less than the average velocity over the
time interval £, — 1. The slope of the
thin line tangent to the curve at point
P; equals the instantaneous velocity at
time f4.
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FIGURE 13 Example 3.
(a) Engine traveling on a straight track.
(b) Graph of x vs.t: x = Af> + B.
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Given x as a function of «. A jet engine moves along an exper-
imental track (which we call the x axis) as shown in Fig. 13a. We will treat the
engine as if it were a particle. Its position as a function of time is given by the
equation x = A + B, where A = 2.10m/s*> and B = 2.80m, and this equa-
tion is plotted in Fig. 13b. (¢) Determine the displacement of the engine during
the time interval from ¢; = 3.00s to f, = 5.00s. (b) Determine the average
velocity during this time interval. (¢) Determine the magnitude of the instanta-
neous velocity at 1 = 5.00s.

APPROACH We substitute values for £, and #, in the given equation for x to obtain
x; and x,. The average velocity can be found from Eq. 2. We take the derivative
of the given x equation with respect to 7 to find the instantaneous velocity, using
the formulas just given.

SOLUTION (a) At ¢, = 3.00s, the position (point P, in Fig. 13b) is
Xy = A + B = (210m/s?)(3.00s)> + 2.80m = 21.7m.
At t, = 5.00s, the position (P, in Fig. 13b) is
x, = (2.10m/s?)(5.00s)*> + 2.80m = 553 m.
The displacement is thus
X, —x; = 553m — 21.7m = 33.6m.
(b) The magnitude of the average velocity can then be calculated as

_ Ax Xy — Xy 33.6m

VS A T -1 2005 168w/
This equals the slope of the straight line joining points P; and P, shown in
Fig. 13b.
(c) The instantaneous velocity at ¢ = f, = 5.00s equals the slope of the tangent
to the curve at point P, shown in Fig. 13b. We could measure this slope off the
graph to obtain v,. But we can calculate v more precisely for any time ¢, using
the given formula

x = AP + B,

which is the engine’s position x as a function of time f. We take the derivative of
x with respect to time (see formulas at bottom of previous page):

_ & _d e _
v—dt—dt(At+B)—2At.

We are given A = 2.10m/s?, so for =, = 5.00s,
v, = 2At = 2(210m/s*)(5.00s) = 21.0m/s.

4 Acceleration

An object whose velocity is changing is said to be accelerating. For instance, a car
whose velocity increases in magnitude from zero to 80km/h is accelerating.
Acceleration specifies how rapidly the velocity of an object is changing.

Average Acceleration

Average acceleration is defined as the change in velocity divided by the time taken
to make this change:

. change of velocity
average acceleration = —————
time elapsed

In symbols, the average acceleration over a time interval At = ¢, — ¢; during
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which the velocity changes by Av = v, — vy, is defined as

_ v, — Vg Av
a = —1 ==". 5)
L -t At
Because velocity is a vector, acceleration is a vector too. But for one-dimensional
motion, we need only use a plus or minus sign to indicate acceleration direction
relative to a chosen coordinate axis.

IETYTTH W Average acceleration. A car accelerates along a straight road
from rest to 90 km/h in 5.0's, Fig. 14. What is the magnitude of its average accel-
eration?

APPROACH Average acceleration is the change in velocity divided by the elapsed

time, 5.0s. The car starts from rest, so v, = 0. The final velocity is

v, = 90km/h = 90 X 10°m/3600s = 25m/s.

SOLUTION From Eq. 5, the average acceleration is
v, — Vg 25m/s — Om/s

a= = =50
“T o 505

m/s.

This is read as “five meters per second per second” and means that, on
average, the velocity changed by 5.0 m/s during each second. That is, assuming
the acceleration was constant, during the first second the car’s velocity
increased from zero to 5.0 m/s. During the next second its velocity increased
by another 5.0 m/s, reaching a velocity of 10.0 m/s at ¢ = 2.0s, and so on. See

Fig. 14.
;i _ 8 Acceleration
[a = 5.0 m/s?]
@ FIGURE 14 Example 4. The car is shown
at the start with vy = 0 at ; = 0.
at 1 = 1.0s The car is shown three more times, at
v =5.0m/s t =1.0s, t = 2.0s, and at the end of our
j® time interval, 7, = 5.0s. We assume the
acceleration is constant and equals
5.0 m/s% The green arrows represent the
at t = 2.0s velocity vectors; the length of each arrow
v = 10.0 m/s represents the magnitude of the velocity

ﬁ’ at that moment. The acceleration vector

is the orange arrow. Distances are not
to scale.

We almost always write the units for acceleration as m/s? (meters per second
squared) instead of m/s/s. This is possible because:
m/s m m

2

s S-S S

According to the calculation in Example 4, the velocity changed on average by
5.0 m/s during each second, for a total change of 25 m/s over the 5.0s; the average
acceleration was 5.0 m/s’.

Note that acceleration tells us how quickly the wvelocity changes, whereas
velocity tells us how quickly the position changes.
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Acceleration

0
15.0 m/s a=-2.0 m/s?

5.0s
5.0 m/s

FIGURE 15 Example 6,showing the
position of the car at times #; and ¢,
as well as the car’s velocity
represented by the green arrows. The
acceleration vector (orange) points to
the left as the car slows down while
moving to the right.

A\ CAUTION
Deceleration means the magnitude
of the velocity is decreasing; a is not
necessarily negative

Describing Motion: Kinematics in One Dimension

CONCEPTUAL EXAMPLE 5 | Velocity and acceleration. () If the velocity of an
object is zero, does it mean that the acceleration is zero? (b) If the acceleration is
zero, does it mean that the velocity is zero? Think of some examples.

RESPONSE A zero velocity does not necessarily mean that the acceleration is
zero, nor does a zero acceleration mean that the velocity is zero. (a) For example,
when you put your foot on the gas pedal of your car which is at rest, the velocity
starts from zero but the acceleration is not zero since the velocity of the car
changes. (How else could your car start forward if its velocity weren’t changing—
that is, accelerating?) (b) As you cruise along a straight highway at a constant
velocity of 100 km/h, your acceleration is zero: a = 0,v # 0.

EXERCISE D A powerful car is advertised to go from zero to 60 mi/h in 6.0 s. What does
this say about the car: (a) it is fast (high speed); or (b) it accelerates well?

IETYTITEA Car slowing down. An automobile is moving to the right along
a straight highway, which we choose to be the positive x axis (Fig. 15). Then the
driver puts on the brakes. If the initial velocity (when the driver hits the brakes)
is v; = 15.0m/s, and it takes 5.0s to slow down to v, = 5.0 m/s, what was the
car’s average acceleration?

APPROACH We put the given initial and final velocities, and the elapsed time,
into Eq. 5 for a.
SOLUTION In Eq. 5, we call the initial time ¢ =0, and set ¢, = 5.0s.
(Note that our choice of t; = 0 doesn’t affect the calculation of a because only
At = t, — t, appears in Eq. 5.) Then

- 50m/s — 15.0m/s — 20m/s

5.0s

The negative sign appears because the final velocity is less than the initial
velocity. In this case the direction of the acceleration is to the left (in the negative
x direction)—even though the velocity is always pointing to the right. We say that the
acceleration is 2.0 m/s? to the left, and it is shown in Fig. 15 as an orange arrow.

Deceleration

When an object is slowing down, we can say it is decelerating. But be careful: deceler-
ation does not mean that the acceleration is necessarily negative. The velocity of an
object moving to the right along the positive x axis is positive; if the object is slowing
down (as in Fig. 15), the acceleration is negative. But the same car moving to the left
(decreasing x), and slowing down, has positive acceleration that points to the right, as
shown in Fig. 16. We have a deceleration whenever the magnitude of the velocity is
decreasing, and then the velocity and acceleration point in opposite directions.

FIGURE 16 The car of Example 6, now
moving to the left and decelerating. The

acceleration is
U, — Y
a = —

At
(=5.0m/s) — (—=15.0m/s)

vy = =5.0m/s v; = -15.0m/s

e e

—5.0m/s + 15.0m/s

5.0s a

= +2.0m/s.

5.0s

EXERCISE E A car moves along the x axis. What is the sign of the car’s acceleration if it is
moving in the positive x direction with (a) increasing speed or (b) decreasing speed? What
is the sign of the acceleration if the car moves in the negative direction with (c) increasing
speed or (d) decreasing speed?
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Instantaneous Acceleration

The instantaneous acceleration, a, is defined as the limiting value of the average
acceleration as we let At approach zero:

. Av dv

dim o dt (6
This limit, dv/dt, is the derivative of v with respect to . We will use the term
“acceleration” to refer to the instantaneous value. If we want to discuss the
average acceleration, we will always include the word “average.”

If we draw a graph of the velocity, v, vs. time, f, as shown in Fig. 17, then the
average acceleration over a time interval Af = ¢, — ¢, is represented by the slope
of the straight line connecting the two points P, and P, as shown. [Compare this to
the position vs. time graph of Fig. 10 for which the slope of the straight line repre-
sents the average velocity.] The instantaneous acceleration at any time, say f,, is
the slope of the tangent to the v vs. f curve at that time, which is also shown in
Fig. 17. Let us use this fact for the situation graphed in Fig. 17; as we go from time
t, to time f, the velocity continually increases, but the acceleration (the rate at
which the velocity changes) is decreasing since the slope of the curve is decreasing.

Acceleration given x(¢). A particle is moving in a straight line
so that its position is given by the relation x = (2.10m/s*)#> + (2.80m), as in
Example 3. Calculate (a) its average acceleration during the time interval from
t, = 3.00s to t, = 5.00's, and (b) its instantaneous acceleration as a function of time.

a

APPROACH To determine acceleration, we first must find the velocity at ¢, and ¢,
by differentiating x: v = dx/dt. Then we use Eq. 5 to find the average
acceleration, and Eq. 6 to find the instantaneous acceleration.
SOLUTION (a) The velocity at any time 7 is

dx d

= = = = 2) 12 _ 2
v o U [(2.10m/s?)? + 2.80m] = (4.20m/s?)t,

as we saw in Example 3c. Therefore, at ¢, = 3.00s,v; = (420 m/s*)(3.00s) =
12.6 m/s and at t, = 5.00s, v, = 21.0 m/s. Therefore,

_ A 21.0m/s — 12.6 m/s

= == = - 2
At 5005 — 3.00s 420m/s"
(b) With v = (4.20 m/ sz)l, the instantaneous acceleration at any time is
_dv _ d N = 2
a= = (420m/s?)t] = 4.20m/s

The acceleration in this case is constant; it does not depend on time. Figure 18
shows graphs of (a) x vs. ¢ (the same as Fig. 13b), (b) v vs. t, which is linearly
increasing as calculated above, and (c) a vs. ¢, which is a horizontal straight line
because a = constant.

Like velocity, acceleration is a rate. The velocity of an object is the rate at
which its displacement changes with time; its acceleration, on the other hand, is the
rate at which its velocity changes with time. In a sense, acceleration is a “rate of a
rate.” This can be expressed in equation form as follows: since a = dv/dt and
v = dx/dt, then

Toar  oar\dt)  oa
Here d*x/dt? is the second derivative of x with respect to time: we first take the

derivative of x with respect to time (dx/dt), and then we again take the derivative
with respect to time, (d/dt)(dx/dt), to get the acceleration.

_dv _ d(dx) _ dx

EXERCISE F The position of a particle is given by the following equation:

x = (200m/s%) + (2.50m/s)t.
What is the acceleration of the particle at t = 2.00s? (a) 13.0m/s (b) 22.5m/s%
(c) 24.0 m/s% (d) 2.00 m/s.

Slope is average acceleration
v during At=1,—1;

Slope is

instantaneous
acceleration
at 1

R L D

V)t -]

FIGURE 17 A graph of velocity v
vs. time . The average acceleration
over a time interval At = t, — t; is
the slope of the straight line Py P,:
a = Av/At. The instantaneous
acceleration at time f4 is the slope of
the v vs.f curve at that instant.

FIGURE 18 Example 7. Graphs of
(a) x vs.t,(b) v vs. 1,

and (c) a vs. 1 for the motion

x = A + B. Note that v increases
linearly with ¢ and that the
acceleration a is constant. Also, v is
the slope of the x vs. f curve, whereas
a is the slope of the v vs. f curve.

t(s)

25T

20+ &
Z 5
E154 >

= 7

10+ =
5_.

+—1(s)

a=4.20 m/s?

+—1(s)

(©
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(=)
(=}

v (km/h)

FIGURE 19 Example 8.

/A CAUTION
Average velocity, but only if
a = constant

Describing Motion: Kinematics in One Dimension

CONCEPTUAL EXAMPLE 8 | Analyzing with graphs. Figure 19 shows the

velocity as a function of time for two cars accelerating from 0 to 100 km/h in a time
of 10.0s. Compare (a) the average acceleration; (b) instantaneous acceleration; and
(c) total distance traveled for the two cars.

RESPONSE (a) Average acceleration is Av/At. Both cars have the same Av
(100 km/h) and the same At (10.0s), so the average acceleration is the same for
both cars. (b) Instantaneous acceleration is the slope of the tangent to the v vs. ¢
curve. For about the first 4, the top curve is steeper than the bottom curve, so
car A has a greater acceleration during this interval. The bottom curve is steeper
during the last 6, so car B has the larger acceleration for this period. (¢) Except
at £ =0 and ¢ = 10.0s, car A is always going faster than car B. Since it is going
faster, it will go farther in the same time.

5 Motion at Constant Acceleration

We now examine the situation when the magnitude of the acceleration is
constant and the motion is in a straight line. In this case, the instantaneous and
average accelerations are equal. We use the definitions of average velocity and
acceleration to derive a set of valuable equations that relate x, v, a,and f when a is
constant, allowing us to determine any one of these variables if we know the others.

To simplify our notation, let us take the initial time in any discussion to be zero,
and we call it #,: ¢, = t, = 0. (This is effectively starting a stopwatch at 7,.) We can
then let #, = ¢ be the elapsed time. The initial position (x,) and the initial velocity (v, )
of an object will now be represented by x, and v, since they represent x and v
at ¢ = 0. At time ¢ the position and velocity will be called x and » (rather than
x, and v,). The average velocity during the time interval ¢ — #, will be (Eq. 2)

A x—x  x— X
At t =t t
since we chose #, = 0. The acceleration, assumed constant in time, is (Eq. 5)
vV —

a =
t

A common problem is to determine the velocity of an object after any elapsed
time £, when we are given the object’s constant acceleration. We can solve such
problems by solving for » in the last equation to obtain:

v = v + at. [constant acceleration] (7)

If an object starts from rest (v, = 0) and accelerates at 4.0 m/s after an elapsed
time ¢ = 6.0s its velocity will be v = ar = (4.0m/s?)(6.0s) = 24 m/s.

Next, let us see how to calculate the position x of an object after a time ¢ when
it undergoes constant acceleration. The definition of average velocity (Eq. 2) is
v = (x — x,)/f, which we can rewrite as

X = xy + vt )
Because the velocity increases at a uniform rate, the average velocity, v, will be
midway between the initial and final velocities:
vy + v
2
(Careful: Equation 9 is not necessarily valid if the acceleration is not constant.) We
combine the last two Equations with Eq. 7 and find

[constant acceleration] (9)

X = x, + vt

vy + v
= Xy *+ 5 t

vy T+ vy + at
e ()

2
or
X = xo + vyt + tat [constant acceleration] (10)

Equations 7, 9, and 10 are three of the four most useful equations for motion at
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constant acceleration. We now derive the fourth equation, which is useful in situa-
tions where the time 7 is not known. We substitute Eq. 9 into Eq. 8:

_ v+ vy
X = xg + ot = xy + 5 t.

Next we solve Eq. 7 for 7, obtaining
v = Y

t =
a

and substituting this into the previous equation we have

v+ o\ [v— v’ — v}
x:x0+< O><70>:x0+70~

2 a 2a
We solve this for v* and obtain
o= 03+ Za(x - xo), [constant acceleration] (11)
which is the useful equation we sought.
We now have four equations relating position, velocity, acceleration, and time,
when the acceleration a is constant. We collect these kinematic equations here in one
place for future reference (the tan background screen emphasizes their usefulness):

v = v, t+ at [a = constant] (12a)

x = xp + vt + tat? [a = constant]  (12b)
v = v} + 2a(x — x) [a = constant]  (12¢)
_ v+ vy

Cl i [a = constant] (12d)

These useful equations are not valid unless a is a constant. In many cases we can set
xo = 0, and this simplifies the above equations a bit. Note that x represents posi-
tion, not distance, that x — x, is the displacement, and that ¢ is the elapsed time.

m Runway design. You are designing an airport for small planes.
One kind of airplane that might use this airfield must reach a speed before
takeoff of at least 27.8 m/s (100 km/h), and can accelerate at 2.00 m/s’. (a) If the
runway is 150 m long, can this airplane reach the required speed for takeoff? (b)
If not, what minimum length must the runway have?

APPROACH The plane’s acceleration is constant, so we can use the kinematic
equations for constant acceleration. In (@), we want to find v, and we are given:

Known Wanted
Xo = 0 v
Vo = 0
x =150 m
a =2.00m/s*

SOLUTION (a) Of the above four equations, Eq. 12¢ will give us v when we know
vy, a, x, and x;:
v = v} + 2a(x — x)
= 0 + 2(200m/s*)(150m) = 600 m?/s

v = \/600m?/s> = 24.5m/s.

This runway length is not sufficient.
(b) Now we want to find the minimum length of runway, x — x,, given
v =27.8m/s and a = 2.00m/s>. So we again use Eq. 12c, but rewritten as

vt — v} (27.8m/s)> — 0

) = - = 193m.
(x = x) 2a 2(2.00m/s?) "

A 200-m runway is more appropriate for this plane.
NOTE We did this Example as if the plane were a particle, so we round off our
answer to 200 m.

EXERCISE G A car starts from rest and accelerates at a constant 10 m/s® during a 1 mile
(402m) race. How fast is the car going at the finish line? (a) 8090 m/s; (b) 90 m/s;
(c) 81 m/s; (d) 809 m/s.

Kinematic equations
for constant acceleration

(we’ll use them a lot)

@PHYSICS APPLIED

Airport design

PROBLEM SOLVING

Equations—12 are valid only when
the acceleration is constant, which we
assume in this Example

39



40

Describing Motion: Kinematics in One Dimension

6 Solving Problems

Before doing more worked-out Examples, let us look at how to approach problem
solving. First, it is important to note that physics is not a collection of equations to
be memorized. Simply searching for an equation that might work can lead you to a
wrong result and will surely not help you understand physics. A better approach is
to use the following (rough) procedure, which we put in a special “Problem

4,

Q\1OBL

Solving Strategy.”

SOLVI,\,
¢

. Read and reread the whole problem carefully before

trying to solve it.

. Decide what object (or objects) you are going to

study, and for what time interval. You can often
choose the initial time to be t = 0.

. Draw a diagram or picture of the situation, with

coordinate axes wherever applicable. [You can place
the origin of coordinates and the axes wherever you
like to make your calculations easier.]

. Write down what quantities are “known” or “given,”

and then what you want to know. Consider quanti-
ties both at the beginning and at the end of the
chosen time interval.

. Think about which principles of physics apply in this

problem. Use common sense and your own experi-
ences. Then plan an approach.

. Consider which equations (and/or definitions) relate

the quantities involved. Before using them, be sure
their range of validity includes your problem (for
example, Eqs. 12 are valid only when the accelera-
tion is constant). If you find an applicable equation
that involves only known quantities and one desired
unknown, solve the equation algebraically for the

7.

8.

unknown. Sometimes several sequential calculations,
or a combination of equations, may be needed. It is
often preferable to solve algebraically for the desired
unknown before putting in numerical values.

Carry out the calculation if it is a numerical problem.
Keep one or two extra digits during the calculations,
but round off the final answer(s) to the correct
number of significant figures.

Think carefully about the result you obtain: Is it
reasonable? Does it make sense according to your
own intuition and experience? A good check is to do
a rough estimate using only powers of ten. Often it is
preferable to do a rough estimate at the start of a
numerical problem because it can help you focus
your attention on finding a path toward a solution.

. A very important aspect of doing problems is

keeping track of unmits. An equals sign implies the
units on each side must be the same, just as the
numbers must. If the units do not balance, a mistake
has no doubt been made. This can serve as a check
on your solution (but it only tells you if you’re
wrong, not if you’re right). Always use a consistent
set of units.

FIGURE 20 Example 10.

IETYTITTN Acceleration of a car. How long does it take a car to cross a
30.0-m-wide intersection after the light turns green, if the car accelerates from
rest at a constant 2.00 m/s>?

APPROACH We follow the Problem Solving Strategy above, step by step.

SOLUTION

1. Reread the problem. Be sure you understand what it asks for (here, a time
interval).

2. The object under study is the car. We choose the time interval: 1 = 0, the
initial time, is the moment the car starts to accelerate from rest (v, = 0);
the time ¢ is the instant the car has traveled the full 30.0-m width of the

3. Draw a diagram: the situation is shown in Fig. 20, where the car is shown
moving along the positive x axis. We choose x, = 0 at the front bumper of the

a =2.00 m/s? a =2.00 m/s?
e intersection.
Xo = 0 X =
=0 30.0m

car before it starts to move.
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4. The “knowns” and the “wanted” are shown in the Table in the margin, and we
choose x, = 0. Note that “starting from rest” means v = 0 at ¢ = 0; that is,
v = 0.

5. The physics: the motion takes place at constant acceleration, so we can use the
kinematic equations, Egs. 12.

6. Equations: we want to find the time, given the distance and acceleration; Eq.
12b is perfect since the only unknown quantity is f. Setting v, = 0 and
xo = 0 in Eq. 12b (x = Xy + vyt + %atz), we can solve for t:

x = laf,
P 2x’
a
SO
2x
o= =
a

7. The calculation:

2(30.0m
t = ,lz—x = ,/y = 5.48s.
a 2.00 m/s?

This is our answer. Note that the units come out correctly.

8. We can check the reasonableness of the answer by calculating the final velocity
v =at = (2.00m/s?)(5.48s) = 10.96m/s, and then finding x = x, + ot =
0 + 3(10.96m/s + 0)(5.48s) = 30.0m, which is our given distance.

9. We checked the units, and they came out perfectly (seconds).

NOTE In steps 6 and 7, when we took the square root, we should have
written ¢t = +\/2x/a = *+ 5.48s. Mathematically there are two solutions. But
the second solution, f = —5.48s, is a time before our chosen time interval and
makes no sense physically. We say it is “unphysical” and ignore it.

We explicitly followed the steps of the Problem Solving Strategy for Example 10.
In upcoming Examples, we will use our usual “Approach” and “Solution” to avoid
being wordy.

DGV UG ESTIMATE | Air bags. Suppose you want to design an air-bag

system that can protect the driver at a speed of 100 km/h (60 mph) if the car hits
a brick wall. Estimate how fast the air bag must inflate (Fig. 21) to effectively
protect the driver. How does the use of a seat belt help the driver?

APPROACH We assume the acceleration is roughly constant, so we can use
Egs. 12. Both Egs. 12a and 12b contain #, our desired unknown. They both
contain a, so we must first find a, which we can do using Eq. 12¢ if we know the
distance x over which the car crumples. A rough estimate might be about 1 meter. We
choose the time interval to start at the instant of impact with the car moving at
vy = 100 km/h, and to end when the car comes to rest (v = 0) after traveling 1 m.
SOLUTION We convert the given initial speed to SI units: 100 km/h =
100 X 10°m/3600s = 28 m/s. We then find the acceleration from Eq. 12c:

2 2
. (28m/s)* 5
a= - T T T oom - 390 m/s”.
This enormous acceleration takes place in a time given by (Eq. 12a):
P Rl 0 — 28m/s — 007s.
a -390 m/s?

To be effective, the air bag would need to inflate faster than this.

What does the air bag do? It spreads the force over a large area of the chest
(to avoid puncture of the chest by the steering wheel). The seat belt keeps the
person in a stable position against the expanding air bag.

Known Wanted
Xog = t
x = 30.0m
a =2.00m/s*
Vo =

@PHYSICS APPLIED
Car safety—air bags

FIGURE 21 Example 11.
An air bag deploying on impact.

SuperStock, Inc.
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FIGURE 22 Example 12: stopping
distance for a braking car.

QEI’HYSICS APPLIED
Braking distances

Part 1: Reaction time

Known Wanted
t =050s X
vy = 14m/s
v = 14m/s
a=0
Xp = 0

Part 2: Braking

Known Wanted
xo=7.0m X
vy = 14m/s
v=20
a=—60m/s

FIGURE 23 Example 12.
Graphs of (a) v vs.f and (b) x vs. 1.

14 4

(
o

0 05 10 15 20 25
(a) t(s)

t=0.50s

0 05 1.0 1.5 20 25
(b) 1(s)
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T

ﬁ Travel during ;ﬁ

[reaction time
T

Travel during
" braking "
T 1
v = constant = 14 m/s v decreases from 14 m/s to zero

t=050s a = -6.0m/s?
a=0

IETYTITHFM ESTIMATE | Braking distances. Estimate the minimum stop-

ping distance for a car, which is important for traffic safety and traffic design. The
problem is best dealt with in two parts, two separate time intervals. (1) The first
time interval begins when the driver decides to hit the brakes, and ends when the
foot touches the brake pedal. This is the “reaction time” during which the speed
is constant, so a = 0. (2) The second time interval is the actual braking period
when the vehicle slows down (a # 0) and comes to a stop. The stopping distance
depends on the reaction time of the driver, the initial speed of the car (the final
speed is zero), and the acceleration of the car. For a dry road and good tires, good
brakes can decelerate a car at a rate of about 5 m/s? to 8 m/s% Calculate the total
stopping distance for an initial velocity of 50 km/h (= 14m/s = 31 mi/h) and
assume the acceleration of the car is —6.0 m/s* (the minus sign appears because
the velocity is taken to be in the positive x direction and its magnitude is
decreasing). Reaction time for normal drivers varies from perhaps 0.3 s to about
1.0s; take it to be 0.50s.

APPROACH During the “reaction time,” part (1), the car moves at constant
speed of 14 m/s,so a = 0. Once the brakes are applied, part (2), the acceleration
is a = —6.0m/s’> and is constant over this time interval. For both parts a is
constant, so we can use Eqs. 12.

SOLUTION Part (1). We take x, = 0 for the first time interval, when the driver
is reacting (0.50s): the car travels at a constant speed of 14m/s so a = 0. See
Fig. 22 and the Table in the margin. To find x, the position of the car at
t = 0.50s (when the brakes are applied), we cannot use Eq. 12c because x is
multiplied by a, which is zero. But Eq. 12b works:

x = vt +0 = (14m/s)(0.50s) = 7.0m.

Thus the car travels 7.0 m during the driver’s reaction time, until the instant the
brakes are applied. We will use this result as input to part (2).

Part (2). During the second time interval, the brakes are applied and the car is
brought to rest. The initial position is x, = 7.0 m (result of part (1)), and other
variables are shown in the second Table in the margin. Equation 12a doesn’t
contain x; Eq. 12b contains x but also the unknown f. Equation 12c,
vr — v} = Za(x - xo), is what we want; after setting x, = 7.0 m, we solve for x,
the final position of the car (when it stops):

_ L Yo ®
X = X 2
0 — (14m/s)? —196 m?2/s2
= 7.0m+(7/2) = 7om + 16m/S
2(—6.0m/s?) —12m/s

= 70m + 16 m = 23m.

The car traveled 7.0 m while the driver was reacting and another 16 m during the
braking period before coming to a stop, for a total distance traveled of 23 m.
Figure 23 shows graphs of (a) v vs. f and (b) x vs. f.

NOTE From the equation above for x, we see that the stopping distance after the
driver hit the brakes (= x — x,) increases with the square of the initial speed, not
just linearly with speed. If you are traveling twice as fast, it takes four times the

distance to stop.
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G N RN ESTIMATE | Two Moving Objects: Police and Speeder.

A car speeding at 150 km/h passes a still police car which immediately takes off
in hot pursuit. Using simple assumptions, such as that the speeder continues at
constant speed, estimate how long it takes the police car to overtake the speeder.
Then estimate the police car’s speed at that moment and decide if the assump-
tions were reasonable.

APPROACH When the police car takes off, it accelerates, and the simplest
assumption is that its acceleration is constant. This may not be reasonable, but
let’s see what happens. We can estimate the acceleration if we have noticed
automobile ads, which claim cars can accelerate from rest to 100 km/h in 5.0's. So
the average acceleration of the police car could be approximately

100 km/h km/h (1 1h
00 km/ 0 m/ (000m>( ) -

= T50s s\ 1km /\3600s

SOLUTION We need to set up the kinematic equations to determine the unknown
quantities, and since there are two moving objects, we need two separate sets of
equations. We denote the speeding car’s position by xg and the police car’s
position by xp. Because we are interested in solving for the time when the two
vehicles arrive at the same position on the road, we use Eq. 12b for each car:

Xs = vogst + sas> = (150km/h)t = (42m/s)t
xp = vt + rapt? = 3(5.6m/s%),

where we have set vpp = 0 and ag = 0 (speeder assumed to move at constant
speed). We want the time when the cars meet, so we set xg = xp and solve for f:

(42m/s)t = (2.8m/s?)F

The solutions are
t =0 and t = — = 15s.

The first solution corresponds to the instant the speeder passed the police car.
The second solution tells us when the police car catches up to the speeder, 15s
later. This is our answer, but is it reasonable? The police car’s speed at f = 155 is

vp = vp + apt = 0 + (5.6m/s?)(15s) = 84m/s

or 300 km/h (= 190 mi/h). Not reasonable, and highly dangerous.

NOTE More reasonable is to give up the assumption of constant acceleration. The
police car surely cannot maintain constant acceleration at those speeds. Also, the
speeder, if a reasonable person, would slow down upon hearing the police siren.
Figure 24 shows (a) x vs.f and (b) v vs. f graphs, based on the original assumption of
ap = constant, whereas (c) shows v vs. f for more reasonable assumptions.

Speeder / Speeder

Speeder
Police Police
Police

0 1
(a) (b) (©)

|
|
|
|
|
|
|
t t t t
5

/A CAUTION

Initial assumptions need to be
checked out for reasonableness

FIGURE 24 Example 13.
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Justus Sustermans (1597-1681), “Portrait of

Galileo Galilei.” Galleria Palatina, Palazzo Pitti,
Florence, Italy. Nimatallah/Art Resource, NY

© Harold & Esther Edgerton Foundation, 2007, courtesy of

Palm Press, Inc.

FIGURE 25 Galileo Galilei

(1564-1642).

/A CAUTION

A freely falling object increases
in speed, but not in proportion

to its mass or weight

FIGURE 26 Multiflash photograph
of a falling apple, at equal time
intervals. The apple falls farther

during each successive interval, which

means it is accelerating.

b

Acceleration due to gravity

(a)

(®)
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7 Freely Falling Objects

One of the most common examples of uniformly accelerated motion is that of an
object allowed to fall freely near the Earth’s surface. That a falling object is accel-
erating may not be obvious at first. And beware of thinking, as was widely believed
before the time of Galileo (Fig. 25), that heavier objects fall faster than lighter
objects and that the speed of fall is proportional to how heavy the object is.

Galileo made use of his new technique of imagining what would happen in
idealized (simplified) cases. For free fall, he postulated that all objects would fall with
the same constant acceleration in the absence of air or other resistance. He showed
that this postulate predicts that for an object falling from rest, the distance traveled
will be proportional to the square of the time (Fig. 26); that is, d oc . We can see this
from Eq. 12b; but Galileo was the first to derive this mathematical relation.

To support his claim that falling objects increase in speed as they fall, Galileo
made use of a clever argument: a heavy stone dropped from a height of 2m will
drive a stake into the ground much further than will the same stone dropped from
a height of only 0.2 m. Clearly, the stone must be moving faster in the former case.

Galileo claimed that all objects, light or heavy, fall with the same acceleration, at
least in the absence of air. If you hold a piece of paper horizontally in one hand and
a heavier object—say, a baseball—in the other, and release them at the same time as
in Fig. 27a, the heavier object will reach the ground first. But if you repeat the exper-
iment, this time crumpling the paper into a small wad (see Fig. 27b), you will find
that the two objects reach the floor at nearly the same time.

Galileo was sure that air acts as a resistance to very light objects that have a
large surface area. But in many ordinary circumstances this air resistance is negli-
gible. In a chamber from which the air has been removed, even light objects like a
feather or a horizontally held piece of paper will fall with the same acceleration as
any other object (see Fig. 28). Such a demonstration in vacuum was not possible in
Galileo’s time, which makes Galileo’s achievement all the greater. Galileo is often
called the “father of modern science,” not only for the content of his science
(astronomical discoveries, inertia, free fall) but also for his approach to science
(idealization and simplification, mathematization of theory, theories that have
testable consequences, experiments to test theoretical predictions).

Galileo’s specific contribution to our understanding of the motion of falling
objects can be summarized as follows:

at a given location on the Earth and in the absence of air resistance, all objects
fall with the same constant acceleration.

We call this acceleration the acceleration due to gravity on the surface of the
Earth, and we give it the symbol g. Its magnitude is approximately

g = 9.80m/s% [at surface of Earth]

In British units g is about 32 ft/s%. Actually, g varies slightly according to latitude and
elevation, but these variations are so small that we will ignore them for most

FIGURE 27 (a) A ball and a light
piece of paper are dropped at the

same time. (b) Repeated, with the
paper wadded up.

FIGURE 28 A rock

& and a feather are dropped
simultaneously (a) in air,
(b) in a vacuum.

S_—
Evacuated tube

(b)
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purposes. The effects of air resistance are often small, and we will neglect them for
the most part. However, air resistance will be noticeable even on a reasonably heavy
object if the velocity becomes large.” Acceleration due to gravity is a vector as is any
acceleration, and its direction is downward, toward the center of the Earth.

When dealing with freely falling objects we can make use of Eqs. 12, where for
a we use the value of g given above. Also, since the motion is vertical we will
substitute y in place of x, and y, in place of x,. We take y, = 0 unless otherwise
specified. It is arbitrary whether we choose y to be positive in the upward direction
or in the downward direction; but we must be consistent about it throughout a
problem’s solution.
EXERCISE H Return to the Chapter-Opening Question and answer it again now. Try to
explain why you may have answered differently the first time.

IETYTTHYY Falling from a tower. Suppose that a ball is dropped
(v = 0) from a tower 70.0m high. How far will it have fallen after a time

t;, = 1.00s,t, = 2.00s, and #; = 3.00s? Ignore air resistance.

APPROACH Let us take y as positive downward, so the acceleration is
a=g=4980m/s>. Weset v, =0 and y, = 0. We want to find the position y
of the ball after three different time intervals. Equation 12b, with x replaced
by y, relates the given quantities (¢, a, and v,) to the unknown y.

SOLUTION We set ¢ = ¢, = 1.00s in Eq. 12b:

yi = vot; + a8 = 0 + jai = 3(9.80m/s?)(1.00s)> = 4.90 m.
The ball has fallen a distance of 4.90m during the time interval f =0 to
t; = 1.00s. Similarly, after 2.00 s (= tz), the ball’s position is

y, = 3at} = 1(9.80m/s?)(2.00s)?> = 19.6m.
Finally, after 3.00s (= f;), the ball’s position is (see Fig. 29)
y; = 3a3 = 3(9.80m/s?)(3.005)> = 44.1m.

IETYTTHTEN Thrown down from a tower. Suppose the ball in Example 14 is
thrown downward with an initial velocity of 3.00 m/s, instead of being dropped. (@)
What then would be its position after 1.00s and 2.00s? (b) What would its speed be
after 1.00s and 2.00s? Compare with the speeds of a dropped ball.
APPROACH Again we use Eq. 12b, but now v, is not zero, it is v, = 3.00 m/s.
SOLUTION (a) At ¢t = 1.00s, the position of the ball as given by Eq. 12b is

y = vt + ya> = (3.00m/s)(1.00s) + 3(9.80 m/s?)(1.00s)> = 7.90 m.
At t = 2.00s, (time interval t = 0 to ¢ = 2.00s), the position is

y = vt + sa® = (3.00m/s)(2.00s) + 3(9.80m/s?)(2.005)> = 25.6m.
As expected, the ball falls farther each second than if it were dropped with v, = 0.
(b) The velocity is obtained from Eq. 12a:

v = vy + at

3.00m/s + (9.80m/s?)(1.00s) = 12.8m/s [att; = 1.005]
= 3.00m/s + (9.80m/s?)(2.00s) = 22.6m/s. [at?, = 2.005s]
= 0), the first term (vy) in these

In Example 14, when the ball was dropped (vo
equations was zero, so

v =0+ at
(9.80m/s?)(1.00s) = 9.80m/s [at t, = 1.005]
(9.80m/s?)(2.00s) = 19.6m/s. [at 1, = 2.005]

NOTE For both Examples 14 and 15, the speed increases linearly in time by
9.80 m/s during each second. But the speed of the downwardly thrown ball at any
instant is always 3.00 m/s (its initial speed) higher than that of a dropped ball.

"The speed of an object falling in air (or other fluid) does not increase indefinitely. If the object falls far
enough, it will reach a maximum velocity called the terminal velocity due to air resistance.

PROBLEM SOLVING

You can choose y to be positive

either up or down

FIGURE 29 Example 14.

(a) An object dropped from a tower
falls with progressively greater
speed and covers greater distance
with each successive second. (See
also Fig. 26.) (b) Graph of y vs. 1.

Acceleration
due to

gravity ﬂ 5 |
lffﬂfmw

ﬁmf*:

+y

— ____yz()

=490 m
(After 1.00 s)

¥,=19.6 m
(After 2.00 s)

y;=44.1m
(After 3.00 s)
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FIGURE 30 An object thrown into
the air leaves the thrower’s hand at
A, reaches its maximum height at B,
and returns to the original position
at C. Examples 16,17, 18, and 19.

/A\ CAUTION
Quadratic equations have two
solutions. Sometimes only one
corresponds to reality,
sometimes both
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IEZY YA Ball thrown upward, I. A person throws a ball upward into the
air with an initial velocity of 15.0 m/s. Calculate (a) how high it goes, and (b) how
long the ball is in the air before it comes back to the hand. Ignore air resistance.

APPROACH We are not concerned here with the throwing action, but only with
the motion of the ball after it leaves the thrower’s hand (Fig. 30) and until it
comes back to the hand again. Let us choose y to be positive in the upward direc-
tion and negative in the downward direction. (This is a different convention from
that used in Examples 14 and 15, and so illustrates our options.) The acceleration due
to gravity is downward and so will have a negative sign, a = —g = —9.80 m/s%. As
the ball rises, its speed decreases until it reaches the highest point (B in Fig. 30),
where its speed is zero for an instant; then it descends, with increasing speed.
SOLUTION (a) We consider the time interval from when the ball leaves the
thrower’s hand until the ball reaches the highest point. To determine the
maximum height, we calculate the position of the ball when its velocity equals
zero (v = 0 at the highest point). At t =0 (point A in Fig. 30) we have
yo =0, vy =150m/s, and a = —9.80m/s>. At time ¢ (maximum height),
v=0, a=—980m/s’>, and we wish to find y. We use Eq. 12c, replacing x
with y: v* = v + 2ay. We solve this equation for y:
vr — v} 0 — (15.0m/s)?
y = = = 11.5m.
2a 2(—9.80 m/s?)

The ball reaches a height of 11.5 m above the hand.

(b) Now we need to choose a different time interval to calculate how long the
ball is in the air before it returns to the hand. We could do this calculation in two
parts by first determining the time required for the ball to reach its highest point,
and then determining the time it takes to fall back down. However, it is simpler
to consider the time interval for the entire motion from A to B to C (Fig. 30) in
one step and use Eq. 12b. We can do this because y represents position or
displacement, and not the total distance traveled. Thus, at both points A and C,
y = 0. We use Eq. 12b with a = —9.80m/s* and find

y = Yo + vt + jar®

0 = 0+ (15.0m/s)t + 3(—9.80 m/s?)¢%
This equation is readily factored (we factor out one ?):

(15.0m/s — 4.90m/s* 1)t = 0.

There are two solutions:
= 3.06s.

The first solution (¢ = 0) corresponds to the initial point (A) in Fig. 30, when the
ball was first thrown from y = 0. The second solution, ¢ = 3.06s, corresponds to
point C, when the ball has returned to y = 0. Thus the ball is in the air 3.06s.
NOTE We have ignored air resistance, which could be significant, so our result is
only an approximation to a real, practical situation.

We did not consider the throwing action in this Example. Why? Because during
the throw, the thrower’s hand is touching the ball and accelerating the ball at a rate
unknown to us—the acceleration is not g. We consider only the time when the ball
is in the air and the acceleration is equal to g.

Every quadratic equation (where the variable is squared) mathematically
produces two solutions. In physics, sometimes only one solution corresponds to the
real situation, as in Example 10, in which case we ignore the “unphysical” solution.
But in Example 16, both solutions to our equation in ¢*> are physically meaningful:
t =0 and ¢ = 3.06s.
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CONCEPTUAL EXAMPLE 17 | Two possible misconceptions. Give examples to
show the error in these two common misconceptions: (1) that acceleration and
velocity are always in the same direction, and (2) that an object thrown upward has
zero acceleration at the highest point (B in Fig. 30).

RESPONSE Both are wrong. (1) Velocity and acceleration are not necessarily in
the same direction. When the ball in Example 16 is moving upward, its velocity is
positive (upward), whereas the acceleration is negative (downward). (2) At the
highest point (B in Fig. 30), the ball has zero velocity for an instant. Is the accel-
eration also zero at this point? No. The velocity near the top of the arc points
upward, then becomes zero (for zero time) at the highest point, and then points
downward. Gravity does not stop acting, so a = —g = —9.80m/s*> even there.
Thinking that @ = 0 at point B would lead to the conclusion that upon reaching
point B, the ball would stay there: if the acceleration (= rate of change of
velocity) were zero, the velocity would stay zero at the highest point, and the ball
would stay up there without falling. In sum, the acceleration of gravity always
points down toward the Earth, even when the object is moving up.

Ball thrown upward, II. Let us consider again the ball thrown
upward of Example 16, and make more calculations. Calculate (a) how much time
it takes for the ball to reach the maximum height (point B in Fig. 30), and (b) the
velocity of the ball when it returns to the thrower’s hand (point C).

APPROACH Again we assume the acceleration is constant, so we can use
Egs. 12. We have the height of 11.5m from Example 16. Again we take y as
positive upward.

SOLUTION (a) We consider the time interval between the throw (¢ =0,
vy = 15.0m/s) and the top of the path (y = +11.5m, v = 0), and we

want to find ¢. The acceleration is constant at a = —g = —9.80 m/s%. Both Eqgs.
12a and 12b contain the time ¢ with other quantities known. Let us use Eq. 12a
with a = —9.80m/s? v, = 15.0m/s, and » = 0:

v = vy t+ at;
setting v = 0 and solving for ¢ gives

fo % _ _ 150m/s
a -9.80 m/s’

This is just half the time it takes the ball to go up and fall back to its original
position [3.06s, calculated in part (b) of Example 16]. Thus it takes the same time
to reach the maximum height as to fall back to the starting point.

(b) Now we consider the time interval from the throw (¢ = 0, v, = 15.0m/s)
until the ball’s return to the hand, which occurs at ¢ = 3.06s (as calculated in
Example 16), and we want to find v when ¢ = 3.06s:

v = v+ at = 150m/s — (9.80m/s?)(3.06s) = —15.0m/s.

NOTE The ball has the same speed (magnitude of velocity) when it returns to the
starting point as it did initially, but in the opposite direction (this is the meaning
of the negative sign). And, as we saw in part (a), the time is the same up as down.
Thus the motion is symmetrical about the maximum height.

The acceleration of objects such as rockets and fast airplanes is often given as
a multiple of g = 9.80 m/s%. For example, a plane pulling out of a dive and under-
going 3.00 g’s would have an acceleration of (3.00)(9.80m/s?) = 29.4 m/s’.

| EXERCISE I If a car is said to accelerate at 0.50 g, what is its acceleration in m/s>?

/\ CAUTION

(1) Velocity and acceleration are
not always in the same direction;
the acceleration (of gravity) always
points down

(2) a # 0 even at the highest point
of a trajectory
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IETYITETEN Ball thrown upward, IlI; the quadratic formula. For the ball
in Example 18, calculate at what time ¢ the ball passes a point 8.00 m above the
person’s hand. (See repeated Fig. 30 here).

APPROACH We choose the time interval from the throw (¢ = 0, vy = 15.0m/s)
until the time ¢ (to be determined) when the ball is at position y = 8.00 m, using
Eq. 12b.

SOLUTION We want to find ¢, given y = 8.00m, y, = 0, v, = 15.0m/s, and
a = —9.80m/s>. We use Eq. 12b:

Yy = yy t vyt + %alz
8.00m = 0 + (15.0m/s)t + 3(—9.80 m/s?)¢%

To solve any quadratic equation of the form at*> + bt + ¢ = 0, where a, b, and ¢
are constants (a is not acceleration here), we use the quadratic formula:

—b £ \/b* — 4ac
2a .
We rewrite our y equation just above in standard form, at’> + bt + ¢ = 0:
(4.90m/s?)* — (15.0m/s)t + (8.00m) = 0.
So the coefficient a is 4.90 m/s%, b is —15.0m/s, and ¢ is 8.00 m. Putting these into
the quadratic formula, we obtain
15.0m/s + 1/ (15.0m/s)> — 4(4.90 m/s?)(8.00 m)
B 2(4.90 m/s) ’
which gives us ¢ = 0.69s and ¢ = 2.37s. Are both solutions valid? Yes, because

the ball passes y = 8.00m when it goes up (f = 0.69s) and again when it
comes down (¢ = 2.37s).

NOTE Figure 31 shows graphs of (a) y vs. t and (b) v vs. t for the ball thrown

t =

upward in Fig. 30, incorporating the results of Examples 16, 18, and 19.

FIGURE 31 Graphs of (a) y vs.t, (b) v vs. f for a ball thrown upward,
Examples 16, 18, and 19.
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Ball thrown upward at edge of cliff. Suppose that the person
of Examples 16, 18, and 19 is standing on the edge of a cliff, so that the ball can
fall to the base of the cliff 50.0 m below as in Fig. 32. (a¢) How long does it take
the ball to reach the base of the cliff? (b) What is the total distance traveled by
the ball? Ignore air resistance (likely to be significant, so our result is an approx-
imation).

APPROACH We again use Eq. 12b, but this time we set y = —50.0m, the

bottom of the cliff, which is 50.0 m below the initial position (y, = 0).
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SOLUTION (a) We use Eq. 12b with a = —9.80m/s?, v, = 15.0m/s, y, = 0,
and y = —50.0m:
y = yo + vt + zar’

-500m = 0 + (15.0m/s)t — 5(9.80m/s?)%
Rewriting in the standard form we have

(4.90m/s?)* — (15.0m/s)t — (50.0m) = 0.
Using the quadratic formula, we find as solutions ¢ = 5.07s and ¢ = —2.01s.
The first solution, f = 5.07s, is the answer we are seeking: the time it takes
the ball to rise to its highest point and then fall to the base of the cliff.
To rise and fall back to the top of the cliff took 3.06s (Example 16); so it
took an additional 2.01 s to fall to the base. But what is the meaning of the other
solution, t = —2.01s? This is a time before the throw, when our calculation
begins, so it isn’t relevant here.
(b) From Example 16, the ball moves up 11.5 m, falls 11.5 m back down to the top
of the cliff, and then down another 50.0 m to the base of the cliff, for a total
distance traveled of 73.0 m. Note that the displacement, however, was —50.0 m.
Figure 33 shows the y vs. t graph for this situation.

EXERCISE J Two balls are thrown from a cliff. One is thrown directly up, the other directly FIGURE 32 Example 20.
down, each with the same initial speed, and both hit the ground below the cliff. Which The person in Fig. 30 stands on the
ball hits the ground at the greater speed: (a) the ball thrown upward, (b) the ball thrown edge of a cliff. The ball falls to the

downward, or (c) both the same? Ignore air resistance. base of the cliff, 50.0 m below.
. . FIGURE 33 Example 20,
*8 Variable Acceleration; Integral Calculus the yvs.t graph.

In this brief optional Section we use integral calculus to derive the kinematic equa-  Hand 10
tions for constant acceleration, Eqs. 12a and b. We also show how calculus can be 0
used when the acceleration is not constant. If you have not yet studied simple inte- —10
gration in your calculus course, you may want to postpone reading this Section g 20 \
until you have. ~ 30

First we derive Eq. 12a, assuming as we did in Section 5 that an object has r= \
velocity v, at £ = 0 and a constant acceleration a. We start with the definition of —40 5.07s \
instantaneous acceleration, a = dv/dt, which we rewrite as P2 N2 3 4 5 6

dv = adt. Base 1(s)
of cliff

We take the definite integral of both sides of this equation, using the same nota-
tion we did in Section 5:

v t
f dv = J adt
v=1y =0

which gives, since a = constant,
v — vy, = at.
This is Eq. 12a, v = v, + at.
Next we derive Eq. 12b starting with the definition of instantaneous velocity,
Eq. 4, v = dx/dt. We rewrite this as

dx = vdt

or
dx = (v, + at)dt
where we substituted in Eq. 12a.

"The solution ¢ = —2.01s could be meaningful in a different physical situation. Suppose that a
person standing on top of a 50.0-m-high cliff sees a rock pass by him at ¢ =0 moving upward at
15.0 m/s; at what time did the rock leave the base of the cliff, and when did it arrive back at the base
of the cliff? The equations will be precisely the same as for our original Example, and the answers
t = —2.01s and ¢ = 5.07s will be the correct answers. Note that we cannot put all the information
for a problem into the mathematics, so we have to use common sense in interpreting results.
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Now we integrate:

X t
de = J(vo + at)dt
t

x=x, =0
t t
X — x, = Jvodt + Jatdl‘
=0 t=0
x — Xy = vt + yaf®
since v, and a are constants. This result is just Eq. 12b, x = x, + vyt + taf’.

Finally let us use calculus to find velocity and displacement, given an acceleration
that is not constant but varies in time.

IETYTTITFIM Integrating a time-varying acceleration. An experimental
vehicle starts from rest (vy = 0) at f =0 and accelerates at a rate given by

a = (7.00m/s’)t. What is (a) its velocity and (b) its displacement 2.00 s later?

APPROACH We cannot use Eqgs. 12 because a is not constant. We integrate the
acceleration a = dv/dt over time to find v as a function of time; and then
integrate v = dx/dt to get the displacement.
SOLUTION From the definition of acceleration, a = dv/dt, we have

dv = adt.

We take the integral of both sides from v = 0 at ¢ = 0 to velocity v at an arbi-
trary time f:

v t
Jdv: jadt
0 0

t
v = j(7.00m/s3)tdt
0

= (7.00 m/s3)<§)

At ¢ =200s, v = (3.50m/s%)(2.005)> = 14.0m/s.

(b) To get the displacement, we assume x, = 0 and start with v = dx/dt which
we rewrite as dx = v dt. Then we integrate from x = 0 at £ = 0 to position
X at time f:

X t
jdx: Jvdl
0 0

2.00s f3 2.00s
x = J(3.50m/s3)z2 dr = (3.50m/s3)§ = 933m.

0 0

t 2

= (7.00m/s3)<% - 0) = (3.50m/s*)¢%

0

In sum, at ¢t = 2.00s, v = 14.0m/s and x = 9.33 m.

*9 Graphical Analysis and Numerical
Integration

This Section is optional. It discusses how to solve certain Problems numerically,
often needing a computer to do the sums.

If we are given the velocity v of an object as a function of time #, we can obtain the
displacement, x. Suppose the velocity as a function of time, v(f), is given as a graph
(rather than as an equation that could be integrated as discussed in Section 8), as shown
in Fig 34a. If we are interested in the time interval from ¢, to f,, as shown, we divide the
time axis into many small subintervals, Af;, Af,, At;, ..., which are indicated by the
dashed vertical lines. For each subinterval, a horizontal dashed line is drawn to indicate
the average velocity during that time interval. The displacement during any subinterval
is given by Ax;, where the subscript i represents the particular subinterval
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(i = 1,2,3,...). From the definition of average velocity (Eq. 2) we have

Axi = ElAtl
Thus the displacement during each subinterval equals the product of v; and Af;,
and equals the area of the dark rectangle in Fig. 34a for that subinterval. The total

displacement between times 7, and /, is the sum of the displacements over all the
subintervals:

153
Xy, — Xy = EiiAtia (133)
2}

where x; is the position at f; and x, is the position at #,. This sum equals the area
of all the rectangles shown.

It is often difficult to estimate v; with precision for each subinterval from the
graph. We can get greater accuracy in our calculation of x, — x; by breaking the
interval ¢, — f; into more, but narrower, subintervals. Ideally, we can let each Af;
approach zero, so we approach (in principle) an infinite number of subintervals. In
this limit the area of all these infinitesimally thin rectangles becomes exactly equal
to the area under the curve (Fig. 34b). Thus the total displacement between any two
times is equal to the area between the velocity curve and the t axis between the two
times t, and t,. This limit can be written

153
X, — x; = lim v; At;
2 1 At—0 IE ! !
1
or, using standard calculus notation,

&)
X, — X = Jv(t)dt. (13b)
L
We have let At — 0Oand renamed it df to indicate that it is now infinitesimally small.
The average velocity, v, over an infinitesimal time df is the instantaneous velocity at
that instant, which we have written »(f) to remind us that v is a function of f.
The symbol [ is an elongated S and indicates a sum over an infinite number of
infinitesimal subintervals. We say that we are taking the integral of v(t) over dt from
time 7, to time 7,, and this is equal to the area between the »(f) curve and the ¢ axis
between the times #, and 7, (Fig. 34b). The integral in Eq. 13b is a definite integral,
since the limits #; and ¢, are specified.

Similarly, if we know the acceleration as a function of time, we can obtain the
velocity by the same process. We use the definition of average acceleration
(Eq. 5) and solve for Av:

Av = aAt.
If a is known as a function of ¢ over some time interval ¢, to ¢,, we can subdivide
this time interval into many subintervals, Az;, just as we did in Fig. 34a. The change
in velocity during each subinterval is Av; = g; At;. The total change in velocity
from time ¢, until time ¢, is

L3
V, — UV = EﬁiAt,-, (143)
21

where v, represents the velocity at £, and v, the velocity at ¢, . This relation can be written
as an integral by letting A7 — 0(the number of intervals then approaches infinity)

15}
lim a; At;
At—0 [2 ! !
1

Uy —
or

5]
V) — UV = Ja(l)d[. (14b)
L
Equations 14 will allow us to determine the velocity v, at some time ¢, if the
velocity is known at ¢, and a is known as a function of time.

If the acceleration or velocity is known at discrete intervals of time, we can use the
summation forms of the above equations, Egs. 13a and 14a, to estimate velocity or
displacement. This technique is known as numerical integration. We now take an
Example that can also be evaluated analytically, so we can compare the results.

(®)

FIGURE 34 Graph of v vs.  for the
motion of a particle. In (a), the time
axis is broken into subintervals of
width Af;, the average velocity
during each At;is v;, and the area of
all the rectangles, 2v; At;, is
numerically equal to the total
displacement (x, — x,) during the
total time (t2 - tl). In (b),At; -> 0
and the area under the curve is
equal to (x; — xy).
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a (m/s?)
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24.00

16.00 7

8.00 7

0 050 1.00 1.50 2.00

FIGURE 35 Example 22.

Describing Motion: Kinematics in One Dimension

IETYTITHPH Numerical integration. An object starts from rest at t = 0
and accelerates at a rate a(f) = (8.00m/s*)#%. Determine its velocity after 2.00's
using numerical methods.

APPROACH Let us first divide up the interval ¢ = 0.00s to ¢ = 2.00s into four
subintervals each of duration Atf; = 0.50s (Fig. 35). We use Eq. 14a with
v, =v,v; =0, t, =2.00s, and t; = 0. For each of the subintervals we need to
estimate a;. There are various ways to do this and we use the simple method of
choosing a; to be the acceleration a(t) at the midpoint of each interval (an even
simpler but usually less accurate procedure would be to use the value of a at the
start of the subinterval). That is, we evaluate a(f) = (8.00m/s*)? at t = 0.25s
(which is midway between 0.00s and 0.50s),0.75s,1.25 s, and 1.75s.

SOLUTION The results are as follows:

i 1 2 3 4
a;(m/s?) 0.50 4.50 12.50 24.50

Now we use Eq. 14a, and note that all Az; equal 0.50s (so they can be factored out):
=200

'U(t = 2005) = Eﬁ,At,
t=0
= (0.50m/s* + 4.50m/s> + 12.50m/s* + 24.50 m/s?)(0.50s)
21.0m/s.

We can compare this result to the analytic solution given by Eq. 14b since the
functional form for a is integrable analytically:

2.00s 8.00 4 2.00s
v = J(S.OOm/s“)tzdt _ 800m/st
0 3 0
8.00 m/s*

= 3 [(2005)° = (0] = 21.33m/s

or 21.3m/s to the proper number of significant figures. This analytic solution is
precise, and we see that our numerical estimate is not far off even though we only
used four At intervals. It may not be close enough for purposes requiring high accu-
racy. If we use more and smaller subintervals, we will get a more accurate result. If
we use 10 subintervals, each with At = 2.00s/10 = 0.20s, we have to evaluate
a(t)att = 0.10s, 0.30s, ..., 1.90s to get the g;, and these are as follows:

i 1 2 3 4 5 6 7 8 9 10
a;(m/s?) 008 072 200 392 648 9.68 1352 18.00 23.12 28.88

Then, from Eq. 14a we obtain
o(t =2.00s) = > @Ay = (D3,)(0.2005)

= (106.4m/s?)(0.200s) = 21.28m/s,

where we have kept an extra significant figure to show that this result is much
closer to the (precise) analytic one but still is not quite identical to it. The
percentage difference has dropped from 1.4% (0.3 m/s?/21.3 m/s?) for the four-
subinterval computation to only 0.2% (0.05/21.3) for the 10-subinterval one.

In the Example above we were given an analytic function that was integrable, so
we could compare the accuracy of the numerical calculation to the known precise one.
But what do we do if the function is not integrable, so we can’t compare our numerical
result to an analytic one? That is, how do we know if we’ve taken enough subintervals
so that we can trust our calculated estimate to be accurate to within some desired uncer-
tainty, say 1 percent? What we can do is compare two successive numerical calculations:
the first done with n subintervals and the second with, say, twice as many subintervals
(2n).If the two results are within the desired uncertainty (say 1 percent), we can usually
assume that the calculation with more subintervals is within the desired uncertainty of
the true value. If the two calculations are not that close, then a third calculation, with
more subintervals (maybe double, maybe 10 times as many, depending on how good
the previous approximation was) must be done, and compared to the previous one.

The procedure is easy to automate using a computer spreadsheet application.
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If we wanted to also obtain the displacement x at some time, we would have to
do a second numerical integration over v, which means we would first need to
calculate v for many different times. Programmable calculators and computers are

very helpful for doing the long sums.

| Summary

Kinematics deals with the description of how objects move. The
description of the motion of any object must always be given
relative to some particular reference frame.

The displacement of an object is the change in position of
the object.

Average speed is the distance traveled divided by the
elapsed time or time interval, Af, the time period over which we
choose to make our observations. An object’s average velocity
over a particular time interval Af is its displacement Ax during
that time interval, divided by At:
Ax
At @

The instantaneous velocity, whose magnitude is the same as
the instantaneous speed, is defined as the average velocity taken
over an infinitesimally short time interval (At — 0):

. Ax  dx
Imar = @
where dx/dt is the derivative of x with respect to f.
On a graph of position vs. time, the slope is equal to the

instantaneous velocity.

v o=

v o=

|Answers to Exercises

Acceleration is the change of velocity per unit time. An
object’s average acceleration over a time interval Af is

A
e )

where Av is the change of velocity during the time interval Af.
Instantaneous acceleration is the average acceleration

taken over an infinitesimally short time interval:

Av dv

mar = a (©)
If an object moves in a straight line with constant acceleration, the

velocity v and position x are related to the acceleration a, the elapsed

time ¢, the initial position x,, and the initial velocity vy by Egs. 12:

v = vy + at, x=x0+v0t+%at2,
v+ v (12)

a =

a =

v o= uf + Za(x - xo), v o=

Objects that move vertically near the surface of the Earth,
either falling or having been projected vertically up or down,
move with the constant downward acceleration due to gravity,
whose magnitude is g = 9.80 m/s? if air resistance can be ignored.

[*The kinematic Equations 12 can be derived using integral
calculus.]

A: —30cm; 50 cm.
B: (a).

C: (b).

D: (b).

E: (a) +;(b) = (c) =3 (@) +.

F: (c).
G: (b).
H: (e).
L 49m/s%
J: (o).
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Describing Motion: Kinematics in One Dimension
Problem Set

§ Questions

1. Does a car speedometer measure speed, velocity, or both?

2. Can an object have a varying speed if its velocity is
constant? Can it have varying velocity if its speed is
constant? If yes, give examples in each case.

3. When an object moves with constant velocity, does its
average velocity during any time interval differ from its
instantaneous velocity at any instant?

4. If one object has a greater speed than a second object, does
the first necessarily have a greater acceleration? Explain,
using examples.

5. Compare the acceleration of a motorcycle that accelerates
from 80 km/h to 90 km/h with the acceleration of a bicycle
that accelerates from rest to 10 km/h in the same time.

6. Can an object have a northward velocity and a southward
acceleration? Explain.

7. Can the velocity of an object be negative when its accelera-
tion is positive? What about vice versa?

8. Give an example where both the velocity and acceleration
are negative.

9. Two cars emerge side by side from a tunnel. Car A is trav-
eling with a speed of 60km/h and has an acceleration of
40 km/h/min. Car B has a speed of 40km/h and has an
acceleration of 60 km/h/min. Which car is passing the other
as they come out of the tunnel? Explain your reasoning.

10. Can an object be increasing in speed as its acceleration
decreases? If so, give an example. If not, explain.

11. A baseball player hits a ball straight up into the air. It leaves the
bat with a speed of 120km/h. In the absence of air resistance,
how fast would the ball be traveling when the catcher catches it?

12. As a freely falling object speeds up, what is happening to its
acceleration—does it increase, decrease, or stay the same?
(a) Ignore air resistance. (b) Consider air resistance.

13. You travel from point A to point B in a car moving at a
constant speed of 70km/h. Then you travel the same
distance from point B to another point C, moving at a constant
speed of 90 km/h. Is your average speed for the entire trip
from A to C 80 km/h? Explain why or why not.

14. Can an object have zero velocity and nonzero acceleration
at the same time? Give examples.

15. Can an object have zero acceleration and nonzero velocity
at the same time? Give examples.

| Problems

16. Which of these motions is not at constant acceleration: a
rock falling from a cliff, an elevator moving from the second
floor to the fifth floor making stops along the way, a dish
resting on a table?

17. In a lecture demonstration, a 3.0-m-long vertical string with ten
bolts tied to it at equal intervals is dropped from the ceiling of
the lecture hall. The string falls on a tin plate, and the class
hears the clink of each bolt as it hits the plate. The sounds will
not occur at equal time intervals. Why? Will the time between
clinks increase or decrease near the end of the fall? How could
the bolts be tied so that the clinks occur at equal intervals?

18. Describe in words the motion plotted in Fig. 36 in terms of
v, a, etc. [Hint: First try to duplicate the motion plotted by
walking or moving your hand.]

20

10 gy ,/

L

X (m)

L1

0 10 20 30 40 50
t(s)

FIGURE 36 Question 18, Problems 9 and 86.

19. Describe in words the motion of the object graphed in Fig. 37.
40

—
30 \~
% L~
g 20
=
10 \
0 |
0 10 20 30 40 50 60 70 80 90 100 110 120

1(s)
FIGURE 37 Question 19, Problem 23.

[The Problems in this Section are ranked I, II, or III according to
estimated difficulty, with (I) Problems being easiest. Level (III)
Problems are meant mainly as a challenge for the best students, for
“extra credit.” The Problems are arranged by Sections, meaning that
the reader should have read up to and including that Section, but
this Chapter also has a group of General Problems that are not
arranged by Section and not ranked.]

1to 3 Speed and Velocity

1. (I) If you are driving 110 km/h along a straight road and
you look to the side for 2.0s, how far do you travel during
this inattentive period?

2. (I) What must your car’s average speed be in order to travel
235km in 3.25h?

From Chapter 2 of Physics for Scientists & Engineers with Modern Physics, Fourth Edition, Douglas C. Giancoli.
Copyright © 2009 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.
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10.

Ny = 2<44,100

11.

12.

. (II) The position of a

Describing Motion: Kinematics in One Dimension: Problem Set

. (I) A particle at t; = —2.0s is at x; = 43cm and at

1, = 45s is at x, = 8.5cm. What is its average velocity?
Can you calculate its average speed from these data?

. (I) A rolling ball moves from x; = 3.4cm to x, = —4.2cm

during the time from ¢; = 3.0s to #, = 5.1s. What is its
average velocity?

. (II) According to a rule-of-thumb, every five seconds

between a lightning flash and the following thunder gives
the distance to the flash in miles. Assuming that the flash of
light arrives in essentially no time at all, estimate the speed
of sound inm/s from this rule. What would be the rule for
kilometers?

. (I) You are driving home from school steadily at 95 km/h

for 130 km. It then begins to rain and you slow to 65 km/h.
You arrive home after driving 3 hours and 20 minutes.
(a) How far is your hometown from school? (b) What was
your average speed?

. (I) A horse canters away from its trainer in a straight line,

moving 116 m away in 14.0s. It then turns abruptly and
gallops halfway back in 4.8 s. Calculate (a) its average speed
and (b) its average velocity for the entire trip, using “away
from the trainer” as the positive direction.

small object is given by
x = 34 + 10t — 2£3, where ¢ is in seconds and x in meters.
(a) Plot x as a function of ¢ from =0 to t= 3.0s.
(b) Find the average velocity of the object between 0
and 3.0s. (¢) At what time between 0 and 3.0s is the
instantaneous velocity zero?

. (II) The position of a rabbit along a straight tunnel as a

function of time is plotted in Fig. 36. What is its instanta-
neous velocity (a) at ¢t = 10.0s and (b) at t = 30.0s?
What is its average velocity (c) between ¢ = 0 and
t =50s, (d) between t = 25.0s and ¢ = 30.0s, and
(e) between t = 40.0s and t = 50.0s?

(IT) On an audio compact disc (CD), digital bits of informa-
tion are encoded sequentially along a spiral path. Each bit
occupies about 0.28 um. A CD player’s readout laser scans
along the spiral’s sequence of bits at a constant speed of
about 1.2 m/s as the CD spins. (a) Determine the number N
of digital bits that a CD player reads every second. (b) The
audio information is sent to each of the two loudspeakers
44,100 times per second. Each of these samplings requires
16 bits and so one would (at first glance) think the required
bit rate for a CD player is

samplings) <16 bits
ond sampling

bits
second

>: 1.4 x 10°

where the 2 is for the 2 loudspeakers (the 2 stereo channels).
Note that N is less than the number N of bits actually read
per second by a CD player. The excess number of bits
(= N — Ny)is needed for encoding and error-correction.
What percentage of the bits on a CD are dedicated to
encoding and error-correction?

(IT) A car traveling 95km/h is 110 m behind a truck trav-
eling 75km/h. How long will it take the car to reach the
truck?

(II) Two locomotives approach each other on parallel
tracks. Each has a speed of 95km/h with respect to the
ground. If they are initially 8.5 km apart, how long will it be
before they reach each other? (See Fig. 38).

13.

14.

15.

16.

17.

18.

FIGURE 38 Problem 12.

(IT) Digital bits on a 12.0-cm diameter audio CD are
encoded along an outward spiraling path that starts at
radius R; = 2.5cm and finishes at radius R, = 5.8 cm.
The distance between the centers of neighboring spiral-
windings is 1.6 um (= 1.6 X 107%m). (a) Determine the
total length of the spiraling path. [Hint: Imagine
“unwinding” the spiral into a straight path of width 1.6 um,
and note that the original spiral and the straight path both
occupy the same area.] (b) To read information, a CD
player adjusts the rotation of the CD so that the player’s
readout laser moves along the spiral path at a constant
speed of 1.25m/s. Estimate the maximum playing time of
such a CD.

(IT) An airplane travels 3100 km at a speed of 720 km/h,
and then encounters a tailwind that boosts its speed to
990 km/h for the next 2800 km. What was the total time for
the trip? What was the average speed of the plane for this
trip? [Hint: Does Eq. 12d apply, or not?]

_ v+ o
v = TO [a = constant]

(12d)
(IT) Calculate the average speed and average velocity of a
complete round trip in which the outgoing 250 km is
covered at 95 km/h, followed by a 1.0-h lunch break, and
the return 250 km is covered at 55 km/h.

(IT) The position of a ball rolling in a straight line is given by
x=20-36¢+ 1.1¢% where x is in meters and ¢ in
seconds. (a) Determine the position of the ball at t = 1.0s,
2.0s, and 3.0s. (b) What is the average velocity over the
interval = 1.0s to ¢ = 3.0s? (¢) What is its instanta-
neous velocity at t = 2.0s and at t = 3.0s?

(IT) A dog runs 120 m away from its master in a straight line
in 8.4s, and then runs halfway back in one-third the time.
Calculate (a) its average speed and (b) its average velocity.
(IIT) An automobile traveling 95 km/h overtakes a 1.10-km-
long train traveling in the same direction on a track parallel
to the road. If the train’s speed is 75 km/h, how long does it
take the car to pass it, and how far will the car have traveled
in this time? See Fig. 39. What are the results if the car and
train are traveling in opposite directions?

1.10 km |

v =75 km/h

FIGURE 39 Problem 18.



19.

Describing Motion: Kinematics in One Dimension: Problem Set

(IIT) A bowling ball traveling with constant speed hits the
pins at the end of a bowling lane 16.5 m long. The bowler
hears the sound of the ball hitting the pins 2.50s after the
ball is released from his hands. What is the speed of the ball,
assuming the speed of sound is 340 m/s?

4 Acceleration

20.

21.

22.

23.

24.

25.

26.

27.

28.

(I) A sports car accelerates from rest to 95km/h in 4.5s.
What is its average acceleration in m/s>?

(I) At highway speeds, a particular automobile is capable of
an acceleration of about 1.8m/s’. At this rate, how long
does it take to accelerate from 80 km/h to 110 km/h?

(I) A sprinter accelerates from rest to 9.00m/s in 1.28s.
What is her acceleration in (a) m/s% (b) km/h??

(I) Figure 37 shows the velocity of a train as a function of
time. (a) At what time was its velocity greatest? (b) During
what periods, if any, was the velocity constant? (¢) During
what periods, if any, was the acceleration constant?
(d) When was the magnitude of the acceleration greatest?
(IT) A sports car moving at constant speed travels 110 m in
5.0s. If it then brakes and comes to a stop in 4.0 s, what is
the magnitude of its acceleration in m/s?, and in g’s
(g = 9.80m/s?)?

(IT) A car moving in a straight line startsat x = 0 at t = 0.
It passes the point x = 25.0m with a speed of 11.0m/s at
t = 3.00s. It passes the point x = 385m with a speed of
45.0m/s at t = 20.0s. Find (a) the average velocity and
(b) the average acceleration between ¢ = 3.00s and
t = 20.0s.

(II) A particular automobile can accelerate approximately
as shown in the velocity vs. time graph of Fig. 40. (The short
flat spots in the curve represent shifting of the gears.) Esti-
mate the average acceleration of the car in (a) second gear;
and (b) fourth gear. (c) What is its average acceleration
through the first four gears?

50 —

M éear

40 7~ 4th gear

30 /vﬁgear

20 /
// 2nd gear

ol

Ist gea‘r

0 ‘ t(s)
0 10 20 30 40

v (m/s)

FIGURE 40 Problem 26. The velocity of a
high-performance automobile as a function of time,
starting from a dead stop. The flat spots in the curve
represent gear shifts.

(IT) A particle moves along the x axis. Its position as a func-
tion of time is given by x = 6.8¢ + 8.5¢%, where  is in
seconds and x is in meters. What is the acceleration as a
function of time?

(IT) The position of a racing car, which starts from rest at
t = 0 and moves in a straight line, is given as a function of

time in the following Table. Estimate (a) its velocity and
(b) its acceleration as a function of time. Display each in a
Table and on a graph.

f(s) 0 025 050 075 1.00 150
x(m) 0 011 046 106 194 462

2.00 2.50
8.55 13.79

t(s) 3.00 350 4.00 450 500 550 6.00
x(m) 2036 2831 37.65 4837 60.30 73.26 87.16

29.

(IT) The position of an object is given by x = At + Bf?,
where x is in meters and ¢ is in seconds. (¢) What are the
units of A and B? (b) What is the acceleration as a function
of time? (¢) What are the velocity and acceleration at
t = 5.0s? (d) What is the velocity as a function of time if
x= At + Bt™*?

5 and 6 Motion at Constant Acceleration

30.

31.

32.

33.

34.

3s.

36.

37.

38.

(I) A car slows down from 25m/s to rest in a distance of
85 m. What was its acceleration, assumed constant?

(I) A car accelerates from 12m/s to 21 m/s in 6.0s. What
was its acceleration? How far did it travel in this time?
Assume constant acceleration.

(I) A light plane must reach a speed of 32m/s for takeoff.
How long a runway is needed if the (constant) acceleration
is 3.0 m/s2?

(IT) A baseball pitcher throws a baseball with a speed of
41 m/s. Estimate the average acceleration of the ball during
the throwing motion. In throwing the baseball, the pitcher
accelerates the ball through a displacement of about 3.5 m,
from behind the body to the point where it is released
(Fig. 41).

ln FIGURE 41
Problem 33.

(TT) Show that ¥ = (v + vy)/2 (see Eq. 12d) is not valid
when the acceleration a = A + Bt, where A and B are
constants.

(IT) A world-class sprinter can reach a top speed (of about
11.5m/s) in the first 15.0m of a race. What is the average
acceleration of this sprinter and how long does it take her to
reach that speed?

(IT) An inattentive driver is traveling 18.0m/s when he
notices a red light ahead. His car is capable of decelerating
at a rate of 3.65m/s% If it takes him 0.200s to get the
brakes on and he is 20.0 m from the intersection when he
sees the light, will he be able to stop in time?

(IT) A car slows down uniformly from a speed of 18.0m/s to
rest in 5.00 s. How far did it travel in that time?

(IT) In coming to a stop, a car leaves skid marks 85 m long
on the highway. Assuming a deceleration of 4.00 m/s?, esti-
mate the speed of the car just before braking.
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39. (II) A car traveling 85km/h slows down at a constant
0.50 m/s” just by “letting up on the gas.” Calculate (a) the

distance the car coasts before it stops, (b) the time it takes ~ Mary Sally
to stop, and (c¢) the distance it travels during the first and e4.0m/s ¢5.0m/s
fifth seconds. ‘(g j }“

40. (IT) A car traveling at 105 km/h strikes a tree. The front end ' | \

of the car compresses and the driver comes to rest after }‘*5‘0 m—

v

traveling 0.80 m. What was the magnitude of the average | 22m
acceleration of the driver during the collision? Express the
answer in terms of “g’s,” where 1.00 g = 9.80 m/s. FIGURE 43 Problem 47.

41. (II) Determine the stopping distances for an automobile
with an initial speed of 95 km/h and human reaction time of . .
1.0s: (a) for pan acceleration a = —5.0m/s* (b) for 7 FreelY Fal!lng Objects
a=—70m/s% [Neglect air resistance.]

42. (II) A space vehicle accelerates uniformly from 65m/s at 48. (I) A stone is dropped from the top O.f a ?hff' It 18 seen to hit
f=0 to 162m/s at = 100s. How far did it move the ground below after 3.75s. How high is the cliff?
between f = 2.0s and f = 6.0s? 49. (T) If a car rolls gently (v, = 0) off a vertical cliff, how long
does it take it to reach 55 km/h?

50. (I) Estimate (a) how long it took King Kong to fall straight

railway worker who is standing 180 m from where the front df)wn from the' top Of. th? Empire State .Bulldmg (380m

of the train started. What will be the speed of the last car as high), and (b) his velocity just before “landing.”

it passes the worker? (See Fig. 42.) 51. (II) A baseball is hit almost straight up into the air with a

speed of about 20m/s. (¢) How high does it go? (b) How
long is it in the air?

| 75 mr | 52. (II) A ball player catches a ball 3.2 s after throwing it verti-
cally upward. With what speed did he throw it, and what
height did it reach?

53. (II) A kangaroo jumps to a vertical height of 1.65 m. How
long was it in the air before returning to Earth?

43. (II) A 75-m-long train begins uniform acceleration from rest.
The front of the train has a speed of 23 m/s when it passes a

ES==EESE ERSE = 54. (I1) The best rebounders in basketball have a vertical leap
‘i' (that is, the vertical movement of a fixed point on their
body) of about 120 cm. (a) What is their initial “launch”
FIGURE 42 Problem 43. speed off the ground? (b) How long are they in the air?

55. (II) A helicopter is ascending vertically with a speed of
5.10m/s. At a height of 105 m above the Earth, a package is
dropped from a window. How much time does it take for
the package to reach the ground? [Hint: v, for the package
equals the speed of the helicopter.]

56. (II) For an object falling freely from rest, show that the
distance traveled during each successive second increases in

45. (11D A in Problem 44 that th , . the ratio of successive odd integers (1, 3, 5, etc.). (This was
5. (III) Assume in Problem 44 that the speeder’s speed is not first shown by Galileo.) See Figs. 26 and 29.

known. If the police car accelerates uniformly as given
above and overtakes the speeder after accelerating for
7.00 s, what was the speeder’s speed? v

46. (III) A runner hopes to complete the 10,000-m run in less )
than 30.0 min. After running at constant speed for exactly
27.0 min, there are still 1100 m to go. The runner must then
accelerate at 0.20m/s? for how many seconds in order to
achieve the desired time?

47. (III) Mary and Sally are in a foot race (Fig. 43). When Mary
is 22 m from the finish line, she has a speed of 4.0 m/s and is
5.0 m behind Sally, who has a speed of 5.0m/s. Sally thinks
she has an easy win and so, during the remaining portion of
the race, decelerates at a constant rate of 0.50 m/s2 to the
finish line. What constant acceleration does Mary now need
during the remaining portion of the race, if she wishes to
cross the finish line side-by-side with Sally?

44. (II) An unmarked police car traveling a constant 95 km/h is
passed by a speeder traveling 135km/h. Precisely 1.00s
after the speeder passes, the police officer steps on the
accelerator; if the police car’s acceleration is 2.00 m/s?, how
much time passes before the police car overtakes the
speeder (assumed moving at constant speed)?

FIGURE 26 Multiflash
photograph of a falling
apple, at equal time
intervals. The apple falls
farther during each
successive interval,
which means it is
accelerating.




FIGURE 29 See
Example 14 of
“Describing Motion:
Kinematics in One
Dimension.” (a) An
object dropped from a
tower falls with
progressively greater
speed and covers greater
distance with each
successive second.
(See also Fig. 26.)

(b) Graph of y vs. 2.
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- -——-y=0

y1=490m
(After 1.00 s)

y,=19.6 m
(After 2.00 s)

y3=44.1m
(After 3.00 s)

57.

58.

59.

60.

61.

(a)

® 0 1 2 3
1(s)

(II) A baseball is seen to pass upward by a window 23 m
above the street with a vertical speed of 14 m/s. If the ball
was thrown from the street, (a) what was its initial speed,
(b) what altitude does it reach, (¢) when was it thrown, and
(d) when does it reach the street again?

(IT) A rocket rises vertically, from rest, with an acceleration
of 3.2m/s? until it runs out of fuel at an altitude of 950 m.
After this point, its acceleration is that of gravity, down-
ward. (a) What is the velocity of the rocket when it runs out
of fuel? (b) How long does it take to reach this point?
(c) What maximum altitude does the rocket reach? (d) How
much time (total) does it take to reach maximum altitude?
(e) With what velocity does it strike the Earth? (f) How
long (total) is it in the air?

(IT) Roger seces water balloons fall past his window. He
notices that each balloon strikes the sidewalk 0.83s after
passing his window. Roger’s room is on the third floor, 15 m
above the sidewalk. (¢) How fast are the balloons traveling
when they pass Roger’s window? (b) Assuming the balloons
are being released from rest, from what floor are they being
released? Each floor of the dorm is 5.0 m high.

(IT) A stone is thrown vertically upward with a speed of
24.0 m/s. (a) How fast is it moving when it reaches a height
of 13.0m? (b) How much time is required to reach this
height? (c¢) Why are there two answers to (b)?

(II) A falling stone takes 0.33s to travel past a window
2.2 m tall (Fig. 44). From what height above the top of the
window did the stone fall?

62.

63.

64.

65.

66.

©

To travel
this
distance
took
0.33s

22 m

FIGURE 44 Problem 61.

(IT) Suppose you adjust your garden hose nozzle for a hard
stream of water. You point the nozzle vertically upward at a
height of 1.5m above the ground (Fig. 45). When you

2.0s. What is the water speed
as it leaves the nozzle?

quickly turn off the nozzle, you ¢1& B
hear the water striking the | “3
ground next to you for another g

I

L

FIGURE 45
Problem 62.

(III) A toy rocket moving vertically upward passes by a
2.0-m-high window whose sill is 8.0 m above the ground. The
rocket takes 0.15s to travel the 2.0 m height of the window.
What was the launch speed of the rocket, and how high will it
20? Assume the propellant is burned very quickly at blastoff.
(III) A ball is dropped from the top of a 50.0-m-high cliff. At
the same time, a carefully aimed stone is thrown straight up
from the bottom of the cliff with a speed of 24.0 m/s. The
stone and ball collide part way up. How far above the base
of the cliff does this happen?

(III) A rock is dropped from a sea cliff and the sound of it
striking the ocean is heard 3.4 s later. If the speed of sound
is 340 m/s, how high is the cliff?

(III) A rock is thrown vertically upward with a speed of
12.0m/s. Exactly 1.00s later, a ball is thrown up vertically
along the same path with a speed of 18.0m/s. (a) At what
time will they strike each other? (b) At what height will the
collision occur? (c¢) Answer (a) and (b) assuming that the
order is reversed: the ball is thrown 1.00 s before the rock.

59
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*8 Variable Acceleration; Calculus

*67. (1) Given v(t) = 25 + 18¢, where v is in m/s and 7 is in s,
use calculus to determine the total displacement from
ty = 15s to 1, = 3.1s.

*68. (I11) The acceleration of a particle is given by a = A\/f
where A = 2.0m/s”2 At t = 0,v = 7.5m/s and x = 0.
(a) What is the speed as a function of time? (b) What is the
displacement as a function of time? (¢) What are the accel-
eration, speed and displacement at t = 5.0s?

*69. (III) Air resistance acting on a falling body can be
taken into account by the approximate relation for the
acceleration:

| General Problems

a = % = g — kv,
where k is a constant. (a) Derive a formula for the velocity
of the body as a function of time assuming it starts from rest
(v=0 at t=0). [Hint: Change variables by setting
u = g — kv.] (b) Determine an expression for the terminal
velocity, which is the maximum value the velocity reaches.

“9 Graphical Analysis and Numerical Integration
[See Problems 95-97 at the end of this Chapter.]

70. A fugitive tries to hop on a freight train traveling at a
constant speed of 5.0 m/s. Just as an empty box car passes
him, the fugitive starts from rest and accelerates at
a=12m/s* to his maximum speed of 6.0m/s. (a) How
long does it take him to catch up to the empty box car?
(b) What is the distance traveled to reach the box car?

71. The acceleration due to gravity on the Moon is about one-
sixth what it is on Earth. If an object is thrown vertically
upward on the Moon, how many times higher will it go than
it would on Earth, assuming the same initial velocity?

72. A person jumps from a fourth-story window 15.0 m above a
firefighter’s safety net. The survivor stretches the net 1.0 m
before coming to rest, Fig. 46. (@) What was the average
deceleration experienced by the survivor when she was

slowed to rest by the net? (b) What would you do to

make it “safer” (that is, to generate a smaller
deceleration): would you stiffen or loosen
the net? Explain.

v FIGURE 46
Om Problem 72.

73. A person who is properly restrained by an over-the-
shoulder seat belt has a good chance of surviving a car colli-
sion if the deceleration does not exceed 30 “g’s”
(1.00 g = 9.80 m/s?). Assuming uniform deceleration of this
value, calculate the distance over which the front end of the
car must be designed to collapse if a crash brings the car to

rest from 100 km/h.

74. Pelicans tuck their wings and free-fall straight down when
diving for fish. Suppose a pelican starts its dive from a
height of 16.0m and cannot change its path once

committed. If it takes a fish 0.20 s to perform evasive action,
at what minimum height must it spot the pelican to escape?
Assume the fish is at the surface of the water.

75. Suppose a car manufacturer tested its cars for front-end
collisions by hauling them up on a crane and dropping them
from a certain height. (a) Show that the speed just before
a car hits the ground, after falling from rest a vertical
distance H, is given by \/2gH . What height corresponds to
a collision at (b) 50 km/h? (c) 100 km/h?

76. A stone is dropped from the roof of a high building. A second
stone is dropped 1.50s later. How far apart are the stones
when the second one has reached a speed of 12.0 m/s?

77. A bicyclist in the Tour de France crests a mountain pass as
he moves at 15km/h. At the bottom, 4.0km farther, his
speed is 75km/h. What was his average acceleration
(in m/s?) while riding down the mountain?

78. Consider the street pattern shown in Fig. 47. Each intersec-
tion has a traffic signal, and the speed limit is 50 km/h.
Suppose you are driving from the west at the speed limit.
When you are 10.0 m from the first intersection, all the lights
turn green. The lights are green for 13.0's each. (a) Calculate
the time needed to reach the third stoplight. Can you make
it through all three lights without stopping? (b) Another car
was stopped at the first light when all the lights turned
green. It can accelerate at the rate of 2.00 m/s? to the speed
limit. Can the second car make it through all three lights
without stopping? By how many seconds would it make it
or not?

East
D~ 100700
" Speed limit
50 km/h
L N
T 70 m I |
15m I5m

FIGURE 47 Problem 78.

79. In putting, the force with which a golfer strikes a ball is
planned so that the ball will stop within some small distance
of the cup, say 1.0 m long or short, in case the putt is missed.
Accomplishing this from an uphill lie (that is, putting the
ball downhill, see Fig. 48) is more difficult than from a
downhill lie. To see why, assume that on a particular green
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the ball decelerates constantly at 1.8 m/s®> going downhill,
and constantly at 2.8 m/s? going uphill. Suppose we have an
uphill lie 7.0 m from the cup. Calculate the allowable range
of initial velocities we may impart to the ball so that
it stops in the range 1.0m short to 1.0m long of the
cup. Do the same for a downhill lie 7.0 m from the cup.
What in your results suggests that the downhill putt is
more difficult?

FIGURE 48 Problem 79.

80. A robot used in a pharmacy picks up a medicine bottle at

t = 0. It accelerates at 0.20m/s*> for 5.0s, then travels
without acceleration for 68s and finally decelerates at
—0.40 m/s? for 2.5 s to reach the counter where the pharma-
cist will take the medicine from the robot. From how far
away did the robot fetch the medicine?

81. A stone is thrown vertically upward with a speed of 12.5m/s

from the edge of a cliff
750m  high (Fig. 49).
(a) How much later does
it reach the bottom of
the cliff? (b) What is its
speed just before hitting?
(¢) What total distance did

it travel?
y=-75m FIGURE 49
Problem 81.

82. Figure 50 is a position versus time graph for the motion of an

object along the x axis. Consider the time interval from A to B.
(a) Is the object moving in the positive or negative direc-
tion? (b) Is the object speeding up or slowing down? (c) Is
the acceleration of the object positive or negative? Next,
consider the time interval from D to E. (d) Is the object

FIGURE 50

moving in the positive or negative direction? (e) Is the
object speeding up or slowing down? (f) Is the acceleration
of the object positive or negative? (g) Finally, answer these
same three questions for the time interval from C to D.
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Problem 82. 0 1 2 3 4 5 6

83.

84.

8s.

86.

87.

In the design of a rapid transit system, it is necessary to
balance the average speed of a train against the distance
between stops. The more stops there are, the slower the
train’s average speed. To get an idea of this problem, calcu-
late the time it takes a train to make a 9.0-km trip in two
situations: (a) the stations at which the trains must stop are
1.8 km apart (a total of 6 stations, including those at the
ends); and (b) the stations are 3.0km apart (4 stations
total). Assume that at each station the train accelerates at a
rate of 1.1 m/s? until it reaches 95 km/h, then stays at this
speed until its brakes are applied for arrival at the next
station, at which time it decelerates at — 2.0 m/s%. Assume it
stops at each intermediate station for 22s.

A person jumps off a diving board 4.0 m above the water’s
surface into a deep pool. The person’s downward motion
stops 2.0m below the surface of the water. Estimate the
average deceleration of the person while under the water.
Bill can throw a ball vertically at a speed 1.5 times faster than
Joe can. How many times higher will Bill’s ball go than Joe’s?
Sketch the v vs. f graph for the object whose displacement
as a function of time is given by Fig. 36.

A person driving her car at 45 km/h approaches an intersec-
tion just as the traffic light turns yellow. She knows that the
yellow light lasts only 2.0 s before turning to red, and she is
28 m away from the near side of the intersection (Fig. 51).
Should she try to stop, or should she speed up to cross the
intersection before the light turns red? The intersection is
15m wide. Her car’s maximum deceleration is — 5.8 m/s%,
whereas it can accelerate from 45 km/h to 65km/h in 6.0s.
Ignore the length of her car and her reaction time.

FIGURE 51 Problem 87.
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