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Introduction to
Probability

1.1 The History of Probability
1.2 Interpretations of Probability
1.3 Experiments and Events
1.4 Set Theory
1.5 The Definition of Probability
1.6 Finite Sample Spaces

1.7 Counting Methods
1.8 Combinatorial Methods
1.9 Multinomial Coefficients
1.10 The Probability of a Union of Events
1.11 Statistical Swindles
1.12 Supplementary Exercises

1.1 The History of Probability
The use of probability to measure uncertainty and variability dates back hundreds
of years. Probability has found application in areas as diverse as medicine, gam-
bling, weather forecasting, and the law.

The concepts of chance and uncertainty are as old as civilization itself. People have
always had to cope with uncertainty about the weather, their food supply, and other
aspects of their environment, and have striven to reduce this uncertainty and its
effects. Even the idea of gambling has a long history. By about the year 3500 b.c.,
games of chance played with bone objects that could be considered precursors of
dice were apparently highly developed in Egypt and elsewhere. Cubical dice with
markings virtually identical to those on modern dice have been found in Egyptian
tombs dating from 2000 b.c. We know that gambling with dice has been popular ever
since that time and played an important part in the early development of probability
theory.

It is generally believed that the mathematical theory of probability was started by
the French mathematicians Blaise Pascal (1623–1662) and Pierre Fermat (1601–1665)
when they succeeded in deriving exact probabilities for certain gambling problems
involving dice. Some of the problems that they solved had been outstanding for about
300 years. However, numerical probabilities of various dice combinations had been
calculated previously by Girolamo Cardano (1501–1576) and Galileo Galilei (1564–
1642).

The theory of probability has been developed steadily since the seventeenth
century and has been widely applied in diverse fields of study. Today, probability
theory is an important tool in most areas of engineering, science, and management.
Many research workers are actively engaged in the discovery and establishment of
new applications of probability in fields such as medicine, meteorology, photography
from satellites, marketing, earthquake prediction, human behavior, the design of
computer systems, finance, genetics, and law. In many legal proceedings involving
antitrust violations or employment discrimination, both sides will present probability
and statistical calculations to help support their cases.

Copyright © 2012 by Pearson Education, Inc. All rights reserved.
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2 Chapter 1 Introduction to Probability
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1.2 Interpretations of Probability
This section describes three common operational interpretations of probability.
Although the interpretations may seem incompatible, it is fortunate that the calcu-
lus of probability (the subject matter of the first six chapters of this book) applies
equally well no matter which interpretation one prefers.

In addition to the many formal applications of probability theory, the concept of
probability enters our everyday life and conversation. We often hear and use such
expressions as “It probably will rain tomorrow afternoon,” “It is very likely that
the plane will arrive late,” or “The chances are good that he will be able to join us
for dinner this evening.” Each of these expressions is based on the concept of the
probability, or the likelihood, that some specific event will occur.

Despite the fact that the concept of probability is such a common and natural
part of our experience, no single scientific interpretation of the term probability is
accepted by all statisticians, philosophers, and other authorities. Through the years,
each interpretation of probability that has been proposed by some authorities has
been criticized by others. Indeed, the true meaning of probability is still a highly
controversial subject and is involved in many current philosophical discussions per-
taining to the foundations of statistics. Three different interpretations of probability
will be described here. Each of these interpretations can be very useful in applying
probability theory to practical problems.

The Frequency Interpretation of Probability

In many problems, the probability that some specific outcome of a process will be
obtained can be interpreted to mean the relative frequency with which that outcome
would be obtained if the process were repeated a large number of times under similar
conditions. For example, the probability of obtaining a head when a coin is tossed is
considered to be 1/2 because the relative frequency of heads should be approximately
1/2 when the coin is tossed a large number of times under similar conditions. In other
words, it is assumed that the proportion of tosses on which a head is obtained would
be approximately 1/2.

Of course, the conditions mentioned in this example are too vague to serve as the
basis for a scientific definition of probability. First, a “large number” of tosses of the
coin is specified, but there is no definite indication of an actual number that would
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1.2 Interpretations of Probability 3

be considered large enough. Second, it is stated that the coin should be tossed each
time “under similar conditions,” but these conditions are not described precisely. The
conditions under which the coin is tossed must not be completely identical for each
toss because the outcomes would then be the same, and there would be either all
heads or all tails. In fact, a skilled person can toss a coin into the air repeatedly and
catch it in such a way that a head is obtained on almost every toss. Hence, the tosses
must not be completely controlled but must have some “random” features.

Furthermore, it is stated that the relative frequency of heads should be “approx-
imately 1/2,” but no limit is specified for the permissible variation from 1/2. If a coin
were tossed 1,000,000 times, we would not expect to obtain exactly 500,000 heads.
Indeed, we would be extremely surprised if we obtained exactly 500,000 heads. On
the other hand, neither would we expect the number of heads to be very far from
500,000. It would be desirable to be able to make a precise statement of the like-
lihoods of the different possible numbers of heads, but these likelihoods would of
necessity depend on the very concept of probability that we are trying to define.

Another shortcoming of the frequency interpretation of probability is that it
applies only to a problem in which there can be, at least in principle, a large number of
similar repetitions of a certain process. Many important problems are not of this type.
For example, the frequency interpretation of probability cannot be applied directly
to the probability that a specific acquaintance will get married within the next two
years or to the probability that a particular medical research project will lead to the
development of a new treatment for a certain disease within a specified period of time.

The Classical Interpretation of Probability

The classical interpretation of probability is based on the concept of equally likely
outcomes. For example, when a coin is tossed, there are two possible outcomes: a
head or a tail. If it may be assumed that these outcomes are equally likely to occur,
then they must have the same probability. Since the sum of the probabilities must
be 1, both the probability of a head and the probability of a tail must be 1/2. More
generally, if the outcome of some process must be one of n different outcomes, and
if these n outcomes are equally likely to occur, then the probability of each outcome
is 1/n.

Two basic difficulties arise when an attempt is made to develop a formal defi-
nition of probability from the classical interpretation. First, the concept of equally
likely outcomes is essentially based on the concept of probability that we are trying
to define. The statement that two possible outcomes are equally likely to occur is the
same as the statement that two outcomes have the same probability. Second, no sys-
tematic method is given for assigning probabilities to outcomes that are not assumed
to be equally likely. When a coin is tossed, or a well-balanced die is rolled, or a card is
chosen from a well-shuffled deck of cards, the different possible outcomes can usually
be regarded as equally likely because of the nature of the process. However, when the
problem is to guess whether an acquaintance will get married or whether a research
project will be successful, the possible outcomes would not typically be considered
to be equally likely, and a different method is needed for assigning probabilities to
these outcomes.

The Subjective Interpretation of Probability

According to the subjective, or personal, interpretation of probability, the probability
that a person assigns to a possible outcome of some process represents her own
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4 Chapter 1 Introduction to Probability

judgment of the likelihood that the outcome will be obtained. This judgment will be
based on each person’s beliefs and information about the process. Another person,
who may have different beliefs or different information, may assign a different
probability to the same outcome. For this reason, it is appropriate to speak of a
certain person’s subjective probability of an outcome, rather than to speak of the
true probability of that outcome.

As an illustration of this interpretation, suppose that a coin is to be tossed once.
A person with no special information about the coin or the way in which it is tossed
might regard a head and a tail to be equally likely outcomes. That person would
then assign a subjective probability of 1/2 to the possibility of obtaining a head. The
person who is actually tossing the coin, however, might feel that a head is much
more likely to be obtained than a tail. In order that people in general may be able
to assign subjective probabilities to the outcomes, they must express the strength of
their belief in numerical terms. Suppose, for example, that they regard the likelihood
of obtaining a head to be the same as the likelihood of obtaining a red card when one
card is chosen from a well-shuffled deck containing four red cards and one black card.
Because those people would assign a probability of 4/5 to the possibility of obtaining
a red card, they should also assign a probability of 4/5 to the possibility of obtaining
a head when the coin is tossed.

This subjective interpretation of probability can be formalized. In general, if
people’s judgments of the relative likelihoods of various combinations of outcomes
satisfy certain conditions of consistency, then it can be shown that their subjective
probabilities of the different possible events can be uniquely determined. However,
there are two difficulties with the subjective interpretation. First, the requirement
that a person’s judgments of the relative likelihoods of an infinite number of events
be completely consistent and free from contradictions does not seem to be humanly
attainable, unless a person is simply willing to adopt a collection of judgments known
to be consistent. Second, the subjective interpretation provides no “objective” basis
for two or more scientists working together to reach a common evaluation of the
state of knowledge in some scientific area of common interest.

On the other hand, recognition of the subjective interpretation of probability
has the salutary effect of emphasizing some of the subjective aspects of science. A
particular scientist’s evaluation of the probability of some uncertain outcome must
ultimately be that person’s own evaluation based on all the evidence available. This
evaluation may well be based in part on the frequency interpretation of probability,
since the scientist may take into account the relative frequency of occurrence of this
outcome or similar outcomes in the past. It may also be based in part on the classical
interpretation of probability, since the scientist may take into account the total num-
ber of possible outcomes that are considered equally likely to occur. Nevertheless,
the final assignment of numerical probabilities is the responsibility of the scientist
herself.

The subjective nature of science is also revealed in the actual problem that a
particular scientist chooses to study from the class of problems that might have
been chosen, in the experiments that are selected in carrying out this study, and
in the conclusions drawn from the experimental data. The mathematical theory of
probability and statistics can play an important part in these choices, decisions, and
conclusions.

Note: The Theory of Probability Does Not Depend on Interpretation. The math-
ematical theory of probability is developed and presented in Chapters 1–6 of this
book without regard to the controversy surrounding the different interpretations of
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1.3 Experiments and Events 5

the term probability. This theory is correct and can be usefully applied, regardless of
which interpretation of probability is used in a particular problem. The theories and
techniques that will be presented in this book have served as valuable guides and
tools in almost all aspects of the design and analysis of effective experimentation.

1.3 Experiments and Events
Probability will be the way that we quantify how likely something is to occur (in
the sense of one of the interpretations in Sec. 1.2). In this section, we give examples
of the types of situations in which probability will be used.

Types of Experiments

The theory of probability pertains to the various possible outcomes that might be
obtained and the possible events that might occur when an experiment is performed.

Definition
1.3.1

Experiment and Event. An experiment is any process, real or hypothetical, in which
the possible outcomes can be identified ahead of time. An event is a well-defined set
of possible outcomes of the experiment.

The breadth of this definition allows us to call almost any imaginable process an
experiment whether or not its outcome will ever be known. The probability of each
event will be our way of saying how likely it is that the outcome of the experiment is
in the event. Not every set of possible outcomes will be called an event. We shall be
more specific about which subsets count as events in Sec. 1.4.

Probability will be most useful when applied to a real experiment in which the
outcome is not known in advance, but there are many hypothetical experiments that
provide useful tools for modeling real experiments. A common type of hypothetical
experiment is repeating a well-defined task infinitely often under similar conditions.
Some examples of experiments and specific events are given next. In each example,
the words following “the probability that” describe the event of interest.

1. In an experiment in which a coin is to be tossed 10 times, the experimenter might
want to determine the probability that at least four heads will be obtained.

2. In an experiment in which a sample of 1000 transistors is to be selected from
a large shipment of similar items and each selected item is to be inspected, a
person might want to determine the probability that not more than one of the
selected transistors will be defective.

3. In an experiment in which the air temperature at a certain location is to be
observed every day at noon for 90 successive days, a person might want to
determine the probability that the average temperature during this period will
be less than some specified value.

4. From information relating to the life of Thomas Jefferson, a person might want
to determine the probability that Jefferson was born in the year 1741.

5. In evaluating an industrial research and development project at a certain time,
a person might want to determine the probability that the project will result
in the successful development of a new product within a specified number of
months.
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6 Chapter 1 Introduction to Probability

The Mathematical Theory of Probability

As was explained in Sec. 1.2, there is controversy in regard to the proper meaning
and interpretation of some of the probabilities that are assigned to the outcomes
of many experiments. However, once probabilities have been assigned to some
simple outcomes in an experiment, there is complete agreement among all authorities
that the mathematical theory of probability provides the appropriate methodology
for the further study of these probabilities. Almost all work in the mathematical
theory of probability, from the most elementary textbooks to the most advanced
research, has been related to the following two problems: (i) methods for determining
the probabilities of certain events from the specified probabilities of each possible
outcome of an experiment and (ii) methods for revising the probabilities of events
when additional relevant information is obtained.

These methods are based on standard mathematical techniques. The purpose of
the first six chapters of this book is to present these techniques, which, together, form
the mathematical theory of probability.

1.4 Set Theory
This section develops the formal mathematical model for events, namely, the theory
of sets. Several important concepts are introduced, namely, element, subset, empty
set, intersection, union, complement, and disjoint sets.

The Sample Space

Definition
1.4.1

Sample Space. The collection of all possible outcomes of an experiment is called the
sample space of the experiment.

The sample space of an experiment can be thought of as a set, or collection, of
different possible outcomes; and each outcome can be thought of as a point, or an
element, in the sample space. Similarly, events can be thought of as subsets of the
sample space.

Example
1.4.1

Rolling a Die. When a six-sided die is rolled, the sample space can be regarded as
containing the six numbers 1, 2, 3, 4, 5, 6, each representing a possible side of the die
that shows after the roll. Symbolically, we write

S = {1, 2, 3, 4, 5, 6}.
One event A is that an even number is obtained, and it can be represented as the
subset A= {2, 4, 6}. The event B that a number greater than 2 is obtained is defined
by the subset B = {3, 4, 5, 6}. �

Because we can interpret outcomes as elements of a set and events as subsets
of a set, the language and concepts of set theory provide a natural context for the
development of probability theory. The basic ideas and notation of set theory will
now be reviewed.
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1.4 Set Theory 7

Relations of Set Theory

Let S denote the sample space of some experiment. Then each possible outcome s

of the experiment is said to be a member of the space S, or to belong to the space S.
The statement that s is a member of S is denoted symbolically by the relation s ∈ S.

When an experiment has been performed and we say that some event E has
occurred, we mean two equivalent things. One is that the outcome of the experiment
satisfied the conditions that specified that event E. The other is that the outcome,
considered as a point in the sample space, is an element of E.

To be precise, we should say which sets of outcomes correspond to events as de-
fined above. In many applications, such as Example 1.4.1, it will be clear which sets of
outcomes should correspond to events. In other applications (such as Example 1.4.5
coming up later), there are too many sets available to have them all be events. Ide-
ally, we would like to have the largest possible collection of sets called events so that
we have the broadest possible applicability of our probability calculations. However,
when the sample space is too large (as in Example 1.4.5) the theory of probability
simply will not extend to the collection of all subsets of the sample space. We would
prefer not to dwell on this point for two reasons. First, a careful handling requires
mathematical details that interfere with an initial understanding of the important
concepts, and second, the practical implications for the results in this text are min-
imal. In order to be mathematically correct without imposing an undue burden on
the reader, we note the following. In order to be able to do all of the probability cal-
culations that we might find interesting, there are three simple conditions that must
be met by the collection of sets that we call events. In every problem that we see in
this text, there exists a collection of sets that includes all the sets that we will need to
discuss and that satisfies the three conditions, and the reader should assume that such
a collection has been chosen as the events. For a sample space S with only finitely
many outcomes, the collection of all subsets of S satisfies the conditions, as the reader
can show in Exercise 12 in this section.

The first of the three conditions can be stated immediately.

Condition
1

The sample space S must be an event.

That is, we must include the sample space S in our collection of events. The other two
conditions will appear later in this section because they require additional definitions.
Condition 2 is on page 9, and Condition 3 is on page 10.

Definition
1.4.2

Containment. It is said that a set A is contained in another set B if every element
of the set A also belongs to the set B. This relation between two events is expressed
symbolically by the expression A⊂B, which is the set-theoretic expression for saying
that A is a subset of B. Equivalently, if A⊂ B, we may say that B contains A and may
write B ⊃ A.

For events, to say that A⊂ B means that if A occurs then so does B.
The proof of the following result is straightforward and is omitted.

Theorem
1.4.1

Let A, B, and C be events. Then A⊂ S. If A⊂ B and B ⊂ A, then A= B. If A⊂ B

and B ⊂ C, then A⊂ C.

Example
1.4.2

Rolling a Die. In Example 1.4.1, suppose that A is the event that an even number
is obtained and C is the event that a number greater than 1 is obtained. Since
A= {2, 4, 6} and C = {2, 3, 4, 5, 6}, it follows that A⊂ C. �

7



8 Chapter 1 Introduction to Probability

The Empty Set Some events are impossible. For example, when a die is rolled, it
is impossible to obtain a negative number. Hence, the event that a negative number
will be obtained is defined by the subset of S that contains no outcomes.

Definition
1.4.3

Empty Set. The subset of S that contains no elements is called the empty set, or null
set, and it is denoted by the symbol ∅.

In terms of events, the empty set is any event that cannot occur.

Theorem
1.4.2

Let A be an event. Then ∅ ⊂ A.

Proof Let A be an arbitrary event. Since the empty set ∅ contains no points, it is
logically correct to say that every point belonging to ∅ also belongs to A, or ∅ ⊂ A.

Finite and Infinite Sets Some sets contain only finitely many elements, while others
have infinitely many elements. There are two sizes of infinite sets that we need to
distinguish.

Definition
1.4.4

Countable/Uncountable. An infinite set A is countable if there is a one-to-one corre-
spondence between the elements of A and the set of natural numbers {1, 2, 3, . . .}. A
set is uncountable if it is neither finite nor countable. If we say that a set has at most
countably many elements, we mean that the set is either finite or countable.

Examples of countably infinite sets include the integers, the even integers, the odd
integers, the prime numbers, and any infinite sequence. Each of these can be put
in one-to-one correspondence with the natural numbers. For example, the following
function f puts the integers in one-to-one correspondence with the natural numbers:

f (n)=
{

n−1
2 if n is odd,
−n

2 if n is even.

Every infinite sequence of distinct items is a countable set, as its indexing puts it in
one-to-one correspondence with the natural numbers. Examples of uncountable sets
include the real numbers, the positive reals, the numbers in the interval [0, 1], and the
set of all ordered pairs of real numbers. An argument to show that the real numbers
are uncountable appears at the end of this section. Every subset of the integers has
at most countably many elements.

Operations of Set Theory

Definition
1.4.5

Complement. The complement of a set A is defined to be the set that contains all
elements of the sample space S that do not belong to A. The notation for the
complement of A is Ac.

In terms of events, the event Ac is the event that A does not occur.

Example
1.4.3

Rolling a Die. In Example 1.4.1, suppose again that A is the event that an even number
is rolled; then Ac = {1, 3, 5} is the event that an odd number is rolled. �

We can now state the second condition that we require of the collection of events.

8



1.4 Set Theory 9

Figure 1.1 The event Ac.

Ac

A

S

Figure 1.2 The set A ∪ B.

A

A B

S

Condition
2

If A is an event, then Ac is also an event.

That is, for each set A of outcomes that we call an event, we must also call its
complement Ac an event.

A generic version of the relationship between A and Ac is sketched in Fig. 1.1.
A sketch of this type is called a Venn diagram.

Some properties of the complement are stated without proof in the next result.

Theorem
1.4.3

Let A be an event. Then

(Ac)c = A, ∅c = S, Sc = ∅.
The empty event ∅ is an event.

Definition
1.4.6

Union of Two Sets. If A and B are any two sets, the union of A and B is defined to be
the set containing all outcomes that belong to A alone, to B alone, or to both A and
B. The notation for the union of A and B is A ∪ B.

The set A ∪ B is sketched in Fig. 1.2. In terms of events, A ∪ B is the event that either
A or B or both occur.

The union has the following properties whose proofs are left to the reader.

Theorem
1.4.4

For all sets A and B,

A ∪ B = B ∪ A, A ∪ A= A, A ∪ Ac = S,

A ∪ ∅ = A, A ∪ S = S.

Furthermore, if A⊂ B, then A ∪ B = B.

The concept of union extends to more than two sets.

Definition
1.4.7

Union of Many Sets. The union of n sets A1, . . . , An is defined to be the set that
contains all outcomes that belong to at least one of these n sets. The notation for this
union is either of the following:

A1 ∪ A2 ∪ . . . ∪ An or
n⋃

i=1

Ai.

9



10 Chapter 1 Introduction to Probability

Similarly, the union of an infinite sequence of sets A1, A2, . . . is the set that contains
all outcomes that belong to at least one of the events in the sequence. The infinite
union is denoted by

⋃∞
i=1 Ai.

In terms of events, the union of a collection of events is the event that at least
one of the events in the collection occurs.

We can now state the final condition that we require for the collection of sets
that we call events.

Condition
3

If A1, A2, . . . is a countable collection of events, then
⋃∞

i=1 Ai is also an event.

In other words, if we choose to call each set of outcomes in some countable collection
an event, we are required to call their union an event also. We do not require that
the union of an arbitrary collection of events be an event. To be clear, let I be an
arbitrary set that we use to index a general collection of events {Ai : i ∈ I }. The union
of the events in this collection is the set of outcomes that are in at least one of the
events in the collection. The notation for this union is

⋃
i∈I Ai. We do not require

that
⋃

i∈I Ai be an event unless I is countable.
Condition 3 refers to a countable collection of events. We can prove that the

condition also applies to every finite collection of events.

Theorem
1.4.5

The union of a finite number of events A1, . . . , An is an event.

Proof For each m= n+ 1, n+ 2, . . ., define Am = ∅. Because ∅ is an event, we now
have a countable collection A1, A2, . . . of events. It follows from Condition 3 that⋃∞

m=1 Am is an event. But it is easy to see that
⋃∞

m=1 Am =
⋃n

m=1 Am.

The union of three events A, B, and C can be constructed either directly from the
definition of A ∪ B ∪ C or by first evaluating the union of any two of the events and
then forming the union of this combination of events and the third event. In other
words, the following result is true.

Theorem
1.4.6

Associative Property. For every three events A, B, and C, the following associative
relations are satisfied:

A ∪ B ∪ C = (A ∪ B) ∪ C = A ∪ (B ∪ C).

Definition
1.4.8

Intersection of Two Sets. If A and B are any two sets, the intersection of A and B is
defined to be the set that contains all outcomes that belong both to A and to B. The
notation for the intersection of A and B is A ∩ B.

The set A ∩ B is sketched in a Venn diagram in Fig. 1.3. In terms of events, A ∩ B is
the event that both A and B occur.

The proof of the first part of the next result follows from Exercise 3 in this section.
The rest of the proof is straightforward.

Figure 1.3 The set A ∩ B.

A B

S
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1.4 Set Theory 11

Theorem
1.4.7

If A and B are events, then so is A ∩ B. For all events A and B,

A ∩ B = B ∩ A, A ∩ A= A, A ∩ Ac = ∅,
A ∩ ∅ = ∅, A ∩ S = A.

Furthermore, if A⊂ B, then A ∩ B = A.

The concept of intersection extends to more than two sets.

Definition
1.4.9

Intersection of Many Sets. The intersection of n sets A1, . . . , An is defined to be the
set that contains the elements that are common to all these n sets. The notation for
this intersection is A1 ∩ A2 ∩ . . . ∩ An or

⋂n
i=1 Ai. Similar notations are used for the

intersection of an infinite sequence of sets or for the intersection of an arbitrary
collection of sets.

In terms of events, the intersection of a collection of events is the event that every
event in the collection occurs.

The following result concerning the intersection of three events is straightfor-
ward to prove.

Theorem
1.4.8

Associative Property. For every three events A, B, and C, the following associative
relations are satisfied:

A ∩ B ∩ C = (A ∩ B) ∩ C = A ∩ (B ∩ C).

Definition
1.4.10

Disjoint/Mutually Exclusive. It is said that two sets A and B are disjoint, or mutually
exclusive, if A and B have no outcomes in common, that is, if A ∩ B = ∅. The sets
A1, . . . , An or the sets A1, A2, . . . are disjoint if for every i 	= j , we have that Ai and
Aj are disjoint, that is, Ai ∩Aj = ∅ for all i 	= j . The events in an arbitrary collection
are disjoint if no two events in the collection have any outcomes in common.

In terms of events, A and B are disjoint if they cannot both occur.
As an illustration of these concepts, a Venn diagram for three events A1, A2, and

A3 is presented in Fig. 1.4. This diagram indicates that the various intersections of
A1, A2, and A3 and their complements will partition the sample space S into eight
disjoint subsets.

Figure 1.4 Partition of
S determined by three
events A1, A2, A3.

A1
c�A2

c�A3
c

A1�A2
c�A3

c

A1
c�A2�A3

A1
c�A2�A3

cA1�A2�A3
c

A1
c�A2

c�A3

A1�A2
c�A3

A1�A2�A3

A3

A2A1

S
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12 Chapter 1 Introduction to Probability

Example
1.4.4

Tossing a Coin. Suppose that a coin is tossed three times. Then the sample space S

contains the following eight possible outcomes s1, . . . , s8:

s1: HHH,

s2: THH,

s3: HTH,

s4: HHT,

s5: HTT,

s6: THT,

s7: TTH,

s8: TTT.

In this notation, H indicates a head and T indicates a tail. The outcome s3, for
example, is the outcome in which a head is obtained on the first toss, a tail is obtained
on the second toss, and a head is obtained on the third toss.

To apply the concepts introduced in this section, we shall define four events as
follows: Let A be the event that at least one head is obtained in the three tosses; let
B be the event that a head is obtained on the second toss; let C be the event that a
tail is obtained on the third toss; and let D be the event that no heads are obtained.
Accordingly,

A= {s1, s2, s3, s4, s5, s6, s7},
B = {s1, s2, s4, s6},
C = {s4, s5, s6, s8},
D = {s8}.

Various relations among these events can be derived. Some of these relations
are B ⊂ A, Ac =D, B ∩D = ∅, A ∪ C = S, B ∩ C = {s4, s6}, (B ∪ C)c = {s3, s7}, and
A ∩ (B ∪ C)= {s1, s2, s4, s5, s6}. �

Example
1.4.5

Demands for Utilities. A contractor is building an office complex and needs to plan
for water and electricity demand (sizes of pipes, conduit, and wires). After consulting
with prospective tenants and examining historical data, the contractor decides that
the demand for electricity will range somewhere between 1 million and 150 million
kilowatt-hours per day and water demand will be between 4 and 200 (in thousands
of gallons per day). All combinations of electrical and water demand are considered
possible. The shaded region in Fig. 1.5 shows the sample space for the experiment,
consisting of learning the actual water and electricity demands for the office complex.
We can express the sample space as the set of ordered pairs {(x, y) : 4≤ x ≤ 200, 1≤
y ≤ 150}, where x stands for water demand in thousands of gallons per day and y

Figure 1.5 Sample space for
water and electric demand in
Example 1.4.5

1

150

0 4
Water

Electric

200
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1.4 Set Theory 13

Figure 1.6 Partition of
A ∪ B in Theorem 1.4.11.

A B

A�BA�Bc Ac�B

S

stands for the electric demand in millions of kilowatt-hours per day. The types of sets
that we want to call events include sets like

{water demand is at least 100} = {(x, y) : x ≥ 100}, and

{electric demand is no more than 35} = {(x, y) : y ≤ 35},
along with intersections, unions, and complements of such sets. This sample space
has infinitely many points. Indeed, the sample space is uncountable. There are many
more sets that are difficult to describe and which we will have no need to consider as
events. �

Additional Properties of Sets The proof of the following useful result is left to
Exercise 3 in this section.

Theorem
1.4.9

De Morgan’s Laws. For every two sets A and B,

(A ∪ B)c = Ac ∩ Bc and (A ∩ B)c = Ac ∪ Bc.

The generalization of Theorem 1.4.9 is the subject of Exercise 5 in this section.
The proofs of the following distributive properties are left to Exercise 2 in this

section. These properties also extend in natural ways to larger collections of events.

Theorem
1.4.10

Distributive Properties. For every three sets A, B, and C,

A ∩ (B ∪ C)= (A ∩ B) ∪ (A ∩ C) and A ∪ (B ∩ C)= (A ∪ B) ∩ (A ∪ C).

The following result is useful for computing probabilities of events that can be
partitioned into smaller pieces. Its proof is left to Exercise 4 in this section, and is
illuminated by Fig. 1.6.

Theorem
1.4.11

Partitioning a Set. For every two sets A and B, A ∩ B and A ∩ Bc are disjoint and

A= (A ∩ B) ∪ (A ∩ Bc).

In addition, B and A ∩ Bc are disjoint, and

A ∪ B = B ∪ (A ∩ Bc).

Proof That the Real Numbers Are Uncountable

We shall show that the real numbers in the interval [0, 1) are uncountable. Every
larger set is a fortiori uncountable. For each number x ∈ [0, 1), define the sequence
{an(x)}∞

n=1 as follows. First, a1(x)= �10x, where �y stands for the greatest integer
less than or equal to y (round nonintegers down to the closest integer below). Then

13



14 Chapter 1 Introduction to Probability

0 2 3 0 7 1 3 . . .

1 9 9 2 1 0 0 . . .

2 7 3 6 0 1 1 . . .

8 0 2 1 2 7 9 . . .

7 0 1 6 0 1 3 . . .

1 5 1 5 1 5 1 . . .

2 3 4 5 6 7 8 . . .

0 1 7 3 2 9 8 . . .
...

...
...

...
...

...
...

. . .

Figure 1.7 An array of a countable
collection of sequences of digits with the
diagonal underlined.

set b1(x)= 10x − a1(x), which will again be in [0, 1). For n > 1, an(x)= �10bn−1(x)
and bn(x)= 10bn−1(x)− an(x). It is easy to see that the sequence {an(x)}∞

n=1 gives a
decimal expansion for x in the form

x =
∞∑

n=1

an(x)10−n. (1.4.1)

By construction, each number of the form x = k/10m for some nonnegative
integers k and m will have an(x) = 0 for n > m. The numbers of the form k/10m

are the only ones that have an alternate decimal expansion x =∑∞
n=1 cn(x)10−n.

When k is not a multiple of 10, this alternate expansion satisfies cn(x)= an(x) for
n= 1, . . . , m− 1, cm(x)= am(x)− 1, and cn(x)= 9 for n > m. Let C = {0, 1, . . . , 9}∞
stand for the set of all infinite sequences of digits. Let B denote the subset of C

consisting of those sequences that don’t end in repeating 9’s. Then we have just
constructed a function a from the interval [0, 1) onto B that is one-to-one and whose
inverse is given in (1.4.1). We now show that the set B is uncountable, hence [0, 1)
is uncountable. Take any countable subset of B and arrange the sequences into a
rectangular array with the kth sequence running across the kth row of the array for
k = 1, 2, . . . . Figure 1.7 gives an example of part of such an array.

In Fig. 1.7, we have underlined the kth digit in the kth sequence for each k. This
portion of the array is called the diagonal of the array. We now show that there must
exist a sequence in B that is not part of this array. This will prove that the whole set
B cannot be put into such an array, and hence cannot be countable. Construct the
sequence {dn}∞n=1 as follows. For each n, let dn = 2 if the nth digit in the nth sequence
is 1, and dn = 1 otherwise. This sequence does not end in repeating 9’s; hence, it is
in B. We conclude the proof by showing that {dn}∞n=1 does not appear anywhere in
the array. If the sequence did appear in the array, say, in the kth row, then its kth
element would be the kth diagonal element of the array. But we constructed the
sequence so that for every n (including n= k), its nth element never matched the
nth diagonal element. Hence, the sequence can’t be in the kth row, no matter what
k is. The argument given here is essentially that of the nineteenth-century German
mathematician Georg Cantor.

14



1.4 Set Theory 15

Summary

We will use set theory for the mathematical model of events. Outcomes of an exper-
iment are elements of some sample space S, and each event is a subset of S. Two
events both occur if the outcome is in the intersection of the two sets. At least one of
a collection of events occurs if the outcome is in the union of the sets. Two events can-
not both occur if the sets are disjoint. An event fails to occur if the outcome is in the
complement of the set. The empty set stands for every event that cannot possibly oc-
cur. The collection of events is assumed to contain the sample space, the complement
of each event, and the union of each countable collection of events.

Exercises

1. Suppose that A⊂ B. Show that Bc ⊂ Ac.

2. Prove the distributive properties in Theorem 1.4.10.

3. Prove De Morgan’s laws (Theorem 1.4.9).

4. Prove Theorem 1.4.11.

5. For every collection of events Ai (i ∈ I ), show that(⋃
i∈I

Ai

)c

=
⋂
i∈I

Ac
i

and

(⋂
i∈I

Ai

)c

=
⋃
i∈I

Ac
i
.

6. Suppose that one card is to be selected from a deck of
20 cards that contains 10 red cards numbered from 1 to
10 and 10 blue cards numbered from 1 to 10. Let A be
the event that a card with an even number is selected,
let B be the event that a blue card is selected, and let
C be the event that a card with a number less than 5 is
selected. Describe the sample space S and describe each
of the following events both in words and as subsets of S:

a. A ∩ B ∩ C b. B ∩ Cc c. A ∪ B ∪ C

d. A ∩ (B ∪ C) e. Ac ∩ Bc ∩ Cc.

7. Suppose that a number x is to be selected from the real
line S, and let A, B, and C be the events represented by the
following subsets of S, where the notation {x: - - -} denotes
the set containing every point x for which the property
presented following the colon is satisfied:

A= {x: 1≤ x ≤ 5},
B = {x: 3 < x ≤ 7},
C = {x: x ≤ 0}.

Describe each of the following events as a set of real
numbers:

a. Ac b. A ∪ B c. B ∩ Cc

d. Ac ∩ Bc ∩ Cc e. (A ∪ B) ∩ C.

8. A simplified model of the human blood-type system
has four blood types: A, B, AB, and O. There are two
antigens, anti-A and anti-B, that react with a person’s

blood in different ways depending on the blood type. Anti-
A reacts with blood types A and AB, but not with B and
O. Anti-B reacts with blood types B and AB, but not with
A and O. Suppose that a person’s blood is sampled and
tested with the two antigens. Let A be the event that the
blood reacts with anti-A, and let B be the event that it
reacts with anti-B. Classify the person’s blood type using
the events A, B, and their complements.

9. Let S be a given sample space and let A1, A2, . . . be
an infinite sequence of events. For n= 1, 2, . . . , let Bn =⋃∞

i=n
Ai and let Cn =

⋂∞
i=n

Ai.

a. Show that B1⊃ B2 ⊃ . . . and that C1⊂ C2 ⊂ . . ..

b. Show that an outcome in S belongs to the event⋂∞
n=1 Bn if and only if it belongs to an infinite number

of the events A1, A2, . . . .

c. Show that an outcome in S belongs to the event⋃∞
n=1 Cn if and only if it belongs to all the events

A1, A2, . . . except possibly a finite number of those
events.

10. Three six-sided dice are rolled. The six sides of each
die are numbered 1–6. Let A be the event that the first
die shows an even number, let B be the event that the
second die shows an even number, and let C be the event
that the third die shows an even number. Also, for each
i = 1, . . . , 6, let Ai be the event that the first die shows the
number i, let Bi be the event that the second die shows
the number i, and let Ci be the event that the third die
shows the number i. Express each of the following events
in terms of the named events described above:

a. The event that all three dice show even numbers

b. The event that no die shows an even number

c. The event that at least one die shows an odd number

d. The event that at most two dice show odd numbers

e. The event that the sum of the three dices is no greater
than 5

11. A power cell consists of two subcells, each of which
can provide from 0 to 5 volts, regardless of what the other

15



16 Chapter 1 Introduction to Probability

subcell provides. The power cell is functional if and only
if the sum of the two voltages of the subcells is at least 6
volts. An experiment consists of measuring and recording
the voltages of the two subcells. Let A be the event that
the power cell is functional, let B be the event that two
subcells have the same voltage, let C be the event that the
first subcell has a strictly higher voltage than the second
subcell, and let D be the event that the power cell is
not functional but needs less than one additional volt to
become functional.

a. Define a sample space S for the experiment as a set
of ordered pairs that makes it possible for you to
express the four sets above as events.

b. Express each of the events A, B, C, and D as sets of
ordered pairs that are subsets of S.

c. Express the following set in terms of A, B, C, and/or
D: {(x, y) : x = y and x + y ≤ 5}.

d. Express the following event in terms of A, B, C,
and/or D: the event that the power cell is not func-
tional and the second subcell has a strictly higher
voltage than the first subcell.

12. Suppose that the sample space S of some experiment
is finite. Show that the collection of all subsets of S satisfies
the three conditions required to be called the collection of
events.

13. Let S be the sample space for some experiment. Show
that the collection of subsets consisting solely of S and ∅
satisfies the three conditions required in order to be called
the collection of events. Explain why this collection would
not be very interesting in most real problems.

14. Suppose that the sample space S of some experiment
is countable. Suppose also that, for every outcome s ∈ S,
the subset {s} is an event. Show that every subset of S must
be an event. Hint: Recall the three conditions required of
the collection of subsets of S that we call events.

1.5 The Definition of Probability
We begin with the mathematical definition of probability and then present some
useful results that follow easily from the definition.

Axioms and Basic Theorems

In this section, we shall present the mathematical, or axiomatic, definition of proba-
bility. In a given experiment, it is necessary to assign to each event A in the sample
space S a number Pr(A) that indicates the probability that A will occur. In order to
satisfy the mathematical definition of probability, the number Pr(A) that is assigned
must satisfy three specific axioms. These axioms ensure that the number Pr(A) will
have certain properties that we intuitively expect a probability to have under each
of the various interpretations described in Sec. 1.2.

The first axiom states that the probability of every event must be nonnegative.

Axiom
1

For every event A, Pr(A)≥ 0.

The second axiom states that if an event is certain to occur, then the probability
of that event is 1.

Axiom
2

Pr(S)= 1.

Before stating Axiom 3, we shall discuss the probabilities of disjoint events. If two
events are disjoint, it is natural to assume that the probability that one or the other
will occur is the sum of their individual probabilities. In fact, it will be assumed that
this additive property of probability is also true for every finite collection of disjoint
events and even for every infinite sequence of disjoint events. If we assume that this
additive property is true only for a finite number of disjoint events, we cannot then be
certain that the property will be true for an infinite sequence of disjoint events as well.
However, if we assume that the additive property is true for every infinite sequence

16



1.5 The Definition of Probability 17

of disjoint events, then (as we shall prove) the property must also be true for every
finite number of disjoint events. These considerations lead to the third axiom.

Axiom
3

For every infinite sequence of disjoint events A1, A2, . . . ,

Pr

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

Pr(Ai).

Example
1.5.1

Rolling a Die. In Example 1.4.1, for each subset A of S = {1, 2, 3, 4, 5, 6}, let Pr(A) be
the number of elements of A divided by 6. It is trivial to see that this satisfies the first
two axioms. There are only finitely many distinct collections of nonempty disjoint
events. It is not difficult to see that Axiom 3 is also satisfied by this example. �

Example
1.5.2

A Loaded Die. In Example 1.5.1, there are other choices for the probabilities of events.
For example, if we believe that the die is loaded, we might believe that some sides
have different probabilities of turning up. To be specific, suppose that we believe that
6 is twice as likely to come up as each of the other five sides. We could set pi = 1/7 for
i = 1, 2, 3, 4, 5 and p6 = 2/7. Then, for each event A, define Pr(A) to be the sum of
all pi such that i ∈ A. For example, if A= {1, 3, 5}, then Pr(A)= p1+ p3+ p5= 3/7.
It is not difficult to check that this also satisfies all three axioms. �

We are now prepared to give the mathematical definition of probability.

Definition
1.5.1

Probability. A probability measure, or simply a probability, on a sample space S is a
specification of numbers Pr(A) for all events A that satisfy Axioms 1, 2, and 3.

We shall now derive two important consequences of Axiom 3. First, we shall
show that if an event is impossible, its probability must be 0.

Theorem
1.5.1

Pr(∅)= 0.

Proof Consider the infinite sequence of events A1, A2, . . . such that Ai = ∅ for
i = 1, 2, . . . . In other words, each of the events in the sequence is just the empty set
∅. Then this sequence is a sequence of disjoint events, since ∅ ∩ ∅ = ∅. Furthermore,⋃∞

i=1 Ai = ∅. Therefore, it follows from Axiom 3 that

Pr(∅)= Pr

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

Pr(Ai)=
∞∑
i=1

Pr(∅).

This equation states that when the number Pr(∅) is added repeatedly in an infinite
series, the sum of that series is simply the number Pr(∅). The only real number with
this property is zero.

We can now show that the additive property assumed in Axiom 3 for an infinite
sequence of disjoint events is also true for every finite number of disjoint events.

Theorem
1.5.2

For every finite sequence of n disjoint events A1, . . . , An,

Pr

(
n⋃

i=1

Ai

)
=

n∑
i=1

Pr(Ai).

Proof Consider the infinite sequence of events A1, A2, . . . , in which A1, . . . , An

are the n given disjoint events and Ai = ∅ for i > n. Then the events in this infinite
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18 Chapter 1 Introduction to Probability

sequence are disjoint and
⋃∞

i=1 Ai =
⋃n

i=1 Ai. Therefore, by Axiom 3,

Pr

(
n⋃

i=1

Ai

)
= Pr

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

Pr(Ai)

=
n∑

i=1

Pr(Ai)+
∞∑

i=n+1

Pr(Ai)

=
n∑

i=1

Pr(Ai)+ 0

=
n∑

i=1

Pr(Ai).

Further Properties of Probability

From the axioms and theorems just given, we shall now derive four other general
properties of probability measures. Because of the fundamental nature of these four
properties, they will be presented in the form of four theorems, each one of which is
easily proved.

Theorem
1.5.3

For every event A, Pr(Ac)= 1− Pr(A).

Proof Since A and Ac are disjoint events and A ∪ Ac = S, it follows from Theo-
rem 1.5.2 that Pr(S)= Pr(A)+ Pr(Ac). Since Pr(S)= 1 by Axiom 2, then Pr(Ac)=
1− Pr(A).

Theorem
1.5.4

If A⊂ B, then Pr(A)≤ Pr(B).

Proof As illustrated in Fig. 1.8, the event B may be treated as the union of the
two disjoint events A and B ∩ Ac. Therefore, Pr(B) = Pr(A) + Pr(B ∩ Ac). Since
Pr(B ∩ Ac)≥ 0, then Pr(B)≥ Pr(A).

Theorem
1.5.5

For every event A, 0 ≤ Pr(A)≤ 1.

Proof It is known from Axiom 1 that Pr(A) ≥ 0. Since A ⊂ S for every event A,
Theorem 1.5.4 implies Pr(A)≤ Pr(S)= 1, by Axiom 2.

Theorem
1.5.6

For every two events A and B,

Pr(A ∩ Bc)= Pr(A)− Pr(A ∩ B).

Figure 1.8 B =A∪ (B ∩Ac)

in the proof of Theorem 1.5.4.

A

B

B�Ac

S
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1.5 The Definition of Probability 19

Proof According to Theorem 1.4.11, the events A ∩ Bc and A ∩ B are disjoint and

A= (A ∩ B) ∪ (A ∩ Bc).

It follows from Theorem 1.5.2 that

Pr(A)= Pr(A ∩ B)+ Pr(A ∩ Bc).

Subtract Pr(A ∩ B) from both sides of this last equation to complete the proof.

Theorem
1.5.7

For every two events A and B,

Pr(A ∪ B)= Pr(A)+ Pr(B)− Pr(A ∩ B). (1.5.1)

Proof From Theorem 1.4.11, we have

A ∪ B = B ∪ (A ∩ Bc),

and the two events on the right side of this equation are disjoint. Hence, we have

Pr(A ∪ B)= Pr(B)+ Pr(A ∩ Bc)

= Pr(B)+ Pr(A)− Pr(A ∩ B),

where the first equation follows from Theorem 1.5.2, and the second follows from
Theorem 1.5.6.

Example
1.5.3

Diagnosing Diseases. A patient arrives at a doctor’s office with a sore throat and low-
grade fever. After an exam, the doctor decides that the patient has either a bacterial
infection or a viral infection or both. The doctor decides that there is a probability of
0.7 that the patient has a bacterial infection and a probability of 0.4 that the person
has a viral infection. What is the probability that the patient has both infections?

Let B be the event that the patient has a bacterial infection, and let V be the
event that the patient has a viral infection. We are told Pr(B)= 0.7, that Pr(V )= 0.4,
and that S =B ∪ V . We are asked to find Pr(B ∩ V ). We will use Theorem 1.5.7, which
says that

Pr(B ∪ V )= Pr(B)+ Pr(V )− Pr(B ∩ V ). (1.5.2)

Since S = B ∪ V , the left-hand side of (1.5.2) is 1, while the first two terms on the
right-hand side are 0.7 and 0.4. The result is

1= 0.7+ 0.4− Pr(B ∩ V ),

which leads to Pr(B ∩ V )= 0.1, the probability that the patient has both infections.
�

Example
1.5.4

Demands for Utilities. Consider, once again, the contractor who needs to plan for
water and electricity demands in Example 1.4.5. There are many possible choices
for how to spread the probability around the sample space (pictured in Fig. 1.5 on
page 12). One simple choice is to make the probability of an event E proportional to
the area of E. The area of S (the sample space) is (150 − 1)× (200 − 4)= 29,204,
so Pr(E) equals the area of E divided by 29,204. For example, suppose that the
contractor is interested in high demand. Let A be the set where water demand is
at least 100, and let B be the event that electric demand is at least 115, and suppose
that these values are considered high demand. These events are shaded with different
patterns in Fig. 1.9. The area of A is (150− 1)× (200− 100)= 14,900, and the area
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20 Chapter 1 Introduction to Probability

Figure 1.9 The two events
of interest in utility demand
sample space for Exam-
ple 1.5.4.

1

150

115

0 4 100
Water

Electric

200

B
A

A�B

of B is (150− 115)× (200− 4)= 6,860. So,

Pr(A)= 14,900
29,204

= 0.5102, Pr(B)= 6,860
29,204

= 0.2349.

The two events intersect in the region denoted by A ∩ B. The area of this region
is (150 − 115)× (200 − 100)= 3,500, so Pr(A ∩ B)= 3,500/29,204 = 0.1198. If the
contractor wishes to compute the probability that at least one of the two demands
will be high, that probability is

Pr(A ∪ B)= Pr(A)+ Pr(B)− Pr(A ∩ B)= 0.5102+ 0.2349− 0.1198= 0.6253,

according to Theorem 1.5.7. �

The proof of the following useful result is left to Exercise 13.

Theorem
1.5.8

Bonferroni Inequality. For all events A1, . . . , An,

Pr

(
n⋃

i=1

Ai

)
≤

n∑
i=1

Pr(Ai) and Pr

(
n⋂

i=1

Ai

)
≥ 1−

n∑
i=1

Pr(Ac
i
).

(The second inequality above is known as the Bonferroni inequality.)

Note: Probability Zero Does Not Mean Impossible. When an event has probability
0, it does not mean that the event is impossible. In Example 1.5.4, there are many
events with 0 probability, but they are not all impossible. For example, for every x, the
event that water demand equals x corresponds to a line segment in Fig. 1.5. Since line
segments have 0 area, the probability of every such line segment is 0, but the events
are not all impossible. Indeed, if every event of the form {water demand equals x}
were impossible, then water demand could not take any value at all. If ε > 0, the
event

{water demand is between x − ε and x + ε}
will have positive probability, but that probability will go to 0 as ε goes to 0.

Summary

We have presented the mathematical definition of probability through the three
axioms. The axioms require that every event have nonnegative probability, that the
whole sample space have probability 1, and that the union of an infinite sequence
of disjoint events have probability equal to the sum of their probabilities. Some
important results to remember include the following:
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1.5 The Definition of Probability 21

. If A1, . . . , Ak are disjoint, Pr
(∪k

i=1Ai

)=∑k
i=1 Pr(Ai).

. Pr(Ac)= 1− Pr(A).

. A⊂ B implies that Pr(A)≤ Pr(B).

. Pr(A ∪ B)= Pr(A)+ Pr(B)− Pr(A ∩ B).

It does not matter how the probabilities were determined. As long as they satisfy the
three axioms, they must also satisfy the above relations as well as all of the results
that we prove later in the text.

Exercises

1. One ball is to be selected from a box containing red,
white, blue, yellow, and green balls. If the probability that
the selected ball will be red is 1/5 and the probability that
it will be white is 2/5, what is the probability that it will be
blue, yellow, or green?

2. A student selected from a class will be either a boy or
a girl. If the probability that a boy will be selected is 0.3,
what is the probability that a girl will be selected?

3. Consider two events A and B such that Pr(A) = 1/3
and Pr(B)= 1/2. Determine the value of Pr(B ∩ Ac) for
each of the following conditions: (a) A and B are disjoint;
(b) A⊂ B; (c) Pr(A ∩ B)= 1/8.

4. If the probability that student A will fail a certain statis-
tics examination is 0.5, the probability that student B will
fail the examination is 0.2, and the probability that both
student A and student B will fail the examination is 0.1,
what is the probability that at least one of these two stu-
dents will fail the examination?

5. For the conditions of Exercise 4, what is the probability
that neither student A nor student B will fail the examina-
tion?

6. For the conditions of Exercise 4, what is the probability
that exactly one of the two students will fail the examina-
tion?

7. Consider two events A and B with Pr(A) = 0.4 and
Pr(B)= 0.7. Determine the maximum and minimum pos-
sible values of Pr(A ∩ B) and the conditions under which
each of these values is attained.

8. If 50 percent of the families in a certain city subscribe
to the morning newspaper, 65 percent of the families sub-
scribe to the afternoon newspaper, and 85 percent of the
families subscribe to at least one of the two newspapers,
what percentage of the families subscribe to both newspa-
pers?

9. Prove that for every two events A and B, the probability
that exactly one of the two events will occur is given by the
expression

Pr(A)+ Pr(B)− 2 Pr(A ∩ B).

10. For two arbitrary events A and B, prove that

Pr(A)= Pr(A ∩ B)+ Pr(A ∩ Bc).

11. A point (x, y) is to be selected from the square S

containing all points (x, y) such that 0≤ x ≤ 1 and 0≤ y ≤
1. Suppose that the probability that the selected point will
belong to each specified subset of S is equal to the area of
that subset. Find the probability of each of the following
subsets: (a) the subset of points such that (x − 1

2 )2 + (y −
1
2 )2 ≥ 1

4 ; (b) the subset of points such that 1
2 < x + y < 3

2 ;
(c) the subset of points such that y ≤ 1− x2; (d) the subset
of points such that x = y.

12. Let A1, A2, . . . be an arbitrary infinite sequence of
events, and let B1, B2, . . . be another infinite sequence
of events defined as follows: B1= A1, B2 = Ac

1 ∩ A2, B3=
Ac

1 ∩ Ac
2 ∩ A3, B4 = Ac

1 ∩ Ac
2 ∩ Ac

3 ∩ A4, . . . . Prove that

Pr

(
n⋃

i=1

Ai

)
=

n∑
i=1

Pr(Bi) for n= 1, 2, . . . ,

and that

Pr

(∞⋃
i=1

Ai

)
=
∞∑
i=1

Pr(Bi).

13. Prove Theorem 1.5.8. Hint: Use Exercise 12.

14. Consider, once again, the four blood types A, B, AB,
and O described in Exercise 8 in Sec. 1.4 together with
the two antigens anti-A and anti-B. Suppose that, for a
given person, the probability of type O blood is 0.5, the
probability of type A blood is 0.34, and the probability of
type B blood is 0.12.

a. Find the probability that each of the antigens will
react with this person’s blood.

b. Find the probability that both antigens will react with
this person’s blood.
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22 Chapter 1 Introduction to Probability

1.6 Finite Sample Spaces
The simplest experiments in which to determine and derive probabilities are those
that involve only finitely many possible outcomes. This section gives several ex-
amples to illustrate the important concepts from Sec. 1.5 in finite sample spaces.

Example
1.6.1

Current Population Survey. Every month, the Census Bureau conducts a survey of
the United States population in order to learn about labor-force characteristics.
Several pieces of information are collected on each of about 50,000 households.
One piece of information is whether or not someone in the household is actively
looking for employment but currently not employed. Suppose that our experiment
consists of selecting three households at random from the 50,000 that were surveyed
in a particular month and obtaining access to the information recorded during the
survey. (Due to the confidential nature of information obtained during the Current
Population Survey, only researchers in the Census Bureau would be able to perform
the experiment just described.) The outcomes that make up the sample space S for
this experiment can be described as lists of three three distinct numbers from 1 to
50,000. For example (300, 1, 24602) is one such list where we have kept track of the
order in which the three households were selected. Clearly, there are only finitely
many such lists. We can assume that each list is equally likely to be chosen, but we
need to be able to count how many such lists there are. We shall learn a method for
counting the outcomes for this example in Sec. 1.7. �

Requirements of Probabilities

In this section, we shall consider experiments for which there are only a finite number
of possible outcomes. In other words, we shall consider experiments for which the
sample space S contains only a finite number of points s1, . . . , sn. In an experiment of
this type, a probability measure on S is specified by assigning a probability pi to each
point si ∈ S. The number pi is the probability that the outcome of the experiment
will be si (i = 1, . . . , n). In order to satisfy the axioms of probability, the numbers
p1, . . . , pn must satisfy the following two conditions:

pi ≥ 0 for i = 1, . . . , n

and
n∑

i=1

pi = 1.

The probability of each event A can then be found by adding the probabilities pi of
all outcomes si that belong to A. This is the general version of Example 1.5.2.

Example
1.6.2

Fiber Breaks. Consider an experiment in which five fibers having different lengths are
subjected to a testing process to learn which fiber will break first. Suppose that the
lengths of the five fibers are 1, 2, 3, 4, and 5 inches, respectively. Suppose also that
the probability that any given fiber will be the first to break is proportional to the
length of that fiber. We shall determine the probability that the length of the fiber
that breaks first is not more than 3 inches.

In this example, we shall let si be the outcome in which the fiber whose length is
i inches breaks first (i = 1, . . . , 5). Then S = {s1, . . . , s5} and pi = αi for i = 1, . . . , 5,
where α is a proportionality factor. It must be true that p1+ . . .+ p5 = 1, and we
know that p1+ . . .+ p5 = 15α, so α = 1/15. If A is the event that the length of the
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1.6 Finite Sample Spaces 23

fiber that breaks first is not more than 3 inches, then A= {s1, s2, s3}. Therefore,

Pr(A)= p1+ p2 + p3= 1
15
+ 2

15
+ 3

15
= 2

5
. �

Simple Sample Spaces

A sample space S containing n outcomes s1, . . . , sn is called a simple sample space
if the probability assigned to each of the outcomes s1, . . . , sn is 1/n. If an event A in
this simple sample space contains exactly m outcomes, then

Pr(A)= m

n
.

Example
1.6.3

Tossing Coins. Suppose that three fair coins are tossed simultaneously. We shall
determine the probability of obtaining exactly two heads.

Regardless of whether or not the three coins can be distinguished from each
other by the experimenter, it is convenient for the purpose of describing the sample
space to assume that the coins can be distinguished. We can then speak of the result
for the first coin, the result for the second coin, and the result for the third coin; and
the sample space will comprise the eight possible outcomes listed in Example 1.4.4
on page 12.

Furthermore, because of the assumption that the coins are fair, it is reasonable
to assume that this sample space is simple and that the probability assigned to each
of the eight outcomes is 1/8. As can be seen from the listing in Example 1.4.4, exactly
two heads will be obtained in three of these outcomes. Therefore, the probability of
obtaining exactly two heads is 3/8. �

It should be noted that if we had considered the only possible outcomes to be
no heads, one head, two heads, and three heads, it would have been reasonable to
assume that the sample space contained just these four outcomes. This sample space
would not be simple because the outcomes would not be equally probable.

Example
1.6.4

Genetics. Inherited traits in humans are determined by material in specific locations
on chromosomes. Each normal human receives 23 chromosomes from each parent,
and these chromosomes are naturally paired, with one chromosome in each pair
coming from each parent. For the purposes of this text, it is safe to think of a gene
as a portion of each chromosome in a pair. The genes, either one at a time or in
combination, determine the inherited traits, such as blood type and hair color. The
material in the two locations that make up a gene on the pair of chromosomes
comes in forms called alleles. Each distinct combination of alleles (one on each
chromosome) is called a genotype.

Consider a gene with only two different alleles A and a. Suppose that both
parents have genotype Aa, that is, each parent has allele A on one chromosome
and allele a on the other. (We do not distinguish the same alleles in a different order
as a different genotype. For example, aA would be the same genotype as Aa. But it
can be convenient to distinguish the two chromosomes during intermediate steps in
probability calculations, just as we distinguished the three coins in Example 1.6.3.)
What are the possible genotypes of an offspring of these two parents? If all possible
results of the parents contributing pairs of alleles are equally likely, what are the
probabilities of the different genotypes?

To begin, we shall distinguish which allele the offspring receives from each
parent, since we are assuming that pairs of contributed alleles are equally likely.

23



24 Chapter 1 Introduction to Probability

Afterward, we shall combine those results that produce the same genotype. The
possible contributions from the parents are:

Mother

Father A a

A AA Aa

a aA aa

So, there are three possible genotypes AA, Aa, and aa for the offspring. Since we
assumed that every combination was equally likely, the four cells in the table all
have probability 1/4. Since two of the cells in the table combined into genotype Aa,
that genotype has probability 1/2. The other two genotypes each have probability
1/4, since they each correspond to only one cell in the table. �

Example
1.6.5

Rolling Two Dice. We shall now consider an experiment in which two balanced dice
are rolled, and we shall calculate the probability of each of the possible values of the
sum of the two numbers that may appear.

Although the experimenter need not be able to distinguish the two dice from
one another in order to observe the value of their sum, the specification of a simple
sample space in this example will be facilitated if we assume that the two dice are
distinguishable. If this assumption is made, each outcome in the sample space S can
be represented as a pair of numbers (x, y), where x is the number that appears on the
first die and y is the number that appears on the second die. Therefore, S comprises
the following 36 outcomes:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

It is natural to assume that S is a simple sample space and that the probability of each
of these outcomes is 1/36.

Let Pi denote the probability that the sum of the two numbers is i for i =
2, 3, . . . , 12. The only outcome in S for which the sum is 2 is the outcome (1, 1).
Therefore, P2= 1/36. The sum will be 3 for either of the two outcomes (1, 2) and (2, 1).
Therefore, P3= 2/36= 1/18. By continuing in this manner, we obtain the following
probability for each of the possible values of the sum:

P2 = P12 = 1
36

, P5= P9 = 4
36

,

P3= P11= 2
36

, P6 = P8 = 5
36

,

P4 = P10 = 3
36

, P7 = 6
36

. �
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1.7 Counting Methods 25

Summary

A simple sample space is a finite sample space S such that every outcome in S has the
same probability. If there are n outcomes in a simple sample space S, then each one
must have probability 1/n. The probability of an event E in a simple sample space is
the number of outcomes in E divided by n. In the next three sections, we will present
some useful methods for counting numbers of outcomes in various events.

Exercises

1. If two balanced dice are rolled, what is the probability
that the sum of the two numbers that appear will be odd?

2. If two balanced dice are rolled, what is the probability
that the sum of the two numbers that appear will be even?

3. If two balanced dice are rolled, what is the probability
that the difference between the two numbers that appear
will be less than 3?

4. A school contains students in grades 1, 2, 3, 4, 5, and
6. Grades 2, 3, 4, 5, and 6 all contain the same number of
students, but there are twice this number in grade 1. If a
student is selected at random from a list of all the students
in the school, what is the probability that she will be in
grade 3?

5. For the conditions of Exercise 4, what is the probabil-
ity that the selected student will be in an odd-numbered
grade?

6. If three fair coins are tossed, what is the probability that
all three faces will be the same?

7. Consider the setup of Example 1.6.4 on page 23. This
time, assume that two parents have genotypes Aa and aa.
Find the possible genotypes for an offspring and find the
probabilities for each genotype. Assume that all possi-
ble results of the parents contributing pairs of alleles are
equally likely.

8. Consider an experiment in which a fair coin is tossed
once and a balanced die is rolled once.

a. Describe the sample space for this experiment.

b. What is the probability that a head will be obtained
on the coin and an odd number will be obtained on
the die?

1.7 Counting Methods
In simple sample spaces, one way to calculate the probability of an event involves
counting the number of outcomes in the event and the number of outcomes in
the sample space. This section presents some common methods for counting the
number of outcomes in a set. These methods rely on special structure that exists in
many common experiments, namely, that each outcome consists of several parts
and that it is relatively easy to count how many possibilities there are for each of
the parts.

We have seen that in a simple sample space S, the probability of an event A is the
ratio of the number of outcomes in A to the total number of outcomes in S. In many
experiments, the number of outcomes in S is so large that a complete listing of these
outcomes is too expensive, too slow, or too likely to be incorrect to be useful. In such
an experiment, it is convenient to have a method of determining the total number
of outcomes in the space S and in various events in S without compiling a list of all
these outcomes. In this section, some of these methods will be presented.
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26 Chapter 1 Introduction to Probability

Figure 1.10 Three cities
with routes between them in
Example 1.7.1.

A C

4
1

2

3

5

6

7

8

B

Multiplication Rule

Example
1.7.1

Routes between Cities. Suppose that there are three different routes from city A to
city B and five different routes from city B to city C. The cities and routes are depicted
in Fig. 1.10, with the routes numbered from 1 to 8. We wish to count the number of
different routes from A to C that pass through B. For example, one such route from
Fig. 1.10 is 1 followed by 4, which we can denote (1, 4). Similarly, there are the routes
(1, 5), (1, 6), . . . , (3, 8). It is not difficult to see that the number of different routes
3× 5= 15. �

Example 1.7.1 is a special case of a common form of experiment.

Example
1.7.2

Experiment in Two Parts. Consider an experiment that has the following two charac-
teristics:

i. The experiment is performed in two parts.

ii. The first part of the experiment has m possible outcomes x1, . . . , xm, and,
regardless of which one of these outcomes xi occurs, the second part of the
experiment has n possible outcomes y1, . . . , yn.

Each outcome in the sample space S of such an experiment will therefore be a pair
having the form (xi, yj), and S will be composed of the following pairs:

(x1, y1)(x1, y2) . . . (x1, yn)

(x2, y1)(x2, y2) . . . (x2, yn)
...

...
...

(xm, y1)(xm, y2) . . . (xm, yn). �

Since each of the m rows in the array in Example 1.7.2 contains n pairs, the
following result follows directly.

Theorem
1.7.1

Multiplication Rule for Two-Part Experiments. In an experiment of the type described
in Example 1.7.2, the sample space S contains exactly mn outcomes.

Figure 1.11 illustrates the multiplication rule for the case of n= 3 and m= 2 with a
tree diagram. Each end-node of the tree represents an outcome, which is the pair
consisting of the two parts whose names appear along the branch leading to the end-
node.

Example
1.7.3

Rolling Two Dice. Suppose that two dice are rolled. Since there are six possible
outcomes for each die, the number of possible outcomes for the experiment is
6× 6= 36, as we saw in Example 1.6.5. �

The multiplication rule can be extended to experiments with more than two parts.
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Figure 1.11 Tree diagram
in which end-nodes represent
outcomes.

x2
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(x1, y1)

(x2, y1)

(x2, y2)

(x2, y3)

(x1, y2)

(x1, y3)

Theorem
1.7.2

Multiplication Rule. Suppose that an experiment has k parts (k ≥ 2), that the ith
part of the experiment can have ni possible outcomes (i = 1, . . . , k), and that all
of the outcomes in each part can occur regardless of which specific outcomes have
occurred in the other parts. Then the sample space S of the experiment will contain
all vectors of the form (u1, . . . , uk), where ui is one of the ni possible outcomes of part
i (i = 1, . . . , k). The total number of these vectors in S will be equal to the product
n1n2 . . . nk.

Example
1.7.4

Tossing Several Coins. Suppose that we toss six coins. Each outcome in S will consist
of a sequence of six heads and tails, such as HTTHHH. Since there are two possible
outcomes for each of the six coins, the total number of outcomes in S will be 26 = 64.
If head and tail are considered equally likely for each coin, then S will be a simple
sample space. Since there is only one outcome in S with six heads and no tails, the
probability of obtaining heads on all six coins is 1/64. Since there are six outcomes
in S with one head and five tails, the probability of obtaining exactly one head is
6/64= 3/32. �

Example
1.7.5

Combination Lock. A standard combination lock has a dial with tick marks for 40
numbers from 0 to 39. The combination consists of a sequence of three numbers that
must be dialed in the correct order to open the lock. Each of the 40 numbers may
appear in each of the three positions of the combination regardless of what the other
two positions contain. It follows that there are 403= 64,000 possible combinations.
This number is supposed to be large enough to discourage would-be thieves from
trying every combination. �

Note: The Multiplication Rule Is Slightly More General. In the statements of The-
orems 1.7.1 and 1.7.2, it is assumed that each possible outcome in each part of the
experiment can occur regardless of what occurs in the other parts of the experiment.
Technically, all that is necessary is that the number of possible outcomes for each
part of the experiment not depend on what occurs on the other parts. The discussion
of permutations below is an example of this situation.

Permutations

Example
1.7.6

Sampling without Replacement. Consider an experiment in which a card is selected
and removed from a deck of n different cards, a second card is then selected and
removed from the remaining n− 1 cards, and finally a third card is selected from the
remaining n− 2 cards. Each outcome consists of the three cards in the order selected.
A process of this kind is called sampling without replacement, since a card that is
drawn is not replaced in the deck before the next card is selected. In this experiment,
any one of the n cards could be selected first. Once this card has been removed, any
one of the other n− 1 cards could be selected second. Therefore, there are n(n− 1)
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28 Chapter 1 Introduction to Probability

possible outcomes for the first two selections. Finally, for every given outcome of
the first two selections, there are n− 2 other cards that could possibly be selected
third. Therefore, the total number of possible outcomes for all three selections is
n(n− 1)(n− 2). �

The situation in Example 1.7.6 can be generalized to any number of selections
without replacement.

Definition
1.7.1

Permutations. Suppose that a set has n elements. Suppose that an experiment consists
of selecting k of the elements one at a time without replacement. Let each outcome
consist of the k elements in the order selected. Each such outcome is called a per-
mutation of n elements taken k at a time. We denote the number of distinct such
permutations by the symbol Pn,k.

By arguing as in Example 1.7.6, we can figure out how many different permutations
there are of n elements taken k at a time. The proof of the following theorem is simply
to extend the reasoning in Example 1.7.6 to selecting k cards without replacement.
The proof is left to the reader.

Theorem
1.7.3

Number of Permutations. The number of permutations of n elements taken k at a time
is Pn,k = n(n− 1) . . . (n− k + 1).

Example
1.7.7

Current Population Survey. Theorem 1.7.3 allows us to count the number of points in
the sample space of Example 1.6.1. Each outcome in S consists of a permutation of
n= 50,000 elements taken k = 3 at a time. Hence, the sample space S in that example
consisits of

50,000× 49,999× 49,998= 1.25× 1014

outcomes. �

When k = n, the number of possible permutations will be the number Pn,n of
different permutations of all n cards. It is seen from the equation just derived that

Pn,n = n(n− 1) . . . 1= n!

The symbol n! is read n factorial. In general, the number of permutations of n differ-
ent items is n!.

The expression for Pn,k can be rewritten in the following alternate form for
k = 1, . . . , n− 1:

Pn,k = n(n− 1) . . . (n− k + 1)
(n− k)(n− k − 1) . . . 1
(n− k)(n− k − 1) . . . 1

= n!
(n− k)!

.

Here and elsewhere in the theory of probability, it is convenient to define 0! by the
relation

0!= 1.

With this definition, it follows that the relation Pn,k = n!/(n− k)! will be correct for
the value k = n as well as for the values k = 1, . . . , n− 1. To summarize:

Theorem
1.7.4

Permutations. The number of distinct orderings of k items selected without replace-
ment from a collection of n different items (0 ≤ k ≤ n) is

Pn,k = n!
(n− k)!

.
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Example
1.7.8

Choosing Officers. Suppose that a club consists of 25 members and that a president
and a secretary are to be chosen from the membership. We shall determine the total
possible number of ways in which these two positions can be filled.

Since the positions can be filled by first choosing one of the 25 members to be
president and then choosing one of the remaining 24 members to be secretary, the
possible number of choices is P25,2 = (25)(24)= 600. �

Example
1.7.9

Arranging Books. Suppose that six different books are to be arranged on a shelf. The
number of possible permutations of the books is 6!= 720. �

Example
1.7.10

Sampling with Replacement. Consider a box that contains n balls numbered 1, . . . , n.
First, one ball is selected at random from the box and its number is noted. This ball
is then put back in the box and another ball is selected (it is possible that the same
ball will be selected again). As many balls as desired can be selected in this way.
This process is called sampling with replacement. It is assumed that each of the n

balls is equally likely to be selected at each stage and that all selections are made
independently of each other.

Suppose that a total of k selections are to be made, where k is a given positive
integer. Then the sample space S of this experiment will contain all vectors of the form
(x1, . . . , xk), where xi is the outcome of the ith selection (i = 1, . . . , k). Since there
are n possible outcomes for each of the k selections, the total number of vectors in S

is nk. Furthermore, from our assumptions it follows that S is a simple sample space.
Hence, the probability assigned to each vector in S is 1/nk. �

Example
1.7.11

Obtaining Different Numbers. For the experiment in Example 1.7.10, we shall deter-
mine the probability of the event E that each of the k balls that are selected will have
a different number.

If k > n, it is impossible for all the selected balls to have different numbers be-
cause there are only n different numbers. Suppose, therefore, that k ≤ n. The number
of outcomes in the event E is the number of vectors for which all k components are
different. This equals Pn,k, since the first component x1 of each vector can have n pos-
sible values, the second component x2 can then have any one of the other n− 1values,
and so on. Since S is a simple sample space containing nk vectors, the probability p

that k different numbers will be selected is

p = Pn,k

nk
= n!

(n− k)!nk
. �

Note: Using Two Different Methods in the Same Problem. Example 1.7.11 illus-
trates a combination of techniques that might seem confusing at first. The method
used to count the number of outcomes in the sample space was based on sampling
with replacement, since the experiment allows repeat numbers in each outcome. The
method used to count the number of outcomes in the event E was permutations (sam-
pling without replacement) because E consists of those outcomes without repeats. It
often happens that one needs to use different methods to count the numbers of out-
comes in different subsets of the sample space. The birthday problem, which follows,
is another example in which we need more than one counting method in the same
problem.
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30 Chapter 1 Introduction to Probability

The Birthday Problem

In the following problem, which is often called the birthday problem, it is required to
determine the probability p that at least two people in a group of k people will have
the same birthday, that is, will have been born on the same day of the same month but
not necessarily in the same year. For the solution presented here, we assume that the
birthdays of the k people are unrelated (in particular, we assume that twins are not
present) and that each of the 365 days of the year is equally likely to be the birthday
of any person in the group. In particular, we ignore the fact that the birth rate actually
varies during the year and we assume that anyone actually born on February 29 will
consider his birthday to be another day, such as March 1.

When these assumptions are made, this problem becomes similar to the one
in Example 1.7.11. Since there are 365 possible birthdays for each of k people, the
sample space S will contain 365k outcomes, all of which will be equally probable. If
k > 365, there are not enough birthdays for every one to be different, and hence at
least two people must have the same birthday. So, we assume that k ≤ 365. Counting
the number of outcomes in which at least two birthdays are the same is tedious.
However, the number of outcomes in S for which all k birthdays will be different is
P365, k, since the first person’s birthday could be any one of the 365 days, the second
person’s birthday could then be any of the other 364 days, and so on. Hence, the
probability that all k persons will have different birthdays is

P365, k

365k
.

The probability p that at least two of the people will have the same birthday is
therefore

p = 1− P365, k

365k
= 1− (365)!

(365− k)!365k
.

Numerical values of this probability p for various values of k are given in Table 1.1.
These probabilities may seem surprisingly large to anyone who has not thought about
them before. Many persons would guess that in order to obtain a value of p greater
than 1/2, the number of people in the group would have to be about 100. However,
according to Table 1.1, there would have to be only 23 people in the group. As a
matter of fact, for k = 100 the value of p is 0.9999997.

Table 1.1 The probability p that at least two
people in a group of k people will
have the same birthday

k p k p

5 0.027 25 0.569

10 0.117 30 0.706

15 0.253 40 0.891

20 0.411 50 0.970

22 0.476 60 0.994

23 0.507
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The calculation in this example illustrates a common technique for solving prob-
ability problems. If one wishes to compute the probability of some event A, it might
be more straightforward to calculate Pr(Ac) and then use the fact that Pr(A) =
1− Pr(Ac). This idea is particularly useful when the event A is of the form “at least
n things happen” where n is small compared to how many things could happen.

Stirling’s Formula

For large values of n, it is nearly impossible to compute n!. For n ≥ 70, n! > 10100

and cannot be represented on many scientific calculators. In most cases for which
n! is needed with a large value of n, one only needs the ratio of n! to another large
number an. A common example of this is Pn,k with large n and not so large k, which
equals n!/(n− k)!. In such cases, we can notice that

n!
an

= elog(n!)−log(an).

Compared to computing n!, it takes a much larger n before log(n!) becomes difficult
to represent. Furthermore, if we had a simple approximation sn to log(n!) such that
limn→∞ |sn− log(n!)| = 0, then the ratio of n!/an to sn/an would be close to 1 for large
n. The following result, whose proof can be found in Feller (1968), provides such an
approximation.

Theorem
1.7.5

Stirling’s Formula. Let

sn = 1
2

log(2π)+
(

n+ 1
2

)
log(n)− n.

Then limn→∞ |sn − log(n!)| = 0. Put another way,

lim
n→∞

(2π)1/2nn+1/2e−n

n!
= 1.

Example
1.7.12

Approximating the Number of Permutations. Suppose that we want to compute P70,20=
70!/50!. The approximation from Stirling’s formula is

70!
50!
≈ (2π)1/27070.5e−70

(2π)1/25050.5e−50
= 3.940× 1035.

The exact calculation yields 3.938× 1035. The approximation and the exact calcula-
tion differ by less than 1/10 of 1 percent. �

Summary

Suppose that the following conditions are met:

. Each element of a set consists of k distinguishable parts x1, . . . , xk.

. There are n1 possibilities for the first part x1.

. For each i = 2, . . . , k and each combination (x1, . . . , xi−1) of the first i − 1parts,
there are ni possibilities for the ith part xi.

Under these conditions, there are n1 . . . nk elements of the set. The third condition
requires only that the number of possibilities for xi be ni no matter what the earlier
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32 Chapter 1 Introduction to Probability

parts are. For example, for i = 2, it does not require that the same n2 possibilities
be available for x2 regardless of what x1 is. It only requires that the number of
possibilities for x2 be n2 no matter what x1 is. In this way, the general rule includes the
multiplication rule, the calculation of permutations, and sampling with replacement
as special cases. For permutations of m items k at a time, we have ni =m− i + 1 for
i = 1, . . . , k, and the ni possibilities for part i are just the ni items that have not yet
appeared in the first i − 1 parts. For sampling with replacement from m items, we
have ni =m for all i, and the m possibilities are the same for every part. In the next
section, we shall consider how to count elements of sets in which the parts of each
element are not distinguishable.

Exercises

1. Each year starts on one of the seven days (Sunday
through Saturday). Each year is either a leap year (i.e.,
it includes February 29) or not. How many different cal-
endars are possible for a year?

2. Three different classes contain 20, 18, and 25 students,
respectively, and no student is a member of more than one
class. If a team is to be composed of one student from each
of these three classes, in how many different ways can the
members of the team be chosen?

3. In how many different ways can the five letters a, b, c,
d, and e be arranged?

4. If a man has six different sportshirts and four different
pairs of slacks, how many different combinations can he
wear?

5. If four dice are rolled, what is the probability that each
of the four numbers that appear will be different?

6. If six dice are rolled, what is the probability that each
of the six different numbers will appear exactly once?

7. If 12 balls are thrown at random into 20 boxes, what
is the probability that no box will receive more than one
ball?

8. An elevator in a building starts with five passengers
and stops at seven floors. If every passenger is equally
likely to get off at each floor and all the passengers leave
independently of each other, what is the probability that
no two passengers will get off at the same floor?

9. Suppose that three runners from team A and three run-
ners from team B participate in a race. If all six runners
have equal ability and there are no ties, what is the prob-
ability that the three runners from team A will finish first,
second, and third, and the three runners from team B will
finish fourth, fifth, and sixth?

10. A box contains 100 balls, of which r are red. Suppose
that the balls are drawn from the box one at a time, at ran-
dom, without replacement. Determine (a) the probability
that the first ball drawn will be red; (b) the probability that
the 50th ball drawn will be red; and (c) the probability that
the last ball drawn will be red.

11. Let n and k be positive integers such that both n and
n− k are large. Use Stirling’s formula to write as simple
an approximation as you can for Pn,k.

1.8 Combinatorial Methods
Many problems of counting the number of outcomes in an event amount to
counting how many subsets of a certain size are contained in a fixed set. This section
gives examples of how to do such counting and where it can arise.

Combinations

Example
1.8.1

Choosing Subsets. Consider the set {a, b, c, d} containing the four different letters.
We want to count the number of distinct subsets of size two. In this case, we can list
all of the subsets of size two:

{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, and {c, d}.
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We see that there are six distinct subsets of size two. This is different from counting
permutaions because {a, b} and {b, a} are the same subset. �

For large sets, it would be tedious, if not impossible, to enumerate all of the
subsets of a given size and count them as we did in Example 1.8.1. However, there
is a connection between counting subsets and counting permutations that will allow
us to derive the general formula for the number of subsets.

Suppose that there is a set of n distinct elements from which it is desired to
choose a subset containing k elements (1≤ k ≤ n). We shall determine the number of
different subsets that can be chosen. In this problem, the arrangement of the elements
in a subset is irrelevant and each subset is treated as a unit.

Definition
1.8.1

Combinations. Consider a set with n elements. Each subset of size k chosen from this
set is called a combination of n elements taken k at a time. We denote the number of
distinct such combinations by the symbol Cn,k.

No two combinations will consist of exactly the same elements because two
subsets with the same elements are the same subset.

At the end of Example 1.8.1, we noted that two different permutations (a, b)

and (b, a) both correspond to the same combination or subset {a, b}. We can think of
permutations as being constructed in two steps. First, a combination of k elements is
chosen out of n, and second, those k elements are arranged in a specific order. There
are Cn,k ways to choose the k elements out of n, and for each such choice there are
k! ways to arrange those k elements in different orders. Using the multiplication rule
from Sec. 1.7, we see that the number of permutations of n elements taken k at a time
is Pn,k = Cn,kk!; hence, we have the following.

Theorem
1.8.1

Combinations. The number of distinct subsets of size k that can be chosen from a set
of size n is

Cn,k =
Pn,k

k!
= n!

k!(n− k)!
.

In Example 1.8.1, we see that C4,2 = 4!/[2!2!]= 6.

Example
1.8.2

Selecting a Committee. Suppose that a committee composed of eight people is to be
selected from a group of 20 people. The number of different groups of people that
might be on the committee is

C20,8 = 20!
8!12!

= 125,970. �

Example
1.8.3

Choosing Jobs. Suppose that, in Example 1.8.2, the eight people in the committee
each get a different job to perform on the committee. The number of ways to choose
eight people out of 20 and assign them to the eight different jobs is the number of
permutations of 20 elements taken eight at a time, or

P20,8 = C20,8 × 8!= 125,970× 8!= 5,078,110,400. �

Examples 1.8.2 and 1.8.3 illustrate the difference and relationship between com-
binations and permutations. In Example 1.8.3, we count the same group of people in
a different order as a different outcome, while in Example 1.8.2, we count the same
group in different orders as the same outcome. The two numerical values differ by a
factor of 8!, the number of ways to reorder each of the combinations in Example 1.8.2
to get a permutation in Example 1.8.3.
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34 Chapter 1 Introduction to Probability

Binomial Coefficients

Definition
1.8.2

Binomial Coefficients. The number Cn,k is also denoted by the symbol
(
n
k

)
. That is, for

k = 0, 1, . . . , n, (
n

k

)
= n!

k!(n− k)!
. (1.8.1)

When this notation is used, this number is called a binomial coefficient.

The name binomial coefficient derives from the appearance of the symbol in the
binomial theorem, whose proof is left as Exercise 20 in this section.

Theorem
1.8.2

Binomial Theorem. For all numbers x and y and each positive integer n,

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k.

There are a couple of useful relations between binomial coefficients.

Theorem
1.8.3

For all n, (
n

0

)
=
(

n

n

)
= 1.

For all n and all k = 0, 1, . . . , n, (
n

k

)
=
(

n

n− k

)
.

Proof The first equation follows from the fact that 0!= 1. The second equation
follows from Eq. (1.8.1). The second equation can also be derived from the fact that
selecting k elements to form a subset is equivalent to selecting the remaining n− k

elements to form the complement of the subset.

It is sometimes convenient to use the expression “n choose k” for the value of
Cn,k. Thus, the same quantity is represented by the two different notations Cn,k and(
n
k

)
, and we may refer to this quantity in three different ways: as the number of

combinations of n elements taken k at a time, as the binomial coefficient of n and
k, or simply as “n choose k.”

Example
1.8.4

Blood Types. In Example 1.6.4 on page 23, we defined genes, alleles, and genotypes.
The gene for human blood type consists of a pair of alleles chosen from the three
alleles commonly called O, A, and B. For example, two possible combinations of
alleles (called genotypes) to form a blood-type gene would be BB and AO. We will
not distinguish the same two alleles in different orders, so OA represents the same
genotype as AO. How many genotypes are there for blood type?

The answer could easily be found by counting, but it is an example of a more
general calculation. Suppose that a gene consists of a pair chosen from a set of
n different alleles. Assuming that we cannot distinguish the same pair in different
orders, there are n pairs where both alleles are the same, and there are

(
n
2

)
pairs

where the two alleles are different. The total number of genotypes is

n+
(

n

2

)
= n+ n(n− 1)

2
= n(n+ 1)

2
=
(

n+ 1
2

)
.
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1.8 Combinatorial Methods 35

For the case of blood type, we have n= 3, so there are(
4
2

)
= 4× 3

2
= 6

genotypes, as could easily be verified by counting. �

Note: Sampling with Replacement. The counting method described in Exam-
ple 1.8.4 is a type of sampling with replacement that is different from the type
described in Example 1.7.10. In Example 1.7.10, we sampled with replacement, but
we distinguished between samples having the same balls in different orders. This
could be called ordered sampling with replacement. In Example 1.8.4, samples con-
taining the same genes in different orders were considered the same outcome. This
could be called unordered sampling with replacement. The general formula for the
number of unordered samples of size k with replacement from n elements is

(
n+k−1

k

)
,

and can be derived in Exercise 19. It is possible to have k larger than n when sampling
with replacement.

Example
1.8.5

Selecting Baked Goods. You go to a bakery to select some baked goods for a dinner
party. You need to choose a total of 12 items. The baker has seven different types
of items from which to choose, with lots of each type available. How many different
boxfuls of 12 items are possible for you to choose? Here we will not distinguish the
same collection of 12 items arranged in different orders in the box. This is an example
of unordered sampling with replacement because we can (indeed we must) choose
the same type of item more than once, but we are not distinguishing the same items
in different orders. There are

(7+12−1
12

)= 18,564 different boxfuls. �

Example 1.8.5 raises an issue that can cause confusion if one does not carefully
determine the elements of the sample space and carefully specify which outcomes
(if any) are equally likely. The next example illustrates the issue in the context of
Example 1.8.5.

Example
1.8.6

Selecting Baked Goods. Imagine two different ways of choosing a boxful of 12 baked
goods selected from the seven different types available. In the first method, you
choose one item at random from the seven available. Then, without regard to what
item was chosen first, you choose the second item at random from the seven available.
Then you continue in this way choosing the next item at random from the seven
available without regard to what has already been chosen until you have chosen 12.
For this method of choosing, it is natural to let the outcomes be the possible sequences
of the 12 types of items chosen. The sample space would contain 712 = 1.38× 1010

different outcomes that would be equally likely.
In the second method of choosing, the baker tells you that she has available

18,564 different boxfuls freshly packed. You then select one at random. In this case,
the sample space would consist of 18,564 different equally likely outcomes.

In spite of the different sample spaces that arise in the two methods of choosing,
there are some verbal descriptions that identify an event in both sample spaces. For
example, both sample spaces contain an event that could be described as {all 12 items
are of the same type} even though the outcomes are different types of mathematical
objects in the two sample spaces. The probability that all 12 items are of the same
type will actually be different depending on which method you use to choose the
boxful.

In the first method, seven of the 712 equally likely outcomes contain 12 of the
same type of item. Hence, the probability that all 12 items are of the same type is
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36 Chapter 1 Introduction to Probability

7/712 = 5.06× 10−10. In the second method, there are seven equally liklely boxes
that contain 12 of the same type of item. Hence, the probability that all 12 items are
of the same type is 7/18,564= 3.77× 10−4. Before one can compute the probability
for an event such as {all 12 items are of the same type}, one must be careful about
defining the experiment and its outcomes. �

Arrangements of Elements of Two Distinct Types When a set contains only el-
ements of two distinct types, a binomial coefficient can be used to represent the
number of different arrangements of all the elements in the set. Suppose, for ex-
ample, that k similar red balls and n− k similar green balls are to be arranged in a
row. Since the red balls will occupy k positions in the row, each different arrangement
of the n balls corresponds to a different choice of the k positions occupied by the red
balls. Hence, the number of different arrangements of the n balls will be equal to
the number of different ways in which k positions can be selected for the red balls
from the n available positions. Since this number of ways is specified by the bino-
mial coefficient

(
n
k

)
, the number of different arrangements of the n balls is also

(
n
k

)
.

In other words, the number of different arrangements of n objects consisting of k

similar objects of one type and n− k similar objects of a second type is
(
n
k

)
.

Example
1.8.7

Tossing a Coin. Suppose that a fair coin is to be tossed 10 times, and it is desired
to determine (a) the probability p of obtaining exactly three heads and (b) the
probability p′ of obtaining three or fewer heads.

(a) The total possible number of different sequences of 10 heads and tails is 210,
and it may be assumed that each of these sequences is equally probable. The
number of these sequences that contain exactly three heads will be equal to
the number of different arrangements that can be formed with three heads and
seven tails. Here are some of those arrangements:

HHHTTTTTTT, HHTHTTTTTT, HHTTHTTTTT, TTHTHTHTTT, etc.

Each such arrangement is equivalent to a choice of where to put the 3 heads
among the 10 tosses, so there are

(10
3

)
such arrangements. The probability of

obtaining exactly three heads is then

p =
(

10
3

)
210
= 0.1172.

(b) Using the same reasoning as in part (a), the number of sequences in the sample
space that contain exactly k heads (k = 0, 1, 2, 3) is

(10
k

)
. Hence, the probability

of obtaining three or fewer heads is

p′ =
(

10
0

)
+
(

10
1

)
+
(

10
2

)
+
(

10
3

)
210

= 1+ 10+ 45+ 120
210

= 176
210
= 0.1719. �

Note: Using Two Different Methods in the Same Problem. Part (a) of Exam-
ple 1.8.7 is another example of using two different counting methods in the same
problem. Part (b) illustrates another general technique. In this part, we broke the
event of interest into several disjoint subsets and counted the numbers of outcomes
separately for each subset and then added the counts together to get the total. In
many problems, it can require several applications of the same or different counting
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methods in order to count the number of outcomes in an event. The next example is
one in which the elements of an event are formed in two parts (multiplication rule),
but we need to perform separate combination calculations to determine the numbers
of outcomes for each part.

Example
1.8.8

Sampling without Replacement. Suppose that a class contains 15 boys and 30 girls,
and that 10 students are to be selected at random for a special assignment. We shall
determine the probability p that exactly three boys will be selected.

The number of different combinations of the 45 students that might be obtained
in the sample of 10 students is

(45
10

)
, and the statement that the 10 students are selected

at random means that each of these
(45

10

)
possible combinations is equally probable.

Therefore, we must find the number of these combinations that contain exactly three
boys and seven girls.

When a combination of three boys and seven girls is formed, the number of
different combinations in which three boys can be selected from the 15 available boys
is
(15

3

)
, and the number of different combinations in which seven girls can be selected

from the 30 available girls is
(30

7

)
. Since each of these combinations of three boys

can be paired with each of the combinations of seven girls to form a distinct sample,
the number of combinations containing exactly three boys is

(15
3

)(30
7

)
. Therefore, the

desired probability is

p =
(

15
3

)(
30
7

)
(

45
10

) = 0.2904. �

Example
1.8.9

Playing Cards. Suppose that a deck of 52 cards containing four aces is shuffled thor-
oughly and the cards are then distributed among four players so that each player
receives 13 cards. We shall determine the probability that each player will receive
one ace.

The number of possible different combinations of the four positions in the deck
occupied by the four aces is

(52
4

)
, and it may be assumed that each of these

(52
4

)
combinations is equally probable. If each player is to receive one ace, then there
must be exactly one ace among the 13 cards that the first player will receive and one
ace among each of the remaining three groups of 13 cards that the other three players
will receive. In other words, there are 13 possible positions for the ace that the first
player is to receive, 13 other possible positions for the ace that the second player is to
receive, and so on. Therefore, among the

(52
4

)
possible combinations of the positions

for the four aces, exactly 134 of these combinations will lead to the desired result.
Hence, the probability p that each player will receive one ace is

p = 134(
52
4

) = 0.1055. �

Ordered versus Unordered Samples Several of the examples in this section and
the previous section involved counting the numbers of possible samples that could
arise using various sampling schemes. Sometimes we treated the same collection of
elements in different orders as different samples, and sometimes we treated the same
elements in different orders as the same sample. In general, how can one tell which
is the correct way to count in a given problem? Sometimes, the problem description
will make it clear which is needed. For example, if we are asked to find the probability
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that the items in a sample arrive in a specified order, then we cannot even specify the
event of interest unless we treat different arrangements of the same items as different
outcomes. Examples 1.8.5 and 1.8.6 illustrate how different problem descriptions can
lead to very different calculations.

However, there are cases in which the problem description does not make it clear
whether or not one must count the same elements in different orders as different
outcomes. Indeed, there are some problems that can be solved correctly both ways.
Example 1.8.9 is one such problem. In that problem, we needed to decide what we
would call an outcome, and then we needed to count how many outcomes were in the
whole sample space S and how many were in the event E of interest. In the solution
presented in Example 1.8.9, we chose as our outcomes the positions in the 52-card
deck that were occupied by the four aces. We did not count different arrangements
of the four aces in those four positions as different outcomes when we counted the
number of outcomes in S. Hence, when we calculated the number of outcomes in E,
we also did not count the different arrangements of the four aces in the four possible
positions as different outcomes. In general, this is the principle that should guide the
choice of counting method. If we have the choice between whether or not to count
the same elements in different orders as different outcomes, then we need to make
our choice and be consistent throughout the problem. If we count the same elements
in different orders as different outcomes when counting the outcomes in S, we must
do the same when counting the elements of E. If we do not count them as different
outcomes when counting S, we should not count them as different when counting E.

Example
1.8.10

Playing Cards, Revisited. We shall solve the problem in Example 1.8.9 again, but this
time, we shall distinguish outcomes with the same cards in different orders. To go
to the extreme, let each outcome be a complete ordering of the 52 cards. So, there
are 52! possible outcomes. How many of these have one ace in each of the four sets
of 13 cards received by the four players? As before, there are 134 ways to choose
the four positions for the four aces, one among each of the four sets of 13 cards. No
matter which of these sets of positions we choose, there are 4! ways to arrange the
four aces in these four positions. No matter how the aces are arranged, there are 48!
ways to arrange the remaining 48 cards in the 48 remaining positions. So, there are
134 × 4!× 48! outcomes in the event of interest. We then calculate

p = 134 × 4!× 48!
52!

= 0.1055. �

In the following example, whether one counts the same items in different orders
as different outcomes is allowed to depend on which events one wishes to use.

Example
1.8.11

Lottery Tickets. In a lottery game, six numbers from 1 to 30 are drawn at random from
a bin without replacement, and each player buys a ticket with six different numbers
from 1 to 30. If all six numbers drawn match those on the player’s ticket, the player
wins. We assume that all possible draws are equally likely. One way to construct a
sample space for the experiment of drawing the winning combination is to consider
the possible sequences of draws. That is, each outcome consists of an ordered subset
of six numbers chosen from the 30 available numbers. There are P30,6 = 30!/24! such
outcomes. With this sample space S, we can calculate probabilities for events such as

A= {the draw contains the numbers 1, 14, 15, 20, 23, and 27},
B = {one of the numbers drawn is 15}, and

C = {the first number drawn is less than 10}.
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There is another natural sample space, which we shall denote S′, for this experiment.
It consists solely of the different combinations of six numbers drawn from the 30
available. There are

(30
6

)= 30!/(6!24!) such outcomes. It also seems natural to consider
all of these outcomes equally likely. With this sample space, we can calculate the
probabilities of the events A and B above, but C is not a subset of the sample space
S′, so we cannot calculate its probability using this smaller sample space. When the
sample space for an experiment could naturally be constructed in more than one way,
one needs to choose based on for which events one wants to compute probabilities.

�

Example 1.8.11 raises the question of whether one will compute the same prob-
abilities using two different sample spaces when the event, such as A or B, exists
in both sample spaces. In the example, each outcome in the smaller sample space
S′ corresponds to an event in the larger sample space S. Indeed, each outcome s′
in S′ corresponds to the event in S containing the 6! permutations of the single
combination s′. For example, the event A in the example has only one outcome
s′ = (1, 14, 15, 20, 23, 27) in the sample space S′, while the corresponding event in
the sample space S has 6! permutations including

(1, 14, 15, 20, 23, 27), (14, 20, 27, 15, 23, 1), (27, 23, 20, 15, 14, 1), etc.

In the sample space S, the probability of the event A is

Pr(A)= 6!
P30,6

= 6!24!
30!
= 1(30

6

) .
In the sample space S′, the event A has this same probability because it has only one
of the

(30
6

)
equally likely outcomes. The same reasoning applies to every outcome in

S′. Hence, if the same event can be expressed in both sample spaces S and S′, we
will compute the same probability using either sample space. This is a special feature
of examples like Example 1.8.11 in which each outcome in the smaller sample space
corresponds to an event in the larger sample space with the same number of elements.
There are examples in which this feature is not present, and one cannot treat both
sample spaces as simple sample spaces.

Example
1.8.12

Tossing Coins. An experiment consists of tossing a coin two times. If we want to
distinguish H followed by T from T followed by H, we should use the sample space
S = {HH, HT, T H, T T }, which might naturally be assumed a simple sample space.
On the other hand, we might be interested solely in the number of H’s tossed. In this
case, we might consider the smaller sample space S′ = {0, 1, 2} where each outcome
merely counts the number of H’s. The outcomes 0 and 2 in S′ each correspond to
a single outcome in S, but 1∈ S′ corresponds to the event {HT, T H } ⊂ S with two
outcomes. If we think of S as a simple sample space, then S′ will not be a simple
sample space, because the outcome 1 will have probability 1/2 while the other two
outcomes each have probability 1/4.

There are situations in which one would be justified in treating S′ as a simple
sample space and assigning each of its outcomes probability 1/3. One might do this
if one believed that the coin was not fair, but one had no idea how unfair it was or
which side were more likely to land up. In this case, S would not be a simple sample
space, because two of its outcomes would have probability 1/3 and the other two
would have probabilities that add up to 1/3. �
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Example 1.8.6 is another case of two different sample spaces in which each
outcome in one sample space corresponds to a different number of outcomes in the
other space. See Exercise 12 in Sec. 1.9 for a more complete analysis of Example 1.8.6.

The Tennis Tournament

We shall now present a difficult problem that has a simple and elegant solution.
Suppose that n tennis players are entered in a tournament. In the first round, the
players are paired one against another at random. The loser in each pair is eliminated
from the tournament, and the winner in each pair continues into the second round.
If the number of players n is odd, then one player is chosen at random before the
pairings are made for the first round, and that player automatically continues into
the second round. All the players in the second round are then paired at random.
Again, the loser in each pair is eliminated, and the winner in each pair continues
into the third round. If the number of players in the second round is odd, then one
of these players is chosen at random before the others are paired, and that player
automatically continues into the third round. The tournament continues in this way
until only two players remain in the final round. They then play against each other,
and the winner of this match is the winner of the tournament. We shall assume that
all n players have equal ability, and we shall determine the probability p that two
specific players A and B will ever play against each other during the tournament.

We shall first determine the total number of matches that will be played during
the tournament. After each match has been played, one player—the loser of that
match—is eliminated from the tournament. The tournament ends when everyone
has been eliminated from the tournament except the winner of the final match. Since
exactly n− 1 players must be eliminated, it follows that exactly n− 1 matches must
be played during the tournament.

The number of possible pairs of players is
(
n
2

)
. Each of the two players in every

match is equally likely to win that match, and all initial pairings are made in a random
manner. Therefore, before the tournament begins, every possible pair of players is
equally likely to appear in each particular one of the n− 1 matches to be played
during the tournament. Accordingly, the probability that players A and B will meet
in some particular match that is specified in advance is 1/

(
n
2

)
. If A and B do meet in

that particular match, one of them will lose and be eliminated. Therefore, these same
two players cannot meet in more than one match.

It follows from the preceding explanation that the probability p that players A

and B will meet at some time during the tournament is equal to the product of the
probability 1/

(
n
2

)
that they will meet in any particular specified match and the total

number n− 1 of different matches in which they might possibly meet. Hence,

p = n− 1(
n
2

) = 2
n
.

Summary

We showed that the number of size k subsets of a set of size n is
(
n
k

)= n!/[k!(n−
k)!]. This turns out to be the number of possible samples of size k drawn without
replacement from a population of size n as well as the number of arrangements of n

items of two types with k of one type and n− k of the other type. We also saw several
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examples in which more than one counting technique was required at different points
in the same problem. Sometimes, more than one technique is required to count the
elements of a single set.

Exercises

1. Two pollsters will canvas a neighborhood with 20
houses. Each pollster will visit 10 of the houses. How many
different assignments of pollsters to houses are possible?

2. Which of the following two numbers is larger:
(93

30

)
or(93

31

)
?

3. Which of the following two numbers is larger:
(93

30

)
or(93

63

)
?

4. A box contains 24 light bulbs, of which four are defec-
tive. If a person selects four bulbs from the box at random,
without replacement, what is the probability that all four
bulbs will be defective?

5. Prove that the following number is an integer:

4155× 4156× . . .× 4250× 4251
2× 3× . . .× 96× 97

.

6. Suppose that n people are seated in a random manner
in a row of n theater seats. What is the probability that
two particular people A and B will be seated next to each
other?

7. If k people are seated in a random manner in a row
containing n seats (n > k), what is the probability that the
people will occupy k adjacent seats in the row?

8. If k people are seated in a random manner in a circle
containing n chairs (n > k), what is the probability that the
people will occupy k adjacent chairs in the circle?

9. If n people are seated in a random manner in a row
containing 2n seats, what is the probability that no two
people will occupy adjacent seats?

10. A box contains 24 light bulbs, of which two are de-
fective. If a person selects 10 bulbs at random, without
replacement, what is the probability that both defective
bulbs will be selected?

11. Suppose that a committee of 12 people is selected in
a random manner from a group of 100 people. Determine
the probability that two particular people A and B will
both be selected.

12. Suppose that 35 people are divided in a random man-
ner into two teams in such a way that one team contains
10 people and the other team contains 25 people. What is
the probability that two particular people A and B will be
on the same team?

13. A box contains 24 light bulbs of which four are de-
fective. If one person selects 10 bulbs from the box in
a random manner, and a second person then takes the
remaining 14 bulbs, what is the probability that all four
defective bulbs will be obtained by the same person?

14. Prove that, for all positive integers n and k (n≥ k),(
n

k

)
+
(

n

k − 1

)
=
(

n+ 1
k

)
.

15.

a. Prove that(
n

0

)
+
(

n

1

)
+
(

n

2

)
+ . . .+

(
n

n

)
= 2n.

b. Prove that(
n

0

)
−
(

n

1

)
+
(

n

2

)
−
(

n

3

)
+ . . .+ (−1)n

(
n

n

)
= 0.

Hint: Use the binomial theorem.

16. The United States Senate contains two senators from
each of the 50 states. (a) If a committee of eight senators
is selected at random, what is the probability that it will
contain at least one of the two senators from a certain
specified state? (b) What is the probability that a group
of 50 senators selected at random will contain one senator
from each state?

17. A deck of 52 cards contains four aces. If the cards
are shuffled and distributed in a random manner to four
players so that each player receives 13 cards, what is the
probability that all four aces will be received by the same
player?

18. Suppose that 100 mathematics students are divided
into five classes, each containing 20 students, and that
awards are to be given to 10 of these students. If each
student is equally likely to receive an award, what is the
probability that exactly two students in each class will
receive awards?

19. A restaurant has n items on its menu. During a partic-
ular day, k customers will arrive and each one will choose
one item. The manager wants to count how many dif-
ferent collections of customer choices are possible with-
out regard to the order in which the choices are made.
(For example, if k = 3 and a1, . . . , an are the menu items,
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42 Chapter 1 Introduction to Probability

then a1a3a1 is not distinguished from a1a1a3.) Prove that
the number of different collections of customer choices is(
n+k−1

k

)
. Hint: Assume that the menu items are a1, . . . , an.

Show that each collection of customer choices, arranged
with the a1’s first, the a2’s second, etc., can be identified
with a sequence of k zeros and n− 1 ones, where each 0
stands for a customer choice and each 1 indicates a point
in the sequence where the menu item number increases
by 1. For example, if k = 3 and n= 5, then a1a1a3 becomes
0011011.

20. Prove the binomial theorem 1.8.2. Hint: You may use
an induction argument. That is, first prove that the result
is true if n= 1. Then, under the assumption that there is

n0 such that the result is true for all n≤ n0, prove that it is
also true for n= n0 + 1.

21. Return to the birthday problem on page 30. How
many different sets of birthdays are available with k peo-
ple and 365 days when we don’t distinguish the same
birthdays in different orders? For example, if k = 3, we
would count (Jan. 1, Mar. 3, Jan.1) the same as (Jan. 1,
Jan. 1, Mar. 3).

22. Let n be a large even integer. Use Stirlings’ formula
(Theorem 1.7.5) to find an approximation to the binomial
coefficient

(
n

n/2

)
. Compute the approximation with n =

500.

1.9 Multinomial Coefficients
We learn how to count the number of ways to partition a finite set into more than
two disjoint subsets. This generalizes the binomial coefficients from Sec. 1.8. The
generalization is useful when outcomes consist of several parts selected from a
fixed number of distinct types.

We begin with a fairly simple example that will illustrate the general ideas of this
section.

Example
1.9.1

Choosing Committees. Suppose that 20 members of an organization are to be divided
into three committees A, B, and C in such a way that each of the committees A and
B is to have eight members and committee C is to have four members. We shall
determine the number of different ways in which members can be assigned to these
committees. Notice that each of the 20 members gets assigned to one and only one
committee.

One way to think of the assignments is to form committee A first by choosing its
eight members and then split the remaining 12 members into committees B and C.
Each of these operations is choosing a combination, and every choice of committee
A can be paired with every one of the splits of the remaining 12 members into
committees B and C. Hence, the number of assignments into three committees is
the product of the numbers of combinations for the two parts of the assignment.
Specifically, to form committee A, we must choose eight out of 20 members, and this
can be done in

(20
8

)
ways. Then to split the remaining 12 members into committees B

and C there are are
(12

8

)
ways to do it. Here, the answer is(

20
8

)(
12
8

)
= 20!

8!12!
12!
8!4!
= 20!

8!8!4!
= 62,355,150. �

Notice how the 12! that appears in the denominator of
(20

8

)
divides out with the 12!

that appears in the numerator of
(12

8

)
. This fact is the key to the general formula that

we shall derive next.

In general, suppose that n distinct elements are to be divided into k different
groups (k ≥ 2) in such a way that, for j = 1, . . . , k, the j th group contains exactly
nj elements, where n1+ n2 + . . . + nk = n. It is desired to determine the number
of different ways in which the n elements can be divided into the k groups. The
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1.9 Multinomial Coefficients 43

n1 elements in the first group can be selected from the n available elements in
(

n
n1

)
different ways. After the n1 elements in the first group have been selected, the n2
elements in the second group can be selected from the remaining n− n1 elements
in
(
n−n1
n2

)
different ways. Hence, the total number of different ways of selecting the

elements for both the first group and the second group is
(

n
n1

)(
n−n1
n2

)
. After the n1+ n2

elements in the first two groups have been selected, the number of different ways in
which the n3 elements in the third group can be selected is

(
n−n1−n2

n3

)
. Hence, the total

number of different ways of selecting the elements for the first three groups is(
n

n1

)(
n− n1

n2

)(
n− n1− n2

n3

)
.

It follows from the preceding explanation that, for each j = 1, . . . , k − 2 after
the first j groups have been formed, the number of different ways in which the nj+1
elements in the next group (j + 1) can be selected from the remaining n− n1− . . .−
nj elements is

(
n−n1−...−nj

nj+1

)
. After the elements of group k − 1 have been selected,

the remaining nk elements must then form the last group. Hence, the total number
of different ways of dividing the n elements into the k groups is(

n

n1

)(
n− n1

n2

)(
n− n1− n2

n3

)
. . .

(
n− n1− . . .− nk−2

nk−1

)
= n!

n1!n2! . . . nk!
,

where the last formula follows from writing the binomial coefficients in terms of
factorials.

Definition
1.9.1

Multinomial Coefficients. The number

n!
n1!n2! . . . nk!

, which we shall denote by
(

n

n1, n2, . . . , nk

)
,

is called a multinomial coefficient.

The name multinomial coefficient derives from the appearance of the symbol in the
multinomial theorem, whose proof is left as Exercise 11 in this section.

Theorem
1.9.1

Multinomial Theorem. For all numbers x1, . . . , xk and each positive integer n,

(x1+ . . .+ xk)
n =

∑(
n

n1, n2, . . . , nk

)
x

n1
1 x

n2
2

. . . x
nk

k ,

where the summation extends over all possible combinations of nonnegative integers
n1, . . . , nk such that n1+ n2 + . . .+ nk = n.

A multinomial coefficient is a generalization of the binomial coefficient discussed
in Sec. 1.8. For k = 2, the multinomial theorem is the same as the binomial theorem,
and the multinomial coefficient becomes a binomial coefficient. In particular,(

n

k, n− k

)
=
(

n

k

)
.

Example
1.9.2

Choosing Committees. In Example 1.9.1, we see that the solution obtained there is the
same as the multinomial coefficient for which n= 20, k = 3, n1= n2 = 8, and n3= 4,
namely, (

20
8, 8, 4

)
= 20!

(8!)24!
= 62,355,150. �
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44 Chapter 1 Introduction to Probability

Arrangements of Elements of More Than Two Distinct Types Just as binomial
coefficients can be used to represent the number of different arrangements of the
elements of a set containing elements of only two distinct types, multinomial coeffi-
cients can be used to represent the number of different arrangements of the elements
of a set containing elements of k different types (k ≥ 2). Suppose, for example, that
n balls of k different colors are to be arranged in a row and that there are nj balls
of color j (j = 1, . . . , k), where n1+ n2 + . . .+ nk = n. Then each different arrange-
ment of the n balls corresponds to a different way of dividing the n available positions
in the row into a group of n1 positions to be occupied by the balls of color 1, a second
group of n2 positions to be occupied by the balls of color 2, and so on. Hence, the
total number of different possible arrangements of the n balls must be(

n

n1, n2, . . . , nk

)
= n!

n1!n2! . . . nk!
.

Example
1.9.3

Rolling Dice. Suppose that 12 dice are to be rolled. We shall determine the probability
p that each of the six different numbers will appear twice.

Each outcome in the sample space S can be regarded as an ordered sequence
of 12 numbers, where the ith number in the sequence is the outcome of the ith roll.
Hence, there will be 612 possible outcomes in S, and each of these outcomes can
be regarded as equally probable. The number of these outcomes that would contain
each of the six numbers 1, 2, . . . , 6 exactly twice will be equal to the number of
different possible arrangements of these 12 elements. This number can be determined
by evaluating the multinomial coefficient for which n= 12, k = 6, and n1= n2 = . . .=
n6 = 2. Hence, the number of such outcomes is(

12
2, 2, 2, 2, 2, 2

)
= 12!

(2!)6
,

and the required probability p is

p = 12!
26612

= 0.0034. �

Example
1.9.4

Playing Cards. A deck of 52 cards contains 13 hearts. Suppose that the cards are
shuffled and distributed among four players A, B, C, and D so that each player
receives 13 cards. We shall determine the probability p that player A will receive
six hearts, player B will receive four hearts, player C will receive two hearts, and
player D will receive one heart.

The total number N of different ways in which the 52 cards can be distributed
among the four players so that each player receives 13 cards is

N =
(

52
13, 13, 13, 13

)
= 52!

(13!)4
.

It may be assumed that each of these ways is equally probable. We must now calculate
the number M of ways of distributing the cards so that each player receives the
required number of hearts. The number of different ways in which the hearts can
be distributed to players A, B, C, and D so that the numbers of hearts they receive
are 6, 4, 2, and 1, respectively, is(

13
6, 4, 2, 1

)
= 13!

6!4!2!1!
.
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1.9 Multinomial Coefficients 45

Also, the number of different ways in which the other 39 cards can then be distributed
to the four players so that each will have a total of 13 cards is(

39
7, 9, 11, 12

)
= 39!

7!9!11!12!
.

Therefore,

M = 13!
6!4!2!1!

. 39!
7!9!11!12!

,

and the required probability p is

p = M

N
= 13!39!(13!)4

6!4!2!1!7!9!11!12!52!
= 0.00196.

There is another approach to this problem along the lines indicated in Exam-
ple 1.8.9 on page 37. The number of possible different combinations of the 13 posi-
tions in the deck occupied by the hearts is

(52
13

)
. If player A is to receive six hearts,

there are
(13

6

)
possible combinations of the six positions these hearts occupy among

the 13 cards that A will receive. Similarly, if player B is to receive four hearts, there
are

(13
4

)
possible combinations of their positions among the 13 cards that B will re-

ceive. There are
(13

2

)
possible combinations for player C, and there are

(13
1

)
possible

combinations for player D. Hence,

p =
(

13
6

) (
13
4

) (
13
2

) (
13
1

)
(

52
13

) ,

which produces the same value as the one obtained by the first method of solution.
�

Summary

Multinomial coefficients generalize binomial coefficients. The coefficient
(

n
n1,..., nk

)
is

the number of ways to partition a set of n items into distinguishable subsets of sizes
n1, . . . , nk where n1+ . . .+ nk = n. It is also the number of arrangements of n items
of k different types for which ni are of type i for i = 1, . . . , k. Example 1.9.4 illustrates
another important point to remember about computing probabilities: There might
be more than one correct method for computing the same probability.

Exercises

1. Three pollsters will canvas a neighborhood with 21
houses. Each pollster will visit seven of the houses. How
many different assignments of pollsters to houses are pos-
sible?

2. Suppose that 18 red beads, 12 yellow beads, eight blue
beads, and 12 black beads are to be strung in a row. How
many different arrangements of the colors can be formed?

3. Suppose that two committees are to be formed in an
organization that has 300 members. If one committee is

to have five members and the other committee is to have
eight members, in how many different ways can these
committees be selected?

4. If the letters s, s, s, t , t , t , i, i, a, c are arranged in a
random order, what is the probability that they will spell
the word “statistics”?

5. Suppose that n balanced dice are rolled. Determine the
probability that the number j will appear exactly nj times
(j = 1, . . . , 6), where n1+ n2 + . . .+ n6 = n.

45



46 Chapter 1 Introduction to Probability

6. If seven balanced dice are rolled, what is the probability
that each of the six different numbers will appear at least
once?

7. Suppose that a deck of 25 cards contains 12 red cards.
Suppose also that the 25 cards are distributed in a random
manner to three players A, B, and C in such a way that
player A receives 10 cards, player B receives eight cards,
and player C receives seven cards. Determine the proba-
bility that player A will receive six red cards, player B will
receive two red cards, and player C will receive four red
cards.

8. A deck of 52 cards contains 12 picture cards. If the
52 cards are distributed in a random manner among four
players in such a way that each player receives 13 cards,
what is the probability that each player will receive three
picture cards?

9. Suppose that a deck of 52 cards contains 13 red cards,
13 yellow cards, 13 blue cards, and 13 green cards. If the
52 cards are distributed in a random manner among four
players in such a way that each player receives 13 cards,
what is the probability that each player will receive 13
cards of the same color?

10. Suppose that two boys named Davis, three boys
named Jones, and four boys named Smith are seated at
random in a row containing nine seats. What is the prob-
ability that the Davis boys will occupy the first two seats
in the row, the Jones boys will occupy the next three seats,
and the Smith boys will occupy the last four seats?

11. Prove the multinomial theorem 1.9.1. (You may wish
to use the same hint as in Exercise 20 in Sec. 1.8.)

12. Return to Example 1.8.6. Let S be the larger sample
space (first method of choosing) and let S′ be the smaller
sample space (second method). For each element s′ of S′,
let N(s′) stand for the number of elements of S that lead to
the same boxful s′ when the order of choosing is ignored.

a. For each s′ ∈ S′, find a formula for N(s′). Hint: Let
ni stand for the number of items of type i in s′ for
i = 1, . . . , 7.

b. Verify that
∑

s′∈S′ N(s′) equals the number of out-
comes in S.

1.10 The Probability of a Union of Events
The axioms of probability tell us directly how to find the probability of the union
of disjoint events. Theorem 1.5.7 showed how to find the probability for the union
of two arbitrary events. This theorem is generalized to the union of an arbitrary
finite collection of events.

We shall now consider again an arbitrary sample space S that may contain either a
finite number of outcomes or an infinite number, and we shall develop some further
general properties of the various probabilities that might be specified for the events
in S. In this section, we shall study in particular the probability of the union

⋃n
i=1 Ai

of n events A1, . . . , An.
If the events A1, . . . , An are disjoint, we know that

Pr

(
n⋃

i=1

Ai

)
=

n∑
i=1

Pr(Ai).

Furthermore, for every two events A1 and A2, regardless of whether or not they are
disjoint, we know from Theorem 1.5.7 of Sec. 1.5 that

Pr(A1 ∪ A2)= Pr(A1)+ Pr(A2)− Pr(A1 ∩ A2).

In this section, we shall extend this result, first to three events and then to an arbitrary
finite number of events.

The Union of Three Events

Theorem
1.10.1

For every three events A1, A2, and A3,
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1.10 The Probability of a Union of Events 47

Pr(A1 ∪ A2 ∪ A3)= Pr(A1)+ Pr(A2)+ Pr(A3)

− [Pr(A1 ∩ A2)+ Pr(A2 ∩ A3)+ Pr(A1 ∩ A3)]

+ Pr(A1 ∩ A2 ∩ A3). (1.10.1)

Proof By the associative property of unions (Theorem 1.4.6), we can write

A1 ∪ A2 ∪ A3= (A1 ∪ A2) ∪ A3.

Apply Theorem 1.5.7 to the two events A= A1 ∪ A2 and B = A3 to obtain

Pr(A1 ∪ A2 ∪ A3)= Pr(A ∪ B)

= Pr(A)+ Pr(B)− Pr(A ∩ B). (1.10.2)

We next compute the three probabilities on the far right side of (1.10.2) and combine
them to get (1.10.1). First, apply Theorem 1.5.7 to the two events A1 and A2 to obtain

Pr(A)= Pr(A1)+ Pr(A2)− Pr(A1 ∩ A2). (1.10.3)

Next, use the first distributive property in Theorem 1.4.10 to write

A ∩ B = (A1 ∪ A2) ∩ A3= (A1 ∩ A3) ∪ (A2 ∩ A3). (1.10.4)

Apply Theorem 1.5.7 to the events on the far right side of (1.10.4) to obtain

Pr(A ∩ B)= Pr(A1 ∩ A3)+ Pr(A2 ∩ A3)− Pr(A1 ∩ A2 ∩ A3). (1.10.5)

Substitute (1.10.3), Pr(B)= Pr(A3), and (1.10.5) into (1.10.2) to complete the proof.

Example
1.10.1

Student Enrollment. Among a group of 200 students, 137 students are enrolled in a
mathematics class, 50 students are enrolled in a history class, and 124 students are
enrolled in a music class. Furthermore, the number of students enrolled in both the
mathematics and history classes is 33, the number enrolled in both the history and
music classes is 29, and the number enrolled in both the mathematics and music
classes is 92. Finally, the number of students enrolled in all three classes is 18. We
shall determine the probability that a student selected at random from the group of
200 students will be enrolled in at least one of the three classes.

Let A1 denote the event that the selected student is enrolled in the mathematics
class, let A2 denote the event that he is enrolled in the history class, and let A3
denote the event that he is enrolled in the music class. To solve the problem, we
must determine the value of Pr(A1 ∪ A2 ∪ A3). From the given numbers,

Pr(A1)= 137
200

, Pr(A2)= 50
200

, Pr(A3)= 124
200

,

Pr(A1 ∩ A2)= 33
200

, Pr(A2 ∩ A3)= 29
200

, Pr(A1 ∩ A3)= 92
200

,

Pr(A1 ∩ A2 ∩ A3)= 18
200

.

It follows from Eq. (1.10.1) that Pr(A1 ∪ A2 ∪ A3)= 175/200= 7/8. �

The Union of a Finite Number of Events

A result similar to Theorem 1.10.1 holds for any arbitrary finite number of events, as
shown by the following theorem.
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48 Chapter 1 Introduction to Probability

Theorem
1.10.2

For every n events A1, . . . , An,

Pr

(
n⋃

i=1

Ai

)
=

n∑
i=1

Pr(Ai)−
∑
i<j

Pr(Ai ∩ Aj)+
∑

i<j<k

Pr(Ai ∩ Aj ∩ Ak)

−
∑

i<j<k<l

Pr(Ai ∩ Aj ∩ Ak ∩ Al)+ . . .

+ (−1)n+1 Pr(A1 ∩ A2 ∩ . . . ∩ An).

(1.10.6)

Proof The proof proceeds by induction. In particular, we first establish that (1.10.6)
is true for n= 1 and n= 2. Next, we show that if there exists m such that (1.10.6) is
true for all n≤m, then (1.10.6) is also true for n=m+ 1. The case of n= 1 is trivial,
and the case of n= 2 is Theorem 1.5.7. To complete the proof, assume that (1.10.6)
is true for all n≤m. Let A1, . . . , Am+1 be events. Define A=⋃m

i=1 Ai and B =Am+1.
Theorem 1.5.7 says that

Pr

(
n⋃

i=1

Ai

)
= Pr(A ∪ B)= Pr(A)+ Pr(B)− Pr(A ∩ B). (1.10.7)

We have assumed that Pr(A) equals (1.10.6) with n=m. We need to show that when
we add Pr(A) to Pr(B)− Pr(A ∩ B), we get (1.10.6) with n=m+ 1. The difference
between (1.10.6) with n=m+ 1 and Pr(A) is all of the terms in which one of the
subscripts (i, j , k, etc.) equals m+ 1. Those terms are the following:

Pr(Am+1)−
m∑

i=1

Pr(Ai ∩ Am+1)+
∑
i<j

Pr(Ai ∩ Aj ∩ Am+1)

−
∑

i<j<k

Pr(Ai ∩ Aj ∩ Ak ∩ Am+1)+ . . .

+ (−1)m+2 Pr(A1 ∩ A2 ∩ . . . ∩ Am ∩ Am+1).

(1.10.8)

The first term in (1.10.8) is Pr(B) = Pr(Am+1). All that remains is to show that
− Pr(A ∩ B) equals all but the first term in (1.10.8).

Use the natural generalization of the distributive property (Theorem 1.4.10) to
write

A ∩ B =
(

m⋃
i=1

Ai

)
∩ Am+1=

m⋃
i=1

(Ai ∩ Am+1). (1.10.9)

The union in (1.10.9) contains m events, and hence we can apply (1.10.6) with n=m

and each Ai replaced by Ai ∩ Am+1. The result is that − Pr(A ∩ B) equals all but the
first term in (1.10.8).

The calculation in Theorem 1.10.2 can be outlined as follows: First, take the
sum of the probabilities of the n individual events. Second, subtract the sum of the
probabilities of the intersections of all possible pairs of events; in this step, there
will be

(
n
2

)
different pairs for which the probabilities are included. Third, add the

probabilities of the intersections of all possible groups of three of the events; there
will be

(
n
3

)
intersections of this type. Fourth, subtract the sum of the probabilities

of the intersections of all possible groups of four of the events; there will be
(
n
4

)
intersections of this type. Continue in this way until, finally, the probability of the
intersection of all n events is either added or subtracted, depending on whether n is
an odd number or an even number.
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1.10 The Probability of a Union of Events 49

The Matching Problem

Suppose that all the cards in a deck of n different cards are placed in a row, and that
the cards in another similar deck are then shuffled and placed in a row on top of the
cards in the original deck. It is desired to determine the probability pn that there
will be at least one match between the corresponding cards from the two decks. The
same problem can be expressed in various entertaining contexts. For example, we
could suppose that a person types n letters, types the corresponding addresses on n

envelopes, and then places the n letters in the n envelopes in a random manner. It
could be desired to determine the probability pn that at least one letter will be placed
in the correct envelope. As another example, we could suppose that the photographs
of n famous film actors are paired in a random manner with n photographs of the
same actors taken when they were babies. It could then be desired to determine the
probability pn that the photograph of at least one actor will be paired correctly with
this actor’s own baby photograph.

Here we shall discuss this matching problem in the context of letters being placed
in envelopes. Thus, we shall let Ai be the event that letter i is placed in the correct
envelope (i = 1, . . . , n), and we shall determine the value of pn = Pr

(⋃n
i=1 Ai

)
by

using Eq. (1.10.6). Since the letters are placed in the envelopes at random, the
probability Pr(Ai) that any particular letter will be placed in the correct envelope
is 1/n. Therefore, the value of the first summation on the right side of Eq. (1.10.6) is

n∑
i=1

Pr(Ai)= n . 1
n
= 1.

Furthermore, since letter 1 could be placed in any one of n envelopes and letter
2 could then be placed in any one of the other n − 1 envelopes, the probability
Pr(A1 ∩ A2) that both letter 1 and letter 2 will be placed in the correct envelopes
is 1/[n(n− 1)]. Similarly, the probability Pr(Ai ∩ Aj) that any two specific letters i

and j (i 	= j) will both be placed in the correct envelopes is 1/[n(n− 1)]. Therefore,
the value of the second summation on the right side of Eq. (1.10.6) is

∑
i<j

Pr(Ai ∩ Aj)=
(

n

2

)
1

n(n− 1)
= 1

2!
.

By similar reasoning, it can be determined that the probability Pr(Ai ∩Aj ∩Ak)

that any three specific letters i, j , and k (i < j < k) will be placed in the correct
envelopes is 1/[n(n− 1)(n− 2)]. Therefore, the value of the third summation is

∑
i<j<k

Pr(Ai ∩ Aj ∩ Ak)=
(

n

3

)
1

n(n− 1)(n− 2)
= 1

3!
.

This procedure can be continued until it is found that the probability Pr(A1 ∩
A2 . . . ∩ An) that all n letters will be placed in the correct envelopes is 1/(n!). It now
follows from Eq. (1.10.6) that the probability pn that at least one letter will be placed
in the correct envelope is

pn = 1− 1
2!
+ 1

3!
− 1

4!
+ . . .+ (−1)n+1 1

n!
. (1.10.10)

This probability has the following interesting features. As n→∞, the value of
pn approaches the following limit:

lim
n→∞ pn = 1− 1

2!
+ 1

3!
− 1

4!
+ . . . .
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50 Chapter 1 Introduction to Probability

It is shown in books on elementary calculus that the sum of the infinite series on
the right side of this equation is 1− (1/e), where e = 2.71828. . . . Hence, 1− (1/e)=
0.63212. . . . It follows that for a large value of n, the probability pn that at least one
letter will be placed in the correct envelope is approximately 0.63212.

The exact values of pn, as given in Eq. (1.10.10), will form an oscillating sequence
as n increases. As n increases through the even integers 2, 4, 6, . . . , the values of pn

will increase toward the limiting value 0.63212; and as n increases through the odd
integers 3, 5, 7, . . . , the values of pn will decrease toward this same limiting value.

The values of pn converge to the limit very rapidly. In fact, for n= 7 the exact
value p7 and the limiting value of pn agree to four decimal places. Hence, regardless
of whether seven letters are placed at random in seven envelopes or seven million
letters are placed at random in seven million envelopes, the probability that at least
one letter will be placed in the correct envelope is 0.6321.

Summary

We generalized the formula for the probability of the union of two arbitrary events
to the union of finitely many events. As an aside, there are cases in which it is
easier to compute Pr(A1 ∪ . . . ∪ An) as 1− Pr(Ac

1 ∩ . . . ∩ Ac
n
) using the fact that

(A1 ∪ . . . ∪ An)
c = Ac

1 ∩ . . . ∩ Ac
n
.

Exercises

1. Three players are each dealt, in a random manner, five
cards from a deck containing 52 cards. Four of the 52
cards are aces. Find the probability that at least one person
receives exactly two aces in their five cards.

2. In a certain city, three newspapers A, B, and C are
published. Suppose that 60 percent of the families in the
city subscribe to newspaper A, 40 percent of the families
subscribe to newspaper B, and 30 percent subscribe to
newspaper C. Suppose also that 20 percent of the families
subscribe to both A and B, 10 percent subscribe to both
A and C, 20 percent subscribe to both B and C, and 5
percent subscribe to all three newspapers A, B, and C.
What percentage of the families in the city subscribe to at
least one of the three newspapers?

3. For the conditions of Exercise 2, what percentage of
the families in the city subscribe to exactly one of the three
newspapers?

4. Suppose that three compact discs are removed from
their cases, and that after they have been played, they are
put back into the three empty cases in a random manner.
Determine the probability that at least one of the CD’s
will be put back into the proper cases.

5. Suppose that four guests check their hats when they
arrive at a restaurant, and that these hats are returned to

them in a random order when they leave. Determine the
probability that no guest will receive the proper hat.

6. A box contains 30 red balls, 30 white balls, and 30 blue
balls. If 10 balls are selected at random, without replace-
ment, what is the probability that at least one color will be
missing from the selection?

7. Suppose that a school band contains 10 students from
the freshman class, 20 students from the sophomore class,
30 students from the junior class, and 40 students from the
senior class. If 15 students are selected at random from
the band, what is the probability that at least one student
will be selected from each of the four classes? Hint: First
determine the probability that at least one of the four
classes will not be represented in the selection.

8. If n letters are placed at random in n envelopes, what
is the probability that exactly n− 1 letters will be placed
in the correct envelopes?

9. Suppose that n letters are placed at random in n en-
velopes, and let qn denote the probability that no letter is
placed in the correct envelope. For which of the follow-
ing four values of n is qn largest: n= 10, n= 21, n= 53, or
n= 300?
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1.11 Statistical Swindles 51

10. If three letters are placed at random in three en-
velopes, what is the probability that exactly one letter will
be placed in the correct envelope?

11. Suppose that 10 cards, of which five are red and five
are green, are placed at random in 10 envelopes, of which
five are red and five are green. Determine the probability
that exactly x envelopes will contain a card with a match-
ing color (x = 0, 1, . . . , 10).

12. Let A1, A2, . . . be an infinite sequence of events such
that A1⊂ A2 ⊂ . . .. Prove that

Pr

(∞⋃
i=1

Ai

)
= lim

n→∞ Pr(An).

Hint: Let the sequence B1, B2, . . . be defined as in Exer-
cise 12 of Sec. 1.5, and show that

Pr

(∞⋃
i=1

Ai

)
= lim

n→∞ Pr

(
n⋃

i=1

Bi

)
= lim

n→∞ Pr(An).

13. Let A1, A2, . . . be an infinite sequence of events such
that A1⊃ A2 ⊃ . . .. Prove that

Pr

(∞⋂
i=1

Ai

)
= lim

n→∞ Pr(An).

Hint: Consider the sequence Ac
1, Ac

2, . . . , and apply Exer-
cise 12.

1.11 Statistical Swindles
This section presents some examples of how one can be misled by arguments that
require one to ignore the calculus of probability.

Misleading Use of Statistics

The field of statistics has a poor image in the minds of many people because there is
a widespread belief that statistical data and statistical analyses can easily be manip-
ulated in an unscientific and unethical fashion in an effort to show that a particular
conclusion or point of view is correct. We all have heard the sayings that “There
are three kinds of lies: lies, damned lies, and statistics” (Mark Twain [1924, p. 246]
says that this line has been attributed to Benjamin Disraeli) and that “you can prove
anything with statistics.”

One benefit of studying probability and statistics is that the knowledge we gain
enables us to analyze statistical arguments that we read in newspapers, magazines,
or elsewhere. We can then evaluate these arguments on their merits, rather than
accepting them blindly. In this section, we shall describe three schemes that have been
used to induce consumers to send money to the operators of the schemes in exchange
for certain types of information. The first two schemes are not strictly statistical in
nature, but they are strongly based on undertones of probability.

Perfect Forecasts

Suppose that one Monday morning you receive in the mail a letter from a firm
with which you are not familiar, stating that the firm sells forecasts about the stock
market for very high fees. To indicate the firm’s ability in forecasting, it predicts that a
particular stock, or a particular portfolio of stocks, will rise in value during the coming
week. You do not respond to this letter, but you do watch the stock market during the
week and notice that the prediction was correct. On the following Monday morning
you receive another letter from the same firm containing another prediction, this one
specifying that a particular stock will drop in value during the coming week. Again
the prediction proves to be correct.
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52 Chapter 1 Introduction to Probability

This routine continues for seven weeks. Every Monday morning you receive a
prediction in the mail from the firm, and each of these seven predictions proves to
be correct. On the eighth Monday morning, you receive another letter from the firm.
This letter states that for a large fee the firm will provide another prediction, on
the basis of which you can presumably make a large amount of money on the stock
market. How should you respond to this letter?

Since the firm has made seven successive correct predictions, it would seem that
it must have some special information about the stock market and is not simply
guessing. After all, the probability of correctly guessing the outcomes of seven
successive tosses of a fair coin is only (1/2)7= 0.008. Hence, if the firm had only been
guessing each week, then the firm had a probability less than 0.01 of being correct
seven weeks in a row.

The fallacy here is that you may have seen only a relatively small number of the
forecasts that the firm made during the seven-week period. Suppose, for example,
that the firm started the entire process with a list of 27 = 128 potential clients. On
the first Monday, the firm could send the forecast that a particular stock will rise in
value to half of these clients and send the forecast that the same stock will drop in
value to the other half. On the second Monday, the firm could continue writing to
those 64 clients for whom the first forecast proved to be correct. It could again send
a new forecast to half of those 64 clients and the opposite forecast to the other half.
At the end of seven weeks, the firm (which usually consists of only one person and a
computer) must necessarily have one client (and only one client) for whom all seven
forecasts were correct.

By following this procedure with several different groups of 128 clients, and
starting new groups each week, the firm may be able to generate enough positive
responses from clients for it to realize significant profits.

Guaranteed Winners

There is another scheme that is somewhat related to the one just described but that is
even more elegant because of its simplicity. In this scheme, a firm advertises that for
a fixed fee, usually 10 or 20 dollars, it will send the client its forecast of the winner of
any upcoming baseball game, football game, boxing match, or other sports event that
the client might specify. Furthermore, the firm offers a money-back guarantee that
this forecast will be correct; that is, if the team or person designated as the winner in
the forecast does not actually turn out to be the winner, the firm will return the full
fee to the client.

How should you react to such an advertisement? At first glance, it would appear
that the firm must have some special knowledge about these sports events, because
otherwise it could not afford to guarantee its forecasts. Further reflection reveals,
however, that the firm simply cannot lose, because its only expenses are those for
advertising and postage. In effect, when this scheme is used, the firm holds the client’s
fee until the winner has been decided. If the forecast was correct, the firm keeps the
fee; otherwise, it simply returns the fee to the client.

On the other hand, the client can very well lose. He presumably purchases the
firm’s forecast because he desires to bet on the sports event. If the forecast proves to
be wrong, the client will not have to pay any fee to the firm, but he will have lost any
money that he bet on the predicted winner.

Thus, when there are “guaranteed winners,” only the firm is guaranteed to win.
In fact, the firm knows that it will be able to keep the fees from all the clients for
whom the forecasts were correct.
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1.12 Supplementary Exercises 53

Improving Your Lottery Chances

State lotteries have become very popular in America. People spend millions of
dollars each week to purchase tickets with very small chances of winning medium
to enormous prizes. With so much money being spent on lottery tickets, it should not
be surprising that a few enterprising individuals have concocted schemes to cash in
on the probabilistic naı̈veté of the ticket-buying public. There are now several books
and videos available that claim to help lottery players improve their performance.
People actually pay money for these items. Some of the advice is just common sense,
but some of it is misleading and plays on subtle misconceptions about probability.

For concreteness, suppose that we have a game in which there are 40 balls num-
bered 1 to 40 and six are drawn without replacement to determine the winning
combination. A ticket purchase requires the customer to choose six different num-
bers from 1 to 40 and pay a fee. This game has

(40
6

)= 3,838,380 different winning
combinations and the same number of possible tickets. One piece of advice often
found in published lottery aids is not to choose the six numbers on your ticket too far
apart. Many people tend to pick their six numbers uniformly spread out from 1 to 40,
but the winning combination often has two consecutive numbers or at least two num-
bers very close together. Some of these “advisors” recommend that, since it is more
likely that there will be numbers close together, players should bunch some of their
six numbers close together. Such advice might make sense in order to avoid choosing
the same numbers as other players in a parimutuel game (i.e., a game in which all
winners share the jackpot). But the idea that any strategy can improve your chances
of winning is misleading.

To see why this advice is misleading, let E be the event that the winning com-
bination contains at least one pair of consecutive numbers. The reader can calculate
Pr(E) in Exercise 13 in Sec. 1.12. For this example, Pr(E)= 0.577. So the lottery aids
are correct that E has high probability. However, by claiming that choosing a ticket in
E increases your chance of winning, they confuse the probability of the event E with
the probability of each outcome in E. If you choose the ticket (5, 7, 14, 23, 24, 38),
your probability of winning is only 1/3,828,380, just as it would be if you chose any
other ticket. The fact that this ticket happens to be in E doesn’t make your probabil-
ity of winning equal to 0.577. The reason that Pr(E) is so big is that so many different
combinations are in E. Each of those combinations still has probability 1/3,828,380
of winning, and you only get one combination on each ticket. The fact that there are
so many combinations in E does not make each one any more likely than anything
else.

1.12 Supplementary Exercises
1. Suppose that a coin is tossed seven times. Let A denote
the event that a head is obtained on the first toss, and let B

denote the event that a head is obtained on the fifth toss.
Are A and B disjoint?

2. If A, B, and D are three events such that Pr(A ∪ B ∪
D)= 0.7, what is the value of Pr(Ac ∩ Bc ∩Dc)?

3. Suppose that a certain precinct contains 350 voters, of
which 250 are Democrats and 100 are Republicans. If 30
voters are chosen at random from the precinct, what is the
probability that exactly 18 Democrats will be selected?

4. Suppose that in a deck of 20 cards, each card has one
of the numbers 1, 2, 3, 4, or 5 and there are four cards
with each number. If 10 cards are chosen from the deck at
random, without replacement, what is the probability that
each of the numbers 1, 2, 3, 4, and 5 will appear exactly
twice?

5. Consider the contractor in Example 1.5.4 on page 19.
He wishes to compute the probability that the total utility
demand is high, meaning that the sum of water and elec-
trical demand (in the units of Example 1.4.5) is at least
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54 Chapter 1 Introduction to Probability

215. Draw a picture of this event on a graph like Fig. 1.5
or Fig. 1.9 and find its probability.

6. Suppose that a box contains r red balls and w white
balls. Suppose also that balls are drawn from the box one
at a time, at random, without replacement. (a) What is the
probability that all r red balls will be obtained before any
white balls are obtained? (b) What is the probability that
all r red balls will be obtained before two white balls are
obtained?

7. Suppose that a box contains r red balls, w white balls,
and b blue balls. Suppose also that balls are drawn from
the box one at a time, at random, without replacement.
What is the probability that all r red balls will be obtained
before any white balls are obtained?

8. Suppose that 10 cards, of which seven are red and three
are green, are put at random into 10 envelopes, of which
seven are red and three are green, so that each envelope
contains one card. Determine the probability that exactly
k envelopes will contain a card with a matching color
(k = 0, 1, . . . , 10).

9. Suppose that 10 cards, of which five are red and five
are green, are put at random into 10 envelopes, of which
seven are red and three are green, so that each envelope
contains one card. Determine the probability that exactly
k envelopes will contain a card with a matching color
(k = 0, 1, . . . , 10).

10. Suppose that the events A and B are disjoint. Under
what conditions are Ac and Bc disjoint?

11. Let A1, A2, and A3 be three arbitrary events. Show that
the probability that exactly one of these three events will
occur is

Pr(A1)+ Pr(A2)+ Pr(A3)

− 2 Pr(A1 ∩ A2)− 2 Pr(A1 ∩ A3)− 2 Pr(A2 ∩ A3)

+ 3 Pr(A1 ∩ A2 ∩ A3).

12. Let A1, . . . , An be n arbitrary events. Show that the
probability that exactly one of these n events will occur is
n∑

i=1

Pr(Ai)− 2
∑
i<j

Pr(Ai ∩ Aj)+ 3
∑

i<j<k

Pr(Ai ∩ Aj ∩ Ak)

− . . .+ (−1)n+1n Pr(A1 ∩ A2 . . . ∩ An).

13. Consider a state lottery game in which each winning
combination and each ticket consists of one set of k num-
bers chosen from the numbers 1 to n without replacement.
We shall compute the probability that the winning combi-
nation contains at least one pair of consecutive numbers.

a. Prove that if n < 2k − 1, then every winning combi-
nation has at least one pair of consecutive numbers.
For the rest of the problem, assume that n≥ 2k − 1.

b. Let i1 < . . . < ik be an arbitrary possible winning
combination arranged in order from smallest to
largest. For s = 1, . . . , k, let js = is − (s − 1). That
is,

j1= i1,

j2 = i2 − 1
...

jk = ik − (k − 1).

Prove that (i1, . . . , ik) contains at least one pair of
consecutive numbers if and only if (j1, . . . , jk) con-
tains repeated numbers.

c. Prove that 1≤ j1≤ . . .≤ jk ≤ n− k + 1 and that the
number of (j1, . . . , jk) sets with no repeats is

(
n−k+1

k

)
.

d. Find the probability that there is no pair of consecu-
tive numbers in the winning combination.

e. Find the probability of at least one pair of consecu-
tive numbers in the winning combination.
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2.1 The Definition of Conditional Probability
A major use of probability in statistical inference is the updating of probabilities
when certain events are observed. The updated probability of event A after we
learn that event B has occurred is the conditional probability of A given B.

Example
2.1.1

Lottery Ticket. Consider a state lottery game in which six numbers are drawn without
replacement from a bin containing the numbers 1–30. Each player tries to match the
set of six numbers that will be drawn without regard to the order in which the numbers
are drawn. Suppose that you hold a ticket in such a lottery with the numbers 1, 14,
15, 20, 23, and 27. You turn on your television to watch the drawing but all you see is
one number, 15, being drawn when the power suddenly goes off in your house. You
don’t even know whether 15 was the first, last, or some in-between draw. However,
now that you know that 15 appears in the winning draw, the probability that your
ticket is a winner must be higher than it was before you saw the draw. How do you
calculate the revised probability? �

Example 2.1.1 is typical of the following situation. An experiment is performed
for which the sample space S is given (or can be constructed easily) and the proba-
bilities are available for all of the events of interest. We then learn that some event B

has occuured, and we want to know how the probability of another event A changes
after we learn that B has occurred. In Example 2.1.1, the event that we have learned
is B = {one of the numbers drawn is 15}. We are certainly interested in the probabil-
ity of

A= {the numbers 1, 14, 15, 20, 23, and 27 are drawn},
and possibly other events.

If we know that the event B has occurred, then we know that the outcome of
the experiment is one of those included in B. Hence, to evaluate the probability that
A will occur, we must consider the set of those outcomes in B that also result in
the occurrence of A. As sketched in Fig. 2.1, this set is precisely the set A ∩ B. It is
therefore natural to calculate the revised probability of A according to the following
definition.

Copyright © 2012 by Pearson Education, Inc. All rights reserved.
From Probability and Statistics, Fourth Edition. Morris H. DeGroot, Mark J. Schervish. 
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Figure 2.1 The outcomes in
the event B that also belong
to the event A. A

B
S

A�B

Definition
2.1.1

Conditional Probability. Suppose that we learn that an event B has occurred and that
we wish to compute the probability of another event A taking into account that
we know that B has occurred. The new probability of A is called the conditional
probability of the event A given that the event B has occurred and is denoted Pr(A|B).
If Pr(B) > 0, we compute this probability as

Pr(A|B)= Pr(A ∩ B)

Pr(B)
. (2.1.1)

The conditional probability Pr(A|B) is not defined if Pr(B)= 0.

For convenience, the notation in Definition 2.1.1 is read simply as the conditional
probability of A given B. Eq. (2.1.1) indicates that Pr(A|B) is computed as the
proportion of the total probability Pr(B) that is represented by Pr(A ∩ B), intuitively
the proportion of B that is also part of A.

Example
2.1.2

Lottery Ticket. In Example 2.1.1, you learned that the event

B = {one of the numbers drawn is 15}
has occurred. You want to calculate the probability of the event A that your ticket
is a winner. Both events A and B are expressible in the sample space that consists of
the

(30
6

)= 30!/(6!24!) possible combinations of 30 items taken six at a time, namely,
the unordered draws of six numbers from 1–30. The event B consists of combinations
that include 15. Since there are 29 remaining numbers from which to choose the other
five in the winning draw, there are

(29
5

)
outcomes in B. It follows that

Pr(B)=
(29

5

)
(30

6

) = 29!24!6!
30!5!24!

= 0.2.

The event A that your ticket is a winner consists of a single outcome that is also in B,
so A ∩ B = A, and

Pr(A ∩ B)= Pr(A)= 1(30
6

) = 6!24!
30!
= 1.68× 10−6.

It follows that the conditional probability of A given B is

Pr(A|B)=
6!24!
30!

0.2
= 8.4× 10−6.

This is five times as large as Pr(A) before you learned that B had occurred. �

Definition 2.1.1 for the conditional probability Pr(A|B) is worded in terms of
the subjective interpretation of probability in Sec. 1.2. Eq. (2.1.1) also has a simple
meaning in terms of the frequency interpretation of probability. According to the
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2.1 The Definition of Conditional Probability 57

frequency interpretation, if an experimental process is repeated a large number of
times, then the proportion of repetitions in which the event B will occur is approx-
imately Pr(B) and the proportion of repetitions in which both the event A and the
event B will occur is approximately Pr(A ∩ B). Therefore, among those repetitions
in which the event B occurs, the proportion of repetitions in which the event A will
also occur is approximately equal to

Pr(A|B)= Pr(A ∩ B)

Pr(B)
.

Example
2.1.3

Rolling Dice. Suppose that two dice were rolled and it was observed that the sum T of
the two numbers was odd. We shall determine the probability that T was less than 8.

If we let A be the event that T < 8 and let B be the event that T is odd, then
A ∩ B is the event that T is 3, 5, or 7. From the probabilities for two dice given at the
end of Sec. 1.6, we can evaluate Pr(A ∩ B) and Pr(B) as follows:

Pr(A ∩ B)= 2
36
+ 4

36
+ 6

36
= 12

36
= 1

3
,

Pr(B)= 2
36
+ 4

36
+ 6

36
+ 4

36
+ 2

36
= 18

36
= 1

2
.

Hence,

Pr(A|B)= Pr(A ∩ B)

Pr(B)
= 2

3
. �

Example
2.1.4

A Clinical Trial. It is very common for patients with episodes of depression to have
a recurrence within two to three years. Prien et al. (1984) studied three treatments
for depression: imipramine, lithium carbonate, and a combination. As is traditional
in such studies (called clinical trials), there was also a group of patients who received
a placebo. (A placebo is a treatment that is supposed to be neither helpful nor
harmful. Some patients are given a placebo so that they will not know that they
did not receive one of the other treatments. None of the other patients knew which
treatment or placebo they received, either.) In this example, we shall consider 150
patients who entered the study after an episode of depression that was classified
as “unipolar” (meaning that there was no manic disorder). They were divided into
the four groups (three treatments plus placebo) and followed to see how many had
recurrences of depression. Table 2.1 summarizes the results. If a patient were selected
at random from this study and it were found that the patient received the placebo
treatment, what is the conditional probability that the patient had a relapse? Let
B be the event that the patient received the placebo, and let A be the event that

Table 2.1 Results of the clinical depression study in Example 2.1.4

Treatment group

Response Imipramine Lithium Combination Placebo Total

Relapse 18 13 22 24 77

No relapse 22 25 16 10 73

Total 40 38 38 34 150
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58 Chapter 2 Conditional Probability

the patient had a relapse. We can calculate Pr(B)= 34/150 and Pr(A ∩ B)= 24/150
directly from the table. Then Pr(A|B) = 24/34 = 0.706. On the other hand, if the
randomly selected patient is found to have received lithium (call this event C) then
Pr(C)= 38/150, Pr(A ∩ C)= 13/150, and Pr(A|C)= 13/38= 0.342. Knowing which
treatment a patient received seems to make a difference to the probability of relapse.
In Chapter 10, we shall study methods for being more precise about how much of a
difference it makes. �

Example
2.1.5

Rolling Dice Repeatedly. Suppose that two dice are to be rolled repeatedly and the
sum T of the two numbers is to be observed for each roll. We shall determine the
probability p that the value T = 7 will be observed before the value T = 8 is observed.

The desired probability p could be calculated directly as follows: We could
assume that the sample space S contains all sequences of outcomes that terminate as
soon as either the sum T = 7 or the sum T = 8 is obtained. Then we could find the
sum of the probabilities of all the sequences that terminate when the value T = 7 is
obtained.

However, there is a simpler approach in this example. We can consider the simple
experiment in which two dice are rolled. If we repeat the experiment until either the
sum T = 7 or the sum T = 8 is obtained, the effect is to restrict the outcome of the
experiment to one of these two values. Hence, the problem can be restated as follows:
Given that the outcome of the experiment is either T = 7 or T = 8, determine the
probability p that the outcome is actually T = 7.

If we let A be the event that T = 7 and let B be the event that the value of T is
either 7 or 8, then A ∩ B = A and

p = Pr(A|B)= Pr(A ∩ B)

Pr(B)
= Pr(A)

Pr(B)
.

From the probabilities for two dice given in Example 1.6.5, Pr(A) = 6/36 and
Pr(B)= (6/36)+ (5/36)= 11/36. Hence, p = 6/11. �

The Multiplication Rule for Conditional Probabilities

In some experiments, certain conditional probabilities are relatively easy to assign
directly. In these experiments, it is then possible to compute the probability that both
of two events occur by applying the next result that follows directly from Eq. (2.1.1)
and the analogous definition of Pr(B|A).

Theorem
2.1.1

Multiplication Rule for Conditional Probabilities. Let A and B be events. If Pr(B) > 0,
then

Pr(A ∩ B)= Pr(B) Pr(A|B).

If Pr(A) > 0, then

Pr(A ∩ B)= Pr(A) Pr(B|A).

Example
2.1.6

Selecting Two Balls. Suppose that two balls are to be selected at random, without
replacement, from a box containing r red balls and b blue balls. We shall determine
the probability p that the first ball will be red and the second ball will be blue.

Let A be the event that the first ball is red, and let B be the event that the second
ball is blue. Obviously, Pr(A)= r/(r + b). Furthermore, if the event A has occurred,
then one red ball has been removed from the box on the first draw. Therefore, the
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2.1 The Definition of Conditional Probability 59

probability of obtaining a blue ball on the second draw will be

Pr(B|A)= b

r + b − 1
.

It follows that

Pr(A ∩ B)= r

r + b
. b

r + b − 1
. �

The principle that has just been applied can be extended to any finite number of
events, as stated in the following theorem.

Theorem
2.1.2

Multiplication Rule for Conditional Probabilities. Suppose that A1, A2, . . . , An are
events such that Pr(A1 ∩ A2 ∩ . . . ∩ An−1) > 0. Then

Pr(A1 ∩ A2 ∩ . . . ∩ An) (2.1.2)

= Pr(A1) Pr(A2|A1) Pr(A3|A1 ∩ A2) . . . Pr(An|A1 ∩ A2 ∩ . . . ∩ An−1).

Proof The product of probabilities on the right side of Eq. (2.1.2) is equal to

Pr(A1) . Pr(A1 ∩ A2)

Pr(A1)
.

Pr(A1 ∩ A2 ∩ A3)

Pr(A1 ∩ A2)
. . .

Pr(A1 ∩ A2 ∩ . . . ∩ An)

Pr(A1 ∩ A2 . . . ∩ An−1)
.

Since Pr(A1∩A2 ∩ . . . ∩An−1) > 0, each of the denominators in this product must be
positive. All of the terms in the product cancel each other except the final numerator
Pr(A1 ∩ A2 ∩ . . . ∩ An), which is the left side of Eq. (2.1.2).

Example
2.1.7

Selecting Four Balls. Suppose that four balls are selected one at a time, without
replacement, from a box containing r red balls and b blue balls (r ≥ 2, b ≥ 2). We
shall determine the probability of obtaining the sequence of outcomes red, blue, red,
blue.

If we let Rj denote the event that a red ball is obtained on the j th draw and let
Bj denote the event that a blue ball is obtained on the j th draw (j = 1, . . . , 4), then

Pr(R1 ∩ B2 ∩ R3 ∩ B4)= Pr(R1) Pr(B2|R1) Pr(R3|R1 ∩ B2) Pr(B4|R1 ∩ B2 ∩ R3)

= r

r + b
. b

r + b − 1
. r − 1
r + b − 2

. b − 1
r + b − 3

. �

Note: Conditional Probabilities Behave Just Like Probabilities. In all of the sit-
uations that we shall encounter in this text, every result that we can prove has a
conditional version given an event B with Pr(B) > 0. Just replace all probabilities by
conditional probabilities given B and replace all conditional probabilities given other
events C by conditional probabilities given C ∩ B. For example, Theorem 1.5.3 says
that Pr(Ac)= 1− Pr(A). It is easy to prove that Pr(Ac|B)= 1− Pr(A|B) if Pr(B) > 0.
(See Exercises 11 and 12 in this section.) Another example is Theorem 2.1.3, which
is a conditional version of the multiplication rule Theorem 2.1.2. Although a proof is
given for Theorem 2.1.3, we shall not provide proofs of all such conditional theorems,
because their proofs are generally very similar to the proofs of the unconditional
versions.

Theorem
2.1.3

Suppose that A1, A2, . . . , An, B are events such that Pr(B) > 0 and Pr(A1∩A2 ∩ . . .∩
An−1|B) > 0. Then

Pr(A1 ∩ A2 ∩ . . . ∩ An|B)= Pr(A1|B) Pr(A2|A1 ∩ B) . . .

× Pr(An|A1 ∩ A2 ∩ . . . ∩ An−1 ∩ B).
(2.1.3)
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60 Chapter 2 Conditional Probability

Proof The product of probabilities on the right side of Eq. (2.1.3) is equal to

Pr(A1 ∩ B)

Pr(B)
. Pr(A1 ∩ A2 ∩ B)

Pr(A1 ∩ B)
. . .

Pr(A1 ∩ A2 ∩ . . . ∩ AnB)

Pr(A1 ∩ A2 . . . ∩ An−1 ∩ B)
.

Since Pr(A1∩A2 ∩ . . . ∩An−1|B) > 0, each of the denominators in this product must
be positive. All of the terms in the product cancel each other except the first denom-
inator and the final numerator to yield Pr(A1 ∩ A2 ∩ . . . ∩ An ∩ B)/ Pr(B), which is
the left side of Eq. (2.1.3).

Conditional Probability and Partitions

Theorem 1.4.11 shows how to calculate the probability of an event by partitioning
the sample space into two events B and Bc. This result easily generalizes to larger
partitions, and when combined with Theorem 2.1.1 it leads to a very powerful tool
for calculating probabilities.

Definition
2.1.2

Partition. Let S denote the sample space of some experiment, and consider k events
B1, . . . , Bk in S such that B1, . . . , Bk are disjoint and

⋃k
i=1 Bi = S. It is said that these

events form a partition of S.

Typically, the events that make up a partition are chosen so that an important
source of uncertainty in the problem is reduced if we learn which event has occurred.

Example
2.1.8

Selecting Bolts. Two boxes contain long bolts and short bolts. Suppose that one box
contains 60 long bolts and 40 short bolts, and that the other box contains 10 long bolts
and 20 short bolts. Suppose also that one box is selected at random and a bolt is then
selected at random from that box. We would like to determine the probability that
this bolt is long. �

Partitions can facilitate the calculations of probabilities of certain events.

Theorem
2.1.4

Law of total probability. Suppose that the events B1, . . . , Bk form a partition of the
space S and Pr(Bj) > 0 for j = 1, . . . , k. Then, for every event A in S,

Pr(A)=
k∑

j=1

Pr(Bj) Pr(A|Bj). (2.1.4)

Proof The events B1∩A, B2 ∩A, . . . , Bk ∩A will form a partition of A, as illustrated
in Fig. 2.2. Hence, we can write

A= (B1 ∩ A) ∪ (B2 ∩ A) ∪ . . . ∪ (Bk ∩ A).

Figure 2.2 The inter-
sections of A with events
B1, . . . , B5 of a partition in
the proof of Theorem 2.1.4.

A
B1

B5
B4

B3

B2

S
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Furthermore, since the k events on the right side of this equation are disjoint,

Pr(A)=
k∑

j=1

Pr(Bj ∩ A).

Finally, if Pr(Bj) > 0 for j = 1, . . . , k, then Pr(Bj ∩ A) = Pr(Bj) Pr(A|Bj) and it
follows that Eq. (2.1.4) holds.

Example
2.1.9

Selecting Bolts. In Example 2.1.8, let B1 be the event that the first box (the one with
60 long and 40 short bolts) is selected, let B2 be the event that the second box (the
one with 10 long and 20 short bolts) is selected, and let A be the event that a long
bolt is selected. Then

Pr(A)= Pr(B1) Pr(A|B1)+ Pr(B2) Pr(A|B2).

Since a box is selected at random, we know that Pr(B1) = Pr(B2) = 1/2. Fur-
thermore, the probability of selecting a long bolt from the first box is Pr(A|B1)=
60/100 = 3/5, and the probability of selecting a long bolt from the second box is
Pr(A|B2)= 10/30= 1/3. Hence,

Pr(A)= 1
2

. 3
5
+ 1

2
. 1

3
= 7

15
. �

Example
2.1.10

Achieving a High Score. Suppose that a person plays a game in which his score must be
one of the 50 numbers 1, 2, . . . , 50 and that each of these 50 numbers is equally likely
to be his score. The first time he plays the game, his score is X. He then continues to
play the game until he obtains another score Y such that Y ≥X. We will assume that,
conditional on previous plays, the 50 scores remain equally likely on all subsequent
plays. We shall determine the probability of the event A that Y = 50.

For each i = 1, . . . , 50, let Bi be the event that X = i. Conditional on Bi, the
value of Y is equally likely to be any one of the numbers i, i + 1, . . . , 50. Since each
of these (51− i) possible values for Y is equally likely, it follows that

Pr(A|Bi)= Pr(Y = 50|Bi)= 1
51− i

.

Furthermore, since the probability of each of the 50 values of X is 1/50, it follows that
Pr(Bi)= 1/50 for all i and

Pr(A)=
50∑
i=1

1
50

. 1
51− i

= 1
50

(
1+ 1

2
+ 1

3
+ . . .+ 1

50

)
= 0.0900. �

Note: Conditional Version of Law of Total Probability. The law of total probability
has an analog conditional on another event C, namely,

Pr(A|C)=
k∑

j=1

Pr(Bj |C) Pr(A|Bj ∩ C). (2.1.5)

The reader can prove this in Exercise 17.

Augmented Experiment In some experiments, it may not be clear from the initial
description of the experiment that a partition exists that will facilitate the calculation
of probabilities. However, there are many such experiments in which such a partition
exists if we imagine that the experiment has some additional structure. Consider the
following modification of Examples 2.1.8 and 2.1.9.
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62 Chapter 2 Conditional Probability

Example
2.1.11

Selecting Bolts. There is one box of bolts that contains some long and some short
bolts. A manager is unable to open the box at present, so she asks her employees
what is the composition of the box. One employee says that it contains 60 long bolts
and 40 short bolts. Another says that it contains 10 long bolts and 20 short bolts.
Unable to reconcile these opinions, the manager decides that each of the employees
is correct with probability 1/2. Let B1 be the event that the box contains 60 long and
40 short bolts, and let B2 be the event that the box contains 10 long and 20 short
bolts. The probability that the first bolt selected is long is now calculated precisely as
in Example 2.1.9. �

In Example 2.1.11, there is only one box of bolts, but we believe that it has one
of two possible compositions. We let the events B1 and B2 determine the possible
compositions. This type of situation is very common in experiments.

Example
2.1.12

A Clinical Trial. Consider a clinical trial such as the study of treatments for depression
in Example 2.1.4. As in many such trials, each patient has two possible outcomes,
in this case relapse and no relapse. We shall refer to relapse as “failure” and no
relapse as “success.” For now, we shall consider only patients in the imipramine
treatment group. If we knew the effectiveness of imipramine, that is, the proportion
p of successes among all patients who might receive the treatment, then we might
model the patients in our study as having probability p of success. Unfortunately, we
do not know p at the start of the trial. In analogy to the box of bolts with unknown
composition in Example 2.1.11, we can imagine that the collection of all available
patients (from which the 40 imipramine patients in this trial were selected) has two or
more possible compositions. We can imagine that the composition of the collection of
patients determines the proportion that will be success. For simplicity, in this example,
we imagine that there are 11 different possible compositions of the collection of
patients. In particular, we assume that the proportions of success for the 11 possible
compositions are 0, 1/10, . . . , 9/10, 1. (We shall be able to handle more realistic
models for p in Chapter 3.) For example, if we knew that our patients were drawn
from a collection with the proportion 3/10 of successes, we would be comfortable
saying that the patients in our sample each have success probability p = 3/10. The
value of p is an important source of uncertainty in this problem, and we shall partition
the sample space by the possible values of p. For j = 1, . . . , 11, let Bj be the event
that our sample was drawn from a collection with proportion (j − 1)/10 of successes.
We can also identify Bj as the event {p = (j − 1)/10}.

Now, let E1 be the event that the first patient in the imipramine group has a
success. We defined each event Bj so that Pr(E1|Bj)= (j − 1)/10. Supppose that,
prior to starting the trial, we believe that Pr(Bj)= 1/11 for each j . It follows that

Pr(E1)=
11∑

j=1

1
11

j − 1
10
= 55

110
= 1

2
, (2.1.6)

where the second equality uses the fact that
∑n

j=1 j = n(n+ 1)/2. �

The events B1, B2, . . . , B11 in Example 2.1.12 can be thought of in much the
same way as the two events B1 and B2 that determine the mixture of long and short
bolts in Example 2.1.11. There is only one box of bolts, but there is uncertainty about
its composition. Similarly in Example 2.1.12, there is only one group of patients,
but we believe that it has one of 11 possible compositions determined by the events
B1, B2, . . . , B11. To call these events, they must be subsets of the sample space for the
experiment in question. That will be the case in Example 2.1.12 if we imagine that
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2.1 The Definition of Conditional Probability 63

the experiment consists not only of observing the numbers of successes and failures
among the patients but also of potentially observing enough additional patients to
be able to compute p, possibly at some time very far in the future. Similarly, in
Example 2.1.11, the two events B1 and B2 are subsets of the sample space if we
imagine that the experiment consists not only of observing one sample bolt but also
of potentially observing the entire composition of the box.

Throughout the remainder of this text, we shall implicitly assume that experi-
ments are augmented to include outcomes that determine the values of quantities
such as p. We shall not require that we ever get to observe the complete outcome of
the experiment so as to tell us precisely what p is, but merely that there is an exper-
iment that includes all of the events of interest to us, including those that determine
quantities like p.

Definition
2.1.3

Augmented Experiment. If desired, any experiment can be augmented to include the
potential or hypothetical observation of as much additional information as we would
find useful to help us calculate any probabilities that we desire.

Definition 2.1.3 is worded somewhat vaguely because it is intended to cover a
wide variety of cases. Here is an explicit application to Example 2.1.12.

Example
2.1.13

A Clinical Trial. In Example 2.1.12, we could explicitly assume that there exists an
infinite sequence of patients who could be treated with imipramine even though
we will observe only finitely many of them. We could let the sample space consist
of infinite sequences of the two symbols S and F such as (S, S, F, S, F, F, F, . . .).
Here S in coordinate i means that the ith patient is a success, and F stands for
failure. So, the event E1 in Example 2.1.12 is the event that the first coordinate
is S. The example sequence above is then in the event E1. To accommodate our
interpretation of p as the proportion of successes, we can assume that, for every
such sequence, the proportion of S’s among the first n coordinates gets close to one
of the numbers 0, 1/10, . . . , 9/10, 1 as n increases. In this way, p is explicitly the limit
of the proportion of successes we would observe if we could find a way to observe
indefinitely. In Example 2.1.12, B2 is the event consisting of all the outcomes in which
the limit of the proportion of S’s equals 1/10, B3 is the set of outcomes in which
the limit is 2/10, etc. Also, we observe only the first 40 coordinates of the infinite
sequence, but we still behave as if p exists and could be determined if only we could
observe forever. �

In the remainder of the text, there will be many experiments that we assume
are augmented. In such cases, we will mention which quantities (such as p in Exam-
ple 2.1.13) would be determined by the augmented part of the experiment even if we
do not explicitly mention that the experiment is augmented.

The Game of Craps

We shall conclude this section by discussing a popular gambling game called craps.
One version of this game is played as follows: A player rolls two dice, and the sum
of the two numbers that appear is observed. If the sum on the first roll is 7 or 11,
the player wins the game immediately. If the sum on the first roll is 2, 3, or 12, the
player loses the game immediately. If the sum on the first roll is 4, 5, 6, 8, 9, or 10,
then the two dice are rolled again and again until the sum is either 7 or the original
value. If the original value is obtained a second time before 7 is obtained, then the
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64 Chapter 2 Conditional Probability

player wins. If the sum 7 is obtained before the original value is obtained a second
time, then the player loses.

We shall now compute the probability Pr(W), where W is the event that the
player will win. Let the sample space S consist of all possible sequences of sums from
the rolls of dice that might occur in a game. For example, some of the elements of S are
(4, 7), (11), (4, 3, 4), (12), (10, 8, 2, 12, 6, 7), etc. We see that (11) ∈W but (4, 7) ∈Wc,
etc.. We begin by noticing that whether or not an outcome is in W depends in a crucial
way on the first roll. For this reason, it makes sense to partition W according to the
sum on the first roll. Let Bi be the event that the first roll is i for i = 2, . . . , 12.

Theorem 2.1.4 tells us that Pr(W)=∑12
i=2 Pr(Bi) Pr(W |Bi). Since Pr(Bi) for each

i was computed in Example 1.6.5, we need to determine Pr(W |Bi) for each i. We
begin with i = 2. Because the player loses if the first roll is 2, we have Pr(W |B2)= 0.
Similarly, Pr(W |B3)= 0= Pr(W |B12). Also, Pr(W |B7)= 1 because the player wins if
the first roll is 7. Similarly, Pr(W |B11)= 1.

For each first roll i ∈ {4, 5, 6, 8, 9, 10}, Pr(W |Bi) is the probability that, in a
sequence of dice rolls, the sum i will be obtained before the sum 7 is obtained. As
described in Example 2.1.5, this probability is the same as the probability of obtaining
the sum i when the sum must be either i or 7. Hence,

Pr(W |Bi)= Pr(Bi)

Pr(Bi ∪ B7)
.

We compute the necessary values here:

Pr(W |B4)=
3

36
3

36 + 6
36

= 1
3
, P (W |B5)=

4
36

4
36 + 6

36

= 2
5
,

Pr(W |B6)=
5

36
5

36 + 6
36

= 5
11

, Pr(W |B8)=
5

36
5

36 + 6
36

= 5
11

,

Pr(W |B9)=
4
36

4
36 + 6

36

= 2
5
, Pr(W |B10)=

3
36

3
36 + 6

36

= 1
3
.

Finally, we compute the sum
∑12

i=2 Pr(Bi) Pr(W |Bi):

Pr(W)=
12∑
i=2

Pr(Bi) Pr(W |Bi)= 0+ 0+ 3
36

1
3
+ 4

36
2
5
+ 5

36
5
11
+ 6

36

+ 5
36

5
11
+ 4

36
2
5
+ 3

36
1
3
+ 2

36
+ 0= 2928

5940
= 0.493.

Thus, the probability of winning in the game of craps is slightly less than 1/2.

Summary

The revised probability of an event A after learning that event B (with Pr(B) > 0)
has occurred is the conditional probability of A given B, denoted by Pr(A|B) and
computed as Pr(A ∩ B)/ Pr(B). Often it is easy to assess a conditional probability,
such as Pr(A|B), directly. In such a case, we can use the multiplication rule for con-
ditional probabilities to compute Pr(A ∩ B)= Pr(B) Pr(A|B). All probability results
have versions conditional on an event B with Pr(B) > 0: Just change all probabili-
ties so that they are conditional on B in addition to anything else they were already
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2.1 The Definition of Conditional Probability 65

conditional on. For example, the multiplication rule for conditional probabilities be-
comes Pr(A1∩A2|B)= Pr(A1|B) Pr(A2|A1∩B). A partition is a collection of disjoint
events whose union is the whole sample space. To be most useful, a partition is cho-
sen so that an important source of uncertainty is reduced if we learn which one of
the partition events occurs. If the conditional probability of an event A is available
given each event in a partition, the law of total probability tells how to combine these
conditional probabilities to get Pr(A).

Exercises

1. If A⊂ B with Pr(B) > 0, what is the value of Pr(A|B)?

2. If A and B are disjoint events and Pr(B) > 0, what is
the value of Pr(A|B)?

3. If S is the sample space of an experiment and A is any
event in that space, what is the value of Pr(A|S)?

4. Each time a shopper purchases a tube of toothpaste,
he chooses either brand A or brand B. Suppose that for
each purchase after the first, the probability is 1/3 that he
will choose the same brand that he chose on his preceding
purchase and the probability is 2/3 that he will switch
brands. If he is equally likely to choose either brand A
or brand B on his first purchase, what is the probability
that both his first and second purchases will be brand A
and both his third and fourth purchases will be brand B?

5. A box contains r red balls and b blue balls. One ball
is selected at random and its color is observed. The ball
is then returned to the box and k additional balls of the
same color are also put into the box. A second ball is then
selected at random, its color is observed, and it is returned
to the box together with k additional balls of the same
color. Each time another ball is selected, the process is
repeated. If four balls are selected, what is the probability
that the first three balls will be red and the fourth ball will
be blue?

6. A box contains three cards. One card is red on both
sides, one card is green on both sides, and one card is red
on one side and green on the other. One card is selected
from the box at random, and the color on one side is
observed. If this side is green, what is the probability that
the other side of the card is also green?

7. Consider again the conditions of Exercise 2 of Sec. 1.10.
If a family selected at random from the city subscribes to
newspaper A, what is the probability that the family also
subscribes to newspaper B?

8. Consider again the conditions of Exercise 2 of Sec. 1.10.
If a family selected at random from the city subscribes to
at least one of the three newspapers A, B, and C, what is
the probability that the family subscribes to newspaper A?

9. Suppose that a box contains one blue card and four red
cards, which are labeled A, B, C, and D. Suppose also that

two of these five cards are selected at random, without
replacement.

a. If it is known that card A has been selected, what is
the probability that both cards are red?

b. If it is known that at least one red card has been
selected, what is the probability that both cards are
red?

10. Consider the following version of the game of craps:
The player rolls two dice. If the sum on the first roll is
7 or 11, the player wins the game immediately. If the
sum on the first roll is 2, 3, or 12, the player loses the
game immediately. However, if the sum on the first roll
is 4, 5, 6, 8, 9, or 10, then the two dice are rolled again and
again until the sum is either 7 or 11 or the original value. If
the original value is obtained a second time before either
7 or 11 is obtained, then the player wins. If either 7 or 11
is obtained before the original value is obtained a second
time, then the player loses. Determine the probability that
the player will win this game.

11. For any two events A and B with Pr(B) > 0, prove that
Pr(Ac|B)= 1− Pr(A|B).

12. For any three events A, B, and D, such that Pr(D) > 0,
prove that Pr(A ∪ B|D) = Pr(A|D) + Pr(B|D) − Pr(A ∩
B|D).

13. A box contains three coins with a head on each side,
four coins with a tail on each side, and two fair coins. If
one of these nine coins is selected at random and tossed
once, what is the probability that a head will be obtained?

14. A machine produces defective parts with three differ-
ent probabilities depending on its state of repair. If the
machine is in good working order, it produces defective
parts with probability 0.02. If it is wearing down, it pro-
duces defective parts with probability 0.1. If it needs main-
tenance, it produces defective parts with probability 0.3.
The probability that the machine is in good working order
is 0.8, the probability that it is wearing down is 0.1, and the
probability that it needs maintenance is 0.1. Compute the
probability that a randomly selected part will be defective.
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15. The percentages of voters classed as Liberals in three
different election districts are divided as follows: in the
first district, 21 percent; in the second district, 45 percent;
and in the third district, 75 percent. If a district is selected
at random and a voter is selected at random from that
district, what is the probability that she will be a Liberal?

16. Consider again the shopper described in Exercise 4.
On each purchase, the probability that he will choose the

same brand of toothpaste that he chose on his preced-
ing purchase is 1/3, and the probability that he will switch
brands is 2/3. Suppose that on his first purchase the proba-
bility that he will choose brand A is 1/4 and the probability
that he will choose brand B is 3/4. What is the probability
that his second purchase will be brand B?

17. Prove the conditional version of the law of total prob-
ability (2.1.5).

2.2 Independent Events
If learning that B has occurred does not change the probability of A, then we say
that A and B are independent. There are many cases in which events A and B

are not independent, but they would be independent if we learned that some other
event C had occurred. In this case, A and B are conditionally independent given C.

Example
2.2.1

Tossing Coins. Suppose that a fair coin is tossed twice. The experiment has four
outcomes, HH, HT, TH, and TT, that tell us how the coin landed on each of the
two tosses. We can assume that this sample space is simple so that each outcome has
probability 1/4. Suppose that we are interested in the second toss. In particular, we
want to calculate the probability of the event A= {H on second toss}. We see that A=
{HH,TH}, so that Pr(A)= 2/4= 1/2. If we learn that the first coin landed T, we might
wish to compute the conditional probability Pr(A|B) where B = {T on first toss}.
Using the definition of conditional probability, we easily compute

Pr(A|B)= Pr(A ∩ B)

Pr(B)
= 1/4

1/2
= 1

2
,

because A ∩ B = {T H } has probability 1/4. We see that Pr(A|B)= Pr(A); hence, we
don’t change the probability of A even after we learn that B has occurred. �

Definition of Independence

The conditional probability of the event A given that the event B has occurred is
the revised probability of A after we learn that B has occurred. It might be the case,
however, that no revision is necessary to the probability of A even after we learn that
B occurs. This is precisely what happened in Example 2.2.1. In this case, we say that
A and B are independent events. As another example, if we toss a coin and then roll
a die, we could let A be the event that the die shows 3 and let B be the event that the
coin lands with heads up. If the tossing of the coin is done in isolation of the rolling
of the die, we might be quite comfortable assigning Pr(A|B)= Pr(A)= 1/6. In this
case, we say that A and B are independent events.

In general, if Pr(B) > 0, the equation Pr(A|B)= Pr(A) can be rewritten as Pr(A∩
B)/ Pr(B)= Pr(A). If we multiply both sides of this last equation by Pr(B), we obtain
the equation Pr(A ∩ B)= Pr(A) Pr(B). In order to avoid the condition Pr(B) > 0, the
mathematical definition of the independence of two events is stated as follows:

Definition
2.2.1

Independent Events. Two events A and B are independent if

Pr(A ∩ B)= Pr(A) Pr(B).
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2.2 Independent Events 67

Suppose that Pr(A) > 0 and Pr(B) > 0. Then it follows easily from the definitions
of independence and conditional probability that A and B are independent if and only
if Pr(A|B)= Pr(A) and Pr(B|A)= Pr(B).

Independence of Two Events

If two events A and B are considered to be independent because the events are
physically unrelated, and if the probabilities Pr(A) and Pr(B) are known, then the
definition can be used to assign a value to Pr(A ∩ B).

Example
2.2.2

Machine Operation. Suppose that two machines 1 and 2 in a factory are operated in-
dependently of each other. Let A be the event that machine 1 will become inoperative
during a given 8-hour period, let B be the event that machine 2 will become inopera-
tive during the same period, and suppose that Pr(A)= 1/3 and Pr(B)= 1/4. We shall
determine the probability that at least one of the machines will become inoperative
during the given period.

The probability Pr(A ∩ B) that both machines will become inoperative during
the period is

Pr(A ∩ B)= Pr(A) Pr(B)=
(

1
3

) (
1
4

)
= 1

12
.

Therefore, the probability Pr(A ∪ B) that at least one of the machines will become
inoperative during the period is

Pr(A ∪ B)= Pr(A)+ Pr(B)− Pr(A ∩ B)

= 1
3
+ 1

4
− 1

12
= 1

2
. �

The next example shows that two events A and B, which are physically related,
can, nevertheless, satisfy the definition of independence.

Example
2.2.3

Rolling a Die. Suppose that a balanced die is rolled. Let A be the event that an even
number is obtained, and let B be the event that one of the numbers 1, 2, 3, or 4 is
obtained. We shall show that the events A and B are independent.

In this example, Pr(A)= 1/2 and Pr(B)= 2/3. Furthermore, since A ∩ B is the
event that either the number 2 or the number 4 is obtained, Pr(A ∩ B)= 1/3. Hence,
Pr(A ∩ B)= Pr(A) Pr(B). It follows that the events A and B are independent events,
even though the occurrence of each event depends on the same roll of a die. �

The independence of the events A and B in Example 2.2.3 can also be interpreted
as follows: Suppose that a person must bet on whether the number obtained on the
die will be even or odd, that is, on whether or not the event A will occur. Since three
of the possible outcomes of the roll are even and the other three are odd, the person
will typically have no preference between betting on an even number and betting on
an odd number.

Suppose also that after the die has been rolled, but before the person has learned
the outcome and before she has decided whether to bet on an even outcome or on an
odd outcome, she is informed that the actual outcome was one of the numbers 1, 2, 3,
or 4, i.e., that the event B has occurred. The person now knows that the outcome was
1, 2, 3, or 4. However, since two of these numbers are even and two are odd, the
person will typically still have no preference between betting on an even number
and betting on an odd number. In other words, the information that the event B has
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68 Chapter 2 Conditional Probability

occurred is of no help to the person who is trying to decide whether or not the event
A has occurred.

Independence of Complements In the foregoing discussion of independent events,
we stated that if A and B are independent, then the occurrence or nonoccurrence of
A should not be related to the occurrence or nonoccurrence of B. Hence, if A and
B satisfy the mathematical definition of independent events, then it should also be
true that A and Bc are independent events, that Ac and B are independent events,
and that Ac and Bc are independent events. One of these results is established in the
next theorem.

Theorem
2.2.1

If two events A and B are independent, then the events A and Bc are also indepen-
dent.

Proof Theorem 1.5.6 says that

Pr(A ∩ Bc)= Pr(A)− Pr(A ∩ B).

Furthermore, since A and B are independent events, Pr(A ∩ B) = Pr(A) Pr(B). It
now follows that

Pr(A ∩ Bc)= Pr(A)− Pr(A) Pr(B)= Pr(A)[1− Pr(B)]

= Pr(A) Pr(Bc).

Therefore, the events A and Bc are independent.

The proof of the analogous result for the events Ac and B is similar, and the proof
for the events Ac and Bc is required in Exercise 2 at the end of this section.

Independence of Several Events

The definition of independent events can be extended to any number of events,
A1, . . . , Ak. Intuitively, if learning that some of these events do or do not occur does
not change our probabilities for any events that depend only on the remaining events,
we would say that all k events are independent. The mathematical definition is the
following analog to Definition 2.2.1.

Definition
2.2.2

(Mutually) Independent Events. The k events A1, . . . , Ak are independent (or mutually
independent) if, for every subset Ai1

, . . . , Aij
of j of these events (j = 2, 3, . . . , k),

Pr(Ai1
∩ . . . ∩ Aij

)= Pr(Ai1
) . . . Pr(Aij

).

As an example, in order for three events A, B, and C to be independent, the following
four relations must be satisfied:

Pr(A ∩ B)= Pr(A) Pr(B),

Pr(A ∩ C)= Pr(A) Pr(C),

Pr(B ∩ C)= Pr(B) Pr(C),

(2.2.1)

and

Pr(A ∩ B ∩ C)= Pr(A) Pr(B) Pr(C). (2.2.2)

It is possible that Eq. (2.2.2) will be satisfied, but one or more of the three rela-
tions (2.2.1) will not be satisfied. On the other hand, as is shown in the next example,
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it is also possible that each of the three relations (2.2.1) will be satisfied but Eq. (2.2.2)
will not be satisfied.

Example
2.2.4

Pairwise Independence. Suppose that a fair coin is tossed twice so that the sample
space S = {HH, HT, TH, TT} is simple. Define the following three events:

A= {H on first toss} = {HH, HT},
B = {H on second toss} = {HH, TH}, and

C = {Both tosses the same} = {HH, TT}.
Then A ∩ B = A ∩ C = B ∩ C = A ∩ B ∩ C = {HH }. Hence,

Pr(A)= Pr(B)= Pr(C)= 1/2

and

Pr(A ∩ B)= Pr(A ∩ C)= Pr(B ∩ C)= Pr(A ∩ B ∩ C)= 1/4.

It follows that each of the three relations of Eq. (2.2.1) is satisfied but Eq. (2.2.2) is
not satisfied. These results can be summarized by saying that the events A, B, and C

are pairwise independent, but all three events are not independent. �

We shall now present some examples that will illustrate the power and scope of
the concept of independence in the solution of probability problems.

Example
2.2.5

Inspecting Items. Suppose that a machine produces a defective item with probability
p (0 < p < 1) and produces a nondefective item with probability 1− p. Suppose
further that six items produced by the machine are selected at random and inspected,
and that the results (defective or nondefective) for these six items are independent.
We shall determine the probability that exactly two of the six items are defective.

It can be assumed that the sample space S contains all possible arrangements
of six items, each one of which might be either defective or nondefective. For j =
1, . . . , 6, we shall let Dj denote the event that the j th item in the sample is defective
so that Dc

j is the event that this item is nondefective. Since the outcomes for the six
different items are independent, the probability of obtaining any particular sequence
of defective and nondefective items will simply be the product of the individual
probabilities for the items. For example,

Pr(Dc
1 ∩D2 ∩Dc

3 ∩Dc
4 ∩D5 ∩Dc

6)= Pr(Dc
1) Pr(D2) Pr(Dc

3) Pr(Dc
4) Pr(D5) Pr(Dc

6)

= (1− p)p(1− p)(1− p)p(1− p)= p2(1− p)4.

It can be seen that the probability of any other particular sequence in S containing
two defective items and four nondefective items will also be p2(1− p)4. Hence, the
probability that there will be exactly two defectives in the sample of six items can be
found by multiplying the probability p2(1− p)4 of any particular sequence containing
two defectives by the possible number of such sequences. Since there are

(6
2

)
distinct

arrangements of two defective items and four nondefective items, the probability of
obtaining exactly two defectives is

(6
2

)
p2(1− p)4. �

Example
2.2.6

Obtaining a Defective Item. For the conditions of Example 2.2.5, we shall now deter-
mine the probability that at least one of the six items in the sample will be defective.

Since the outcomes for the different items are independent, the probability that
all six items will be nondefective is (1− p)6. Therefore, the probability that at least
one item will be defective is 1− (1− p)6. �
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Example
2.2.7

Tossing a Coin Until a Head Appears. Suppose that a fair coin is tossed until a head
appears for the first time, and assume that the outcomes of the tosses are independent.
We shall determine the probability pn that exactly n tosses will be required.

The desired probability is equal to the probability of obtaining n − 1 tails in
succession and then obtaining a head on the next toss. Since the outcomes of the
tosses are independent, the probability of this particular sequence of n outcomes is
pn = (1/2)n.

The probability that a head will be obtained sooner or later (or, equivalently,
that tails will not be obtained forever) is

∞∑
n=1

pn = 1
2
+ 1

4
+ 1

8
+ . . .= 1.

Since the sum of the probabilities pn is 1, it follows that the probability of obtaining
an infinite sequence of tails without ever obtaining a head must be 0. �

Example
2.2.8

Inspecting Items One at a Time. Consider again a machine that produces a defective
item with probability p and produces a nondefective item with probability 1− p.
Suppose that items produced by the machine are selected at random and inspected
one at a time until exactly five defective items have been obtained. We shall deter-
mine the probability pn that exactly n items (n ≥ 5) must be selected to obtain the
five defectives.

The fifth defective item will be the nth item that is inspected if and only if there
are exactly four defectives among the first n − 1 items and then the nth item is
defective. By reasoning similar to that given in Example 2.2.5, it can be shown that
the probability of obtaining exactly four defectives and n− 5 nondefectives among
the first n− 1 items is

(
n−1

4

)
p4(1− p)n−5. The probability that the nth item will be

defective is p. Since the first event refers to outcomes for only the first n− 1 items
and the second event refers to the outcome for only the nth item, these two events
are independent. Therefore, the probability that both events will occur is equal to
the product of their probabilities. It follows that

pn =
(

n− 1
4

)
p5(1− p)n−5. �

Example
2.2.9

People v. Collins. Finkelstein and Levin (1990) describe a criminal case whose verdict
was overturned by the Supreme Court of California in part due to a probability cal-
culation involving both conditional probability and independence. The case, People
v. Collins, 68 Cal. 2d 319, 438 P.2d 33 (1968), involved a purse snatching in which wit-
nesses claimed to see a young woman with blond hair in a ponytail fleeing from the
scene in a yellow car driven by a black man with a beard. A couple meeting the de-
scription was arrested a few days after the crime, but no physical evidence was found.
A mathematician calculated the probability that a randomly selected couple would
possess the described characteristics as about 8.3× 10−8, or 1 in 12 million. Faced
with such overwhelming odds and no physical evidence, the jury decided that the
defendants must have been the only such couple and convicted them. The Supreme
Court thought that a more useful probability should have been calculated. Based
on the testimony of the witnesses, there was a couple that met the above descrip-
tion. Given that there was already one couple who met the description, what is the
conditional probability that there was also a second couple such as the defendants?

Let p be the probability that a randomly selected couple from a population of n

couples has certain characteristics. Let A be the event that at least one couple in the
population has the characteristics, and let B be the event that at least two couples
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have the characteristics. What we seek is Pr(B|A). Since B ⊂ A, it follows that

Pr(B|A)= Pr(B ∩ A)

Pr(A)
= Pr(B)

Pr(A)
.

We shall calculate Pr(B) and Pr(A) by breaking each event into more manageable
pieces. Suppose that we number the n couples in the population from 1 to n. Let Ai

be the event that couple number i has the characteristics in question for i = 1, . . . , n,
and let C be the event that exactly one couple has the characteristics. Then

A= (Ac
1 ∩ Ac

2
. . . ∩ Ac

n
)c,

C = (A1 ∩ Ac
2
. . . ∩ Ac

n
) ∪ (Ac

1 ∩ A2 ∩ Ac
3
. . . ∩ Ac

n
) ∪ . . . ∪ (Ac

1 ∩ . . . ∩ Ac
n−1 ∩ An),

B = A ∩ Cc.

Assuming that the n couples are mutually independent, Pr(Ac) = (1− p)n, and
Pr(A)= 1− (1− p)n. The n events whose union is C are disjoint and each one has
probability p(1− p)n−1, so Pr(C) = np(1− p)n−1. Since A = B ∪ C with B and C

disjoint, we have

Pr(B)= Pr(A)− Pr(C)= 1− (1− p)n − np(1− p)n−1.

So,

Pr(B|A)= 1− (1− p)n − np(1− p)n−1

1− (1− p)n
. (2.2.3)

The Supreme Court of California reasoned that, since the crime occurred in a
heavily populated area, n would be in the millions. For example, with p = 8.3× 10−8

and n= 8,000,000, the value of (2.2.3) is 0.2966. Such a probability suggests that there
is a reasonable chance that there was another couple meeting the same description
as the witnesses provided. Of course, the court did not know how large n was, but the
fact that (2.2.3) could easily be so large was grounds enough to rule that reasonable
doubt remained as to the guilt of the defendants. �

Independence and Conditional Probability Two events A and B with positive
probability are independent if and only if Pr(A|B)= Pr(A). Similar results hold for
larger collections of independent events. The following theorem, for example, is
straightforward to prove based on the definition of independence.

Theorem
2.2.2

Let A1, . . . , Ak be events such that Pr(A1 ∩ . . . ∩ Ak) > 0. Then A1, . . . , Ak are
independent if and only if, for every two disjoint subsets {i1, . . . , im} and {j1, . . . , j�}
of {1, . . . , k}, we have

Pr(Ai1
∩ . . . ∩ Aim

|Aj1
∩ . . . ∩ Aj�

)= Pr(Ai1
∩ . . . ∩ Aim

).

Theorem 2.2.2 says that k events are independent if and only if learning that
some of the events occur does not change the probability that any combination of
the other events occurs.

The Meaning of Independence We have given a mathematical definition of inde-
pendent events in Definition 2.2.1. We have also given some interpretations for what
it means for events to be independent. The most instructive interpretation is the one
based on conditional probability. If learning that B occurs does not change the prob-
ability of A, then A and B are independent. In simple examples such as tossing what
we believe to be a fair coin, we would generally not expect to change our minds
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about what is likely to happen on later flips after we observe earlier flips; hence, we
declare the events that concern different flips to be independent. However, consider
a situation similar to Example 2.2.5 in which items produced by a machine are in-
spected to see whether or not they are defective. In Example 2.2.5, we declared that
the different items were independent and that each item had probability p of being
defective. This might make sense if we were confident that we knew how well the
machine was performing. But if we were unsure of how the machine were perform-
ing, we could easily imagine changing our mind about the probability that the 10th
item is defective depending on how many of the first nine items are defective. To be
specific, suppose that we begin by thinking that the probability is 0.08 that an item
will be defective. If we observe one or zero defective items in the first nine, we might
not make much revision to the probability that the 10th item is defective. On the
other hand, if we observe eight or nine defectives in the first nine items, we might be
uncomfortable keeping the probability at 0.08 that the 10th item will be defective. In
summary, when deciding whether to model events as independent, try to answer the
following question: “If I were to learn that some of these events occurred, would I
change the probabilities of any of the others?” If we feel that we already know ev-
erything that we could learn from these events about how likely the others should be,
we can safely model them as independent. If, on the other hand, we feel that learning
some of these events could change our minds about how likely some of the others
are, then we should be more careful about determining the conditional probabilities
and not model the events as independent.

Mutually Exclusive Events and Mutually Independent Events Two similar-sound-
ing definitions have appeared earlier in this text. Definition 1.4.10 defines mutually
exclusive events, and Definition 2.2.2 defines mutually independent events. It is
almost never the case that the same set of events satisfies both definitions. The reason
is that if events are disjoint (mutually exclusive), then learning that one occurs means
that the others definitely did not occur. Hence, learning that one occurs would change
the probabilities for all the others to 0, unless the others already had probability 0.
Indeed, this suggests the only condition in which the two definitions would both apply
to the same collection of events. The proof of the following result is left to Exercise 24
in this section.

Theorem
2.2.3

Let n > 1 and let A1, . . . , An be events that are mutually exclusive. The events are
also mutually independent if and only if all the events except possibly one of them
has probability 0.

Conditionally Independent Events

Conditional probability and independence combine into one of the most versatile
models of data collection. The idea is that, in many circumstances, we are unwilling
to say that certain events are independent because we believe that learning some of
them will provide information about how likely the others are to occur. But if we
knew the frequency with which such events would occur, we might then be willing
to assume that they are independent. This model can be illustrated using one of the
examples from earlier in this section.

Example
2.2.10

Inspecting Items. Consider again the situation in Example 2.2.5. This time, however,
suppose that we believe that we would change our minds about the probabilities
of later items being defective were we to learn that certain numbers of early items
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were defective. Suppose that we think of the number p from Example 2.2.5 as the
proportion of defective items that we would expect to see if we were to inspect a very
large sample of items. If we knew this proportion p, and if we were to sample only a
few, say, six or 10 items now, we might feel confident maintaining that the probability
of a later item being defective remains p even after we inspect some of the earlier
items. On the other hand, if we are not sure what would be the proportion of defective
items in a large sample, we might not feel confident keeping the probability the same
as we continue to inspect.

To be precise, suppose that we treat the proportion p of defective items as
unknown and that we are dealing with an augmented experiment as described in
Definition 2.1.3. For simplicity, suppose that p can take one of two values, either 0.01
or 0.4, the first corresponding to normal operation and the second corresponding to
a need for maintenance. Let B1 be the event that p = 0.01, and let B2 be the event
that p = 0.4. If we knew that B1 had occurred, then we would proceed under the
assumption that the events D1, D2, . . . were independent with Pr(Di|B1)= 0.01 for
all i. For example, we could do the same calculations as in Examples 2.2.5 and 2.2.8
with p = 0.01. Let A be the event that we observe exactly two defectives in a random
sample of six items. Then Pr(A|B1) =

(6
2

)
0.0120.994 = 1.44 × 10−3. Similarly, if we

knew that B2 had occurred, then we would assume that D1, D2, . . . were independent
with Pr(Di|B2)= 0.4. In this case, Pr(A|B2)=

(6
2

)
0.420.64 = 0.311. �

In Example 2.2.10, there is no reason that p must be required to assume at most
two different values. We could easily allow p to take a third value or a fourth value,
etc. Indeed, in Chapter 3 we shall learn how to handle the case in which every number
between 0 and 1 is a possible value of p. The point of the simple example is to illustrate
the concept of assuming that events are independent conditional on another event,
such as B1 or B2 in the example.

The formal concept illustrated in Example 2.2.10 is the following:

Definition
2.2.3

Conditional Independence. We say that events A1, . . . , Ak are conditionally inde-
pendent given B if, for every subcollection Ai1

, . . . , Aij
of j of these events (j =

2, 3, . . . , k),

Pr
(
Ai1
∩ . . . ∩ Aij

∣∣∣B)= Pr(Ai1
|B) . . . Pr(Aij

|B).

Definition 2.2.3 is identical to Definition 2.2.2 for independent events with the mod-
ification that all probabilities in the definition are now conditional on B. As a note,
even if we assume that events A1, . . . , Ak are conditionally independent given B, it
is not necessary that they be conditionally independent given Bc. In Example 2.2.10,
the events D1, D2, . . . were conditionally independent given both B1 and B2 = Bc

1,
which is the typical situation. Exercise 16 in Sec. 2.3 is an example in which events are
conditionally independent given one event B but are not conditionally independent
given the complement Bc.

Recall that two events A1 and A2 (with Pr(A1) > 0) are independent if and only
if Pr(A2|A1)= Pr(A2). A similar result holds for conditionally independent events.

Theorem
2.2.4

Suppose that A1, A2, and B are events such that Pr(A1 ∩ B) > 0. Then A1 and A2 are
conditionally independent given B if and only if Pr(A2|A1 ∩ B)= Pr(A2|B).

This is another example of the claim we made earlier that every result we can prove
has an analog conditional on an event B. The reader can prove this theorem in
Exercise 22.
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The Collector’s Problem

Suppose that n balls are thrown in a random manner into r boxes (r ≤ n). We shall
assume that the n throws are independent and that each of the r boxes is equally
likely to receive any given ball. The problem is to determine the probability p that
every box will receive at least one ball. This problem can be reformulated in terms of
a collector’s problem as follows: Suppose that each package of bubble gum contains
the picture of a baseball player, that the pictures of r different players are used, that
the picture of each player is equally likely to be placed in any given package of gum,
and that pictures are placed in different packages independently of each other. The
problem now is to determine the probability p that a person who buys n packages of
gum (n≥ r) will obtain a complete set of r different pictures.

For i = 1, . . . , r , let Ai denote the event that the picture of player i is missing
from all n packages. Then

⋃r
i=1 Ai is the event that the picture of at least one player

is missing. We shall find Pr(
⋃r

i=1 Ai) by applying Eq. (1.10.6).
Since the picture of each of the r players is equally likely to be placed in any

particular package, the probability that the picture of player i will not be obtained in
any particular package is (r − 1)/r . Since the packages are filled independently, the
probability that the picture of player i will not be obtained in any of the n packages
is [(r − 1)/r]n. Hence,

Pr(Ai)=
(

r − 1
r

)n

for i = 1, . . . , r.

Now consider any two players i and j . The probability that neither the picture of
player i nor the picture of player j will be obtained in any particular package is
(r − 2)/r . Therefore, the probability that neither picture will be obtained in any of
the n packages is [(r − 2)/r]n. Thus,

Pr(Ai ∩ Aj)=
(

r − 2
r

)n

.

If we next consider any three players i, j , and k, we find that

Pr(Ai ∩ Aj ∩ Ak)=
(

r − 3
r

)n

.

By continuing in this way, we finally arrive at the probability Pr(A1 ∩ A2 ∩ . . . ∩ Ar)

that the pictures of all r players are missing from the n packages. Of course, this
probability is 0. Therefore, by Eq. (1.10.6) of Sec. 1.10,

Pr

(
r⋃

i=1

Ai

)
= r

(
r − 1

r

)n

−
(

r

2

) (
r − 2

r

)n

+ . . .+ (−1)r
(

r

r − 1

) (
1
r

)n

=
r−1∑
j=1

(−1)j+1
(

r

j

) (
1− j

r

)n

.

Since the probability p of obtaining a complete set of r different pictures is equal to
1− Pr(

⋃r
i=1 Ai), it follows from the foregoing derivation that p can be written in the

form

p =
r−1∑
j=0

(−1)j
(

r

j

) (
1− j

r

)n

.
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Summary

A collection of events is independent if and only if learning that some of them occur
does not change the probabilities that any combination of the rest of them occurs.
Equivalently, a collection of events is independent if and only if the probability of the
intersection of every subcollection is the product of the individual probabilities. The
concept of independence has a version conditional on another event. A collection
of events is independent conditional on B if and only if the conditional probability
of the intersection of every subcollection given B is the product of the individual
conditional probabilities given B. Equivalently, a collection of events is conditionally
independent given B if and only if learning that some of them (and B) occur does
not change the conditional probabilities given B that any combination of the rest of
them occur. The full power of conditional independence will become more apparent
after we introduce Bayes’ theorem in the next section.

Exercises

1. If A and B are independent events and Pr(B) < 1, what
is the value of Pr(Ac|Bc)?

2. Assuming that A and B are independent events, prove
that the events Ac and Bc are also independent.

3. Suppose that A is an event such that Pr(A)= 0 and that
B is any other event. Prove that A and B are independent
events.

4. Suppose that a person rolls two balanced dice three
times in succession. Determine the probability that on
each of the three rolls, the sum of the two numbers that
appear will be 7.

5. Suppose that the probability that the control system
used in a spaceship will malfunction on a given flight is
0.001. Suppose further that a duplicate, but completely in-
dependent, control system is also installed in the spaceship
to take control in case the first system malfunctions. De-
termine the probability that the spaceship will be under
the control of either the original system or the duplicate
system on a given flight.

6. Suppose that 10,000 tickets are sold in one lottery and
5000 tickets are sold in another lottery. If a person owns
100 tickets in each lottery, what is the probability that she
will win at least one first prize?

7. Two students A and B are both registered for a certain
course. Assume that student A attends class 80 percent of
the time, student B attends class 60 percent of the time,
and the absences of the two students are independent.

a. What is the probability that at least one of the two
students will be in class on a given day?

b. If at least one of the two students is in class on a given
day, what is the probability that A is in class that day?

8. If three balanced dice are rolled, what is the probability
that all three numbers will be the same?

9. Consider an experiment in which a fair coin is tossed
until a head is obtained for the first time. If this experiment
is performed three times, what is the probability that ex-
actly the same number of tosses will be required for each
of the three performances?

10. The probability that any child in a certain family will
have blue eyes is 1/4, and this feature is inherited indepen-
dently by different children in the family. If there are five
children in the family and it is known that at least one of
these children has blue eyes, what is the probability that
at least three of the children have blue eyes?

11. Consider the family with five children described in
Exercise 10.

a. If it is known that the youngest child in the family has
blue eyes, what is the probability that at least three
of the children have blue eyes?

b. Explain why the answer in part (a) is different from
the answer in Exercise 10.

12. Suppose that A, B, and C are three independent
events such that Pr(A) = 1/4, Pr(B) = 1/3, and Pr(C) =
1/2. (a) Determine the probability that none of these three
events will occur. (b) Determine the probability that ex-
actly one of these three events will occur.

13. Suppose that the probability that any particle emitted
by a radioactive material will penetrate a certain shield
is 0.01. If 10 particles are emitted, what is the probability
that exactly one of the particles will penetrate the shield?
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14. Consider again the conditions of Exercise 13. If 10
particles are emitted, what is the probability that at least
one of the particles will penetrate the shield?

15. Consider again the conditions of Exercise 13. How
many particles must be emitted in order for the probability
to be at least 0.8 that at least one particle will penetrate
the shield?

16. In the World Series of baseball, two teams A and B

play a sequence of games against each other, and the first
team that wins a total of four games becomes the winner
of the World Series. If the probability that team A will
win any particular game against team B is 1/3, what is the
probability that team A will win the World Series?

17. Two boys A and B throw a ball at a target. Suppose
that the probability that boy A will hit the target on any
throw is 1/3 and the probability that boy B will hit the
target on any throw is 1/4. Suppose also that boy A throws
first and the two boys take turns throwing. Determine the
probability that the target will be hit for the first time on
the third throw of boy A.

18. For the conditions of Exercise 17, determine the prob-
ability that boy A will hit the target before boy B does.

19. A box contains 20 red balls, 30 white balls, and 50
blue balls. Suppose that 10 balls are selected at random
one at a time, with replacement; that is, each selected ball
is replaced in the box before the next selection is made.
Determine the probability that at least one color will be
missing from the 10 selected balls.

20. Suppose that A1, . . . , Ak form a sequence of k inde-
pendent events. Let B1, . . . , Bk be another sequence of k

events such that for each value of j (j = 1, . . . , k), either
Bj = Aj or Bj = Ac

j
. Prove that B1, . . . , Bk are also inde-

pendent events. Hint: Use an induction argument based
on the number of events Bj for which Bj = Ac

j
.

21. Prove Theorem 2.2.2 on page 71. Hint: The “only if ”
direction is direct from the definition of independence on
page 68. For the “if ” direction, use induction on the value
of j in the definition of independence. Let m= j − 1 and
let �= 1 with j1= ij .

22. Prove Theorem 2.2.4 on page 73.

23. A programmer is about to attempt to compile a se-
ries of 11 similar programs. Let Ai be the event that the
ith program compiles successfully for i = 1, . . . , 11. When
the programming task is easy, the programmer expects
that 80 percent of programs should compile. When the
programming task is difficult, she expects that only 40 per-
cent of the programs will compile. Let B be the event that
the programming task was easy. The programmer believes
that the events A1, . . . , A11 are conditionally independent
given B and given Bc.

a. Compute the probability that exactly 8 out of 11
programs will compile given B.

b. Compute the probability that exactly 8 out of 11
programs will compile given Bc.

24. Prove Theorem 2.2.3 on page 72.

2.3 Bayes’ Theorem
Suppose that we are interested in which of several disjoint events B1, . . . , Bk will
occur and that we will get to observe some other event A. If Pr(A|Bi) is available
for each i, then Bayes’ theorem is a useful formula for computing the conditional
probabilities of the Bi events given A.

We begin with a typical example.

Example
2.3.1

Test for a Disease. Suppose that you are walking down the street and notice that the
Department of Public Health is giving a free medical test for a certain disease. The
test is 90 percent reliable in the following sense: If a person has the disease, there is a
probability of 0.9 that the test will give a positive response; whereas, if a person does
not have the disease, there is a probability of only 0.1 that the test will give a positive
response.

Data indicate that your chances of having the disease are only 1 in 10,000.
However, since the test costs you nothing, and is fast and harmless, you decide to
stop and take the test. A few days later you learn that you had a positive response to
the test. Now, what is the probability that you have the disease? �
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The last question in Example 2.3.1 is a prototype of the question for which Bayes’
theorem was designed. We have at least two disjoint events (“you have the disease”
and “you do not have the disease”) about which we are uncertain, and we learn a
piece of information (the result of the test) that tells us something about the uncertain
events. Then we need to know how to revise the probabilities of the events in the light
of the information we learned.

We now present the general structure in which Bayes’ theorem operates before
returning to the example.

Statement, Proof, and Examples of Bayes’ Theorem

Example
2.3.2

Selecting Bolts. Consider again the situation in Example 2.1.8, in which a bolt is
selected at random from one of two boxes. Suppose that we cannot tell without
making a further effort from which of the two boxes the one bolt is being selected. For
example, the boxes may be identical in appearance or somebody else may actually
select the box, but we only get to see the bolt. Prior to selecting the bolt, it was
equally likely that each of the two boxes would be selected. However, if we learn that
event A has occurred, that is, a long bolt was selected, we can compute the conditional
probabilities of the two boxes given A. To remind the reader, B1 is the event that the
box is selected containing 60 long bolts and 40 short bolts, while B2 is the event that
the box is selected containing 10 long bolts and 20 short bolts. In Example 2.1.9, we
computed Pr(A)= 7/15, Pr(A|B1)= 3/5, Pr(A|B2)= 1/3, and Pr(B1)= Pr(B2)= 1/2.
So, for example,

Pr(B1|A)= Pr(A ∩ B1)

Pr(A)
= Pr(B1) Pr(A|B1)

Pr(A)
=

1
2 × 3

5
7
15

= 9
14

.

Since the first box has a higher proportion of long bolts than the second box, it seems
reasonable that the probability of B1 should rise after we learn that a long bolt was
selected. It must be that Pr(B2|A)= 5/14 since one or the other box had to be selected.

�

In Example 2.3.2, we started with uncertainty about which of two boxes would
be chosen and then we observed a long bolt drawn from the chosen box. Because the
two boxes have different chances of having a long bolt drawn, the observation of a
long bolt changed the probabilities of each of the two boxes having been chosen. The
precise calculation of how the probabilities change is the purpose of Bayes’ theorem.

Theorem
2.3.1

Bayes’ theorem. Let the events B1, . . . , Bk form a partition of the space S such that
Pr(Bj) > 0 for j = 1, . . . , k, and let A be an event such that Pr(A) > 0. Then, for
i = 1, . . . , k,

Pr(Bi|A)= Pr(Bi) Pr(A|Bi)∑k
j=1 Pr(Bj) Pr(A|Bj)

. (2.3.1)

Proof By the definition of conditional probability,

Pr(Bi|A)= Pr(Bi ∩ A)

Pr(A)
.

The numerator on the right side of Eq. (2.3.1) is equal to Pr(Bi ∩A) by Theorem 2.1.1.
The denominator is equal to Pr(A) according to Theorem 2.1.4.
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Example
2.3.3

Test for a Disease. Let us return to the example with which we began this section.
We have just received word that we have tested positive for a disease. The test was
90 percent reliable in the sense that we described in Example 2.3.1. We want to know
the probability that we have the disease after we learn that the result of the test is
positive. Some readers may feel that this probability should be about 0.9. However,
this feeling completely ignores the small probability of 0.0001 that you had the disease
before taking the test. We shall let B1 denote the event that you have the disease, and
let B2 denote the event that you do not have the disease. The events B1 and B2 form
a partition. Also, let A denote the event that the response to the test is positive.
The event A is information we will learn that tells us something about the partition
elements. Then, by Bayes’ theorem,

Pr(B1|A)= Pr(A|B1) Pr(B1)

Pr(A|B1) Pr(B1)+ Pr(A|B2) Pr(B2)

= (0.9)(0.0001)
(0.9)(0.0001)+ (0.1)(0.9999)

= 0.00090.

Thus, the conditional probability that you have the disease given the test result
is approximately only 1 in 1000. Of course, this conditional probability is approxi-
mately 9 times as great as the probability was before you were tested, but even the
conditional probability is quite small.

Another way to explain this result is as follows: Only one person in every 10,000
actually has the disease, but the test gives a positive response for approximately one
person in every 10. Hence, the number of positive responses is approximately 1000
times the number of persons who actually have the disease. In other words, out of
every 1000 persons for whom the test gives a positive response, only one person
actually has the disease. This example illustrates not only the use of Bayes’ theorem
but also the importance of taking into account all of the information available in a
problem. �

Example
2.3.4

Identifying the Source of a Defective Item. Three different machines M1, M2, and M3
were used for producing a large batch of similar manufactured items. Suppose that
20 percent of the items were produced by machine M1, 30 percent by machine M2,
and 50 percent by machine M3. Suppose further that 1 percent of the items produced
by machine M1 are defective, that 2 percent of the items produced by machine M2
are defective, and that 3 percent of the items produced by machine M3 are defective.
Finally, suppose that one item is selected at random from the entire batch and it is
found to be defective. We shall determine the probability that this item was produced
by machine M2.

Let Bi be the event that the selected item was produced by machine Mi (i =
1, 2, 3), and let A be the event that the selected item is defective. We must evaluate
the conditional probability Pr(B2|A).

The probability Pr(Bi) that an item selected at random from the entire batch was
produced by machine Mi is as follows, for i = 1, 2, 3:

Pr(B1)= 0.2, Pr(B2)= 0.3, Pr(B3)= 0.5.

Furthermore, the probability Pr(A|Bi) that an item produced by machine Mi will be
defective is

Pr(A|B1)= 0.01, Pr(A|B2)= 0.02, Pr(A|B3)= 0.03.

It now follows from Bayes’ theorem that
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Pr(B2|A)= Pr(B2) Pr(A|B2)∑3
j=1 Pr(Bj) Pr(A|Bj)

= (0.3)(0.02)

(0.2)(0.01)+ (0.3)(0.02)+ (0.5)(0.03)
= 0.26. �

Example
2.3.5

Identifying Genotypes. Consider a gene that has two alleles (see Example 1.6.4 on
page 23) A and a. Suppose that the gene exhibits itself through a trait (such as
hair color or blood type) with two versions. We call A dominant and a recessive
if individuals with genotypes AA and Aa have the same version of the trait and
the individuals with genotype aa have the other version. The two versions of the
trait are called phenotypes. We shall call the phenotype exhibited by individuals
with genotypes AA and Aa the dominant trait, and the other trait will be called the
recessive trait. In population genetics studies, it is common to have information on the
phenotypes of individuals, but it is rather difficult to determine genotypes. However,
some information about genotypes can be obtained by observing phenotypes of
parents and children.

Assume that the allele A is dominant, that individuals mate independently of
genotype, and that the genotypes AA, Aa, and aa occur in the population with prob-
abilities 1/4, 1/2, and 1/4, respectively. We are going to observe an individual whose
parents are not available, and we shall observe the phenotype of this individual. Let
E be the event that the observed individual has the dominant trait. We would like
to revise our opinion of the possible genotypes of the parents. There are six possible
genotype combinations, B1, . . . , B6, for the parents prior to making any observations,
and these are listed in Table 2.2.

The probabilities of the Bi were computed using the assumption that the parents
mated independently of genotype. For example, B3 occurs if the father is AA and the
mother is aa (probability 1/16) or if the father is aa and the mother is AA (probability
1/16). The values of Pr(E|Bi) were computed assuming that the two available alleles
are passed from parents to children with probability 1/2 each and independently for
the two parents. For example, given B4, the event E occurs if and only if the child
does not get two a’s. The probability of getting a from both parents given B4 is 1/4,
so Pr(E|B4)= 3/4.

Now we shall compute Pr(B1|E) and Pr(B5|E). We leave the other calculations
to the reader. The denominator of Bayes’ theorem is the same for both calculations,
namely,

Pr(E)=
5∑

i=1

Pr(Bi) Pr(E|Bi)

= 1
16
× 1+ 1

4
× 1+ 1

8
× 1+ 1

4
× 3

4
+ 1

4
× 1

2
+ 1

16
× 0= 3

4
.

Table 2.2 Parental genotypes for Example 2.3.5

(AA, AA) (AA, Aa) (AA, aa) (Aa, Aa) (Aa, aa) (aa, aa)

Name of event B1 B2 B3 B4 B5 B6

Probability of Bi 1/16 1/4 1/8 1/4 1/4 1/16

Pr(E|Bi) 1 1 1 3/4 1/2 0
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