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Fundamental
Principles of

Counting

From Chapter 1 of Discrete and Combinatorial Mathematics: An Applied Approach,
Fifth Edition, Ralph P. Grimaldi. Copyright © 2004 by Pearson Education, Inc.
Published by Pearson Addison-Wesley. All rights reserved.

Enumeration, or counting, may strike one as an obvious process that a student learns
when first studying arithmetic. But then, it seems, very little attention is paid to further

development in counting as the student turns to “more difficult” areas in mathematics, such
as algebra, geometry, trigonometry, and calculus. Consequently, this first chapter should
provide some warning about the seriousness and difficulty of “mere” counting.

Enumeration does not end with arithmetic. It also has applications in such areas as coding
theory, probability and statistics, and in the analysis of algorithms.

As we enter this fascinating field of mathematics, we shall come upon many problems that
are very simple to state but somewhat “sticky” to solve. Thus, be sure to learn and understand
the basic formulas — but do not rely on them too heavily. For without an analysis of each
problem, a mere knowledge of formulas is next to useless. Instead, welcome the challenge
to solve unusual problems or those that are different from problems you have encountered
in the past. Seek solutions based on your own scrutiny, regardless of whether it reproduces
what the author provides. There are often several ways to solve a given problem.

1
The Rules of Sum and Product

Our study of discrete and combinatorial mathematics begins with two basic principles of
counting: the rules of sum and product. The statements and initial applications of these
rules appear quite simple. In analyzing more complicated problems, one is often able to
break down such problems into parts that can be solved using these basic principles. We
want to develop the ability to “decompose” such problems and piece together our partial
solutions in order to arrive at the final answer. A good way to do this is to analyze and solve
many diverse enumeration problems, taking note of the principles being used. This is the
approach we shall follow here.

Our first principle of counting can be stated as follows:

The Rule of Sum: If a first task can be performed inm ways, while a second task can
be performed in n ways, and the two tasks cannot be performed simultaneously, then
performing either task can be accomplished in any one of m+ n ways.

1
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Note that when we say that a particular occurrence, such as a first task, can come about inm
ways, these m ways are assumed to be distinct, unless a statement is made to the contrary.
This will be true throughout the entire text.

EXAMPLE 1 A college library has 40 textbooks on sociology and 50 textbooks dealing with anthropology.
By the rule of sum, a student at this college can select among 40+ 50= 90 textbooks in
order to learn more about one or the other of these two subjects.

EXAMPLE 2 The rule can be extended beyond two tasks as long as no pair of tasks can occur simultane-
ously. For instance, a computer science instructor who has, say, seven different introductory
books each on C++, Java, and Perl can recommend any one of these 21 books to a student
who is interested in learning a first programming language.

EXAMPLE 3 The computer science instructor of Example 2 has two colleagues. One of these col-
leagues has three textbooks on the analysis of algorithms, and the other has five such
textbooks. If n denotes the maximum number of different books on this topic that this in-
structor can borrow from them, then 5≤ n≤ 8, for here both colleagues may own copies
of the same textbook(s).

The following example introduces our second principle of counting.

EXAMPLE 4 In trying to reach a decision on plant expansion, an administrator assigns 12 of her employees
to two committees. Committee A consists of five members and is to investigate possible
favorable results from such an expansion. The other seven employees, committee B, will
scrutinize possible unfavorable repercussions. Should the administrator decide to speak to
just one committee member before making her decision, then by the rule of sum there are
12 employees she can call upon for input. However, to be a bit more unbiased, she decides
to speak with a member of committee A on Monday, and then with a member of committee
B on Tuesday, before reaching a decision. Using the following principle, we find that she
can select two such employees to speak with in 5× 7= 35 ways.

The Rule of Product: If a procedure can be broken down into first and second stages,
and if there arem possible outcomes for the first stage and if, for each of these outcomes,
there aren possible outcomes for the second stage, then the total procedure can be carried
out, in the designated order, in mn ways.

EXAMPLE 5 The drama club of Central University is holding tryouts for a spring play. With six men and
eight women auditioning for the leading male and female roles, by the rule of product the
director can cast his leading couple in 6× 8= 48 ways.

EXAMPLE 6 Here various extensions of the rule are illustrated by considering the manufacture of license
plates consisting of two letters followed by four digits.

2
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a) If no letter or digit can be repeated, there are 26× 25× 10× 9× 8× 7=
3,276,000 different possible plates.

b) With repetitions of letters and digits allowed, 26× 26× 10× 10× 10× 10=
6,760,000 different license plates are possible.

c) If repetitions are allowed, as in part (b), how many of the plates have only vowels (A,
E, I, O, U) and even digits? (0 is an even integer.)

EXAMPLE 7 In order to store data, a computer’s main memory contains a large collection of circuits, each
of which is capable of storing a bit — that is, one of the binary digits 0 or 1. These storage
circuits are arranged in units called (memory) cells. To identify the cells in a computer’s
main memory, each is assigned a unique name called its address. For some computers,
such as embedded microcontrollers (as found in the ignition system for an automobile), an
address is represented by an ordered list of eight bits, collectively referred to as a byte. Using
the rule of product, there are 2× 2× 2× 2× 2× 2× 2× 2= 28 = 256 such bytes. So we
have 256 addresses that may be used for cells where certain information may be stored.

A kitchen appliance, such as a microwave oven, incorporates an embedded microcon-
troller. These “small computers” (such as the PICmicro microcontroller) contain thousands
of memory cells and use two-byte addresses to identify these cells in their main memory.
Such addresses are made up of two consecutive bytes, or 16 consecutive bits. Thus there
are 256× 256= 28 × 28 = 216 = 65,536 available addresses that could be used to iden-
tify cells in the main memory. Other computers use addressing systems of four bytes. This
32-bit architecture is presently used in the Pentium† processor, where there are as many
as 28 × 28 × 28 × 28 = 232 = 4,294,967,296 addresses for use in identifying the cells in
main memory. When a programmer deals with the UltraSPARC‡ or Itanium§ processors, he
or she considers memory cells with eight-byte addresses. Each of these addresses comprises
8× 8= 64 bits, and there are 264 = 18,446,744,073,709,551,616 possible addresses for
this architecture. (Of course, not all of these possibilities are actually used.)

EXAMPLE 8 At times it is necessary to combine several different counting principles in the solution of
one problem. Here we find that the rules of both sum and product are needed to attain the
answer.

At the AWL corporation Mrs. Foster operates the Quick Snack Coffee Shop. The menu
at her shop is limited: six kinds of muffins, eight kinds of sandwiches, and five beverages
(hot coffee, hot tea, iced tea, cola, and orange juice). Ms. Dodd, an editor at AWL, sends
her assistant Carl to the shop to get her lunch — either a muffin and a hot beverage or a
sandwich and a cold beverage.

By the rule of product, there are 6× 2= 12 ways in which Carl can purchase a muffin and
hot beverage. A second application of this rule shows that there are 8× 3= 24 possibilities
for a sandwich and cold beverage. So by the rule of sum, there are 12+ 24= 36 ways in
which Carl can purchase Ms. Dodd’s lunch.

†Pentium (R) is a registered trademark of the Intel Corporation.
‡The UltraSPARC processor is manufactured by Sun (R) Microsystems, Inc.
§Itanium (TM) is a trademark of the Intel Corporation.
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2
Permutations

Continuing to examine applications of the rule of product, we turn now to counting linear
arrangements of objects. These arrangements are often called permutations when the objects
are distinct.We shall develop some systematic methods for dealing with linear arrangements,
starting with a typical example.

EXAMPLE 9 In a class of 10 students, five are to be chosen and seated in a row for a picture. How many
such linear arrangements are possible?

The key word here is arrangement, which designates the importance of order. If A, B,
C, . . . , I, J denote the 10 students, then BCEFI, CEFIB, and ABCFG are three such different
arrangements, even though the first two involve the same five students.

To answer this question, we consider the positions and possible numbers of students we
can choose from in order to fill each position. The filling of a position is a stage of our
procedure.

10 × 9 × 8 × 7 × 6

1st 2nd 3rd 4th 5th
position position position position position

Each of the 10 students can occupy the 1st position in the row. Because repetitions are
not possible here, we can select only one of the nine remaining students to fill the 2nd
position. Continuing in this way, we find only six students to select from in order to fill the
5th and final position. This yields a total of 30,240 possible arrangements of five students
selected from the class of 10.

Exactly the same answer is obtained if the positions are filled from right to left —
namely, 6× 7× 8× 9× 10. If the 3rd position is filled first, the 1st position second, the
4th position third, the 5th position fourth, and the 2nd position fifth, then the answer is
9× 6× 10× 8× 7, still the same value, 30,240.

As in Example 9, the product of certain consecutive positive integers often comes into
play in enumeration problems. Consequently, the following notation proves to be quite
useful when we are dealing with such counting problems. It will frequently allow us to
express our answers in a more convenient form.

Definition 1 For an integer n≥ 0, n factorial (denoted n!) is defined by

0! = 1,

n! = (n)(n− 1)(n− 2) · · · (3)(2)(1), for n≥ 1.

One finds that 1! = 1, 2! = 2, 3! = 6, 4! = 24, and 5! = 120. In addition, for each n≥ 0,
(n+ 1)! = (n+ 1)(n!).

Before we proceed any further, let us try to get a somewhat better appreciation for how
fast n! grows. We can calculate that 10! = 3,628,800, and it just so happens that this is
exactly the number of seconds in six weeks. Consequently, 11! exceeds the number of
seconds in one year, 12! exceeds the number in 12 years, and 13! surpasses the number of
seconds in a century.

4
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If we make use of the factorial notation, the answer in Example 9 can be expressed in
the following more compact form:

10× 9× 8× 7× 6= 10× 9× 8× 7× 6× 5× 4× 3× 2× 1

5× 4× 3× 2× 1
= 10!

5! .

Definition 2 Given a collection of n distinct objects, any (linear) arrangement of these objects is called
a permutation of the collection.

Starting with the letters a, b, c, there are six ways to arrange, or permute, all of the letters:
abc, acb, bac, bca, cab, cba. If we are interested in arranging only two of the letters at a
time, there are six such size-2 permutations: ab, ba, ac, ca, bc, cb.

If there are n distinct objects and r is an integer, with 1≤ r ≤ n, then by the rule of
product, the number of permutations of size r for the n objects is

P(n, r)= n × (n− 1)× (n− 2)× · · · × (n− r + 1)

1st 2nd 3rd r th
position position position position

= (n)(n− 1)(n− 2) · · · (n− r + 1)× (n− r)(n− r − 1) · · · (3)(2)(1)
(n− r)(n− r − 1) · · · (3)(2)(1)

= n!
(n− r)! .

For r = 0, P(n, 0)= 1= n!/(n− 0)!, so P(n, r)= n!/(n− r)! holds for all 0 ≤ r ≤ n.
A special case of this result is Example 9, where n= 10, r = 5, and P(10, 5)= 30,240.
When permuting all of the n objects in the collection, we have r = n and find thatP(n, n)=
n!/0! = n!.

Note, for example, that if n≥ 2, then P(n, 2)= n!/(n− 2)! = n(n− 1). When n > 3
one finds that P(n, n− 3)= n!/[n− (n− 3)]! = n!/3! = (n)(n− 1)(n− 2) · · · (5)(4).

The number of permutations of size r , where 0 ≤ r ≤ n, from a collection of n objects, is
P(n, r)= n!/(n− r)!. (Remember that P(n, r) counts (linear) arrangements in which the
objects cannot be repeated.) However, if repetitions are allowed, then by the rule of product
there are nr possible arrangements, with r ≥ 0.

EXAMPLE 10 The number of permutations of the letters in the word COMPUTER is 8!. If only five of the
letters are used, the number of permutations (of size 5) is P(8, 5)= 8!/(8− 5)! = 8!/3! =
6720. If repetitions of letters are allowed, the number of possible 12-letter sequences is
812 .= 6.872× 1010.†

EXAMPLE 11 Unlike Example 10, the number of (linear) arrangements of the four letters in BALL is 12,
not 4! (= 24). The reason is that we do not have four distinct letters to arrange. To get the
12 arrangements, we can list them as in Table 1(a).

†The symbol “
.=” is read “is approximately equal to.”
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Table 1

A B L L A B L1 L2 A B L2 L1

A L B L A L1 B L2 A L2 B L1

A L L B A L1 L2 B A L2 L1 B
B A L L B A L1 L2 B A L2 L1

B L A L B L1 A L2 B L2 A L1

B L L A B L1 L2 A B L2 L1 A
L A B L L1 A B L2 L2 A B L1

L A L B L1 A L2 B L2 A L1 B
L B A L L1 B A L2 L2 B A L1

L B L A L1 B L2 A L2 B L1 A
L L A B L1 L2 A B L2 L1 A B
L L B A L1 L2 B A L2 L1 B A

(a) (b)

If the two L’s are distinguished as L1, L2, then we can use our previous ideas on per-
mutations of distinct objects; with the four distinct symbols B, A, L1, L2, we have 4! = 24
permutations. These are listed in Table 1(b). Table 1 reveals that for each arrangement in
which the L’s are indistinguishable there corresponds a pair of permutations with distinct
L’s. Consequently,

2× (Number of arrangements of the letters B, A, L, L)

= (Number of permutations of the symbols B, A, L1, L2),

and the answer to the original problem of finding all the arrangements of the four letters in
BALL is 4!/2= 12.

EXAMPLE 12 Using the idea developed in Example 11, we now consider the arrangements of all nine
letters in DATABASES.

There are 3! = 6 arrangements with the A’s distinguished for each arrangement in
which the A’s are not distinguished. For example, DA1TA2BA3SES, DA1TA3BA2SES,
DA2TA1BA3SES, DA2TA3BA1SES, DA3TA1BA2SES, and DA3TA2BA1SES all correspond
to DATABASES, when we remove the subscripts on the A’s. In addition, to the arrange-
ment DA1TA2BA3SES there corresponds the pair of permutations DA1TA2BA3S1ES2 and
DA1TA2BA3S2ES1, when the S’s are distinguished. Consequently,

(2!)(3!)(Number of arrangements of the letters in DATABASES)

= (Number of permutations of the symbols D, A1, T, A2, B, A3, S1, E, S2),

so the number of arrangements of the nine letters in DATABASES is 9!/(2! 3!)= 30,240.

Before stating a general principle for arrangements with repeated symbols, note that in our
prior two examples we solved a new type of problem by relating it to previous enumeration
principles. This practice is common in mathematics in general, and often occurs in the
derivations of discrete and combinatorial formulas.

6
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If there aren objects withn1 indistinguishable objects of a first type,n2 indistinguishable
objects of a second type, . . . , and nr indistinguishable objects of an rth type, where

n1 + n2 + · · · + nr = n, then there are
n!

n1! n2! · · · nr ! (linear) arrangements of the given

n objects.

EXAMPLE 13 The MASSASAUGA is a brown and white venomous snake indigenous to North America.
Arranging all of the letters in MASSASAUGA, we find that there are

10!
4! 3! 1! 1! 1! = 25,200

possible arrangements. Among these are

7!
3! 1! 1! 1! 1! = 840

in which all four A’s are together. To get this last result, we considered all arrangements of
the seven symbols AAAA (one symbol), S, S, S, M, U, G.

EXAMPLE 14 Determine the number of (staircase) paths in the xy-plane from (2, 1) to (7, 4), where each
such path is made up of individual steps going one unit to the right (R) or one unit upward
(U). The blue lines in Fig. 1 show two of these paths.

x

y

4

3

2

1

1 2 3 4 5 6 7

R,U,R,R,U,R,R,U

x

y

4

3

2

1

1 2 3 4 5 6 7

U,R,R,R,U,U,R,R(a) (b)

Figure 1

Beneath each path in Fig. 1 we have listed the individual steps. For example, in part (a)
the list R, U, R, R, U, R, R, U indicates that starting at the point (2, 1), we first move one
unit to the right [to (3, 1)], then one unit upward [to (3, 2)], followed by two units to the
right [to (5, 2)], and so on, until we reach the point (7, 4). The path consists of five R’s for
moves to the right and three U’s for moves upward.

The path in part (b) of the figure is also made up of five R’s and three U’s. In general,
the overall trip from (2, 1) to (7, 4) requires 7− 2= 5 horizontal moves to the right and
4− 1= 3 vertical moves upward. Consequently, each path corresponds to a list of five
R’s and three U’s, and the solution for the number of paths emerges as the number of
arrangements of the five R’s and three U’s, which is 8!/(5! 3!)= 56.

7
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EXAMPLE 15 We now do something a bit more abstract and prove that if n and k are positive integers with
n= 2k, then n!/2k is an integer. Because our argument relies on counting, it is an example
of a combinatorial proof.

Consider the n symbols x1, x1, x2, x2, . . . , xk, xk . The number of ways in which we can
arrange all of these n= 2k symbols is an integer that equals

n!
2! 2! · · · 2!
︸ ︷︷ ︸

k factors of 2!

= n!
2k
.

Finally, we will apply what has been developed so far to a situation in which the arrange-
ments are no longer linear.

EXAMPLE 16 If six people, designated as A, B, . . . , F, are seated about a round table, how many different
circular arrangements are possible, if arrangements are considered the same when one can
be obtained from the other by rotation? [In Fig. 2, arrangements (a) and (b) are considered
identical, whereas (b), (c), and (d) are three distinct arrangements.]

C

F

E

B

D

A

(b)

A

D

C

F

B

E

(a)

D

E

F

B

A

C

(d)

A

B

E

F

D

C

(c)

Figure 2

We shall try to relate this problem to previous ones we have already encountered. Con-
sider Figs. 2(a) and (b). Starting at the top of the circle and moving clockwise, we list
the distinct linear arrangements ABEFCD and CDABEF, which correspond to the same
circular arrangement. In addition to these two, four other linear arrangements — BEFCDA,
DABEFC, EFCDAB, and FCDABE — are found to correspond to the same circular ar-
rangement as in (a) or (b). So inasmuch as each circular arrangement corresponds to six
linear arrangements, we have 6 × (Number of circular arrangements of A, B, . . . , F) =
(Number of linear arrangements of A, B, . . . , F) = 6!.

Consequently, there are 6!/6= 5! = 120 arrangements ofA, B, . . . , F around the circular
table.

EXAMPLE 17 Suppose now that the six people of Example 16 are three married couples and that A, B,
and C are the females. We want to arrange the six people around the table so that the sexes
alternate. (Once again, arrangements are considered identical if one can be obtained from
the other by rotation.)

Before we solve this problem, let us solve Example 16 by an alternative method,
which will assist us in solving our present problem. If we place A at the table as shown in
Fig. 3(a), five locations (clockwise from A) remain to be filled. Using B, C, . . . , F to fill

8
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A

5

4

3

1

2

(a)

A

M3

M2

M1

F2

(b)

F3

Figure 3

these five positions is the problem of permuting B, C, . . . , F in a linear manner, and this
can be done in 5! = 120 ways.

To solve the new problem of alternating the sexes, consider the method shown in
Fig. 3(b). A (a female) is placed as before. The next position, clockwise from A, is marked
M1 (Male 1) and can be filled in three ways. Continuing clockwise from A, position F2
(Female 2) can be filled in two ways. Proceeding in this manner, by the rule of product,
there are 3× 2× 2× 1× 1= 12 ways in which these six people can be arranged with no
two men or women seated next to each other.

EXERCISES 1 AND 2

1. During a local campaign, eight Republican and five Demo-
cratic candidates are nominated for president of the school
board.

a) If the president is to be one of these candidates, how
many possibilities are there for the eventual winner?

b) How many possibilities exist for a pair of candidates
(one from each party) to oppose each other for the eventual
election?

c) Which counting principle is used in part (a)? in
part (b)?

2. Answer part (c) of Example 6.

3. Buick automobiles come in four models, 12 colors, three
engine sizes, and two transmission types. (a) How many distinct
Buicks can be manufactured? (b) If one of the available colors
is blue, how many different blue Buicks can be manufactured?

4. The board of directors of a pharmaceutical corporation has
10 members. An upcoming stockholders’ meeting is scheduled
to approve a new slate of company officers (chosen from the 10
board members).

a) How many different slates consisting of a president, vice
president, secretary, and treasurer can the board present to
the stockholders for their approval?

b) Three members of the board of directors are physicians.
How many slates from part (a) have (i) a physician nomi-
nated for the presidency? (ii) exactly one physician appear-

ing on the slate? (iii) at least one physician appearing on
the slate?

5. While on a Saturday shopping spree Jennifer and Tiffany
witnessed two men driving away from the front of a jewelry
shop, just before a burglar alarm started to sound. Although ev-
erything happened rather quickly, when the two young ladies
were questioned they were able to give the police the following
information about the license plate (which consisted of two let-
ters followed by four digits) on the get-away car. Tiffany was
sure that the second letter on the plate was either an O or a Q and
the last digit was either a 3 or an 8. Jennifer told the investigator
that the first letter on the plate was either a C or a G and that the
first digit was definitely a 7. How many different license plates
will the police have to check out?

6. To raise money for a new municipal pool, the chamber of
commerce in a certain city sponsors a race. Each participant pays
a $5 entrance fee and has a chance to win one of the different-
sized trophies that are to be awarded to the first eight runners
who finish.

a) If 30 people enter the race, in how many ways will it be
possible to award the trophies?

b) If Roberta and Candice are two participants in the race,
in how many ways can the trophies be awarded with these
two runners among the top three?

7. A certain “Burger Joint” advertises that a customer can have
his or her hamburger with or without any or all of the fol-
lowing: catsup, mustard, mayonnaise, lettuce, tomato, onion,
pickle, cheese, or mushrooms. How many different kinds of
hamburger orders are possible?

9
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8. Matthew works as a computer operator at a small univer-
sity. One evening he finds that 12 computer programs have been
submitted earlier that day for batch processing. In how many
ways can Matthew order the processing of these programs if
(a) there are no restrictions? (b) he considers four of the pro-
grams higher in priority than the other eight and wants to process
those four first? (c) he first separates the programs into four of
top priority, five of lesser priority, and three of least priority,
and he wishes to process the 12 programs in such a way that the
top-priority programs are processed first and the three programs
of least priority are processed last?

9. Patter’s Pastry Parlor offers eight different kinds of pastry
and six different kinds of muffins. In addition to bakery items
one can purchase small, medium, or large containers of the fol-
lowing beverages: coffee (black, with cream, with sugar, or with
cream and sugar), tea (plain, with cream, with sugar, with cream
and sugar, with lemon, or with lemon and sugar), hot cocoa, and
orange juice. When Carol comes to Patter’s, in how many ways
can she order

a) one bakery item and one medium-sized beverage for
herself?

b) one bakery item and one container of coffee for herself
and one muffin and one container of tea for her boss, Ms.
Didio?

c) one piece of pastry and one container of tea for herself,
one muffin and a container of orange juice for Ms. Didio,
and one bakery item and one container of coffee for each
of her two assistants, Mr. Talbot and Mrs. Gillis?

10. Pamela has 15 different books. In how many ways can she
place her books on two shelves so that there is at least one book
on each shelf? (Consider the books in each arrangement to be
stacked one next to the other, with the first book on each shelf
at the left of the shelf.)

11. Three small towns, designated by A, B, and C, are intercon-
nected by a system of two-way roads, as shown in Fig. 4.

R8

R1

R2

R3

R5

R6

R7

R4

R9

A

C

B

Figure 4

a) In how many ways can Linda travel from town A to
town C?

b) How many different round trips can Linda travel from
town A to town C and back to town A?

c) How many of the round trips in part (b) are such that
the return trip (from town C to town A) is at least partially
different from the route Linda takes from town A to town
C? (For example, if Linda travels from town A to town C
along roads R1 and R6, then on her return she might take
roads R6 and R3, or roads R7 and R2, or road R9, among
other possibilities, but she does not travel on roads R6

and R1.)

12. List all the permutations for the letters a, c, t.

13. a) How many permutations are there for the eight letters
a, c, f, g, i, t, w, x?

b) Consider the permutations in part (a). How many start
with the letter t? How many start with the letter t and end
with the letter c?

14. Evaluate each of the following.

a) P(7, 2) b) P(8, 4) c) P(10, 7) d) P(12, 3)

15. In how many ways can the symbols a, b, c, d, e, e, e, e, e be
arranged so that no e is adjacent to another e?

16. An alphabet of 40 symbols is used for transmitting messages
in a communication system. How many distinct messages (lists
of symbols) of 25 symbols can the transmitter generate if sym-
bols can be repeated in the message? How many if 10 of the
40 symbols can appear only as the first and/or last symbols of
the message, the other 30 symbols can appear anywhere, and
repetitions of all symbols are allowed?

17. In the Internet each network interface of a computer is as-
signed one, or more, Internet addresses. The nature of these
Internet addresses is dependent on network size. For the In-
ternet Standard regarding reserved network numbers (STD 2),
each address is a 32-bit string which falls into one of the fol-
lowing three classes: (1) A class A address, used for the largest
networks, begins with a 0 which is then followed by a seven-bit
network number, and then a 24-bit local address. However, one
is restricted from using the network numbers of all 0’s or all
1’s and the local addresses of all 0’s or all 1’s. (2) The class
B address is meant for an intermediate-sized network. This ad-
dress starts with the two-bit string 10, which is followed by a
14-bit network number and then a 16-bit local address. But the
local addresses of all 0’s or all 1’s are not permitted. (3) Class C
addresses are used for the smallest networks. These addresses
consist of the three-bit string 110, followed by a 21-bit network
number, and then an eight-bit local address. Once again the local
addresses of all 0’s or all 1’s are excluded. How many different
addresses of each class are available on the Internet, for this
Internet Standard?

18. Morgan is considering the purchase of a low-end computer
system. After some careful investigating, she finds that there are
seven basic systems (each consisting of a monitor, CPU, key-
board, and mouse) that meet her requirements. Furthermore, she

10
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also plans to buy one of four modems, one of three CD ROM
drives, and one of six printers. (Here each peripheral device of
a given type, such as the modem, is compatible with all seven
basic systems.) In how many ways can Morgan configure her
low-end computer system?

19. A computer science professor has seven different program-
ming books on a bookshelf. Three of the books deal with C++,
the other four with Java. In how many ways can the professor
arrange these books on the shelf (a) if there are no restrictions?
(b) if the languages should alternate? (c) if all the C++ books
must be next to each other? (d) if all the C++ books must be
next to each other and all the Java books must be next to each
other?

20. Over the Internet, data are transmitted in structured blocks
of bits called datagrams.

a) In how many ways can the letters in DATAGRAM be
arranged?

b) For the arrangements of part (a), how many have all
three A’s together?

21. a) How many arrangements are there of all the letters in
SOCIOLOGICAL?

b) In how many of the arrangements in part (a) are A and
G adjacent?

c) In how many of the arrangements in part (a) are all the
vowels adjacent?

22. How many positive integers n can we form using the digits
3, 4, 4, 5, 5, 6, 7 if we want n to exceed 5,000,000?

23. Twelve clay targets (identical in shape) are arranged in four
hanging columns, as shown in Fig. 5. There are four red tar-
gets in the first column, three white ones in the second column,
two green targets in the third column, and three blue ones in
the fourth column. To join her college drill team, Deborah must
break all 12 of these targets (using her pistol and only 12 bul-
lets) and in so doing must always break the existing target at
the bottom of a column. Under these conditions, in how many
different orders can Deborah shoot down (and break) the 12
targets?

WR G B

WR G B

WR B

R

Figure 5

24. Show that for all integers n, r ≥ 0, if n+ 1> r , then

P(n+ 1, r)=
(

n+ 1

n+ 1− r
)

P(n, r).

25. Find the value(s) of n in each of the following:
(a) P(n, 2)= 90, (b) P(n, 3)= 3P(n, 2), and
(c) 2P(n, 2)+ 50= P(2n, 2).

26. How many different paths in the xy-plane are there from
(0, 0) to (7, 7) if a path proceeds one step at a time by go-
ing either one space to the right (R) or one space upward (U)?
How many such paths are there from (2, 7) to (9, 14)? Can any
general statement be made that incorporates these two results?

27. a) How many distinct paths are there from (−1, 2, 0) to
(1, 3, 7) in Euclidean three-space if each move is one of
the following types?

(H): (x, y, z)→ (x + 1, y, z);
(V): (x, y, z)→ (x, y + 1, z);
(A): (x, y, z)→ (x, y, z+ 1)

b) How many such paths are there from (1, 0, 5) to
(8, 1, 7)?

c) Generalize the results in parts (a) and (b).

28. a) Determine the value of the integer variable counter af-
ter execution of the following program segment. (Here i, j ,
and k are integer variables.)

counter := 0
for i := 1 to 12 do

counter := counter + 1
for j := 5 to 10 do

counter := counter + 2
for k := 15 downto 8 do

counter := counter + 3

b) Which counting principle is at play in part (a)?

29. Consider the following program segment where i, j , and k
are integer variables.

for i := 1 to 12 do
for j := 5 to 10 do

for k := 15 downto 8 do
print (i - j)*k

a) How many times is the print statement executed?

b) Which counting principle is used in part (a)?

30. A sequence of letters of the form abcba, where the expres-
sion is unchanged upon reversing order, is an example of a
palindrome (of five letters). (a) If a letter may appear more than
twice, how many palindromes of five letters are there? of six
letters? (b) Repeat part (a) under the condition that no letter
appears more than twice.

11
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F A

H

D C

G

E B

(b)

H C

B

F E

A

G D

(a)

E H

G

C B

F

D A

(c)

Figure 6

31. Determine the number of six-digit integers (no leading ze-
ros) in which (a) no digit may be repeated; (b) digits may be
repeated. Answer parts (a) and (b) with the extra condition that
the six-digit integer is (i) even; (ii) divisible by 5; (iii) divisible
by 4.

32. a) Provide a combinatorial argument to show that if n and k
are positive integers with n= 3k, then n!/(3!)k is an integer.

b) Generalize the result of part (a).

33. a) In how many possible ways could a student answer a
10-question true-false test?

b) In how many ways can the student answer the test in
part (a) if it is possible to leave a question unanswered in
order to avoid an extra penalty for a wrong answer?

34. How many distinct four-digit integers can one make from
the digits 1, 3, 3, 7, 7, and 8?

35. a) In how many ways can seven people be arranged about
a circular table?

b) If two of the people insist on sitting next to each other,
how many arrangements are possible?

36. a) In how many ways can eight people, denoted A,
B, . . . , H be seated about the square table shown in Fig. 6,
where Figs. 6(a) and 6(b) are considered the same but are
distinct from Fig. 6(c)?

b) If two of the eight people, say A and B, do not get along
well, how many different seatings are possible with A and
B not sitting next to each other?

37. Sixteen people are to be seated at two circular tables, one
of which seats 10 while the other seats six. How many different
seating arrangements are possible?

38. A committee of 15 — nine women and six men — is to be
seated at a circular table (with 15 seats). In how many ways can
the seats be assigned so that no two men are seated next to each
other?

39. Write a computer program (or develop an algorithm)
to determine whether there is a three-digit integer
abc (= 100a + 10b + c) where abc = a! + b! + c!.

3
Combinations: The Binomial Theorem

The standard deck of playing cards consists of 52 cards comprising four suits: clubs, di-
amonds, hearts, and spades. Each suit has 13 cards: ace, 2, 3, . . . , 9, 10, jack, queen,
king. If we are asked to draw three cards from a standard deck, in succession and without
replacement, then by the rule of product there are

52× 51× 50= 52!
49! = P(52, 3)

possibilities, one of which is AH (ace of hearts), 9C (nine of clubs), KD (king of dia-
monds). If instead we simply select three cards at one time from the deck so that the order
of selection of the cards is no longer important, then the six permutations AH–9C–KD,
AH–KD–9C, 9C–AH–KD, 9C–KD–AH, KD–9C–AH, and KD–AH–9C all correspond to
just one (unordered) selection. Consequently, each selection, or combination, of three cards,

12
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with no reference to order, corresponds to 3! permutations of three cards. In equation form
this translates into

(3!)× (Number of selections of size 3 from a deck of 52)

= Number of permutations of size 3 for the 52 cards

= P(52, 3)= 52!
49! .

Consequently, three cards can be drawn, without replacement, from a standard deck in
52!/(3! 49!)= 22,100 ways.

If we start with n distinct objects, each selection, or combination, of r of these objects,
with no reference to order, corresponds to r! permutations of size r from the n objects.
Thus the number of combinations of size r from a collection of size n is

C(n, r)= P(n, r)
r! = n!

r!(n− r)! , 0 ≤ r ≤ n.

In addition to C(n, r) the symbol
(

n
r

)

is also frequently used. Both C(n, r) and
(

n
r

)

are
sometimes read “n choose r .” Note that for all n≥ 0, C(n, 0)= C(n, n)= 1. Further, for
all n≥ 1, C(n, 1)= C(n, n− 1)= n. When 0 ≤ n < r , then C(n, r)= (nr

)= 0.

A word to the wise! When dealing with any counting problem, we should ask ourselves
about the importance of order in the problem. When order is relevant, we think in terms
of permutations and arrangements and the rule of product. When order is not relevant,
combinations could play a key role in solving the problem.

EXAMPLE 18 A hostess is having a dinner party for some members of her charity committee. Because
of the size of her home, she can invite only 11 of the 20 committee members. Order is not
important, so she can invite “the lucky 11” in C(20, 11)= (20

11

)= 20!/(11! 9!)= 167,960
ways. However, once the 11 arrive, how she arranges them around her rectangular dining
table is an arrangement problem. Unfortunately, no part of the theory of combinations and
permutations can help our hostess deal with “the offended nine” who were not invited.

EXAMPLE 19 Lynn and Patti decide to buy a PowerBall ticket. To win the grand prize for PowerBall
one must match five numbers selected from 1 to 49 inclusive and then must also match
the powerball, an integer from 1 to 42 inclusive. Lynn selects the five numbers (between
1 and 49 inclusive). This she can do in

(

49
5

)

ways (since matching does not involve order).
Meanwhile Patti selects the powerball — here there are

(

42
1

)

possibilities. Consequently, by
the rule of product, Lynn and Patti can select the six numbers for their PowerBall ticket in
(

49
5

)(

42
1

)= 80,089,128 ways.

EXAMPLE 20 a) A student taking a history examination is directed to answer any seven of 10 essay
questions. There is no concern about order here, so the student can answer the examina-
tion in

(

10

7

)

= 10!
7! 3! =

10× 9× 8

3× 2× 1
= 120 ways.

13
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b) If the student must answer three questions from the first five and four questions from
the last five, three questions can be selected from the first five in

(

5
3

)= 10 ways, and
the other four questions can be selected in

(

5
4

)= 5 ways. Hence, by the rule of product,
the student can complete the examination in

(

5
3

)(

5
4

)= 10× 5= 50 ways.

c) Finally, should the directions on this examination indicate that the student must answer
seven of the 10 questions where at least three are selected from the first five, then there
are three cases to consider:

i) The student answers three of the first five questions and four of the last five: By
the rule of product this can happen in

(

5
3

)(

5
4

)= 10× 5= 50 ways, as in part (b).
ii) Four of the first five questions and three of the last five questions are selected by

the student: This can come about in
(

5
4

)(

5
3

)= 5× 10= 50 ways — again by the
rule of product.

iii) The student decides to answer all five of the first five questions and two of the
last five: The rule of product tells us that this last case can occur in

(

5
5

)(

5
2

)=
1× 10= 10 ways.

Combining the results for cases (i), (ii), and (iii), by the rule of sum we find that the
student can make

(

5
3

)(

5
4

)+ (5
4

)(

5
3

)+ (5
5

)(

5
2

)= 50+ 50+ 10= 110 selections of seven (out
of 10) questions where each selection includes at least three of the first five questions.

EXAMPLE 21 a) At Rydell High School, the gym teacher must select nine girls from the junior and
senior classes for a volleyball team. If there are 28 juniors and 25 seniors, she can
make the selection in

(

53
9

)= 4,431,613,550 ways.

b) If two juniors and one senior are the best spikers and must be on the team, then the
rest of the team can be chosen in

(

50
6

)= 15,890,700 ways.

c) For a certain tournament the team must comprise four juniors and five seniors. The
teacher can select the four juniors in

(

28
4

)

ways. For each of these selections she has
(

25
5

)

ways to choose the five seniors. Consequently, by the rule of product, she can
select her team in

(

28
4

)(

25
5

)= 1,087,836,750 ways for this particular tournament.

Some problems can be treated from the viewpoint of either arrangements or combina-
tions, depending on how one analyzes the situation. The following example demonstrates
this.

EXAMPLE 22 The gym teacher of Example 21 must make up four volleyball teams of nine girls each from
the 36 freshman girls in her P.E. class. In how many ways can she select these four teams?
Call the teams A, B, C, and D.

a) To form team A, she can select any nine girls from the 36 enrolled in
(

36
9

)

ways. For
team B the selection process yields

(

27
9

)

possibilities. This leaves
(

18
9

)

and
(

9
9

)

possible
ways to select teams C and D, respectively. So by the rule of product, the four teams
can be chosen in

(

36

9

)(

27

9

)(

18

9

)(

9

9

)

=
(

36!
9! 27!

) (

27!
9! 18!

) (

18!
9! 9!

) (

9!
9! 0!

)

= 36!
9! 9! 9! 9!

.= 2.145× 1019 ways.

14
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b) For an alternative solution, consider the 36 students lined up as follows:

1st 2nd 3rd 35th 36th· · ·
student student student student student

To select the four teams, we must distribute nine A’s, nine B’s, nine C’s, and nine D’s in
the 36 spaces. The number of ways in which this can be done is the number of arrangements
of 36 letters comprising nine each of A, B, C, and D. This is now the familiar problem of
arrangements of nondistinct objects, and the answer is

36!
9! 9! 9! 9! , as in part (a).

Our next example points out how some problems require the concepts of both arrange-
ments and combinations for their solutions.

EXAMPLE 23 The number of arrangements of the letters in TALLAHASSEE is

11!
3! 2! 2! 2! 1! 1! = 831,600.

How many of these arrangements have no adjacent A’s?
When we disregard the A’s, there are

8!
2! 2! 2! 1! 1! = 5040

ways to arrange the remaining letters. One of these 5040 ways is shown in the following
figure, where the arrows indicate nine possible locations for the three A’s.

E E S T L L S H

Three of these locations can be selected in
(

9
3

)= 84 ways, and because this is also possible
for all the other 5039 arrangements of E, E, S, T, L, L, S, H, by the rule of product there
are 5040× 84= 423,360 arrangements of the letters in TALLAHASSEE with no consecu-
tive A’s.

Before proceeding we need to introduce a concise way of writing the sum of a list of
n+ 1 terms like am, am+1, am+2, . . . , am+n, where m and n are integers and n≥ 0. This
notation is called the Sigma notation because it involves the capital Greek letter �; we use
it to represent a summation by writing

am + am+1 + am+2 + · · · + am+n =
m+n
∑

i=m
ai.

Here, the letter i is called the index of the summation, and this index accounts for all
integers starting with the lower limit m and continuing on up to (and including) the upper
limit m+ n.

We may use this notation as follows.

1)
7
∑

i=3

ai = a3 + a4 + a5 + a6 + a7 =
7
∑

j=3

aj , for there is nothing special about the

letter i.

15
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2)
4
∑

i=1

i2 = 12 + 22 + 32 + 42 = 30=
4
∑

k=0

k2, because 02 = 0.

3)
100
∑

i=11

i3 = 113 + 123 + 133 + · · · + 1003 =
101
∑

j=12

(j − 1)3 =
99
∑

k=10

(k + 1)3.

4)
10
∑

i=7

2i = 2(7)+ 2(8)+ 2(9)+ 2(10)= 68= 2(34)= 2(7+ 8+ 9+ 10)= 2
10
∑

i=7

i.

5)
3
∑

i=3

ai = a3 =
4
∑

i=4

ai−1 =
2
∑

i=2

ai+1.

6)
5
∑

i=1

a = a + a + a + a + a = 5a.

Furthermore, using this summation notation, we see that one can express the answer to
part (c) of Example 20 as

(

5

3

)(

5

4

)

+
(

5

4

)(

5

3

)

+
(

5

5

)(

5

2

)

=
5
∑

i=3

(

5

i

)(

5

7− i
)

=
4
∑

j=2

(

5

7− j
)(

5

j

)

.

We shall find use for this new notation in the following example and in many other places
throughout the remainder of this text.

EXAMPLE 24 In the studies of algebraic coding theory and the theory of computer languages, we consider
certain arrangements, called strings, made up from a prescribed alphabet of symbols. If the
prescribed alphabet consists of the symbols 0, 1, and 2, for example, then 01, 11, 21, 12,
and 20 are five of the nine strings of length 2. Among the 27 strings of length 3 are 000,
012, 202, and 110.

In general, if n is any positive integer, then by the rule of product there are 3n strings of
lengthn for the alphabet 0, 1, and 2. If x = x1x2x3 · · · xn is one of these strings, we define the
weight of x, denoted wt(x), by wt(x)= x1 + x2 + x3 + · · · + xn. For example, wt(12)= 3
and wt(22)= 4 for the case where n= 2; wt(101)= 2, wt(210)= 3, and wt(222)= 6 for
n= 3.

Among the 310 strings of length 10, we wish to determine how many have even weight.
Such a string has even weight precisely when the number of 1’s in the string is even.

There are six different cases to consider. If the string x contains no 1’s, then each of the
10 locations in x can be filled with either 0 or 2, and by the rule of product there are 210 such
strings. When the string contains two 1’s, the locations for these two 1’s can be selected in
(

10
2

)

ways. Once these two locations have been specified, there are 28 ways to place either 0
or 2 in the other eight positions. Hence there are

(

10
2

)

28 strings of even weight that contain
two 1’s. The numbers of strings for the other four cases are given in Table 2.

Table 2

Number of 1’s Number of Strings Number of 1’s Number of Strings

4
(

10
4

)

26 8
(

10
8

)

22

6
(

10
6

)

24 10
(

10
10

)

16
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Consequently, by the rule of sum, the number of strings of length 10 that have even
weight is 210 + (10

2

)

28 + (10
4

)

26 + (10
6

)

24 + (10
8

)

22 + (10
10

)=∑5
n=0

(

10
2n

)

210−2n.

Often we must be careful of overcounting — a situation that seems to arise in what
may appear to be rather easy enumeration problems. The next example demonstrates how
overcounting may come about.

EXAMPLE 25 a) Suppose that Ellen draws five cards from a standard deck of 52 cards. In how many
ways can her selection result in a hand with no clubs? Here we are interested in counting
all five-card selections such as

i) ace of hearts, three of spades, four of spades, six of diamonds, and the jack of
diamonds.

ii) five of spades, seven of spades, ten of spades, seven of diamonds, and the king of
diamonds.

iii) two of diamonds, three of diamonds, six of diamonds, ten of diamonds, and the
jack of diamonds.

If we examine this more closely we see that Ellen is restricted to selecting her five
cards from the 39 cards in the deck that are not clubs. Consequently, she can make her
selection in

(

39
5

)

ways.

b) Now suppose we want to count the number of Ellen’s five-card selections that contain
at least one club. These are precisely the selections that were not counted in part (a).
And since there are

(

52
5

)

possible five-card hands in total, we find that
(

52

5

)

−
(

39

5

)

= 2,598,960− 575,757= 2,023,203

of all five-card hands contain at least one club.

c) Can we obtain the result in part (b) in another way? For example, since Ellen wants to
have at least one club in the five-card hand, let her first select a club. This she can do in
(

13
1

)

ways. And now she doesn’t care what comes up for the other four cards. So after
she eliminates the one club chosen from her standard deck, she can then select the
other four cards in

(

51
4

)

ways. Therefore, by the rule of product, we count the number
of selections here as

(

13

1

)(

51

4

)

= 13× 249,900= 3,248,700.

Something here is definitely wrong! This answer is larger than that in part (b) by more
than one million hands. Did we make a mistake in part (b)? Or is something wrong
with our present reasoning?

For example, suppose that Ellen first selects

the three of clubs

and then selects

the five of clubs,

king of clubs,

seven of hearts, and

jack of spades.

17
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If, however, she first selects

the five of clubs

and then selects

the three of clubs,

king of clubs,

seven of hearts, and

jack of spades,

is her selection here really different from the prior selection we mentioned? Unfortu-
nately, no! And the case where she first selects

the king of clubs

and then follows this by selecting

the three of clubs,

five of clubs,

seven of hearts, and

jack of spades

is not different from the other two selections mentioned earlier.
Consequently, this approach is wrong because we are overcounting — by consid-

ering like selections as if they were distinct.

d) But is there any other way to arrive at the answer in part (b)? Yes! Since the five-
card hands must each contain at least one club, there are five cases to consider. These
are given in Table 3. From the results in Table 3 we see, for example, that there are
(

13
2

)(

39
3

)

five-card hands that contain exactly two clubs. If we are interested in having
exactly three clubs in the hand, then the results in the table indicate that there are
(

13
3

)(

39
2

)

such hands.

Table 3

Number of Ways Number of Number of Ways
Number to Select This Cards That to Select This
of Clubs Number of Clubs Are Not Clubs Number of Nonclubs

1
(

13
1

)

4
(

39
4

)

2
(

13
2

)

3
(

39
3

)

3
(

13
3

)

2
(

39
2

)

4
(

13
4

)

1
(

39
1

)

5
(

13
5

)

0
(

39
0

)

18
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Since no two of the cases in Table 3 have any five-card hand in common, the number of
hands that Ellen can select with at least one club is
(

13

1

)(

39

4

)

+
(

13

2

)(

39

3

)

+
(

13

3

)(

39

2

)

+
(

13

4

)(

39

1

)

+
(

13

5

)(

39

0

)

=
5
∑

i=1

(

13

i

)(

39

5− i
)

= (13)(82,251)+ (78)(9139)+ (286)(741)+ (715)(39)+ (1287)(1)

= 2,023,203.

We shall close this section with three results related to the concept of combinations.
First we note that for integers n, r , with n≥ r ≥ 0,

(

n
r

)= ( n
n− r

)

. This can be established
algebraically from the formula for

(

n
r

)

, but we prefer to observe that when dealing with
a selection of size r from a collection of n distinct objects, the selection process leaves
behind n− r objects. Consequently,

(

n
r

)= ( n
n− r

)

affirms the existence of a correspondence
between the selections of size r (objects chosen) and the selections of size n− r (objects
left behind). An example of this correspondence is shown in Table 4, where n= 5, r = 2,
and the distinct objects are 1, 2, 3, 4, and 5.

Table 4

Selections of Size r = 2 Selections of Size n− r = 3
(Objects Chosen) (Objects Left Behind)

1. 1, 2 6. 2, 4 1. 3, 4, 5 6. 1, 3, 5
2. 1, 3 7. 2, 5 2. 2, 4, 5 7. 1, 3, 4
3. 1, 4 8. 3, 4 3. 2, 3, 5 8. 1, 2, 5
4. 1, 5 9. 3, 5 4. 2, 3, 4 9. 1, 2, 4
5. 2, 3 10. 4, 5 5. 1, 4, 5 10. 1, 2, 3

Our second result is a theorem from our past experience in algebra.

THEOREM 1 The Binomial Theorem. If x and y are variables and n is a positive integer, then

(x + y)n =
(

n

0

)

x0yn +
(

n

1

)

x1yn−1 +
(

n

2

)

x2yn−2 + · · ·

+
(

n

n− 1

)

xn−1y1 +
(

n

n

)

xny0 =
n
∑

k=0

(

n

k

)

xkyn−k.

Before considering the general proof, we examine a special case. If n= 4, the coefficient
of x2y2 in the expansion of the product

(x + y) (x + y) (x + y) (x + y)
1st 2nd 3rd 4th

factor factor factor factor

19
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is the number of ways in which we can select two x’s from the four x’s, one of which is
available in each factor. (Although the x’s are the same in appearance, we distinguish them
as the x in the first factor, the x in the second factor, . . . , and the x in the fourth factor.
Also, we note that when we select two x’s, we use two factors, leaving us with two other
factors from which we can select the two y’s that are needed.) For example, among the
possibilities, we can select (1) x from the first two factors and y from the last two or (2) x
from the first and third factors and y from the second and fourth. Table 5 summarizes the
six possible selections.

Table 5

Factors Selected for x Factors Selected for y

(1) 1, 2 (1) 3, 4
(2) 1, 3 (2) 2, 4
(3) 1, 4 (3) 2, 3
(4) 2, 3 (4) 1, 4
(5) 2, 4 (5) 1, 3
(6) 3, 4 (6) 1, 2

Consequently, the coefficient of x2y2 in the expansion of (x + y)4 is
(

4
2

)= 6, the number
of ways to select two distinct objects from a collection of four distinct objects.

Now we turn to the proof of the general case.

Proof: In the expansion of the product

(x + y) (x + y) (x + y) · · · (x + y)
1st 2nd 3rd nth

factor factor factor factor

the coefficient of xkyn−k , where 0 ≤ k ≤ n, is the number of different ways in which we
can select k x’s [and consequently (n− k) y’s] from the n available factors. (One way, for
example, is to choose x from the first k factors and y from the last n− k factors.) The total
number of such selections of size k from a collection of size n is C(n, k)= (nk

)

, and from
this the binomial theorem follows.

In view of this theorem,
(

n
k

)

is often referred to as a binomial coefficient. Notice that it is
also possible to express the result of Theorem 1 as

(x + y)n =
n
∑

k=0

(

n

n− k
)

xkyn−k.

EXAMPLE 26 a) From the binomial theorem it follows that the coefficient of x5y2 in the expansion of
(x + y)7 is

(

7
5

)= (7
2

)= 21.

b) To obtain the coefficient of a5b2 in the expansion of (2a − 3b)7, replace 2a by x and
−3b by y. From the binomial theorem the coefficient of x5y2 in (x + y)7 is

(

7
5

)

, and
(

7
5

)

x5y2 = (7
5

)

(2a)5(−3b)2 = (7
5

)

(2)5(−3)2a5b2 = 6048a5b2.

20
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COROLLARY 1 For each integer n > 0,

a)
(

n
0

)+ (n1
)+ (n2

)+ · · · + (nn
)= 2n, and

b)
(

n
0

)− (n1
)+ (n2

)− · · · + (−1)n
(

n
n

)= 0.

Proof: Part (a) follows from the binomial theorem when we set x = y = 1. When x =−1
and y = 1, part (b) results.

Our third and final result generalizes the binomial theorem and is called the multinomial
theorem.

THEOREM 2 For positive integers n, t , the coefficient of xn1
1 x

n2
2 x

n3
3 · · · xntt in the expansion of

(x1 + x2 + x3 + · · · + xt )n is

n!
n1! n2! n3! · · · nt ! ,

where each ni is an integer with 0 ≤ ni ≤ n, for all 1≤ i ≤ t , and n1 + n2 + n3 + · · · +
nt = n.

Proof: As in the proof of the binomial theorem, the coefficient of xn1
1 x

n2
2 x

n3
3 · · · xntt is the

number of ways we can select x1 from n1 of the n factors, x2 from n2 of the n− n1 remaining
factors, x3 from n3 of the n− n1 − n2 now remaining factors, . . . , and xt from nt of the
last n− n1 − n2 − n3 − · · · − nt−1 = nt remaining factors. This can be carried out, as in
part (a) of Example 22, in

(

n

n1

)(

n− n1

n2

)(

n− n1 − n2

n3

)

· · ·
(

n− n1 − n2 − n3 − · · · − nt−1

nt

)

ways. We leave to the reader the details of showing that this product is equal to

n!
n1! n2! n3! · · · nt ! ,

which is also written as
(

n

n1, n2, n3, . . . , nt

)

and is called a multinomial coefficient. (When t = 2 this reduces to a binomial coefficient.)

EXAMPLE 27 a) In the expansion of (x + y + z)7 it follows from the multinomial theorem that the
coefficient of x2y2z3 is

(

7
2,2,3

)= 7!
2! 2! 3! = 210, while the coefficient of xyz5 is

(

7
1,1,5

)=
42 and that of x3z4 is

(

7
3,0,4

)= 7!
3! 0! 4! = 35.

b) Suppose we need to know the coefficient of a2b3c2d5 in the expansion of
(a + 2b − 3c + 2d + 5)16. If we replace a by v, 2b by w, −3c by x, 2d by y, and
5 by z, then we can apply the multinomial theorem to (v + w + x + y + z)16

and determine the coefficient of v2w3x2y5z4 as
(

16
2,3,2,5,4

)= 302,702,400. But
(

16
2,3,2,5,4

)

(a)2(2b)3(−3c)2(2d)5(5)4 = ( 16
2,3,2,5,4

)

(1)2(2)3(−3)2(2)5(5)4(a2b3c2d5)=
435,891,456,000,000 a2b3c2d5.
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EXERCISES 3

1. Calculate
(

6
2

)

and check your answer by listing all the se-
lections of size 2 that can be made from the letters a, b, c, d, e,
and f.

2. Facing a four-hour bus trip back to college, Diane decides to
take along five magazines from the 12 that her sister Ann Marie
has recently acquired. In how many ways can Diane make her
selection?

3. Evaluate each of the following.

a) C(10, 4) b)
(

12
7

)

c) C(14, 12) d)
(

15
10

)

4. In the Braille system a symbol, such as a lowercase letter,
punctuation mark, suffix, and so on, is given by raising at least
one of the dots in the six-dot arrangement shown in part (a) of
Fig. 7. (The six Braille positions are labeled in this part of the
figure.) For example, in part (b) of the figure the dots in posi-
tions 1 and 4 are raised and this six-dot arrangement represents
the letter c. In parts (c) and (d) of the figure we have the rep-
resentations for the letters m and t, respectively. The definite
article “the” is shown in part (e) of the figure, while part (f)
contains the form for the suffix “ow.” Finally, the semicolon,
; , is given by the six-dot arrangement in part (g), where the dots
at positions 2 and 3 are raised.

(c) ”m”(b) ”c”

41

2

3

5

6

(a) (d) ”t”

(e) ”the” (f) ”ow” (g) ”;”

Figure 7

a) How many different symbols can we represent in the
Braille system?

b) How many symbols have exactly three raised dots?

c) How many symbols have an even number of raised dots?

5. a) How many permutations of size 3 can one produce with
the letters m, r, a, f, and t?

b) List all the combinations of size 3 that result for the
letters m, r, a, f, and t.

6. If n is a positive integer and n > 1, prove that
(

n
2

)+ (n− 1
2

)

is a perfect square.

7. A committee of 12 is to be selected from 10 men and 10
women. In how many ways can the selection be carried out if
(a) there are no restrictions? (b) there must be six men and six
women? (c) there must be an even number of women? (d) there
must be more women than men? (e) there must be at least eight
men?

8. In how many ways can a gambler draw five cards from a
standard deck and get (a) a flush (five cards of the same suit)?
(b) four aces? (c) four of a kind? (d) three aces and two jacks?
(e) three aces and a pair? (f) a full house (three of a kind and a
pair)? (g) three of a kind? (h) two pairs?

9. How many bytes contain (a) exactly two 1’s; (b) exactly
four 1’s; (c) exactly six 1’s; (d) at least six 1’s?

10. How many ways are there to pick a five-person basketball
team from 12 possible players? How many selections include
the weakest and the strongest players?

11. A student is to answer seven out of 10 questions on an exam-
ination. In how many ways can he make his selection if (a) there
are no restrictions? (b) he must answer the first two questions?
(c) he must answer at least four of the first six questions?

12. In how many ways can 12 different books be distributed
among four children so that (a) each child gets three books?
(b) the two oldest children get four books each and the two
youngest get two books each?

13. How many arrangements of the letters in MISSISSIPPI
have no consecutive S’s?

14. A gym coach must select 11 seniors to play on a football
team. If he can make his selection in 12,376 ways, how many
seniors are eligible to play?

15. a) Fifteen points, no three of which are collinear, are given
on a plane. How many lines do they determine?

b) Twenty-five points, no four of which are coplanar, are
given in space. How many triangles do they determine?
How many planes? How many tetrahedra (pyramidlike
solids with four triangular faces)?

16. Determine the value of each of the following summations.

a)
6
∑

i=1

(i2 + 1) b)
2
∑

j=−2

(j 3 − 1) c)
10
∑

i=0

[1+ (−1)i]

d)
2n
∑

k=n
(−1)k , where n is an odd positive integer

e)
6
∑

i=1

i(−1)i

17. Express each of the following using the summation (or
Sigma) notation. In parts (a), (d), and (e), n denotes a positive
integer.

a)
1

2! +
1

3! +
1

4! + · · · +
1

n! , n≥ 2
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b) 1+ 4+ 9+ 16+ 25+ 36+ 49

c) 13 − 23 + 33 − 43 + 53 − 63 + 73

d)
1

n
+ 2

n+ 1
+ 3

n+ 2
+ · · · + n+ 1

2n

e) n−
(

n+ 1

2!
)

+
(

n+ 2

4!
)

−
(

n+ 3

6!
)

+ · · ·

+ (−1)n
(

2n

(2n)!
)

18. For the strings of length 10 in Example 24, how many have
(a) four 0’s, three 1’s, and three 2’s; (b) at least eight 1’s; (c)
weight 4?

19. Consider the collection of all strings of length 10 made up
from the alphabet 0, 1, 2, and 3. How many of these strings
have weight 3? How many have weight 4? How many have
even weight?

20. In the three parts of Fig. 8, eight points are equally spaced
and marked on the circumference of a given circle.

G C

A

E

H B

F D

(c)

G C

A

E

H B

F D

(b)

G C

A

E

H B

F D

(a)

Figure 8

a) For parts (a) and (b) of Fig. 8 we have two different
(though congruent) triangles. These two triangles (distin-
guished by their vertices) result from two selections of size
3 from the vertices A, B, C, D, E, F, G, H. How many dif-
ferent (whether congruent or not) triangles can we inscribe
in the circle in this way?

b) How many different quadrilaterals can we inscribe in the
circle, using the marked vertices? [One such quadrilateral
appears in part (c) of Fig. 8.]

c) How many different polygons of three or more sides can
we inscribe in the given circle by using three or more of the
marked vertices?

21. How many triangles are determined by the vertices of a reg-
ular polygon of n sides? How many if no side of the polygon is
to be a side of any triangle?

22. a) In the complete expansion of (a + b + c + d) ·
(e + f + g + h)(u+ v + w + x + y + z) one obtains the
sum of terms such as agw, cf x, and dgv. How many such
terms appear in this complete expansion?

b) Which of the following terms do not appear in the com-
plete expansion from part (a)?

i) af x ii) bvx iii) chz
iv) cgw v) egu vi) df z

23. Determine the coefficient of x9y3 in the expansions of
(a) (x + y)12, (b) (x + 2y)12, and (c) (2x − 3y)12.

24. Complete the details in the proof of the multinomial
theorem.

25. Determine the coefficient of

a) xyz2 in (x + y + z)4
b) xyz2 in (w + x + y + z)4
c) xyz2 in (2x − y − z)4
d) xyz−2 in (x − 2y + 3z−1)4

e) w3x2yz2 in (2w − x + 3y − 2z)8

26. Find the coefficient of w2x2y2z2 in the expansion of
(a) (w + x + y + z+ 1)10, (b) (2w − x + 3y + z− 2)12, and
(c) (v + w − 2x + y + 5z+ 3)12.

27. Determine the sum of all the coefficients in the expan-
sions of

a) (x + y)3 b) (x + y)10 c) (x + y + z)10

d) (w + x + y + z)5
e) (2s − 3t + 5u+ 6v − 11w + 3x + 2y)10

28. For any positive integer n determine

a)
n
∑

i=0

1

i!(n− i)! b)
n
∑

i=0

(−1)i

i!(n− i)!
29. Show that for all positive integers m and n,

n

(

m+ n
m

)

= (m+ 1)

(

m+ n
m+ 1

)

.

30. With n a positive integer, evaluate the sum
(

n

0

)

+ 2

(

n

1

)

+ 22

(

n

2

)

+ · · · + 2k
(

n

k

)

+ · · · + 2n
(

n

n

)

.

31. For x a real number and n a positive integer, show that

a) 1= (1+ x)n −
(

n

1

)

x1(1+ x)n−1

+
(

n

2

)

x2(1+ x)n−2 − · · · + (−1)n
(

n

n

)

xn

b) 1= (2+ x)n −
(

n

1

)

(x + 1)(2+ x)n−1

+
(

n

2

)

(x + 1)2(2+ x)n−2 − · · · + (−1)n
(

n

n

)

(x + 1)n
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c) 2n = (2+ x)n −
(

n

1

)

x1(2+ x)n−1

+
(

n

2

)

x2(2+ x)n−2 − · · · + (−1)n
(

n

n

)

xn

32. Determine x if
∑

50
i=0

(

50
i

)

8i = x100.

33. a) If a0, a1, a2, a3 is a list of four real numbers, what is
∑

3
i=1(ai − ai−1)?

b) Given a list — a0, a1, a2, . . . , an — of n+ 1 real
numbers, where n is a positive integer, determine
∑

n

i=1(ai − ai−1).

c) Determine the value of
∑

100
i=1

(

1
i + 2 − 1

i + 1

)

.

34. a) Write a computer program (or develop an algorithm)
that lists all selections of size 2 from the objects 1, 2, 3, 4,
5, 6.

b) Repeat part (a) for selections of size 3.

4
Combinations with Repetition

When repetitions are allowed, we have seen that for n distinct objects an arrangement of
size r of these objects can be obtained in nr ways, for an integer r ≥ 0. We now turn to
the comparable problem for combinations and once again obtain a related problem whose
solution follows from our previous enumeration principles.

EXAMPLE 28 On their way home from track practice, seven high school freshmen stop at a restaurant,
where each of them has one of the following: a cheeseburger, a hot dog, a taco, or a fish sand-
wich. How many different purchases are possible (from the viewpoint of the restaurant)?

Let c, h, t, and f represent cheeseburger, hot dog, taco, and fish sandwich, respectively.
Here we are concerned with how many of each item are purchased, not with the order
in which they are purchased, so the problem is one of selections, or combinations, with
repetition.

In Table 6 we list some possible purchases in column (a) and another means of repre-
senting each purchase in column (b).

Table 6

1. c, c, h, h, t, t, f 1. x x | x x | x x | x
2. c, c, c, c, h, t, f 2. x x x x | x | x | x
3. c, c, c, c, c, c, f 3. x x x x x x | | | x
4. h, t, t, f, f, f, f 4. | x | x x | x x x x
5. t, t, t, t, t, f, f 5. | | x x x x x | x x
6. t, t, t, t, t, t, t 6. | | x x x x x x x |
7. f, f, f, f, f, f, f 7. | | | x x x x x x x

(a) (b)

For a purchase in column (b) of Table 6 we realize that each x to the left of the first bar
( | ) represents a c, each x between the first and second bars represents an h, the x’s between
the second and third bars stand for t’s, and each x to the right of the third bar stands for
an f. The third purchase, for example, has three consecutive bars because no one bought
a hot dog or taco; the bar at the start of the fourth purchase indicates that there were no
cheeseburgers in that purchase.

Once again a correspondence has been established between two collections of objects,
where we know how to count the number in one collection. For the representations in
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column (b) of Table 6, we are enumerating all arrangements of 10 symbols consisting of
seven x’s and three |’s, so by our correspondence the number of different purchases for
column (a) is

10!
7! 3! =

(

10

7

)

.

In this example we note that the seven x’s (one for each freshman) correspond to the size
of the selection and that the three bars are needed to separate the 3+ 1= 4 possible food
items that can be chosen.

When we wish to select, with repetition, r of n distinct objects, we find (as in Table 6)
that we are considering all arrangements of r x’s and n− 1 |’s and that their number is

(n+ r − 1)!
r!(n− 1)! =

(

n+ r − 1

r

)

.

Consequently, the number of combinations of n objects taken r at a time, with repetition,
is C(n+ r − 1, r).

(In Example 28,n= 4, r = 7, so it is possible for r to exceednwhen repetitions are allowed.)

EXAMPLE 29 A donut shop offers 20 kinds of donuts. Assuming that there are at least a dozen of each kind
when we enter the shop, we can select a dozen donuts inC(20+ 12− 1, 12)= C(31, 12)=
141,120,525 ways. (Here n= 20, r = 12.)

EXAMPLE 30 President Helen has four vice presidents: (1) Betty, (2) Goldie, (3) Mary Lou, and (4) Mona.
She wishes to distribute among them $1000 in Christmas bonus checks, where each check
will be written for a multiple of $100.

a) Allowing the situation in which one or more of the vice presidents get nothing,
President Helen is making a selection of size 10 (one for each unit of $100) from
a collection of size 4 (four vice presidents), with repetition. This can be done in
C(4+ 10− 1, 10)= C(13, 10)= 286 ways.

b) If there are to be no hard feelings, each vice president should receive at least $100.
With this restriction, President Helen is now faced with making a selection of size 6
(the remaining six units of $100) from the same collection of size 4, and the choices
now numberC(4+ 6− 1, 6)= C(9, 6)= 84. [For example, here the selection 2, 3, 3,
4, 4, 4 is interpreted as follows: Betty does not get anything extra — for there is no 1 in
the selection. The one 2 in the selection indicates that Goldie gets an additional $100.
Mary Lou receives an additional $200 ($100 for each of the two 3’s in the selection).
Due to the three 4’s, Mona’s bonus check will total $100+ 3($100)= $400.]
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c) If each vice president must get at least $100 and Mona, as executive vice president,
gets at least $500, then the number of ways President Helen can distribute the bonus
checks is

C(3+ 2− 1, 2)
︸ ︷︷ ︸

+ C(3+ 1− 1, 1)
︸ ︷︷ ︸

+ C(3+ 0− 1, 0)
︸ ︷︷ ︸

= 10= C(4+ 2− 1, 2)
︸ ︷︷ ︸

Mona gets Mona gets Mona gets Using the
exactly $500 exactly $600 exactly $700 technique in part (b)

Having worked examples utilizing combinations with repetition, we now consider two
examples involving other counting principles as well.

EXAMPLE 31 In how many ways can we distribute seven bananas and six oranges among four children
so that each child receives at least one banana?

After giving each child one banana, consider the number of ways the remaining three
bananas can be distributed among these four children. Table 7 shows four of the distri-
butions we are considering here. For example, the second distribution in part (a) of Ta-
ble 7 — namely, 1, 3, 3 — indicates that we have given the first child (designated by 1) one
additional banana and the third child (designated by 3) two additional bananas. The corre-
sponding arrangement in part (b) of Table 7 represents this distribution in terms of three
b’s and three bars. These six symbols — three of one type (the b’s) and three others of a
second type (the bars) — can be arranged in 6!/(3! 3!)= C(6, 3)= C(4+ 3− 1, 3)= 20
ways. [Here n= 4, r = 3.] Consequently, there are 20 ways in which we can distribute
the three additional bananas among these four children. Table 8 provides the compara-
ble situation for distributing the six oranges. In this case we are arranging nine sym-
bols — six of one type (the o’s) and three of a second type (the bars). So now we learn
that the number of ways we can distribute the six oranges among these four children is
9!/(6! 3!)= C(9, 6)= C(4+ 6− 1, 6)= 84 ways. [Here n= 4, r = 6.] Therefore, by the
rule of product, there are 20× 84= 1680 ways to distribute the fruit under the stated con-
ditions.

Table 7

1) 1, 2, 3 1) b | b | b |
2) 1, 3, 3 2) b | | b b |
3) 3, 4, 4 3) | | b | b b
4) 4, 4, 4 4) | | | b b b
(a) (b)

Table 8

1) 1, 2, 2, 3, 3, 4 1) o | o o | o o | o
2) 1, 2, 2, 4, 4, 4 2) o | o o | | o o o
3) 2, 2, 2, 3, 3, 3 3) | o o o | o o o |
4) 4, 4, 4, 4, 4, 4 4) | | | o o o o o o
(a) (b)

EXAMPLE 32 A message is made up of 12 different symbols and is to be transmitted through a com-
munication channel. In addition to the 12 symbols, the transmitter will also send a total
of 45 (blank) spaces between the symbols, with at least three spaces between each pair of
consecutive symbols. In how many ways can the transmitter send such a message?

There are 12!ways to arrange the 12 different symbols, and for each of these arrangements
there are 11 positions between the 12 symbols. Because there must be at least three spaces
between successive symbols, we use up 33 of the 45 spaces and must now locate the
remaining 12 spaces. This is now a selection, with repetition, of size 12 (the spaces) from a
collection of size 11 (the locations), and this can be accomplished inC(11+ 12− 1, 12)=
646,646 ways.
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Consequently, by the rule of product the transmitter can send such messages with the
required spacing in (12!)(22

12

) .= 3.097× 1014 ways.

In the next example an idea is introduced that appears to have more to do with number
theory than with combinations or arrangements. Nonetheless, the solution of this example
will turn out to be equivalent to counting combinations with repetitions.

EXAMPLE 33 Determine all integer solutions to the equation

x1 + x2 + x3 + x4 = 7, where xi ≥ 0 for all 1≤ i ≤ 4.

One solution of the equation is x1 = 3, x2 = 3, x3 = 0, x4 = 1. (This is different from a
solution such as x1 = 1, x2 = 0, x3 = 3, x4 = 3, even though the same four integers are being
used.) A possible interpretation for the solution x1 = 3, x2 = 3, x3 = 0, x4 = 1 is that we are
distributing seven pennies (identical objects) among four children (distinct containers), and
here we have given three pennies to each of the first two children, nothing to the third child,
and the last penny to the fourth child. Continuing with this interpretation, we see that each
nonnegative integer solution of the equation corresponds to a selection, with repetition, of
size 7 (the identical pennies) from a collection of size 4 (the distinct children), so there are
C(4+ 7− 1, 7)= 120 solutions.

At this point it is crucial that we recognize the equivalence of the following:

a) The number of integer solutions of the equation

x1 + x2 + · · · + xn = r, xi ≥ 0, 1≤ i ≤ n.
b) The number of selections, with repetition, of size r from a collection of size n.

c) The number of ways r identical objects can be distributed among n distinct
containers.

In terms of distributions, part (c) is valid only when the r objects being distributed are
identical and the n containers are distinct. When both the r objects and the n containers
are distinct, we can select any of the n containers for each one of the objects and get nr

distributions by the rule of product.
When the objects are distinct but the containers are identical, we shall solve the problem

using the Stirling numbers of the second kind. For the final case, in which both objects and
containers are identical, the theory of partitions of integers will provide some necessary
results.

EXAMPLE 34 In how many ways can one distribute 10 (identical) white marbles among six distinct
containers?

Solving this problem is equivalent to finding the number of nonnegative integer solutions
to the equation x1 + x2 + · · · + x6 = 10. That number is the number of selections of size 10,
with repetition, from a collection of size 6. Hence the answer isC(6+ 10− 1, 10)= 3003.

We now examine two other examples related to the theme of this section.
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EXAMPLE 35 From Example 34 we know that there are 3003 nonnegative integer solutions to the equation
x1 + x2 + · · · + x6 = 10. How many such solutions are there to the inequality x1 + x2 +
· · · + x6 < 10?

One approach that may seem feasible in dealing with this inequality is to determine the
number of such solutions to x1 + x2 + · · · + x6 = k, where k is an integer and 0 ≤ k ≤ 9.
Although feasible now, the technique becomes unrealistic if 10 is replaced by a somewhat
larger number, say 100. However, we shall establish a combinatorial identity that will help
us obtain an alternative solution to the problem by using this approach.

For the present we transform the problem by noting the correspondence between the
nonnegative integer solutions of

x1 + x2 + · · · + x6 < 10 (1)

and the integer solutions of

x1 + x2 + · · · + x6 + x7 = 10, 0 ≤ xi, 1≤ i ≤ 6, 0< x7. (2)

The number of solutions of Eq. (2) is the same as the number of nonnegative integer
solutions of y1 + y2 + · · · + y6 + y7 = 9, where yi = xi for 1≤ i ≤ 6, and y7 = x7 − 1.
This is C(7+ 9− 1, 9)= 5005.

Our next result takes us back to the binomial and multinomial expansions.

EXAMPLE 36 In the binomial expansion for (x + y)n, each term is of the form
(

n
k

)

xkyn−k , so the total
number of terms in the expansion is the number of nonnegative integer solutions of n1 +
n2 = n (n1 is the exponent for x, n2 the exponent for y). This number is C(2+ n− 1, n)=
n+ 1.

Perhaps it seems that we have used a rather long-winded argument to get this result.
Many of us would probably be willing to believe the result on the basis of our experiences
in expanding (x + y)n for various small values of n.

Although experience is worthwhile in pattern recognition, it is not always enough to find
a general principle. Here it would prove of little value if we wanted to know how many
terms there are in the expansion of (w + x + y + z)10.

Each distinct term here is of the form
(

10
n1,n2,n3,n4

)

wn1xn2yn3zn4 , where 0 ≤ ni for
1≤ i ≤ 4, and n1 + n2 + n3 + n4 = 10. This last equation can be solved in C(4+ 10− 1,
10)= 286 ways, so there are 286 terms in the expansion of (w + x + y + z)10.

And now once again the binomial expansion will come into play, as we find ourselves
using part (a) of Corollary 1

EXAMPLE 37 a) Let us determine all the different ways in which we can write the number 4 as a sum
of positive integers, where the order of the summands is considered relevant. These
representations are called the compositions of 4 and may be listed as follows:

1) 4 5) 2+ 1+ 1

2) 3+ 1 6) 1+ 2+ 1

3) 1+ 3 7) 1+ 1+ 2

4) 2+ 2 8) 1+ 1+ 1+ 1
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Here we include the sum consisting of only one summand — namely, 4. We find that
for the number 4 there are eight compositions in total. (If we do not care about the order
of the summands, then the representations in (2) and (3) are no longer considered to be
different — nor are the representations in (5), (6), and (7). Under these circumstances
we find that there are five partitions for the number 4 — namely, 4; 3+ 1; 2+ 2;
2+ 1+ 1; and 1+ 1+ 1+ 1.)

b) Now suppose that we wish to count the number of compositions for the number 7.
Here we do not want to list all of the possibilities — which include 7; 6+ 1; 1+ 6;
5+ 2; 1+ 2+ 4; 2+ 4+ 1; and 3+ 1+ 2+ 1. To count all of these compositions,
let us consider the number of possible summands.

i) For one summand there is only one composition — namely, 7.
ii) If there are two (positive) summands, we want to count the number of integer

solutions for

w1 + w2 = 7, where w1, w2 > 0.

This is equal to the number of integer solutions for

x1 + x2 = 5, where x1, x2 ≥ 0.

The number of such solutions is
(

2+ 5− 1
5

)

= (6
5

)

.

iii) Continuing with our next case, we examine the compositions with three (positive)
summands. So now we want to count the number of positive integer solutions for

y1 + y2 + y3 = 7.

This is equal to the number of nonnegative integer solutions for

z1 + z2 + z3 = 4,

and that number is
(3+ 4− 1

4

)= (6
4

)

.

We summarize cases (i), (ii), and (iii), and the other four cases in Table 9, where we
recall for case (i) that 1= (6

6

)

.

Table 9

n= The Number of Summands The Number of Compositions
in a Composition of 7 of 7 with n Summands

(i) n= 1 (i)
(

6
6

)

(ii) n= 2 (ii)
(

6
5

)

(iii) n= 3 (iii)
(

6
4

)

(iv) n= 4 (iv)
(

6
3

)

(v) n= 5 (v)
(

6
2

)

(vi) n= 6 (vi)
(

6
1

)

(vii) n= 7 (vii)
(

6
0

)
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Consequently, the results from the right-hand side of our table tell us that the (total)
number of compositions of 7 is

(

6

6

)

+
(

6

5

)

+
(

6

4

)

+
(

6

3

)

+
(

6

2

)

+
(

6

1

)

+
(

6

0

)

=
6
∑

k=0

(

6

k

)

.

From part (a) of Corollary 1 this reduces to 26.
In general, one finds that for each positive integer m, there are

∑

m−1
k=0

(

m− 1
k

)= 2m−1

compositions.

EXAMPLE 38 From Example 37 we know that there are 212−1 = 211 = 2048 compositions of 12. If our
interest is in those compositions where each summand is even, then we consider, for instance,
compositions such as

2+ 4+ 6= 2(1+ 2+ 3) 2+ 8+ 2= 2(1+ 4+ 1)
8+ 2+ 2= 2(4+ 1+ 1) 6+ 6= 2(3+ 3).

In each of these four examples, the parenthesized expression is a composition of 6. This
observation indicates that the number of compositions of 12, where each summand is even,
equals the number of (all) compositions of 6, which is 26−1 = 25 = 32.

Our next two examples provide applications from the area of computer science. Further-
more, the second example will lead to an important summation formula.

EXAMPLE 39 Consider the following program segment, where i, j , and k are integer variables.

for i := 1 to 20 do
for j := 1 to i do

for k := 1 to j do
print (i * j + k)

How many times is the print statement executed in this program segment?
Among the possible choices for i, j , and k (in the order i–first, j–second, k–third) that

will lead to execution of the print statement, we list (1) 1, 1, 1; (2) 2, 1, 1; (3) 15, 10, 1;
and (4) 15, 10, 7. We note that i = 10, j = 12, k = 5 is not one of the selections to be
considered, because j = 12> 10= i; this violates the condition set forth in the second
for loop. Each of the above four selections where the print statement is executed satisfies
the condition 1≤ k ≤ j ≤ i ≤ 20. In fact, any selection a, b, c (a ≤ b ≤ c) of size 3, with
repetitions allowed, from the list 1, 2, 3, . . . , 20 results in one of the correct selections:
here, k = a, j = b, i = c. Consequently the print statement is executed

(

20+ 3− 1

3

)

=
(

22

3

)

= 1540 times.

If there had been r (≥ 1) for loops instead of three, the print statement would have been
executed

(

20+ r − 1
r

)

times.

EXAMPLE 40 Here we use a program segment to derive a summation formula. In this program segment,
the variables i, j , n, and counter are integer variables. Furthermore, we assume that the
value of n has been set prior to this segment.
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counter := 0
for i := 1 to n do

for j := 1 to i do
counter := counter + 1

From the results in Example 39, after this segment is executed the value of (the variable)
counter will be

(

n+ 2− 1
2

)= (n+ 1
2

)

. (This is also the number of times that the statement

(*) counter := counter + 1

is executed.)
This result can also be obtained as follows: When i := 1, then j varies from 1 to 1 and

(*) is executed once; when i is assigned the value 2, then j varies from 1 to 2 and (*) is
executed twice; j varies from 1 to 3 when i is assigned the value 3, and (*) is executed three
times; in general, for 1≤ k ≤ n, when i := k, then j varies from 1 to k and (*) is executed
k times. In total, the variable counter is incremented [and the statement (*) is executed]
1+ 2+ 3+ · · · + n times.

Consequently,
n
∑

i=1

i = 1+ 2+ 3+ · · · + n=
(

n+ 1

2

)

= n(n+ 1)

2
.

The derivation of this summation formula, obtained by counting the same result in two
different ways, constitutes a combinatorial proof.

Our last example for this section introduces the idea of a run, a notion that arises in
statistics — in particular, in the detecting of trends in a statistical process.

EXAMPLE 41 The counter at Patti and Terri’s Bar has 15 bar stools. Upon entering the bar Darrell finds
the stools occupied as follows:

O O E O O O O E E E O O O E O,

where O indicates an occupied stool and E an empty one. (Here we are not concerned with
the occupants of the stools, just whether or not a stool is occupied.) In this case we say that
the occupancy of the 15 stools determines seven runs, as shown:

OO
︸︷︷︸

Run

E
︸︷︷︸

Run

OOOO
︸ ︷︷ ︸

Run

EEE
︸︷︷︸

Run

OOO
︸ ︷︷ ︸

Run

E
︸︷︷︸

Run

O
︸︷︷︸

Run

.

In general, a run is a consecutive list of identical entries that are preceded and followed by
different entries or no entries at all.

A second way in which five E’s and 10 O’s can be arranged to provide seven runs is

E O O O E E O O E O O O O O E.

We want to find the total number of ways five E’s and 10 O’s can determine seven runs.
If the first run starts with an E, then there must be four runs of E’s and three runs of O’s.
Consequently, the last run must end with an E.

Let x1 count the number of E’s in the first run, x2 the number of O’s in the second run,
x3 the number of E’s in the third run, . . . , and x7 the number of E’s in the seventh run. We
want to find the number of integer solutions for

x1 + x3 + x5 + x7 = 5, x1, x3, x5, x7 > 0 (3)
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and

x2 + x4 + x6 = 10, x2, x4, x6 > 0. (4)

The number of integer solutions for Eq. (3) equals the number of integer solutions for

y1 + y3 + y5 + y7 = 1, y1, y3, y5, y7 ≥ 0.

This number is
(4+ 1− 1

1

)= (4
1

)= 4. Similarly, for Eq. (4), the number of solutions is
(3+ 7− 1

7

)= (9
7

)= 36. Consequently, by the rule of product there are 4 · 36= 144 arrange-
ments of five E’s and 10 O’s that determine seven runs, the first run starting with E.

The seven runs may also have the first run starting with an O and the last run ending with
an O. So now let w1 count the number of O’s in the first run, w2 the number of E’s in the
second run, w3 the number of O’s in the third run, . . . , and w7 the number of O’s in the
seventh run. Here we want the number of integer solutions for

w1 + w3 + w5 + w7 = 10, w1, w3, w5, w7 > 0

and

w2 + w4 + w6 = 5, w2, w4, w6 > 0.

Arguing as above, we find that the number of ways to arrange five E’s and 10 O’s, resulting
in seven runs where the first run starts with an O, is

(4+ 6− 1
6

)(3+ 2− 1
2

)= (9
6

)(

4
2

)= 504.
Consequently, by the rule of sum, the five E’s and 10 O’s can be arranged in 144+ 504=

648 ways to produce seven runs.

EXERCISES 4

1. In how many ways can 10 (identical) dimes be distributed
among five children if (a) there are no restrictions? (b) each
child gets at least one dime? (c) the oldest child gets at least two
dimes?

2. In how many ways can 15 (identical) candy bars be dis-
tributed among five children so that the youngest gets only one
or two of them?

3. Determine how many ways 20 coins can be selected from
four large containers filled with pennies, nickels, dimes, and
quarters. (Each container is filled with only one type of coin.)

4. A certain ice cream store has 31 flavors of ice cream avail-
able. In how many ways can we order a dozen ice cream cones
if (a) we do not want the same flavor more than once? (b) a
flavor may be ordered as many as 12 times? (c) a flavor may be
ordered no more than 11 times?

5. a) In how many ways can we select five coins from a col-
lection of 10 consisting of one penny, one nickel, one dime,
one quarter, one half-dollar, and five (identical) Susan B.
Anthony dollars?

b) In how many ways can we select n objects from a col-
lection of size 2n that consists of n distinct and n identical
objects?

6. Answer Example 32, where the 12 symbols being transmit-
ted are four A’s, four B’s, and four C’s.

7. Determine the number of integer solutions of

x1 + x2 + x3 + x4 = 32,

where

a) xi ≥ 0, 1≤ i ≤ 4 b) xi > 0, 1≤ i ≤ 4

c) x1, x2 ≥ 5, x3, x4 ≥ 7

d) xi ≥ 8, 1≤ i ≤ 4 e) xi ≥−2, 1≤ i ≤ 4

f ) x1, x2, x3 > 0, 0< x4 ≤ 25

8. In how many ways can a teacher distribute eight chocolate
donuts and seven jelly donuts among three student helpers if
each helper wants at least one donut of each kind?

9. Columba has two dozen each of n different colored beads.
If she can select 20 beads (with repetitions of colors allowed)
in 230,230 ways, what is the value of n?

10. In how many ways can Lisa toss 100 (identical) dice so that
at least three of each type of face will be showing?

11. Two n-digit integers (leading zeros allowed) are considered
equivalent if one is a rearrangement of the other. (For example,
12033, 20331, and 01332 are considered equivalent five-digit
integers.) (a) How many five-digit integers are not equivalent?
(b) If the digits 1, 3, and 7 can appear at most once, how many
nonequivalent five-digit integers are there?
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12. Determine the number of integer solutions for

x1 + x2 + x3 + x4 + x5 < 40,

where

a) xi ≥ 0, 1≤ i ≤ 5

b) xi ≥−3, 1≤ i ≤ 5

13. In how many ways can we distribute eight identical white
balls into four distinct containers so that (a) no container is
left empty? (b) the fourth container has an odd number of balls
in it?

14. a) Find the coefficient of v2w4xz in the expansion of
(3v + 2w + x + y + z)8.

b) How many distinct terms arise in the expansion in
part (a)?

15. In how many ways can Beth place 24 different books on four
shelves so that there is at least one book on each shelf? (For any
of these arrangements consider the books on each shelf to be
placed one next to the other, with the first book at the left of the
shelf.)

16. For which positive integer n will the equations

(1) x1 + x2 + x3 + · · · + x19 = n, and

(2) y1 + y2 + y3 + · · · + y64 = n
have the same number of positive integer solutions?

17. How many ways are there to place 12 marbles of the same
size in five distinct jars if (a) the marbles are all black? (b) each
marble is a different color?

18. a) How many nonnegative integer solutions are there
to the pair of equations x1 + x2 + x3 + · · · + x7 = 37,
x1 + x2 + x3 = 6?

b) How many solutions in part (a) have x1, x2, x3 > 0?

19. How many times is the print statement executed for the
following program segment? (Here, i, j , k, and m are integer
variables.)

for i := 1 to 20 do
for j := 1 to i do

for k := 1 to j do
for m := 1 to k do

print (i * j) + (k * m)

20. In the following program segment, i, j , k, and counter are
integer variables. Determine the value that the variable counter
will have after the segment is executed.

counter := 10
for i := 1 to 15 do

for j := i to 15 do
for k := j to 15 do

counter := counter + 1

21. Find the value of sum after the given program segment is
executed. (Here i, j , k, increment, and sum are integer vari-
ables.)

increment := 0
sum := 0
for i := 1 to 10 do

for j := 1 to i do
for k := 1 to j do

begin
increment := increment + 1
sum := sum + increment

end

22. Consider the following program segment, where i, j , k, n,
and counter are integer variables and the value of n (a positive
integer) is set prior to this segment.

counter := 0
for i := 1 to n do

for j := 1 to i do
for k := 1 to j do

counter := counter + 1

We shall determine, in two different ways, the number of times
the statement

counter := counter + 1

is executed. (This is also the value of counter after execution
of the program segment.) From the result in Example 39, we
know that the statement is executed

(

n+ 3− 1
3

)= (n+ 2
3

)

times. For
a fixed value of i, the for loops involving j and k result in

(

i + 1
2

)

executions of the counter increment statement. Consequently,
(

n+ 2
3

)=∑n

i=1

(

i + 1
2

)

. Use this result to obtain a summation for-
mula for

12 + 22 + 32 + · · · + n2 =
n
∑

i=1

i2.

23. a) Given positive integers m, n with m≥ n, show that the
number of ways to distributem identical objects into n dis-
tinct containers with no container left empty is

C(m− 1, m− n)= C(m− 1, n− 1).

b) Show that the number of distributions in part (a) where
each container holds at least r objects (m≥ nr) is

C(m− 1+ (1− r)n, n− 1).

24. Write a computer program (or develop an algorithm) to list
the integer solutions for

a) x1 + x2 + x3 = 10, 0 ≤ xi , 1≤ i ≤ 3

b) x1 + x2 + x3 + x4 = 4, −2 ≤ xi , 1≤ i ≤ 4

25. Consider the 219 compositions of 20. (a) How many have
each summand even? (b) How many have each summand a
multiple of 4?

26. Let n, m, k be positive integers with n=mk. How many
compositions of n have each summand a multiple of k?

27. Frannie tosses a coin 12 times and gets five heads and seven
tails. In how many ways can these tosses result in (a) two runs
of heads and one run of tails; (b) three runs; (c) four runs;
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(d) five runs; (e) six runs; and (f) equal numbers of runs of
heads and runs of tails?

28. a) For n≥ 4, consider the strings made up of n bits — that
is, a total of n 0’s and 1’s. In particular, consider those
strings where there are (exactly) two occurrences of 01.
For example, if n= 6 we want to include strings such as
010010 and 100101, but not 101111 or 010101. How many
such strings are there?

b) For n≥ 6, how many strings of n 0’s and 1’s contain
(exactly) three occurrences of 01?

c) Provide a combinatorial proof for the following:
For n≥ 1,

2n =
(

n+ 1

1

)

+
(

n+ 1

3

)

+ · · · +
{(

n+ 1
n

)

, n odd
(

n+ 1
n+ 1

)

, n even.

5
The Catalan Numbers (Optional)

In this section a very prominent sequence of numbers is introduced. This sequence arises in
a wide variety of combinatorial situations. We’ll begin by examining one specific instance
where it is found.

EXAMPLE 42 Let us start at the point (0, 0) in the xy-plane and consider two kinds of moves:

R: (x, y)→ (x + 1, y) U: (x, y)→ (x, y + 1).

We want to know how we can move from (0, 0) to (5, 5) using such moves — one unit to
the right or one unit up. So we’ll need five R’s and five U’s. At this point we have a situation
like that in Example 14, so we know there are 10!/(5! 5!)= (10

5

)

such paths. But now we’ll
add a twist! In going from (0, 0) to (5, 5) one may touch but never rise above the line y = x.
Consequently, we want to include paths such as those shown in parts (a) and (b) of Fig. 9
but not the path shown in part (c).

The first thing that is evident is that each such arrangement of five R’s and five U’s must
start with an R (and end with a U). Then as we move across this type of arrangement —
going from left to right — the number of R’s at any point must equal or exceed the number
of U’s. Note how this happens in parts (a) and (b) of Fig. 9 but not in part (c). Now we
can solve the problem at hand if we can count the paths [like the one in part (c)] that go
from (0, 0) to (5, 5) but rise above the line y = x. Look again at the path in part (c) of
Fig. 9. Where does the situation there break down for the first time? After all, we start with
the requisite R — then follow it by a U. So far, so good! But then there is a second U and,
at this (first) time, the number of U’s exceeds the number of R’s.

Now let us consider the following transformation:

R, U, U, --
-

U, R, R, R, U, U, R ↔ R, U, U, --
-

R, U, U, U, R, R, U.

What have we done here? For the path on the left-hand side of the transformation, we
located the first move (the second U) where the path rose above the line y = x. The moves
up to and including this move (the second U) remain as is, but the moves that follow are
interchanged — each U is replaced by an R and each R by a U. The result is the path on the
right-hand side of the transformation — an arrangement of four R’s and six U’s, as seen in
part (d) of Fig. 9. Part (e) of that figure provides another path to be avoided; part (f) shows
what happens when this path is transformed by the method described above. Now suppose
we start with an arrangement of six U’s and four R’s, say

R, U, R, R, U, U, U, --
-

U, U, R.
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Figure 9

Focus on the first place where the number of U’s exceeds the number of R’s. Here it is
in the seventh position, the location of the fourth U. This arrangement is now transformed
as follows: The moves up to and including the fourth U remain as they are; the last three
moves are interchanged — each U is replaced by an R, each R by a U. This results in the
arrangement

R, U, R, R, U, U, U, --
-

R, R, U.

— one of the bad arrangements (of five R’s and five U’s) we wish to avoid as we go from
(0, 0) to (5, 5). The correspondence established by these transformations gives us a way
to count the number of bad arrangements. We alternatively count the number of ways to
arrange four R’s and six U’s — this is 10!/(4! 6!)= (10

4

)

. Consequently, the number of ways
to go from (0, 0) to (5, 5) without rising above the line y = x is

(

10

5

)

−
(

10

4

)

= 10!
5! 5! −

10!
4! 6! =

6(10)! − 5(10)!
6! 5!

=
(

1

6

) (

10!
5! 5!

)

= 1

(5+ 1)

(

10

5

)

= 1

(5+ 1)

(

2 · 5
5

)

= 42.

35



May 10, 2011 17:27 M01_GRIM6343_05_SE_C01_PCL Sheet number 36 Page number 36 cyan black

Fundamental Principles of Counting

The above result generalizes as follows. For any integer n≥ 0, the number of paths
(made up of n R’s and n U’s) going from (0, 0) to (n, n), without rising above the line
y = x, is

bn =
(

2n

n

)

−
(

2n

n− 1

)

= 1

n+ 1

(

2n

n

)

, n≥ 1, b0 = 1.

The numbersb0, b1, b2, . . . are called the Catalan numbers, after the Belgian mathematician
Eugène Charles Catalan (1814–1894), who used them in determining the number of ways to
parenthesize the product x1x2x3x4 · · · xn. For instance, the five (= b3) ways to parenthesize
x1x2x3x4 are:

(((x1x2)x3)x4) ((x1(x2x3))x4) ((x1x2)(x3x4)) (x1((x2x3)x4)) (x1(x2(x3x4))).

The first seven Catalan numbers are b0 = 1, b1 = 1, b2 = 2, b3 = 5, b4 = 14, b5 = 42, and
b6 = 132.

EXAMPLE 43 Here are some other situations where the Catalan numbers arise. Some of these examples
are very much like the result in Example 42. A change in vocabulary is often the only
difference.

a) In how many ways can one arrange three 1’s and three −1’s so that all six partial
sums (starting with the first summand) are nonnegative? There are five (= b3) such
arrangements:

1, 1, 1,−1,−1,−1 1, 1,−1,−1, 1,−1 1,−1, 1, 1,−1,−1
1, 1,−1, 1,−1,−1 1,−1, 1,−1, 1,−1

In general, for n≥ 0, one can arrange n 1’s and n −1’s, with all 2n partial sums
nonnegative, in bn ways.

b) Given four 1’s and four 0’s, there are 14 (= b4) ways to list these eight symbols so that
in each list the number of 0’s never exceeds the number of 1’s (as a list is read from
left to right). The following shows these 14 lists:

10101010 11001010 11100010
10101100 11001100 11100100
10110010 11010010 11101000
10110100 11010100
10111000 11011000 11110000

For n≥ 0, there are bn such lists of n 1’s and n 0’s.

c) Table 10

(((ab)c)d) (((abc 111000
((a(bc))d) ((a(bc 110100
((ab)(cd)) ((ab(c 110010
(a((bc)d)) (a((bc 101100
(a(b(cd))) (a(b(c 101010

Consider the first column in Table 10. Here we find five ways to parenthesize the
product abcd. The first of these is (((ab)c)d). Reading left to right, we list the three
occurrences of the left parenthesis “(” and the letters a, b, c— maintaining the order
in which these six symbols occur. This results in (((abc, the first expression in col-
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umn 2 of Table 10. Likewise, ((a(bc))d) in column 1 corresponds to ((a(bc in col-
umn 2 — and so on, for the other three entries in each of columns 1 and 2. Now one
can also go backward, from column 2 to column 1. Take an expression in column 2
and append “d)” to the right end. For instance, ((ab(c becomes ((ab(cd). Reading
this new expression from left to right, we now insert a right parenthesis “)” whenever
a product of two results arises. So, for example, ((ab(cd) becomes

((ab)(cd))

↑ ↑
For the For the
product of product of
a and b (ab) and (cd)

The correspondence between the entries in columns 2 and 3 is more immediate.
For an entry in column 2 replace each “(” by a “1” and each letter by a “0”. Reversing
this process, we replace each “1” by a “(”, the first 0 by a, the second by b, and the
third by c. This takes us from the entries in column 3 to those in column 2.

Now consider the correspondence between columns 1 and 3. (This correspondence
arises from the correspondence between columns 1 and 2 and the one between columns
2 and 3.) It shows us that the number of ways to parenthesize the product abcd equals
the number of ways to list three 1’s and three 0’s so that, as such a list is read from left
to right, the number of 1’s always equals or exceeds the number of 0’s. The number
of ways here is 5 (= b3).

In general, one can parenthesize the product x1x2x3 · · · xn in bn−1 ways.

d) Let us arrange the integers 1, 2, 3, 4, 5, 6 in two rows of three so that (1) the integers
increase in value as each row is read, from left to right, and (2) in any column the
smaller integer is on top. For example, one way to do this is

1 2 4
3 5 6

Now consider three 1’s and three 0’s. Arrange these six symbols in a list so that
the 1’s are in positions 1, 2, 4 (the top row) and the 0’s are in positions 3, 5, 6 (the
bottom row). The result is 110100. Reversing the process, start with another list, say
101100 (where the number of 0’s never exceeds the number of 1’s, as the list is read
from left to right). The 1’s are in positions 1, 3, 4 and the 0’s are in positions 2, 5, 6.
This corresponds to the arrangement

1 3 4
2 5 6

which satisfies conditions (1) and (2), as stated above. From this correspondence we
learn that the number of ways to arrange 1, 2, 3, 4, 5, 6, so that conditions (1) and (2)
are satisfied, is the number of ways to arrange three 1’s and three 0’s in a list so that
as the six symbols are read, from left to right, the number of 0’s never exceeds the
number of 1’s. Consequently, one can arrange 1, 2, 3, 4, 5, 6 and satisfy conditions (1)
and (2) in b3 (= 5) ways.
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EXERCISES 5

1. Verify that for each integer n≥ 1,
(

2n

n

)

−
(

2n

n− 1

)

= 1

n+ 1

(

2n

n

)

.

2. Determine the value of b7, b8, b9, and b10.

3. a) In how many ways can one travel in the xy-plane from
(0, 0) to (3, 3) using the moves R: (x, y)→ (x + 1, y) and
U: (x, y)→ (x, y + 1), if the path taken may touch but
never fall below the line y = x? In how many ways from
(0, 0) to (4, 4)?

b) Generalize the results in part (a).

c) What can one say about the first and last moves of the
paths in parts (a) and (b)?

4. Consider the moves

R: (x, y)→ (x + 1, y) and U: (x, y)→ (x, y + 1),

as in Example 42. In how many ways can one go

a) from (0, 0) to (6, 6) and not rise above the line y = x?

b) from (2, 1) to (7, 6) and not rise above the line y =
x − 1?

c) from (3, 8) to (10, 15) and not rise above the line
y = x + 5?

5. Find the other three ways to arrange 1, 2, 3, 4, 5, 6 in two
rows of three so that the conditions in part (d) of Example 43
are satisfied.

6. There are b4 (= 14) ways to arrange 1, 2, 3, . . . , 8 in two
rows of four so that (1) the integers increase in value as each
row is read, from left to right, and (2) in any column the smaller
integer is on top. Find, as in part (d) of Example 43,

a) the arrangements that correspond to each of the fol-
lowing.

i) 10110010 ii) 11001010 iii) 11101000

b) the lists of four 1’s and four 0’s that correspond to each
of these arrangements of 1, 2, 3, . . . , 8.

i) 1 3 4 5 ii) 1 2 3 7 iii) 1 2 4 5
2 6 7 8 4 5 6 8 3 6 7 8

7. In how many ways can one parenthesize the product
abcdef ?

8. There are 132 ways in which one can parenthesize the
product abcdefg.

a) Determine, as in part (c) of Example 43, the list of five
1’s and five 0’s that corresponds to each of the following.

i) (((ab)c)(d(ef )))

ii) (a(b(c(d(ef )))))

iii) ((((ab)(cd))e)f )

b) Find, as in Example 43, the way to parenthesize
abcdef that corresponds to each given list of five 1’s and
five 0’s.

i) 1110010100
ii) 1100110010

iii) 1011100100

9. Consider drawing n semicircles on and above a horizontal
line, with no two semicircles intersecting. In parts (a) and (b)
of Fig. 10 we find the two ways this can be done for n= 2; the
results for n= 3 are shown in parts (c)–(g).

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 10

i) How many different drawings are there for four semi-
circles?

ii) How many for any n≥ 0? Explain why.

10. a) In how many ways can one go from (0, 0) to (7, 3) if
the only moves permitted are R: (x, y)→ (x + 1, y) and
U: (x, y)→ (x, y + 1), and the number of U’s may never
exceed the number of R’s along the path taken?

b) Let m, n be positive integers with m> n. Answer the
question posed in part (a), upon replacing 7 by m and 3
by n.

11. Twelve patrons, six each with a $5 bill and the other six
each with a $10 bill, are the first to arrive at a movie theater,
where the price of admission is five dollars. In how many ways
can these 12 individuals (all loners) line up so that the number
with a $5 bill is never exceeded by the number with a $10 bill
(and, as a result, the ticket seller is always able to make any
necessary change from the bills taken in from the first 11 of
these 12 patrons)?
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6
Summary and Historical Review

In this chapter we introduced the fundamentals for counting combinations, permuta-
tions, and arrangements in a large variety of problems. The breakdown of problems into
components requiring the same or different formulas for their solutions provided a key in-
sight into the areas of discrete and combinatorial mathematics. This is somewhat similar to
the top-down approach for developing algorithms in a structured programming language.
Here one develops the algorithm for the solution of a difficult problem by first considering
major subproblems that need to be solved. These subproblems are then further refined —
subdivided into more easily workable programming tasks. Each level of refinement improves
on the clarity, precision, and thoroughness of the algorithm until it is readily translatable
into the code of the programming language.

Table 11 summarizes the major counting formulas we have developed so far. Here we
are dealing with a collection of n distinct objects. The formulas count the number of ways
to select, or order, with or without repetitions, r of these n objects.

Table 11

Order Is Repetitions
Relevant Are Allowed Type of Result Formula

Yes No Permutation P(n, r)= n!/(n− r)!,
0 ≤ r ≤ n

Yes Yes Arrangement nr , n, r ≥ 0

No No Combination C(n, r)= n!/[r!(n− r)!] =
(

n

r

)

,

0 ≤ r ≤ n

No Yes Combination
with repetition

(

n+ r − 1

r

)

, n, r ≥ 0

As we continue to investigate further principles of enumeration, as well as discrete
mathematical structures for applications in coding theory, enumeration, optimization, and
sorting schemes in computer science, we shall rely on the fundamental ideas introduced in
this chapter.

The notion of permutation can be found in the Hebrew work Sefer Yetzirah (The Book of
Creation), a manuscript written by a mystic sometime between 200 and 600. However, even
earlier, it is of interest to note that a result of Xenocrates of Chalcedon (396–314 B.C.) may
possibly contain “the first attempt on record to solve a difficult problem in permutations
and combinations.” For further details consult page 319 of the text by T. L. Heath [4],
as well as page 113 of the article by N. L. Biggs [1], a valuable source on the history
of enumeration. The first textbook dealing with some of the material we discussed in this
chapter was Ars Conjectandi by the Swiss mathematician Jakob Bernoulli (1654–1705). The
text was published posthumously in 1713 and contained a reprint of the first formal treatise
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on probability. This treatise had been written in 1657 by Christiaan Huygens (1629–1695),
the Dutch physicist, mathematician, and astronomer who discovered the rings of Saturn.

The binomial theorem for n= 2 appears in the work of Euclid (300 B.C.), but it was not
until the sixteenth century that the term “binomial coefficient” was actually introduced by
Michel Stifel (1486–1567). In his Arithmetica Integra (1544) he gives the binomial coeffi-
cients up to the order of n= 17. Blaise Pascal (1623–1662), in his research on probability,
published in the 1650s a treatise dealing with the relationships among binomial coefficients,
combinations, and polynomials. These results were used by Jakob Bernoulli in proving the
general form of the binomial theorem in a manner analogous to that presented in this chap-
ter. Actual use of the symbol

(

n
r

)

did not begin until the nineteenth century, when it was
used by Andreas von Ettinghausen (1796–1878).

Blaise Pascal (1623–1662)

C
ou

nt
es

s
of

L
ov

el
ac

e

It was not until the twentieth century, however, that the advent of the computer made
possible the systematic analysis of processes and algorithms used to generate permutations
and combinations.

The first comprehensive textbook dealing with topics in combinations and permutations
was written by W. A. Whitworth [10]. Also dealing with the material of this chapter are
Chapter 2 of D. I. Cohen [2], Chapter 1 of C. L. Liu [5], Chapter 2 of F. S. Roberts [6],
Chapter 4 of K. H. Rosen [7], Chapter 1 of H. J. Ryser [8], and Chapter 5 of A. Tucker [9].
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SUPPLEMENTARY EXERCISES

1. In the manufacture of a certain type of automobile, four
kinds of major defects and seven kinds of minor defects can
occur. For those situations in which defects do occur, in how
many ways can there be twice as many minor defects as there
are major ones?

2. A machine has nine different dials, each with five settings
labeled 0, 1, 2, 3, and 4.

a) In how many ways can all the dials on the machine be
set?

b) If the nine dials are arranged in a line at the top of the
machine, how many of the machine settings have no two
adjacent dials with the same setting?

3. Twelve points are placed on the circumference of a circle
and all the chords connecting these points are drawn. What is
the largest number of points of intersection for these chords?

4. A choir director must select six hymns for a Sunday church
service. She has three hymn books, each containing 25 hymns
(there are 75 different hymns in all). In how many ways can
she select the hymns if she wishes to select (a) two hymns from
each book? (b) at least one hymn from each book?

5. How many ways are there to place 25 different flags on
10 numbered flagpoles if the order of the flags on a flagpole is
(a) not relevant? (b) relevant? (c) relevant and every flagpole
flies at least one flag?

6. A penny is tossed 60 times yielding 45 heads and 15 tails.
In how many ways could this have happened so that there were
no consecutive tails?

7. There are 12 men at a dance. (a) In how many ways can
eight of them be selected to form a cleanup crew? (b) How
many ways are there to pair off eight women at the dance with
eight of these 12 men?

8. In how many ways can the letters in WONDERING be ar-
ranged with exactly two consecutive vowels?

9. Dustin has a set of 180 distinct blocks. Each of these blocks
is made of either wood or plastic and comes in one of three sizes
(small, medium, large), five colors (red, white, blue, yellow,
green), and six shapes (triangular, square, rectangular, hexag-
onal, octagonal, circular). How many of the blocks in this set
differ from

a) the small red wooden square block in exactly one way?
(For example, the small red plastic square block is one such
block.)

b) the large blue plastic hexagonal block in exactly two
ways? (For example, the small red plastic hexagonal block
is one such block.)

10. Mr. and Mrs. Richardson want to name their new daughter
so that her initials (first, middle, and last) will be in alphabetical
order with no repeated initial. How many such triples of initials
can occur under these circumstances?

11. In how many ways can the 11 identical horses on a carousel
be painted so that three are brown, three are white, and five are
black?

12. In how many ways can a teacher distribute 12 different sci-
ence books among 16 students if (a) no student gets more than
one book? (b) the oldest student gets two books but no other
student gets more than one book?

13. Four numbers are selected from the following list of num-
bers:−5,−4,−3,−2,−1, 1, 2, 3, 4. (a) In how many ways can
the selections be made so that the product of the four numbers
is positive and (i) the numbers are distinct? (ii) each number
may be selected as many as four times? (iii) each number may
be selected at most three times? (b) Answer part (a) with the
product of the four numbers negative.

14. Waterbury Hall, a university residence hall for men, is op-
erated under the supervision of Mr. Kelly. The residence has
three floors, each of which is divided into four sections. This
coming fall Mr. Kelly will have 12 resident assistants (one for
each of the 12 sections). Among these 12 assistants are the four
senior assistants — Mr. DiRocco, Mr. Fairbanks, Mr. Hyland,
and Mr. Thornhill. (The other eight assistants will be new this
fall and are designated as junior assistants.) In how many ways
can Mr. Kelly assign his 12 assistants if

a) there are no restrictions?

b) Mr. DiRocco and Mr. Fairbanks must both be assigned
to the first floor?

c) Mr. Hyland and Mr. Thornhill must be assigned to dif-
ferent floors?

15. a) How many of the 9000 four-digit integers 1000, 1001,
1002, . . . , 9998, 9999 have four distinct digits that are ei-
ther increasing (as in 1347 and 6789) or decreasing (as in
6421 and 8653)?

b) How many of the 9000 four-digit integers 1000, 1001,
1002, . . . , 9998, 9999 have four digits that are either non-
decreasing (as in 1347, 1226, and 7778) or nonincreasing
(as in 6421, 6622, and 9888)?

16. a) Find the coefficient of x2yz2 in the expansion of
[(x/2)+ y − 3z]5.
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b) How many distinct terms are there in the complete ex-
pansion of

(

x

2
+ y − 3z

)5

?

c) What is the sum of all coefficients in the complete ex-
pansion?

17. a) In how many ways can 10 people, denoted A, B, . . . ,
I, J, be seated about the rectangular table shown in
Fig. 11, where Figs. 11(a) and 11(b) are considered the
same but are considered different from Fig. 11(c)?

b) In how many of the arrangements of part (a) are A and B
seated on longer sides of the table across from each other?

18. a) Determine the number of nonnegative integer solutions
to the pair of equations

x1 + x2 + x3 = 6, x1 + x2 + · · · + x5 = 15,

xi ≥ 0, 1≤ i ≤ 5.

b) Answer part (a) with the pair of equations replaced by
the pair of inequalities

x1 + x2 + x3 ≤ 6, x1 + x2 + · · · + x5 ≤ 15,

xi ≥ 0, 1≤ i ≤ 5.

19. For any given set in a tennis tournament, opponent A can
beat opponent B in seven different ways. (At 6–6 they play a
tie breaker.) The first opponent to win three sets wins the tour-
nament. (a) In how many ways can scores be recorded with
A winning in five sets? (b) In how many ways can scores be
recorded with the tournament requiring at least four sets?

20. Given n distinct objects, determine in how many ways r of
these objects can be arranged in a circle, where arrangements
are considered the same if one can be obtained from the other
by rotation.

21. For every positive integer n, show that
(

n

0

)

+
(

n

2

)

+
(

n

4

)

+ · · · =
(

n

1

)

+
(

n

3

)

+
(

n

5

)

+ · · ·

22. a) In how many ways can the letters in UNUSUAL be ar-
ranged?

b) For the arrangements in part (a), how many have all three
U’s together?

c) How many of the arrangements in part (a) have no con-
secutive U’s?

23. Francesca has 20 different books but the shelf in her dor-
mitory residence will hold only 12 of them.

a) In how many ways can Francesca line up 12 of these
books on her bookshelf?

b) How many of the arrangements in part (a) include
Francesca’s three books on tennis?

24. Determine the value of the integer variable counter after
execution of the following program segment. (Here i, j , k, l,
m, and n are integer variables. The variables r , s, and t are
also integer variables; their values — where r ≥ 1, s ≥ 5, and
t ≥ 7 — have been set prior to this segment.)

counter := 10
for i := 1 to 12 do

for j := 1 to r do
counter := counter + 2

for k := 5 to s do
for l := 3 to k do

counter := counter + 4
for m := 3 to 12 do

counter := counter + 6
for n := t downto 7 do

counter := counter + 8

25. a) Find the number of ways to write 17 as a sum of 1’s and
2’s if order is relevant.

b) Answer part (a) for 18 in place of 17.

c) Generalize the results in parts (a) and (b) for n odd and
for n even.

D I

G

B A

F

C J

(b)

I D

B

G F

A

H E

(a)

G B

J

E D

I

F C

(c)

E HJ C H A

Figure 11
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26. a) In how many ways can 17 be written as a sum of 2’s
and 3’s if the order of the summands is (i) not relevant?
(ii) relevant?

b) Answer part (a) for 18 in place of 17.

27. a) If n and r are positive integers with n≥ r , how many
solutions are there to

x1 + x2 + · · · + xr = n,
where each xi is a positive integer, for 1≤ i ≤ r?
b) In how many ways can a positive integer n be written
as a sum of r positive integer summands (1≤ r ≤ n) if the
order of the summands is relevant?

28. a) In how many ways can one travel in the xy-plane from
(1, 2) to (5, 9) if each move is one of the following types:

(R): (x, y)→ (x + 1, y); (U): (x, y)→ (x, y + 1)?

b) Answer part (a) if a third (diagonal) move

(D): (x, y)→ (x + 1, y + 1)

is also possible.

29. a) In how many ways can a particle move in the xy-plane
from the origin to the point (7, 4) if the moves that are
allowed are of the form:

(R): (x, y)→ (x + 1, y); (U): (x, y)→ (x, y + 1)?

b) How many of the paths in part (a) do not use the path
from (2, 2) to (3, 2) to (4, 2) to (4, 3) shown in Fig. 12?

c) Answer parts (a) and (b) if a third type of move

(D): (x, y)→ (x + 1, y + 1)

is also allowed.

x

y

4

3

2

1

1 2 3 4 5 6 7
Figure 12

30. Due to their outstanding academic records, Donna and
Katalin are the finalists for the outstanding physics student (in
their college graduating class). A committee of 14 faculty mem-

bers will each select one of the candidates to be the winner and
place his or her choice (checked off on a ballot) into the bal-
lot box. Suppose that Katalin receives nine votes and Donna
receives five. In how many ways can the ballots be selected,
one at a time, from the ballot box so that there are always more
votes in favor of Katalin? [This is a special case of a general
problem called, appropriately, the ballot problem. This problem
was solved by Joseph Louis François Bertrand (1822–1900).]

31. Consider the 8× 5 grid shown in Fig. 13. How many differ-
ent rectangles (with integer-coordinate corners) does this grid
contain? [For example, there is a rectangle (square) with cor-
ners (1, 1), (2, 1), (2, 2), (1, 2), a second rectangle with cor-
ners (3, 2), (4, 2), (4, 4), (3, 4), and a third with corners (5, 0),
(7, 0), (7, 3) (5, 3).]

x

y

5

4

3

2

1

1 2 3 4 5 6 7 8
Figure 13

32. As head of quality control, Silvia examined 15 motors, one
at a time, and found six defective (D) motors and nine in good
(G) working condition. If she listed each finding (of D or G) af-
ter examining each individual motor, in how many ways could
Silvia’s list start with a run of three G’s and have six runs in
total?

33. In order to graduate on schedule, Hunter must take (and
pass) four mathematics electives during his final six quarters. If
he may select these electives from a list of 12 (that are offered
every quarter) and he does not want to take more than one of
these electives in any given quarter, in how many ways can he
select and schedule these four electives?

34. In how many ways can a family of four (mother, father, and
two children) be seated at a round table, with eight other people,
so that the parents are seated next to each other and there is one
child on a side of each parent? (Two seatings are considered the
same if one can be rotated to look like the other.)
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Solutions

Fundamental Principles of Counting

Sections 1
and 2

1. a) 13 b) 40 c) The rule of sum in part (a); the rule of product in part (b)
3. a) 288 b) 24
5. 2× 2× 1× 10× 10× 2= 800 different license plates
7. 29 9. a) (14)(12)= 168 b) (14)(12)(6)(18)= 18,144 c) 73,156,608

11. a) 12+ 2= 14 b) 14× 14= 196 c) 182
13. a) P(8, 8)= 8! b) 7! 6! 15. 4! = 24
17. Class A: (27 − 2)(224 − 2)= 2,113,928,964

Class B: 214(216 − 2)= 1,073,709,056
Class C: 212(28 − 2)= 1,040,384

19. a) 7! = 5040 b) (4!)(3!)= 144 c) (5!)(3!)= 720 d) 288
21. a) 12!/(3! 2! 2! 2!) b) 2[11!/(3! 2! 2! 2!)] c) [7!/(2! 2!)][6!/(3! 2!)]
23. 12!/(4! 3! 2! 3!)= 277,200 25. a) n= 10 b) n= 5 c) n= 5
27. a) (10!)/(2! 7!)= 360 b) 360

c) Let x, y, and z be any real numbers and let m, n, and p be any nonnegative integers.
The number of paths from (x, y, z) to (x +m, y + n, z+ p), as described in part (a), is
(m+ n+ p)!/(m! n! p!).

29. a) 576 b) The rule of product
31. a) 9× 9× 8× 7× 6× 5= 136,080 b) 9× 105

(i) (a) 68,880 (b) 450,000
(ii) (a) 28,560 (b) 180,000

(iii) (a) 33,600 (b) 225,000
33. a) 210 b) 310 35. a) 6! b) 2(5!)= 240
37.

(

16
10

)

9! 5! = 348,713,164,800

Section 3 1.
(

6
2

)= 6!/(2! 4!)= 15. The selections of size 2 are ab, ac, ad , ae, af , bc, bd, be, bf , cd, ce, cf ,
de, df , and ef .

3. a) C(10, 4)= 10!/(4! 6!)= 210 b)
(

12
7

)= 12!/(7! 5!)= 792
c) C(14, 12)= 91 d)

(

15
10

)= 3003
5. a) P(5, 3)= 60

b) a, f, m a, f, r a, f, t a, m, r a, m, t
a, r, t f, m, r f, m, t f, r, t m, r, t

7. a)
(

20
12

)= 125,970 b)
(

10
6

)(

10
6

)= 44,100 c)
∑

5
i=1

(

10
12− 2i

)(

10
2i

)

d)
∑

10
i=7

(

10
i

)(

10
12− i

)

e)
∑

10
i=8

(

10
i

)(

10
12− i

)

9. a)
(

8
2

)= 28 b) 70 c)
(

8
6

)= 28 d) 37
11. a) 120 b) 56 c) 100

13.
(

8

4

) (

7!
4! 2!

)

= 7350

15. a)
(

15
2

)= 105 b)
(

25
3

)= 2300;
(

25
3

)

;
(

25
4

)= 12,650

17. a)
∑n

k=2

1

k! c)
∑

7
j=1(−1)j−1j 3 =∑7

k=1(−1)k+1k3 d)
∑n

i=0

i + 1

n+ i
19.

(

10
3

)+ (10
1

)(

9
1

)+ (10
1

)= 220
(

10
4

)+ (10
2

)+ (10
1

)(

9
2

)+ (10
1

)(

9
1

)= 705

210
(∑

5
i=0

(

10
2i

))

21.
(

n
3

) (

n
3

)− n− n(n− 4), n≥ 4

23. a)
(

12
9

)

b)
(

12
9

)

(23) c)
(

12
9

)

(29)(−3)3

25. a)
(

4
1,1,2

)= 12 b) 12 c)
(

4
1,1,2

)

(2)(−1)(−1)2 =−24

d) −216 e)
(

8
3,2,1,2

)

(23)(−1)2(3)(−2)2 = 161,280
27. a) 23 b) 210 c) 310 d) 45 e) 410
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29. n
(

m+ n
m

)

= n(m+ n)!
m! n! =

(m+ n)!
m!(n− 1)! = (m+ 1)

(m+ n)!
(m+ 1)(m!)(n− 1)!

= (m+ 1)
(m+ n)!

(m+ 1)!(n− 1)! = (m+ 1)

(

m+ n
m+ 1

)

31. Consider the expansions of (a) [(1+ x)− x]n; (b) [(2+ x)− (x + 1)]n; and
(c) [(2+ x)− x]n.

33. a) a3 − a0 b) an − a0 c) 1
102 − 1

2 = −25
51

Section 4 1. a)
(

14
10

)

b)
(

9
5

)

c)
(

12
8

)

3.
(

23
20

)

5. a) 25 b) 2n

7. a)
(

35
32

)

b)
(

31
28

)

c)
(

11
8

)

d) 1 e)
(

43
40

)

f)
(

31
28

)− (6
3

)

9. n= 7 11. a)
(

14
5

)

b)
(

11
5

)+ 3
(

10
4

)+ 3
(

9
3

)+ (8
2

)

13. a)
(

7
4

)

b)
∑

3
i=0

(

9− 2i
7− 2i

)

15.
(

23
20

)

(24!) 17. a)
(

16
12

)

b) 512

19.
(

23
4

)

21. 24,310=∑n

i=1 i [for n= (12
3

)]
23. a) Place one of the m identical objects into each of the n distinct containers. This leaves m− n

identical objects to be placed into the n distinct containers, resulting in
(

n+ (m− n)− 1
m− n

)

= (m− 1
m− n

)= (m− 1
n− 1

)

distributions.

25. a) 29 b) 24

27. a)
(

2+ 3− 1
3

)= 4 b) 10 c) 48 d)
(

3+ 4− 1
4

)(

2+ 3− 1
3

)+ (3+ 2− 1
2

)(

2+ 5− 1
5

)= 96
e) 180 f ) 420

Section 5 1.
(

2n

n

)

−
(

2n

n− 1

)

= (2n)!
n! n! −

(2n)!
(n− 1)!(n+ 1)! =

(2n)!(n+ 1)

(n+ 1)! n! −
(2n)! n
n!(n+ 1)! =

(2n)![(n+ 1)− n]
(n+ 1)! n! = 1

(n+ 1)

(2n)!
n! n! =

(

1

n+ 1

) (

2n

n

)

3. a) 5 (= b3); 14 (= b4)

b) For n≥ 0 there are bn

(

= 1

(n+ 1)

(

2n

n

))

such paths from (0, 0) to (n, n).

c) For n≥ 0 the first move is U and the last is R.
5. Using the results in the third column of Table 10 we have:

111000 110010 101010

1 2 3 1 2 5 1 3 5
4 5 6 3 4 6 2 4 6

7. There are b5(= 42) ways.
9. (i) When n= 4 there are 14 (= b4) such diagrams.

(ii) For each n≥ 0, there are bn different drawings of n semicircles on and above a horizontal
line, with no two semicircles intersecting. Consider, for instance, the diagram in part (f ) of
Fig. 10. Going from left to right, write 1 the first time you encounter a semicircle and write 0 the
second time that semicircle is encountered. Here we get the list 110100. The list 110010
corresponds with the drawing in part (g). This correspondence shows that the number of such
drawings for n semicircles is the same as the number of lists of n 1’s and n 0’s where, as the list
is read from left to right, the number of 0’s never exceeds the number of 1’s.

11.
(

1

7

) (

12

6

)

(6!)(6!)=
(

1

7

)

(12!)= 68,428,800

Supplementary Exercises 1.
(

4
1

)(

7
2

)+ (4
2

)(

7
4

)+ (4
3

)(

7
6

)

3. Select any four of these twelve points (on the circumference). As seen in the figure, these points
determine a pair of chords that intersect. Consequently, the largest number of points of
intersection for all possible chords is

(

12
4

)= 495.
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5. a) 1025 b) (10)(11)(12) · · · (34)= 34!/9! c) (25!)(24
9

)

7. a) C(12, 8) b) P(12, 8) 9. a) 12 b) 49
11. (1/11)[11!/(5! 3! 3!)]
13. a) (i)

(

5
4

)+ (5
2

)(

4
2

)+ (4
4

)

(ii)
(

8
4

)+ (6
2

)(

5
2

)+ (7
4

)

(iii)
(

8
4

)+ (6
2

)(

5
2

)+ (7
4

)− 9

b) (i)
(

5
1

)(

4
3

)+ (5
3

)(

4
1

)

(ii) and (iii)
(

5
1

)(

6
3

)+ (7
3

)(

4
1

)

15. a) 2
(

9
4

)+ (9
3

)= 343 b) [2(12
4

)− 9] + [(12
3

)− 1] = 1200
17. a) (5)(9!) b) (3)(8!)
19. a)

(

4
2

)

75 b) 2[(3
2

)

74 + (4
2

)

75]
21. 0= (1+ (−1))n = (n0

)− (n1
)+ (n2

)− (n3
)+ · · · + (−1)n

(

n
n

)

, so
(

n
0

)+ (n2
)+ (n4

)+ · · · = (n1
)+ (n3

)+ (n5
)+ · · ·

23. a) P(20, 12)= 20!/8! b)
(

17
9

)

(12!)
25. a)

(

9
1

)+ (10
3

)+ · · · + (16
15

)+ (17
17

)=∑8
k=0

(

9+ k
1+ 2k

)

b)
∑

9
k=0

(

9+ k
2k

)

c) n= 2k + 1, k ≥ 0:∑k
i=0

(

k + 1+ i
1+ 2i

)

n= 2k, k ≥ 1:∑k
i=0

(

k + i
2i

)

27. a)
(

r + (n− r)− 1
n− r

)

= (n− 1
n− r

)= (n− 1
r − 1

)

b)
∑n

r=1

(

n− 1
r − 1

)= (n− 1
0

)+ (n− 1
1

)+ · · · + (n− 1
n− 1

)= 2n−1

29. a) 11!/(7! 4!) b) [11!/(7! 4!)] − [4!/(2! 2!)][4!/(3! 1!)]
c) [11!/(7! 4!)] + [10!/(6! 3! 1!)] + [9!/(5! 2! 2!)] + [8!/(4! 1! 3!)] + [7!/(3! 4!)] [in part (a)]
{[11!/(7! 4!)] + [10!/(6! 3! 1!)] + [9!/(5! 2! 2!)] + [8!/(4! 1! 3!)] + [7!/(3! 4!)]}

− [{[4!/(2! 2!)] + [3!/(1! 1! 1!)] + [2!/2!]} × {[4!/(3! 1!)] + [3!/(2! 1!)]}]
[in part (b)]

31.
(

9
2

)(

6
2

)= 540 33.
(

6
4

)

(12)(11)(10)(9)= 178,200
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From Chapter 2 of Discrete and Combinatorial Mathematics: An Applied Approach,
Fifth Edition, Ralph P. Grimaldi. Copyright © 2004 by Pearson Education, Inc.
Published by Pearson Addison-Wesley. All rights reserved.

In this chapter we take a close look at what constitutes a valid argument and a more
conventional proof. When a mathematician wishes to provide a proof for a given situation,

he or she must use a system of logic. This is also true when a computer scientist develops
the algorithms needed for a program or system of programs. The logic of mathematics is
applied to decide whether one statement follows from, or is a logical consequence of, one
or more other statements.

Some of the rules that govern this process are described in this chapter. We shall use
these rules in proofs (provided in the text and required in the exercises). However, at no time
can we hope to arrive at a point at which we can apply the rules in an automatic fashion.
We should always analyze and seek to understand the situation given. This often calls for
attributes we cannot learn in a book, such as insight and creativity. Merely trying to apply
formulas or invoke rules will not get us very far either in proving results (such as theorems)
or in doing enumeration problems.

1
Basic Connectives and Truth Tables

In the development of any mathematical theory, assertions are made in the form of sentences.
Such verbal or written assertions, called statements (or propositions), are declarative sen-
tences that are either true or false — but not both. For example, the following are statements,
and we use the lowercase letters of the alphabet (such as p, q, and r) to represent these
statements.

p: Combinatorics is a required course for sophomores.

q: Margaret Mitchell wrote Gone with the Wind.

r: 2+ 3= 5.
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On the other hand, we do not regard sentences such as the exclamation

“What a beautiful evening!”

or the command

“Get up and do your exercises.”

as statements since they do not have truth values (true or false).
The preceding statements represented by the letters p, q, and r are considered to be

primitive statements, for there is really no way to break them down into anything simpler.
New statements can be obtained from existing ones in two ways.

1) Transform a given statement p into the statement¬p,which denotes its negation and
is read “Not p.”

For the statement p above, ¬p is the statement “Combinatorics is not a required
course for sophomores.” (We do not consider the negation of a primitive statement to
be a primitive statement.)

2) Combine two or more statements into a compound statement, using the following
logical connectives.

a) Conjunction: The conjunction of the statements p, q is denoted by p ∧ q, which
is read “p and q.” In our example the compound statement p ∧ q is read “Combi-
natorics is a required course for sophomores, and Margaret Mitchell wrote Gone
with the Wind.”

b) Disjunction: The expression p ∨ q denotes the disjunction of the statements p, q
and is read “p or q.” Hence “Combinatorics is a required course for sophomores,
or Margaret Mitchell wrote Gone with the Wind” is the verbal translation for
p ∨ q, when p, q are as above. We use the word “or” in the inclusive sense here.
Consequently, p ∨ q is true if one or the other of p, q is true or if both of the
statements p, q are true. In English we sometimes write “and/or” to point this out.
The exclusive “or” is denoted by p � q. The compound statement p � q is true if
one or the other of p, q is true but not both of the statements p, q are true. One
way to express p � q for the example here is “Combinatorics is a required course
for sophomores, or Margaret Mitchell wrote Gone with the Wind, but not both.”

c) Implication:We say that “p implies q” and writep→ q to designate the statement,
which is the implication of q by p. Alternatively, we can also say

(i) “If p, then q.” (ii) “p is sufficient for q.”
(iii) “p is a sufficient condition for q.” (iv) “q is necessary for p.”
(v) “q is a necessary condition for p.” (vi) “p only if q.”

A verbal translation of p→ q for our example is “If combinatorics is a required
course for sophomores, then Margaret Mitchell wrote Gone with the Wind.” The
statement p is called the hypothesis of the implication; q is called the conclu-
sion. When statements are combined in this manner, there need not be any causal
relationship between the statements for the implication to be true.

d) Biconditional: Last, the biconditional of two statementsp, q, is denoted byp↔ q,
which is read “p if and only if q,” or “p is necessary and sufficient for q.” For
our p, q, “Combinatorics is a required course for sophomores if and only if
Margaret Mitchell wrote Gone with the Wind” conveys the meaning of p↔ q.
We sometimes abbreviate “p if and only if q” as “p iff q.”

Throughout our discussion on logic we must realize that a sentence such as

“The number x is an integer.”
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is not a statement because its truth value (true or false) cannot be determined until a numerical
value is assigned for x. If x were assigned the value 7, the result would be a true statement.
Assigning x a value such as 1

2 ,
√

2, or π , however, would make the resulting statement false.
(We shall encounter this type of situation again in Sections 4 and 5 of this chapter.)

In the foregoing discussion, we mentioned the circumstances under which the compound
statements p ∨ q, p � q are considered true, on the basis of the truth of their components
p, q. This idea of the truth or falsity of a compound statement being dependent only on the
truth values of its components is worth further investigation. Tables 1 and 2 summarize the
truth and falsity of the negation and the different kinds of compound statements on the basis
of the truth values of their components. In constructing such truth tables, we write “0” for
false and “1” for true.

Table 1

p ¬p
0 1
1 0

Table 2

p q p ∧ q p ∨ q p ∨ q p→ q p↔ q

0 0 0 0 0 1 1
0 1 0 1 1 1 0
1 0 0 1 1 0 0
1 1 1 1 0 1 1

The four possible truth assignments for p, q can be listed in any order. For later work,
the particular order presented here will prove useful.

We see that the columns of truth values for p and ¬p are the opposite of each other. The
statement p ∧ q is true only when both p, q are true, whereas p ∨ q is false only when both
the component statements p, q are false. As we noted before, p � q is true when exactly
one of p, q is true.

For the implication p→ q, the result is true in all cases except where p is true and q
is false. We do not want a true statement to lead us into believing something that is false.
However, we regard as true a statement such as “If 2+ 3= 6, then 2+ 4= 7,” even though
the statements “2+ 3= 6” and “2+ 4= 7” are both false.

Finally, the biconditional p↔ q is true when the statements p, q have the same truth
value and is false otherwise.

Now that we have been introduced to certain concepts, let us investigate a little further
some of these initial ideas about connectives. Our first two examples should prove useful
for such an investigation.

EXAMPLE 1 Let s, t , and u denote the following primitive statements:

s: Phyllis goes out for a walk.

t : The moon is out.

u: It is snowing.

The following English sentences provide possible translations for the given (symbolic)
compound statements.

a) (t ∧ ¬u)→ s: If the moon is out and it is not snowing, then Phyllis goes out for a
walk.
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b) t→ (¬u→ s): If the moon is out, then if it is not snowing Phyllis goes out for a
walk. [So ¬u→ s is understood to mean (¬u)→ s as opposed to ¬(u→ s).]

c) ¬(s↔ (u ∨ t)): It is not the case that Phyllis goes out for a walk if and only if it is
snowing or the moon is out.

Now we will work in reverse order and examine the logical (or symbolic) notation for
three given English sentences:

d) “Phyllis will go out walking if and only if the moon is out.” Here the words “if and only
if” indicate that we are dealing with a biconditional. In symbolic form this becomes
s↔ t.

e) “If it is snowing and the moon is not out, then Phyllis will not go out for a walk.”
This compound statement is an implication where the hypothesis is also a compound
statement. One may express this statement in symbolic form as (u ∧ ¬t)→¬s.

f ) “It is snowing but Phyllis will still go out for a walk.” Now we come across a new
connective — namely, but. In our study of logic we shall follow the convention that
the connectives but and and convey the same meaning. Consequently, this sentence
may be represented as u ∧ s.

Now let us return to the results in Table 2, particularly the sixth column. For if this is
one’s first encounter with the truth table for the implicationp→ q, then it may be somewhat
difficult to accept the stated entries — especially the results in the first two rows (wherep has
the truth value 0). The following example should help make these truth value assignments
easier to grasp.

EXAMPLE 2 Consider the following scenario. It is almost the week before Christmas and Penny will be
attending several parties that week. Ever conscious of her weight, she plans not to weigh
herself until the day after Christmas. Considering what those parties may do to her waistline
by then, she makes the following resolution for the December 26 outcome: “If I weigh more
than 120 pounds, then I shall enroll in an exercise class.”

Here we let p and q denote the (primitive) statements

p: I weigh more than 120 pounds.

q: I shall enroll in an exercise class.

Then Penny’s statement (implication) is given by p→ q.

We shall consider the truth values of this particular example of p→ q for the rows of
Table 2. Consider first the easier cases in rows 4 and 3.

• Row 4: p and q both have the truth value 1. On December 26 Penny finds that she
weighs more than 120 pounds and promptly enrolls in an exercise class, just as she said
she would. Here we consider p→ q to be true and assign it the truth value 1.

• Row 3: p has the truth value 1, q has the truth value 0. Now that December 26 has
arrived, Penny finds her weight to be over 120 pounds, but she makes no attempt to enroll
in an exercise class. In this case we feel that Penny has broken her resolution — in other
words, the implication p→ q is false (and has the truth value 0).

The cases in rows 1 and 2 may not immediately agree with our intuition, but the example
should make these results a little easier to accept.
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• Row 1: p and q both have the truth value 0. Here Penny finds that on December 26
her weight is 120 pounds or less and she does not enroll in an exercise class. She has not
violated her resolution; we take her statement p→ q to be true and assign it the truth
value 1.

• Row 2: p has the truth value 0, q has the truth value 1. This last case finds Penny
weighing 120 pounds or less on December 26 but still enrolling in an exercise class.
Perhaps her weight is 119 or 120 pounds and she feels this is still too high. Or maybe
she wants to join an exercise class because she thinks it will be good for her health. No
matter what the reason, she has not gone against her resolution p→ q. Once again, we
accept this compound statement as true, assigning it the truth value 1.

Our next example discusses a related notion: the decision (or selection) structure in
computer programming.

EXAMPLE 3 In computer science the if-then and if-then-else decision structures arise (in various for-
mats) in high-level programming languages such as Java and C++. The hypothesisp is often
a relational expression such as x > 2. This expression then becomes a (logical) statement
that has the truth value 0 or 1, depending on the value of the variable x at that point in
the program. The conclusion q is usually an “executable statement.” (So q is not one of
the logical statements that we have been discussing.) When dealing with “if p then q,” in
this context, the computer executes q only on the condition that p is true. For p false, the
computer goes to the next instruction in the program sequence. For the decision structure
“if p then q else r ,” q is executed when p is true and r is executed when p is false.

Before continuing, a word of caution: Be careful when using the symbols→ and↔ .The
implication and the biconditional are not the same, as evidenced by the last two columns of
Table 2.

In our everyday language, however, we often find situations where an implication is used
when the intention actually calls for a biconditional. For example, consider the following
implications that a certain parent might direct to his or her child.

s→ t : If you do your homework, then you will get to watch the baseball game.

t→ s: You will get to watch the baseball game only if you do your homework.

• Case 1: The implication s→ t. When the parent says to the child, “If you do your
homework, then you will get to watch the baseball game,” he or she is trying a positive
approach by emphasizing the enjoyment in watching the baseball game.

• Case 2: The implication t→ s.Here we find the negative approach and the parent who
warns the child in saying, “You will get to watch the baseball game only if you do your
homework.” This parent places the emphasis on the punishment (lack of enjoyment) to
be incurred.

In either case, the parent probably wants his or her implication — be it s→ t or t→ s—
to be understood as the biconditional s↔ t. For in case 1 the parent wants to hint at the
punishment while promising the enjoyment; in case 2, where the punishment has been
used (perhaps, to threaten), if the child does in fact do the homework, then that child will
definitely be given the opportunity to enjoy watching the baseball game.

51



May 10, 2011 17:33 M02_GRIM6343_05_SE_C02_PCL Sheet number 6 Page number 6 cyan black

Fundamentals of Logic

In scientific writing one must make every effort to be unambiguous — when an im-
plication is given, it ordinarily cannot, and should not, be interpreted as a biconditional.
Definitions are a notable exception, which we shall discuss in Section 5.

Before we continue let us take a step back. When we summarized the material that gave
us Tables 1 and 2, we may not have stressed enough that the results were for any statements
p, q— not just primitive statements p, q. Examples 4 through 6 should help to reinforce
this.

EXAMPLE 4 Let us examine the truth table for the compound statement “Margaret Mitchell wrote Gone
with the Wind, and if 2+ 3 �= 5, then combinatorics is a required course for sophomores.”
In symbolic notation this statement is written as q ∧ (¬r→ p),where p, q, and r represent
the primitive statements introduced at the start of this section. The last column of Table 3
contains the truth values for this result. We obtained these truth values by using the fact that
the conjunction of any two statements is true if and only if both statements are true. This is
what we said earlier in Table 2, and now one of our statements — namely, the implication
¬r→ p— is definitely a compound statement, not a primitive one. Columns 4, 5, and 6 in
this table show how we build the truth table up by considering smaller parts of the compound
statement and by using the results from Tables 1 and 2.

Table 3

p q r ¬r ¬r→ p q ∧ (¬r→ p)

0 0 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 0 1 1
1 0 0 1 1 0
1 0 1 0 1 0
1 1 0 1 1 1
1 1 1 0 1 1

EXAMPLE 5 In Table 4 we develop the truth tables for the compound statements p ∨ (q ∧ r) (col-
umn 5) and (p ∨ q) ∧ r (column 7).

Table 4

p q r q ∧ r p ∨ (q ∧ r) p ∨ q (p ∨ q) ∧ r
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 1 0
0 1 1 1 1 1 1
1 0 0 0 1 1 0
1 0 1 0 1 1 1
1 1 0 0 1 1 0
1 1 1 1 1 1 1
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Because the truth values in columns 5 and 7 differ (in rows 5 and 7), we must avoid
writing a compound statement such as p ∨ q ∧ r.Without parentheses to indicate which of
the connectives ∨ and ∧ should be applied first, we have no idea whether we are dealing
with p ∨ (q ∧ r) or (p ∨ q) ∧ r.

Our last example for this section illustrates two special types of statements.

EXAMPLE 6 The results in columns 4 and 7 of Table 5 reveal that the statement p→ (p ∨ q) is true and
that the statement p ∧ (¬p ∧ q) is false for all truth value assignments for the component
statements p, q.

Table 5

p q p ∨ q p→ (p ∨ q) ¬p ¬p ∧ q p ∧ (¬p ∧ q)
0 0 0 1 1 0 0
0 1 1 1 1 1 0
1 0 1 1 0 0 0
1 1 1 1 0 0 0

Definition 1 A compound statement is called a tautology if it is true for all truth value assignments for
its component statements. If a compound statement is false for all such assignments, then
it is called a contradiction.

Throughout this chapter we shall use the symbol T0 to denote any tautology and the
symbol F0 to denote any contradiction.

We can use the ideas of tautology and implication to describe what we mean by a valid
argument. This will be of primary interest to us in Section 3, and it will help us develop
needed skills for proving mathematical theorems. In general, an argument starts with a list
of given statements called premises and a statement called the conclusion of the argument.
We examine these premises, say p1, p2, p3, . . . , pn, and try to show that the conclusion
q follows logically from these given statements — that is, we try to show that if each of
p1, p2, p3, . . . , pn is a true statement, then the statement q is also true. To do so one way
is to examine the implication

(p1 ∧ p2 ∧ p3 ∧ · · · ∧ pn)†→ q,

where the hypothesis is the conjunction of thenpremises. If any one ofp1, p2, p3, . . . , pn is
false, then no matter what truth value q has, the implication (p1 ∧ p2 ∧ p3 ∧ · · · ∧ pn)→ q

is true. Consequently, if we start with the premises p1, p2, p3, . . . , pn — each with truth
value 1— and find that under these circumstances q also has the value 1, then the implication

(p1 ∧ p2 ∧ p3 ∧ · · · ∧ pn)→ q

is a tautology and we have a valid argument.

†At this point we have dealt only with the conjunction of two statements, so we must point out that the
conjunction p1 ∧ p2 ∧ p3 ∧ · · · ∧ pn of n statements is true if and only if each pi, 1≤ i ≤ n, is true.
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EXERCISES 1

1. Determine whether each of the following sentences is a
statement.

a) In 2003 George W. Bush was the president of the United
States.

b) x + 3 is a positive integer.

c) Fifteen is an even number.

d) If Jennifer is late for the party, then her cousin Zachary
will be quite angry.

e) What time is it?

f ) As of June 30, 2003, Christine Marie Evert had won the
French Open a record seven times.

2. Identify the primitive statements in Exercise 1.

3. Let p, q be primitive statements for which the implication
p→ q is false. Determine the truth values for each of the fol-
lowing.

a) p ∧ q b) ¬p ∨ q c) q→ p d) ¬q→¬p
4. Let p, q, r, s denote the following statements:

p: I finish writing my computer program before lunch.
q: I shall play tennis in the afternoon.
r: The sun is shining.
s: The humidity is low.

Write the following in symbolic form.

a) If the sun is shining, I shall play tennis this afternoon.

b) Finishing the writing of my computer program before
lunch is necessary for my playing tennis this afternoon.

c) Low humidity and sunshine are sufficient for me to play
tennis this afternoon.

5. Let p, q, r denote the following statements about a partic-
ular triangle ABC.

p: Triangle ABC is isosceles.
q: Triangle ABC is equilateral.
r: Triangle ABC is equiangular.

Translate each of the following into an English sentence.

a) q→ p b) ¬p→¬q
c) q↔ r d) p ∧ ¬q
e) r→ p

6. Determine the truth value of each of the following implica-
tions.

a) If 3+ 4= 12, then 3+ 2= 6.

b) If 3+ 3= 6, then 3+ 4= 9.

c) If Thomas Jefferson was the third president of the United
States, then 2+ 3= 5.

7. Rewrite each of the following statements as an implication

in the if-then form.

a) Practicing her serve daily is a sufficient condition for
Darci to have a good chance of winning the tennis tourna-
ment.

b) Fix my air conditioner or I won’t pay the rent.

c) Mary will be allowed on Larry’s motorcycle only if she
wears her helmet.

8. Construct a truth table for each of the following compound
statements, where p, q, r denote primitive statements.

a) ¬(p ∨ ¬q)→¬p b) p→ (q→ r)

c) (p→ q)→ r d) (p→ q)→ (q→ p)

e) [p ∧ (p→ q)] → q f ) (p ∧ q)→ p

g) q↔ (¬p ∨ ¬q)
h) [(p→ q) ∧ (q→ r)] → (p→ r)

9. Which of the compound statements in Exercise 8 are
tautologies?

10. Verify that [p→ (q→ r)] → [(p→ q)→ (p→ r)] is a
tautology.

11. a) How many rows are needed for the truth table of the
compound statement (p ∨ ¬q)↔ [(¬r ∧ s)→ t], where
p, q, r , s, and t are primitive statements?

b) Let p1, p2, . . . , pn denote n primitive statements. Let
p be a compound statement that contains at least one oc-
currence each of pi, for 1≤ i ≤ n— and p contains no
other primitive statement. How many rows are needed to
construct the truth table for p?

12. Determine all truth value assignments, if any, for the prim-
itive statements p, q, r , s, t that make each of the following
compound statements false.

a) [(p ∧ q) ∧ r] → (s ∨ t)
b) [p ∧ (q ∧ r)] → (s � t)

13. If statement q has the truth value 1, determine all truth value
assignments for the primitive statements, p, r , and s for which
the truth value of the statement

(q→ [(¬p ∨ r) ∧ ¬s]) ∧ [¬s→ (¬r ∧ q)]
is 1.

14. At the start of a program (written in pseudocode) the inte-
ger variable n is assigned the value 7. Determine the value of
n after each of the following successive statements is encoun-
tered during the execution of this program. [Here the value of
n following the execution of the statement in part (a) becomes
the value of n for the statement in part (b), and so on, through
the statement in part (d). For positive integers a, b, 	a/b
 re-
turns the integer part of the quotient — for example, 	6/2
 = 3,
	7/2
 = 3, 	2/5
 = 0, and 	8/3
 = 2.]

a) if n > 5 then n := n + 2
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b) if ((n + 2 = 8) or (n - 3 = 6)) then
n := 2 * n + 1

c) if ((n - 3 = 16) and (	n/6
 = 1)) then
n := n + 3

d) if ((n /= 21) and (n - 7 = 15)) then
n := n - 4

15. The integer variables m and n are assigned the values 3
and 8, respectively, during the execution of a program (written
in pseudocode). Each of the following successive statements is
then encountered during program execution. [Here the values
of m, n following the execution of the statement in part (a) be-
come the values ofm, n for the statement in part (b), and so on,
through the statement in part (e).] What are the values of m, n
after each of these statements is encountered?

a) if n - m = 5 then n := n - 2

b) if ((2 * m = n) and (	n/4
 = 1)) then
n := 4 * m - 3

c) if ((n < 8) or (	m/2
= 2)) then n := 2 * m
else m := 2 * n

d) if ((m < 20) and (	n/6
 = 1)) then
m := m - n - 5

e) if ((n = 2 * m) or (	n/2 
 = 5)) then
m := m + 2

16. In the following program segment i, j ,m, and n are integer
variables. The values ofm and n are supplied by the user earlier
in the execution of the total program.

for i := 1 to m do
for j := 1 to n do

if i /= j then
print i + j

How many times is the print statement in the segment exe-
cuted when (a) m= 10, n= 10; (b) m= 20, n= 20; (c) m=
10, n= 20; (d) m= 20, n= 10?

17. After baking a pie for the two nieces and two nephews who
are visiting her, Aunt Nellie leaves the pie on her kitchen ta-
ble to cool. Then she drives to the mall to close her boutique
for the day. Upon her return she finds that someone has eaten
one-quarter of the pie. Since no one was in her house that day —
except for the four visitors —Aunt Nellie questions each niece
and nephew about who ate the piece of pie. The four “suspects”
tell her the following:

Charles: Kelly ate the piece of pie.
Dawn: I did not eat the piece of pie.
Kelly: Tyler ate the pie.
Tyler: Kelly lied when she said I ate the pie.

If only one of these four statements is true and only one of
the four committed this heinous crime, who is the vile culprit
that Aunt Nellie will have to punish severely?

2
Logical Equivalence: The Laws of Logic

In all areas of mathematics we need to know when the entities we are studying are equal or
essentially the same. For example, in arithmetic and algebra we know that two nonzero real
numbers are equal when they have the same magnitude and algebraic sign. Hence, for two
nonzero real numbers x, y, we have x = y if |x| = |y| and xy > 0, and conversely (that is,
if x = y, then |x| = |y| and xy > 0).When we deal with triangles in geometry, the notion
of congruence arises. Here triangle ABC and triangle DEF are congruent if, for instance,
they have equal corresponding sides — that is, the length of side AB = the length of side
DE, the length of side BC = the length of sideEF , and the length of side CA= the length
of side FD.

Our study of logic is often referred to as the algebra of propositions (as opposed to the
algebra of real numbers). In this algebra we shall use the truth tables of the statements,
or propositions, to develop an idea of when two such entities are essentially the same. We
begin with an example.

EXAMPLE 7 For primitive statements p and q, Table 6 provides the truth tables for the compound
statements ¬p ∨ q and p→ q. Here we see that the corresponding truth tables for the two
statements ¬p ∨ q and p→ q are exactly the same.
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Table 6

p q ¬p ¬p ∨ q p→ q

0 0 1 1 1
0 1 1 1 1
1 0 0 0 0
1 1 0 1 1

This situation leads us to the following idea.

Definition 2 Two statements s1, s2 are said to be logically equivalent, and we write s1⇐⇒ s2, when the
statement s1 is true (respectively, false) if and only if the statement s2 is true (respectively,
false).

Note that when s1⇐⇒ s2 the statements s1 and s2 provide the same truth tables because
s1, s2 have the same truth values for all choices of truth values for their primitive components.

As a result of this concept we see that we can express the connective for the implication (of
primitive statements) in terms of negation and disjunction — that is, (p→ q)⇐⇒¬p ∨ q.
In the same manner, from the result in Table 7 we have (p↔ q)⇐⇒ (p→ q) ∧ (q→ p),

and this helps validate the use of the term biconditional. Using the logical equivalence from
Table 6, we find that we can also write (p↔ q)⇐⇒ (¬p ∨ q) ∧ (¬q ∨ p). Consequently,
if we so choose, we can eliminate the connectives→ and↔ from compound statements.

Table 7

p q p→ q q→ p (p→ q) ∧ (q→ p) p↔ q

0 0 1 1 1 1
0 1 1 0 0 0
1 0 0 1 0 0
1 1 1 1 1 1

Examining Table 8, we find that negation, along with the connectives ∧ and ∨, are all
we need to replace the exclusive or connective, �. In fact, we may even eliminate either ∧
or ∨. However, for the related applications we want to study later in the text, we shall need
both ∧ and ∨ as well as negation.

Table 8

p q p ∨ q p ∨ q p ∧ q ¬(p ∧ q) (p ∨ q) ∧ ¬(p ∧ q)
0 0 0 0 0 1 0
0 1 1 1 0 1 1
1 0 1 1 0 1 1
1 1 0 1 1 0 0
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We now use the idea of logical equivalence to examine some of the important properties
that hold for the algebra of propositions.

For all real numbers a, b,we know that−(a + b)= (−a)+ (−b). Is there a comparable
result for primitive statements p, q?

EXAMPLE 8 In Table 9 we have constructed the truth tables for the statements ¬(p ∧ q), ¬p ∨ ¬q,
¬(p ∨ q), and ¬p ∧ ¬q, where p, q are primitive statements. Columns 4 and 7 reveal
that ¬(p ∧ q)⇐⇒¬p ∨ ¬q; columns 9 and 10 reveal that ¬(p ∨ q)⇐⇒¬p ∧ ¬q. These
results are known as DeMorgan’s Laws. They are similar to the familiar law for real numbers,

−(a + b)= (−a)+ (−b),
already noted, which shows the negative of a sum to be equal to the sum of the nega-
tives. Here, however, a crucial difference emerges: The negation of the conjunction of two
primitive statements p, q results in the disjunction of their negations ¬p, ¬q, whereas
the negation of the disjunction of these same statements p, q is logically equivalent to the
conjunction of their negations ¬p, ¬q.

Table 9

p q p ∧ q ¬(p ∧ q) ¬p ¬q ¬p ∨ ¬q p ∨ q ¬(p ∨ q) ¬p ∧ ¬q
0 0 0 1 1 1 1 0 1 1
0 1 0 1 1 0 1 1 0 0
1 0 0 1 0 1 1 1 0 0
1 1 1 0 0 0 0 1 0 0

Although p, q were primitive statements in the preceding example we shall soon learn
that DeMorgan’s Laws hold for any two arbitrary statements.

In the arithmetic of real numbers, the operations of addition and multiplication are both
involved in the principle called the Distributive Law of Multiplication over Addition: For
all real numbers a, b, c,

a × (b + c)= (a × b)+ (a × c).
The next example shows that there is a similar law for primitive statements. There is also
a second related law (for primitive statements) that has no counterpart in the arithmetic of
real numbers.

EXAMPLE 9 Table 10 contains the truth tables for the statements p ∧ (q ∨ r), (p ∧ q) ∨ (p ∧ r),
p ∨ (q ∧ r), and (p ∨ q) ∧ (p ∨ r). From the table it follows that for all primitive state-
ments p, q, and r,

p ∧ (q ∨ r)⇐⇒ (p ∧ q) ∨ (p ∧ r) The Distributive Law of ∧ over ∨
p ∨ (q ∧ r)⇐⇒ (p ∨ q) ∧ (p ∨ r) The Distributive Law of ∨ over ∧

The second distributive law has no counterpart in the arithmetic of real numbers. That
is, it is not true for all real numbers a, b, and c that the following holds: a + (b × c)=
(a + b)× (a + c). For a = 2, b = 3, and c = 5, for instance, a + (b × c)= 17 but
(a + b)× (a + c)= 35.
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Table 10

p q r p ∧ (q ∨ r) (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) (p ∨ q) ∧ (p ∨ r)
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 1 1
1 0 0 0 0 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 1 1 1 1

Before going any further, we note that, in general, if s1, s2 are statements and s1↔ s2
is a tautology, then s1, s2 must have the same corresponding truth values (that is, for each
assignment of truth values to the primitive statements in s1 and s2, s1 is true if and only
if s2 is true and s1 is false if and only if s2 is false) and s1⇐⇒ s2. When s1 and s2 are
logically equivalent statements (that is, s1⇐⇒ s2), then the compound statement s1↔ s2 is
a tautology. Under these circumstances it is also true that ¬s1⇐⇒¬s2, and ¬s1↔¬s2 is
a tautology.

If s1, s2, and s3 are statements where s1⇐⇒ s2 and s2⇐⇒ s3 then s1⇐⇒ s3. When two
statements s1 and s2 are not logically equivalent, we may write s1⇐�⇒ s2 to designate this
situation.

Using the concepts of logical equivalence, tautology, and contradiction, we state the
following list of laws for the algebra of propositions.

The Laws of Logic
For any primitive statements p, q, r, any tautology T0, and any contradiction F0,

1) ¬¬p⇐⇒ p Law of Double Negation

2) ¬(p ∨ q)⇐⇒¬p ∧ ¬q DeMorgan’s Laws
¬(p ∧ q)⇐⇒¬p ∨ ¬q

3) p ∨ q⇐⇒ q ∨ p Commutative Laws
p ∧ q⇐⇒ q ∧ p

4) p ∨ (q ∨ r)⇐⇒ (p ∨ q) ∨ r† Associative Laws
p ∧ (q ∧ r)⇐⇒ (p ∧ q) ∧ r

5) p ∨ (q ∧ r)⇐⇒ (p ∨ q) ∧ (p ∨ r) Distributive Laws
p ∧ (q ∨ r)⇐⇒ (p ∧ q) ∨ (p ∧ r)

6) p ∨ p⇐⇒ p Idempotent Laws
p ∧ p⇐⇒ p

7) p ∨ F0⇐⇒ p Identity Laws
p ∧ T0⇐⇒ p

†We note that because of the Associative Laws, there is no ambiguity in statements of the form p ∨ q ∨ r or
p ∧ q ∧ r.
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8) p ∨ ¬p⇐⇒ T0 Inverse Laws
p ∧ ¬p⇐⇒ F0

9) p ∨ T0⇐⇒ T0 Domination Laws
p ∧ F0⇐⇒ F0

10) p ∨ (p ∧ q)⇐⇒ p Absorption Laws
p ∧ (p ∨ q)⇐⇒ p

We now turn our attention to proving all of these properties. In so doing we realize that we
could simply construct the truth tables and compare the results for the corresponding truth
values in each case — as we did in Examples 8 and 9. However, before we start writing, let us
take one more look at this list of 19 laws, which, aside from the Law of Double Negation, fall
naturally into pairs. This pairing idea will help us after we examine the following concept.

Definition 3 Let s be a statement. If s contains no logical connectives other than ∧ and ∨, then the dual
of s, denoted sd, is the statement obtained from s by replacing each occurrence of ∧ and ∨
by ∨ and ∧, respectively, and each occurrence of T0 and F0 by F0 and T0, respectively.

If p is any primitive statement, then pd is the same as p— that is, the dual of a primitive
statement is simply the same primitive statement. And (¬p)d is the same as ¬p. The
statements p ∨ ¬p and p ∧ ¬p are duals of each other whenever p is primitive — and so
are the statements p ∨ T0 and p ∧ F0.

Given the primitive statements p, q, r and the compound statement

s: (p ∧ ¬q) ∨ (r ∧ T0),

we find that the dual of s is

sd : (p ∨ ¬q) ∧ (r ∨ F0).

(Note that ¬q is unchanged as we go from s to sd .)
We now state and use a theorem without proving it. However, we shall justify the result

that appears here.

THEOREM 1 The Principle of Duality. Let s and t be statements that contain no logical connectives other
than ∧ and ∨. If s⇐⇒ t, then sd ⇐⇒ td .

As a result, laws 2 through 10 in our list can be established by proving one of the laws
in each pair and then invoking this principle.

We also find that it is possible to derive many other logical equivalences. For example,
if q, r, s are primitive statements, the results in columns 5 and 7 of Table 11 show us that

(r ∧ s)→ q⇐⇒¬(r ∧ s) ∨ q
or that [(r ∧ s)→ q] ↔ [¬(r ∧ s) ∨ q] is a tautology. However, instead of always con-
structing more (and, unfortunately, larger) truth tables it might be a good idea to recall from
Example 7 that for primitive statements p, q, the compound statement

(p→ q)↔ (¬p ∨ q)
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Table 11

q r s r ∧ s (r ∧ s)→ q ¬(r ∧ s) ¬(r ∧ s) ∨ q
0 0 0 0 1 1 1
0 0 1 0 1 1 1
0 1 0 0 1 1 1
0 1 1 1 0 0 0
1 0 0 0 1 1 1
1 0 1 0 1 1 1
1 1 0 0 1 1 1
1 1 1 1 1 0 1

is a tautology. If we were to replace each occurrence of this primitive statement p by the
compound statement r ∧ s, then we would obtain the earlier tautology

[(r ∧ s)→ q] ↔ [¬(r ∧ s) ∨ q].
What has happened here illustrates the first of the following two substitution rules:

1) Suppose that the compound statement P is a tautology. If p is a primitive statement
that appears in P and we replace each occurrence of p by the same statement q, then
the resulting compound statement P1 is also a tautology.

2) Let P be a compound statement where p is an arbitrary statement that appears in
P , and let q be a statement such that q⇐⇒ p. Suppose that in P we replace one or
more occurrences of p by q. Then this replacement yields the compound statement
P1. Under these circumstances P1⇐⇒ P.

These rules are further illustrated in the following two examples.

EXAMPLE 10 a) From the first of DeMorgan’s Laws we know that for all primitive statements p, q,
the compound statement

P : ¬(p ∨ q)↔ (¬p ∧ ¬q)
is a tautology. When we replace each occurrence of p by r ∧ s, it follows from the
first substitution rule that

P1: ¬[(r ∧ s) ∨ q] ↔ [¬(r ∧ s) ∧ ¬q]
is also a tautology. Extending this result one step further, we may replace each occur-
rence of q by t→ u. The same substitution rule now yields the tautology

P2: ¬[(r ∧ s) ∨ (t→ u)] ↔ [¬(r ∧ s) ∧ ¬(t→ u)],
and hence, by the remarks following shortly after Example 9, the logical equivalence

¬[(r ∧ s) ∨ (t→ u)] ⇐⇒ [¬(r ∧ s) ∧ ¬(t→ u)].
b) For primitive statements p, q, we learn from the last column of Table 12 that the

compound statement [p ∧ (p→ q)] → q is a tautology. Consequently, if r, s, t, u
are any statements, then by the first substitution rule we obtain the new tautology

[(r→ s) ∧ [(r→ s)→ (¬t ∨ u)]] → (¬t ∨ u)
when we replace each occurrence of p by r→ s and each occurrence of q by¬t ∨ u.
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Table 12

p q p→ q p ∧ (p→ q) [p ∧ (p→ q)] → q

0 0 1 0 1
0 1 1 0 1
1 0 0 0 1
1 1 1 1 1

EXAMPLE 11 a) For an application of the second substitution rule, letP denote the compound statement
(p→ q)→ r. Because (p→ q)⇐⇒¬p ∨ q (as shown in Example 7 and Table 6), if
P1 denotes the compound statement (¬p ∨ q)→ r , then P1⇐⇒ P. (We also find that
[(p→ q)→ r] ↔ [(¬p ∨ q)→ r] is a tautology.)

b) Now let P represent the compound statement (actually a tautology) p→ (p ∨ q).
Since ¬¬p⇐⇒ p, the compound statement P1: p→ (¬¬p ∨ q) is derived from P

by replacing only the second occurrence (but not the first occurrence) of p by ¬¬p.
The second substitution rule still implies that P1⇐⇒ P. [Note that P2: ¬¬p→
(¬¬p ∨ q), derived by replacing both occurrences of p by ¬¬p, is also logically
equivalent to P.]

Our next example demonstrates how we can use the idea of logical equivalence together
with the laws of logic and the substitution rules.

EXAMPLE 12 Negate and simplify the compound statement (p ∨ q)→ r.

We organize our explanation as follows:

1) (p ∨ q)→ r⇐⇒¬(p ∨ q) ∨ r [by the first substitution rule because
(s→ t)↔ (¬s ∨ t) is a tautology for primitive statements s, t].

2) Negating the statements in step (1), we have ¬[(p ∨ q)→ r] ⇐⇒¬[¬(p ∨ q) ∨ r].
3) From the first of DeMorgan’s Laws and the first substitution rule,
¬[¬(p ∨ q) ∨ r] ⇐⇒¬¬(p ∨ q) ∧ ¬r.

4) The Law of Double Negation and the second substitution rule now gives us
¬¬(p ∨ q) ∧ ¬r⇐⇒ (p ∨ q) ∧ ¬r.

From steps (1) through (4) we have ¬[(p ∨ q)→ r] ⇐⇒ (p ∨ q) ∧ ¬r.

When we wanted to write the negation of an implication, as in Example 12, we found
that the concept of logical equivalence played a key role — in conjunction with the laws of
logic and the substitution rules. This idea is important enough to warrant a second look.

EXAMPLE 13 Let p, q denote the primitive statements

p: Joan goes to Lake George. q: Mary pays for Joan’s shopping spree.

and consider the implication

p→ q: If Joan goes to Lake George, then Mary will pay for Joan’s shopping spree.
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Here we want to write the negation of p→ q in a way other than simply ¬(p→ q).We
want to avoid writing the negation as “It is not the case that if Joan goes to Lake George,
then Mary will pay for Joan’s shopping spree.”

To accomplish this we consider the following. Since p→ q⇐⇒¬p ∨ q, it follows that
¬(p→ q)⇐⇒¬(¬p ∨ q). Then by DeMorgan’s Law we have¬(¬p ∨ q)⇐⇒¬¬p ∧ ¬q,
and from the Law of Double Negation and the second substitution rule it follows that
¬¬p ∧ ¬q⇐⇒ p ∧ ¬q. Consequently,

¬(p→ q)⇐⇒¬(¬p ∨ q)⇐⇒¬¬p ∧ ¬q⇐⇒ p ∧ ¬q,
and we may write the negation of p→ q in this case as

¬(p→ q): Joan goes to Lake George, but Mary does not
pay for Joan’s shopping spree.

(Note: The negation of an if-then statement does not begin with the word if. It is not another
implication.)

EXAMPLE 14 In Definition 3 the dual sd of a statement swas defined only for statements involving negation
and the basic connectives ∧ and ∨. How does one determine the dual of a statement such
as s: p→ q, where p, q are primitive?

Because (p→ q)⇐⇒¬p ∨ q, sd is logically equivalent to the statement (¬p ∨ q)d,
which is ¬p ∧ q.

The implication p→ q and certain statements related to it are now examined in the
following example.

EXAMPLE 15 Table 13 gives the truth tables for the statements p→ q, ¬q→¬p, q→ p, and
¬p→¬q. The third and fourth columns of the table reveal that

(p→ q)⇐⇒ (¬q→¬p).
Table 13

p q p→ q ¬q→¬p q→ p ¬p→¬q
0 0 1 1 1 1
0 1 1 1 0 0
1 0 0 0 1 1
1 1 1 1 1 1

The statement ¬q→¬p is called the contrapositive of the implication p→ q. Columns 5
and 6 of the table show that

(q→ p)⇐⇒ (¬p→¬q).
The statement q→ p is called the converse of p→ q; ¬p→¬q is called the inverse of
p→ q.We also see from Table 13 that

(p→ q)⇐�⇒ (q→ p) and (¬p→¬q)⇐�⇒ (¬q→¬p).
Consequently, we must keep the implication and its converse straight. The fact that a certain
implication p→ q is true (in particular, as in row 2 of the table) does not require that the
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converse q→ p also be true. However, it does necessitate the truth of the contrapositive
¬q→¬p.

Let us consider a specific example where p, q represent the statements

p: Jeff is concerned about his cholesterol (HDL and LDL) levels.

q: Jeff walks at least two miles three times a week.

Then we obtain

• (The implication: p→ q). If Jeff is concerned about his cholesterol levels, then he
will walk at least two miles three times a week.

• (The contrapositive: ¬q→¬p). If Jeff does not walk at least two miles three times a
week, then he is not concerned about his cholesterol levels.

• (The converse: q→ p). If Jeff walks at least two miles three times a week, then he is
concerned about his cholesterol levels.

• (The inverse: ¬p→¬q). If Jeff is not concerned about his cholesterol levels, then he
will not walk at least two miles three times a week.

If p is true and q is false, then the implication p→ q and the contrapositive ¬q→¬p
are false, while the converse q→ p and the inverse ¬p→¬q are true. For the case where
p is false and q is true, the implication p→ q and the contrapositive ¬q→¬p are now
true, while the converse q→ p and the inverse¬p→¬q are false. Whenp, q are both true
or both false, then the implication is true, as are the contrapositive, converse, and inverse.

We turn now to two examples involving the simplification of compound statements. For
simplicity, we shall list the major laws of logic being used, but we shall not mention any
applications of our two substitution rules.

EXAMPLE 16 For primitive statements p, q, is there any simpler way to express the compound statement
(p ∨ q) ∧ ¬(¬p ∧ q)— that is, can we find a simpler statement that is logically equivalent
to the one given?

Here one finds that

(p ∨ q) ∧ ¬(¬p ∧ q) Reasons
⇐⇒ (p ∨ q) ∧ (¬¬p ∨ ¬q) DeMorgan’s Law
⇐⇒ (p ∨ q) ∧ (p ∨ ¬q) Law of Double Negation
⇐⇒ (p ∨ (q ∧ ¬q) Distributive Law of ∨ over ∧
⇐⇒ p ∨ F0 Inverse Law
⇐⇒ p Identity Law

Consequently, we see that

(p ∨ q) ∧ ¬(¬p ∧ q)⇐⇒ p,

so we can express the given compound statement by the simpler logically equivalent state-
ment p.

EXAMPLE 17 Consider the compound statement

¬[¬[(p ∨ q) ∧ r] ∨ ¬q],
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wherep, q, r are primitive statements. This statement contains four occurrences of primitive
statements, three negation symbols, and three connectives.

From the laws of logic it follows that

¬[¬[(p ∨ q) ∧ r] ∨ ¬q] Reasons
⇐⇒¬¬[(p ∨ q) ∧ r] ∧ ¬¬q DeMorgan’s Law
⇐⇒ [(p ∨ q) ∧ r] ∧ q Law of Double Negation
⇐⇒ (p ∨ q) ∧ (r ∧ q) Associative Law of ∧
⇐⇒ (p ∨ q) ∧ (q ∧ r) Commutative Law of ∧
⇐⇒ [(p ∨ q) ∧ q] ∧ r Associative Law of ∧
⇐⇒ q ∧ r Absorption Law (as well as the

Commutative Laws for ∧ and ∨)

Consequently, the original statement

¬[¬[(p ∨ q) ∧ r] ∨ ¬q]
is logically equivalent to the much simpler statement

q ∧ r,
where we find only two primitive statements, no negation symbols, and only one connective.

Note further that from Example 7 we have

¬[[(p ∨ q) ∧ r] → ¬q] ⇐⇒¬[¬[(p ∨ q) ∧ r] ∨ ¬q],
so it follows that

¬[[(p ∨ q) ∧ r] → ¬q] ⇐⇒ q ∧ r.

We close this section with an application on how the ideas in Examples 16 and 17 can be
used in simplifying switching networks.

EXAMPLE 18 A switching network is made up of wires and switches connecting two terminals T1 and
T2. In such a network, each switch is either open (0), so that no current flows through it, or
closed (1), so that current does flow through it.

In Fig. 1(a) we have a network with one switch. Each of parts (b) and (c) contains two
(independent) switches.

p

q

(a) (b) (c)

T1

p p q
T2 T1 T2 T1 T2

Figure 1

For the network in part (b), current flows from T1 to T2 if either of the switches p, q is
closed. We call this a parallel network and represent it by p ∨ q. The network in part (c)
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requires that each of the switches p, q be closed in order for current to flow from T1 to T2.
Here the switches are in series; this network is represented by p ∧ q.

The switches in a network need not act independently of each other. Consider the network
shown in Fig. 2(a). Here the switches labeled t and¬t are not independent. We have coupled
these two switches so that t is open (closed) if and only if¬t is simultaneously closed (open).
The same is true for the switches at q, ¬q. (Also, for example, the three switches labeled
p are not independent.)

p

T1

(a)

p p

r

q

r

t

q

t

(b)

T2t

q

r

p

T2 T1

Figure 2

This network is represented by the statement (p ∨ q ∨ r) ∧ (p ∨ t ∨ ¬q) ∧
(p ∨ ¬t ∨ r). Using the laws of logic, we may simplify this statement as follows.

(p ∨ q ∨ r) ∧ (p ∨ t ∨ ¬q) ∧ (p ∨ ¬t ∨ r) Reasons
⇐⇒ p ∨ [(q ∨ r) ∧ (t ∨ ¬q) ∧ (¬t ∨ r)] Distributive Law of ∨

over ∧
⇐⇒ p ∨ [(q ∨ r) ∧ (¬t ∨ r) ∧ (t ∨ ¬q)] Commutative Law of ∧
⇐⇒ p ∨ [((q ∧ ¬t) ∨ r) ∧ (t ∨ ¬q)] Distributive Law of ∨

over ∧
⇐⇒ p ∨ [((q ∧ ¬t) ∨ r) ∧ (¬¬t ∨ ¬q)] Law of Double Negation
⇐⇒ p ∨ [((q ∧ ¬t) ∨ r) ∧ ¬(¬t ∧ q)] DeMorgan’s Law
⇐⇒ p ∨ [¬(¬t ∧ q) ∧ ((¬t ∧ q) ∨ r)] Commutative Law of ∧

(twice)
⇐⇒ p ∨ [(¬(¬t ∧ q) ∧ (¬t ∧ q)) ∨ (¬(¬t ∧ q) ∧ r)] Distributive Law of ∧

over ∨
⇐⇒ p ∨ [F0 ∨ (¬(¬t ∧ q) ∧ r)] ¬s ∧ s⇐⇒ F0, for any

statement s
⇐⇒ p ∨ [(¬(¬t ∧ q)) ∧ r] F0 is the identity for ∨
⇐⇒ p ∨ [r ∧ ¬(¬t ∧ q)] Commutative Law of ∧
⇐⇒ p ∨ [r ∧ (t ∨ ¬q)] DeMorgan’s Law and

the Law of Double
Negation

Hence (p ∨ q ∨ r) ∧ (p ∨ t ∨ ¬q) ∧ (p ∨ ¬t ∨ r)⇐⇒ p ∨ [r ∧ (t ∨ ¬q)], and the net-
work shown in Fig. 2(b) is equivalent to the original network in the sense that current
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flows from T1 to T2 in network (a) exactly when it does so in network (b). But network (b)
has only four switches, five fewer than network (a).

EXERCISES 2

1. Let p, q, r denote primitive statements.

a) Use truth tables to verify the following logical equiva-
lences.

i) p→ (q ∧ r)⇐⇒ (p→ q) ∧ (p→ r)

ii) [(p ∨ q)→ r] ⇐⇒ [(p→ r) ∧ (q→ r)]
iii) [p→ (q ∨ r)] ⇐⇒ [¬r→ (p→ q)]

b) Use the substitution rules to show that

[p→ (q ∨ r)] ⇐⇒ [(p ∧ ¬q)→ r].
2. Verify the first Absorption Law by means of a truth table.

3. Use the substitution rules to verify that each of the following
is a tautology. (Here p, q, and r are primitive statements.)

a) [p ∨ (q ∧ r)] ∨ ¬[p ∨ (q ∧ r)]
b) [(p ∨ q)→ r] ↔ [¬r→¬(p ∨ q)]

4. For primitive statements p, q, r, and s, simplify the com-
pound statement

[[[(p ∧ q) ∧ r] ∨ [(p ∧ q) ∧ ¬r]] ∨ ¬q] → s.

5. Negate and express each of the following statements in
smooth English.

a) Kelsey will get a good education if she puts her studies
before her interest in cheerleading.

b) Norma is doing her homework, and Karen is practicing
her piano lessons.

c) If Harold passes his C++ course and finishes his data
structures project, then he will graduate at the end of the
semester.

6. Negate each of the following and simplify the resulting
statement.

a) p ∧ (q ∨ r) ∧ (¬p ∨ ¬q ∨ r)
b) (p ∧ q)→ r

c) p→ (¬q ∧ r)
d) p ∨ q ∨ (¬p ∧ ¬q ∧ r)

7. a) If p, q are primitive statements, prove that

(¬p ∨ q) ∧ (p ∧ (p ∧ q))⇐⇒ (p ∧ q).
b) Write the dual of the logical equivalence in part (a).

8. Write the dual for (a) q→ p, (b) p→ (q ∧ r), (c) p↔ q,

and (d) p � q, where p, q, and r are primitive statements.

9. Write the converse, inverse, and contrapositive of each of
the following implications. For each implication, determine its
truth value as well as the truth values of its corresponding con-
verse, inverse, and contrapositive.

a) If 0+ 0= 0, then 1+ 1= 1.

b) If −1< 3 and 3+ 7= 10, then sin ( 3π
2 )=−1.

10. Determine whether each of the following is true or false.
Here p, q are arbitrary statements.

a) An equivalent way to express the converse of “p is
sufficient for q” is “p is necessary for q.”

b) An equivalent way to express the inverse of “p is
necessary for q” is “¬q is sufficient for ¬p.”
c) An equivalent way to express the contrapositive of
“p is necessary for q” is “¬q is necessary for ¬p.”

11. Let p, q, and r denote primitive statements. Find a form of
the contrapositive ofp→ (q→ r)with (a) only one occurrence
of the connective→; (b) no occurrences of the connective→.

12. Show that for primitive statements p, q,

p � q⇐⇒ [(p ∧ ¬q) ∨ (¬p ∧ q)] ⇐⇒¬(p↔ q).

13. Verify that [(p↔ q) ∧ (q↔ r) ∧ (r↔ p)] ⇐⇒
[(p→ q) ∧ (q→ r) ∧ (r→ p)], for primitive statements p,
q, and r .

14. For primitive statements p, q,

a) verify that p→ [q→ (p ∧ q)] is a tautology.

b) verify that (p ∨ q)→ [q→ q] is a tautology by using
the result from part (a) along with the substitution rules and
the laws of logic.

c) is (p ∨ q)→ [q→ (p ∧ q)] a tautology?

15. Define the connective “Nand” or “Not . . . and . . .” by
(p ↑ q)⇐⇒¬(p ∧ q), for any statements p, q. Represent the
following using only this connective.

a) ¬p b) p ∨ q c) p ∧ q
d) p→ q e) p↔ q

16. The connective “Nor” or “Not . . . or . . .” is defined for
any statements p, q by (p ↓ q)⇐⇒¬(p ∨ q). Represent the
statements in parts (a) through (e) of Exercise 15, using only
this connective.

17. For any statements p, q, prove that

a) ¬(p ↓ q)⇐⇒ (¬p ↑ ¬q)
b) ¬(p ↑ q)⇐⇒ (¬p ↓ ¬q)

18. Give the reasons for each step in the following simplifica-
tions of compound statements.

a) [(p ∨ q) ∧ (p ∨ ¬q)] ∨ q Reasons
⇐⇒ [p ∨ (q ∧ ¬q)] ∨ q
⇐⇒ (p ∨ F0) ∨ q
⇐⇒ p ∨ q
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p q

q

T1T2 T2

Figure 3

b) (p→ q) ∧ [¬q ∧ (r ∨ ¬q)] Reasons
⇐⇒ (p→ q) ∧ ¬q
⇐⇒ (¬p ∨ q) ∧ ¬q
⇐⇒¬q ∧ (¬p ∨ q)
⇐⇒ (¬q ∧ ¬p) ∨ (¬q ∧ q)
⇐⇒ (¬q ∧ ¬p) ∨ F0

⇐⇒¬q ∧ ¬p
⇐⇒¬(q ∨ p)

19. Provide the steps and reasons, as in Exercise 18, to establish
the following logical equivalences.

a) p ∨ [p ∧ (p ∨ q)] ⇐⇒ p

b) p ∨ q ∨ (¬p ∧ ¬q ∧ r)⇐⇒ p ∨ q ∨ r
c) [(¬p ∨ ¬q)→ (p ∧ q ∧ r)] ⇐⇒ p ∧ q

20. Simplify each of the networks shown in Fig. 3.

3
Logical Implication: Rules of Inference

At the end of Section 1 we mentioned the notion of a valid argument. Now we will begin a
formal study of what we shall mean by an argument and when such an argument is valid.
This in turn will help us when we investigate how to prove theorems throughout the text.

We start by considering the general form of an argument, one we wish to show is valid.
So let us consider the implication

(p1 ∧ p2 ∧ p3 ∧ · · · ∧ pn)→ q.

Here n is a positive integer, the statements p1, p2, p3, . . . , pn are called the premises
of the argument, and the statement q is the conclusion for the argument.

The preceding argument is called valid if whenever each of the premisesp1, p2, p3, . . . ,

pn is true, then the conclusion q is likewise true. [Note that if any one of
p1, p2, p3, . . . , pn is false, then the hypothesis p1 ∧ p2 ∧ p3 ∧ · · · ∧ pn is false and the
implication (p1 ∧ p2 ∧ p3 ∧ · · · ∧ pn)→ q is automatically true, regardless of the truth
value of q.] Consequently, one way to establish the validity of a given argument is to show
that the statement (p1 ∧ p2 ∧ p3 ∧ · · · ∧ pn)→ q is a tautology.

The following examples illustrate this particular approach.

EXAMPLE 19 Let p, q, r denote the primitive statements given as

p: Roger studies.

q: Roger plays racketball.

r: Roger passes discrete mathematics.
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Now let p1, p2, p3 denote the premises

p1: If Roger studies, then he will pass discrete mathematics.

p2: If Roger doesn’t play racketball, then he’ll study.

p3: Roger failed discrete mathematics.

We want to determine whether the argument

(p1 ∧ p2 ∧ p3)→ q

is valid. To do so, we rewrite p1, p2, p3 as

p1: p→ r p2: ¬q→ p p3: ¬r
and examine the truth table for the implication

[(p→ r) ∧ (¬q→ p) ∧ ¬r] → q

given in Table 14. Because the final column in Table 14 contains all 1’s, the implication is
a tautology. Hence we can say that (p1 ∧ p2 ∧ p3)→ q is a valid argument.

Table 14

p1 p2 p3 (p1 ∧ p2 ∧ p3)→ q

p q r p→ r ¬q→ p ¬r [(p→ r) ∧ (¬q→ p) ∧ ¬r] → q

0 0 0 1 0 1 1
0 0 1 1 0 0 1
0 1 0 1 1 1 1
0 1 1 1 1 0 1
1 0 0 0 1 1 1
1 0 1 1 1 0 1
1 1 0 0 1 1 1
1 1 1 1 1 0 1

EXAMPLE 20 Let us now consider the truth table in Table 15. The results in the last column of this table
show that for any primitive statements p, r, and s, the implication

[p ∧ ((p ∧ r)→ s)] → (r→ s)

Table 15

p1 p2 q (p1 ∧ p2)→ q

p r s p ∧ r (p ∧ r)→ s r→ s [(p ∧ ((p ∧ r)→ s)] → (r→ s)

0 0 0 0 1 1 1
0 0 1 0 1 1 1
0 1 0 0 1 0 1
0 1 1 0 1 1 1
1 0 0 0 1 1 1
1 0 1 0 1 1 1
1 1 0 1 0 0 1
1 1 1 1 1 1 1
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is a tautology. Consequently, for premises

p1: p p2: (p ∧ r)→ s

and conclusion q: (r→ s), we know that (p1 ∧ p2)→ q is a valid argument, and we may
say that the truth of the conclusion q is deduced or inferred from the truth of the premises
p1, p2.

The idea presented in the preceding two examples leads to the following.

Definition 4 If p, q are arbitrary statements such that p→ q is a tautology, then we say that p logically
implies q and we write p⇒ q to denote this situation.

When p, q are statements and p⇒ q, the implication p→ q is a tautology and we
refer to p→ q as a logical implication. Note that we can avoid dealing with the idea of a
tautology here by saying that p⇒ q (that is, p logically implies q) if q is true whenever p
is true.

In Example 6 we found that for primitive statements p, q, the implication p→ (p ∨ q)
is a tautology. In this case, therefore, we can say that p logically implies p ∨ q and write
p⇒ (p ∨ q). Furthermore, because of the first substitution rule, we also find that p⇒
(p ∨ q) for any statements p, q— that is, p→ (p ∨ q) is a tautology for any statements
p, q, whether or not they are primitive statements.

Let p, q be arbitrary statements.

1) If p⇐⇒ q, then the statement p↔ q is a tautology, so the statements p, q have the
same (corresponding) truth values. Under these conditions the statements p→ q,

q→ p are tautologies, and we have p⇒ q and q⇒ p.

2) Conversely, suppose that p⇒ q and q⇒ p. The logical implication p→ q tells us
that we never have statement p with the truth value 1 and statement q with the truth
value 0. But could we have q with the truth value 1 and p with the truth value 0?
If this occurred, we could not have the logical implication q→ p. Therefore, when
p⇒ q and q⇒ p, the statements p, q have the same (corresponding) truth values
and p⇐⇒ q.

Finally, the notation p �⇒ q is used to indicate that p→ q is not a tautology — so the given
implication (namely, p→ q) is not a logical implication.

EXAMPLE 21 From the results in Example 8 (Table 9) and the first substitution rule, we know that for
statements p, q,

¬(p ∧ q)⇐⇒¬p ∨ ¬q.
Consequently,

¬(p ∧ q)⇒ (¬p ∨ ¬q) and (¬p ∨ ¬q)⇒¬(p ∧ q)
for all statements p, q. Alternatively, because each of the implications

¬(p ∧ q)→ (¬p ∨ ¬q) and (¬p ∨ ¬q)→¬(p ∧ q)
is a tautology, we may also write

[¬(p ∧ q)→ (¬p ∨ ¬q)] ⇐⇒ T0 and [(¬p ∨ ¬q)→¬(p ∧ q)] ⇐⇒ T0.
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Returning now to our study of techniques for establishing the validity of an argument,
we must take a careful look at the size of Tables 14 and 15. Each table has eight rows. For
Table 14 we were able to express the three premises p1, p2, and p3, and the conclusion q, in
terms of the three primitive statementsp, q, and r .A similar situation arose for the argument
we analyzed in Table 15, where we had only two premises. But if we were confronted, for
example, with establishing whether

[(p→ r) ∧ (r→ s) ∧ (t ∨ ¬s) ∧ (¬t ∨ u) ∧ ¬u] → ¬p

is a logical implication (or presents a valid argument), the needed table would require
25 = 32 rows. As the number of premises gets larger and our truth tables grow to 64, 128,
256, or more rows, this first technique for establishing the validity of an argument rapidly
loses its appeal.

Furthermore, looking at Table 14 once again, we realize that in order to establish whether

[(p→ r) ∧ (¬q→ p) ∧ ¬r] → q

is a valid argument, we need to consider only those rows of the table where each of the three
premisesp→ r ,¬q→ p, and¬r has the truth value 1. (Remember that if the hypothesis —
consisting of the conjunction of all of the premises — is false, then the implication is true
regardless of the truth value of the conclusion.) This happens only in the third row, so a
good deal of Table 14 is not really necessary. (It is not always the case that only one row
has all of the premises true. Note that in Table 15 we would be concerned with the results
in rows 5, 6, and 8.)

Consequently, what these observations are telling us is that we can possibly eliminate a
great deal of the effort put into constructing the truth tables in Table 14 and Table 15. And
since we want to avoid even larger tables, we are persuaded to develop a list of techniques
called rules of inference that will help us as follows:

1) Using these techniques will enable us to consider only the cases wherein all the
premises are true. Hence we consider the conclusion only for those rows of a truth
table wherein each premise has the truth value 1— and we do not construct the truth
table.

2) The rules of inference are fundamental in the development of a step-by-step validation
of how the conclusion q logically follows from the premises p1, p2, p3, . . . , pn in
an implication of the form

(p1 ∧ p2 ∧ p3 ∧ · · · ∧ pn)→ q.

Such a development will establish the validity of the given argument, for it will show
how the truth of the conclusion can be deduced from the truth of the premises.

Each rule of inference arises from a logical implication. In some cases, the logical
implication is stated without proof. (However, several of these proofs will be dealt with in
the Section Exercises.)

Many rules of inference arise in the study of logic. We concentrate on those that we need
to help us validate the arguments that arise in our study of logic. These rules will also help
us later when we turn to methods for proving theorems throughout the remainder of the
text. Table 19 summarizes the rules we shall now start to investigate.
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EXAMPLE 22 For a first example we consider the rule of inference called Modus Ponens, or the Rule of
Detachment. (Modus Ponens comes from Latin and may be translated as “the method of
affirming.”) In symbolic form this rule is expressed by the logical implication

[p ∧ (p→ q)] → q,

which is verified in Table 16, where we find that the fourth row is the only one where both
of the premises p and p→ q (and the conclusion q) are true.

Table 16

p q p→ q p ∧ (p→ q) [p ∧ (p→ q)] → q

0 0 1 0 1
0 1 1 0 1
1 0 0 0 1
1 1 1 1 1

The actual rule will be written in the tabular form

p

p→ q

∴ q

where the three dots ( ∴ ) stand for the word “therefore,” indicating that q is the conclusion
for the premises p and p→ q, which appear above the horizontal line.

This rule arises when we argue that if (1) p is true, and (2) p→ q is true (or p⇒ q),

then the conclusion q must also be true. (After all, if q were false and p were true, then we
could not have p→ q true.)

The following valid arguments show us how to apply the Rule of Detachment.

a) 1) Lydia wins a ten-million-dollar lottery. p

2) If Lydia wins a ten-million-dollar lottery, then Kay will quit her job. p→ q

3) Therefore Kay will quit her job. ∴ q
b) 1) If Allison vacations in Paris, then she will have to win a scholarship. p→ q

2) Allison is vacationing in Paris. p

3) Therefore Allison won a scholarship. ∴ q
Before closing the discussion on our first rule of inference let us make one final ob-

servation. The two examples in (a) and (b) might suggest that the valid argument
[p ∧ (p→ q)] → q is appropriate only for primitive statements p, q. However,
since [p ∧ (p→ q)] → q is a tautology for primitive statements p, q, it follows from the
first substitution rule that (all occurrences of) p or q may be replaced by compound state-
ments — and the resulting implication will also be a tautology. Consequently, if r, s, t, and
u are primitive statements, then

r ∨ s
(r ∨ s)→ (¬t ∧ u)

∴ ¬t ∧ u
is a valid argument, by the Rule of Detachment — just as [(r ∨ s) ∧ [(r ∨ s)→
(¬t ∧ u)]] → (¬t ∧ u) is a tautology.
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A similar situation — in which we can apply the first substitution rule — occurs for each
of the rules of inference we shall study. However, we shall not mention this so explicitly
with these other rules of inference.

EXAMPLE 23 A second rule of inference is given by the logical implication

[(p→ q) ∧ (q→ r)] → (p→ r),

where p, q, and r are any statements. In tabular form it is written

p→ q

q→ r

∴ p→ r

This rule, which is referred to as the Law of the Syllogism, arises in many arguments. For
example, we may use it as follows:

1) If the integer 35244 is divisible by 396, then the integer 35244 is
divisible by 66. p→ q

2) If the integer 35244 is divisible by 66, then the integer 35244 is
divisible by 3. q→ r

3) Therefore, if the integer 35244 is divisible by 396, then the integer
35244 is divisible by 3. ∴ p→ r

The next example involves a slightly longer argument that uses the rules of inference
developed in Examples 22 and 23. In fact, we find here that there may be more than one
way to establish the validity of an argument.

EXAMPLE 24 Consider the following argument.

1) Rita is baking a cake.

2) If Rita is baking a cake, then she is not practicing her flute.

3) If Rita is not practicing her flute, then her father will not buy her a car.

4) Therefore Rita’s father will not buy her a car.

Concentrating on the forms of the statements in the preceding argument, we may write
the argument as

p

p→¬q
¬q→¬r

∴ ¬r

(*)

Now we need no longer worry about what the statements actually stand for. Our objective
is to use the two rules of inference that we have studied so far in order to deduce the truth
of the statement ¬r from the truth of the three premises p, p→¬q, and ¬q→¬r.
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We establish the validity of the argument as follows:

Steps Reasons
1) p→¬q Premise
2) ¬q→¬r Premise
3) p→¬r This follows from steps (1) and (2) and the Law of the Syllogism
4) p Premise
5) ∴ ¬r This follows from steps (4) and (3) and the Rule of Detachment

Before continuing with a third rule of inference we shall show that the argument presented
at (∗) can be validated in a second way. Here our “reasons” will be shortened to the form
we shall use for the rest of the section. However, we shall always list whatever is needed to
demonstrate how each step in an argument comes about, or follows, from prior steps.

A second way to validate the argument follows.

Steps Reasons
1) p Premise
2) p→¬q Premise
3) ¬q Steps (1) and (2) and the Rule of Detachment
4) ¬q→¬r Premise
5) ∴ ¬r Steps (3) and (4) and the Rule of Detachment

EXAMPLE 25 The rule of inference called Modus Tollens is given by

p→ q

¬q
∴ ¬p

This follows from the logical implication [(p→ q) ∧ ¬q] → ¬p. Modus Tollens comes
from Latin and can be translated as “method of denying.” This is appropriate because we
deny the conclusion, q, so as to prove ¬p. (Note that we can also obtain this rule from the
one for Modus Ponens by using the fact that p→ q⇐⇒¬q→¬p.)

The following exemplifies the use of Modus Tollens is making a valid inference:

1) If Connie is elected president of Phi Delta sorority, then Helen will
pledge that sorority. p→ q

2) Helen did not pledge Phi Delta sorority. ¬q
3) Therefore Connie was not elected president of Phi Delta sorority. ∴ ¬p
And now we shall use Modus Tollens to show that the following argument is valid (for

primitive statements p, r, s, t, and u).

p→ r

r→ s

t ∨ ¬s
¬t ∨ u
¬u

∴ ¬p
Both Modus Tollens and the Law of the Syllogism come into play, along with the logical

equivalence we developed in Example 7.
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Steps Reasons
1) p→ r, r→ s Premises
2) p→ s Step (1) and the Law of the Syllogism
3) t ∨ ¬s Premise
4) ¬s ∨ t Step (3) and the Commutative Law of ∨
5) s→ t Step (4) and the fact that ¬s ∨ t⇐⇒ s→ t

6) p→ t Steps (2) and (5) and the Law of the Syllogism
7) ¬t ∨ u Premise
8) t→ u Step (7) and the fact that ¬t ∨ u⇐⇒ t→ u

9) p→ u Steps (6) and (8) and the Law of the Syllogism
10) ¬u Premise
11) ∴ ¬p Steps (9) and (10) and Modus Tollens

Before continuing with another rule of inference let us summarize what we have just
accomplished (and not accomplished). The preceding argument shows that

[(p→ r) ∧ (r→ s) ∧ (t ∨ ¬s) ∧ (¬t ∨ u) ∧ ¬u] ⇒ ¬p.
We have not used the laws of logic, as in Section 2, to express the statement

(p→ r) ∧ (r→ s) ∧ (t ∨ ¬s) ∧ (¬t ∨ u) ∧ ¬u
as a simpler logically equivalent statement. Note that

[(p→ r) ∧ (r→ s) ∧ (t ∨ ¬s) ∧ (¬t ∨ u) ∧ ¬u] ⇐�⇒ ¬p.
For when p has the truth value 0 and u has the truth value 1, the truth value of¬p is 1 while
that of ¬u and (p→ r) ∧ (r→ s) ∧ (t ∨ ¬s) ∧ (¬t ∨ u) ∧ ¬u is 0.

Let us once more examine a tabular form for each of the two related rules of inference,
Modus Ponens and Modus Tollens.

Modus Ponens: p→ q Modus Tollens: p→ q

p ¬q
∴ q ∴ ¬p

The reason we wish to do this is that there are other tabular forms that may arise — and
these are similar in appearance but present invalid arguments — where each of the premises
is true but the conclusion is false.

a) Consider the following argument:
1) If Margaret Thatcher is the president of the United States, then

she is at least 35 years old. p→ q

2) Margaret Thatcher is at least 35 years old. q

3) Therefore Margaret Thatcher is the president of the United States. ∴ p
Here we find that [(p→ q) ∧ q] → p is not a tautology. For if we consider the truth
value assignments p: 0 and q: 1, then each of the premises p→ q and q is true
while the conclusion p is false. This invalid argument results from the fallacy
(error in reasoning) where we try to argue by the converse — that is, while
[(p→ q) ∧ p] ⇒ q, it is not the case that [(p→ q) ∧ q] ⇒ p.
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b) A second argument where the conclusion doesn’t necessarily follow from the premises
may be given by:
1) If 2+ 3= 6, then 2+ 4= 6. p→ q

2) 2+ 3 �= 6. ¬p
3) Therefore 2+ 4 �= 6. ∴ ¬q

In this case we find that [(p→ q) ∧ ¬p] → ¬q is not a tautology. Once again
the truth value assignments p: 0 and q: 1 show us that the premises p→ q and ¬p
can both be true while the conclusion ¬q is false. The fallacy behind this invalid
argument arises from our attempt to argue by the inverse — for although
[(p→ q) ∧ ¬q] ⇒ ¬p, it does not follow that [(p→ q) ∧ ¬p] ⇒ ¬q.

Before proceeding further we now mention a rather simple but important rule of inference.

EXAMPLE 26 The following rule of inference arises from the observation that if p, q are true statements,
then p ∧ q is a true statement.

Now suppose that statements p, q occur in the development of an argument. These
statements may be (given) premises or results that are derived from premises and/or from
results developed earlier in the argument. Then under these circumstances the two statements
p, q can be combined into their conjunction p ∧ q, and this new statement can be used in
later steps as the argument continues.

We call this rule the Rule of Conjunction and write it in tabular form as

p

q

∴ p ∧ q

As we proceed further with our study of rules of inference, we find another fairly simple
but important rule.

EXAMPLE 27 The following rule of inference — one we may feel just illustrates good old common sense —
is called the Rule of Disjunctive Syllogism. This rule comes about from the logical impli-
cation

[(p ∨ q) ∧ ¬p] → q,

which we can derive from Modus Ponens by observing that p ∨ q⇐⇒¬p→ q.

In tabular form we write

p ∨ q
¬p

∴ q
This rule of inference arises when there are exactly two possibilities to consider and we are
able to eliminate one of them as being true. Then the other possibility has to be true. The
following illustrates one such application of this rule.

1) Bart’s wallet is in his back pocket or it is on his desk. p ∨ q
2) Bart’s wallet is not in his back pocket. ¬p
3) Therefore Bart’s wallet is on his desk. ∴ q
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At this point we have examined five rules of inference. But before we try to validate
any more arguments like the one (with 11 steps) in Example 25, we shall look at one more
of these rules. This one underlies a method of proof that is sometimes confused with the
contrapositive method (or proof) given in Modus Tollens. The confusion arises because
both methods involve the negation of a statement. However, we will soon realize that these
are two distinct methods. (Toward the end of Section 5 we shall compare and contrast these
two methods once again.)

EXAMPLE 28 Let p denote an arbitrary statement, and F0 a contradiction. The results in column 5 of
Table 17 show that the implication (¬p→ F0)→ p is a tautology, and this provides us
with the rule of inference called the Rule of Contradiction. In tabular form this rule is written
as

¬p→ F0

∴ p

Table 17

p ¬p F0 ¬p→ F0 (¬p→ F0)→ p

1 0 0 1 1
0 1 0 0 1

This rule tells us that if p is a statement and¬p→ F0 is true, then¬pmust be false because
F0 is false. So then we have p true.

The Rule of Contradiction is the basis of a method for establishing the validity of an
argument — namely, the method of Proof by Contradiction, or Reductio ad Absurdum. The
idea behind the method of Proof by Contradiction is to establish a statement (namely, the
conclusion of an argument) by showing that, if this statement were false, then we would
be able to deduce an impossible consequence. The use of this method arises in certain
arguments which we shall now describe.

In general, when we want to establish the validity of the argument

(p1 ∧ p2 ∧ · · · ∧ pn)→ q,

we can establish the validity of the logically equivalent argument

(p1 ∧ p2 ∧ · · · ∧ pn ∧ ¬q)→ F0.

[This follows from the tautology in column 7 of Table 18 and the first substitution rule —
where we replace the primitive statement p by the statement (p1 ∧ p2 ∧ · · · ∧ pn).]

Table 18

p q F0 p ∧ ¬q (p ∧ ¬q)→ F0 p→ q (p→ q)↔ [(p ∧ ¬q)→ F0]
0 0 0 0 1 1 1
0 1 0 0 1 1 1
1 0 0 1 0 0 1
1 1 0 0 1 1 1
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When we apply the method of Proof by Contradiction, we first assume that what we are
trying to validate (or prove) is actually false. Then we use this assumption as an additional
premise in order to produce a contradiction (or impossible situation) of the form s ∧ ¬s, for
some statement s. Once we have derived this contradiction we may then conclude that the
statement we were given was in fact true — and this validates the argument (or completes
the proof).

We shall turn to the method of Proof by Contradiction when it is (or appears to be) easier
to use¬q in conjunction with the premisesp1, p2, . . . , pn in order to deduce a contradiction
than it is to deduce the conclusion q directly from the premisesp1, p2, . . . , pn. The method
of Proof by Contradiction will be used in some of the later examples for this section —
namely, Examples 32 and 35.

Now that we have examined six rules of inference, we summarize these rules and intro-
duce several others in Table 19 (on the following page).

The next five examples will present valid arguments. In so doing, these examples will
show us how to apply the rules listed in Table 19 in conjunction with other results, such as
the laws of logic.

EXAMPLE 29 Our first example demonstrates the validity of the argument

p→ r

¬p→ q

q→ s

∴ ¬r→ s

Steps Reasons
1) p→ r Premise
2) ¬r→¬p Step (1) and p→ r⇐⇒¬r→¬p
3) ¬p→ q Premise
4) ¬r→ q Steps (2) and (3) and the Law of the Syllogism
5) q→ s Premise
6) ∴ ¬r→ s Steps (4) and (5) and the Law of the Syllogism

A second way to validate the given argument proceeds as follows.

Steps Reasons
1) p→ r Premise
2) q→ s Premise
3) ¬p→ q Premise
4) p ∨ q Step (3) and (¬p→ q)⇐⇒ (¬¬p ∨ q)⇐⇒ (p ∨ q), where the

second logical equivalence follows by the Law of Double Negation
5) r ∨ s Steps (1), (2), and (4) and the Rule of the Constructive Dilemma
6) ∴ ¬r→ s Step (5) and (r ∨ s)⇐⇒ (¬¬r ∨ s)⇐⇒ (¬r→ s), where the Law of

Double Negation is used in the first logical equivalence

The next example is somewhat more involved.
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Table 19

Rule of Inference Related Logical Implication Name of Rule

1) p [p ∧ (p→ q)] → q Rule of Detachment
p→ q (Modus Ponens)

∴ q
2) p→ q [(p→ q) ∧ (q→ r)] → (p→ r) Law of the Syllogism

q→ r

∴ p→ r

3) p→ q [(p→ q) ∧ ¬q] → ¬p Modus Tollens
¬q

∴ ¬p
4) p Rule of Conjunction

q

∴ p ∧ q
5) p ∨ q [(p ∨ q) ∧ ¬p] → q Rule of Disjunctive

¬p Syllogism
∴ q

6) ¬p→ F0 (¬p→ F0)→ p Rule of
∴ p Contradiction

7) p ∧ q (p ∧ q)→ p Rule of Conjunctive
∴ p Simplification

8) p p→ p ∨ q Rule of Disjunctive
∴ p ∨ q Amplification

9) p ∧ q [(p ∧ q) ∧ [p→ (q→ r)]] → r Rule of Conditional
p→ (q→ r) Proof

∴ r
10) p→ r [(p→ r) ∧ (q→ r)] → [(p ∨ q)→ r] Rule for Proof

q→ r by Cases
∴ (p ∨ q)→ r

11) p→ q [(p→ q) ∧ (r→ s) ∧ (p ∨ r)] → (q ∨ s) Rule of the
r→ s Constructive
p ∨ r Dilemma

∴ q ∨ s
12) p→ q [(p→ q) ∧ (r→ s) ∧ (¬q ∨ ¬s)] → (¬p ∨ ¬r) Rule of the

r→ s Destructive
¬q ∨ ¬s Dilemma

∴ ¬p ∨ ¬r

EXAMPLE 30 Establish the validity of the argument

p→ q

q→ (r ∧ s)
¬r ∨ (¬t ∨ u)
p ∧ t

∴ u
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Steps Reasons
1) p→ q Premise
2) q→ (r ∧ s) Premise
3) p→ (r ∧ s) Steps (1) and (2) and the Law of the Syllogism
4) p ∧ t Premise
5) p Step (4) and the Rule of Conjunctive Simplification
6) r ∧ s Steps (5) and (3) and the Rule of Detachment
7) r Step (6) and the Rule of Conjunctive Simplification
8) ¬r ∨ (¬t ∨ u) Premise
9) ¬(r ∧ t) ∨ u Step (8), the Associative Law of ∨, and DeMorgan’s Laws

10) t Step (4) and the Rule of Conjunctive Simplification
11) r ∧ t Steps (7) and (10) and the Rule of Conjunction
12) ∴ u Steps (9) and (11), the Law of Double Negation, and the

Rule of Disjunctive Syllogism

EXAMPLE 31 This example will provide a way to show that the following argument is valid.

If the band could not play rock music or the refreshments were not delivered
on time, then the New Year’s party would have been canceled and Alicia would
have been angry. If the party were canceled, then refunds would have had to be
made. No refunds were made.

Therefore the band could play rock music.

First we convert the given argument into symbolic form by using the following statement
assignments:

p: The band could play rock music.
q: The refreshments were delivered on time.
r: The New Year’s party was canceled.
s: Alicia was angry.
t : Refunds had to be made.

The argument above now becomes

(¬p ∨ ¬q)→ (r ∧ s)
r→ t

¬t
∴ p

We can establish the validity of this argument as follows.

Steps Reasons
1) r→ t Premise
2) ¬t Premise
3) ¬r Steps (1) and (2) and Modus Tollens
4) ¬r ∨ ¬s Step (3) and the Rule of Disjunctive Amplification
5) ¬(r ∧ s) Step (4) and DeMorgan’s Laws
6) (¬p ∨ ¬q)→ (r ∧ s) Premise
7) ¬(¬p ∨ ¬q) Steps (6) and (5) and Modus Tollens
8) p ∧ q Step (7), DeMorgan’s Laws, and the Law of Double

Negation
9) ∴ p Step (8) and the Rule of Conjunctive Simplification
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EXAMPLE 32 In this instance we shall use the method of Proof by Contradiction. Consider the argument

¬p↔ q

q→ r

¬r
∴ p

To establish the validity for this argument, we assume the negation¬p of the conclusionp
as another premise. The objective now is to use these four premises to derive a contradiction
F0. Our derivation follows.

Steps Reasons
1) ¬p↔ q Premise
2) (¬p→ q) ∧ (q→¬p) Step (1) and (¬p↔ q)⇐⇒ [(¬p→ q) ∧ (q→¬p)]
3) ¬p→ q Step (2) and the Rule of Conjunctive Simplification
4) q→ r Premise
5) ¬p→ r Steps (3) and (4) and the Law of the Syllogism
6) ¬p Premise (the one assumed)
7) r Steps (5) and (6) and the Rule of Detachment
8) ¬r Premise
9) r ∧ ¬r(⇐⇒ F0) Steps (7) and (8) and the Rule of Conjunction

10) ∴ p Steps (6) and (9) and the method of Proof by
Contradiction

If we examine further what has happened here, we find that

[(¬p↔ q) ∧ (q→ r) ∧ ¬r ∧ ¬p] ⇒ F0.

This requires the truth value of [(¬p↔ q) ∧ (q→ r) ∧ ¬r ∧ ¬p] to be 0. Because
¬p↔ q, q→ r , and ¬r are the given premises, each of these statements has the truth
value 1. Consequently, for [(¬p↔ q) ∧ (q→ r) ∧ ¬r ∧ ¬p] to have the truth value 0, the
statement¬pmust have the truth value 0. Therefore p has the truth value 1, and the conclu-
sion p of the argument is true.

Before we consider our next example, we need to examine columns 5 and 7 of Table 20.
These identical columns tell us that for primitive statements p, q, and r ,

[p→ (q→ r)] ⇐⇒ [(p ∧ q)→ r].
Using the first substitution rule, let us replace each occurrence of p by the compound
statement (p1 ∧ p2 ∧ · · · ∧ pn). Then we obtain the new result

[(p1 ∧ p2 ∧ · · · ∧ pn)→ (q→ r)] ⇐⇒ [(p1 ∧ p2 ∧ · · · ∧ pn ∧ q)→ r].
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Table 20

p q r p ∧ q (p ∧ q)→ r q→ r p→ (q→ r)

0 0 0 0 1 1 1
0 0 1 0 1 1 1
0 1 0 0 1 0 1
0 1 1 0 1 1 1
1 0 0 0 1 1 1
1 0 1 0 1 1 1
1 1 0 1 0 0 0
1 1 1 1 1 1 1

This result tells us that if we wish to establish the validity of the argument (∗) we may be
able to do so by establishing the validity of the corresponding argument (∗∗).

(∗) p1 (∗∗) p1

p2 p2
...

...

pn pn
∴ q→ r q

∴ r

After all, suppose we want to show that q→ r has the truth value 1, when each of
p1, p2, . . . , pn does. If the truth value for q is 0, then there is nothing left to do, since
the truth value for q→ r is 1. Hence the real problem is to show that q→ r has truth
value 1, when each of p1, p2, . . . , pn, and q does — that is, we need to show that when
p1, p2, . . . , pn, q each have truth value 1, then the truth value of r is 1.

We demonstrate this principle in the next example.

EXAMPLE 33 In order to establish the validity of the argument

(∗) u→ r

(r ∧ s)→ (p ∨ t)
q→ (u ∧ s)
¬t

∴ q→ p

we consider the corresponding argument

(∗∗) u→ r

(r ∧ s)→ (p ∨ t)
q→ (u ∧ s)
¬t
q

∴ p

[Note that q is the hypothesis of the conclusion q→ p for argument (∗) and that it becomes
another premise for argument (∗∗) where the conclusion is p.]
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To validate the argument (∗∗) we proceed as follows.

Steps Reasons
1) q Premise
2) q→ (u ∧ s) Premise
3) u ∧ s Steps (1) and (2) and the Rule of Detachment
4) u Step (3) and the Rule of Conjunctive Simplification
5) u→ r Premise
6) r Steps (4) and (5) and the Rule of Detachment
7) s Step (3) and the Rule of Conjunctive Simplification
8) r ∧ s Steps (6) and (7) and the Rule of Conjunction
9) (r ∧ s)→ (p ∨ t) Premise

10) p ∨ t Steps (8) and (9) and the Rule of Detachment
11) ¬t Premise
12) ∴ p Steps (10) and (11) and the Rule of Disjunctive Syllogism

We now know that for argument (∗∗)

[(u→ r) ∧ [(r ∧ s)→ (p ∨ t)] ∧ [q→ (u ∧ s)] ∧ ¬t ∧ q] ⇒ p,

and for argument (∗) it follows that

[(u→ r) ∧ [(r ∧ s)→ (p ∨ t)] ∧ [q→ (u ∧ s)] ∧ ¬t] ⇒ (q→ p).

Examples 29 through 33 have given us some idea of how to establish the validity of an
argument. Following Example 25 we discussed two situations indicating when an argument
is invalid — namely, when we try to argue by the converse or the inverse. So now it is time
for us to learn a little more about how to determine when an argument is invalid.

Given an argument

p1

p2

p3
...

pn
∴ q

we say that the argument is invalid if it is possible for each of the premises p1, p2, p3, . . . ,
pn to be true (with truth value 1), while the conclusion q is false (with truth value 0).

The next example illustrates an indirect method whereby we may be able to show that an
argument we feel is invalid (perhaps because we cannot find a way to show that it is valid)
actually is invalid.

EXAMPLE 34 Consider the primitive statements p, q, r , s, and t and the argument

p

p ∨ q
q→ (r→ s)

t→ r

∴ ¬s→¬t
To show that this is an invalid argument, we need one assignment of truth values for each
of the statements p, q, r , s, and t such that the conclusion ¬s→¬t is false (has the truth
value 0) while the four premises are all true (have the truth value 1). The only time the
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conclusion ¬s→¬t is false is when ¬s is true and ¬t is false. This implies that the truth
value for s is 0 and that the truth value for t is 1.

Because p is one of the premises, its truth value must be 1. For the premise p ∨ q to
have the truth value 1, q may be either true (1) or false (0). So let us consider the premise
t→ r where we know that t is true. If t→ r is to be true, then r must be true (have the
truth value 1). Now with r true (1) and s false (0), it follows that r→ s is false (0), and that
the truth value of the premise q→ (r→ s) will be 1 only when q is false (0).

Consequently, under the truth value assignments

p: 1 q: 0 r: 1 s: 0 t : 1,

the four premises

p p ∨ q q→ (r→ s) t→ r

all have the truth value 1, while the conclusion

¬s→¬t
has the truth value 0. In this case we have shown the given argument to be invalid.

The truth value assignments p: 1, q: 0, r: 1, s: 0, and t : 1 of Example 34 provide one
case that disproves what we thought might have been a valid argument. We should now start
to realize that in trying to show that an implication of the form

(p1 ∧ p2 ∧ p3 ∧ · · · ∧ pn)→ q

presents a valid argument, we need to consider all cases where the premisesp1, p2, p3, . . . ,

pn are true. [Each such case is an assignment of truth values for the primitive statements
(that make up the premises) wherep1, p2, p3, . . . , pn are true.] In order to do so — namely,
to cover the cases without writing out the truth table — we have been using the rules of
inference together with the laws of logic and other logical equivalences. To cover all the
necessary cases, we cannot use one specific example (or case) as a means of establishing
the validity of the argument (for all possible cases). However, whenever we wish to show
that an implication (of the preceding form) is not a tautology, all we need to find is one
case for which the implication is false — that is, one case in which all the premises are true
but the conclusion is false. This one case provides a counterexample for the argument and
shows it to be invalid.

Let us consider a second example wherein we try the indirect approach of Example 34.

EXAMPLE 35 What can we say about the validity or invalidity of the following argument? Here p, q, r ,
and s denote primitive statements.)

p→ q

q→ s

r→¬s
¬p � r

∴ ¬p
Can the conclusion ¬p be false while the four premises are all true? The conclusion ¬p
is false when p has the truth value 1. So for the premise p→ q to be true, the truth value
of q must be 1. From the truth of the premise q→ s, the truth of q forces the truth of
s. Consequently, at this point we have statements p, q, and s all with the truth value 1.
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Continuing with the premise r→¬s, we find that because s has the truth value 1, the truth
value of r must be 0. Hence r is false. But with ¬p false and the premise ¬p � r true, we
also have r true. Therefore we find that p⇒ (¬r ∧ r).

We have failed in our attempt to find a counterexample to the validity of the given
argument. However, this failure has shown us that the given argument is valid — and the
validity follows by using the method of Proof by Contradiction.

This introduction to the rules of inference has been far from exhaustive. Several of the
books cited among the references listed near the end of this chapter offer additional material
for the reader who wishes to pursue this topic further. In Section 5 we shall apply the ideas
developed in this section to statements of a more mathematical nature. For we shall want
to learn how to develop a proof for a theorem.

EXERCISES 3

1. The following are three valid arguments. Establish the va-
lidity of each by means of a truth table. In each case, determine
which rows of the table are crucial for assessing the validity of
the argument and which rows can be ignored.

a) [p ∧ (p→ q) ∧ r] → [(p ∨ q)→ r]
b) [[(p ∧ q)→ r] ∧ ¬q ∧ (p→¬r)] → (¬p ∨ ¬q)
c) [[p ∨ (q ∨ r)] ∧ ¬q] → (p ∨ r)

2. Use truth tables to verify that each of the following is a
logical implication.

a) [(p→ q) ∧ (q→ r)] → (p→ r)

b) [(p→ q) ∧ ¬q] → ¬p
c) [(p ∨ q) ∧ ¬p] → q

d) [(p→ r) ∧ (q→ r)] → [(p ∨ q)→ r]
3. Verify that each of the following is a logical implication by

showing that it is impossible for the conclusion to have the truth
value 0 while the hypothesis has the truth value 1.

a) (p ∧ q)→ p

b) p→ (p ∨ q)
c) [(p ∨ q) ∧ ¬p] → q

d) [(p→ q) ∧ (r→ s) ∧ (p ∨ r)] → (q ∨ s)
e) [(p→ q) ∧ (r→ s) ∧ (¬q ∨ ¬s)] → (¬p ∨ ¬r)

4. For each of the following pairs of statements, use Modus
Ponens or Modus Tollens to fill in the blank line so that a valid
argument is presented.

a) If Janice has trouble starting her car, then her daughter
Angela will check Janice’s spark plugs.
Janice had trouble starting her car.
∴

b) If Brady solved the first problem correctly, then the an-
swer he obtained is 137.
Brady’s answer to the first problem is not 137.
∴
c) If this is a repeat-until loop, then the body of this loop
is executed at least once.

∴ The body of the loop is executed at least once.

d) If Tim plays basketball in the afternoon, then he will not
watch television in the evening.

∴ Tim didn’t play basketball in the afternoon.

5. Consider each of the following arguments. If the argument
is valid, identify the rule of inference that establishes its validity.
If not, indicate whether the error is due to an attempt to argue
by the converse or by the inverse.

a) Andrea can program in C++, and she can program in
Java.
Therefore Andrea can program in C++.

b) A sufficient condition for Bubbles to win the golf tour-
nament is that her opponent Meg not sink a birdie on the
last hole.
Bubbles won the golf tournament.
Therefore Bubbles’ opponent Meg did not sink a birdie on
the last hole.

c) If Ron’s computer program is correct, then he’ll be able
to complete his computer science assignment in at most two
hours.
It takes Ron over two hours to complete his computer sci-
ence assignment.
Therefore Ron’s computer program is not correct.

d) Eileen’s car keys are in her purse, or they are on the
kitchen table.
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Eileen’s car keys are not on the kitchen table.
Therefore Eileen’s car keys are in her purse.

e) If interest rates fall, then the stock market will rise.
Interest rates are not falling.
Therefore the stock market will not rise.

6. For primitive statements p, q, and r , let P denote the
statement

[p ∧ (q ∧ r)] ∨ ¬[p ∨ (q ∧ r)],
while P1 denotes the statement

[p ∧ (q ∨ r)] ∨ ¬[p ∨ (q ∨ r)].
a) Use the rules of inference to show that

q ∧ r⇒ q ∨ r.
b) Is it true that P ⇒ P1?

7. Give the reason(s) for each step needed to show that the
following argument is valid.

[p ∧ (p→ q) ∧ (s ∨ r) ∧ (r→¬q)] → (s ∨ t)
Steps Reasons
1) p

2) p→ q

3) q

4) r→¬q
5) q→¬r
6) ¬r
7) s ∨ r
8) s

9) ∴ s ∨ t
8. Give the reasons for the steps verifying the following

argument.

(¬p ∨ q)→ r

r→ (s ∨ t)
¬s ∧ ¬u
¬u→¬t

∴ p

Steps Reasons
1) ¬s ∧ ¬u
2) ¬u
3) ¬u→¬t
4) ¬t
5) ¬s
6) ¬s ∧ ¬t
7) r→ (s ∨ t)
8) ¬(s ∨ t)→¬r
9) (¬s ∧ ¬t)→¬r

10) ¬r
11) (¬p ∨ q)→ r

12) ¬r→¬(¬p ∨ q)
13) ¬r→ (p ∧ ¬q)
14) p ∧ ¬q
15) ∴ p

9. a) Give the reasons for the steps given to validate the
argument

[(p→ q) ∧ (¬r ∨ s) ∧ (p ∨ r)] → (¬q→ s).

Steps Reasons
1) ¬(¬q→ s)

2) ¬q ∧ ¬s
3) ¬s
4) ¬r ∨ s
5) ¬r
6) p→ q

7) ¬q
8) ¬p
9) p ∨ r

10) r

11) ¬r ∧ r
12) ∴ ¬q→ s

b) Give a direct proof for the result in part (a).

c) Give a direct proof for the result in Example 32.

10. Establish the validity of the following arguments.

a) [(p ∧ ¬q) ∧ r] → [(p ∧ r) ∨ q]
b) [p ∧ (p→ q) ∧ (¬q ∨ r)] → r

c) p→ q

¬q
¬r

∴ ¬(p ∨ r)

d) p→ q

r→¬q
r

∴ ¬p
e) p→ (q→ r)

¬q→¬p
p

∴ r

f ) p ∧ q
p→ (r ∧ q)
r→ (s ∨ t)
¬s

∴ t
g) p→ (q→ r)

p ∨ s
t→ q

¬s
∴ ¬r→¬t

h) p ∨ q
¬p ∨ r
¬r

∴ q

11. Show that each of the following arguments is invalid by
providing a counterexample — that is, an assignment of truth
values for the given primitive statements p, q, r , and s such that
all premises are true (have the truth value 1) while the conclu-
sion is false (has the truth value 0).

a) [(p ∧ ¬q) ∧ [p→ (q→ r)]] → ¬r
b) [[(p ∧ q)→ r] ∧ (¬q ∨ r)] → p

c) p↔ q

q→ r

r ∨ ¬s
¬s→ q

∴ s

d) p

p→ r

p→ (q ∨ ¬r)
¬q ∨ ¬s

∴ s
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12. Write each of the following arguments in symbolic form.
Then establish the validity of the argument or give a counter-
example to show that it is invalid.

a) If Rochelle gets the supervisor’s position and works
hard, then she’ll get a raise. If she gets the raise, then she’ll
buy a new car. She has not purchased a new car. Therefore
either Rochelle did not get the supervisor’s position or she
did not work hard.

b) If Dominic goes to the racetrack, then Helen will be mad.
If Ralph plays cards all night, then Carmela will be mad. If
either Helen or Carmela gets mad, then Veronica (their at-
torney) will be notified. Veronica has not heard from either
of these two clients. Consequently, Dominic didn’t make it
to the racetrack and Ralph didn’t play cards all night.

c) If there is a chance of rain or her red headband is missing,
then Lois will not mow her lawn. Whenever the tempera-
ture is over 80◦F, there is no chance for rain. Today the
temperature is 85◦F and Lois is wearing her red headband.
Therefore (sometime today) Lois will mow her lawn.

13. a) Given primitive statements p, q, r , show that the
implication

[(p ∨ q) ∧ (¬p ∨ r)] → (q ∨ r)
is a tautology.

b) The tautology in part (a) provides the rule of inference
known as resolution, where the conclusion (q ∨ r) is called
the resolvent.This rule was proposed in 1965 by J.A. Robin-
son and is the basis of many computer programs designed
to automate a reasoning system.

In applying resolution each premise (in the hypothe-
sis) and the conclusion are written as clauses. A clause is
a primitive statement or its negation, or it is the disjunc-
tion of terms each of which is a primitive statement or the
negation of such a statement. Hence the given rule has the

clauses (p ∨ q) and (¬p ∨ r) as premises and the clause
(q ∨ r) as its conclusion (or, resolvent). Should we have the
premise ¬(p ∧ q), we replace this by the logically equiva-
lent clause¬p ∨ ¬q, by the first of DeMorgan’s Laws. The
premise ¬(p ∨ q) can be replaced by the two clauses ¬p,
¬q. This is due to the second DeMorgan Law and the Rule
of Conjunctive Simplification. For the premisep ∨ (q ∧ r),
we apply the Distributive Law of ∨ over ∧ and the Rule of
Conjunctive Simplification to arrive at either of the two
clauses p ∨ q, p ∨ r . Finally, the premise p→ q becomes
the clause ¬p ∨ q.

Establish the validity of the following arguments, using
resolution (along with the rules of inference and the laws
of logic).

(i) p ∨ (q ∧ r)
p→ s

∴ r ∨ s

(ii) p

p↔ q

∴ q
(iii) p ∨ q

p→ r

r→ s

∴ q ∨ s

(iv) ¬p ∨ q ∨ r
¬q
¬r

∴ ¬p
(v) ¬p ∨ s

¬t ∨ (s ∧ r)
¬q ∨ r
p ∨ q ∨ t

∴ r ∨ s
c) Write the following argument in symbolic form, then
use resolution (along with the rules of inference and the
laws of logic) to establish its validity.

Jonathan does not have his driver’s license or his new
car is out of gas. Jonathan has his driver’s license or he does
not like to drive his new car. Jonathan’s new car is not out
of gas or he does not like to drive his new car. Therefore,
Jonathan does not like to drive his new car.

4
The Use of Quantifiers

In Section 1, we mentioned how sentences that involve a variable, such as x, need not
be statements. For example, the sentence “The number x + 2 is an even integer” is not
necessarily true or false unless we know what value is substituted for x. If we restrict our
choices to integers, then when x is replaced by −5, −1, or 3, for instance, the resulting
statement is false. In fact, it is false whenever x is replaced by an odd integer. When an even
integer is substituted for x, however, the resulting statement is true.

We refer to the sentence “The number x + 2 is an even integer” as an open statement,
which we formally define as follows.

Definition 5 A declarative sentence is an open statement if

1) it contains one or more variables, and
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2) it is not a statement, but

3) it becomes a statement when the variables in it are replaced by certain allowable
choices.

When we examine the sentence “The number x + 2 is an even integer” in light of this
definition, we find it is an open statement that contains the single variable x. With regard
to the third element of the definition, in our earlier discussion we restricted the “certain
allowable choices” to integers. These allowable choices constitute what is called the universe
or universe of discourse for the open statement. The universe comprises the choices we wish
to consider or allow for the variable(s) in the open statement.

In dealing with open statements, we use the following notation:
The open statement “The number x + 2 is an even integer” is denoted by p(x) [or q(x),

r(x), etc.]. Then ¬p(x) may be read “The number x + 2 is not an even integer.”
We shall use q(x, y) to represent an open statement that contains two variables. For

example, consider

q(x, y): The numbers y + 2, x − y, and x + 2y are even integers.

In the case of q(x, y), there is more than one occurrence of each of the variables x, y. It is
understood that when we replace one of the x’s by a choice from our universe, we replace
the other x by the same choice. Likewise, when a substitution (from the universe) is made
for one occurrence of y, that same substitution is made for all other occurrences of the
variable y.

With p(x) and q(x, y) as above, and the universe still stipulating the integers as our only
allowable choices, we get the following results when we make some replacements for the
variables x, y.

p(5): The number 7(= 5+ 2) is an even integer. (FALSE)

¬p(7): The number 9 is not an even integer. (TRUE)

q(4, 2): The numbers 4, 2, and 8 are even integers. (TRUE)

We also note, for example, that q(5, 2) and q(4, 7) are both false statements, whereas
¬q(5, 2) and ¬q(4, 7) are true.

Consequently, we see that for bothp(x) and q(x, y), as already given, some substitutions
result in true statements and others in false statements. Therefore we can make the following
true statements.

1) For some x, p(x).

2) For some x, y, q(x, y).

Note that in this situation, the statements “For some x, ¬p(x)” and “For some x, y,
¬q(x, y)” are also true. [Since the statements “For some x, p(x)” and “For some x,¬p(x)”
are both true, we realize that the second statement is not the negation of the first — even
though the open statement ¬p(x) is the negation of the open statement p(x). And a similar
result is true for the statements involving q(x, y) and ¬q(x, y).]

The phrases “For some x” and “For some x, y” are said to quantify the open statements
p(x) and q(x, y), respectively. Many postulates, definitions, and theorems in mathematics
involve statements that are quantified open statements. These result from the two types of
quantifiers, which are called the existential and the universal quantifiers.

87



May 10, 2011 17:33 M02_GRIM6343_05_SE_C02_PCL Sheet number 42 Page number 42 cyan black

Fundamentals of Logic

Statement (1) uses the existential quantifier “For some x,” which can also be expressed
as “For at least one x” or “There exists an x such that.” This quantifier is written in symbolic
form as �x. Hence the statement “For some x, p(x)” becomes �x p(x), in symbolic form.

Statement (2) becomes �x �y q(x, y) in symbolic form. The notation �x,y can be used
to abbreviate �x �y q(x, y) to �x,y q(x, y).

The universal quantifier is denoted by ∀ x and is read “For all x,” “For any x,” “For each
x,” or “For every x.” “For all x, y,” “For any x, y,” “For every x, y,” or “For all x and y”
is denoted by ∀ x ∀ y, which can be abbreviated to ∀ x,y.

Taking p(x) as defined earlier and using the universal quantifier, we can change the open
statement p(x) into the (quantified) statement ∀ x p(x), a false statement.

If we consider the open statement r(x): “2x is an even integer” with the same universe
(of all integers), then the (quantified) statement ∀ x r(x) is a true statement. When we say
that ∀ x r(x) is true, we mean that no matter which integer (from our universe) is substituted
for x in r(x), the resulting statement is true. Also note that the statement �x r(x) is a true
statement, whereas ∀ x ¬r(x) and �x ¬r(x) are both false.

The variable x in each of open statements p(x) and r(x) is called a free variable (of
the open statement). As x varies over the universe for an open statement, the truth value
of the statement (that results upon the replacement of each occurrence of x) may vary.
For instance, in the case of p(x), we found p(5) to be false — while p(6) turns out to be
a true statement. The open statement r(x), however, becomes a true statement for every
replacement (for x) taken from the universe of all integers. In contrast to the open statement
p(x) the statement �x p(x) has a fixed truth value — namely, true. And in the symbolic
representation �x p(x) the variable x is said to be a bound variable — it is bound by the
existential quantifier �. This is also the case for the statements ∀ x r(x) and ∀ x ¬r(x),
where in each case the variable x is bound by the universal quantifier ∀.

For the open statement q(x, y) we have two free variables, each of which is bound by
the quantifier � in either of the statements �x �y q(x, y) or �x,y q(x, y).

The following example shows how these new ideas about quantifiers can be used in
conjunction with the logical connectives.

EXAMPLE 36 Here the universe comprises all real numbers. The open statements p(x), q(x), r(x), and
s(x) are given by

p(x): x ≥ 0 r(x): x2 − 3x − 4= 0
q(x): x2 ≥ 0 s(x): x2 − 3> 0.

Then the following statements are true.

1) �x [p(x) ∧ r(x)]
This follows because the real number 4, for example, is a member of the universe and is
such that both of the statements p(4) and r(4) are true.

2) ∀ x [p(x)→ q(x)]
If we replace x in p(x) by a negative real number a, then p(a) is false, but p(a)→ q(a)

is true regardless of the truth value of q(a). Replacing x in p(x) by a nonnegative real
number b, we find that p(b) and q(b) are both true, as is p(b)→ q(b). Consequently,
p(x)→ q(x) is true for all replacements x taken from the universe of all real numbers, and
the (quantified) statement ∀ x [p(x)→ q(x)] is true.

This statement may be translated into any of the following:

a) For every real number x, if x ≥ 0, then x2 ≥ 0.
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b) Every nonnegative real number has a nonnegative square.

c) The square of any nonnegative real number is a nonnegative real number.

d) All nonnegative real numbers have nonnegative squares.

Also, the statement �x [p(x)→ q(x)] is true.

The next statements we examine are false.

1′) ∀ x [q(x)→ s(x)]
We want to show that the statement is false, so we need exhibit only one counterexample —
that is, one value of x for which q(x)→ s(x) is false — rather than prove something
for all x as we did for statement (2). Replacing x by 1, we find that q(1) is true and
s(1) is false. Therefore q(1)→ s(1) is false, and consequently the (quantified) statement
∀ x [q(x)→ s(x)] is false. [Note that x = 1 does not produce the only counterexample:
Every real number a between −√3 and

√
3 will make q(a) true and s(a) false.]

2′) ∀ x [r(x) ∨ s(x)]
Here there are many values for x, such as 1, 1

2 , − 3
2 , and 0, that produce counterexamples.

Upon changing quantifiers, however, we find that the statement �x [r(x) ∨ s(x)] is true.

3′) ∀ x [r(x)→ p(x)]
The real number −1 is a solution of the equation x2 − 3x − 4= 0, so r(−1) is true while
p(−1) is false. Therefore the choice of−1 provides the unique counterexample we need to
show that this (quantified) statement is false.

Statement (3′) may be translated into either of the following:

a) For every real number x, if x2 − 3x − 4= 0, then x ≥ 0.

b) For every real number x, if x is a solution of the equation x2 − 3x − 4= 0, then
x ≥ 0.

Now we make the following observations. Let p(x) denote any open statement (in the
variable x) with a prescribed nonempty universe (that is, the universe contains at least one
member). Then if ∀ x p(x) is true, so is �x p(x), or

∀ x p(x)⇒ �x p(x).

When we write ∀ x p(x)⇒ �x p(x) we are saying that the implication ∀ x p(x)→
�x p(x) is a logical implication — that is, �x p(x) is true whenever ∀ x p(x) is true. Also,
we realize that the hypothesis of this implication is the quantified statement ∀ x p(x), and
the conclusion is �x p(x), another quantified statement. On the other hand, it does not
follow that if �x p(x) is true, then ∀ x p(x)must be true. Hence �x p(x) does not logically
imply ∀ x p(x), in general.

Our next example brings out the fact that the quantification of an open statement may
not be as explicit as we might prefer.

EXAMPLE 37 a) Let us consider the universe of all real numbers and examine the sentences:

1) If a number is rational, then it is a real number.
2) If x is rational, then x is real.
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