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Introduction to Inorganic 
Chemistry

1 What Is Inorganic Chemistry?
If organic chemistry is defined as the chemistry of hydrocarbon compounds and their 
derivatives, inorganic chemistry can be described broadly as the chemistry of “everything 
else.” This includes all the remaining elements in the periodic table, as well as carbon, 
which plays a major and growing role in inorganic chemistry. The large field of organo-
metallic chemistry bridges both areas by considering compounds containing metal–carbon 
bonds; it also includes catalysis of many organic reactions. Bioinorganic chemistry bridges 
biochemistry and inorganic chemistry and has an important focus on medical applications. 
Environmental chemistry includes the study of both inorganic and organic compounds. 
In short, the inorganic realm is vast, providing essentially limitless areas for investigation 
and potential practical applications.

2 Contrasts with Organic Chemistry
Some comparisons between organic and inorganic compounds are in order. In both areas, 
single, double, and triple covalent bonds are found (Figure 1); for inorganic compounds, 
these include direct metal—metal bonds and metal—carbon bonds. Although the maxi-
mum number of bonds between two carbon atoms is three, there are many compounds 
that contain quadruple bonds between metal atoms. In addition to the sigma and pi bonds 
common in organic chemistry, quadruply bonded metal atoms contain a delta (d) bond 
(Figure 2); a combination of one sigma bond, two pi bonds, and one delta bond makes 
up the quadruple bond. The delta bond is possible in these cases because the metal atoms 
have d orbitals to use in bonding, whereas carbon has only s and p orbitals energetically 
accessible for bonding.

Compounds with “fivefold” bonds between transition metals have been reported 
( Figure 3), accompanied by debate as to whether these bonds merit the designation “quin-
tuple.”

In organic compounds, hydrogen is nearly always bonded to a single carbon. In inor-
ganic compounds, hydrogen is frequently encountered as a bridging atom between two or 
more other atoms. Bridging hydrogen atoms can also occur in metal cluster compounds, 
in which hydrogen atoms form bridges across edges or faces of polyhedra of metal atoms. 
Alkyl groups may also act as bridges in inorganic compounds, a function rarely encoun-
tered in organic chemistry except in reaction intermediates. Examples of terminal and 
bridging hydrogen atoms and alkyl groups in inorganic compounds are in Figure 4.

Some of the most striking differences between the chemistry of carbon and that of 
many other elements are in coordination number and geometry. Although carbon is usually 
limited to a maximum coordination number of four (a maximum of four atoms bonded 
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to carbon, as in CH4), numerous inorganic compounds have central atoms with coordina-
tion numbers of five, six, seven, and higher; the most common coordination geometry 
for transition metals is an octahedral arrangement around a central atom, as shown for 
[TiF6]

3 -  (Figure 5). Furthermore, inorganic compounds present coordination geometries 
different from those found for carbon. For example, although 4-coordinate carbon is nearly 
always tetrahedral, both tetrahedral and square-planar shapes occur for 4-coordinate com-
pounds of both metals and nonmetals. When metals are in the center, with anions or neu-
tral molecules (ligands) bonded to them (frequently through N, O, or S), these are called 
 coordination complexes; when carbon is the element directly bonded to metal atoms or 
ions, they are also classified as organometallic complexes.
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FIGURE 3 Example of Fivefold 
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Introduction to Inorganic Chemistry

The tetrahedral geometry usually found in 4-coordinate compounds of carbon also 
occurs in a different form in some inorganic molecules. Methane contains four hydrogens 
in a regular tetrahedron around carbon. Elemental phosphorus is tetratomic (P4) and tet-
rahedral, but with no central atom. Other elements can also form molecules in which outer 
atoms surround a central cavity; an example is boron, which forms numerous structures 
containing icosahedral B12 units. Examples of some of the geometries found for inorganic 
compounds are in Figure 5.

Aromatic rings are common in organic chemistry, and aryl groups can also form 
sigma bonds to metals. However, aromatic rings can also bond to metals in a dramatically 
different fashion using their pi orbitals, as shown in Figure 6. The result is a metal atom 
bonded above the center of the ring, almost as if suspended in space. In many cases, metal 
atoms are sandwiched between two aromatic rings. Multiple-decker sandwiches of metals 
and aromatic rings are also known.

Carbon plays an unusual role in a number of metal cluster compounds in which a 
carbon atom is at the center of a polyhedron of metal atoms. Examples of carbon-centered 
clusters with five, six, or more surrounding metals are known (Figure 7). The striking role 
that carbon plays in these clusters has provided a challenge to theoretical inorganic chemists.

In addition, since the mid-1980s the chemistry of elemental carbon has flourished. 
This phenomenon began with the discovery of fullerenes, most notably the cluster C60, 
dubbed “buckminsterfullerene” after the developer of the geodesic dome. Many other 
fullerenes (buckyballs) are now known and serve as cores of a variety of derivatives. In 
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addition, numerous other forms of carbon (for example, carbon nanotubes, nanoribbons, 
graphene, and carbon wires) have attracted much interest and show potential for applica-
tions in fields as diverse as nanoelectronics, body armor, and drug delivery. Figure 8 
provides examples of these newer forms of carbon.

The era of sharp dividing lines between subfields in chemistry has long been  obsolete. 
Many of the subjects in this text, such as acid–base chemistry and organometallic reactions, 
are of vital interest to organic chemists. Other topics such as  oxidation–reduction reactions, 
spectra, and solubility relations interest analytical chemists. Subjects related to structure 
determination, spectra, conductivity, and theories of bonding appeal to physical chemists. 
Finally, the use of organometallic catalysts provides a connection to petroleum and poly-
mer chemistry, and coordination compounds such as hemoglobin and  metal-containing 
enzymes provide a similar tie to biochemistry. Many inorganic chemists work with profes-
sionals in other fields to apply chemical discoveries to addressing modern challenges in 
medicine, energy, the environment, materials science, and other fields. In brief, modern 
inorganic chemistry is not a fragmented field of study, but has numerous interconnections 
with other fields of science, medicine, technology, and other disciplines.

The remainder of this chapter is devoted to a short history of the origins of inorganic 
chemistry and perspective on more recent developments, intended to provide a sense of 
connection to the past and to place some aspects of inorganic chemistry within the context 
of larger historical events.

3 The History of Inorganic Chemistry
Even before alchemy became a subject of study, many chemical reactions were used and 
their products applied to daily life. The first metals used were probably gold and copper, 
which can be found in the metallic state in nature. Copper can also be readily formed by 
the reduction of malachite—basic copper carbonate, Cu2(CO3)(OH)2—in charcoal fires. 
Silver, tin, antimony, and lead were also known as early as 3000 bce. Iron appeared in 

FIGURE 8 The Fullerene C60, 
a Fullerene Compound, a Carbon 
Nanotube, Graphene, a Carbon 
Peapod, and a Polyyne “Wire” 
Connecting Platinum Atoms.
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Introduction to Inorganic Chemistry

classical Greece and in other areas around the Mediterranean Sea by 1500 bce. At about 
the same time, colored glasses and ceramic glazes were introduced, largely composed of 
silicon dioxide (SiO2, the major component of sand) and other metallic oxides, which had 
been melted and allowed to cool to amorphous solids.

Alchemists were active in China, Egypt, and other centers of civilization early in the 
first centuries ce. Although much effort went into attempts to “transmute” base metals into 
gold, alchemists also described many other chemical reactions and operations. Distillation, 
sublimation, crystallization, and other techniques were developed and used in their stud-
ies. Because of the political and social changes of the time, alchemy shifted into the Arab 
world and later—about 1000 to 1500 ce—reappeared in Europe. Gunpowder was used in 
Chinese fireworks as early as 1150, and alchemy was also widespread in China and India 
at that time. Alchemists appeared in art, literature, and science until at least 1600, by which 
time chemistry was beginning to take shape as a science. Roger Bacon (1214–1294), recog-
nized as one of the first great experimental scientists, also wrote extensively about alchemy.

By the seventeenth century, the common strong acids—nitric, sulfuric, and hydro-
chloric—were known, and systematic descriptions of common salts and their reactions 
were being accumulated. As experimental techniques improved, the quantitative study of 
chemical reactions and the properties of gases became more common, atomic and molecu-
lar weights were determined more accurately, and the groundwork was laid for what later 
became the periodic table of the elements. By 1869, the concepts of atoms and molecules 
were well established, and it was possible for Mendeleev and Meyer to propose different 
forms of the periodic table. Figure 9 illustrates Mendeleev’s original periodic table.*

The chemical industry, which had been in existence since very early times in the form 
of factories for purifying salts and for smelting and refining metals, expanded as methods 
for preparing relatively pure materials became common. In 1896, Becquerel discovered 
radioactivity, and another area of study was opened. Studies of subatomic particles, spectra, 
and electricity led to the atomic theory of Bohr in 1913, which was soon modified by the 
quantum mechanics of Schrödinger and Heisenberg in 1926 and 1927.

Inorganic chemistry as a field of study was extremely important during the early years 
of the exploration and development of mineral resources. Qualitative analysis methods were 

*The original table was published in Zeitschrift für Chemie, 1869, 12, 405. It can be found in English translation,
together with a page from the German article, at web.lemoyne.edu/~giunta/mendeleev.html. See M. Laing,  
J. Chem. Educ., 2008, 85, 63 for illustrations of Mendeleev’s various versions of the periodic table, including his 
handwritten draft of the 1869 table.

Ti = 50
V = 51
Cr = 52
Mn = 53
Fe = 56
Ni = Co = 59
Cu = 63.4
Zn = 65.2
? = 68
? = 70
As = 75
Se = 79.4
Br = 80
Rb = 85.4
Sr = 87.6
Ce = 92
La = 94
Di = 95
Th = 118 ?

Zr = 90
Nb = 94
Mo = 96
Rh = 104.4
Ru = 104.2
Pd = 106.6
Ag = 108
Cd = 112
Ur = 116
Sn = 118
Sb = 122
Te = 128?
J = 127
Cs = 133
Ba = 137

? = 180
Ta = 182
W = 186
Pt = 197.4
Ir = 198
Os = 199
Hg = 200
 
Au = 197?
 
Bi = 210?
 
 
Tl = 204
Pb = 207

Mg = 24
Al = 27.4
Si = 28
P = 31
S = 32
Cl = 35.5
K = 39
Ca = 40
? = 45
?Er = 56
?Yt = 60
?In = 75.6

H = 1
 

 
 
 
Li = 7

Be = 9.4
B = 11
C = 12
N = 14
O = 16
F = 19
Na = 23

FIGURE 9 Mendeleev’s 1869 
Periodic Table. Two years later, 
Mendeleev revised his table 
into a form similar to a modern 
short-form periodic table, with 
eight groups across.
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developed to help identify minerals and, combined with quantitative  methods, to assess their 
purity and value. As the Industrial Revolution progressed, so did the chemical industry. By 
the early twentieth century, plants for the high volume production of ammonia, nitric acid, 
sulfuric acid, sodium hydroxide, and many other inorganic chemicals were common.

Early in the twentieth century, Werner and Jørgensen made considerable progress 
on understanding the coordination chemistry of transition metals and also discovered a 
number of organometallic compounds. Nevertheless, the popularity of inorganic chem-
istry as a field of study gradually declined during most of the first half of the century. 
The need for inorganic chemists to work on military projects during World War II rejuve-
nated interest in the field. As work was done on many projects (not least of which was the 
Manhattan  Project, in which scientists developed the fission bomb), new areas of research 
appeared, and new theories were proposed that prompted further experimental work. 
A great  expansion of inorganic chemistry began in the 1940s, sparked by the enthusiasm 
and ideas generated during World War II.

In the 1950s, an earlier method used to describe the spectra of metal ions surrounded 
by negatively charged ions in crystals (crystal field theory)1 was extended by the use of 
molecular orbital theory2 to develop ligand field theory for use in coordination compounds, 
in which metal ions are surrounded by ions or molecules that donate electron pairs. This 
theory gave a more complete picture of the bonding in these compounds. The field devel-
oped rapidly as a result of this theoretical framework, availability of new instruments, and 
the generally reawakened interest in inorganic chemistry.

In 1955, Ziegler3 and Natta4 discovered organometallic compounds that could cata-
lyze the polymerization of ethylene at lower temperatures and pressures than the common 
industrial method at that time. In addition, the polyethylene formed was more likely to be 
made up of linear, rather than branched, molecules and, as a consequence, was stronger 
and more durable. Other catalysts were soon developed, and their study contributed to the 
rapid expansion of organometallic chemistry, still a rapidly growing area.

The study of biological materials containing metal atoms has also progressed rapidly. 
The development of new experimental methods allowed more thorough study of these 
compounds, and the related theoretical work provided connections to other areas of study. 
Attempts to make model compounds that have chemical and biological activity similar to 
the natural compounds have also led to many new synthetic techniques. Two of the many 
biological molecules that contain metals are in Figure 10. Although these molecules have 
very different roles, they share similar ring systems.

One current area that bridges organometallic chemistry and bioinorganic chemistry is 
the conversion of nitrogen to ammonia:

N2 + 3 H2 h  2 NH3

This reaction is one of the most important industrial processes, with over 100 million tons 
of ammonia produced annually worldwide, primarily for fertilizer. However, in spite of 
metal oxide catalysts introduced in the Haber–Bosch process in 1913, and improved since 
then, it is also a reaction that requires temperatures between 350 and 550 °C and from 
150–350 atm pressure and that still results in a yield of only 15 percent ammonia. Bacteria, 
however, manage to fix nitrogen (convert it to ammonia and then to nitrite and nitrate) at 
0.8 atm at room temperature in nodules on the roots of legumes. The nitrogenase enzyme 
that catalyzes this reaction is a complex iron–molybdenum–sulfur protein. The structure of 
its active sites has been determined by X-ray crystallography.5 A vigorous area of modern 
inorganic research is to design reactions that could be carried out on an industrial scale 
that model the reaction of nitrogenase to generate ammonia under mild conditions. It is 
estimated that as much as 1 percent of the world’s total energy consumption is currently 
used for the Haber–Bosch process.

Inorganic chemistry also has medical applications. Notable among these is the development 
of platinum-containing antitumor agents, the first of which was the cis isomer of Pt(NH3)2Cl2, 
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cisplatin. First approved for clinical use approximately 30 years ago, cisplatin has served 
as the prototype for a variety of anticancer agents; for example,  satraplatin, the first orally avail-
able platinum anticancer drug to reach clinical trials.* These two  compounds are in Figure 11.

4 Perspective
The premier issue of the journal Inorganic Chemistry** was published in February 1962. 
Much of the focus of that issue was on classic coordination chemistry, with more than half 
its research papers on synthesis of coordination complexes and their structures and proper-
ties. A few papers were on compounds of nonmetals and on organometallic chemistry, then 
a relatively new field; several were on thermodynamics or spectroscopy. All of these topics 
have developed considerably in the subsequent half-century, but much of the evolution of 
inorganic chemistry has been into realms unforeseen in 1962.

The 1962 publication of the first edition of F. A. Cotton and G. Wilkinson’s landmark 
text Advanced Inorganic Chemistry6 provides a convenient reference point for the status 
of inorganic chemistry at that time. For example, this text cited only the two long-known 
forms of carbon, diamond and graphite, although it did mention “amorphous forms” attrib-
uted to microcrystalline graphite. It would not be until more than two decades later that 
carbon chemistry would explode with the seminal discovery of C60 in 1985 by Kroto, 
Curl, Smalley, and colleagues,7 followed by other fullerenes, nanotubes, graphene, and 
other forms of carbon (Figure 8) with the potential to have major impacts on electronics, 
materials science, medicine, and other realms of science and technology.

As another example, at the beginning of 1962 the elements helium through radon were 
commonly dubbed “inert” gases, believed to “form no chemically bound compounds” 
because of the stability of their electron configurations. Later that same year, Bartlett 
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**The authors of this issue of Inorganic Chemistry were a distinguished group, including five recipients of 
the Priestley Medal, the highest honor conferred by the American Chemical Society, and 1983 Nobel Laureate 
Henry Taube.

*For reviews of modes of interaction of cisplatin and related drugs, see P. C. A. Bruijnincx, P. J. Sadler, Curr. Opin. 
Chem. Bio., 2008, 12, 197 and F. Arnesano, G. Natile, Coord. Chem. Rev., 2009, 253, 2070.
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reported the first chemical reactions of xenon with PtF6, launching the synthetic  chemistry 
of the now-renamed “noble” gas elements, especially xenon and krypton;8 numerous 
 compounds of these elements have been prepared in succeeding decades.

Numerous square planar platinum complexes were known by 1962; the chemistry of 
platinum compounds had been underway for more than a century. However, it was not known 
until Rosenberg’s work in the latter part of the 1960s that one of these, cis@Pt(NH3)2Cl2 
(cisplatin, Figure 11), had anticancer activity.9 Antitumor agents containing platinum and 
other transition metals have subsequently become major tools in treatment regimens for 
many types of cancer.10

That first issue of Inorganic Chemistry contained only 188 pages, and the journal was 
published quarterly, exclusively in hardcopy. Researchers from only four countries were 
represented, more than 90 percent from the United States, the others from Europe.  Inorganic 
Chemistry now averages approximately 550 pages per issue, is published 24 times annually, 
and publishes (electronically) research conducted broadly around the globe. The growth 
and diversity of research published in Inorganic Chemistry has been paralleled in a wide 
variety of other journals that publish articles on inorganic and related fields.

In the preface to the first edition of Advanced Inorganic Chemistry, Cotton and 
Wilkinson stated, “in recent years, inorganic chemistry has experienced an impressive 
renaissance.” This renaissance shows no sign of diminishing.

With this brief survey of the marvelously complex field of inorganic chemistry, we 
now turn to the details in the remainder of this text. The topics included provide a broad 
introduction to the field. However, even a cursory examination of a chemical library or one 
of the many inorganic journals shows some important aspects of inorganic chemistry that 
must be omitted in a textbook of moderate length. The references cited in this text suggest 
resources for further study, including historical sources, texts, and reference works that 
provide useful additional material.
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istry, 5th  ed., Oxford University Press, New York, 1984. An 
interesting study of inorganic reactions from a different perspec-
tive can be found in G. Wulfsberg’s Principles of Descriptive 
Inorganic  Chemistry, Brooks/Cole, Belmont, CA, 1987.
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Understanding the structure of the atom has been a fundamental challenge for  centuries. 
It is possible to gain a practical understanding of atomic and  molecular structure using 
only a moderate amount of mathematics rather than the mathematical sophistication of 
quantum mechanics. This chapter introduces the fundamentals needed to explain atomic 
structure in qualitative and semiquantitative terms.

1 Historical Development of Atomic Theory
Although the Greek philosophers Democritus (460–370 bce) and Epicurus (341–270 bce) 
 presented views of nature that included atoms, many centuries passed before experimental 
studies could establish the quantitative relationships needed for a coherent atomic  theory. 
In 1808, John Dalton published A New System of Chemical Philosophy,1 in which he 
 proposed that

… the ultimate particles of all homogeneous bodies are perfectly alike in weight, 
figure, etc. In other words, every particle of water is like every other particle of 
water; every particle of hydrogen is like every other particle of hydrogen, etc.2

and that atoms combine in simple numerical ratios to form compounds. The  terminology 
he used has since been modified, but he clearly presented the concepts of atoms and 
 molecules, and made quantitative observations of the masses and volumes of substances 
as they combined to form new substances. For example, in describing the reaction between 
the gases hydrogen and oxygen to form water Dalton said that

When two measures of hydrogen and one of oxygen gas are mixed, and fired 
by the electric spark, the whole is converted into steam, and if the pressure 
be great, this steam becomes water. It is most probable then that there is the 
same number of particles in two measures of hydrogen as in one of oxygen.3

Because Dalton was not aware of the diatomic nature of the molecules H2 and O2, which 
he assumed to be monatomic H and O, he did not find the correct formula of water, 
and therefore his surmise about the relative numbers of particles in “measures” of the 
gases is inconsistent with the modern concept of the mole and the chemical equation 
2H2 + O2 S 2H2O.

Only a few years later, Avogadro used data from Gay-Lussac to argue that equal 
 volumes of gas at equal temperatures and pressures contain the same number of mole-
cules, but uncertainties about the nature of sulfur, phosphorus, arsenic, and mercury vapors 
delayed acceptance of this idea. Widespread confusion about atomic weights and molecular 
formulas contributed to the delay; in 1861, Kekulé gave 19 different possible formulas for 
acetic acid!4 In the 1850s, Cannizzaro revived the argument of Avogadro and argued that 

From Chapter 2 of Inorganic Chemistry, Fifth Edition. Gary L Miessler, Paul J. Fischer, Donald A. Tarr. 
Copyright © 2014 by Pearson Education, Inc. All rights reserved.
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everyone should use the same set of atomic weights rather than the many different sets 
then being used. At a meeting in Karlsruhe in 1860, Cannizzaro distributed a pamphlet 
describing his views.5 His proposal was eventually accepted, and a consistent set of atomic 
weights and formulas evolved. In 1869, Mendeleev6 and Meyer7 independently proposed 
periodic tables nearly like those used today, and from that time the development of atomic 
theory progressed rapidly.

1.1 The Periodic Table
The idea of arranging the elements into a periodic table had been considered by many 
chemists, but either data to support the idea were insufficient or the classification schemes 
were incomplete. Mendeleev and Meyer organized the elements in order of atomic weight 
and then identified groups of elements with similar properties. By arranging these groups 
in rows and columns, and by considering similarities in chemical behavior as well as 
atomic weight, Mendeleev found vacancies in the table and was able to predict the proper-
ties of several elements—gallium, scandium, germanium, and polonium—that had not yet 
been discovered. When his predictions proved accurate, the concept of a periodic table was 
quickly accepted. The discovery of additional elements not known in Mendeleev’s time and 
the synthesis of heavy elements have led to the modern periodic table.

In the modern periodic table, a horizontal row of elements is called a period and a 
vertical column is a group. The traditional designations of groups in the United States 
differ from those used in Europe. The International Union of Pure and Applied Chem-
istry (IUPAC) has recommended that the groups be numbered 1 through 18. In this text, 
we will use primarily the IUPAC group numbers. Some sections of the periodic table 
have traditional names, as shown in Figure 1.
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1.2 Discovery of Subatomic Particles and the Bohr Atom
During the 50 years after the periodic tables of Mendeleev and Meyer were proposed, 
experimental advances came rapidly. Some of these discoveries are listed in Table 1.

Parallel discoveries in atomic spectra showed that each element emits light of specific 
energies when excited by an electric discharge or heat. In 1885, Balmer showed that the 
energies of visible light emitted by the hydrogen atom are given by the equation

E = RHa
1

22 -
1

n2
h
b

where nh = integer, with nh 7 2

 RH = Rydberg constant for hydrogen

 = 1.097 * 107 m- 1 = 2.179 * 10- 18 J = 13.61 eV

and the energy of the light emitted is related to the wavelength, frequency, and wavenumber 
of the light, as given by the equation

E = hv =
hc

l
= hcv

where h = Planck constant = 6.626 * 10-34 J s

 v = frequency of the light, in s-1

 c = speed of light = 2.998 * 108 m s-1

 l = wavelength of the light, frequently in nm

 v = wavenumber of the light, usually in cm-1

In addition to emission of visible light, as described by the Balmer equation, infrared 
and ultraviolet emissions were also discovered in the spectrum of the hydrogen atom. 
The  energies of these emissions could be described by replacing 22 by integers nl

2 in 
Balmer’s original equation, with the condition that nl 6 nh (l for lower level, h for higher 
level). These quantities, n, are called quantum numbers. (These are the principal quantum 
 numbers; other quantum numbers are discussed in Section 2.2.) The origin of this energy 
was unknown until Niels Bohr’s quantum theory of the atom,8 first published in 1913 and 
refined over the following decade. This theory assumed that negatively charged electrons in 
atoms move in stable circular orbits around the positively charged nucleus with no absorp-
tion or emission of energy. However, electrons may absorb light of certain specific energies 

TABLE 1  Discoveries in Atomic Structure
1896 A. H. Becquerel Discovered radioactivity of uranium

1897 J. J. Thomson Showed that electrons have a negative charge, with 
charge/mass = 1.76 * 1011 C/kg

1909 R. A. Millikan Measured the electronic charge as 1.60 * 10- 19 C; 
 therefore, mass of electron = 9.11 * 10- 31 kg

1911 E. Rutherford Established the nuclear model of the atom: a very small, 
heavy nucleus surrounded by mostly empty space

1913 H. G. J. Moseley Determined nuclear charges by X-ray emission,  establishing 
atomic numbers as more fundamental than atomic masses

11
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and be excited to orbits of higher energy; they may also emit light of specific energies  
and fall to orbits of lower energy. The energy of the light emitted or absorbed can be found, 
according to the Bohr model of the hydrogen atom, from the equation

E = R
  a

1

n 2
l

-
1

n 2
h
b

where R =
2p2mZ2e4

(4pe0)
2h2

 m = reduced mass of the electron/nucleus combination:

 
1
m

=
1

me
+

1
mnucleus

 me = mass of the electron

 mnucleus = mass of the nucleus

 Z = charge of the nucleus

 e = electronic charge

 h = Planck constant

 nh = quantum number describing the higher energy state

 nl = quantum number describing the lower energy state

 4pe0 = permittivity of a vacuum

This equation shows that the Rydberg constant depends on the mass of the nucleus and 
on various fundamental constants. If the atom is hydrogen, the subscript H is commonly 
appended to the Rydberg constant (RH).

Examples of the transitions observed for the hydrogen atom and the energy levels 
responsible are shown in Figure 2. As the electrons drop from level nh  to nl, energy is 
released in the form of electromagnetic radiation. Conversely, if radiation of the correct 
energy is absorbed by an atom, electrons are raised from level nl  to level nh. The inverse-
square dependence of energy on n results in energy levels that are far apart in energy at 
small n and become much closer in energy at larger n. In the upper limit, as n approaches 
infinity, the energy approaches a limit of zero. Individual electrons can have more energy, 
but above this point, they are no longer part of the atom; an infinite quantum number means 
that the nucleus and the electron are separate entities.

E X E R C I S E  1

Determine the energy of the transition from nh = 3 to nl = 2 for the hydrogen atom, 
in both joules and cm-1 (a common unit in spectroscopy, often used as an energy unit, 
since v is proportional to E). This transition results in a red line in the visible emission 
spectrum of hydrogen.

When applied to the hydrogen atom, Bohr’s theory worked well; however, the theory 
failed when atoms with two or more electrons were considered. Modifications such as ellip-
tical rather than circular orbits were unsuccessfully introduced in attempts to fit the data 
to Bohr’s theory.9 The developing experimental science of atomic spectroscopy provided 
extensive data for testing Bohr’s theory and its modifications. In spite of the efforts to “fix” 
the Bohr theory, the theory ultimately proved unsatisfactory; the energy levels predicted by 
the Bohr equation above and shown in Figure 2 are valid only for the hydrogen atom and 
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other one-electron situations* such as He+, Li2+, and Be3+. A fundamental characteristic 
of the electron—its wave nature—needed to be considered.

The de Broglie equation, proposed in the 1920s,10 accounted for the electron’s wave nature. 
According to de Broglie, all moving particles have wave properties described by the  equation

l =
h

mu

  l = wavelength of the particle

 h = Planck constant

 m = mass of the particle

 u = velocity of the particle

Balmer series
(visible transitions shown)

Paschen series (IR)

Quantum
Number nEnergy
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36
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25-

q

FIGURE 2 Hydrogen Atom 
Energy Levels.

* Multiplying RH by Z2, the square of the nuclear charge, and adjusting the reduced mass accordingly provides an 
equation that describes these more exotic one-electron situations.
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Particles massive enough to be visible have very short wavelengths, too small to be 
measured. Electrons, on the other hand, have observable wave properties because of their 
very small mass.

Electrons moving in circles around the nucleus, as in Bohr’s theory, can be thought 
of as standing waves that can be described by the de Broglie equation. However, we 
no longer believe that it is possible to describe the motion of an electron in an atom so 
precisely. This is a consequence of another fundamental principle of modern physics, 
Heisenberg’s uncertainty principle,11 which states that there is a relationship between the 
inherent uncertainties in the location and momentum of an electron. The x component of 
this uncertainty is described as

x px Ú
h

4p
  x = uncertainty in the position of the electron

 px = uncertainty in the momentum of the electron

The energy of spectral lines can be measured with high precision (as an example, recent 
emission spectral data of hydrogen atoms in the solar corona indicated a difference between 
nh = 2 and nl = 1 of 82258.9543992821(23) cm-1)!12 This in turn allows precise deter-
mination of the energy of electrons in atoms. This precision in energy also implies preci-
sion in momentum (px is small); therefore, according to Heisenberg, there is a large 
uncertainty in the location of the electron (x is large). This means that we cannot treat 
electrons as simple particles with their motion described precisely, but we must instead 
consider the wave properties of electrons, characterized by a degree of uncertainty in their 
location. In other words, instead of being able to describe precise orbits of electrons, as in 
the Bohr theory, we can only describe orbitals, regions that describe the probable location 
of electrons. The probability of finding the electron at a particular point in space, also 
called the electron density, can be calculated—at least in principle.

2 The Schrödinger Equation
In 1926 and 1927, Schrödinger13 and Heisenberg11 published papers on wave mechan-
ics, descriptions of the wave properties of electrons in atoms, that used very different 
 mathematical techniques. In spite of the different approaches, it was soon shown that their 
theories were equivalent. Schrödinger’s differential equations are more commonly used to 
introduce the theory, and we will follow that practice.

The Schrödinger equation describes the wave properties of an electron in terms of 
its position, mass, total energy, and potential energy. The equation is based on the wave 
 function, , which describes an electron wave in space; in other words, it describes an 
atomic orbital. In its simplest notation, the equation is

H = E

 H = Hamiltonian operator

 E = energy of the electron

  = wave function

The Hamiltonian operator, frequently called simply the Hamiltonian, includes deriva-
tives that operate on the wave function.* When the Hamiltonian is carried out, the result 
is a constant (the energy) times . The operation can be performed on any wave function 

*An operator is an instruction or set of instructions that states what to do with the function that follows it. It may be 
a simple instruction such as “multiply the following function by 6,” or it may be much more complicated than the 
Hamiltonian. The Hamiltonian operator is sometimes written Hn  with the  n  (hat) symbol designating an operator.
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describing an atomic orbital. Different orbitals have different wave functions and different 
values of E. This is another way of describing quantization in that each orbital, character-
ized by its own function , has a characteristic energy. 

In the form used for calculating energy levels, the Hamiltonian operator for one-
electron systems is

H =
-h2

8p2m
a 02

0x2 +
02

0y2 +
02

0z2 b  -  
Ze2

4p e02x2 + y2 + z2

This part of the operator describes 
the kinetic energy of the electron, 
its energy of motion.

This part of the operator describes 
the potential energy of the electron, 
the result of electrostatic attraction 
between the electron and the nucleus. 
It is commonly designated as V.

where h = Planck constant

 m = mass of the electron

 e = charge of the electron2x2 + y2 + z2 = r = distance from the nucleus

 Z = charge of the nucleus

 4pe0 = permittivity of a vacuum 

This operator can be applied to a wave function ,

c -h2

8p2m
a 02

0x2 +
02

0y2 +
02

0z2 b  +  V(x, y, z) d(x, y, z) = E (x, y, z)

where

V =
-Ze2

4pe0 r
=

-Ze2

4pe02x2 + y2 + z2

The potential energy V is a result of electrostatic attraction between the electron and the 
nucleus. Attractive forces, such as those between a positive nucleus and a negative electron, 
are defined by convention to have a negative potential energy. An electron near the nucleus 
(small r) is strongly attracted to the nucleus and has a large negative potential energy. 
Electrons farther from the nucleus have potential energies that are small and negative. For 
an electron at infinite distance from the nucleus (r = ), the attraction between the nucleus 
and the electron is zero, and the potential energy is zero. The hydrogen atom energy level 
diagram in Figure 2 illustrates these concepts.

Because n varies from 1 to  , and every atomic orbital is described by a unique , 
there is no limit to the number of solutions of the Schrödinger equation for an atom. Each 
 describes the wave properties of a given electron in a particular orbital. The probability 
of finding an electron at a given point in space is proportional to 2. A number of condi-
tions are required for a physically realistic solution for  :
 1.  The wave function  must be 

single-valued.

 2.  The wave function  and its first 
derivatives must be continuous.

There cannot be two probabilities for an 
electron at any position in space.

The probability must be defined at all posi-
tions in space and cannot change abruptly 
from one point to the next.

 3.  The wave function  must approach 
zero as r approaches infinity.

For large distances from the nucleus, the 
probability must grow smaller and smaller 
(the atom must be finite).
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2.1 The Particle in a Box
A simple example of the wave equation, the particle in a one-dimensional box, shows how 
these conditions are used. We will give an outline of the method; details are available else-
where.** The “box” is shown in Figure 3. The potential energy V(x) inside the box, between 
x = 0 and x = a, is defined to be zero. Outside the box, the potential energy is infinite. 
This means that the particle is completely trapped in the box and would require an infinite 
amount of energy to leave the box. However, there are no forces acting on it within the box. 

The wave equation for locations within the box is

-h2

8p2m
a

02 (x)

0x2 b = E (x), because V(x) = 0

Sine and cosine functions have the properties we associate with waves—a well-defined 
wavelength and amplitude—and we may therefore propose that the wave characteristics 
of our particle may be described by a combination of sine and cosine functions. A general 
solution to describe the possible waves in the box would then be

  = A sin rx + B cos sx

where A, B, r, and s are constants. Substitution into the wave equation allows solution for 
r and s (see Problem 8a at the end of the chapter):

r = s = 22mE
2p

h
Because  must be continuous and must equal zero at x 6 0 and x 7 a (because the 
 particle is confined to the box),  must go to zero at x = 0 and x = a. Because cos sx = 1 
for x = 0,  can equal zero in the general solution above only if B = 0. This reduces the 
expression for  to

 = A sin rx

At x = a,  must also equal zero; therefore, sin ra = 0, which is possible only if ra is 
an integral multiple of p:

ra = { np or r =
{np

a

** G. M. Barrow, Physical Chemistry, 6th ed., McGraw-Hill, New York, 1996, pp. 65, 430, calls this the “particle 
on a line” problem. Other physical chemistry texts also include solutions to this problem.

V = qV = q

V

a0 x

V = 0

FIGURE 3 Potential Energy 
Well for the Particle in a Box.

 4. The integral L
all space

AA * dt = 1

 5. The integral L
all space

AB * dt = 0  

The total probability of an electron being 
somewhere in space = 1. This is called 
 normalizing the wave function.*

A and B are wave functions for electrons 
in different orbitals within the same atom. 
All orbitals in an atom must be orthogonal 
to each other. In some cases, this means that 
the axes of orbitals must be perpendicular, as 
with the px, py, and pz orbitals.

* Because the wave functions may have imaginary values (containing 2-1), * (where * designates the 
 complex conjugate of ) is used to make the integral real. In many cases, the wave functions themselves are real,

and this integral becomes L
all space

A
2 dt.
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where n = any integer � 0.* Because both positive and negative values yield the same 
results, substituting the positive value for r into the solution for r gives 

r =
np
a

= 22mE
2p

h

This expression may be solved for E:

E =
n2h2

8ma2

These are the energy levels predicted by the particle-in-a-box model for any particle in a 
one-dimensional box of length a. The energy levels are quantized according to quantum 
numbers n = 1, 2, 3, c

Substituting r = np/a into the wave function gives

 = A sin 
npx

a

And applying the normalizing requirement L* dt = 1 gives

A = A2
a

The total solution is then

 = A2
a

  sin 
npx

a

The resulting wave functions and their squares for the first three states—the ground state 
(n = 1) and first two excited states (n = 2 and n = 3)—are plotted in Figure 4.

The squared wave functions are the probability densities; they show one difference 
between classical and quantum mechanical behavior of an electron in such a box. Classi-
cal mechanics predicts that the electron has equal probability of being at any point in the 
box. The wave nature of the electron gives it varied probabilities at different locations in 
the box. The greater the square of the electron wave amplitude, the greater the probability 
of the electron being located at the specified coordinate when at the quantized energy 
defined by the .

* If n = 0, then r = 0 and  = 0 at all points. The probability of finding the particle isL* dx = 0; if the 
particle is an electron, there is then no electron at all.
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FIGURE 4 Wave Functions and Their Squares for the Particle in a Box with n = 1, 2, and 3.
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2.2 Quantum Numbers and Atomic Wave Functions
The particle-in-a-box example shows how a wave function operates in one dimension. 
Mathematically, atomic orbitals are discrete solutions of the three-dimensional Schrödinger 
equations. The same methods used for the one-dimensional box can be expanded to three 
dimensions for atoms. These orbital equations include three quantum numbers, n, l, and 
ml. A fourth quantum number, ms, a result of relativistic corrections to the Schrödinger 
equation, completes the description by accounting for the magnetic moment of the electron. 
The quantum numbers are summarized in Table 2. Tables 3 and 4 describe wave functions.

The quantum number n is primarily responsible for determining the overall energy of an 
atomic orbital; the other quantum numbers have smaller effects on the energy. The quantum 
number l determines the angular momentum and shape of an orbital. The  quantum number 
ml determines the orientation of the angular momentum vector in a magnetic field, or the 
position of the orbital in space, as shown in Table 3. The quantum number ms determines the 
orientation of the electron’s magnetic moment in a magnetic field, either in the direction of 
the field 1+1

22 or opposed to it 1-1
22. When no field is present, all ml values associated with a 

given n—all three p orbitals or all five d orbitals—have the same energy, and both ms values 
have the same energy. Together, the quantum numbers n, l, and ml define an atomic orbital.

The quantum number ms describes the electron spin within the orbital. This fourth 
quantum number is consistent with a famous experimental observation. When a beam of 
alkali metal atoms (each with a single valence electron) is passed through a magnetic field, 
the beam splits into two parts; half the atoms are attracted by one magnet pole, and half 
are attracted by the opposite pole. Because in classical physics spinning charged particles 
generate magnetic moments, it is common to attribute an electron’s magnetic moment to 
its spin—as if an electron were a tiny bar magnet—with the orientation of the magnetic 
field vector a function of the spin direction (counterclockwise vs. clockwise). However, 
the spin of an electron is a purely quantum mechanical property; application of classical 
mechanics to an electron is inaccurate.

One feature that should be mentioned is the appearance of i( =2-1) in the p and 
d orbital wave equations in Table 3. Because it is much more convenient to work with 

* Also called the azimuthal quantum number.

TABLE 2  Quantum Numbers and Their Properties

Symbol Name Values Role

n Principal 1, 2, 3, . . .  Determines the major part of the 
energy

l Angular momentum*  0, 1, 2, . . ., n - 1  Describes angular dependence 
and contributes to the energy

ml Magnetic 0, {1, {2,c, { l  Describes orientation in space 
(angular momentum in the z 
direction)

ms Spin {
1

2
  Describes orientation of the 

electron spin (magnetic moment) 
in space

Orbitals with different l values are known by the following labels, derived from early terms for 
different families of spectroscopic lines:

l 0 1 2 3 4 5, …

Label s p d f g continuing alphabetically
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real functions than complex functions, we usually take advantage of another property of 
the wave equation. For differential equations of this type, any linear combination of solu-
tions to the equation—sums or differences of the functions, with each multiplied by any 
coefficient—is also a solution to the equation. The combinations usually chosen for the p 
orbitals are the sum and difference of the p orbitals having ml = + 1 and –1, normalized 

by multiplying by the constants 122
 and i22

, respectively:

2px
=

122
(+1 + -1) =

1

2A 3
p

 3R(r)4  sin u cos f

2py
=

i22
(+1 - -1) =

1

2A 3
p

 3R(r)4  sin u sin f

TABLE 3 Hydrogen Atom Wave Functions: Angular Functions
Angular Factors Real Wave Functions

Related to Angular Momentum
Functions 

of u In Polar Coordinates
In Cartesian  
Coordinates Shapes Label

l ml  

z

(u, f) (x, y, z)

0(s) 0 122p

122

1

22p

1

22p
z y

x
z y

x

s

1(p) 0 122p
26

2
 cos u

1

2A 3
p
 cos u

1

2A 3
p
 
z

r

pz

+1 122p
 eif 23

2
 sin u w

z

g 1

2A 3
p
 sin u cos f

1

2A 3
p
 
x

r

z y

xz y

x
px

-1 122p
 e- if 23

2
 sin u

1

2A 3
p
 sin u sin f

1

2A 3
p
 
y

r

py

2(d) 0 122p

1

2A5

2
  (3 cos 2 u-1)

z

1

4A 5
p

 (3 cos2 u - 1)
1

4A 5
p

 
(2z2 - x2 - y2)

r2

z y

x

z y

x

dz2

+1 122p
 eif 215

2
 cos u sin u w

z

g 1

2A15
p

  cos u sin u cos f
1

2A15
p

 
xz

r2

dxz

-1 122p
 e- if 215

2
 cos u sin u

1

2A15
p

  cos u sin u sin f
1

2A15
p

 
yz

r2

z y

x

dyz

+2 122p
 e2if 215

4
 sin2 u w

z

g 1

4A15
p

 sin2 u cos 2f
1

4A15
p

 
(x2 - y2)

r2

z y

x

dx2 - y2

-2 122p
 e- 2if 215

4
 sin2 u

1

4A15
p

 sin2 u sin 2f
1

4A15
p

 
xy

r2

z y

x

dxy

Source: Hydrogen Atom Wave Functions: Angular Functions, Physical Chemistry, 5th ed.,Gordon Barrow (c) 1988. McGraw-Hill Companies, Inc.

NOTE: The relations (eif - e- if)/(2i) = sin f  and (eif + e- if)/2 = cos f  can be used to convert the exponential imaginary functions to real trigonometric functions, 
combining the two orbitals with ml = { 1 to give two orbitals with sin f and cos f. In a similar fashion, the orbitals with ml = { 2 result in real functions with cos2 f 
and sin2 f. These functions have then been converted to Cartesian form by using the functions x = r sin u cos f, y = r sin u sin f, and z = r cos u.
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TABLE 4 Hydrogen Atom Wave Functions: Radial Functions

Radial Functions R(r), with s = Zr/a0

Orbital n l R(r)

1s 1 0 R 1s = 2 c
Z

a0
d
3/2

e -s

2s 2 0 R 2s = 2 c Z

2a0
d
3/2

(2 - s)e -s/2

2p 1 R 2p =
123

 c Z

2a0
d
3/2

se -s/2

3s 3 0 R 3s =
2

27
c Z

3a0
d
3/2

(27 - 18s + 2s2)e -s/3

3p 1 R 3p =
1

8123
c 2Z

a0
d
3/2

(6 - s)s e -s/3

3d 2 R 3d =
1

81215
c 2Z

a0
d
3/2

s2 e -s/3

*We should really call this the d2z2 - x2 - y2 orbital!

The same procedure used on the d orbital functions for ml = { 1 and {2 gives the 
functions in the column headed (u, f) in Table 3, which are the familiar d orbitals. 
The dz2 orbital (ml = 0) actually uses the function 2z2 - x2 - y2, which we shorten to z2 
for convenience.* These functions are now real functions, so  = * and * = 2.

A more detailed look at the Schrödinger equation shows the mathematical origin of 
atomic orbitals. In three dimensions,  may be expressed in terms of Cartesian coordinates 
(x, y, z) or in terms of spherical coordinates (r, u, f). Spherical coordinates, as shown in 
Figure 5, are especially useful in that r represents the distance from the nucleus. The spheri-
cal coordinate u is the angle from the z axis, varying from 0 to p, and f is the angle from 
the x axis, varying from 0 to 2p . Conversion between Cartesian and spherical coordinates 
is carried out with the following expressions: 

x = r sin u cos f

y = r sin u sin f

z = r cos u

In spherical coordinates, the three sides of the volume element are r du, r sin u df, and 
dr. The product of the three sides is r2 sin u du df dr, equivalent to dx dy dz. The volume 
of the thin shell between r and r + dr is 4pr2 dr, which is the integral over f from 0 to 
p and over u from 0 to 2p. This integral is useful in describing the electron density as a 
function of distance from the nucleus.

 can be factored into a radial component and two angular components. The radial 
function R describes electron density at different distances from the nucleus; the angular 
functions  and  describe the shape of the orbital and its orientation in space. The two 
angular factors are sometimes combined into one factor, called Y:

(r, u, f) = R(r)(u)(f) = R(r)Y(u, f)

u

Spherical coordinates

Volume element

u

r

r

f

x

y

z

x

y

du
r sin u df

r sin u

df

rdu

dr

f

z

FIGURE 5 Spherical 
 Coordinates and Volume 
Element for a Spherical Shell 
in Spherical Coordinates.
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R is a function only of r; Y is a function of u and f, and it gives the distinctive 
shapes of s, p, d, and other orbitals. R,  and  are shown separately in Tables 3 and 4.

Angular Functions
The angular functions  and  determine how the probability changes from point to point 
at a given distance from the center of the atom; in other words, they give the shape of the 
orbitals and their orientation in space. The angular functions  and  are determined by 
the quantum numbers l and ml. The shapes of s, p, and d orbitals are shown in Table 3 
and Figure 6.

In the center of Table 3 are the shapes for the  portion; when the  portion is 
included, with values of f = 0 to 2p, the three-dimensional shapes in the far-right col-
umn are formed. In the three-dimensional diagrams of orbitals in Table 3, the orbital lobes 
are shaded where the wave function is negative. The different shadings of the lobes repre-
sent different signs of the wave function . It is useful to distinguish regions of opposite 
signs for bonding purposes.

Radial Functions
The radial factor R(r) (Table 4) is determined by the quantum numbers n and l, the  principal 
and angular momentum quantum numbers.

The radial probability function is 4pr2R2. This function describes the probability of 
finding the electron at a given distance from the nucleus, summed over all angles, with the 
4pr2 factor the result of integrating over all angles. The radial wave functions and radial 
probability functions are plotted for the n = 1, 2, and 3 orbitals in Figure 7. Both R(r) 
and 4pr2R2 are scaled with a0, the Bohr radius, to give reasonable units on the axes of the 

FIGURE 6 Selected  
Atomic Orbitals.

(Selected Atomic Orbitals by Gary 
O. Spessard and Gary L. Miessler. 
Reprinted by permission.)
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graphs. The Bohr radius, a0 = 52.9 pm, is a common unit in quantum mechanics. It is 
the value of r at the maximum of 2 for a hydrogen 1s orbital (the most probable distance 
from the hydrogen nucleus for the 1s electron), and it is also the radius of the n = 1 orbit 
according to the Bohr model.

In all the radial probability plots, the electron density, or probability of finding the 
electron, falls off rapidly beyond its maximum as the distance from the nucleus increases. 
It falls off most quickly for the 1s orbital; by r = 5a0, the probability is approaching zero. 
By contrast, the 3d orbital has a maximum at r = 9a0 and does not approach zero until 
approximately r = 20a0. All the orbitals, including the s orbitals, have zero  probability at 
the center of the nucleus, because 4pr2R2 = 0 at r = 0. The radial probability functions 
are a combination of 4pr2, which increases rapidly with r, and R2, which may have  maxima 
and minima, but generally decreases exponentially with r. The product of these two factors 
gives the characteristic probabilities seen in the plots. Because chemical reactions depend 
on the shape and extent of orbitals at large distances from the nucleus, the radial probability 
functions help show which orbitals are most likely to be involved in reactions.

Nodal Surfaces
At large distances from the nucleus, the electron density, or probability of finding the 
electron, falls off rapidly. The 2s orbital also has a nodal surface, a surface with zero 
electron density, in this case a sphere with r = 2a0 where the probability is zero. Nodes 
appear naturally as a result of the wave nature of the electron. A node is a surface where the 
wave function is zero as it changes sign (as at r = 2a0 in the 2s orbital); this requires that 
 = 0, and the probability of finding the electron at any point on the surface is also zero.

If the probability of finding an electron is zero (2 = 0),  must also be equal to 
zero. Because

 (r, u, f) = R (r)Y(u, f)

in order for  = 0, either R(r) = 0 or Y(u, f) = 0. We can therefore determine nodal 
surfaces by determining under what conditions R = 0 or Y = 0.

Table 5 summarizes the nodes for several orbitals. Note that the total number of nodes 
in any orbital is n – 1 if the conical nodes of some d and f orbitals count as two nodes.* 

* Mathematically, the nodal surface for the dz2 orbital is one surface, but in this instance, it fits the pattern better if 
thought of as two nodes.

TABLE 5 Nodal Surfaces

Angular Nodes [Y(u, f) = 0]

Examples (number of angular nodes)

s orbitals 0

p orbitals 1 plane for each orbital

d orbitals 2 planes for each orbital except dz2

1 conical surface for dz2

Radial Nodes [R(r)�0]

Examples (number of radial nodes)

1s 0 2p 0 3d 0

2s 1 3p 1 4d 1

3s 2 4p 2 5d 2

pz dx2 - y2

y

y

x x

z

x = -y

x = y
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Angular nodes result when Y = 0, and are planar or conical. Angular nodes can be 
determined in terms of u and f but may be easier to visualize if Y is expressed in Cartesian 
(x, y, z) coordinates (see Table 3). In addition, the regions where the wave function is posi-
tive and where it is negative can be found. This information will be useful in working with 
molecular orbitals. There are l angular nodes in any orbital, with the conical surface in the 
dz2 orbitals—and other orbitals having conical nodes—counted as two nodes.

Radial nodes (spherical nodes) result when R = 0. They give the atom a layered appear-
ance, shown in Figure 8 for the 3s and 3pz orbitals. These nodes occur when the radial func-
tion changes sign; they are depicted in the radial function graphs by R(r) = 0 and in the 
radial probability graphs by 4pr2R2 = 0. The lowest energy  orbitals of each classifica-
tion (1s, 2p, 3d, 4f, etc.) have no radial nodes. The number of radial nodes increases as n 
increases; the number of radial nodes for a given orbital is always* equal to n - l - 1. 

Nodal surfaces can be puzzling. For example, a p orbital has a nodal plane through 
the nucleus. How can an electron be on both sides of a node at the same time without ever 
having been at the node, at which the probability is zero? One explanation is that the prob-
ability does not go quite to zero** on the basis of relativistic arguments.

* Again, counting a conical nodal surface, such as for a dz2 orbital, as two nodes.
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FIGURE 8 Constant Electron 
Density Surfaces for Selected 
Atomic Orbitals. (a)–(d) The 
cross-sectional plane is any 
plane containing the z axis. 
(e) The cross section is taken 
through the xz or yz plane. 
(f) The cross section is taken 
through the xy plane.

(Figures (b)–(f ) Reproduced with 
permission from E. A. Orgyzlo and 
G.B. Porter, in J. Chem. Educ., 40, 258. 
Copyright 1963. American Chemical 
Society.)

**  A. Szabo, J. Chem. Educ., 1969, 46, 678 explains that the electron probability at a nodal surface has a very 
small but finite value.
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Another explanation is that such a question really has no meaning for an electron behav-
ing as a wave. Recall the particle-in-a-box example. Figure 4 shows nodes at x/a = 0.5 
for n = 2 and at x/a = 0.33 and 0.67 for n = 3. The same diagrams could represent the 
amplitudes of the motion of vibrating strings at the fundamental frequency (n = 1) and 
multiples of 2 and 3. A plucked violin string vibrates at a specific frequency, and nodes at 
which the amplitude of vibration is zero are a natural result. Zero amplitude does not mean 
that the string does not exist at these points but simply that the magnitude of the vibration 
is zero. An electron wave exists at the node as well as on both sides of a nodal surface, just 
as a violin string exists at the nodes and on both sides of points having zero amplitude.

Still another explanation, in a lighter vein, was suggested by R. M. Fuoss to one of 
the authors in a class on bonding. Paraphrased from St. Thomas Aquinas, “Angels are not 
material beings. Therefore, they can be first in one place and later in another without ever 
having been in between.” If the word “electrons” replaces the word “angels,” a semitheo-
logical interpretation of nodes would result.

E X A M P L E  1

Nodal structure of pz The angular factor Y is given in Table 3 in terms of Cartesian 
coordinates:

Y =
1

2
 A 3

p
 
z
r

This orbital is designated pz because z appears in the Y expression. For an angular 
node, Y must equal zero, which is true only if z = 0. Therefore, z = 0 (the xy plane) is 
an angular nodal surface for the pz orbital, as shown in Table 5 and Figure 8. The wave 
function is positive where z 7 0 and negative where z 6 0. In addition, a 2pz orbital 
has no radial (spherical) nodes, a 3pz orbital has one radial node, and so on.

Nodal structure of dx2-y2

Y =
1

4A15
p

 (x
2 - y 2)

r2

Here, the expression x 2 - y 2 appears in the equation, so the designation is dx2 -y2.

Because there are two solutions to the equation Y = 0 (setting x 2 - y 2 = 0, the 
 solutions are x = y and x = - y), the planes defined by these equations are the 
 angular nodal surfaces. They are planes containing the z axis and making 45° angles 
with the x and y axes (see Table 5). The function is positive where x 7 y and negative 
where x 6 y. In addition, a 3dx2 -y2 orbital has no radial nodes, a 4dx2 -y2 has one radial 
node, and so on.

EXERCISE 2 Describe the angular nodal surfaces for a dz2 orbital, whose angular wave 
function is

Y =
1

4
 A 5

p
 
(2z 2 - x 2 - y 2)

r2

EXERCISE 3 Describe the angular nodal surfaces for a dxz orbital, whose angular wave 
function is

Y =
1

2
 A15

p
 xz

r2

The result of the calculations is the set of atomic orbitals familiar to chemists. Figure 6 
shows diagrams of s, p, and d orbitals, and Figure 8 shows lines of constant  electron density 
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in several orbitals. Different shadings of the orbital lobes in Figure 6 indicate different signs 
of the electron wave amplitude, and the outer surfaces shown enclose 90% of the total electron 
density of the orbitals. The orbitals we use are the  common ones used by chemists; others that 
are also solutions of the Schrödinger equation can be chosen for special purposes.14

The reader is encouraged to make use of Internet resources that display a wide range of 
atomic orbitals—including  f, g, and higher orbitals—show radial and angular nodes, and 
provide additional information.*

2.3 The Aufbau Principle
Limitations on the values of the quantum numbers lead to the aufbau (German, Aufbau, 
building up) principle, where the buildup of electrons in atoms results from continually 
increasing the quantum numbers. The energy level pattern in Figure 2 describes  electron 
behavior in a hydrogen atom, where there is only one electron. However,  interactions 
between electrons in polyelectronic atoms require that the order of filling orbitals be 
 specified when more than one electron is in the same atom. In this process, we start with 
the lowest n, l, and ml values (1, 0, and 0, respectively) and either of the ms values (we will 
arbitrarily use+

1
2 first). Three rules will then give us the proper order for the remaining 

electrons, as we increase the quantum numbers in the order ml, ms, l, and n.

 1. Electrons are placed in orbitals to give the lowest total electronic energy to the atom. 
This means that the lowest values of n and l are filled first. Because the orbitals within 
each subshell (p, d, etc.) have the same energy, the orders for values of ml and ms are 
indeterminate.

 2. The Pauli exclusion principle15 requires that each electron in an atom have a unique 
set of quantum numbers. At least one quantum number must be different from those 
of every other electron. This principle does not come from the Schrödinger equation, 
but from experimental determination of electronic structures.

 3. Hund’s rule of maximum multiplicity16 requires that electrons be placed in orbitals 
to give the maximum total spin possible (the maximum number of parallel spins). 
Two electrons in the same orbital have a higher energy than two electrons in different 
orbitals because of electrostatic repulsion (see below); electrons in the same orbital 
repel each other more than electrons in separate orbitals. Therefore, this rule is a 
consequence of the lowest possible energy rule (Rule 1). When there are one to six 
electrons in a p subshell, the required arrangements are those given in Table 6. (The 
spin  multiplicity is the number of unpaired electrons plus 1, or n + 1) . Any other 
arrangement of  electrons results in fewer unpaired electrons.**

* Two examples are http://www.orbitals.com and http://winter.group.shef.ac.uk/orbitron.
** This is only one of Hund’s rules.

TABLE 6 Hund’s Rule and Multiplicity
Number of Electrons Arrangement Unpaired e- Multiplicity

1 1 2

2 2 3

3 3 4

4 2 3

5 1 2

6 0 1
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Hund’s rule is a consequence of the energy required for pairing electrons in the same 
orbital. When two negatively charged electrons occupy the same region of space (same 
orbital) in an atom, they repel each other, with a Coulombic energy of repulsion, Pc, per 
pair of electrons. As a result, this repulsive force favors electrons in different orbitals 
( different regions of space) over electrons in the same orbitals.

In addition, there is an exchange energy, Pe, which arises from purely quantum mechani-
cal considerations. This energy depends on the number of possible exchanges between two 
electrons with the same energy and the same spin. For example, the electron configuration of 
a carbon atom is 1s2 2s2 2p2. The 2p electrons can be placed in the p orbitals in three ways:

(1) (2) (3)

Each of these corresponds to a state having a particular energy. State (1) involves 
 Coulombic energy of repulsion, Pc, because it is the only one that pairs electrons in the 
same orbital. The energy of this state is higher than that of the other two by Pc as a result 
of electron–electron repulsion.

In the first two states, there is only one possible way to arrange the electrons to give 
the same diagram, because there is only a single electron in each having + or – spin; these 
electrons can be distinguished from each other on this basis. However, in the third state, 
the electrons have the same spin and are therefore indistinguishable from each other. 
Therefore, there are two possible ways in which the electrons can be arranged:

1 2 2 (one exchange of electrons)1

Because there are two possible ways in which the electrons in state (3) can be arranged, we 
can say that there is one pair of possible exchanges between these arrangements, described 
as one exchange of parallel electrons. The energy involved in such an exchange of parallel 
electrons is designated Pe; each exchange stabilizes (lowers the energy of) an electronic 
state, favoring states with more parallel spins (Hund’s rule). Therefore, state (3), which is 
stabilized by one exchange of parallel electrons, is lower in energy than state (2) by Pe.

The results of considering the effects of Coulombic and exchange energies for the p2 
configuration may be summarized in an energy diagram:

∑e

∑c

Energy

(1)

(2)

(3)

State (3) is the most stable; its electrons are in separate orbitals and have parallel spin; 
because state (3) has one possible exchange of electrons with parallel spin, it is lower in 
energy than state (2) by Pe. State (1) is highest in energy because it has two  electrons in 
the same orbital and is therefore higher in energy than state (2) by Pc. Neither state (1) nor 
state (2) is stabilized by exchange interactions (zero Pe).
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In summary:

Coulombic energy of repulsion Pc is a consequence of repulsion between electrons 
in the same orbital; the greater the number of such paired electrons, the higher the 
energy of the state.*

Exchange energy Pe is a consequence of parallel electron spins in separate orbitals; 
the greater the number of such parallel spins (and consequently the greater the number 
of exchanges), the lower the energy of the state.

Both Coulombic and exchange energies must be taken into account when comparing 
the energies of different electronic states.

E X A M P L E  2

Oxygen

With four p electrons, oxygen could have two unpaired electrons ( ), 

or it could have no unpaired electrons ( ).
a.  Determine the number of electrons that could be exchanged in each case, and find 

the Coulombic and exchange energies.

1 2 3 2 1 3 3 2 1 1 3 2

 This configuration has one pair, energy contribution Pc.

1 2 3 2 1 3 3 2 1 1 3 2

 One electron with T  spin and no possibility of exchange.

1 2 3 2 1 3 3 2 1 1 3 2

 Four possible arrangements for electrons with c  spin; three 
 exchange  possibilities (1–2, 1–3, 2–3), shown below; energy contribution 3Pe.

1 2 3 2 1 3 3 2 1 1 3 2  
Overall, 3Pe + Pc. 

 has two pairs in the same orbitals and one exchange possibility 
for each spin pair.

Overall, 2Pe + 2Pc.

b. Which state, , or , is lower in energy?

The state  is lower in energy because it has less Coulombic  energy 
of  repulsion (Pc in comparison with 2Pc) and is stabilized by a greater number of 
 exchanges (3Pe in comparison with 2Pe).

EXERCISE 4 A third possible state for the p4 configuration would be   (1) (2) (3) . 
 Determine the Coulombic and exchange energies of this state, and compare its energy with 
the energies of the states determined in the preceding example. Draw a sketch showing the 
relative energies of these three states for oxygen’s p4 configuration.

EXERCISE 5 A nitrogen atom, with three 2p electrons, could have three 
 unpaired  electrons ( ), or it could have one unpaired 
  electron ( ).

a. Determine the number of electrons that could be exchanged in each case and the 
Coulombic and exchange energies. Which state would be lower in energy?

*In atoms with more than one electron (polyelectronic atoms), all electrons are subject to some Coulombic 
 repulsion energy, but this contribution is significantly higher for electrons that are paired within atomic orbitals.
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b. A third possible state for a 2p3 configuration would be   (1) (2) (3).  
Determine its  Coulombic and exchange energies, and compare the energy of 
this state with the energies determined in part a.

When the orbitals are degenerate (have the same energy), both Coulombic and 
exchange energies favor unpaired configurations over paired configurations. However, if 
there is a difference in energy between the levels involved, this difference, together with the 
 Coulombic and exchange energies, determines the final configuration, with the configu-
ration of lowest energy expected as the ground state; energy minimization is the driving 
force. For atoms, this usually means that one subshell (s, p, d) is filled before another has 
any electrons. However, this approach is insufficient in some transition elements, because 
the 4s and 3d (or the higher corresponding levels) are so close in energy that the sum of 
the Coulombic and exchange terms is nearly the same as the difference in energy between 
the 4s and 3d.  Section 2.4 considers these cases.

Many schemes have been used to predict the order of filling of atomic orbitals. 
 Klechkowsky’s rule states that the order of filling of the orbitals proceeds from the low-
est available value for the sum n + l. When two combinations have the same value, 
the one with the smaller value of n is filled first; thus, 4s1n + l = 4 + 02 fills before  
3d1n + l = 3 + 22. Combined with the other rules, this gives the order of filling of most 
of the orbitals.*

One of the simplest methods that fits most atoms uses the periodic table organized as in 
Figure 9. The electron configurations of hydrogen and helium are clearly 1s1 and 1s2. After 
that, the elements in the first two columns on the left (Groups 1 and 2) are filling s orbitals, 
with l = 0; those in the six columns on the right (Groups 13 to 18) are filling p orbitals, 
with l = 1; and the ten in the middle (the transition elements, Groups 3 to 12) are filling 

1s

2s

3s

4s

5s

6s 5d

7s

s block p block d block f block

2s

3s

4s

5s

6s

7s 6d 6d

3d

4d

5d

6d

3d

4d

5d*

6d

3d

4d

5d

3d

4d

6p

2p

5p

3p

4p

6p

2p

5p

3p

4p

6p

2p

5p

3p

4p

6p

2p

5p

3p

4p

6p

2p

5p

3p

4p

5p

3p

4p

6p

4f4f

5f5f

4f

5f

5d

6d

3d

4d

4f

5f

5d

6d

3d

4d

4f

5f

5d

6d

3d

4d

4f

5f

5d

6d

3d

4d

4f

5f

5d

6d

3d

4d

4f

5f

5d

6d

3d

4d

4f

5f

4f

5f

4f

5f

4f

5f

4f

5f

4f

5f

*

**

2p

1s

**

1
Groups (IUPAC)

3 6 132 5 87 109 1211 181514 174 16

IA
(US traditional)

IIIB VIB IIIAIIA VB VIIB VIIIB IIBIB VIIIAVAIVA VIIAIVB VIA

FIGURE 9 Atomic Orbital 
 Filling in the Periodic Table.

* For recent perspective on electron configurations, energies of atomic orbitals, the periodic system, and related 
topics, see S-G. Wang and W. H. E. Schwarz, Angew. Chem. Int. Ed., 2009, 48, 3404.
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d orbitals, with l = 2. The lanthanide and actinide series (numbers 58 to 71 and 90 to 103) 
are filling f orbitals, with l = 3. These two methods are oversimplifications, as shown in the 
following paragraphs, but they do fit most atoms and provide starting points for the others.

2.4 Shielding
In polyelectronic atoms, energies of specific levels are difficult to predict quantitatively. 
A useful approach to such predictions uses the concept of shielding: each electron acts as 
a shield for electrons farther from the nucleus, reducing the attraction between the nucleus 
and the more distant electrons.

Although the quantum number n is most important in determining the energy, 
 quantum  number l must also be included in calculating the energy in atoms having 
more than one electron. As the atomic number increases, electrons are drawn toward the 
nucleus, and the orbital energies become more negative. Although the energies decrease 
with increasing Z, the changes are somewhat irregular because of the shielding of outer 
electrons by inner electrons. The electron configurations of atoms from the resulting order 
of orbital filling are shown in Table 7.

As a result of shielding and other subtle interactions between electrons, exclusive 
 reliance on n to rank orbital energies (higher energy with higher quantum number n), which 
works for one-electron species, holds only for orbitals with lowest values of n (see   Figure 10) 
in polyelectronic species. In multielectron atoms (and ions), for higher values of n, as the 
split in orbital energies with different values of quantum number l becomes comparable 
in magnitude to the differences in energy caused by n, the simplest order does not hold.

For example, consider the n = 3 and n = 4 sets in Figure 10. For many atoms 
the 4s orbital is lower in energy than the 3d orbitals; consequently the order of 
filling is …3s, 3p, 4s, 3d, 4p… rather than the order based strictly on  increasing 
n …3s, 3p, 3d, 4s, 4p…

Similarly, 5s begins to fill before 4d, and 6s before 5d. Other examples can be 
found in Figure 10.

Slater17 formulated rules that serve as an approximate guide to this effect. These rules 
define the effective nuclear charge Z  * as a measure of the attraction of the nucleus for a 
particular electron:

Effective nuclear charge Z * = Z - S, where Z = nuclear charge 
S = shielding constant

Slater’s rules for determining S for a specific electron:* 

 1. The atom’s electronic structure is written in order of increasing quantum numbers 
n and l, grouped as follows:

(1s) (2s, 2p) (3s, 3p) (3d) (4s, 4p) (4d) (4f ) (5s, 5p) (5d) (and so on)

 2. Electrons in groups to the right in this list do not shield electrons to their left.

 3. The shielding constant S for electrons in these groups can now be determined. For ns 
and np valence electrons:

 a.  Each electron in the same group contributes 0.35 to the value of S for each other 
electron in the group.

 Exception: A 1s electron contributes 0.30 to S for another 1s electron.
  Example: For a configuration 2s2 2p5, a particular 2p electron has six other elec-

trons in the (2s, 2p) group. Each of these contributes 0.35 to the value of S, for a 
total contribution to S of 6 * 0.35 = 2.10.

* Slater’s original numbering scheme has been changed for convenience.
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TABLE 7 Electron Configurations of the Elements

Element Z Configuration Element Z Configuration
H 1 1s1 Cs 55 3Xe46s1

He 2 1s2 Ba 56 3Xe46s2

Li 3 3He42s1 La 57 *3Xe46s2 5d1

Be 4 3He42s2 Ce 58 *3Xe46s2 4f 1 5d1

B 5 3He42s2 2p1 Pr 59 3Xe46s2 4f 3

C 6 3He42s2 2p2 Nd 60 3Xe46s2 4f 4

N 7 3He42s2 2p3 Pm 61 3Xe46s2 4f 5

O 8 3He42s2 2p4 Sm 62 3Xe46s2 4f 6

F 9 3He42s2 2p5 Eu 63 3Xe46s2 4f 7

Ne 10 3He42s2 2p6 Gd 64 *3Xe46s2 4f 7 5d1

Tb 65 3Xe46s2 4f 9

Na 11 3Ne43s1 Dy 66 3Xe46s2 4f 10

Mg 12 3Ne43s2 Ho 67 3Xe46s2 4f 11

Al 13 3Ne43s2 3p1 Er 68 3Xe46s2 4f 12

Si 14 3Ne43s2 3p2 Tm 69 3Xe46s2 4f 13

P 15 3Ne43s2 3p3 Yb 70 3Xe46s2 4f 14

S 16 3Ne43s2 3p4 Lu 71 3Xe46s2 4f 14 5d1

Cl 17 3Ne43s2 3p5 Hf 72 3Xe46s2 4f 14 5d2

Ar 18 3Ne43s2 3p6 Ta 73 3Xe46s2 4f 14 5d3

W 74 3Xe46s2 4f 14 5d4

K 19 3Ar44s1 Re 75 3Xe46s2 4f 14 5d5

Ca 20 3Ar44s2 Os 76 3Xe46s2 4f 14 5d6

Sc 21 3Ar44s2 3d1 Ir 77 3Xe46s2 4f 14 5d7

Ti 22 3Ar44s2 3d2 Pt 78 *3Xe46s1 4f 14 5d9

V 23 3Ar44s2 3d3 Au 79 *3Xe46s1 4f 14 5d10

Cr 24 *3Ar44s1 3d5 Hg 80 3Xe46s2 4f 14 5d10

Mn 25 3Ar44s2 3d5 Tl 81 3Xe46s2 4f 14 5d10 6p1

Fe 26 3Ar44s2 3d6 Pb 82 3Xe46s2 4f 14 5d10 6p2

Co 27 3Ar44s2 3d7 Bi 83 3Xe46s2 4f 14 5d10 6p3

Ni 28 3Ar44s2 3d8 Po 84 3Xe46s2 4f 14 5d10 6p4

Cu 29 *3Ar44s1 3d10 At 85 3Xe46s2 4f 14 5d10 6p5

Zn 30 3Ar44s2 3d10 Rn 86 3Xe46s2 4f 14 5d10 6p6

Ga 31 3Ar44s2 3d10 4p1

Ge 32 3Ar44s2 3d10 4p2 Fr 87 3Rn47s1

As 33 3Ar44s2 3d10 4p3 Ra 88 3Rn47s2

Se 34 3Ar44s2 3d10 4p4 Ac 89 *3Rn47s2 6d1

Br 35 3Ar44s2 3d10 4p5 Th 90 *3Rn47s2 6d2

Kr 36 3Ar44s2 3d10 4p6 Pa 91 *3Rn47s2 5f 2 6d1

U 92 *3Rn47s2 5f 3 6d1

Rb 37 3Kr45s1 Np 93 *3Rn47s2 5f 4 6d1

Sr 38 3Kr45s2 Pu 94 3Rn47s2 5f 6

Am 95 3Rn47s2 5f 7

Y 39 3Kr45s2 4d1 Cm 96 *3Rn47s2 5f 7 6d1

Zr 40 3Kr45s2 4d2 Bk 97 3Rn47s2 5f 9

Nb 41 *3Kr45s1 4d4 Cf 98 *3Rn47s2 5f 9 6d1

Mo 42 *3Kr45s1 4d5 Es 99 3Rn47s2 5f 11

Tc 43 3Kr45s2 4d5 Fm 100 3Rn47s2 5f 12

Ru 44 *3Kr45s1 4d7 Md 101 3Rn47s2 5f 13

Rh 45 *3Kr45s1 4d8 No 102 3Rn47s2 5f 14

Pd 46 *3Kr44d10 Lr 103 3Rn47s2 5f 14 6d1

Ag 47 *3Kr45s1 4d10 Rf 104 3Rn47s2 5f 14 6d2

Cd 48 3Kr45s2 4d10 Db 105 3Rn47s2 5f 14 6d3

In 49 3Kr45s2 4d10 5p1 Sg 106 3Rn47s2 5f 14 6d4

Sn 50 3Kr45s2 4d10 5p2 Bh 107 3Rn47s2 5f 14 6d5

Sb 51 3Kr45s2 4d10 5p3 Hs 108 3Rn47s2 5f 14 6d6

Te 52 3Kr45s2 4d10 5p4 Mt 109 3Rn47s2 5f 14 6d7

I 53 3Kr45s2 4d10 5p5 Ds 110 *3Rn47s1 5f 14 6d9

Xe 54 3Kr45s2 4d10 5p6 Rg 111 *3Rn47s1 5f14 6d10

Cna 112 3Rn47s2 5f14 6d10

* Elements with configurations that do not follow the simple order of orbital filling.
a Evidence for elements 113–118 has been reviewed by IUPAC; see R. C. Barber, P. J. Karol, H. Nakahara, E.  Vardaci, E. W. 
Vogt, Pure Appl. Chem., 2011, 83, 1485. In May 2012, IUPAC officially named element 114 (flerovium, symbol Fl) and element 
116  (livermorium, Lv).

Source: Actinide configurations are from J. J. Katz, G. T. Seaborg, and L. R. Morss, The Chemistry of the Actinide  Elements,  
2nd ed., Chapman and Hall, New York and London, 1986. Configurations for elements 100 to 112 are predicted, not  experimental.
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 b. Each electron in n – 1 groups contribute 0.85 to S.
  Example: For the 3s electron of sodium, there are eight electrons in the (2s, 2p) 

group. Each of these electrons contributes 0.85 to the value of S, a total contribu-
tion of 8 * 0.85 = 6.80.

 c. Each electron in n – 2 or lower groups contributes 1.00 to S.
 4. For nd and nf valence electrons:
 a.  Each electron in the same group contributes 0.35 to the value of S for each other 

electron in the group. (Same rule as 3a.)
 b.  Each electron in groups to the left contributes 1.00 to S.

These rules are used to calculate the shielding constant S for valence electrons. 
 Subtracting S from the total nuclear charge Z gives the effective nuclear charge Z* on the 
selected electron:

Z* = Z - S
Calculations of S and Z* follow.

E X A M P L E  3

Oxygen

Use Slater’s rules to calculate the shielding constant and effective nuclear charge of 
a 2p electron.

Rule 1: The electron configuration is written using Slater’s groupings, in order:

(1s2)(2s2, 2p4)

To calculate S for a valence 2p electron:

Rule 3a:  Each other electron in the (2s2, 2p4) group contributes 0.35 to S.  
Total contribution = 5 * 0.35 = 1.75

Rule 3b: Each 1s electron contributes 0.85 to S.
 Total contribution = 2 * 0.85 = 1.70

5g

5f
4f
5d

5p

4d
5s

4p

3d
4s

3p

3s

2p

2s

1sn = 1

n = 2

n = 3

n = 4

n = 5

FIGURE 10  Energy Level 
Splitting and  Overlap.  
The  differences between 
the  upper levels are 
 exaggerated for easier 
visualization. This  diagram 
provides  unambiguous electron 
 configurations for  elements 
hydrogen to vanadium.
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 Total S = 1.75 + 1.70 = 3.45
 Effective nuclear charge Z* = 8 - 3.45 = 4.55
  So rather than feeling the full +8 nuclear charge, a 2p electron is calculated to 

feel a charge of +4.55, or about 57% of the full nuclear charge.

Nickel

Use Slater’s rules to calculate the shielding constant and effective nuclear charge of a 
3d and 4s electron.
Rule 1:  The electron configuration is written (1s2)(2s2, 2p6)(3s2, 3p6)(3d8)(4s2)

For a 3d electron:

Rule 4a:  Each other electron in the (3d8) group contributes 0.35 to S. 
 Total contribution = 7 * 0.35 = 2.45

Rule 4b:  Each electron in groups to the left of (3d8) contributes 1.00 to S. 
 Total contribution = 18 * 1.00 = 18.00
 Total S = 2.45 + 18.00 = 20.45
 Effective nuclear charge Z* = 28 - 20.45 = 7.55

For a 4s electron:

Rule 3a: The other electron in the (4s2) group contributes 0.35 to S.

Rule 3b:  Each electron in the (3s2, 3p6)(3d8) groups (n – 1) contributes 0.85. 
Total contribution = 16 * 0.85 = 13.60

Rule 3c:  Each other electron to the left contributes 1.00. Total contribution =  
10 * 1.00 = 10.00

 Total S = 0.35 + 13.60 + 10.00 = 23.95

 Effective nuclear charge Z * = 28 - 23.95 = 4.05

The effective nuclear charge for the 4s electron is considerably smaller than the value 
for the 3d electron. This is equivalent to stating that the 4s electron is held less tightly 
than the 3d and should therefore be the first removed in ionization. This is consistent 
with experimental observations on nickel compounds. Ni2+ , the most common oxida-
tion state of nickel, has a configuration of [Ar] 3d8, rather than [Ar] 3d6 4s2, corre-
sponding to loss of the 4s electrons from nickel atoms. All the transition metal atoms 
follow this same pattern of losing ns electrons more readily than (n – 1)d electrons.

EXERCISE 6 Calculate the effective nuclear charge on a 5s, 5p, and 4d electron in a 
tin atom.

EXERCISE 7 Calculate the effective nuclear charge on a 7s, 5f, and 6d electron in a 
uranium atom.

Justification for Slater’s rules comes from the electron probability curves for the orbit-
als; Slater devised these rules semiempirically using equations modeled after wavefunc-
tion equations to fit experimental data for atoms. Slater’s approach results in rules that 
provide useful approximations for the effective nuclear charge an electron in an atom 
actually  experiences after shielding is taken into account. The s and p orbitals have higher 
 probabilities near the nucleus than do d orbitals of the same n, as shown earlier in  Figure 7. 
Therefore, the shielding of 3d electrons by (3s, 3p) electrons is calculated as 100% effective, 
a contribution of 1.00. At the same time, shielding of 3s or 3p electrons by (2s, 2p) electrons 
is estimated as 85% effective, a contribution of 0.85, because the 3s and 3p orbitals have 
regions of significant probability close to the nucleus. Therefore, electrons in these orbitals 
are not completely shielded by (2s, 2p) electrons.
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A complication arises at Cr (Z = 24) and Cu (Z = 29) in the first transition series 
and in an increasing number of atoms with higher atomic numbers in the second and 
third transition series. This effect places an extra electron in the 3d level and removes one 
electron from the 4s level. Cr, for example, has a configuration of [Ar] 4s1 3d5 rather than 
[Ar] 4s2 3d4. Traditionally, this phenomenon has often been explained as a consequence of 
the “special stability of half-filled subshells.” Half-filled and filled d and f subshells are, 
in fact, fairly common, as shown in Figure 11. A more complete  explanation  considers 
both the effects of increasing nuclear charge on the energies of the 4s and 3d  levels and 
the interactions between electrons sharing the same orbital.18 This approach requires 
 totaling all contributions to the energy of the configuration of electrons, including the 
 Coulombic and exchange energies; results of the complete calculations are consistent with 
the  configurations determined by experimental data.

Slater’s rules have been refined to improve their match with experimental data. One 
relatively simple refinement is based on the ionization energies for the elements hydrogen 
through xenon, and it provides a calculation procedure similar to that proposed by Slater.19 
A more elaborate method incorporates exponential screening and provides energies that 
are in closer agreement with experimental values.20

Another explanation that is more pictorial and considers electron–electron interactions 
was proposed by Rich.21 He explained electronic structures of atoms by considering the differ-
ence in energy between the energy of one electron in an orbital and two electrons in the same 
orbital. Although the orbital itself is usually assumed to have only one energy, the electrostatic 
repulsion of the two electrons in one orbital adds the electron-pairing energy described in 
Section 2.3 as part of Hund’s rule. We can visualize two parallel energy levels, each with 
electrons of only one spin, separated by the electron-pairing energy, as shown in Figure 12.

For example, an Sc atom has the valence configuration 4s2 3d1. By Rich’s approach, 
the first electron is arbitrarily considered to have ms =  - 1

2. The second electron, with 
ms =  + 1

2, completes the 4s2 configuration—but the total energy of these two electrons 
is greater than twice the energy of the first electron, because of the Coulombic energy of 
repulsion, �c. In Figure 12(a) Sc is shown as having three electrons: in ascending order 
these are 4s (ms =  - 1

2), 4s (ms =  + 1
2), and 3d (ms =  - 1

2). The next element, Ti, also 
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FIGURE 11 Electron Configu-
rations of Transition Metals, 
Including Lanthanides and 
Actinides. Solid lines sur-
rounding elements designate 
filled (d10

 or f14) or half-filled 
(d5

 or f7) subshells. Dashed lines 
surrounding elements desig-
nate irregularities in sequential 
orbital filling, also found within 
some of the solid lines.
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has one 4s electron with each spin, then two 3d electrons, each with ms =  - 1
2. The two 

3d electrons, by Hund’s rule, have parallel spin.
As the number of protons in the nucleus increases, the effective nuclear charge for all 

electrons increases and the energy levels decrease in energy; their electrons become more 
stable. Figure 12 illustrates that the energy of the 3d subshell decreases more dramatically 
relative to 4s as one moves across the first transition series; this trend generally holds for 
(n - 1)d and ns orbitals. A rationalization for this trend is that orbitals with shorter most 
probable distances to the nucleus are stabilized more as Z increases relative to orbitals 
with greater most probable distances. Because the 3d orbitals have shorter most probable 
distances from the nucleus than the 4s orbital, the 3d orbitals are stabilized more than the 
4s as the nuclear charge increases.

The effective nuclear charge that an electron experiences generally increases as the 
most probable distance of the electron from the nucleus decreases; these electrons are less 
susceptible to shielding by electrons farther from the nucleus (for example, in Slater’s rules 
electrons with greater most probable distances to the electron in question do not contribute 
at all to S). Since the most probable distance from the nucleus increases as n increases 
(Figure 7), the 3d subshell ultimately stabilizes its electrons more than the 4s orbital once 
Z gets sufficiently high. Regardless of the relative orbital energies, the observed electronic 
configuration is always the one of lowest energy. Electrons fill the lowest available orbitals 
in order up to their capacity, with the results shown in Figure 12 and in Table 7.

The schematic diagram in Figure 12(a) shows the order in which the levels fill, from 
bottom to top in energy. For example, Ti has two 4s electrons, one in each spin level, 
and two 3d electrons, both with the same spin. Fe has two 4s electrons, one in each spin 
level, five 3d electrons with spin-

1
2, and one 3d electron with spin +

1
2. For vanadium, the 

first two electrons enter the 4s, -1
2 and 4s, +1

2 levels; the next three are all in the 3d, -1
2 

level, and vanadium has the configuration 4s2 3d3. The 3d, -1
2 line crosses the 4s, +1

2 line 
between V and Cr. When the six electrons of chromium are filled in from the lowest level, 
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FIGURE 12 Schematic 
Energy Levels for Transition 
 Elements. (a)  Schematic 
interpretation of electron 
configurations for transition 
elements in terms of intraorbital 
repulsion and trends in subshell 
energies. (b) A similar diagram 
for ions, showing the shift in the 
crossover points on removal of 
an electron. The shift is even 
more pronounced for metal ions 
having 2+ or greater charges. As 
a consequence, transition-metal 
ions with 2+ or greater charges 
have no s  electrons, only d 
electrons in their outer levels. 
Similar  diagrams, although 
more complex, can be drawn for 
the heavier transition elements 
and the lanthanides.

(Rich, R. L., Periodic Coorelate, 1st Ed., 
(c) 1965. Reprinted and Electroni-
cally reproduced by permission of 
Pearson Education Inc, Upper Saddle 
River, NJ 07458.)
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chromium has the configuration 4s1 3d5. A similar crossing gives copper its 4s1 3d10 
structure. This approach to electron configurations of transition metals does not depend 
on the stability of half-filled shells or other additional factors.

Formation of a positive ion by removal of an electron reduces shielding; the effective 
nuclear charge for all electrons increases dramatically. On the basis of the most probable 
distance effect discussed previously, (n - 1)d orbitals will be lower in energy than ns 
orbitals in the cation, as shown in Figure 12(b). As a result, the remaining electrons occupy 
the d orbitals. A common rule in introductory chemistry is that electrons with highest n—in 
this case, those in the s orbitals—are always removed first when ions are formed from the 
transition elements. A perhaps more mature perspective on this idea is that regardless of 
which electron is lost to form a transition metal ion, the lowest energy electron configura-
tion of the resulting ion will always exhibit the vacancy in the ns orbital. This effect is even 
stronger for 2+  ions, where the effective nuclear charge is even higher. Transition metal 
cations have no s electrons, only d electrons in their outer levels.

A similar, but more complex, crossing of levels appears in the lanthanide and actinide 
series. The simple explanation would have these elements start filling f orbitals at  lanthanum 
(57) and actinium (89), but these atoms have one d electron instead. Other elements in 
these series also show deviations from the “normal” sequence. Rich has explained these 
 situations using similar diagrams.21

3 Periodic Properties of Atoms
A valuable aspect of the arrangment of atoms on the basis of similar electronic configurations 
within the periodic table is that an atom’s position provides information about its properties. 
Some of these properties, and how they vary across periods and groups, are now discussed.

3.1 Ionization Energy
The ionization energy, also known as the ionization potential, is the energy required to 
remove an electron from a gaseous atom or ion:

 An+(g)  h   A(n+1)+(g) + e -  ionization energy (IE) = U 

where n = 0 (first ionization energy), n = 1 (second ionization energy), and so on.
As would be expected from the effects of shielding, the ionization energy varies with 

different nuclei and different numbers of electrons. Trends for the first ionization energies 
of the early elements in the periodic table are shown in Figure 13. The general trend across 
a period is an increase in ionization energy as the nuclear charge increases. However, the 
experimental values show a break in the trend in the second period at boron and again at 
oxygen. Because boron is the first atom to have an electron in a higher energy 2p orbital 
that is shielded somewhat by the 2s electrons, boron’s 2p electron is more easily lost than 
the 2s electrons of beryllium; boron has the lower ionization energy.

Energy

Be B

2p

2s

2s

At the fourth 2p electron, at oxygen, a similar decrease in ionization energy occurs. 
Here, the fourth electron shares an orbital with one of the three previous 2p electrons 
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( ), and the repulsion between the paired electrons (Pc) reduces the 
energy necessary to remove an electron from oxygen; oxygen has a lower ionization energy 
than nitrogen, which has the 2p configuration .

Similar patterns appear in the other periods, for example Na through Ar and K through 
Kr, omitting the transition metals. The transition metals have less dramatic differences 
in ionization energies, with the effects of shielding and increasing nuclear charge more 
nearly in balance.

Much larger decreases in ionization energy occur at the start of each new period, 
because the change to the next major quantum number requires that the new s electron have 
a much higher energy. The maxima at the noble gases decrease with increasing Z, because 
the outer electrons are farther from the nucleus in the heavier elements. Overall, the trends 
are toward higher ionization energy from left to right in the periodic table (the major 
change) and lower ionization energy from top to bottom (a minor change). The differences 
described in the previous paragraph are superimposed on these more general changes.

3.2 Electron Affinity
Electron affinity can be defined as the energy required to remove an electron from a 
negative ion:*

A-(g)  h   A(g) + e -  electron affinity (EA ) = U

Because of the similarity of this reaction to the ionization for an atom, electron affin-
ity is sometimes described as the zeroth ionization energy. This reaction is endothermic 
(positive U) except for the noble gases and the alkaline earth elements. The pattern of 
electron affinities with changing Z, shown in Figure 13, is similar to that of the ionization 
energies, but for one larger Z value (one more electron for each species) and with much 
smaller absolute numbers. For either of the reactions, removal of the first electron past a 
noble gas configuration is easy, so the noble gases have the lowest electron affinities. The 
electron affinities are all much smaller than the corresponding ionization energies, because 
electron removal from a negative ion (that features more shielding of the nuclear charge) 
is easier than removal from a neutral atom.

Comparison of the ionization and electron affinity graphs in Figure 13 shows similar 
zigzag patterns, but with the two graphs displaced by one element: for example, electron 
affinity shows a peak at F and valley at Ne, and ionization energy a peak at Ne and valley at 
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FIGURE 13  Ionization  Energies 
and Electron  Affinities.  
 Ionization energy = U for 
M(g) h M+(g) + e-

(Data from C. E. Moore, Ionization 
Potentials and Ionization Limits, 
National Standards Reference Data 
Series, U.S. National Bureau of Stand-
ards, Washington, DC, 1970, NSRDS-
NBS 34) Electron affinity = U for 
M-(g) h M(g) + e-  Data from 
H. Hotop and W. C. Lineberger, J. 
Phys. Chem. Ref. Data, 1985, 14, 731). 
Numerical values are in  Appendices 
B-2 and B-3.

*Historically, the definition has been - U  for the reverse reaction, adding an electron to the neutral atom. 
The definition we use avoids the sign change.
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Na. The patterns in these two quantities can more easily be seen by plotting energy against 
the number of electrons in each reactant, as shown in Figure 14 for electron affinity and 
first and second ionization energy.

The peaks and valleys match for all three graphs because the electron configura-
tions match—for example, there are peaks at 10 electrons and valleys at 11 electrons. At 
10  electrons, all three reactant species (F–, Ne, and Na+) have identical 1s2 2s2 2p6 configura-
tions; these are by definition isoelectronic species. The relatively high energy necessary to 
remove an electron from these configurations is typical for configurations in which electron 
shells are complete. The next electron, in an 11-electron configuration, is the first to occupy 
a higher energy 3s orbital and is much more easily lost, providing a valley in each graph, 
corresponding to removal of an electron from the 11-electron species Ne–, Na, and Mg+.

E X E R C I S E  8

Explain why all three graphs in Figure 14 have maxima at 4 electrons and minima at 5 
electrons.

3.3 Covalent and Ionic Radii
The sizes of atoms and ions are also related to the ionization energies and electron  affinities. 
As the nuclear charge increases, the electrons are pulled in toward the  center of the atom, 
and the size of any particular orbital decreases. On the other hand, as the nuclear charge 
increases, more electrons are added to the atom, and their mutual  repulsion keeps the outer 
orbitals large. The interaction of these two effects, increasing nuclear charge and increas-
ing number of electrons, results in a gradual decrease in atomic size across each period. 
Table 8 gives nonpolar covalent radii, based on bond distances in nonpolar  molecules. 
There are other measures of atomic size, such as the van der Waals radius, in which 
collisions with other atoms are used to define the size. It is difficult to obtain  consistent 
data for any such measure, because the polarity, chemical structure, and  physical state of 
molecules change drastically from one compound to another. The numbers shown here 
are sufficient for a general comparison of different elements.

There are similar challenges in determining the size of ions. Because the stable ions of 
the different elements have different charges and different numbers of electrons, as well as 
different crystal structures for their compounds, it is difficult to find a suitable set of num-
bers for comparison. Earlier data were based on Pauling’s approach, in which the ratio 
of the radii of isoelectronic ions was assumed to be equal to the ratio of their effective 
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TABLE 8 Nonpolar Covalent Radii (pm)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

H He

32 31

Li Be B C N O F Ne

123 89 82 77 75 73 71 69

Na Mg Al Si P S Cl Ar

154 136 118 111 106 102 99 98

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

203 174 144 132 122 118 117 117 116 115 117 125 126 122 120 117 114 111

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

216 191 162 145 134 130 127 125 125 128 134 148 144 140 140 136 133 126

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Ra

235 198 169 144 134 130 128 126 127 130 134 149 148 147 146 (146) (145)

Source: Data from R. T. Sanderson, Inorganic Chemistry, Reinhold, New York, 1967, p. 74; and E. C. M. Chen, J. G. Dojahn, W. E. Wentworth, J. Phys. Chem. A, 1997, 
101, 3088.

TABLE 9 Crystal Radii for Selected Ions

Z Element Radius (pm)

Alkali metal ions 3 Li+ 90

11 Na+ 116

19 K+ 152

37 Rb+ 166

55 Cs+ 181

Alkaline earth ions 4 Be2+ 59

12 Mg2+ 86

20 Ca 

2 + 114

38 Sr 

2 + 132

56 Ba 

2 + 149

Other cations 13 Al3+ 68

30 Zn2+ 88

Halide ions 9 F - 119

17 Cl- 167

35 Br - 182

53 I - 206

Other anions 8 O 

2 - 126

16 S2- 170

Source: Data from R. D. Shannon, Acta Crystallogr. 1976, A32, 751 for  six-coordinate ions. 

nuclear charges. More recent calculations are based on a number of considerations, 
including electron density maps from X-ray data that show larger cations and smaller 
anions than those previously found. Those in Table 9 were called “crystal radii”  
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TABLE 10 Crystal Radius and Nuclear Charge

Ion Protons Electrons Radius (pm)

O2- 8 10 126

F - 9 10 119

Na+ 11 10 116

Mg2+ 12 10 86

Al3+ 13 10 68

TABLE 11 Crystal Radius and Total Number of Electrons

Ion Protons Electrons Radius (pm)

O2- 8 10 126

S2- 16 18 170

Se2- 34 36 184

Te2- 52 54 207

TABLE 12 Crystal Radius and Ionic Charge

Ion Protons Electrons Radius (pm)

Ti2+ 22 20 100

Ti3+ 22 19 81

Ti4+ 22 18 75

by Shannon22 and are generally different from the older values of “ionic radii” by +14 pm 
for cations and –14 pm for anions, as well as being revised to accommodate more recent 
measurements. The radii in Table 9 can be used for rough estimation of the packing of 
ions in crystals and other calculations, as long as the “fuzzy” nature of atoms and ions is 
kept in mind.

Factors that influence ionic size include the coordination number of the ion, the cova-
lent character of the bonding, distortions of regular crystal geometries, and delocalization 
of electrons (metallic or semiconducting character. The radius of the anion is also influ-
enced by the size and charge of the cation. Conversely, the anion exerts a smaller influence 
on the radius of the cation.23 

The values in Table 10 show that anions are generally larger than cations with similar 
numbers of electrons. The radius decreases as nuclear charge increases for ions with the 
same electronic structure, with the charge on cations having a strong effect, for example 
in the series Na+ , Mg2+ , Al3+ . Within a group, the ionic radius increases as Z increases 
because of the larger number of electrons in the ions and, for the same element, the radius 
decreases with increasing charge on the cation. Examples of these trends are shown in 
Tables 10, 11, and 12.
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Additional information on the history of atomic theory can be 
found in J. R. Partington, A Short History of Chemistry, 3rd 
ed.,  Macmillan, London, 1957, reprinted by Harper & Row, 
New York, 1960, and in the Journal of Chemical Education. 
For an introduction to atomic theory and orbitals, see V. M. 
S. Gil,  Orbitals in Chemistry: A Modern Guide for Students, 
 Cambridge University Press, Cambridge, 2000, UK, pp. 1–69. 

A more  thorough treatment of the electronic structure of atoms 
is in M.  Gerloch, Orbitals, Terms, and States, John Wiley & 
Sons, New York, 1986. Many Internet sites provide images of 
atomic orbitals, their wave equations, nodal behavior, and other 
characteristics. Two examples are http://www.orbitals.com and  
http://winter.group.shef.ac.uk/orbitron.

 1  Determine the de Broglie wavelength of
a. an electron moving at 1/10 the speed of light.
b. a 400 g Frisbee moving at 10 km/h.
c. an 8.0-pound bowling ball rolling down the lane with 

a velocity of 2.0 meters per second.
d. a 13.7 g hummingbird flying at a speed of 30.0 miles 

per hour.

 2  Using the equation E = R Ha
1

22 -
1

n2
h

b , determine the

  energies and wavelengths of the visible emission 
bands in the atomic spectrum of hydrogen arising from 
nh = 4, 5, and 6 . (The red line, corresponding to nh = 3, 
was calculated in Exercise 1.)

 3   The transition from the n = 7 to the n = 2 level of the 
hydrogen atom is accompanied by the emission of radia-
tion slightly beyond the range of human perception, in the 
ultraviolet region. Determine the energy and wavelength.

 4   Emissions are observed at wavelengths of 383.65 and 
379.90 nm for transitions from excited states of the hydro-
gen atom to the n = 2 state. Determine the quantum num-
bers nh for these emissions.

 5   What is the least amount of energy that can be emitted by an 
excited electron in a hydrogen atom falling from an excited 
state directly to the n = 3 state? What is the quantum num-
ber n for the excited state? Humans cannot visually observe 
the photons emitted in this process. Why not?

 6   Hydrogen atom emission spectra measured from 
the solar  corona indicated that the 4s orbital was 
102823.8530211 cm- 1, and 3s orbital 97492.221701 
cm- 1, respectively, above the 1s ground state. (These 
energies have tiny  uncertainties, and can be treated as 
exact numbers for the sake of this problem.) Calculate 
the difference in energy (J) between these levels on the 
basis of these data, and  compare this difference to that 

 1. John Dalton, A New System of Chemical Philosophy, 1808; 
reprinted with an introduction by Alexander Joseph, Peter 
Owen Limited, London, 1965.

 2. Ibid., p. 113.
 3. Ibid., p. 133. 
 4. J. R. Partington, A Short History of Chemistry, 3rd ed.,  

Macmillan, London, 1957; reprinted, 1960, Harper & Row, 
New York, p. 255. 

 5. Ibid., pp. 256–258.
 6. D. I. Mendeleev, J. Russ. Phys. Chem. Soc., 1869, i, 60.
 7. L. Meyer, Justus Liebigs Ann. Chem., 1870, Suppl. vii, 354.
 8. N. Bohr, Philos. Mag., 1913, 26, 1.
 9. G. Herzberg, Atomic Spectra and Atomic Structure, 2nd ed., 

Dover Publications, New York, 1994, p. 18.
 10. L. de Broglie, Philos. Mag., 1924, 47, 446; Ann. Phys. 

Paris, 1925, 3, 22.
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Team (2011). NIST Atomic Spectra Database (ver. 4.1.0), 

[Online]. Available: http://physics.nist.gov/asd [2012, 
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ogy, Gaithersburg, MD. 

 13. E. Schrödinger, Ann. Phys. (Leipzig), 1926, 79, 361, 489, 
734; 1926, 80, 437; 1926, 81, 109; Naturwissenshaften, 
1926, 14, 664; Phys. Rev., 1926. 28, 1049.

 14. R. E. Powell, J. Chem. Educ., 1968, 45, 45.
 15. W. Pauli, Z. Physik, 1925, 31, 765.
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Ed., 1994, 71, 468
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obtained by the Balmer equation in Section 1.2. How well 
does the Balmer  equation work for hydrogen? (Data from 
Y. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD 
Team (2011). NIST Atomic  Spectra Database (ver. 4.1.0), 
[Online]. Available: http://  physics.nist.gov/asd [2012, 
January 18]. National Institute of Standards and Technol-
ogy,  Gaithersburg, MD.)

 7   The Rydberg constant equation has two terms that vary 
depending on the species under consideration, the reduced 
mass of the electron/nucleus combination and the charge 
of the nucleus (Z). 
a. Determine the approximate ratio between the Rydberg 

constants for isoelectronic He+  (consider the most abun-
dant helium-4 isotope) and H.

b. Use this ratio to calculate an approximate Rydberg 
 constant (J) for He+ .

c. The difference between the He+  2s and 1s orbitals 
was reported as 329179.76197(20) cm- 1. Calculate 
the He+  Rydberg constant from this spectral line for 
comparison to your value from b.

 (Data from the same reference as Problem 6.)
 8   The details of several steps in the particle-in-a-box model 

in this chapter have been omitted. Work out the details of 
the following steps:
a. Show that if � = A  sin rx + B cos sx (A, B, r, and s 

are constants) is a solution to the wave equation for the 
one-dimensional box, then 

r = s = 22mEa2p

h
b

b. Show that if � = A  sin rx, the boundary condi-

tions (� = 0 when x = 0 and x = a) require that 

r = {
np

a
, where n = any integer other than zero .

c. Show that if  r = {
np

a
, the energy levels of the 

 particle are given by E =
n2h2

8ma2

d. Show that substituting the value of r given in part 

c into � = A  sin rx and applying the normalizing 

 requirement gives A = 22/a. 
 9   For the 3pz and 4dxz hydrogen-like atomic orbitals, sketch 

the following:
a. The radial function R
b. The radial probability function a0 r2R 2

c. Contour maps of electron density.
 10 Repeat the exercise in Problem 9, for the 4s and 5dx2 - y2 

orbitals.
 11 Repeat the exercise in Problem 9, for the 5s and 4dz2 

 orbitals.
 12 The 4fz(x2 - y2) orbital has the angular function 

Y = (constant) z(x 2 - y 2)/r3.
a. How many radial nodes does this orbital have?
b. How many angular nodes does it have?
c. Write equations to define the angular nodal surfaces. 

What shapes are these surfaces?

d. Sketch the shape of the orbital, and show all radial and 
angular nodes.

 13 Repeat the exercise in Problem 12, for the 5fxyz orbital, 
which has Y = (constant) xyz/r3.

 14 The label for an fz3 orbital, like that for a dz2 orbital, 
is an abbreviation. The actual angular function for this 
orbital is Y = (constant) * z(5z 2 - 3r2)/r3. Repeat the 
 exercise in Problem 12, for a 4fz3 orbital. (Note: recall that 
r2 = x 2 + y 2 + z 2).

 15 a.  Determine the possible values for the l and ml quan-
tum  numbers for a 5d electron, a 4f electron, and a 
7g electron.

b. Determine the possible values for all four quantum 
numbers for a 3d electron.

c. What values of ml are possible for f orbitals?
d. At most, how many electrons can occupy a 4d orbital?

 16 a.  What are the values of quantum numbers l and n for a 
5d electron?

b. At most, how many 4d electrons can an atom have? 
Of these electrons how many, at most, can have 
ms = -

1
2?

c. A 5f electron has what value of quantum number l? 
What values of ml may it have?

d. What values of the quantum number ml are possible for 
a subshell having l = 4?

 17 a.  At most, how many electrons in an atom can have both 
n = 5 and l = 3?

b. A 5d electron has what possible values of the quantum 
number ml?

c. What value of quantum number l do p orbitals have? 
For what values of n do p orbitals occur?

d. What is the quantum number l for g orbitals? How 
many orbitals are in a g subshell?

 18 Determine the Coulombic and exchange energies for the 
following states, and determine which state is favored (has 
lower energy):

a. 

b. 

 19 Two excited states for a d4 configuration are shown. 
Which is likely to have lower energy? Explain your choice 
in terms of Coulombic and exchange energies.

W: X:

W: X:

  20  Two excited states for a d5 configuration are shown. 
Which is likely to have lower energy? Why? Explain your 
choice in terms of Coulombic and exchange energies.

Y: Z:

Y: Z:

and

and

and

and
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 21 What states are possible for a d3 configuration? Determine 
the Coulombic and exchange energies for each, and rank 
the states in terms of relative energy.

 22 Provide explanations of the following phenomena:
a. The electron configuration of Cr is [Ar] 4s1 3d5 rather 

than [Ar] 4s2 3d4.
b. The electron configuration of Ti is [Ar] 4s2 3d2, but 

that of Cr2+  is [Ar] 3d4.
 23 Give electron configurations for the following:

a. V
b. Br
c. Ru3+

d. Hg2+

e. Sb
 24 Predict the electron configurations of the following metal 

anions:
a. Rb-

b. Pt2-  (See: A. Karbov, J. Nuss, U. Weding, M.  Jansen, 
Angew. Chem. Int. Ed., 2003, 42, 4818.)

 25 Radial probability plots shed insight on issues of shield-
ing and effective nuclear charge. Interpret the radial prob-
ability functions in Figure 7 to explain why the general 
order of orbital filling is n =  1, followed by n =  2, 
followed by n =  3. Interpret the graphs for 3s, 3p, and 
3d to rationalize the filling order for these orbitals.

 26 Briefly explain the following on the basis of electron 
 configurations:
a. Fluorine forms an ion having a charge of 1–.
b. The most common ion formed by zinc has a 2+ charge.
c. The electron configuration of the molybdenum atom is 

[Kr] 5s1  4d5 rather than [Kr] 5s2 4d4.
 27 Briefly explain the following on the basis of electron 

 configurations:
a. The most common ion formed by silver has a 1+ charge.
b. Cm has the outer electron configuration s2d1  f 7 rather 

than s2  f 8.
c. Sn often forms an ion having a charge of 2+ (the 

 stannous ion).
 28 a.  Which 2+ ion has two 3d electrons? Which has eight 

3d electrons?
b. Which is the more likely configuration for 

Mn2+ : [Ar] 4s2  3d3 or [Ar] 3d5?
 29 Using Slater’s rules, determine Z* for

a. a 3p electron in P, S, Cl, and Ar. Is the calculated value 
of Z* consistent with the relative sizes of these atoms?

b. a 2p electron in O2 - , F- , Na+  and Mg2 + . Is the cal-
culated value of Z* consistent with the relative sizes 
of these ions?

c. a 4s and a 3d electron of Cu. Which type of electron is 
more likely to be lost when copper forms a positive ion?

d. a 4f electron in Ce, Pr, and Nd. There is a decrease in 
size, commonly known as the lanthanide contraction, 
with increasing atomic number in the lanthanides. Are 
your values of Z* consistent with this trend?

 30 A sample calculation in this chapter showed that, 
 according to Slater’s rules, a 3d electron of nickel has 
a higher effective nuclear charge than a 4s electron. Is 
the same true for early first-row transition metals? Using 
Slater’s rules, calculate S and Z* for 4s and 3d electrons 
of Sc and Ti, and comment on the similarities or differ-
ences with Ni.

 31 Ionization energies should depend on the effective 
nuclear charge that holds the electrons in the atom. 
 Calculate Z* (Slater’s rules) for N, P, and As. Do their 
ionization  energies seem to match these effective nuclear 
charges? If not, what other factors influence the ioniza-
tion  energies?

 32 Prepare a diagram such as the one in Figure 12(a) for the 
fifth period in the periodic table, elements Zr through Pd. 
The configurations in Table 7 can be used to determine 
the crossover points of the lines. Can a diagram be drawn 
that is completely consistent with the configurations in 
the table?

 33 Why are the ionization energies of the alkali metals in the 
order Li >, Na > K > Rb?

 34 The second ionization of carbon (C + h  C2+ + e-) 
and the first ionization of boron (B h  B + + e+) 
both fit the reaction 1s2  2s2 2p1 h 1s2  2s2 + e- . 
Compare the two ionization energies (24.383 eV and 
8.298 eV, respectively) and the effective nuclear charge 
Z*. Is this an adequate explanation of the difference in 
ionization energies? If not, suggest other factors.

 35 Explain why all three graphs in Figure 14 have maxima at 
4 electrons and minima at 5 electrons.

 36 a.  For a graph of third ionization energy against atomic 
number, predict the positions of peaks and valleys for 
elements through atomic number 12. Compare the 
positions of these peaks and valleys with those for first 
ionization energies shown in Figure 13.

b. How would a graph of third ionization energies against 
the number of electrons in reactant compare with the 
other graphs shown in Figure 14? Explain briefly.

 37 The second ionization energy involves removing an elec-
tron from a positively charged ion in the gas phase (see 
preceding problem). How would a graph of second ion-
ization energy vs. atomic number for the elements helium 
through neon compare with the graph of first ionization 
energy in Figure 13? Be specific in comparing the posi-
tions of peaks and valleys.

 38 In each of the following pairs, pick the element with the 
higher ionization energy and explain your choice.
a. Fe, Ru
b. P, S
c. K, Br
d. C, N
e. Cd, In
f. Cl, F
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 39 On the basis of electron configurations, explain why 
a. sulfur has a lower electron affinity than chlorine.
b. iodine has a lower electron affinity than bromine.
c. boron has a lower ionization energy than beryllium.
d. sulfur has a lower ionization energy than phosphorus.

 40 a.  The graph of ionization energy versus atomic num-
ber for the elements Na through Ar (Figure 13) shows 
maxima at Mg and P and minima at Al and S. Explain 
these maxima and minima.

b. The graph of electron affinity versus atomic number 
for the elements Na through Ar (Figure 13) also shows 
maxima and minima, but shifted by one element in 
comparison with the ionization energy graph. Why are 
the maxima and minima shifted in this way?

 41 The second ionization energy of He is almost exactly four 
times the ionization energy of H, and the third ionization 
energy of Li is almost exactly nine times the ionization 
energy of H:

IE (MJ mol-1)
H(g) h  H +(g) + e- 1.3120

He+(g) h  He2+(g) + e- 5.2504

Li2+(g) h  Li3+(g) + e- 11.8149

Explain this trend on the basis of the Bohr equation for 
energy levels of single-electron systems.

 42 The size of the transition-metal atoms decreases slightly from 
left to right in the periodic table. What factors must be con-
sidered in explaining this decrease? In particular, why does 
the size decrease at all, and why is the decrease so gradual?

 43 Predict the largest and smallest radius in each series, and 
account for your choices:

a. Se2-  Br -  Rb+  Sr2+

b. Y3+  Zr4+  Nb5+

c. Co4+  Co3+  Co2+  Co

 44 Select the best choice, and briefly indicate the reason for 
each choice:
a. Largest radius: Na+  Ne F -

b. Greatest volume: S2-  Se2-  Te2-

c. Highest ionization energy: Na Mg Al
d. Most energy necessary to remove an electron: 

 Fe Fe2+  Fe3+

e. Highest electron affinity: O F Ne

 45 Select the best choice, and briefly indicate the reason for 
your choice:
a. Smallest radius: Sc Ti V
b. Greatest volume: S2-  Ar Ca2+

c. Lowest ionization energy: K Rb Cs
d. Highest electron affinity: Cl Br I
e. Most energy necessary to remove an electron: 

 Cu Cu+  Cu2+

 46 There are a number of Web sites that display atomic orbitals. 
Use a search engine to find a complete set of the f orbitals.
a. How many orbitals are there in one set (for example, 

a set of 4f orbitals)?
b. Describe the angular nodes of the orbitals.
c. Observe what happens to the number of radial nodes 

as the principal quantum number is increased.
d. Include the URL for the site you used for each, 

along with sketches or printouts of the orbitals. (Two  
useful Web sites at this writing are orbitals.com and  
winter.group.shef.ac.uk/orbitron.)

 47 Repeat the exercise in Problem 46, this time for a set of g 
orbitals.
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s

1s 1s + 1ssn

s*

1s - 1s

1 E = RHa
1

22 -
1

32 b = RHa
5

36
b = 2.179 * 10-18 Ja

5

36
b = 3.026 * 10-19 J 

   = 1.097 * 107 m-1a
5

36
b = 1.524 * 106  m-1 *

m

100 cm
= 1.524 * 104 cm-1

2 The nodal surfaces require 2z2 - x2 - y2 = 0, so the angular nodal surface for a dz2 orbital is the conical surface where 
2z2 = x2 + y2.

3 The angular nodal surfaces for a dxz orbital are the planes where xz = 0, which means that either x or z must be zero. The yz 
and xy planes satisfy this requirement.

4    One pair with c  spin, one pair with T  spin, one exchange possibility for each; energy 
contribution 2Pe. One pair (first orbital), energy contribution Pc. Total: 2Pe + Pc

∑e

∑c

2∑e + ∑c 

3∑e + ∑c 

2∑e + 2∑c 

5 a. If the three 2p electrons all have the same spin, as in 31 2 , there are three exchange possibilities (1 and 2, 1 
and 3, or 2 and 3) and no pairs. Overall, the total energy is 3Pe. If there is one unpaired electron, as in , 
there is one electron with T  spin, and no possibility of exchange; two electrons with c  spin, with one exchange possibility; 
and one pair. Overall; the total energy is Pe + Pc. Because Pe is negative and Pc is positive, the configuration with three 
unpaired electrons has a much lower energy.

 b. If the three 2p electrons avoid pairing, but do not all have mutually parallel spins, as in  c    c    T  , only the two c  

electrons can exchange. The total energy is Pe. The energy of this state is intermediate between those in part a. It is 2Pe 

higher than  c    c    c   and lower than  c T    c         by Pc.

Answers to Exercises
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6 Tin Total 5p 5s 4d

Z 50 50 50 50

(1s2) 2 2 2 2

(2s22p6) 8 8 8 8

(3s23p6) 8 8 8 8

(3d10) 10 10 10 10

(4s24p6) 8 8 * 0.85 8 * 0.85 8

(4d 10) 10 10 * 0.85 10 * 0.85 9 * 0.35

(5s25p2) 4 3 * 0.35 3 * 0.35

Z * 5.65 5.65 10.85

7 Uranium Total 7s 5f 6d

Z 92 92 92 92

(1s2) 2 2 2 2

(2s22p6) 8 8 8 8

(3s23p6) 8 8 8 8

(3d 10) 10 10 10 10

(4s24p6) 8 8 8 8

(4d 10) 10 10 10 10

(4f 14) 14 14 14 14

(5s25p6) 8 8 8 8

(5d 10) 10 10 10 10

(5f 3) 3 3 2 * 0.35 3

(6s26p6) 8 8 * 0.85 8

(6d 1) 1 1 * 0.85

(7s2) 2 1 * 0.35

Z * 3.00 13.30 3.00

8 With 4 electrons, the electron configurations of B+, Be, and Li– are all 1s2 2s2. Because the effective nuclear charge is greater 
for each 1s2 2s2 configuration than the 1s2 2s1 configuration of the preceding element, more energy is necessary to remove an 
electron from the species with 1s2 2s2 configurations. For 5 electrons (C+ , B, and Be- ) the configurations are all 1s2 2s2 2p1. 
Because the 2p orbitals are significantly higher in energy than the 2s orbitals, in each case it is much easier to remove an 
electron from a 1s2 2s2 2p1 configuration than from the 1s2 2s2 configuration of the preceding element. When a sixth electron 
is present (a 1s2 2s2 2p2 configuration), more energy is required to remove an electron because the electron being removed 
must overcome greater effective nuclear charge than for the preceding 5-electron species.
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We now turn from the use of quantum mechanics and its description of the atom to an el-
ementary description of molecules. Although most of our discussion of chemical bonding 
uses the molecular orbital approach, less rigorous methods that provide approximate pictures 
of the shapes and polarities of molecules are also useful. This chapter provides an overview 
of Lewis dot structures, valence shell electron-pair repulsion (VSEPR), and related topics.  
The ideas of this chapter provide a starting point for molecular orbital descriptions.

Ultimately, any description of bonding must be consistent with experimental data on 
bond lengths, bond angles, and bond strengths. Angles and distances are most frequently 
determined by diffraction (X-ray crystallography, electron diffraction, neutron diffraction) 
or spectroscopic (microwave, infrared) methods. For many molecules, there is general 
agreement on the nature of the bonding, although there are alternative ways to describe 
it. For others, there is considerable difference of opinion on the best way to describe the 
bonding. In this chapter we describe some useful qualitative approaches, including some 
of the opposing views.

1 Lewis Electron-Dot Diagrams
Lewis electron-dot diagrams, although oversimplified, provide a good starting point for 
analyzing the bonding in molecules. Credit for their initial use goes to G. N. Lewis,1 an 
American chemist who contributed much to the understanding of thermodynamics and 
chemical bonding in the early twentieth century. In Lewis diagrams, bonds between two 
atoms exist when they share one or more pairs of electrons. In addition, some molecules 
have nonbonding pairs, also called lone pairs, of electrons on atoms. These electrons 
contribute to the shape and reactivity of the molecule but do not directly bond the atoms 
together. Most Lewis structures are based on the concept that eight valence electrons, corre-
sponding to s and p electrons outside the noble gas core, form a particularly stable arrange-
ment, as in the noble gases with s2 p6 configurations. An exception is hydrogen, which is 
stable with two valence electrons. Also, some molecules require more than eight electrons 
around a given central atom, and some molecules require fewer than eight electrons.

Simple molecules such as water follow the octet rule, in which eight electrons surround 
the central atom. Each hydrogen atom shares two electrons with the oxygen, forming the famil-
iar structure with two bonds; the O atom accommodates two bonding pairs and two lone pairs:*

O

H H

(b)(a)

*The treatment of water via molecular orbital theory results in an electronic structure in which each of these elec-
tron pairs has a unique energy. This model is supported by spectroscopic evidence, and indicates one limitation 
of the Lewis model.

From Chapter 3 of Inorganic Chemistry, Fifth Edition. Gary L Miessler, Paul J. Fischer, Donald A. Tarr. 
Copyright © 2014 by Pearson Education, Inc. All rights reserved.
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Shared electrons are considered to contribute to the electronic requirements of both 
atoms involved; thus, the electron pairs shared by H and O in the water molecule are counted 
toward both the 8-electron requirement of oxygen and the 2-electron requirement of hydrogen.

The Lewis model defines double bonds as containing four electrons and triple bonds 
as containing six electrons:

O OC H HCC

1.1 Resonance
In many Lewis structures, the choice of which atoms are connected by multiple bonds is 
arbitrary. When alternate locations for single bonds and multiple bonds are possible that all 
afford valid Lewis structures, a structure demonstrating each option should be drawn. For 
example, three drawings (resonance structures) of CO3

2 - are needed (Figure 1) to show the 
double bond in each of the three possible CiO positions. In fact, experimental evidence 
shows that all three CiO bonds are equivalent, with bond lengths (129 pm) between 
typical CiO double-bond and single-bond distances (116 pm and 143 pm, respectively). 
All three drawings are necessary to describe the structure, with each drawing contributing 
equally to describe the bonding in the actual ion. This is called resonance; there is more 
than one possible way in which the valence electrons can be placed in a Lewis structure. 
Note that in resonance structures, such as those shown for CO3

2 - in Figure 1, the electrons 
are arranged differently, but the nuclei remain in fixed positions.

The species CO3
2 - and NO3

- have the same number of electrons (i.e., they are 
 isoelectronic) and use the same orbitals for bonding. Their Lewis diagrams are identical 
except for the identity and formal charge (Section 1.3) of the central atom.

When a molecule has several resonance structures, its overall electronic energy is 
lowered, making it more stable. Just as the energy levels of a particle in a box are lowered 
by making the box larger, the electronic energy levels of the bonding electrons are lowered 
when the electrons can occupy a larger space.

1.2 Higher Electron Counts
When it is impossible to draw a structure consistent with the octet rule because additional 
valence electrons remain to be assigned after the octet rule is satisfied on all atoms, it is 
necessary to increase the number of electrons around the central atom. An option limited 
to elements of the third and higher periods is to use d orbitals for this expansion, although 
theoretical work suggests that expansion beyond the s and p orbitals is unnecessary for most 
main group molecules.2 In most cases, two or four added electrons will complete the bonding, 
but more can be added if necessary. For example, 10 electrons are required around chlorine 
in ClF3 and 12 around sulfur in SF6 (Figure 2). The increased number of electrons is often 
described as an expanded shell or an expanded electron count. The term hypervalent is used 
to describe central atoms that have electron counts greater than the atom’s usual requirement.

There are examples with even more electrons around the central atom, such as IF7 
(14 electrons), [TaF8]

3 -  (16 electrons), and [XeF8]
2 -  (18 electrons). There are rarely more 

than 18 electrons (2 for s, 6 for p, and 10 for d orbitals) around a single atom in the top half 
of the periodic table, and crowding of the outer atoms usually keeps the number below this, 
even for much heavier atoms that have f orbitals energetically available.

C
O

O

O

2-

C
O

O

O

2-

C
O O

2-OFIGURE 1 Lewis 
Diagrams for CO3

2 - .
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1.3 Formal Charge
Formal charge is the apparent electronic charge of each atom in a molecule, based on the 
electron-dot structure. Formal charges help assess resonance structures and molecular 
topology, and they are presented here as a simplified method of describing structures, just 
as the Bohr model is a simple method of describing electronic configurations in atoms. 
Both of these methods have limitations, and other approaches are more accurate, but they 
can be useful as long as their imperfections are kept in mind.

Formal charges can help in eliminating resonance structures expected to contribute 
very little to the electronic ground state of the molecule, and, in some cases, suggesting 
multiple bonds beyond those required by the octet rule. It is essential, however, to remem-
ber that formal charge is only a tool for assessing Lewis structures, not a measure of any 
actual charge on the atoms. The number of valence electrons available in a free atom of 
an element minus the total for that atom in the molecule—determined by counting lone 
pairs as two electrons and bonding pairs as one electron assigned to each atom—is the 
formal charge on the atom:

=

F

F

F F

F

F F
F

F F

F F

F
F

F

Cl

S S

FIGURE 2 Structures of ClF3 
and SF6.

Formal charge = °
number of valence

electrons in a free

atom of the element

¢ - a number of unshared

electrons on the atom
b - anumber of bonds

to the atom
b

S

A B C

N

1-

C S N

2-

CS N

1- 1+

C

FIGURE 3 Resonance 
 Structures of Thiocyanate, 
SCN- .

In addition,

Charge on molecule or ion = sum of formal charges

Resonance structures that contribute more to the electronic ground state of the species 
generally (a) have smaller magnitudes of formal charges, (b) place negative formal charges 
on more electronegative elements (in the upper right-hand part of the periodic table), and 
(c) have smaller separation of charges. Three examples—SCN - , OCN - , and CNO-—will 
illustrate the use of formal charges in describing electronic structures.

E X A M P L E  1

SCN−

In the thiocyanate ion, SCN - , three resonance structures are consistent with the elec-
tron-dot method, as shown in Figure 3. Structure A has only one negative formal charge 
on the nitrogen atom, the most electronegative atom in the ion. Structure B has a single 
negative charge on the S, which is less electronegative than N. Structure C has charges 
of 2-  on N and 1+  on S, consistent with the relative electronegativities of these atoms 
but also has a large magnitude 2-  charge and greater charge separation than the other 
structures. Therefore these structures lead to the prediction that structure A contributes 
the most to the electronic ground state of SCN−, structure B contributes an intermediate 
amount, and any contribution from C is minor in describing the electronic ground state 
of SCN - .

The bond lengths in Table 1 are somewhat consistent with this conclusion, with 
SCN -  bond lengths between those of structures A and B. Protonation of the 
ion forms HNCS, consistent with a negative charge on N in SCN-. The bond 
lengths in HNCS are close to those of double bonds, consistent with the structure 
HiN “ C “ S.
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E X A M P L E  2

OCN−

The isoelectronic cyanate ion, OCN -  (Figure 4), has the same possibilities, but the 
larger electronegativity of O is expected to make structure B contribute more to the 
electronic ground state in cyanate relative the contribution of B in thiocyanate. The 
protonation of cyanate results in two isomers, 97% HNCO and 3% HOCN, consistent 
with a major contribution of structure A and a small, but significant, contribution from 
B. The bond lengths in OCN -  and HNCO in Table 2 are reasonably consistent with 
this analysis. Formal charge arguments provide a good starting point to assess Lewis 
structures, and  reactivity patterns are also useful to gain experimental insight about 
electron distributions.

O N

1-

C O N

2-

CO N

1- 1+

C

A B C

FIGURE 4 Resonance 
 Structures of Cyanate, OCN- .

TABLE 2 Table of O—C and C—N Bond Lengths (pm)

O—C C—N

OCN - 126 117

HNCO 118 120

Single bond 143 147

Double bond 116 (CO2) 128 (approximate)

Triple bond 113 (CO) 116

Data from A. F. Wells, Structural Inorganic Chemistry, 5th ed., Oxford University Press, New York, 1984, pp. 807, 926, 
933–934; S. E. Bradforth, E. H. Kim, E. W. Arnold, D. M. Neumark, J. Chem. Phys., 1993, 98, 800.

TABLE 1 Table of S—C and C—N Bond Lengths (pm)
 S—C C—N

SCN -  (in NaSCN) 165 118

HNCS 156 122

Single bond 181 147

Double bond 155 128 (approximate)

Triple bond 116

Data from A. F. Wells, Structural Inorganic Chemistry, 5th ed., Oxford University Press, New York, 1984, pp. 807, 926, 
934–936.

E X A M P L E  3

CNO−

The isomeric fulminate ion, CNO-  (Figure 5), can be drawn with three similar struc-
tures, but the resulting formal charges have larger magnitudes than in OCN - . Because 
the order of electronegativities is C < N < O, none of these are ideal structures, and it is 
not surprising that this ion is unstable. The only common fulminate salts are of  mercury 
and silver; both are explosive. Fulminic acid is linear HCNO in the vapor phase, 
consistent with the greatest contribution from structure C; coordination complexes of 
CNO-with transition-metal ions are known with MCNO structures.3
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EXERCISE 1 Use electron-dot diagrams and formal charges to predict the bond order 
for each bond in POF3, SOF4, and SO3F

- .

Some molecules have satisfactory electron-dot structures with octets but have more 
reasonable formal charge distributions in their structures with expanded electron counts. 
In each of the cases in Figure 6, the actual molecules and ions are consistent with electron 
counts greater than 8 on the central atom and with a large contribution from the resonance 
structure that uses multiple bonds to minimize formal charges. The multiple bonds may 
also influence the shapes of the molecules.

1.4 Multiple Bonds in Be and B Compounds
A few molecules—such as BeF2, BeCl2, and BF3—seem to require multiple bonds to sat-
isfy the octet rule for Be and B, even though multiple bonds for F and Cl are not generally 
expected on the basis of the high electronegativities of these halogens. Structures minimiz-
ing formal charges for these molecules have only four electrons in the valence shell of Be 
and six electrons in the valence shell of B, in both cases fewer than the usual octet. The 
alternative, requiring eight electrons on the central atom, predicts multiple bonds, with 
BeF2 analogous to CO2 and BF3 analogous to SO3 (Figure 7). These structures, however, 
result in nonideal formal charges (2-  on Be and 1+  on F in BeF2, and 1-  on B and 1+  
on the double-bonded F in BF3) on the basis of the usual rules.

A B C

C O

1+ 1+2-

N C O

1-

NC O

3- 1+ 1+ 1-

N

FIGURE 5 Resonance 
 Structures of Fulminate, CNO- .
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In solid BeF2, a complex network is formed with a Be atom coordination number of 4 
(see Figure 7). BeCl2 dimerizes to a 3-coordinate structure in the vapor phase, but the lin-
ear monomer is formed at high temperatures. This monomeric structure is unstable due to 
the electronic deficiency at Be; in the dimer and the network formed in the solid-state, the 
halogen atoms share lone pairs with the Be atom in an attempt to fill beryllium’s valence 
shell. The monomer is still frequently drawn as a singly bonded structure, with only four 
electrons around the beryllium and the ability to accept lone pairs of other molecules to 
relieve its electronic deficiency (Lewis acid behavior).

Bond lengths in all the boron trihalides are shorter than expected for single bonds, so 
the partial double-bond character predicted seems reasonable despite the nonideal formal 
charges of these resonance forms. While a small amount of double bonding is possible in 
these molecules, the strong polarity of the B–halogen bonds and the ligand close-packing 
(LCP) model (Section 2.4) have been used to account for the short bonds without the need 
to invoke multiple bonding. The boron trihalides combine readily with other molecules 
that can contribute a lone pair of electrons (Lewis bases), forming a roughly tetrahedral 
structure with four bonds:

F

F
F

H
H

H
H

H

N

H

N B

F

FF

B +

Because of this tendency, boron trihalides are frequently drawn with only six electrons 
around the boron.

Other boron compounds that cannot be adequately described via simple electron-dot 
structures include hydrides such as B2H6, and many more complex molecules.

Be Be

Be Be Be

Predicted Actual solid

SolidPredicted

F
F

F

F

F

FF
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B

Cl Cl
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F

Cl
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F
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F
F

F

F

F

F

B FB
F

Be
Cl

Cl

Cl

Cl
Be Be

Vapor

Cl

Cl

ClCl

F bond length is 131 pm;The B
the calculated single-bond length is 152 pm.

Predicted

FIGURE 7 Structures of BeF2, 
BeCl2, and BF3 . (Data from 
A. F. Wells, Structural Inor-
ganic  Chemistry, 5th ed., Oxford 
 University Press, Oxford, Eng-
land, 1984, pp. 412, 1047.)
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2 Valence Shell Electron-Pair Repulsion
Valence shell electron-pair repulsion (VSEPR) is an approach that provides a method 
for predicting the shape of molecules based on the electron-pair electrostatic  repulsion 
described by Sidgwick and Powell4 in 1940 and further developed by  Gillespie and 
Nyholm5 in 1957 and in the succeeding decades. Despite this method’s  simple approach, 
based on Lewis electron-dot structures, the VSEPR method in most cases predicts 
shapes that compare favorably with those determined experimentally.  However, this 
approach at best provides approximate shapes for molecules. The most common 
method of determining the actual structures is X-ray diffraction, although electron 
diffraction, neutron diffraction, and many spectroscopic methods are also used.6

The basis of the VSEPR approach is that electrons repel each other because 
they are negatively charged. Quantum mechanical rules dictate that electrons can be 
 accommodated in the same region of space as bonding pairs or lone pairs, but each 
pair repels all other pairs. According to the VSEPR model, therefore, molecules adopt 
geometries such that valence electron pairs position themselves as far from each other 
as possible to minimize electron–electron repulsions. A molecule can be described 
by the generic formula AXmEn, where A is the central atom, X stands for any atom or 
group of atoms surrounding the central atom, and E represents a lone pair of electrons. 
The steric number* (SN �  m �  n) is the total number of positions occupied by atoms 
or lone pairs around a central atom; lone pairs and bonding pairs both influence the 
molecular shape.

Carbon dioxide is a molecule with two atoms attached (SN = 2) to the central atom 
via double bonds. The electrons in each double bond must be between C and O, and the 
repulsion between these electron groups forces a linear structure on the molecule. Sulfur 
trioxide has three atoms bound to the sulfur (SN = 3), with equivalent partial double-
bond character between sulfur and each oxygen, a conclusion rendered by analysis of its 
 resonance forms. The best positions for the oxygens to minimize electron–electron repul-
sions in this molecule are at the corners of an equilateral triangle, with OiSiO bond 
angles of 120°. The multiple bonding does not affect the geometry, because all three bonds 
are equivalent in terms of bond order.

The same pattern of finding the Lewis structure and then matching it to a geometry 
that minimizes the repulsive energy of bonding electrons is followed through steric 
numbers 4, 5, 6, 7, and 8 where the outer atoms are identical in each molecule, as shown 
in Figure 8.

Bond angles and distances are uniform in each of these structures with two, three, 
four, and six electron pairs. Neither the corresponding 5- nor 7-coordinate structures can 
have uniform angles and distances, because there are no regular polyhedra with these num-
bers of vertices. The 5-coordinate molecules have a trigonal bipyramidal structure, with 
a central triangular plane of three positions plus two other positions above and below the 
center of the plane. The 7-coordinate molecules have a pentagonal bipyramidal structure, 
with a pentagonal plane of five positions and positions above and below the center of the 
plane. The regular square antiprism structure (SN = 8) is like a cube that has had the top 
face twisted 45° into the antiprism arrangement, as shown in Figure 9. It has three differ-
ent bond angles for adjacent fluorines. [TaF8]

3- has square antiprismatic geometry but is 
distorted from this ideal in the solid.7 

*The steric number is also called the number of electron pair domains.

O OC
O

O

O
S
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FFIGURE 9 Conversion of a 
Cube into a Square Antiprism.

Steric Number Geometry Examples Calculated Bond Angles

2 Linear CO2 180°

3
Trigonal 
 (triangular)

SO3 120°

4 Tetrahedral CH4 109.5°

5
Trigonal 
 bipyramidal

PCl5 120°, 90°

6 Octahedral SF6 90°

7
Pentagonal 
 bipyramidal

IF7 72°, 90°

8
Square 
 antiprismatic

[TaF8]3− 70.5°, 99.6°, 109.5°

FIGURE 8 VSEPR Predictions.
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2.1 Lone-Pair Repulsion
Bonding models are useful only if their explanations are consistent with experimental data. 
New theories are continually being suggested and tested. Because we are working with 
such a wide variety of atoms and molecular structures, a single approach will unlikely work 
for all of them. Although the fundamental ideas of atomic and molecular structures are 
relatively simple, their application to complex molecules is not. To a first approximation, 
lone pairs, single bonds, double bonds, and triple bonds can all be treated similarly when 
predicting molecular shapes. However, better predictions of overall shapes can be made 
by considering some important differences between lone pairs and bonding pairs. These 
methods are sufficient to show the trends and explain the bonding, as in rationalizing why 
the HiNiH angle in ammonia is smaller than the tetrahedral angle in methane and 
larger than the HiOiH angle in water.

As a general guideline, the VSEPR model predicts that electron-pair repulsions involv-
ing lone pairs (lp) are stronger than those involving bonding pairs (bp) in the order

lp- lp repulsions 7 lp-bp repulsions 7 bp-bp repulsions

Steric Number = 4
The isoelectronic molecules CH4, NH3, and H2O (Figure 10) illustrate the effect of lone 
pairs on molecular shape. Methane has four identical bonds between carbon and each of 
the hydrogens. When the four pairs of electrons are arranged as far from each other as 
possible, the result is the familiar tetrahedral shape. The tetrahedron, with all HiCiH 
angles measuring 109.5°, has four identical bonds.

Ammonia also has four pairs of electrons around the central atom, but three are bond-
ing pairs between N and H, and the fourth is a lone pair on the nitrogen. The nuclei form 
a trigonal pyramid with the three bonding pairs; the lone pair occupies the fourth region 
in space resulting in a tetrahedral arrangement of the four electron groups. Because each 
of the three bonding pairs is attracted by two positively charged nuclei (H and N), these 
pairs are largely confined to the regions between the H and N atoms. The lone pair, on the 
other hand, is attracted solely by the nitrogen nucleus; it has no second nucleus to confine 
it to a small region of space. Consequently, the lone pair tends to spread out and to occupy 
more space around the nitrogen than the bonding pairs. As a result, the HiNiH angles 
are 106.6°, nearly 3° smaller than the angles in methane.

The same principles apply to the water molecule, in which two lone pairs and two 
bonding pairs repel each other. Again, the electron pairs adopt a nearly tetrahedral arrange-
ment, with the atoms arranged in a V shape. The angle of largest repulsion, between the two 
lone pairs, cannot be measured. However, the lone pair–bonding pair (lp–bp) repulsion is 
greater than the bonding pair–bonding pair (bp–bp) repulsion; as a result, the HiOiH 
bond angle is only 104.5°, another 2.1° decrease from the ammonia angles. The net result is 
that we can predict approximate molecular shapes by assigning more space to lone electron 
pairs; lone pairs are able to spread out and occupy more space since they are attracted to 
one nucleus rather than two.

Steric Number = 5
For the trigonal bipyramidal geometry, there are two unique locations for electron pairs, 
axial and equatorial. If there is a single lone pair, for example in SF4, the lone pair occu-
pies an equatorial position. This position provides the lone pair with the most space and 
 minimizes the interactions between the lone pair and bonding pairs. If the lone pair were 
axial, it would have three 90° interactions with bonding pairs; in an equatorial position, it has 
only two such interactions, as shown in Figure 11. The actual structure is distorted by the 
lone pair as it spreads out in space and effectively squeezes the rest of the molecule together.
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FIGURE 11 Possible  Structures 
of SF4.
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ClF3 provides a second example of the influence of lone pairs in molecules having a 
steric number of 5. There are three possible structures for ClF3, as shown in Figure 12.

In determining the feasibility of different structures, lone pair–lone pair interactions 
should be considered first, followed by lone pair–bonding pair interactions. These interac-
tions at angles of 90° or less are generally considered destabilizing; larger angles gener-
ally render structures more feasible. For example, in ClF3, structure B can be eliminated 
quickly because of the 90° lp- lp angle. The lp- lp angles are large for A and C, so the 
choice must come from the lp-bp and bp-bp angles. Because the lp-bp angles are more 
important, C, which has only four 90° lp-bp interactions, is favored over A, which has six 
such interactions. Experiments have confirmed that the structure is based on C, with slight 
distortions due to the lone pairs. The lone pair–bonding pair repulsion causes the lp–bp 
angles to be larger than 90° and the bp-bp angles to be less than 90° (actually, 87.5°). The 
CliF bond distances show the repulsive effects as well, with the axial fluorines (approxi-
mately 90° lp-bp angles) at 169.8 pm and the equatorial fluorine (in the plane with two 
lone pairs) at 159.8 pm.8 Angles involving lone pairs cannot be determined experimentally.

Angles in Possible Structures

ExperimentalInteraction A B C

lp–lp 180° 90° 120° Cannot be determined

lp–bp 6 at 90° 3 at 90° 4 at 90° Cannot be determined

2 at 120° 2 at 120°

bp–bp 3 at 120° 2 at 90° 2 at 90° 2 at 87.5°

1 at 120°
Axial Cl—F 169.8 pm 
Equatorial CliF 159.8 pm

Additional examples of structures with lone pairs are illustrated in Figure 13. The 
structures based on a trigonal bipyramidal arrangement of electron pairs around a central 
atom always place any lone pairs in the equatorial plane, as in SF4, BrF3, and XeF2. The 
resulting shapes minimize both lone pair–lone pair and lone pair–bonding pair repulsions. 
The shapes are called seesaw (SF4), distorted T (BrF3), and linear (XeF2).

Steric Numbers = 6 and 7
In octahedral structures, all six positions are equivalent. When a single lone pair is present, 
it typically repels adjacent bonding pairs, reducing bond angles accordingly, as for IF5 in 
Figure 13. In octahedron-based structures with two lone pairs, lone pair–lone pair repulsion 
is minimized if these pairs are trans, and this is the shape that is adopted. Square planar 
XeF4, also shown in Figure 13, is an example. Recently XeF3

 - , which would be expected 
to have a steric number of 6 and three lone pairs, has been reported in the gas phase, but 
attempts to prepare salts of this ion have been unsuccessful.9

The shape that minimizes electron-pair repulsions for a steric number of 7 is the pen-
tagonal bipyramid, shown in Figure 8. IF7 (in the margin) and TeF7

2 - exhibit this shape, 
with both axial and equatorial fluorines. If a single lone pair is present, in some cases the 
lone pair causes distortion. The nature of this distortion is not always easy to ascertain; 
XeF6 is a classic example.10 In other cases the structure is octahedral (see Problem 26) 
with the lone pair not stereochemically active.* Two lone pairs minimize their repulsions 
by  adopting axial (trans) positions, with the atoms all in the equatorial plane. Two known 
examples are XeF5

- (in the margin) and IF5
2 -.
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FIGURE 12 Possible  Structures 
of ClF3.

*A lone pair that appears in the Lewis-dot structure but has no apparent effect on the molecular geometry is 
 classified as not stereo chemically active. The VSEPR model assumes that all lone pairs are stereochemically 
 active and therefore do affect the molecular geometry.
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E X A M P L E  4

SbF4
� has a single lone pair on Sb. Its structure is therefore similar to SF4, with a lone 

pair occupying an equatorial position. This lone pair causes considerable  distortion, 
giving an FiSbiF (axial positions) angle of 155° and an FiSbiF (equatorial) 
angle of 90°.

SF5
� has a single lone pair. Its structure is based on an octahedron, with the ion 

 distorted away from the lone pair, as in IF5 .

SeF3
� has a single lone pair. This lone pair reduces the SeiF bond angle 

 significantly, to 94°.

EXERCISE 2 Predict the structures of the following ions. Include a description of distor-
tions from the ideal angles (for example, less than 109.5° because…).

NH2
-

       NH4
+       I3

-       PCl6
-

2.2 Multiple Bonds
The VSEPR model considers double and triple bonds to have slightly greater repulsive 
effects than single bonds because of the repulsive effect of p electrons that increase the 
electron density between the bonded atoms beyond that present in a s bond. For example, 
the H3CiCiCH3 angle in (CH3)2C “ CH2 is smaller, and the H3CiC “ CH2 angle 
is larger than the trigonal 120° (Figure 14).11
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Additional examples of the effect of multiple bonds on molecular geometry are shown 
in Figure 15. Comparing Figures 13 and 15, we see that multiple bonds tend to occupy the 
same positions as lone pairs. For example, the double bonds to oxygen in SOF4, ClO2F3, 
and XeO3F2 are all equatorial, as are the lone pairs in the matching compounds of steric 
number 5, SF4, BrF3, and XeF2. Multiple bonds, like lone pairs, also tend to occupy more 
space than single bonds, causing distortions that squeeze the rest of the molecule together. 
In molecules that have both lone pairs and multiple bonds, these features may compete 
for space; examples are shown in Figure 16. As a generalization, lone pairs often have a 
greater influence than multiple bonds in dictating molecular geometry.

E X A M P L E  5

HCP, like HCN, is linear, with a triple bond: HiC ‚ P:

IOF4
� has a single lone pair on the side opposite the oxygen. The lone pair has a 

slightly greater repulsive effect than the double bond to oxygen, as shown by the 
 average Oi IiF angle of 89°. (The extra repulsive character of the I “ O bond 
places it opposite the lone pair.)

SeOCl2 has both a lone pair and a selenium–oxygen double bond. The lone pair has a 
greater effect than the double bond; the CliSeiCl angle is reduced to 97° by this 
effect, and the CliSeiO angle is 106°.

EXERCISE 3 Predict the structures of the following. Indicate the direction of  distortions 
from the regular structures.
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*  The bond angles of these molecules have not been determined accurately. However,
spectroscopic measurements are consistent with the structures shown.
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2.3 Electronegativity and Atomic Size Effects
Electronegativity is a measure of an atom’s ability to attract electrons from a neighboring 
atom to which it is bonded; it can be viewed as the ability of an atom to win the competi-
tion to attract shared electrons. Electronegativity was mentioned earlier as a guide in the 
use of formal charges. It also can play an important role in determining the arrangement 
of outer atoms around a central atom and in rationalizing bond angles. The effects of elec-
tronegativity and atomic size frequently parallel each other, but in some cases, the sizes 
of outer atoms and groups may play the more important role.

Electronegativity Scales
Linus Pauling introduced the concept of electronegativity in the 1930s as a means of 
describing bond energies. Pauling recognized that polar bonds have higher bond energies 
than nonpolar bonds formed from the same elements. For example, he observed that the 
bond energy of HCl, 432 kJ/mol, was much higher than the average of the bond energies 
of H2 (436 kJ/mol) and Cl2 (243 kJ/mol).* He related the difference between actual and 
average bond energies to the difference in electronegativity between the elements involved. 
He also made adjustments for the sake of convenience, most notably to give the elements C 
through F equally spaced values of 2.5 through 4.0.** Some early Pauling electronegativity 
values are in Table 3. The value of 4.0 for fluorine is still commonly used as a reference 
point for other electronegativity scales.

More recent values have been derived from other molecular and atomic properties, 
such as ionization energies and electron affinities. Table 4 summarizes approaches used 
for a variety of electronegativity scales; examining differences among these is beyond the 
scope of this text. In most cases the different methods give similar electronegativity val-
ues, sometimes with the exception of the transition metals.12 We choose to use the values 
reported by Mann, Meek, and Allen (Table 5) based on configuration energies (CE), the 
average ionization energies of valence electrons in ground state free atoms. For s- and 
p-block  elements the configuration energies are defined as follows:13

CE =  
nes + mep

n + m
where n = number of s electrons
 m = number of p electrons
 es, es =  experimental 1-electron s and p energies†

TABLE 3  Early Values of Pauling Electronegativities

H
2.1
C N O F

2.5 3.0 3.5 4.0
Si P S Cl
1.8 2.1 2.5 3.0
Ge As Se Br
1.8 2.0 2.4 2.8

*Values used by Pauling, converted to kJ/mol. L. Pauling, The Nature of the Chemical Bond, 3rd ed., 1960, 
 Cornell University Press, Ithaca, NY, p. 81.
**Earlier, Pauling had assigned fluorine an electronegativity of 2.00; see L. Pauling, J. Am. Chem. Soc., 1932, 
54, 3570.
†Multiplet averaged values from C. E. Moore, Ionization Potentials and Ionization Limits Derived From the 
Analyses of Optical Spectra, NSRDS-NBS-34, Washington, D.C., 1971; Atomic Energy Levels, NSRDS-35, 
Washington, D.C., 1971, Vol. III.
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The configuration energies are multiplied by a constant to give values comparable to the 
Pauling scale to enable convenient comparison between the scales. 

Pauling’s calculation of electronegativities from bond energies requires averaging over 
a number of compounds in an attempt to minimize experimental uncertainties and other 
minor effects. Methods that use ionization energies and other atomic properties  can be 
calculated more directly. The electronegativities reported are suitable for most uses, but the 
actual values for atoms in different molecules can differ depending on the specific electronic 
environment of the atoms. The concept of  electronegativity varying for a given atom on 
the basis of its specific bonds within a  molecule is usually not intro duced in introductory 
chemistry, but is a consequence of modern electronegativity scales.

It is important to emphasize that all electronegativities are measures of an atom’s 
ability to attract electrons from a neighboring atom to which it is bonded. A critique of all 
electronegativity scales, and particularly Pauling’s, is that each scale cannot be successfully 
applied to all situations; all of these scales have deficiencies on the basis of the specific 
assumptions used in their development.21

TABLE 4 Electronegativity Scales

Principal Authors Method of Calculation or Description

Pauling14 Bond energies

Mulliken15 Average of electron affinity and ionization energy

Allred & Rochow16 Electrostatic attraction proportional to Z*/r 2

Sanderson17 Electron densities of atoms

Pearson18 Average of electron affinity and ionization energy

Allen19 Average energy of valence shell electrons, configuration energies

Jaffé20 Orbital electronegativities

TABLE 5 Electronegativity (Pauling Units)
1 2 12 13 14 15 16 17 18

H He

2.300 4.160

Li
0.912

Be
1.576

B
2.051

C
2.544

N
3.066

O
3.610

F
4.193

Ne
4.787

Na
0.869

Mg
1.293

Al
1.613

Si
1.916

P
2.253

S
2.589

Cl
2.869

Ar
3.242

K
0.734

Ca
1.034

Zn
1.588

Ga
1.756

Ge
1.994

As
2.211

Se
2.424

Br
2.685

Kr
2.966

Rb
0.706

Sr
0.963

Cd
1.521

In
1.656

Sn
1.824

Sb
1.984

Te
2.158

l
2.359

Xe
2.582

Cs
0.659

Ba
0.881

Hg
1.765

Tl
1.789

Pb
1.854

Bi
(2.01)

Po
(2.19)

At
(2.39)

Rn
(2.60)

Source: J. B. Mann, T. L. Meek, L. C. Allen, J. Am. Chem. Soc., 2000, 122, 2780, Table 2.

*For a recent approach that addresses some of the limitations of the Allen method, see P. Politzer, Z. P. Shields, 
F. A. Bulat, J. S. Murray, J. Chem. Theory Comput., 2011, 7, 377.
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With the exception of helium and neon, which have large calculated electronegativi-
ties and no known stable compounds, fluorine has the largest value, and electronegativity 
decreases toward the lower left corner of the periodic table. Although usually classified 
with Group 1 (IA), hydrogen is quite dissimilar from the alkali metals in its electronega-
tivity, as well as in many other chemical and physical properties. Hydrogen’s chemistry is 
distinctive from all the groups.

Electronegativities of the noble gases can be calculated more easily from ionization 
energies than from bond energies. Because the noble gases have higher ionization energies 
than the halogens, calculations suggest that the electronegativities of the noble gases may 
exceed those of the halogens (Table 5).22 The noble gas atoms are somewhat smaller than 
the neighboring halogen atoms—for example, Ne is smaller than F—as a consequence of 
a greater effective nuclear charge. This charge, which is able to attract noble gas electrons 
strongly toward the nucleus, is also likely to exert a strong attraction on electrons of neighbor-
ing atoms; hence, the high electronegativities predicted for the noble gases are reasonable.

Electronegativity and Bond Angles
By the VSEPR approach, trends in many bond angles can be explained by electronegativity. 
Consider the bond angles in the following molecules:

Molecule X–P–X Angle (°) Molecule X–S–X Angle (°)

PF3   97.8 OSF2 92.3

PCl3 100.3 OSCl2 96.2

PBr3 101.0 OSBr2 98.2

As the electronegativity of the halogen increases, the halogen exerts a stronger pull on 
electron pairs it shares with the central atom. This effect reduces the concentration of 
electrons near the central atom, decreasing somewhat the repulsion between the bonding 
pairs near the central atom, and allows the lone pair to have more impact in compress-
ing the halogen–central atom–halogen angles. Consequently, the molecules with the most 
electronegative outer atoms, PF3 and OSF2, have the smallest angles.

If the central atom remains the same, molecules that have a larger difference in 
electronegativity values between their central and outer atoms have smaller bond angles. 
The atom with larger electronegativity draws the shared electrons toward itself and away 
from the central atom, reducing the repulsive effect of these electrons. The compounds of 
the halogens in Table 6 show this effect; the compounds containing fluorine have smaller 
angles than those containing chlorine, which in turn have smaller angles than those con-
taining bromine. The lone pair exerts a relatively larger effect, and forces smaller bond 
angles, as the electronegativity of the outer atom increases. An alternative explanation for 
this trend is size: as the size of the outer atom increases in the order F 6 Cl 6 Br, the 
bond angle increases. Additional compounds showing the effects of electronegativity on 
bond angles are also given in Table 6.

Similar considerations can be made in situations where the outer atoms remain the 
same, but the central atom is changed, for example,

Molecule Bond Angle (°) Molecule Bond Angle (°)

H2O 104.5 NCl3 106.8

H2S   92.1 PCl3 100.3

H2Se   90.6 AsCl3   98.9

In these cases, as the central atom becomes more electronegative, it pulls electrons in bonding 
pairs more strongly toward itself, increasing the concentration of electrons near the central atom. 
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The net effect is that an increase in bonding pair–bonding pair repulsions near the central atom 
increases the bond angles. In these situations the molecule with the most electronegative central 
atom has the largest bond angles. Additional examples can be found in Table 6, where mol-
ecules having the same outer atoms, but different central atoms, are shown in the same column.

E X E R C I S E  4

Which molecule has the smallest bond angle in each series?

a. OSeF2 OSeCl2  OSeBr2 (halogen–Se–halogen angle)

b. SbCl3   SbBr3       SbI3

c. PI3     AsI3     SbI3

Effects of Size
In the examples considered so far, the most electronegative atoms have also been the 
 smallest. For example, the smallest halogen, fluorine, is also the most  electronegative. 
Consequently, we could have predicted the trends in bond angles on the basis of atomic 
size, with the smallest atoms capable of being crowded together most closely. It is impor-
tant to also consider situations in which size and electronegativity might have opposite 
effects, where a smaller outer group is less electronegative than a larger group attached to 
a central atom. For example,

Molecule CiNiC Angle (°)

N(CH3)3 110.9

N(CF3)3 117.9

In this case VSEPR would predict that the more electronegative CF3 groups would lead 
to a smaller bond angle because they would withdraw electrons more strongly than CH3 
groups. That the bond angle in N(CF3)3 is actually 7° larger than in N(CH3)3 suggests that 
in this case, size is the more important factor, with the larger CF3 groups requiring more 
space. The point at which the size of outer atoms and groups becomes more important 

TABLE 6 Bond Angles and Lengths

Molecule

Bond 
Angle 

(°)

Bond 
Length 

(pm) Molecule

Bond 
Angle 

(°)

Bond 
Length 

(pm) Molecule

Bond 
Angle 

(°)

Bond 
Length 

(pm) Molecule

Bond 
Angle 

(°)

Bond 
Length 

(pm)

H2O 104.5 97 OF2 103.3   96 OCl2 110.9 170

H2S   92.1 135 SF2   98.0 159 SCl2 102.7 201

H2Se   90.6 146 SeCl2   99.6 216

H2Te   90.2 169 TeCl2   97.0 233

NH3 106.6 101.5 NF3 102.2 137 NCl3 106.8 175

PH3   93.2 142 PF3   97.8 157 PCl3 100.3 204 PBr3 101.0 220

AsH3   92.1 151.9 AsF3   95.8    170.6 AsCl3   98.9 217 AsBr3   99.8 236

SbH3   91.6 170.7 SbF3   87.3 192 SbCl3   97.2 233 SbBr3   98.2 249

Source: N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd ed., Butterworth-Heinemann, Oxford, 1997, pp. 557, 767; A. F. Wells, Structural Inorganic 
Chemistry, 5th ed., Oxford University Press, Oxford, 1987, pp. 705, 793, 846, and 879; R. J. Gillespie and I. Hargittai, The VSEPR Model of Molecular Geometry, Allyn 
and Bacon, Needham Heights, MA, 1991.
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than electronegativity can be difficult to predict, but the potential of large outer atoms and 
groups to affect molecular shape should not be dismissed.

Molecules Having Steric Number = 5
For main group atoms having a steric number of 5, it is instructive to consider the relative 
bond lengths for axial and equatorial positions. For example, in PCl5, SF4, and ClF3, the 
central atom–axial distances are longer than the distances to equatorial atoms, as shown 
in Figure 17. This effect has been attributed to the greater repulsion of lone and bonding 
pairs with atoms in axial positions (three 90° interactions) than with atoms in equatorial 
positions (two 90° interactions).

In addition, there is a tendency for less electronegative groups to occupy equatorial posi-
tions, similar to lone pairs and multiply bonded atoms. For example, in phosphorus compounds 
having both fluorine and chlorine atoms, in each case the chlorines occupy equatorial positions 
(Figure 18). The same tendency is shown in compounds having  formulas PF4CH3,   PF3(CH3)2, 
and PF2(CH3)3, with the less electronegative CH3 groups also equatorial (Figure 19). One can 
envision the electron density of the P—A bond, where A is the less electronegative atom, being 
concentrated closer to the phosphorus in such cases, leading to a preference for equatorial 
positions by similar reasoning applied to lone pairs and multiple bonds.

The relative effects on bond angles by less electronegative atoms are, however, typi-
cally less than for lone pairs and multiple bonds. For example, the bond angle to equatorial 
positions opposite the Cl atom in PF4Cl is only slightly less than 120°, in contrast to the 
greater reduction in comparable angles in SF4 and SOF4 (Figure 20).

Predicting structures in some cases is challenging. Phosphorus compounds contain-
ing both fluorine atoms and CF3 groups provide an intriguing example. CF3 is an electron 
withdrawing group whose electronegativity has been calculated to be comparable to the 
more electronegative halogen atoms.* Does CF3 favor equatorial positions more strongly 
than F? Trigonal bipyramidal phosphorus compounds containing varying numbers of F 
and CF3 groups with both axial and equatorial CF3 groups are known (Figure 21). When 
two or three CF3 groups are present, the orientations are truly a challenge to explain: these 
groups are axial in PF3(CF3)2 but equatorial in PF2(CF3)3! In both cases the more sym-
metrical structure, with identical equatorial groups, is preferred.**
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**See H. Oberhammer, J. Grobe, D. Le Van, Inorg. Chem., 1982, 21, 275 for a discussion of these structures.

*For an analysis of different approaches to determining the electronegativity of CF3, see J. E. True, T. D. Thomas, 
R. W. Winter, G. L. Gard, Inorg. Chem., 2003, 42, 4437.
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