
www.pearsonhighered.com

www.pearsonhighered.com

ISBN-13:
ISBN-10:

978-0-13-231681-1
0-13-231681-1

9 7 8 0 1 3 2 3 1 6 8 1 1

9 0 0 0 0

The Design and Analysis of Algorithm
s

Levitin
In

tro
d

u
ctio

n
 to

Third
Ed

itio
n

A
d
d
iso

n
-

W
esley

The Design and Analysis of Algorithms
Introduction to

Th
ir

d
 E

d
iti

o
n

Anany Levitin

Boston Columbus Indianapolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Vice President and Editorial Director, ECS Marcia Horton
Editor-in-Chief Michael Hirsch

Acquisitions Editor Matt Goldstein
Editorial Assistant Chelsea Bell

Vice President, Marketing Patrice Jones
Marketing Manager Yezan Alayan

Senior Marketing Coordinator Kathryn Ferranti
Marketing Assistant Emma Snider

Vice President, Production Vince O’Brien
Managing Editor Jeff Holcomb

Production Project Manager Kayla Smith-Tarbox
Publisher, International Edition Angshuman Chakraborty

Acquisitions Editor, International Edition Arunabha Deb
Publishing Assistant, International Edition Shokhi Shah

Print and Media Editor, International Edition Ashwitha Jayakumar
Project Editor, International Edition Jayashree Arunachalam

Senior Operations Supervisor Alan Fischer
Manufacturing Buyer Lisa McDowell

Art Director Anthony Gemmellaro
Text Designer Sandra Rigney

Cover Designer Anthony Gemmellaro
Cover Illustration Jennifer Kohnke

Media Editor Daniel Sandin
Full-Service Project Management Windfall Software

Composition Windfall Software, using ZzTEX
Printer/Binder Courier Westford
Cover Printer Courier Westford

Text Font Times Ten

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsoninternationaleditions.com

© Pearson Education Limited 2012

The right of Anany Levitin to be identified as author of this work has been asserted by him in accordance
with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Introduction to The Design & Analysis of
Algorithms, 3rd edition, ISBN 978-0-13-231681-1 by Anany Levitin published by Pearson Education © 2012.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either
the prior written permission of the publisher or a licence permitting restricted copying in the United Kingdom
issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this
text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does
the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other
countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This book is
not sponsored or endorsed by or affiliated with the Microsoft Corporation.

ISBN 10: 0-273-76411-X
ISBN 13: 978-0-273-76411-3

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1—15 14 13 12 11

The publisher’s policy is to use paper manufactured from sustainable forests.

Brief Contents

New to the Third Edition 17

Preface 19

1 Introduction 27

2 Fundamentals of the Analysis of Algorithm Efficiency 67

3 Brute Force and Exhaustive Search 123

4 Decrease-and-Conquer 157

5 Divide-and-Conquer 195

6 Transform-and-Conquer 227

7 Space and Time Trade-Offs 279

8 Dynamic Programming 309

9 Greedy Technique 341

10 Iterative Improvement 371

11 Limitations of Algorithm Power 413

12 Coping with the Limitations of Algorithm Power 449

Epilogue 497

APPENDIX A
Useful Formulas for the Analysis of Algorithms 501

APPENDIX B
Short Tutorial on Recurrence Relations 505

References 519

Hints to Exercises 529

Index 571

5

Contents

New to the Third Edition 17

Preface 19

1 Introduction 27

1.1 What Is an Algorithm? 29

Exercises 1.1 33

1.2 Fundamentals of Algorithmic Problem Solving 35
Understanding the Problem 35
Ascertaining the Capabilities of the Computational Device 35
Choosing between Exact and Approximate Problem Solving 37
Algorithm Design Techniques 37
Designing an Algorithm and Data Structures 38
Methods of Specifying an Algorithm 38
Proving an Algorithm’s Correctness 39
Analyzing an Algorithm 40
Coding an Algorithm 41

Exercises 1.2 43

1.3 Important Problem Types 44
Sorting 45
Searching 46
String Processing 46
Graph Problems 47
Combinatorial Problems 47
Geometric Problems 48
Numerical Problems 48

Exercises 1.3 49

7

8 Contents

1.4 Fundamental Data Structures 51
Linear Data Structures 51
Graphs 54
Trees 57
Sets and Dictionaries 61

Exercises 1.4 63

Summary 64

2 Fundamentals of the Analysis of Algorithm
Efficiency 67

2.1 The Analysis Framework 68
Measuring an Input’s Size 69
Units for Measuring Running Time 70
Orders of Growth 71
Worst-Case, Best-Case, and Average-Case Efficiencies 73
Recapitulation of the Analysis Framework 76

Exercises 2.1 76

2.2 Asymptotic Notations and Basic Efficiency Classes 78
Informal Introduction 78
O-notation 79
�-notation 80
�-notation 81
Useful Property Involving the Asymptotic Notations 81
Using Limits for Comparing Orders of Growth 82
Basic Efficiency Classes 84

Exercises 2.2 84

2.3 Mathematical Analysis of Nonrecursive Algorithms 87

Exercises 2.3 93

2.4 Mathematical Analysis of Recursive Algorithms 96

Exercises 2.4 102

2.5 Example: Computing the nth Fibonacci Number 106

Exercises 2.5 109

2.6 Empirical Analysis of Algorithms 110

Exercises 2.6 115

2.7 Algorithm Visualization 117

Summary 120

Contents 9

3 Brute Force and Exhaustive Search 123

3.1 Selection Sort and Bubble Sort 124
Selection Sort 124
Bubble Sort 126

Exercises 3.1 128

3.2 Sequential Search and Brute-Force String Matching 130
Sequential Search 130
Brute-Force String Matching 131

Exercises 3.2 132

3.3 Closest-Pair and Convex-Hull Problems by Brute Force 134
Closest-Pair Problem 134
Convex-Hull Problem 135

Exercises 3.3 139

3.4 Exhaustive Search 141
Traveling Salesman Problem 142
Knapsack Problem 142
Assignment Problem 145

Exercises 3.4 146

3.5 Depth-First Search and Breadth-First Search 148
Depth-First Search 148
Breadth-First Search 151

Exercises 3.5 154

Summary 156

4 Decrease-and-Conquer 157

4.1 Insertion Sort 160

Exercises 4.1 162

4.2 Topological Sorting 164

Exercises 4.2 168

4.3 Algorithms for Generating Combinatorial Objects 170
Generating Permutations 170
Generating Subsets 172

Exercises 4.3 174

10 Contents

4.4 Decrease-by-a-Constant-Factor Algorithms 176
Binary Search 176
Fake-Coin Problem 178
Russian Peasant Multiplication 179
Josephus Problem 180

Exercises 4.4 182

4.5 Variable-Size-Decrease Algorithms 183
Computing a Median and the Selection Problem 184
Interpolation Search 187
Searching and Insertion in a Binary Search Tree 189
The Game of Nim 190

Exercises 4.5 192

Summary 193

5 Divide-and-Conquer 195

5.1 Mergesort 198

Exercises 5.1 200

5.2 Quicksort 202

Exercises 5.2 207

5.3 Binary Tree Traversals and Related Properties 208

Exercises 5.3 211

5.4 Multiplication of Large Integers and
Strassen’s Matrix Multiplication 212
Multiplication of Large Integers 213
Strassen’s Matrix Multiplication 215

Exercises 5.4 217

5.5 The Closest-Pair and Convex-Hull Problems
by Divide-and-Conquer 218
The Closest-Pair Problem 218
Convex-Hull Problem 221

Exercises 5.5 223

Summary 224

Contents 11

6 Transform-and-Conquer 227

6.1 Presorting 228

Exercises 6.1 231

6.2 Gaussian Elimination 234
LU Decomposition 238
Computing a Matrix Inverse 240
Computing a Determinant 241

Exercises 6.2 242

6.3 Balanced Search Trees 244
AVL Trees 244
2-3 Trees 249

Exercises 6.3 251

6.4 Heaps and Heapsort 252
Notion of the Heap 253
Heapsort 257

Exercises 6.4 259

6.5 Horner’s Rule and Binary Exponentiation 260
Horner’s Rule 260
Binary Exponentiation 262

Exercises 6.5 265

6.6 Problem Reduction 266
Computing the Least Common Multiple 267
Counting Paths in a Graph 268
Reduction of Optimization Problems 269
Linear Programming 270
Reduction to Graph Problems 272

Exercises 6.6 274

Summary 276

7 Space and Time Trade-Offs 279

7.1 Sorting by Counting 280

Exercises 7.1 283

7.2 Input Enhancement in String Matching 284
Horspool’s Algorithm 285

12 Contents

Boyer-Moore Algorithm 289

Exercises 7.2 293

7.3 Hashing 295
Open Hashing (Separate Chaining) 296
Closed Hashing (Open Addressing) 298

Exercises 7.3 300

7.4 B-Trees 302

Exercises 7.4 305

Summary 306

8 Dynamic Programming 309

8.1 Three Basic Examples 311

Exercises 8.1 316

8.2 The Knapsack Problem and Memory Functions 318
Memory Functions 320

Exercises 8.2 322

8.3 Optimal Binary Search Trees 323

Exercises 8.3 329

8.4 Warshall’s and Floyd’s Algorithms 330
Warshall’s Algorithm 330
Floyd’s Algorithm for the All-Pairs Shortest-Paths Problem 334

Exercises 8.4 337

Summary 338

9 Greedy Technique 341

9.1 Prim’s Algorithm 344

Exercises 9.1 348

9.2 Kruskal’s Algorithm 351
Disjoint Subsets and Union-Find Algorithms 353

Exercises 9.2 357

9.3 Dijkstra’s Algorithm 359

Exercises 9.3 363

Contents 13

9.4 Huffman Trees and Codes 364

Exercises 9.4 368

Summary 370

10 Iterative Improvement 371

10.1 The Simplex Method 372
Geometric Interpretation of Linear Programming 373
An Outline of the Simplex Method 377
Further Notes on the Simplex Method 383

Exercises 10.1 385

10.2 The Maximum-Flow Problem 387

Exercises 10.2 397

10.3 Maximum Matching in Bipartite Graphs 398

Exercises 10.3 404

10.4 The Stable Marriage Problem 406

Exercises 10.4 409

Summary 410

11 Limitations of Algorithm Power 413

11.1 Lower-Bound Arguments 414
Trivial Lower Bounds 415
Information-Theoretic Arguments 416
Adversary Arguments 416
Problem Reduction 417

Exercises 11.1 419

11.2 Decision Trees 420
Decision Trees for Sorting 421
Decision Trees for Searching a Sorted Array 423

Exercises 11.2 425

11.3 P , NP , and NP-Complete Problems 427
P and NP Problems 428
NP -Complete Problems 432

Exercises 11.3 435

14 Contents

11.4 Challenges of Numerical Algorithms 438

Exercises 11.4 445

Summary 446

12 Coping with the Limitations of Algorithm Power 449

12.1 Backtracking 450
n-Queens Problem 451
Hamiltonian Circuit Problem 452
Subset-Sum Problem 453
General Remarks 454

Exercises 12.1 456

12.2 Branch-and-Bound 458
Assignment Problem 459
Knapsack Problem 462
Traveling Salesman Problem 464

Exercises 12.2 466

12.3 Approximation Algorithms for NP -Hard Problems 467
Approximation Algorithms for the Traveling Salesman Problem 469
Approximation Algorithms for the Knapsack Problem 479

Exercises 12.3 483

12.4 Algorithms for Solving Nonlinear Equations 485
Bisection Method 486
Method of False Position 490
Newton’s Method 490

Exercises 12.4 493

Summary 494

Epilogue 497

APPENDIX A

Useful Formulas for the Analysis of Algorithms 501

Properties of Logarithms 501
Combinatorics 501
Important Summation Formulas 502
Sum Manipulation Rules 502

Contents 15

Approximation of a Sum by a Definite Integral 503
Floor and Ceiling Formulas 503
Miscellaneous 503

APPENDIX B

Short Tutorial on Recurrence Relations 505

Sequences and Recurrence Relations 505
Methods for Solving Recurrence Relations 506
Common Recurrence Types in Algorithm Analysis 511

References 519

Hints to Exercises 529

Index 571

New to the Third Edition

Reordering of chapters to introduce decrease-and-conquer before divide-
and-conquer
Restructuring of chapter 8 on dynamic programming, including all new intro-
ductory material and new exercises focusing on well-known applications
More coverage of the applications of the algorithms discussed
Reordering of select sections throughout the book to achieve a better align-
ment of specific algorithms and general algorithm design techniques
Addition of the Lomuto partition and Gray code algorithms
Seventy new problems added to the end-of-chapter exercises, including algo-
rithmic puzzles and questions asked during job interviews

17

Preface

The most valuable acquisitions in a scientific or technical education are the
general-purpose mental tools which remain serviceable for a life-time.

—George Forsythe, “What to do till the computer scientist comes.” (1968)

Algorithms play the central role both in the science and practice of computing.
Recognition of this fact has led to the appearance of a considerable number

of textbooks on the subject. By and large, they follow one of two alternatives
in presenting algorithms. One classifies algorithms according to a problem type.
Such a book would have separate chapters on algorithms for sorting, searching,
graphs, and so on. The advantage of this approach is that it allows an immediate
comparison of, say, the efficiency of different algorithms for the same problem.
The drawback of this approach is that it emphasizes problem types at the expense
of algorithm design techniques.

The second alternative organizes the presentation around algorithm design
techniques. In this organization, algorithms from different areas of computing are
grouped together if they have the same design approach. I share the belief of many
(e.g., [BaY95]) that this organization is more appropriate for a basic course on the
design and analysis of algorithms. There are three principal reasons for emphasis
on algorithm design techniques. First, these techniques provide a student with
tools for designing algorithms for new problems. This makes learning algorithm
design techniques a very valuable endeavor from a practical standpoint. Second,
they seek to classify multitudes of known algorithms according to an underlying
design idea. Learning to see such commonality among algorithms from different
application areas should be a major goal of computer science education. After all,
every science considers classification of its principal subject as a major if not the
central point of its discipline. Third, in my opinion, algorithm design techniques
have utility as general problem solving strategies, applicable to problems beyond
computing.

19

20 Preface

Unfortunately, the traditional classification of algorithm design techniques
has several serious shortcomings, from both theoretical and educational points
of view. The most significant of these shortcomings is the failure to classify many
important algorithms. This limitation has forced the authors of other textbooks
to depart from the design technique organization and to include chapters dealing
with specific problem types. Such a switch leads to a loss of course coherence and
almost unavoidably creates a confusion in students’ minds.

New taxonomy of algorithm design techniques

My frustration with the shortcomings of the traditional classification of algorithm
design techniques has motivated me to develop a new taxonomy of them [Lev99],
which is the basis of this book. Here are the principal advantages of the new
taxonomy:

The new taxonomy is more comprehensive than the traditional one. It includes
several strategies—brute-force, decrease-and-conquer, transform-and-con-
quer, space and time trade-offs, and iterative improvement—that are rarely
if ever recognized as important design paradigms.
The new taxonomy covers naturally many classic algorithms (Euclid’s algo-
rithm, heapsort, search trees, hashing, topological sorting, Gaussian elimi-
nation, Horner’s rule—to name a few) that the traditional taxonomy cannot
classify. As a result, the new taxonomy makes it possible to present the stan-
dard body of classic algorithms in a unified and coherent fashion.
It naturally accommodates the existence of important varieties of several
design techniques. For example, it recognizes three variations of decrease-
and-conquer and three variations of transform-and-conquer.
It is better aligned with analytical methods for the efficiency analysis (see
Appendix B).

Design techniques as general problem solving strategies

Most applications of the design techniques in the book are to classic problems of
computer science. (The only innovation here is an inclusion of some material on
numerical algorithms, which are covered within the same general framework.)
But these design techniques can be considered general problem solving tools,
whose applications are not limited to traditional computing and mathematical
problems. Two factors make this point particularly important. First, more and
more computing applications go beyond the traditional domain, and there are
reasons to believe that this trend will strengthen in the future. Second, developing
students’ problem solving skills has come to be recognized as a major goal of
college education. Among all the courses in a computer science curriculum, a
course on the design and analysis of algorithms is uniquely suitable for this task
because it can offer a student specific strategies for solving problems.

I am not proposing that a course on the design and analysis of algorithms
should become a course on general problem solving. But I do believe that the

Preface 21

unique opportunity provided by studying the design and analysis of algorithms
should not be missed. Toward this goal, the book includes applications to puzzles
and puzzle-like games. Although using puzzles in teaching algorithms is certainly
not a new idea, the book tries to do this systematically by going well beyond a few
standard examples.

Textbook pedagogy

My goal was to write a text that would not trivialize the subject but would still be
readable by most students on their own. Here are some of the things done toward
this objective.

Sharing the opinion of George Forsythe expressed in the epigraph, I have
sought to stress major ideas underlying the design and analysis of algorithms.
In choosing specific algorithms to illustrate these ideas, I limited the number of
covered algorithms to those that demonstrate an underlying design technique
or an analysis method most clearly. Fortunately, most classic algorithms satisfy
this criterion.
In Chapter 2, which is devoted to efficiency analysis, the methods used for
analyzing nonrecursive algorithms are separated from those typically used for
analyzing recursive algorithms. The chapter also includes sections devoted to
empirical analysis and algorithm visualization.
The narrative is systematically interrupted by questions to the reader. Some
of them are asked rhetorically, in anticipation of a concern or doubt, and are
answered immediately. The goal of the others is to prevent the reader from
drifting through the text without a satisfactory level of comprehension.
Each chapter ends with a summary recapping the most important concepts
and results discussed in the chapter.
The book contains over 600 exercises. Some of them are drills; others make
important points about the material covered in the body of the text or intro-
duce algorithms not covered there at all. A few exercises take advantage of
Internet resources. More difficult problems—there are not many of them—
are marked by special symbols in the Instructor’s Manual. (Because marking
problems as difficult may discourage some students from trying to tackle them,
problems are not marked in the book itself.) Puzzles, games, and puzzle-like
questions are marked in the exercises with a special icon.
The book provides hints to all the exercises. Detailed solutions, except for
programming projects, are provided in the Instructor’s Manual, available to
qualified adopters through Pearson’s Instructor Resource Center. (Visit www
.pearsoninternationaleditions.com/levitin to access this material.) Slides in
PowerPoint are available to all readers of this book via anonymous ftp through
the link at www.pearsoninternationaleditions.com/levitin.

22 Preface

Changes for the third edition

There are a few changes in the third edition. The most important is the new order of
the chapters on decrease-and-conquer and divide-and-conquer. There are several
advantages in introducing decrease-and-conquer before divide-and-conquer:

Decrease-and-conquer is a simpler strategy than divide-and-conquer.
Decrease-and-conquer is applicable to more problems than divide-and-con-
quer.
The new order makes it possible to discuss insertion sort before mergesort
and quicksort.
The idea of array partitioning is now introduced in conjunction with the
selection problem. I took advantage of an opportunity to do this via the one-
directional scan employed by Lomuto’s algorithm, leaving the two-directional
scan used by Hoare’s partitioning to a later discussion in conjunction with
quicksort.
Binary search is now considered in the section devoted to decrease-by-a-
constant-factor algorithms, where it belongs.

The second important change is restructuring of Chapter 8 on dynamic pro-
gramming. Specifically:

The introductory section is completely new. It contains three basic examples
that provide a much better introduction to this important technique than
computing a binomial coefficient, the example used in the first two editions.
All the exercises for Section 8.1 are new as well; they include well-known
applications not available in the previous editions.
I also changed the order of the other sections in this chapter to get a smoother
progression from the simpler applications to the more advanced ones.

The other changes include the following. More applications of the algorithms
discussed are included. The section on the graph-traversal algorithms is moved
from the decrease-and-conquer chapter to the brute-force and exhaustive-search
chapter, where it fits better, in my opinion. The Gray code algorithm is added to the
section dealing with algorithms for generating combinatorial objects. The divide-
and-conquer algorithm for the closest-pair problem is discussed in more detail.
Updates include the section on algorithm visualization, approximation algorithms
for the traveling salesman problem, and, of course, the bibliography.

I also added about 70 new problems to the exercises. Some of them are algo-
rithmic puzzles and questions asked during job interviews.

Prerequisites

The book assumes that a reader has gone through an introductory programming
course and a standard course on discrete structures. With such a background,
he or she should be able to handle the book’s material without undue difficulty.

Preface 23

Still, fundamental data structures, necessary summation formulas, and recurrence
relations are reviewed in Section 1.4, Appendix A, and Appendix B, respectively.
Calculus is used in only three sections (Section 2.2, 11.4, and 12.4), and to a very
limited degree; if students lack calculus as an assured part of their background, the
relevant portions of these three sections can be omitted without hindering their
understanding of the rest of the material.

Use in the curriculum

The book can serve as a textbook for a basic course on design and analysis of
algorithms organized around algorithm design techniques. It might contain slightly
more material than can be covered in a typical one-semester course. By and large,
portions of Chapters 3 through 12 can be skipped without the danger of making
later parts of the book incomprehensible to the reader. Any portion of the book
can be assigned for self-study. In particular, Sections 2.6 and 2.7 on empirical
analysis and algorithm visualization, respectively, can be assigned in conjunction
with projects.

Here is a possible plan for a one-semester course; it assumes a 40-class meeting
format.

Lecture Topic Sections

1 Introduction 1.1–1.3
2, 3 Analysis framework; O, �, � notations 2.1, 2.2
4 Mathematical analysis of nonrecursive algorithms 2.3
5, 6 Mathematical analysis of recursive algorithms 2.4, 2.5 (+ App. B)
7 Brute-force algorithms 3.1, 3.2 (+ 3.3)
8 Exhaustive search 3.4
9 Depth-first search and breadth-first search 3.5

10, 11 Decrease-by-one: insertion sort, topological sorting 4.1, 4.2
12 Binary search and other decrease-by-a-constant-

factor algorithms
4.4

13 Variable-size-decrease algorithms 4.5
14, 15 Divide-and-conquer: mergesort, quicksort 5.1–5.2
16 Other divide-and-conquer examples 5.3 or 5.4 or 5.5
17–19 Instance simplification: presorting, Gaussian elimi-

nation, balanced search trees
6.1–6.3

20 Representation change: heaps and heapsort or
Horner’s rule and binary exponentiation

6.4 or 6.5

21 Problem reduction 6.6
22–24 Space-time trade-offs: string matching, hashing, B-

trees
7.2–7.4

25–27 Dynamic programming algorithms 3 from 8.1–8.4

24 Preface

28–30 Greedy algorithms: Prim’s, Kruskal’s, Dijkstra’s,
Huffman’s

9.1–9.4

31–33 Iterative improvement algorithms 3 from 10.1–10.4
34 Lower-bound arguments 11.1
35 Decision trees 11.2
36 P, NP, and NP-complete problems 11.3
37 Numerical algorithms 11.4 (+ 12.4)
38 Backtracking 12.1
39 Branch-and-bound 12.2
40 Approximation algorithms for NP-hard problems 12.3

Acknowledgments

I would like to express my gratitude to the reviewers and many readers who
have shared with me their opinions about the first two editions of the book and
suggested improvements and corrections. The third edition has certainly ben-
efited from the reviews by Andrew Harrington (Loyola University Chicago),
David Levine (Saint Bonaventure University), Stefano Lombardi (UC Riverside),
Daniel McKee (Mansfield University), Susan Brilliant (Virginia Commonwealth
University), David Akers (University of Puget Sound), and two anonymous re-
viewers.

My thanks go to all the people at Pearson and their associates who worked
on my book. I am especially grateful to my editor, Matt Goldstein; the editorial
assistant, Chelsea Bell; the marketing manager, Yez Alayan; and the production
supervisor, Kayla Smith-Tarbox. I am also grateful to Richard Camp for copyedit-
ing the book, Paul Anagnostopoulos of Windfall Software and Jacqui Scarlott for
its project management and typesetting, and MaryEllen Oliver for proofreading
the book.

Finally, I am indebted to two members of my family. Living with a spouse
writing a book is probably more trying than doing the actual writing. My wife,
Maria, lived through several years of this, helping me any way she could. And help
she did: over 400 figures in the book and the Instructor’s Manual were created
by her. My daughter Miriam has been my English prose guru over many years.
She read large portions of the book and was instrumental in finding the chapter
epigraphs.

Anany Levitin
anany.levitin@villanova.edu
June 2011

1
Introduction

Two ideas lie gleaming on the jeweler’s velvet. The first is the calculus, the
second, the algorithm. The calculus and the rich body of mathematical
analysis to which it gave rise made modern science possible; but it has been
the algorithm that has made possible the modern world.

—David Berlinski, The Advent of the Algorithm, 2000

Why do you need to study algorithms? If you are going to be a computer
professional, there are both practical and theoretical reasons to study algo-

rithms. From a practical standpoint, you have to know a standard set of important
algorithms from different areas of computing; in addition, you should be able to
design new algorithms and analyze their efficiency. From the theoretical stand-
point, the study of algorithms, sometimes called algorithmics, has come to be
recognized as the cornerstone of computer science. David Harel, in his delightful
book pointedly titled Algorithmics: the Spirit of Computing, put it as follows:

Algorithmics is more than a branch of computer science. It is the core of
computer science, and, in all fairness, can be said to be relevant to most of
science, business, and technology. [Har92, p. 6]

But even if you are not a student in a computing-related program, there are
compelling reasons to study algorithms. To put it bluntly, computer programs
would not exist without algorithms. And with computer applications becoming
indispensable in almost all aspects of our professional and personal lives, studying
algorithms becomes a necessity for more and more people.

Another reason for studying algorithms is their usefulness in developing an-
alytical skills. After all, algorithms can be seen as special kinds of solutions to
problems—not just answers but precisely defined procedures for getting answers.
Consequently, specific algorithm design techniques can be interpreted as problem-
solving strategies that can be useful regardless of whether a computer is involved.
Of course, the precision inherently imposed by algorithmic thinking limits the
kinds of problems that can be solved with an algorithm. You will not find, for
example, an algorithm for living a happy life or becoming rich and famous. On

27

28 Introduction

the other hand, this required precision has an important educational advantage.
Donald Knuth, one of the most prominent computer scientists in the history of
algorithmics, put it as follows:

A person well-trained in computer science knows how to deal with algorithms:
how to construct them, manipulate them, understand them, analyze them.
This knowledge is preparation for much more than writing good computer
programs; it is a general-purpose mental tool that will be a definite aid to
the understanding of other subjects, whether they be chemistry, linguistics,
or music, etc. The reason for this may be understood in the following way:
It has often been said that a person does not really understand something
until after teaching it to someone else. Actually, a person does not really
understand something until after teaching it to a computer, i.e., expressing
it as an algorithm . . . An attempt to formalize things as algorithms leads to
a much deeper understanding than if we simply try to comprehend things in
the traditional way. [Knu96, p. 9]

We take up the notion of algorithm in Section 1.1. As examples, we use three
algorithms for the same problem: computing the greatest common divisor. There
are several reasons for this choice. First, it deals with a problem familiar to ev-
erybody from their middle-school days. Second, it makes the important point that
the same problem can often be solved by several algorithms. Quite typically, these
algorithms differ in their idea, level of sophistication, and efficiency. Third, one of
these algorithms deserves to be introduced first, both because of its age—it ap-
peared in Euclid’s famous treatise more than two thousand years ago—and its
enduring power and importance. Finally, investigation of these three algorithms
leads to some general observations about several important properties of algo-
rithms in general.

Section 1.2 deals with algorithmic problem solving. There we discuss several
important issues related to the design and analysis of algorithms. The different
aspects of algorithmic problem solving range from analysis of the problem and the
means of expressing an algorithm to establishing its correctness and analyzing its
efficiency. The section does not contain a magic recipe for designing an algorithm
for an arbitrary problem. It is a well-established fact that such a recipe does not
exist. Still, the material of Section 1.2 should be useful for organizing your work
on designing and analyzing algorithms.

Section 1.3 is devoted to a few problem types that have proven to be partic-
ularly important to the study of algorithms and their application. In fact, there
are textbooks (e.g., [Sed11]) organized around such problem types. I hold the
view—shared by many others—that an organization based on algorithm design
techniques is superior. In any case, it is very important to be aware of the princi-
pal problem types. Not only are they the most commonly encountered problem
types in real-life applications, they are used throughout the book to demonstrate
particular algorithm design techniques.

Section 1.4 contains a review of fundamental data structures. It is meant to
serve as a reference rather than a deliberate discussion of this topic. If you need

1.1 What Is an Algorithm? 29

a more detailed exposition, there is a wealth of good books on the subject, most
of them tailored to a particular programming language.

1.1 What Is an Algorithm?

Although there is no universally agreed-on wording to describe this notion, there
is general agreement about what the concept means:

An algorithm is a sequence of unambiguous instructions for solving a
problem, i.e., for obtaining a required output for any legitimate input in
a finite amount of time.

This definition can be illustrated by a simple diagram (Figure 1.1).
The reference to “instructions” in the definition implies that there is some-

thing or someone capable of understanding and following the instructions given.
We call this a “computer,” keeping in mind that before the electronic computer
was invented, the word “computer” meant a human being involved in perform-
ing numeric calculations. Nowadays, of course, “computers” are those ubiquitous
electronic devices that have become indispensable in almost everything we do.
Note, however, that although the majority of algorithms are indeed intended for
eventual computer implementation, the notion of algorithm does not depend on
such an assumption.

As examples illustrating the notion of the algorithm, we consider in this
section three methods for solving the same problem: computing the greatest
common divisor of two integers. These examples will help us to illustrate several
important points:

The nonambiguity requirement for each step of an algorithm cannot be com-
promised.
The range of inputs for which an algorithm works has to be specified carefully.
The same algorithm can be represented in several different ways.
There may exist several algorithms for solving the same problem.

problem

algorithm

input output"computer"

FIGURE 1.1 The notion of the algorithm.

30 Introduction

Algorithms for the same problem can be based on very different ideas and
can solve the problem with dramatically different speeds.

Recall that the greatest common divisor of two nonnegative, not-both-zero
integers m and n, denoted gcd(m, n), is defined as the largest integer that divides
both m and n evenly, i.e., with a remainder of zero. Euclid of Alexandria (third
century b.c.) outlined an algorithm for solving this problem in one of the volumes
of his Elements most famous for its systematic exposition of geometry. In modern
terms, Euclid’s algorithm is based on applying repeatedly the equality

gcd(m, n) = gcd(n, m mod n),

where m mod n is the remainder of the division of m by n, until m mod n is equal
to 0. Since gcd(m, 0) = m (why?), the last value of m is also the greatest common
divisor of the initial m and n.

For example, gcd(60, 24) can be computed as follows:

gcd(60, 24) = gcd(24, 12) = gcd(12, 0) = 12.

(If you are not impressed by this algorithm, try finding the greatest common divisor
of larger numbers, such as those in Problem 6 in this section’s exercises.)

Here is a more structured description of this algorithm:

Euclid’s algorithm for computing gcd(m, n)

Step 1 If n = 0, return the value of m as the answer and stop; otherwise,
proceed to Step 2.

Step 2 Divide m by n and assign the value of the remainder to r .
Step 3 Assign the value of n to m and the value of r to n. Go to Step 1.

Alternatively, we can express the same algorithm in pseudocode:

ALGORITHM Euclid(m, n)

//Computes gcd(m, n) by Euclid’s algorithm
//Input: Two nonnegative, not-both-zero integers m and n

//Output: Greatest common divisor of m and n

while n �= 0 do
r ← m mod n

m ← n

n ← r

return m

How do we know that Euclid’s algorithm eventually comes to a stop? This
follows from the observation that the second integer of the pair gets smaller with
each iteration and it cannot become negative. Indeed, the new value of n on the
next iteration is m mod n, which is always smaller than n (why?). Hence, the value
of the second integer eventually becomes 0, and the algorithm stops.

1.1 What Is an Algorithm? 31

Just as with many other problems, there are several algorithms for computing
the greatest common divisor. Let us look at the other two methods for this prob-
lem. The first is simply based on the definition of the greatest common divisor of
m and n as the largest integer that divides both numbers evenly. Obviously, such
a common divisor cannot be greater than the smaller of these numbers, which we
will denote by t = min{m, n}. So we can start by checking whether t divides both
m and n: if it does, t is the answer; if it does not, we simply decrease t by 1 and
try again. (How do we know that the process will eventually stop?) For example,
for numbers 60 and 24, the algorithm will try first 24, then 23, and so on, until it
reaches 12, where it stops.

Consecutive integer checking algorithm for computing gcd(m, n)

Step 1 Assign the value of min{m, n} to t.

Step 2 Divide m by t. If the remainder of this division is 0, go to Step 3;
otherwise, go to Step 4.

Step 3 Divide n by t. If the remainder of this division is 0, return the value of
t as the answer and stop; otherwise, proceed to Step 4.

Step 4 Decrease the value of t by 1. Go to Step 2.

Note that unlike Euclid’s algorithm, this algorithm, in the form presented,
does not work correctly when one of its input numbers is zero. This example
illustrates why it is so important to specify the set of an algorithm’s inputs explicitly
and carefully.

The third procedure for finding the greatest common divisor should be famil-
iar to you from middle school.

Middle-school procedure for computing gcd(m, n)

Step 1 Find the prime factors of m.
Step 2 Find the prime factors of n.
Step 3 Identify all the common factors in the two prime expansions found in

Step 1 and Step 2. (If p is a common factor occurring pm and pn times
in m and n, respectively, it should be repeated min{pm, pn} times.)

Step 4 Compute the product of all the common factors and return it as the
greatest common divisor of the numbers given.

Thus, for the numbers 60 and 24, we get

60 = 2 . 2 . 3 . 5
24 = 2 . 2 . 2 . 3

gcd(60, 24) = 2 . 2 . 3 = 12.

Nostalgia for the days when we learned this method should not prevent us
from noting that the last procedure is much more complex and slower than Euclid’s
algorithm. (We will discuss methods for finding and comparing running times
of algorithms in the next chapter.) In addition to inferior efficiency, the middle-
school procedure does not qualify, in the form presented, as a legitimate algorithm.
Why? Because the prime factorization steps are not defined unambiguously: they

32 Introduction

require a list of prime numbers, and I strongly suspect that your middle-school
math teacher did not explain how to obtain such a list. This is not a matter
of unnecessary nitpicking. Unless this issue is resolved, we cannot, say, write a
program implementing this procedure. Incidentally, Step 3 is also not defined
clearly enough. Its ambiguity is much easier to rectify than that of the factorization
steps, however. How would you find common elements in two sorted lists?

So, let us introduce a simple algorithm for generating consecutive primes not
exceeding any given integer n > 1. It was probably invented in ancient Greece
and is known as the sieve of Eratosthenes (ca. 200 b.c.). The algorithm starts by
initializing a list of prime candidates with consecutive integers from 2 to n. Then,
on its first iteration, the algorithm eliminates from the list all multiples of 2, i.e., 4,
6, and so on. Then it moves to the next item on the list, which is 3, and eliminates
its multiples. (In this straightforward version, there is an overhead because some
numbers, such as 6, are eliminated more than once.) No pass for number 4 is
needed: since 4 itself and all its multiples are also multiples of 2, they were already
eliminated on a previous pass. The next remaining number on the list, which is
used on the third pass, is 5. The algorithm continues in this fashion until no more
numbers can be eliminated from the list. The remaining integers of the list are the
primes needed.

As an example, consider the application of the algorithm to finding the list of
primes not exceeding n = 25:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
2 3 5 7 9 11 13 15 17 19 21 23 25
2 3 5 7 11 13 17 19 23 25
2 3 5 7 11 13 17 19 23

For this example, no more passes are needed because they would eliminate num-
bers already eliminated on previous iterations of the algorithm. The remaining
numbers on the list are the consecutive primes less than or equal to 25.

What is the largest number p whose multiples can still remain on the list
to make further iterations of the algorithm necessary? Before we answer this
question, let us first note that if p is a number whose multiples are being eliminated
on the current pass, then the first multiple we should consider is p . p because all its
smaller multiples 2p, . . . , (p − 1)p have been eliminated on earlier passes through
the list. This observation helps to avoid eliminating the same number more than
once. Obviously, p . p should not be greater than n, and therefore p cannot exceed√

n rounded down (denoted
⌊√

n
⌋

using the so-called floor function). We assume
in the following pseudocode that there is a function available for computing

⌊√
n
⌋

;
alternatively, we could check the inequality p . p ≤ n as the loop continuation
condition there.

ALGORITHM Sieve(n)

//Implements the sieve of Eratosthenes
//Input: A positive integer n > 1
//Output: Array L of all prime numbers less than or equal to n

1.1 What Is an Algorithm? 33

for p ← 2 to n do A[p] ← p

for p ← 2 to
⌊√

n
⌋

do //see note before pseudocode
if A[p] �= 0 //p hasn’t been eliminated on previous passes

j ← p ∗ p

while j ≤ n do
A[j] ← 0 //mark element as eliminated
j ← j + p

//copy the remaining elements of A to array L of the primes
i ← 0
for p ← 2 to n do

if A[p] �= 0
L[i] ← A[p]
i ← i + 1

return L

So now we can incorporate the sieve of Eratosthenes into the middle-school
procedure to get a legitimate algorithm for computing the greatest common divi-
sor of two positive integers. Note that special care needs to be exercised if one or
both input numbers are equal to 1: because mathematicians do not consider 1 to
be a prime number, strictly speaking, the method does not work for such inputs.

Before we leave this section, one more comment is in order. The exam-
ples considered in this section notwithstanding, the majority of algorithms in use
today—even those that are implemented as computer programs—do not deal with
mathematical problems. Look around for algorithms helping us through our daily
routines, both professional and personal. May this ubiquity of algorithms in to-
day’s world strengthen your resolve to learn more about these fascinating engines
of the information age.

Exercises 1.1

1. What is an algorithm and what are its characteristics? Are algorithms
language-specific? Explain the derivation of the term “algorithm.”

2. Given that the official purpose of the U.S. patent system is the promotion
of the “useful arts,” do you think algorithms are patentable in this country?
Should they be?

3. a. Write down the steps for installing a television set in your home with the
precision required from an algorithm’s description.

b. Write down the steps for preparing tea with the precision required by an
algorithm.

4. Write an algorithm for sorting integer numbers in ascending order using any
sorting technique. For example, the unsorted numbers are 23, 45, 12, 37, 11,
56 and the sorted numbers in ascending order are 11, 12, 23, 37, 45, 56.

34 Introduction

5. Design an algorithm to find the sorted list from two sorted lists of numbers.
For example, for the lists 2, 5, 7, 12, 13, 24 and 1, 6, 15, 17, 35, the output
should be 1, 2, 5, 6, 7, 12, 13, 15, 17, 24, 35. What is the maximum number of
comparisons your algorithm makes if the lengths of the two given lists are m

and n, respectively?

6. a. Find gcd(31415, 14142) by applying Euclid’s algorithm.

b. Estimate how many times faster it will be to find gcd(31415, 14142) by
Euclid’s algorithm compared with the algorithm based on checking con-
secutive integers from min{m, n} down to gcd(m, n).

7. Prove the equality gcd(m, n) = gcd(n, m mod n) for every pair of positive
integers m and n.

8. What does Euclid’s algorithm do for a pair of integers in which the first is
smaller than the second? What is the maximum number of times this can
happen during the algorithm’s execution on such an input?

9. a. What is the minimum number of divisions made by Euclid’s algorithm
among all inputs 1 ≤ m, n ≤ 10?

b. What is the maximum number of divisions made by Euclid’s algorithm
among all inputs 1 ≤ m, n ≤ 10?

10. a. Euclid’s algorithm, as presented in Euclid’s treatise, uses subtractions
rather than integer divisions. Write pseudocode for this version of Euclid’s
algorithm.

b. Euclid’s game (see [Bog]) starts with two unequal positive integers on the
board. Two players move in turn. On each move, a player has to write on
the board a positive number equal to the difference of two numbers already
on the board; this number must be new, i.e., different from all the numbers
already on the board. The player who cannot move loses the game. Should
you choose to move first or second in this game?

11. The extended Euclid’s algorithm determines not only the greatest common
divisor d of two positive integers m and n but also integers (not necessarily
positive) x and y, such that mx + ny = d.

a. Look up a description of the extended Euclid’s algorithm (see, e.g., [KnuI,
p. 13]) and implement it in the language of your choice.

b. Modify your program to find integer solutions to the Diophantine equation
ax + by = c with any set of integer coefficients a, b, and c.

12. Locker doors There are n lockers in a hallway, numbered sequentially from
1 to n. Initially, all the locker doors are closed. You make n passes by the
lockers, each time starting with locker #1. On the ith pass, i = 1, 2, . . . , n, you
toggle the door of every ith locker: if the door is closed, you open it; if it is
open, you close it. After the last pass, which locker doors are open and which
are closed? How many of them are open?

1.2 Fundamentals of Algorithmic Problem Solving 35

1.2 Fundamentals of Algorithmic Problem Solving

Let us start by reiterating an important point made in the introduction to this
chapter:

We can consider algorithms to be procedural solutions to problems.

These solutions are not answers but specific instructions for getting answers. It is
this emphasis on precisely defined constructive procedures that makes computer
science distinct from other disciplines. In particular, this distinguishes it from the-
oretical mathematics, whose practitioners are typically satisfied with just proving
the existence of a solution to a problem and, possibly, investigating the solution’s
properties.

We now list and briefly discuss a sequence of steps one typically goes through
in designing and analyzing an algorithm (Figure 1.2).

Understanding the Problem

From a practical perspective, the first thing you need to do before designing an
algorithm is to understand completely the problem given. Read the problem’s
description carefully and ask questions if you have any doubts about the problem,
do a few small examples by hand, think about special cases, and ask questions
again if needed.

There are a few types of problems that arise in computing applications quite
often. We review them in the next section. If the problem in question is one of
them, you might be able to use a known algorithm for solving it. Of course, it
helps to understand how such an algorithm works and to know its strengths and
weaknesses, especially if you have to choose among several available algorithms.
But often you will not find a readily available algorithm and will have to design
your own. The sequence of steps outlined in this section should help you in this
exciting but not always easy task.

An input to an algorithm specifies an instance of the problem the algorithm
solves. It is very important to specify exactly the set of instances the algorithm
needs to handle. (As an example, recall the variations in the set of instances for
the three greatest common divisor algorithms discussed in the previous section.)
If you fail to do this, your algorithm may work correctly for a majority of inputs
but crash on some “boundary” value. Remember that a correct algorithm is not
one that works most of the time, but one that works correctly for all legitimate
inputs.

Do not skimp on this first step of the algorithmic problem-solving process;
otherwise, you will run the risk of unnecessary rework.

Ascertaining the Capabilities of the Computational Device

Once you completely understand a problem, you need to ascertain the capabilities
of the computational device the algorithm is intended for. The vast majority of

36 Introduction

Understand the problem

Decide on:
computational means,

exact vs. approximate solving,
algorithm design technique

Design an algorithm

Prove correctness

Analyze the algorithm

Code the algorithm

FIGURE 1.2 Algorithm design and analysis process.

algorithms in use today are still destined to be programmed for a computer closely
resembling the von Neumann machine—a computer architecture outlined by
the prominent Hungarian-American mathematician John von Neumann (1903–
1957), in collaboration with A. Burks and H. Goldstine, in 1946. The essence of
this architecture is captured by the so-called random-access machine (RAM).
Its central assumption is that instructions are executed one after another, one
operation at a time. Accordingly, algorithms designed to be executed on such
machines are called sequential algorithms.

The central assumption of the RAM model does not hold for some newer
computers that can execute operations concurrently, i.e., in parallel. Algorithms
that take advantage of this capability are called parallel algorithms. Still, studying
the classic techniques for design and analysis of algorithms under the RAM model
remains the cornerstone of algorithmics for the foreseeable future.

1.2 Fundamentals of Algorithmic Problem Solving 37

Should you worry about the speed and amount of memory of a computer at
your disposal? If you are designing an algorithm as a scientific exercise, the answer
is a qualified no. As you will see in Section 2.1, most computer scientists prefer to
study algorithms in terms independent of specification parameters for a particular
computer. If you are designing an algorithm as a practical tool, the answer may
depend on a problem you need to solve. Even the “slow” computers of today are
almost unimaginably fast. Consequently, in many situations you need not worry
about a computer being too slow for the task. There are important problems,
however, that are very complex by their nature, or have to process huge volumes
of data, or deal with applications where the time is critical. In such situations,
it is imperative to be aware of the speed and memory available on a particular
computer system.

Choosing between Exact and Approximate Problem Solving

The next principal decision is to choose between solving the problem exactly or
solving it approximately. In the former case, an algorithm is called an exact algo-
rithm; in the latter case, an algorithm is called an approximation algorithm. Why
would one opt for an approximation algorithm? First, there are important prob-
lems that simply cannot be solved exactly for most of their instances; examples
include extracting square roots, solving nonlinear equations, and evaluating def-
inite integrals. Second, available algorithms for solving a problem exactly can be
unacceptably slow because of the problem’s intrinsic complexity. This happens, in
particular, for many problems involving a very large number of choices; you will
see examples of such difficult problems in Chapters 3, 11, and 12. Third, an ap-
proximation algorithm can be a part of a more sophisticated algorithm that solves
a problem exactly.

Algorithm Design Techniques

Now, with all the components of the algorithmic problem solving in place, how do
you design an algorithm to solve a given problem? This is the main question this
book seeks to answer by teaching you several general design techniques.

What is an algorithm design technique?

An algorithm design technique (or “strategy” or “paradigm”) is a general
approach to solving problems algorithmically that is applicable to a variety
of problems from different areas of computing.

Check this book’s table of contents and you will see that a majority of its
chapters are devoted to individual design techniques. They distill a few key ideas
that have proven to be useful in designing algorithms. Learning these techniques
is of utmost importance for the following reasons.

First, they provide guidance for designing algorithms for new problems, i.e.,
problems for which there is no known satisfactory algorithm. Therefore—to use
the language of a famous proverb—learning such techniques is akin to learning

38 Introduction

to fish as opposed to being given a fish caught by somebody else. It is not true, of
course, that each of these general techniques will be necessarily applicable to every
problem you may encounter. But taken together, they do constitute a powerful
collection of tools that you will find quite handy in your studies and work.

Second, algorithms are the cornerstone of computer science. Every science is
interested in classifying its principal subject, and computer science is no exception.
Algorithm design techniques make it possible to classify algorithms according
to an underlying design idea; therefore, they can serve as a natural way to both
categorize and study algorithms.

Designing an Algorithm and Data Structures

While the algorithm design techniques do provide a powerful set of general ap-
proaches to algorithmic problem solving, designing an algorithm for a particular
problem may still be a challenging task. Some design techniques can be simply
inapplicable to the problem in question. Sometimes, several techniques need to
be combined, and there are algorithms that are hard to pinpoint as applications
of the known design techniques. Even when a particular design technique is ap-
plicable, getting an algorithm often requires a nontrivial ingenuity on the part of
the algorithm designer. With practice, both tasks—choosing among the general
techniques and applying them—get easier, but they are rarely easy.

Of course, one should pay close attention to choosing data structures appro-
priate for the operations performed by the algorithm. For example, the sieve of
Eratosthenes introduced in Section 1.1 would run longer if we used a linked list
instead of an array in its implementation (why?). Also note that some of the al-
gorithm design techniques discussed in Chapters 6 and 7 depend intimately on
structuring or restructuring data specifying a problem’s instance. Many years ago,
an influential textbook proclaimed the fundamental importance of both algo-
rithms and data structures for computer programming by its very title: Algorithms
+ Data Structures = Programs [Wir76]. In the new world of object-oriented pro-
gramming, data structures remain crucially important for both design and analysis
of algorithms. We review basic data structures in Section 1.4.

Methods of Specifying an Algorithm

Once you have designed an algorithm, you need to specify it in some fashion. In
Section 1.1, to give you an example, Euclid’s algorithm is described in words (in a
free and also a step-by-step form) and in pseudocode. These are the two options
that are most widely used nowadays for specifying algorithms.

Using a natural language has an obvious appeal; however, the inherent ambi-
guity of any natural language makes a succinct and clear description of algorithms
surprisingly difficult. Nevertheless, being able to do this is an important skill that
you should strive to develop in the process of learning algorithms.

Pseudocode is a mixture of a natural language and programming language-
like constructs. Pseudocode is usually more precise than natural language, and its

1.2 Fundamentals of Algorithmic Problem Solving 39

usage often yields more succinct algorithm descriptions. Surprisingly, computer
scientists have never agreed on a single form of pseudocode, leaving textbook
authors with a need to design their own “dialects.” Fortunately, these dialects are
so close to each other that anyone familiar with a modern programming language
should be able to understand them all.

This book’s dialect was selected to cause minimal difficulty for a reader. For
the sake of simplicity, we omit declarations of variables and use indentation to
show the scope of such statements as for, if, and while. As you saw in the previous
section, we use an arrow “←” for the assignment operation and two slashes “//”
for comments.

In the earlier days of computing, the dominant vehicle for specifying algo-
rithms was a flowchart, a method of expressing an algorithm by a collection of
connected geometric shapes containing descriptions of the algorithm’s steps. This
representation technique has proved to be inconvenient for all but very simple
algorithms; nowadays, it can be found only in old algorithm books.

The state of the art of computing has not yet reached a point where an
algorithm’s description—be it in a natural language or pseudocode—can be fed
into an electronic computer directly. Instead, it needs to be converted into a
computer program written in a particular computer language. We can look at such
a program as yet another way of specifying the algorithm, although it is preferable
to consider it as the algorithm’s implementation.

Proving an Algorithm’s Correctness

Once an algorithm has been specified, you have to prove its correctness. That is,
you have to prove that the algorithm yields a required result for every legitimate
input in a finite amount of time. For example, the correctness of Euclid’s algorithm
for computing the greatest common divisor stems from the correctness of the
equality gcd(m, n) = gcd(n, m mod n) (which, in turn, needs a proof; see Problem
7 in Exercises 1.1), the simple observation that the second integer gets smaller on
every iteration of the algorithm, and the fact that the algorithm stops when the
second integer becomes 0.

For some algorithms, a proof of correctness is quite easy; for others, it can be
quite complex. A common technique for proving correctness is to use mathemati-
cal induction because an algorithm’s iterations provide a natural sequence of steps
needed for such proofs. It might be worth mentioning that although tracing the
algorithm’s performance for a few specific inputs can be a very worthwhile activ-
ity, it cannot prove the algorithm’s correctness conclusively. But in order to show
that an algorithm is incorrect, you need just one instance of its input for which the
algorithm fails.

The notion of correctness for approximation algorithms is less straightforward
than it is for exact algorithms. For an approximation algorithm, we usually would
like to be able to show that the error produced by the algorithm does not exceed
a predefined limit. You can find examples of such investigations in Chapter 12.

40 Introduction

Analyzing an Algorithm

We usually want our algorithms to possess several qualities. After correctness,
by far the most important is efficiency. In fact, there are two kinds of algorithm
efficiency: time efficiency, indicating how fast the algorithm runs, and space ef-
ficiency, indicating how much extra memory it uses. A general framework and
specific techniques for analyzing an algorithm’s efficiency appear in Chapter 2.

Another desirable characteristic of an algorithm is simplicity. Unlike effi-
ciency, which can be precisely defined and investigated with mathematical rigor,
simplicity, like beauty, is to a considerable degree in the eye of the beholder. For
example, most people would agree that Euclid’s algorithm is simpler than the
middle-school procedure for computing gcd(m, n), but it is not clear whether Eu-
clid’s algorithm is simpler than the consecutive integer checking algorithm. Still,
simplicity is an important algorithm characteristic to strive for. Why? Because sim-
pler algorithms are easier to understand and easier to program; consequently, the
resulting programs usually contain fewer bugs. There is also the undeniable aes-
thetic appeal of simplicity. Sometimes simpler algorithms are also more efficient
than more complicated alternatives. Unfortunately, it is not always true, in which
case a judicious compromise needs to be made.

Yet another desirable characteristic of an algorithm is generality. There are,
in fact, two issues here: generality of the problem the algorithm solves and the
set of inputs it accepts. On the first issue, note that it is sometimes easier to
design an algorithm for a problem posed in more general terms. Consider, for
example, the problem of determining whether two integers are relatively prime,
i.e., whether their only common divisor is equal to 1. It is easier to design an
algorithm for a more general problem of computing the greatest common divisor
of two integers and, to solve the former problem, check whether the gcd is 1 or
not. There are situations, however, where designing a more general algorithm is
unnecessary or difficult or even impossible. For example, it is unnecessary to sort
a list of n numbers to find its median, which is its �n/2�th smallest element. To give
another example, the standard formula for roots of a quadratic equation cannot
be generalized to handle polynomials of arbitrary degrees.

As to the set of inputs, your main concern should be designing an algorithm
that can handle a set of inputs that is natural for the problem at hand. For example,
excluding integers equal to 1 as possible inputs for a greatest common divisor
algorithm would be quite unnatural. On the other hand, although the standard
formula for the roots of a quadratic equation holds for complex coefficients, we
would normally not implement it on this level of generality unless this capability
is explicitly required.

If you are not satisfied with the algorithm’s efficiency, simplicity, or generality,
you must return to the drawing board and redesign the algorithm. In fact, even if
your evaluation is positive, it is still worth searching for other algorithmic solutions.
Recall the three different algorithms in the previous section for computing the
greatest common divisor: generally, you should not expect to get the best algorithm
on the first try. At the very least, you should try to fine-tune the algorithm you

1.2 Fundamentals of Algorithmic Problem Solving 41

already have. For example, we made several improvements in our implementation
of the sieve of Eratosthenes compared with its initial outline in Section 1.1. (Can
you identify them?) You will do well if you keep in mind the following observation
of Antoine de Saint-Exupéry, the French writer, pilot, and aircraft designer: “A
designer knows he has arrived at perfection not when there is no longer anything
to add, but when there is no longer anything to take away.”1

Coding an Algorithm

Most algorithms are destined to be ultimately implemented as computer pro-
grams. Programming an algorithm presents both a peril and an opportunity. The
peril lies in the possibility of making the transition from an algorithm to a pro-
gram either incorrectly or very inefficiently. Some influential computer scientists
strongly believe that unless the correctness of a computer program is proven
with full mathematical rigor, the program cannot be considered correct. They
have developed special techniques for doing such proofs (see [Gri81]), but the
power of these techniques of formal verification is limited so far to very small
programs.

As a practical matter, the validity of programs is still established by testing.
Testing of computer programs is an art rather than a science, but that does not
mean that there is nothing in it to learn. Look up books devoted to testing
and debugging; even more important, test and debug your program thoroughly
whenever you implement an algorithm.

Also note that throughout the book, we assume that inputs to algorithms
belong to the specified sets and hence require no verification. When implementing
algorithms as programs to be used in actual applications, you should provide such
verifications.

Of course, implementing an algorithm correctly is necessary but not sufficient:
you would not like to diminish your algorithm’s power by an inefficient implemen-
tation. Modern compilers do provide a certain safety net in this regard, especially
when they are used in their code optimization mode. Still, you need to be aware
of such standard tricks as computing a loop’s invariant (an expression that does
not change its value) outside the loop, collecting common subexpressions, replac-
ing expensive operations by cheap ones, and so on. (See [Ker99] and [Ben00] for
a good discussion of code tuning and other issues related to algorithm program-
ming.) Typically, such improvements can speed up a program only by a constant
factor, whereas a better algorithm can make a difference in running time by orders
of magnitude. But once an algorithm is selected, a 10–50% speedup may be worth
an effort.

1. I found this call for design simplicity in an essay collection by Jon Bentley [Ben00]; the essays deal
with a variety of issues in algorithm design and implementation and are justifiably titled Programming
Pearls. I wholeheartedly recommend the writings of both Jon Bentley and Antoine de Saint-Exupéry.

42 Introduction

A working program provides an additional opportunity in allowing an em-
pirical analysis of the underlying algorithm. Such an analysis is based on timing
the program on several inputs and then analyzing the results obtained. We dis-
cuss the advantages and disadvantages of this approach to analyzing algorithms
in Section 2.6.

In conclusion, let us emphasize again the main lesson of the process depicted
in Figure 1.2:

As a rule, a good algorithm is a result of repeated effort and rework.

Even if you have been fortunate enough to get an algorithmic idea that seems
perfect, you should still try to see whether it can be improved.

Actually, this is good news since it makes the ultimate result so much more
enjoyable. (Yes, I did think of naming this book The Joy of Algorithms.) On the
other hand, how does one know when to stop? In the real world, more often than
not a project’s schedule or the impatience of your boss will stop you. And so it
should be: perfection is expensive and in fact not always called for. Designing
an algorithm is an engineering-like activity that calls for compromises among
competing goals under the constraints of available resources, with the designer’s
time being one of the resources.

In the academic world, the question leads to an interesting but usually difficult
investigation of an algorithm’s optimality. Actually, this question is not about the
efficiency of an algorithm but about the complexity of the problem it solves: What
is the minimum amount of effort any algorithm will need to exert to solve the
problem? For some problems, the answer to this question is known. For example,
any algorithm that sorts an array by comparing values of its elements needs about
n log2 n comparisons for some arrays of size n (see Section 11.2). But for many
seemingly easy problems such as integer multiplication, computer scientists do
not yet have a final answer.

Another important issue of algorithmic problem solving is the question of
whether or not every problem can be solved by an algorithm. We are not talking
here about problems that do not have a solution, such as finding real roots of
a quadratic equation with a negative discriminant. For such cases, an output
indicating that the problem does not have a solution is all we can and should
expect from an algorithm. Nor are we talking about ambiguously stated problems.
Even some unambiguous problems that must have a simple yes or no answer are
“undecidable,” i.e., unsolvable by any algorithm. An important example of such
a problem appears in Section 11.3. Fortunately, a vast majority of problems in
practical computing can be solved by an algorithm.

Before leaving this section, let us be sure that you do not have the
misconception—possibly caused by the somewhat mechanical nature of the
diagram of Figure 1.2—that designing an algorithm is a dull activity. There is
nothing further from the truth: inventing (or discovering?) algorithms is a very
creative and rewarding process. This book is designed to convince you that this is
the case.

1.2 Fundamentals of Algorithmic Problem Solving 43

Exercises 1.2

1. Old World puzzle A peasant finds himself on a riverbank with a wolf, a goat,
and a head of cabbage. He needs to transport all three to the other side of the
river in his boat. However, the boat has room for only the peasant himself
and one other item (either the wolf, the goat, or the cabbage). In his absence,
the wolf would eat the goat, and the goat would eat the cabbage. Solve this
problem for the peasant or prove it has no solution. (Note: The peasant is a
vegetarian but does not like cabbage and hence can eat neither the goat nor
the cabbage to help him solve the problem. And it goes without saying that
the wolf is a protected species.)

2. New World puzzle There are four people who want to cross a rickety bridge;
they all begin on the same side. You have 17 minutes to get them all across
to the other side. It is night, and they have one flashlight. A maximum of two
people can cross the bridge at one time. Any party that crosses, either one or
two people, must have the flashlight with them. The flashlight must be walked
back and forth; it cannot be thrown, for example. Person 1 takes 1 minute
to cross the bridge, person 2 takes 2 minutes, person 3 takes 5 minutes, and
person 4 takes 10 minutes. A pair must walk together at the rate of the slower
person’s pace. (Note: According to a rumor on the Internet, interviewers at a
well-known software company located near Seattle have given this problem
to interviewees.)

3. Which of the following formulas can be considered an algorithm for comput-
ing the area of a triangle whose side lengths are given positive numbers a, b,
and c?
a. S =√

p(p − a)(p − b)(p − c), where p = (a + b + c)/2

b. S = 1
2bc sin A, where A is the angle between sides b and c

c. S = 1
2aha, where ha is the height to base a

4. What is an algorithm design technique? What is a pseudocode? Describe how
you would prove the correctness of an algorithm.

5. Describe the standard algorithm for finding the decimal representation of a
positive binary number
a. in English.

b. in a pseudocode.

6. Describe the algorithm used by a telephone to place a phone call. (You may
give your description in either English or a pseudocode, whichever you find
more convenient.)

7. What are the qualities that an algorithm should possess? Explain the various
steps involved in converting an algorithm into code.

8. Give an example of a problem other than computing the prime number for
which you know more than one algorithm. Computing the greatest common

44 Introduction

divisor also has more than one algorithm. Find the simpler and more efficient
algorithm.

9. Consider the following algorithm for finding the distance between the two
closest elements in an array of numbers.

ALGORITHM MinDistance(A[0..n − 1])

//Input: Array A[0..n − 1] of numbers
//Output: Minimum distance between two of its elements
dmin ← ∞

for i ← 0 to n − 1 do
for j ← 0 to n − 1 do

if i �= j and |A[i] − A[j]| < dmin

dmin ← |A[i] − A[j]|
return dmin

Make as many improvements as you can in this algorithmic solution to the
problem. If you need to, you may change the algorithm altogether; if not,
improve the implementation given.

10. One of the most influential books on problem solving, titled How To Solve
It [Pol57], was written by the Hungarian-American mathematician George
Pólya (1887–1985). Pólya summarized his ideas in a four-point summary. Find
this summary on the Internet or, better yet, in his book, and compare it with
the plan outlined in Section 1.2. What do they have in common? How are they
different?

1.3 Important Problem Types

In the limitless sea of problems one encounters in computing, there are a few
areas that have attracted particular attention from researchers. By and large,
their interest has been driven either by the problem’s practical importance or by
some specific characteristics making the problem an interesting research subject;
fortunately, these two motivating forces reinforce each other in most cases.

In this section, we are going to introduce the most important problem types:

Sorting
Searching
String processing
Graph problems
Combinatorial problems
Geometric problems
Numerical problems

1.3 Important Problem Types 45

These problems are used in subsequent chapters of the book to illustrate
different algorithm design techniques and methods of algorithm analysis.

Sorting

The sorting problem is to rearrange the items of a given list in nondecreasing
order. Of course, for this problem to be meaningful, the nature of the list items
must allow such an ordering. (Mathematicians would say that there must exist
a relation of total ordering.) As a practical matter, we usually need to sort lists
of numbers, characters from an alphabet, character strings, and, most important,
records similar to those maintained by schools about their students, libraries about
their holdings, and companies about their employees. In the case of records, we
need to choose a piece of information to guide sorting. For example, we can choose
to sort student records in alphabetical order of names or by student number or by
student grade-point average. Such a specially chosen piece of information is called
a key. Computer scientists often talk about sorting a list of keys even when the list’s
items are not records but, say, just integers.

Why would we want a sorted list? To begin with, a sorted list can be a required
output of a task such as ranking Internet search results or ranking students by their
GPA scores. Further, sorting makes many questions about the list easier to answer.
The most important of them is searching: it is why dictionaries, telephone books,
class lists, and so on are sorted. You will see other examples of the usefulness of
list presorting in Section 6.1. In a similar vein, sorting is used as an auxiliary step
in several important algorithms in other areas, e.g., geometric algorithms and data
compression. The greedy approach—an important algorithm design technique
discussed later in the book—requires a sorted input.

By now, computer scientists have discovered dozens of different sorting algo-
rithms. In fact, inventing a new sorting algorithm has been likened to designing
the proverbial mousetrap. And I am happy to report that the hunt for a better
sorting mousetrap continues. This perseverance is admirable in view of the fol-
lowing facts. On the one hand, there are a few good sorting algorithms that sort
an arbitrary array of size n using about n log2 n comparisons. On the other hand,
no algorithm that sorts by key comparisons (as opposed to, say, comparing small
pieces of keys) can do substantially better than that.

There is a reason for this embarrassment of algorithmic riches in the land
of sorting. Although some algorithms are indeed better than others, there is no
algorithm that would be the best solution in all situations. Some of the algorithms
are simple but relatively slow, while others are faster but more complex; some
work better on randomly ordered inputs, while others do better on almost-sorted
lists; some are suitable only for lists residing in the fast memory, while others can
be adapted for sorting large files stored on a disk; and so on.

Two properties of sorting algorithms deserve special mention. A sorting algo-
rithm is called stable if it preserves the relative order of any two equal elements in
its input. In other words, if an input list contains two equal elements in positions
i and j where i < j, then in the sorted list they have to be in positions i′ and j ′,

46 Introduction

respectively, such that i′ < j ′. This property can be desirable if, for example, we
have a list of students sorted alphabetically and we want to sort it according to
student GPA: a stable algorithm will yield a list in which students with the same
GPA will still be sorted alphabetically. Generally speaking, algorithms that can
exchange keys located far apart are not stable, but they usually work faster; you
will see how this general comment applies to important sorting algorithms later
in the book.

The second notable feature of a sorting algorithm is the amount of extra
memory the algorithm requires. An algorithm is said to be in-place if it does
not require extra memory, except, possibly, for a few memory units. There are
important sorting algorithms that are in-place and those that are not.

Searching

The searching problem deals with finding a given value, called a search key, in a
given set (or a multiset, which permits several elements to have the same value).
There are plenty of searching algorithms to choose from. They range from the
straightforward sequential search to a spectacularly efficient but limited binary
search and algorithms based on representing the underlying set in a different form
more conducive to searching. The latter algorithms are of particular importance
for real-world applications because they are indispensable for storing and retriev-
ing information from large databases.

For searching, too, there is no single algorithm that fits all situations best.
Some algorithms work faster than others but require more memory; some are
very fast but applicable only to sorted arrays; and so on. Unlike with sorting
algorithms, there is no stability problem, but different issues arise. Specifically,
in applications where the underlying data may change frequently relative to the
number of searches, searching has to be considered in conjunction with two other
operations: an addition to and deletion from the data set of an item. In such
situations, data structures and algorithms should be chosen to strike a balance
among the requirements of each operation. Also, organizing very large data sets
for efficient searching poses special challenges with important implications for
real-world applications.

String Processing

In recent decades, the rapid proliferation of applications dealing with nonnumer-
ical data has intensified the interest of researchers and computing practitioners in
string-handling algorithms. A string is a sequence of characters from an alphabet.
Strings of particular interest are text strings, which comprise letters, numbers, and
special characters; bit strings, which comprise zeros and ones; and gene sequences,
which can be modeled by strings of characters from the four-character alphabet {A,
C, G, T}. It should be pointed out, however, that string-processing algorithms have
been important for computer science for a long time in conjunction with computer
languages and compiling issues.

1.3 Important Problem Types 47

One particular problem—that of searching for a given word in a text—has
attracted special attention from researchers. They call it string matching. Several
algorithms that exploit the special nature of this type of searching have been
invented. We introduce one very simple algorithm in Chapter 3 and discuss two
algorithms based on a remarkable idea by R. Boyer and J. Moore in Chapter 7.

Graph Problems

One of the oldest and most interesting areas in algorithmics is graph algorithms.
Informally, a graph can be thought of as a collection of points called vertices, some
of which are connected by line segments called edges. (A more formal definition
is given in the next section.) Graphs are an interesting subject to study, for both
theoretical and practical reasons. Graphs can be used for modeling a wide variety
of applications, including transportation, communication, social and economic
networks, project scheduling, and games. Studying different technical and social
aspects of the Internet in particular is one of the active areas of current research
involving computer scientists, economists, and social scientists (see, e.g., [Eas10]).

Basic graph algorithms include graph-traversal algorithms (how can one reach
all the points in a network?), shortest-path algorithms (what is the best route be-
tween two cities?), and topological sorting for graphs with directed edges (is a set
of courses with their prerequisites consistent or self-contradictory?). Fortunately,
these algorithms can be considered illustrations of general design techniques; ac-
cordingly, you will find them in corresponding chapters of the book.

Some graph problems are computationally very hard; the most well-known
examples are the traveling salesman problem and the graph-coloring problem.
The traveling salesman problem (TSP) is the problem of finding the shortest tour
through n cities that visits every city exactly once. In addition to obvious appli-
cations involving route planning, it arises in such modern applications as circuit
board and VLSI chip fabrication, X-ray crystallography, and genetic engineer-
ing. The graph-coloring problem seeks to assign the smallest number of colors to
the vertices of a graph so that no two adjacent vertices are the same color. This
problem arises in several applications, such as event scheduling: if the events are
represented by vertices that are connected by an edge if and only if the correspond-
ing events cannot be scheduled at the same time, a solution to the graph-coloring
problem yields an optimal schedule.

Combinatorial Problems

From a more abstract perspective, the traveling salesman problem and the graph-
coloring problem are examples of combinatorial problems. These are problems
that ask, explicitly or implicitly, to find a combinatorial object—such as a permu-
tation, a combination, or a subset—that satisfies certain constraints. A desired
combinatorial object may also be required to have some additional property such
as a maximum value or a minimum cost.

48 Introduction

Generally speaking, combinatorial problems are the most difficult problems in
computing, from both a theoretical and practical standpoint. Their difficulty stems
from the following facts. First, the number of combinatorial objects typically grows
extremely fast with a problem’s size, reaching unimaginable magnitudes even
for moderate-sized instances. Second, there are no known algorithms for solving
most such problems exactly in an acceptable amount of time. Moreover, most
computer scientists believe that such algorithms do not exist. This conjecture has
been neither proved nor disproved, and it remains the most important unresolved
issue in theoretical computer science. We discuss this topic in more detail in
Section 11.3.

Some combinatorial problems can be solved by efficient algorithms, but they
should be considered fortunate exceptions to the rule. The shortest-path problem
mentioned earlier is among such exceptions.

Geometric Problems

Geometric algorithms deal with geometric objects such as points, lines, and poly-
gons. The ancient Greeks were very much interested in developing procedures
(they did not call them algorithms, of course) for solving a variety of geometric
problems, including problems of constructing simple geometric shapes—triangles,
circles, and so on—with an unmarked ruler and a compass. Then, for about 2000
years, intense interest in geometric algorithms disappeared, to be resurrected in
the age of computers—no more rulers and compasses, just bits, bytes, and good old
human ingenuity. Of course, today people are interested in geometric algorithms
with quite different applications in mind, such as computer graphics, robotics, and
tomography.

We will discuss algorithms for only two classic problems of computational
geometry: the closest-pair problem and the convex-hull problem. The closest-pair
problem is self-explanatory: given n points in the plane, find the closest pair among
them. The convex-hull problem asks to find the smallest convex polygon that
would include all the points of a given set. If you are interested in other geometric
algorithms, you will find a wealth of material in such specialized monographs as
[deB10], [ORo98], and [Pre85].

Numerical Problems

Numerical problems, another large special area of applications, are problems
that involve mathematical objects of continuous nature: solving equations and
systems of equations, computing definite integrals, evaluating functions, and so on.
The majority of such mathematical problems can be solved only approximately.
Another principal difficulty stems from the fact that such problems typically
require manipulating real numbers, which can be represented in a computer only
approximately. Moreover, a large number of arithmetic operations performed on
approximately represented numbers can lead to an accumulation of the round-off

1.3 Important Problem Types 49

error to a point where it can drastically distort an output produced by a seemingly
sound algorithm.

Many sophisticated algorithms have been developed over the years in this
area, and they continue to play a critical role in many scientific and engineering
applications. But in the last 30 years or so, the computing industry has shifted
its focus to business applications. These new applications require primarily algo-
rithms for information storage, retrieval, transportation through networks, and
presentation to users. As a result of this revolutionary change, numerical analysis
has lost its formerly dominating position in both industry and computer science
programs. Still, it is important for any computer-literate person to have at least a
rudimentary idea about numerical algorithms. We discuss several classical numer-
ical algorithms in Sections 6.2, 11.4, and 12.4.

Exercises 1.3

1. Consider the algorithm for the sorting problem that sorts an array by counting,
for each of its elements, the number of smaller elements and then uses this
information to put the element in its appropriate position in the sorted array:

ALGORITHM ComparisonCountingSort(A[0..n − 1])

//Sorts an array by comparison counting
//Input: Array A[0..n − 1] of orderable values
//Output: Array S[0..n − 1] of A’s elements sorted
// in nondecreasing order
for i ← 0 to n − 1 do

Count[i] ← 0
for i ← 0 to n − 2 do

for j ← i + 1 to n − 1 do
if A[i] < A[j]

Count[j] ← Count[j] + 1
else Count[i] ← Count[i] + 1

for i ← 0 to n − 1 do
S[Count[i]] ← A[i]

return S

a. Apply this algorithm to sorting the list 60, 35, 81, 98, 14, 47.

b. Is this algorithm stable?

c. Is it in-place?

2. Name the algorithms for the sorting problem that you already know. Give a
good succinct description of each algorithm in English. If you know no such
algorithms, use this opportunity to design one.

3. Design a simple algorithm for the string-reverse problem.

50 Introduction

4. Königsberg bridges The Königsberg bridge puzzle is universally accepted
as the problem that gave birth to graph theory. It was solved by the great
Swiss-born mathematician Leonhard Euler (1707–1783). The problem asked
whether one could, in a single stroll, cross all seven bridges of the city of
Königsberg exactly once and return to a starting point. Following is a sketch
of the river with its two islands and seven bridges:

a. State the problem as a graph problem.

b. Does this problem have a solution? If you believe it does, draw such a stroll;
if you believe it does not, explain why and indicate the smallest number of
new bridges that would be required to make such a stroll possible.

5. Icosian Game A century after Euler’s discovery (see Problem 4), another
famous puzzle—this one invented by the renowned Irish mathematician Sir
William Hamilton (1805–1865)—was presented to the world under the name
of the Icosian Game. The game’s board was a circular wooden board on which
the following graph was carved:

Find a Hamiltonian circuit—a path that visits all the graph’s vertices exactly
once before returning to the starting vertex—for this graph.

6. Consider the following problem: Design an algorithm to determine the best
route for a subway passenger to take from one designated station to another in
a well-developed subway system similar to those in such cities as Washington,
D.C., and London, UK.

1.4 Fundamental Data Structures 51

a. The problem’s statement is somewhat vague, which is typical of real-life
problems. In particular, what reasonable criterion can be used for defining
the “best” route?

b. How would you model this problem by a graph?

7. a. Rephrase the traveling-salesman problem in combinatorial object terms.

b. Rephrase the graph-coloring problem in combinatorial object terms.

8. Consider the following map:

a

b

e

c
d

f

a. Explain how we can use the graph-coloring problem to color the map so
that no two neighboring regions are colored the same.

b. Use your answer to part (a) to color the map with the smallest number of
colors.

9. Design an algorithm for the following problem: Given a set of n points (nodes)
in the Cartesian plane, determine whether all of them are fully connected to
each other or not.

10. Write a program that reads as its inputs the (x, y) coordinates of a point and
checks whether the point is inside or outside a given circle.

1.4 Fundamental Data Structures

Since the vast majority of algorithms of interest operate on data, particular ways of
organizing data play a critical role in the design and analysis of algorithms. A data
structure can be defined as a particular scheme of organizing related data items.
The nature of the data items is dictated by the problem at hand; they can range
from elementary data types (e.g., integers or characters) to data structures (e.g., a
one-dimensional array of one-dimensional arrays is often used for implementing
matrices). There are a few data structures that have proved to be particularly
important for computer algorithms. Since you are undoubtedly familiar with most
if not all of them, just a quick review is provided here.

Linear Data Structures

The two most important elementary data structures are the array and the linked
list. A (one-dimensional) array is a sequence of n items of the same data type that

52 Introduction

are stored contiguously in computer memory and made accessible by specifying a
value of the array’s index (Figure 1.3).

In the majority of cases, the index is an integer either between 0 and n − 1
(as shown in Figure 1.3) or between 1 and n. Some computer languages allow an
array index to range between any two integer bounds low and high, and some even
permit nonnumerical indices to specify, for example, data items corresponding to
the 12 months of the year by the month names.

Each and every element of an array can be accessed in the same constant
amount of time regardless of where in the array the element in question is located.
This feature positively distinguishes arrays from linked lists, discussed below.

Arrays are used for implementing a variety of other data structures. Promi-
nent among them is the string, a sequence of characters from an alphabet termi-
nated by a special character indicating the string’s end. Strings composed of zeros
and ones are called binary strings or bit strings. Strings are indispensable for pro-
cessing textual data, defining computer languages and compiling programs written
in them, and studying abstract computational models. Operations we usually per-
form on strings differ from those we typically perform on other arrays (say, arrays
of numbers). They include computing the string length, comparing two strings to
determine which one precedes the other in lexicographic (i.e., alphabetical) or-
der, and concatenating two strings (forming one string from two given strings by
appending the second to the end of the first).

A linked list is a sequence of zero or more elements called nodes, each
containing two kinds of information: some data and one or more links called
pointers to other nodes of the linked list. (A special pointer called “null” is used
to indicate the absence of a node’s successor.) In a singly linked list, each node
except the last one contains a single pointer to the next element (Figure 1.4).

To access a particular node of a linked list, one starts with the list’s first node
and traverses the pointer chain until the particular node is reached. Thus, the time
needed to access an element of a singly linked list, unlike that of an array, depends
on where in the list the element is located. On the positive side, linked lists do

Item [0] Item [1] Item [n–1]

FIGURE 1.3 Array of n elements.

Item 0 Item 1 Item n –1 null

FIGURE 1.4 Singly linked list of n elements.

1.4 Fundamental Data Structures 53

Item n–1 nullItem 1Item 0null

FIGURE 1.5 Doubly linked list of n elements.

not require any preliminary reservation of the computer memory, and insertions
and deletions can be made quite efficiently in a linked list by reconnecting a few
appropriate pointers.

We can exploit flexibility of the linked list structure in a variety of ways. For
example, it is often convenient to start a linked list with a special node called the
header. This node may contain information about the linked list itself, such as its
current length; it may also contain, in addition to a pointer to the first element, a
pointer to the linked list’s last element.

Another extension is the structure called the doubly linked list, in which every
node, except the first and the last, contains pointers to both its successor and its
predecessor (Figure 1.5).

The array and linked list are two principal choices in representing a more
abstract data structure called a linear list or simply a list. A list is a finite sequence
of data items, i.e., a collection of data items arranged in a certain linear order. The
basic operations performed on this data structure are searching for, inserting, and
deleting an element.

Two special types of lists, stacks and queues, are particularly important. A
stack is a list in which insertions and deletions can be done only at the end. This
end is called the top because a stack is usually visualized not horizontally but
vertically—akin to a stack of plates whose “operations” it mimics very closely.
As a result, when elements are added to (pushed onto) a stack and deleted from
(popped off) it, the structure operates in a “last-in–first-out” (LIFO) fashion—
exactly like a stack of plates if we can add or remove a plate only from the top.
Stacks have a multitude of applications; in particular, they are indispensable for
implementing recursive algorithms.

A queue, on the other hand, is a list from which elements are deleted from
one end of the structure, called the front (this operation is called dequeue),
and new elements are added to the other end, called the rear (this operation is
called enqueue). Consequently, a queue operates in a “first-in–first-out” (FIFO)
fashion—akin to a queue of customers served by a single teller in a bank. Queues
also have many important applications, including several algorithms for graph
problems.

Many important applications require selection of an item of the highest pri-
ority among a dynamically changing set of candidates. A data structure that seeks
to satisfy the needs of such applications is called a priority queue. A priority
queue is a collection of data items from a totally ordered universe (most often,

54 Introduction

integer or real numbers). The principal operations on a priority queue are find-
ing its largest element, deleting its largest element, and adding a new element.
Of course, a priority queue must be implemented so that the last two operations
yield another priority queue. Straightforward implementations of this data struc-
ture can be based on either an array or a sorted array, but neither of these options
yields the most efficient solution possible. A better implementation of a priority
queue is based on an ingenious data structure called the heap. We discuss heaps
and an important sorting algorithm based on them in Section 6.4.

Graphs

As we mentioned in the previous section, a graph is informally thought of as
a collection of points in the plane called “vertices” or “nodes,” some of them
connected by line segments called “edges” or “arcs.” Formally, a graph G = 〈V, E〉
is defined by a pair of two sets: a finite nonempty set V of items called vertices
and a set E of pairs of these items called edges. If these pairs of vertices are
unordered, i.e., a pair of vertices (u, v) is the same as the pair (v, u), we say that
the vertices u and v are adjacent to each other and that they are connected by the
undirected edge (u, v). We call the vertices u and v endpoints of the edge (u, v)

and say that u and v are incident to this edge; we also say that the edge (u, v) is
incident to its endpoints u and v. A graph G is called undirected if every edge in
it is undirected.

If a pair of vertices (u, v) is not the same as the pair (v, u), we say that the
edge (u, v) is directed from the vertex u, called the edge’s tail, to the vertex v,

called the edge’s head . We also say that the edge (u, v) leaves u and enters v. A
graph whose every edge is directed is called directed . Directed graphs are also
called digraphs.

It is normally convenient to label vertices of a graph or a digraph with letters,
integer numbers, or, if an application calls for it, character strings (Figure 1.6). The
graph depicted in Figure 1.6a has six vertices and seven undirected edges:

V = {a, b, c, d, e, f }, E = {(a, c), (a, d), (b, c), (b, f), (c, e), (d, e), (e, f)}.
The digraph depicted in Figure 1.6b has six vertices and eight directed edges:

V = {a, b, c, d, e, f }, E = {(a, c), (b, c), (b, f), (c, e), (d, a), (d, e), (e, c), (e, f)}.

a

d

c

e

b

f

(a)

a

d

c

e

b

f

(b)

FIGURE 1.6 (a) Undirected graph. (b) Digraph.

1.4 Fundamental Data Structures 55

Our definition of a graph does not forbid loops, or edges connecting vertices
to themselves. Unless explicitly stated otherwise, we will consider graphs without
loops. Since our definition disallows multiple edges between the same vertices of
an undirected graph, we have the following inequality for the number of edges |E|
possible in an undirected graph with |V | vertices and no loops:

0 ≤ |E| ≤ |V |(|V | − 1)/2.

(We get the largest number of edges in a graph if there is an edge connecting
each of its |V | vertices with all |V | − 1 other vertices. We have to divide product
|V |(|V | − 1) by 2, however, because it includes every edge twice.)

A graph with every pair of its vertices connected by an edge is called complete.
A standard notation for the complete graph with |V | vertices is K|V |. A graph
with relatively few possible edges missing is called dense; a graph with few edges
relative to the number of its vertices is called sparse. Whether we are dealing with
a dense or sparse graph may influence how we choose to represent the graph and,
consequently, the running time of an algorithm being designed or used.

Graph Representations Graphs for computer algorithms are usually repre-
sented in one of two ways: the adjacency matrix and adjacency lists. The adjacency
matrix of a graph with n vertices is an n × n boolean matrix with one row and one
column for each of the graph’s vertices, in which the element in the ith row and
the j th column is equal to 1 if there is an edge from the ith vertex to the j th vertex,
and equal to 0 if there is no such edge. For example, the adjacency matrix for the
graph of Figure 1.6a is given in Figure 1.7a.

Note that the adjacency matrix of an undirected graph is always symmetric,
i.e., A[i, j] = A[j, i] for every 0 ≤ i, j ≤ n − 1 (why?).

The adjacency lists of a graph or a digraph is a collection of linked lists,
one for each vertex, that contain all the vertices adjacent to the list’s vertex
(i.e., all the vertices connected to it by an edge). Usually, such lists start with a
header identifying a vertex for which the list is compiled. For example, Figure 1.7b
represents the graph in Figure 1.6a via its adjacency lists. To put it another way,

a
b
c
d
e
f

0
0
1
1
0
0

0
0
1
0
0
1

1
1
0
0
1
0

1
0
0
0
1
0

0
0
1
1
0
1

0
1
0
0
1
0

a
b
c
d
e
f

c
c
a
a
c
b

d
f
b
e
d
e

a b c d e f

e

f

→
→
→
→
→
→

→
→
→
→
→
→

→

→

(a) (b)

FIGURE 1.7 (a) Adjacency matrix and (b) adjacency lists of the graph in Figure 1.6a.

56 Introduction

adjacency lists indicate columns of the adjacency matrix that, for a given vertex,
contain 1’s.

If a graph is sparse, the adjacency list representation may use less space
than the corresponding adjacency matrix despite the extra storage consumed by
pointers of the linked lists; the situation is exactly opposite for dense graphs. In
general, which of the two representations is more convenient depends on the
nature of the problem, on the algorithm used for solving it, and, possibly, on the
type of input graph (sparse or dense).

Weighted Graphs A weighted graph (or weighted digraph) is a graph (or di-
graph) with numbers assigned to its edges. These numbers are called weights or
costs. An interest in such graphs is motivated by numerous real-world applica-
tions, such as finding the shortest path between two points in a transportation or
communication network or the traveling salesman problem mentioned earlier.

Both principal representations of a graph can be easily adopted to accommo-
date weighted graphs. If a weighted graph is represented by its adjacency matrix,
then its element A[i, j] will simply contain the weight of the edge from the ith to
the j th vertex if there is such an edge and a special symbol, e.g., ∞, if there is no
such edge. Such a matrix is called the weight matrix or cost matrix. This approach
is illustrated in Figure 1.8b for the weighted graph in Figure 1.8a. (For some ap-
plications, it is more convenient to put 0’s on the main diagonal of the adjacency
matrix.) Adjacency lists for a weighted graph have to include in their nodes not
only the name of an adjacent vertex but also the weight of the corresponding edge
(Figure 1.8c).

Paths and Cycles Among the many properties of graphs, two are important for a
great number of applications: connectivity and acyclicity. Both are based on the
notion of a path. A path from vertex u to vertex v of a graph G can be defined as a
sequence of adjacent (connected by an edge) vertices that starts with u and ends
with v. If all vertices of a path are distinct, the path is said to be simple. The length
of a path is the total number of vertices in the vertex sequence defining the path
minus 1, which is the same as the number of edges in the path. For example, a, c,

b, f is a simple path of length 3 from a to f in the graph in Figure 1.6a, whereas
a, c, e, c, b, f is a path (not simple) of length 5 from a to f.

a
b
c
d

a
b
c
d

b, 5
a, 5
a, 1
b, 4

c, 1
c, 7
b, 7

d, 4
d, 2

c, 2

→
→
→
→

∞

∞

→
→
→
→

→
→

(b)(a) (c)

a b c d

5
1

∞
5

7
4

∞

1
7

22

7

5

1 4

∞

∞

4
2

a

c

b

d

FIGURE 1.8 (a) Weighted graph. (b) Its weight matrix. (c) Its adjacency lists.

1.4 Fundamental Data Structures 57

a

cb e g

i

f

h

d

FIGURE 1.9 Graph that is not connected.

In the case of a directed graph, we are usually interested in directed paths.
A directed path is a sequence of vertices in which every consecutive pair of the
vertices is connected by an edge directed from the vertex listed first to the vertex
listed next. For example, a, c, e, f is a directed path from a to f in the graph in
Figure 1.6b.

A graph is said to be connected if for every pair of its vertices u and v there
is a path from u to v. If we make a model of a connected graph by connecting
some balls representing the graph’s vertices with strings representing the edges,
it will be a single piece. If a graph is not connected, such a model will consist
of several connected pieces that are called connected components of the graph.
Formally, a connected component is a maximal (not expandable by including
another vertex and an edge) connected subgraph2 of a given graph. For example,
the graphs in Figures 1.6a and 1.8a are connected, whereas the graph in Figure 1.9
is not, because there is no path, for example, from a to f. The graph in Figure
1.9 has two connected components with vertices {a, b, c, d, e} and {f, g, h, i},
respectively.

Graphs with several connected components do happen in real-world appli-
cations. A graph representing the Interstate highway system of the United States
would be an example (why?).

It is important to know for many applications whether or not a graph under
consideration has cycles. A cycle is a path of a positive length that starts and ends at
the same vertex and does not traverse the same edge more than once. For example,
f , h, i, g, f is a cycle in the graph in Figure 1.9. A graph with no cycles is said to
be acyclic. We discuss acyclic graphs in the next subsection.

Trees

A tree (more accurately, a free tree) is a connected acyclic graph (Figure 1.10a).
A graph that has no cycles but is not necessarily connected is called a forest: each
of its connected components is a tree (Figure 1.10b).

2. A subgraph of a given graph G = 〈V, E〉 is a graph G′ = 〈V ′, E′〉 such that V ′ ⊆ V and E′ ⊆ E.

58 Introduction

a b

c d

f g

a b

c d e

f g

h

i

j

(b)(a)

FIGURE 1.10 (a) Tree. (b) Forest.

i

c b
b d e

a

a

h h i

c g f

g

d

e

f

(b)(a)

FIGURE 1.11 (a) Free tree. (b) Its transformation into a rooted tree.

Trees have several important properties other graphs do not have. In par-
ticular, the number of edges in a tree is always one less than the number of its
vertices:

|E| = |V | − 1.

As the graph in Figure 1.9 demonstrates, this property is necessary but not suffi-
cient for a graph to be a tree. However, for connected graphs it is sufficient and
hence provides a convenient way of checking whether a connected graph has a
cycle.

Rooted Trees Another very important property of trees is the fact that for every
two vertices in a tree, there always exists exactly one simple path from one of these
vertices to the other. This property makes it possible to select an arbitrary vertex
in a free tree and consider it as the root of the so-called rooted tree. A rooted tree
is usually depicted by placing its root on the top (level 0 of the tree), the vertices
adjacent to the root below it (level 1), the vertices two edges apart from the root
still below (level 2), and so on. Figure 1.11 presents such a transformation from a
free tree to a rooted tree.

