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Analytics has become the technology driver of this decade. Companies such as IBM, 
Oracle, Microsoft, and others are creating new organizational units focused on analytics 
that help businesses become more effective and efficient in their operations. Decision 
makers are using more computerized tools to support their work. Even consumers are 
using analytics tools directly or indirectly to make decisions on routine activities such as 
shopping, healthcare, and entertainment. The field of decision support systems (DSS)/
business intelligence (BI) is evolving rapidly to become more focused on innovative appli-
cations of data streams that were not even captured some time back, much less  analyzed 
in any significant way. New applications turn up daily in healthcare, sports, entertain-
ment, supply chain management, utilities, and virtually every industry imaginable.

The theme of this revised edition is BI and analytics for enterprise decision support. 
In addition to traditional decision support applications, this edition expands the reader’s 
understanding of the various types of analytics by providing examples, products, services, 
and exercises by discussing Web-related issues throughout the text. We highlight Web 
intelligence/Web analytics, which parallel BI/business analytics (BA) for e-commerce and 
other Web applications. The book is supported by a Web site (pearsonglobaleditions.
com/sharda) and also by an independent site at dssbibook.com. We will also provide 
links to software tutorials through a special section of the Web site.

The purpose of this book is to introduce the reader to these technologies that are 
generally called analytics but have been known by other names. The core technology 
consists of DSS, BI, and various decision-making techniques. We use these terms inter-
changeably. This book presents the fundamentals of the techniques and the manner in 
which these systems are constructed and used. We follow an EEE approach to introduc-
ing these topics: Exposure, Experience, and Explore. The book primarily provides 
exposure to various analytics techniques and their applications. The idea is that a student 
will be inspired to learn from how other organizations have employed analytics to make 
decisions or to gain a competitive edge. We believe that such exposure to what is being 
done with analytics and how it can be achieved is the key component of learning about 
analytics. In describing the techniques, we also introduce specific software tools that can 
be used for developing such applications. The book is not limited to any one software 
tool, so the students can experience these techniques using any number of available 
software tools. Specific suggestions are given in each chapter, but the student and the 
professor are able to use this book with many different software tools. Our book’s com-
panion Web site will include specific software guides, but students can gain experience 
with these techniques in many different ways. Finally, we hope that this exposure and 
experience enable and motivate readers to explore the potential of these techniques in 
their own domain. To facilitate such exploration, we include exercises that direct them 
to Teradata University Network and other sites as well that include team-oriented exer-
cises where appropriate. We will also highlight new and innovative applications that we 
learn about on the book’s companion Web sites.

Most of the specific improvements made in this tenth edition concentrate on three 
areas: reorganization, content update, and a sharper focus. Despite the many changes, we 
have preserved the comprehensiveness and user friendliness that have made the text a 
market leader. We have also reduced the book’s size by eliminating older and redundant 
material and by combining material that was not used by a majority of professors. At the 
same time, we have kept several of the classical references intact. Finally, we present 
accurate and updated material that is not available in any other text. We next describe the 
changes in the tenth edition.

PREFACE
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WhAt’s neW in the tenth edition?

With the goal of improving the text, this edition marks a major reorganization of the text 
to reflect the focus on analytics. The last two editions transformed the book from the 
traditional DSS to BI and fostered a tight linkage with the Teradata University Network 
(TUN). This edition is now organized around three major types of analytics. The new 
 edition has many timely additions, and the dated content has been deleted. The following 
major specific changes have been made:

•	New organization. The book is now organized around three types of analytics: 
descriptive, predictive, and prescriptive, a classification promoted by INFORMS. After 
introducing the topics of DSS/BI and analytics in Chapter 1 and covering the founda-
tions of decision making and decision support in Chapter 2, the book begins with an 
overview of data warehousing and data foundations in Chapter 3. This part then cov-
ers descriptive or reporting analytics, specifically, visualization and business perfor-
mance measurement. Chapters 5–8 cover predictive analytics. Chapters 9–12 cover 
prescriptive and decision analytics as well as other decision support systems topics. 
Some of the coverage from Chapter 3–4 in previous editions will now be found in 
the new Chapters 9 and 10. Chapter 11 covers expert systems as well as the new 
rule-based systems that are commonly built for implementing analytics. Chapter 12 
combines two topics that were key chapters in earlier editions—knowledge manage-
ment and collaborative systems. Chapter 13 is a new chapter that introduces big data 
and analytics. Chapter 14 concludes the book with discussion of emerging trends 
and topics in business analytics, including location intelligence, mobile computing, 
cloud-based analytics, and privacy/ethical considerations in  analytics. This chapter 
also includes an overview of the analytics ecosystem to help the user explore all of 
the different ways one can participate and grow in the analytics environment. Thus, 
the book marks a significant departure from the earlier editions in organization. Of 
course, it is still possible to teach a course with a traditional DSS focus with this book 
by covering Chapters 1–4, Chapters 9–12, and possibly Chapter 14.

•	New chapters. The following chapters have been added:

Chapter 8, “Web Analytics, Web Mining, and Social Analytics.” This  chapter 
covers the popular topics of Web analytics and social media analytics. It is an 
almost entirely new chapter (95% new material).
Chapter 13, “Big Data and Analytics.” This chapter introduces the hot topics of 
Big Data and analytics. It covers the basics of major components of Big Data tech-
niques and charcteristics. It is also a new chapter (99% new material).
Chapter 14, “Business Analytics: Emerging Trends and Future Impacts.” 
This chapter examines several new phenomena that are already changing or are 
likely to change analytics. It includes coverage of geospatial in analytics, location-
based analytics applications, consumer-oriented analytical applications, mobile plat-
forms, and cloud-based analytics. It also updates some coverage from the previous 
edition on ethical and privacy considerations. It concludes with a major discussion 
of the analytics ecosystem (90% new material).

•	Streamlined coverage. We have made the book shorter by keeping the most 
commonly used content. We also mostly eliminated the preformatted online con-
tent. Instead, we will use a Web site to provide updated content and links on a 
regular basis. We also reduced the number of references in each chapter.

•	Revamped author team. Building upon the excellent content that has been 
prepared by the authors of the previous editions (Turban, Aronson, Liang, King, 
Sharda, and Delen), this edition was revised by Ramesh Sharda and Dursun Delen. 
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Both Ramesh and Dursun have worked extensively in DSS and analytics and have 
industry as well as research experience.

•	A live-update Web site. Adopters of the textbook will have access to a Web site that 
will include links to news stories, software, tutorials, and even YouTube videos related 
to topics covered in the book. This site will be accessible at http://dssbibook.com.

•	Revised and updated content. Almost all of the chapters have new opening 
vignettes and closing cases that are based on recent stories and events. In addition, 
application cases throughout the book have been updated to include recent exam-
ples of applications of a specific technique/model. These application case stories 
now include suggested questions for discussion to encourage class discussion as 
well as further exploration of the specific case and related materials. New Web site 
links have been added throughout the book. We also deleted many older product 
links and references. Finally, most chapters have new exercises, Internet assign-
ments, and discussion questions throughout.

Specific changes made in chapters that have been retained from the previous edi-
tions are summarized next:

Chapter 1, “An Overview of Business Intelligence, Analytics, and Decision 
Support,” introduces the three types of analytics as proposed by INFORMS: descriptive, 
predictive, and prescriptive analytics. A noted earlier, this classification is used in guiding 
the complete reorganization of the book itself. It includes about 50 percent new material. 
All of the case stories are new.

Chapter 2, “Foundations and Technologies for Decision Making,” combines mate-
rial from earlier Chapters 1, 2, and 3 to provide a basic foundation for decision making in 
general and computer-supported decision making in particular. It eliminates some dupli-
cation that was present in Chapters 1–3 of the previous editions. It includes 35 percent 
new material. Most of the cases are new.

Chapter 3, “Data Warehousing” 
•	30	percent	new	material,	including	the	cases
•	New	opening	case
•	Mostly	new	cases	throughout
•	NEW:	A	historic	perspective	to	data	warehousing—how	did	we	get	here?
•	Better	coverage	of	multidimensional	modeling	(star	schema	and	snowflake	schema)
•	An	updated	coverage	on	the	future	of	data	warehousing

Chapter 4, “Business Reporting, Visual Analytics, and Business Performance 
Management” 

•	60	percent	of	the	material	is	new—especially	in	visual	analytics	and	reporting
•	Most	of	the	cases	are	new

Chapter 5, “Data Mining” 
•	25	percent	of	the	material	is	new
•	Most	of	the	cases	are	new

Chapter 6, “Techniques for Predictive Modeling” 
•	55	percent	of	the	material	is	new
•	Most	of	the	cases	are	new
•	New	sections	on	SVM	and	kNN

Chapter 7, “Text Analytics, Text Mining, and Sentiment Analysis” 
•	50	percent	of	the	material	is	new
•	Most	of	the	cases	are	new
•	New	section	(1/3	of	the	chapter)	on	sentiment	analysis
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Chapter 8, “Web Analytics, Web Mining, and Social Analytics” (New Chapter) 
•	95	percent	of	the	material	is	new

Chapter 9, “Model-Based Decision Making: Optimization and Multi-Criteria Systems” 
•	All	new	cases
•	Expanded	coverage	of	analytic	hierarchy	process
•	New	examples	of	mixed-integer	programming	applications	and	exercises
•	About	50	percent	new	material

In addition, all the Microsoft Excel–related coverage has been updated to work with 
 Microsoft Excel 2010.

Chapter 10, “Modeling and Analysis: Heuristic Search Methods and Simulation” 
•	This	 chapter	 now	 introduces	 genetic	 algorithms	 and	 various	 types	 of	 simulation	

models
•	It	includes	new	coverage	of	other	types	of	simulation	modeling	such	as	agent-based	

modeling and system dynamics modeling
•	New	cases	throughout
•	About	60	percent	new	material

Chapter 11, “Automated Decision Systems and Expert Systems” 
•	Expanded	 coverage	 of	 automated	decision	 systems	 including	 examples	 from	 the	

airline industry
•	New	examples	of	expert	systems
•	New	cases
•	About	50	percent	new	material

Chapter 12, “Knowledge Management and Collaborative Systems” 
•	Significantly	condensed	coverage	of	these	two	topics	combined	into	one	chapter
•	New	examples	of	KM	applications
•	About	25	percent	new	material

Chapters 13 and 14 are mostly new chapters, as described earlier.
We have retained many of the enhancements made in the last editions and updated 

the content. These are summarized next:

•	Links to Teradata University Network (TUN). Most chapters include new links 
to TUN (teradatauniversitynetwork.com). We encourage the instructors to regis-
ter and join teradatauniversitynetwork.com and explore  various  content available 
through the site. The cases, white papers, and software  exercises available through 
TUN will keep your class fresh and timely.

•	Book title. As is already evident, the book’s title and focus have changed 
 substantially.

•	Software support. The TUN Web site provides software support at no charge. 
It also provides links to free data mining and other software. In addition, the site 
provides exercises in the use of such software.

the supplement pAckAge: peArsonglobAleditions.com/shArdA

A comprehensive and flexible technology-support package is available to enhance the 
teaching and learning experience. The following instructor and student supplements are 
available on the book’s Web site, pearsonglobaleditions.com/sharda:

•	Instructor’s Manual. The Instructor’s Manual includes learning objectives for the 
entire course and for each chapter, answers to the questions and exercises at the end 
of each chapter, and teaching suggestions (including instructions for projects). The 
Instructor’s Manual is available on the secure faculty section of pearsonglobaleditions 
.com/sharda.
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•	Test Item File and TestGen Software. The Test Item File is a comprehensive 
collection of true/false, multiple-choice, fill-in-the-blank, and essay questions. The 
questions are rated by difficulty level, and the answers are referenced by book page 
number. The Test Item File is available in Microsoft Word and in TestGen. Pearson 
Education’s test-generating software is available from www.pearsonglobaleditions.
com/irc. The software is PC/MAC compatible and preloaded with all of the Test 
Item File questions. You can manually or randomly view test questions and drag-
and-drop to create a test. You can add or modify test-bank questions as needed. Our 
TestGens are converted for use in BlackBoard, WebCT, Moodle, D2L, and Angel. 
These conversions can be found on pearsonglobaleditions.com/sharda. The 
TestGen is also available in Respondus and can be found on www.respondus.com.

•	PowerPoint slides. PowerPoint slides are available that illuminate and build 
on key concepts in the text. Faculty can download the PowerPoint slides from 
pearsonglobaleditions.com/sharda.
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Learning Objectives fOr Part i

This book deals with a collection of computer technologies that support managerial work—essentially, 
decision making. These technologies have had a profound impact on corporate strategy, perfor-
mance, and competitiveness. These techniques broadly encompass analytics, business intelligence, 
and decision support systems, as shown throughout the book. In Part I, we first provide an overview 
of the whole book in one chapter. We cover several topics in this chapter. The first topic is managerial 
decision making and its computerized support; the second is frameworks for decision support. We 
then introduce business analytics and business intelligence. We also provide examples of applications 
of these analytical techniques, as well as a preview of the entire book. The second chapter within 
Part I introduces the foundational methods for decision making and relates these to computerized 
decision support. It also covers the components and technologies of decision support systems.

Decision Making and Analytics
An Overview

P a r t 

I

■ Understand the need for business analytics
■ Understand the foundations and key issues of 

managerial decision making
■ Understand the major categories and 

 applications of business analytics

■ Learn the major frameworks of computerized 
decision support: analytics, decision support 
systems (DSS), and business intelligence (BI)
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1

Learning Objectives

The business environment (climate) is constantly changing, and it is becoming more 
and more complex. Organizations, private and public, are under pressures that 
force them to respond quickly to changing conditions and to be innovative in the 

way they operate. Such activities require organizations to be agile and to make frequent 
and quick strategic, tactical, and operational decisions, some of which are very complex. 
Making such decisions may require considerable amounts of relevant data, information, 
and knowledge. Processing these, in the framework of the needed decisions, must be 
done quickly, frequently in real time, and usually requires some  computerized support.

This book is about using business analytics as computerized support for manage-
rial decision making. It concentrates on both the theoretical and conceptual founda-
tions of decision support, as well as on the commercial tools and techniques that are 
available. This introductory chapter provides more details of these topics as well as an 
overview of the book. This chapter has the following sections:

 1.1 Opening Vignette: Magpie Sensing Employs Analytics to Manage a Vaccine 
Supply Chain Effectively and Safely 33

 1.2 Changing Business Environments and Computerized Decision Support 35

An Overview of Business Intelligence, 
Analytics, and Decision Support

C h a P t e r  

■ Understand today’s turbulent business 
environment and describe how 
organizations survive and even excel in 
such an environment (solving problems 
and exploiting opportunities)

■ Understand the need for computerized 
support of managerial decision making

■ Understand an early framework for 
managerial decision making

■ Learn the conceptual foundations of 
the decision support systems (DSS1) 
methodology

■ Describe the business intelligence (BI) 
methodology and concepts and relate 
them to DSS

■ Understand the various types of analytics
■ List the major tools of computerized 

decision support

1The acronym DSS is treated as both singular and plural throughout this book. Similarly, other acronyms, such 
as MIS and GSS, designate both plural and singular forms. This is also true of the word analytics.
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 1.3 Managerial Decision Making 37

 1.4 Information Systems Support for Decision Making 39

 1.5 An Early Framework for Computerized Decision Support 41

 1.6 The Concept of Decision Support Systems (DSS) 43

 1.7 A Framework for Business Intelligence (BI) 44

 1.8 Business Analytics Overview 49

 1.9 Brief Introduction to Big Data Analytics 57

 1.10 Plan of the Book 59

 1.11 Resources, Links, and the Teradata University Network Connection 61

1.1  Opening Vignette: Magpie Sensing employs 
Analytics to Manage a Vaccine Supply Chain 
effectively and Safely

Cold chain in healthcare is defined as the temperature-controlled supply chain involving a 
system of transporting and storing vaccines and pharmaceutical drugs. It consists of three 
major components—transport and storage equipment, trained personnel, and efficient 
management procedures. The majority of the vaccines in the cold chain are typically main-
tained at a temperature of 35–46 degrees Fahrenheit [2–8 degrees Centigrade]. Maintaining 
cold chain integrity is extremely important for healthcare product manufacturers.

Especially for the vaccines, improper storage and handling practices that compromise 
vaccine viability prove a costly, time-consuming affair. Vaccines must be stored properly 
from manufacture until they are available for use. Any extreme temperatures of heat or 
cold will reduce vaccine potency; such vaccines, if administered, might not yield effective 
results or could cause adverse effects.

Effectively maintaining the temperatures of storage units throughout the healthcare 
supply chain in real time—i.e., beginning from the gathering of the resources, manufac-
turing, distribution, and dispensing of the products—is the most effective solution desired 
in the cold chain. Also, the location-tagged real-time environmental data about the storage 
units helps in monitoring the cold chain for spoiled products. The chain of custody can 
be easily identified to assign product liability.

A study conducted by the Centers for Disease Control and Prevention (CDC) looked at 
the handling of cold chain vaccines by 45 healthcare providers around United States and 
reported that three-quarters of the providers experienced serious cold chain violations.

a Way tOWard a POssibLe sOLutiOn

Magpie Sensing, a start-up project under Ebers Smith and Douglas Associated LLC, pro-
vides a suite of cold chain monitoring and analysis technologies for the healthcare indus-
try. It is a shippable, wireless temperature and humidity monitor that provides real-time, 
location-aware tracking of cold chain products during shipment. Magpie Sensing’s solu-
tions rely on rich analytics algorithms that leverage the data gathered from the monitor-
ing devices to improve the efficiency of cold chain processes and predict cold storage 
problems before they occur.

Magpie sensing applies all three types of analytical techniques—descriptive, predic-
tive, and prescriptive analytics—to turn the raw data returned from the monitoring devices 
into actionable recommendations and warnings.

The properties of the cold storage system, which include the set point of the storage 
system’s thermostat, the typical range of temperature values in the storage system, and 
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the duty cycle of the system’s compressor, are monitored and reported in real time. This 
information helps trained personnel to ensure that the storage unit is properly configured 
to store a particular product. All the temperature information is displayed on a Web dash-
board that shows a graph of the temperature inside the specific storage unit.

Based on information derived from the monitoring devices, Magpie’s predictive ana-
lytic algorithms can determine the set point of the storage unit’s thermostat and alert the 
system’s users if the system is incorrectly configured, depending upon the various types 
of products stored. This offers a solution to the users of consumer refrigerators where 
the thermostat is not temperature graded. Magpie’s system also sends alerts about pos-
sible temperature violations based on the storage unit’s average temperature and subse-
quent compressor cycle runs, which may drop the temperature below the freezing point. 
Magpie’s predictive analytics further report possible human errors, such as failure to shut 
the storage unit doors or the presence of an incomplete seal, by analyzing the tempera-
ture trend and alerting users via Web interface, text message, or audible alert before the 
temperature bounds are actually violated. In a similar way, a compressor or a power 
failure can be detected; the estimated time before the storage unit reaches an unsafe tem-
perature also is reported, which prepares the users to look for backup solutions such as 
using dry ice to restore power.

In addition to predictive analytics, Magpie Sensing’s analytics systems can provide 
prescriptive recommendations for improving the cold storage processes and business 
decision making. Prescriptive analytics help users dial in the optimal temperature setting, 
which helps to achieve the right balance between freezing and spoilage risk; this, in turn, 
provides a cushion-time to react to the situation before the products spoil. Its prescriptive 
analytics also gather useful meta-information on cold storage units, including the times of 
day that are busiest and periods where the system’s doors are opened, which can be used 
to provide additional design plans and institutional policies that ensure that the system is 
being properly maintained and not overused.

Furthermore, prescriptive analytics can be used to guide equipment purchase deci-
sions by constantly analyzing the performance of current storage units. Based on the 
storage system’s efficiency, decisions on distributing the products across available storage 
units can be made based on the product’s sensitivity.

Using Magpie Sensing’s cold chain analytics, additional manufacturing time and 
expenditure can be eliminated by ensuring that product safety can be secured throughout 
the supply chain and effective products can be administered to the patients. Compliance 
with state and federal safety regulations can be better achieved through automatic data 
gathering and reporting about the products involved in the cold chain.

QuestiOns fOr the OPening vignette

 1. What information is provided by the descriptive analytics employed at Magpie 
Sensing?

 2. What type of support is provided by the predictive analytics employed at Magpie 
Sensing?

 3. How does prescriptive analytics help in business decision making?

 4. In what ways can actionable information be reported in real time to concerned 
users of the system?

 5. In what other situations might real-time monitoring applications be needed?

What We can Learn frOm this vignette

This vignette illustrates how data from a business process can be used to generate insights 
at various levels. First, the graphical analysis of the data (termed reporting analytics) allows 
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users to get a good feel for the situation. Then, additional analysis using data mining 
techniques can be used to estimate what future behavior would be like. This is the domain 
of predictive analytics. Such analysis can then be taken to create specific recommendations 
for operators. This is an example of what we call prescriptive analytics. Finally, this open-
ing vignette also suggests that innovative applications of analytics can create new business 
ventures. Identifying opportunities for applications of analytics and assisting with decision 
making in specific domains is an emerging entrepreneurial opportunity.

Sources: Magpiesensing.com, “Magpie Sensing Cold Chain Analytics and Monitoring,” magpiesensing.com/
wp-content/uploads/2013/01/coldchainanalyticsmagpiesensing-Whitepaper.pdf (accessed July 2013); 
Centers for Disease Control and Prevention, Vaccine Storage and Handling, http://www.cdc.gov/vaccines/pubs/
pinkbook/vac-storage.html#storage (accessed July 2013); A. Zaleski, “Magpie Analytics System Tracks Cold-
Chain Products to Keep Vaccines, Reagents Fresh” (2012), technicallybaltimore.com/profiles/startups/magpie-
analytics-system-tracks-cold-chain-products-to-keep-vaccines-reagents-fresh (accessed February 2013).

1.2  Changing Business environments and Computerized 
deCision support

The opening vignette illustrates how a company can employ technologies to make sense 
of data and make better decisions. Companies are moving aggressively to computerized 
support of their operations. To understand why companies are embracing computer-
ized support, including business intelligence, we developed a model called the Business 
Pressures–Responses–Support Model, which is shown in Figure 1.1.

the Business pressures–responses–support model

The Business Pressures–Responses–Support Model, as its name indicates, has three com-
ponents: business pressures that result from today’s business climate, responses (actions 
taken) by companies to counter the pressures (or to take advantage of the opportunities 
available in the environment), and computerized support that facilitates the monitoring 
of the environment and enhances the response actions taken by organizations.

Globalization

Customer demand

Government regulations

Market conditions 

Competition

Etc. 

Opportunities

Strategy

Partners’ collaboration 

Real-time response

Agility

Increased productivity 

New vendors 

New business models

Etc.

Business
Environmental Factors

Organization
Responses

Decisions and
Support

Analyses

Predictions

Decisions

Integrated

computerized

decision

support

Business

intelligence

Pressures

Figure 1.1 The Business Pressures–Responses–Support Model.
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the Business environment The environment in which organizations operate today 
is becoming more and more complex. This complexity creates opportunities on the one 
hand and problems on the other. Take globalization as an example. Today, you can eas-
ily find suppliers and customers in many countries, which means you can buy cheaper 
materials and sell more of your products and services; great opportunities exist. However, 
globalization also means more and stronger competitors. Business environment factors 
can be divided into four major categories: markets, consumer demands, technology, and 
societal. These categories are summarized in Table 1.1.

Note that the intensity of most of these factors increases with time, leading to 
more pressures, more competition, and so on. In addition, organizations and departments 
within organizations face decreased budgets and amplified pressures from top managers 
to increase performance and profit. In this kind of environment, managers must respond 
quickly, innovate, and be agile. Let’s see how they do it.

organizational responses: Be reaCtive, antiCipative, adaptive, and proaCtive  
Both private and public organizations are aware of today’s business environment and 
pressures. They use different actions to counter the pressures. Vodafone New Zealand 
Ltd (Krivda, 2008), for example, turned to BI to improve communication and to support 
executives in its effort to retain existing customers and increase revenue from these cus-
tomers. Managers may take other actions, including the following:

•	Employ	strategic	planning.
•	Use	new	and	innovative	business	models.
•	Restructure	business	processes.
•	Participate	in	business	alliances.
•	Improve	corporate	information	systems.
•	Improve	partnership	relationships.

taBle 1.1 Business Environment Factors That Create Pressures on Organizations

Factor Description

Markets Strong competition
Expanding global markets
Booming electronic markets on the Internet
Innovative marketing methods
Opportunities for outsourcing with IT support
Need for real-time, on-demand transactions

Consumer demands Desire for customization
Desire for quality, diversity of products, and speed of delivery
Customers getting powerful and less loyal

Technology More innovations, new products, and new services
Increasing obsolescence rate
Increasing information overload
Social networking, Web 2.0 and beyond

Societal Growing government regulations and deregulation
Workforce more diversified, older, and composed of more women
Prime concerns of homeland security and terrorist attacks
Necessity of Sarbanes-Oxley Act and other reporting-related legislation
Increasing social responsibility of companies
Greater emphasis on sustainability
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•	Encourage	innovation	and	creativity.
•	Improve	customer	service	and	relationships.
•	Employ	social	media	and	mobile	platforms	for	e-commerce	and	beyond.
•	Move	to	make-to-order	production	and	on-demand	manufacturing	and	services.
•	Use	new	IT	to	improve	communication,	data	access	(discovery	of	information),	and	

collaboration.
•	Respond	quickly	to	competitors’	actions	(e.g.,	in	pricing,	promotions,	new	products	

and services).
•	Automate	many	tasks	of	white-collar	employees.
•	Automate	certain	decision	processes,	especially	those	dealing	with	customers.
•	Improve	decision	making	by	employing	analytics.

Many, if not all, of these actions require some computerized support. These and other 
response actions are frequently facilitated by computerized decision support (DSS).

Closing the strategy gap One of the major objectives of computerized decision 
support is to facilitate closing the gap between the current performance of an organi-
zation and its desired performance, as expressed in its mission, objectives, and goals, 
and the strategy to achieve them. In order to understand why computerized support 
is needed and how it is provided, especially for decision-making support, let’s look at 
managerial decision making.

sectiOn 1.2 revieW QuestiOns

 1. List the components of and explain the Business Pressures–Responses–Support 
Model.

 2. What are some of the major factors in today’s business environment?

 3. What are some of the major response activities that organizations take?

1.3 managerial deCision making

Management is a process by which organizational goals are achieved by using 
resources. The resources are considered inputs, and attainment of goals is viewed as 
the output of the process. The degree of success of the organization and the manager 
is often measured by the ratio of outputs to inputs. This ratio is an indication of the 
organization’s produc tivity, which is a reflection of the organizational and managerial 
performance.

The level of productivity or the success of management depends on the perfor-
mance of managerial functions, such as planning, organizing, directing, and control-
ling. To perform their functions, managers engage in a continuous process of making 
decisions. Making a decision means selecting the best alternative from two or more 
solutions.

the nature of managers’ Work

Mintzberg’s (2008) classic study of top managers and several replicated studies suggest 
that managers perform 10 major roles that can be classified into three major categories: 
interpersonal, informational, and decisional (see Table 1.2).

To perform these roles, managers need information that is delivered efficiently and 
in a timely manner to personal computers (PCs) on their desktops and to mobile devices. 
This information is delivered by networks, generally via Web technologies.

In addition to obtaining information necessary to better perform their roles, manag-
ers use computers directly to support and improve decision making, which is a key task 
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that is part of most of these roles. Many managerial activities in all roles revolve around 
decision making. Managers, especially those at high managerial levels, are primarily deci-
sion makers. We review the decision-making process next but will study it in more detail 
in the next chapter.

the decision-making process

For years, managers considered decision making purely an art—a talent acquired over a 
long period through experience (i.e., learning by trial-and-error) and by using intuition. 
Management was considered an art because a variety of individual styles could be used 
in approaching and successfully solving the same types of managerial problems. These 
styles were often based on creativity, judgment, intuition, and experience rather than 
on systematic quantitative methods grounded in a scientific approach. However, recent 
research suggests that companies with top managers who are more focused on persistent 
work (almost dullness) tend to outperform those with leaders whose main strengths are 
interpersonal communication skills (Kaplan et al., 2008; Brooks, 2009). It is more impor-
tant to emphasize methodical, thoughtful, analytical decision making rather than flashi-
ness and interpersonal communication skills.

taBle 1.2 Mintzberg’s 10 Managerial Roles

Role Description

Interpersonal
Figurehead Is symbolic head; obliged to perform a number of routine duties of a 

legal or social nature
Leader Is responsible for the motivation and activation of subordinates; 

responsible for staffing, training, and associated duties
Liaison Maintains self-developed network of outside contacts and informers 

who provide favors and information

Informational
Monitor Seeks and receives a wide variety of special information (much of it 

current) to develop a thorough understanding of the organization 
and environment; emerges as the nerve center of the organization’s 
internal and external information

Disseminator Transmits information received from outsiders or from subordinates to 
members of the organization; some of this information is factual, 
and some involves interpretation and integration

Spokesperson Transmits information to outsiders about the organization’s plans, 
policies, actions, results, and so forth; serves as an expert on the 
organization’s industry

Decisional
Entrepreneur Searches the organization and its environment for opportunities and 

initiates improvement projects to bring about change; supervises 
design of certain projects

Disturbance handler Is responsible for corrective action when the organization faces 
 important, unexpected disturbances

Resource allocator Is responsible for the allocation of organizational resources of all 
kinds; in effect, is responsible for the making or approval of all 
significant organizational decisions

Negotiator Is responsible for representing the organization at major negotiations

Sources: Compiled from H. A. Mintzberg, The Nature of Managerial Work. Prentice Hall, Englewood Cliffs, 
NJ, 1980; and H. A. Mintzberg, The Rise and Fall of Strategic Planning. The Free Press, New York, 1993.
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Managers usually make decisions by following a four-step process (we learn more 
about these in Chapter 2):

 1. Define the problem (i.e., a decision situation that may deal with some difficulty or 
with an opportunity).

 2. Construct a model that describes the real-world problem.
 3. Identify possible solutions to the modeled problem and evaluate the solutions.
 4. Compare, choose, and recommend a potential solution to the problem.

To follow this process, one must make sure that sufficient alternative solutions are 
being considered, that the consequences of using these alternatives can be reasonably 
predicted, and that comparisons are done properly. However, the environmental factors 
listed in Table 1.1 make such an evaluation process difficult for the following reasons:

•	Technology,	information	systems,	advanced	search	engines,	and	globalization	result	
in more and more alternatives from which to choose.

•	Government	regulations	and	the	need	for	compliance,	political	instability	and	ter-
rorism, competition, and changing consumer demands produce more uncertainty, 
making it more difficult to predict consequences and the future.

•	Other	factors	are	the	need	to	make	rapid	decisions,	the	frequent	and	unpredictable	
changes that make trial-and-error learning difficult, and the potential costs of making 
mistakes.

•	These	environments	are	growing	more	complex	every	day.	Therefore,	making	deci-
sions today is indeed a complex task.

Because of these trends and changes, it is nearly impossible to rely on a trial-and-
error approach to management, especially for decisions for which the factors shown in 
Table 1.1 are strong influences. Managers must be more sophisticated; they must use the 
new tools and techniques of their fields. Most of those tools and techniques are discussed 
in this book. Using them to support decision making can be extremely rewarding in 
 making effective decisions. In the following section, we look at why we need computer 
support and how it is provided.

sectiOn 1.3 revieW QuestiOns

 1. Describe the three major managerial roles, and list some of the specific activities in each.

 2. Why have some argued that management is the same as decision making?

 3. Describe the four steps managers take in making a decision.

1.4 inFormation systems support For deCision making

From traditional uses in payroll and bookkeeping functions, computerized systems have 
penetrated complex managerial areas ranging from the design and management of auto-
mated factories to the application of analytical methods for the evaluation of proposed 
mergers and acquisitions. Nearly all executives know that information technology is vital 
to their business and extensively use information technologies.

Computer applications have moved from transaction processing and monitoring 
activities to problem analysis and solution applications, and much of the activity is done 
with Web-based technologies, in many cases accessed through mobile devices. Analytics 
and BI tools such as data warehousing, data mining, online analytical processing (OLAP), 
dashboards, and the use of the Web for decision support are the cornerstones of today’s 
modern management. Managers must have high-speed, networked information sys-
tems (wireline or wireless) to assist them with their most important task: making deci-
sions. Besides the obvious growth in hardware, software, and network capacities, some 
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developments have clearly contributed to facilitating growth of decision support and 
analytics in a number of ways, including the following:

•	Group communication and collaboration. Many decisions are made today by 
groups	whose	members	may	be	 in	different	 locations.	Groups	can	collaborate	and	
communicate readily by using Web-based tools as well as the ubiquitous smartphones. 
Collaboration is especially important along the supply chain, where partners—all the 
way from vendors to customers—must share information. Assembling a group of 
 decision makers, especially experts, in one place can be costly. Information systems 
can improve the collaboration process of a group and enable its members to be at dif-
ferent locations (saving travel costs). We will study some applications in Chapter 12.

•	Improved data management. Many decisions involve complex computations. 
Data for these can be stored in different databases anywhere in the organization 
and even possibly at Web sites outside the organization. The data may include text, 
sound, graphics, and video, and they can be in different languages. It may be neces-
sary to transmit data quickly from distant locations. Systems today can search, store, 
and transmit needed data quickly, economically, securely, and transparently.

•	Managing giant data warehouses and Big Data. Large data warehouses, like 
the ones operated by Walmart, contain terabytes and even petabytes of data. Special 
methods, including parallel computing, are available to organize, search, and mine 
the data. The costs related to data warehousing are declining. Technologies that fall 
under the broad category of Big Data have enabled massive data coming from a 
variety of sources and in many different forms, which allows a very different view 
into organizational performance that was not  possible in the past.

•	Analytical support. With more data and analysis technologies, more alterna-
tives can be evaluated, forecasts can be improved, risk analysis can be performed 
quickly, and the views of experts (some of whom may be in remote locations) can 
be collected quickly and at a reduced cost. Expertise can even be derived directly 
from analytical systems. With such tools, decision makers can perform complex 
simulations, check many possible scenarios, and assess diverse impacts quickly and 
economically. This, of course, is the focus of several chapters in the book.

•	Overcoming cognitive limits in processing and storing information. According 
to Simon (1977), the human mind has only a limited ability to process and store infor-
mation. People sometimes find it difficult to recall and use information in an error-free 
fashion due to their cognitive limits. The term cognitive limits indicates that an indi-
vidual’s problem-solving capability is limited when a wide range of diverse information 
and knowledge is required. Computerized systems enable people to overcome their 
cognitive limits by quickly accessing and processing vast amounts of stored information 
(see Chapter 2).

•	Knowledge management. Organizations have gathered vast stores of informa-
tion about their own operations, customers, internal procedures, employee interac-
tions, and so forth through the unstructured and structured communications  taking 
place among the various stakeholders. Knowledge management  systems  (KMS, 
Chapter 12) have become sources of formal and informal support for decision 
making to managers, although sometimes they may not even be called KMS.

•	Anywhere, any time support. Using wireless technology, managers can access 
information anytime and from any place, analyze and interpret it, and communicate 
with those involved. This perhaps is the biggest change that has occurred in the last 
few years. The speed at which information needs to be processed and converted 
into decisions has truly changed expectations for both consumers and businesses.

These and other capabilities have been driving the use of computerized decision support 
since the late 1960s, but especially since the mid-1990s. The growth of mobile technologies, 
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social media platforms, and analytical tools has enabled a much higher level of information 
systems support for managers. In the next sections we study a historical classification of 
decision support tasks. This leads us to be introduced to decision support systems. We will 
then study an overview of technologies that have been broadly referred to as business intel-
ligence. From there we will broaden our horizons to introduce various types of analytics.

sectiOn 1.4 revieW QuestiOns

 1. What are some of the key system-oriented trends that have fostered IS-supported 
decision making to a new level?

 2. List some capabilities of information systems that can facilitate managerial decision 
making.

 3. How can a computer help overcome the cognitive limits of humans?

1.5  an early FrameWork For Computerized 
deCision support

An early framework for computerized decision support includes several major concepts 
that are used in forthcoming sections and chapters of this book.	Gorry	and	Scott-Morton	
created and used this framework in the early 1970s, and the framework then evolved into 
a new technology called DSS.

the gorry and scott-morton Classical Framework

Gorry	and	Scott-Morton	(1971)	proposed	a	framework	that	is	a	3-by-3	matrix,	as	shown	in	
Figure 1.2. The two dimensions are the degree of structuredness and the types of control.

Accounts receivable
Accounts payable
Order entry

Operational
Control

Structured

Managerial
Control

Strategic
Planning

Semistructured

Unstructured

Budget analysis
Short-term forecasting
Personnel reports
Make-or-buy

Production scheduling
Inventory control

Credit evaluation
Budget preparation
Plant layout
Project scheduling
Reward system design
Inventory
categorization

Building a new plant
Mergers & acquisitions
New product planning
Compensation planning
Quality assurance
HR policies
Inventory planning

Buying software
Approving loans
Operating a help desk
Selecting a cover for
a magazine

Negotiating
Recruiting an executive
Buying hardware
Lobbying

R & D planning
New tech development
Social responsibility
planning

Type of Decision

Type of Control

1 2 3

4 5 6

7 8 9

Financial management
Investment portfolio
Warehouse location
Distribution systems

Figure 1.2 Decision Support Frameworks.
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degree oF struCturedness The left side of Figure 1.2 is based on Simon’s (1977) idea 
that decision-making processes fall along a continuum that ranges from highly structured 
(sometimes called programmed) to highly unstructured (i.e., nonprogrammed) decisions. 
Structured processes are routine and typically repetitive problems for which standard 
solution methods exist. Unstructured processes are fuzzy, complex problems for which 
there are no cut-and-dried solution methods.

An unstructured problem is one where the articulation of the problem or the solu-
tion approach may be unstructured in itself. In a structured problem, the procedures 
for obtaining the best (or at least a good enough) solution are known. Whether the prob-
lem involves finding an appropriate inventory level or choosing an optimal investment 
strategy, the objectives are clearly defined. Common objectives are cost minimization and 
profit maximization.

semistructured problems fall between structured and unstructured problems, hav-
ing some structured elements and some unstructured elements. Keen and Scott-Morton 
(1978) mentioned trading bonds, setting marketing budgets for consumer products, and 
performing capital acquisition analysis as semistructured problems.

types oF Control	 The	 second	 half	 of	 the	 Gorry	 and	 Scott-Morton	 framework	
(refer  to  Figure 1.2) is based on Anthony’s (1965) taxonomy, which defines three 
broad  categories that encompass all managerial activities: strategic planning, which 
involves defining long-range goals and policies for resource allocation; manage-
ment control, the acquisition and efficient use of resources in the accomplishment of 
 organizational goals; and operational control, the efficient and effective execution of 
specific tasks.

the deCision support matrix Anthony’s and Simon’s taxonomies are combined in the 
nine-cell decision support matrix shown in Figure 1.2. The initial purpose of this matrix 
was to suggest different types of computerized support to different cells in the matrix. 
Gorry	 and	 Scott-Morton	 suggested,	 for	 example,	 that	 for	 semistructured decisions and 
unstructured decisions, conventional management information systems (MIS) and man-
agement science (MS) tools are insufficient. Human intellect and a different approach to 
computer technologies are necessary. They proposed the use of a supportive information 
system, which they called a DSS.

Note that the more structured and operational control-oriented tasks (such as 
those in cells 1, 2, and 4) are usually performed by lower-level managers, whereas 
the tasks in cells 6, 8, and 9 are the responsibility of top executives or highly trained 
specialists.

Computer support for structured decisions

Computers have historically supported structured and some semistructured decisions, 
especially those that involve operational and managerial control, since the 1960s. 
Operational and managerial control decisions are made in all functional areas, especially 
in finance and production (i.e., operations) management.

Structured problems, which are encountered repeatedly, have a high level of struc-
ture. It is therefore possible to abstract, analyze, and classify them into specific catego-
ries. For example, a make-or-buy decision is one category. Other examples of categories 
are capital budgeting, allocation of resources, distribution, procurement, planning, and 
inventory  control decisions. For each category of decision, an easy-to-apply prescribed 
model and solution approach have been developed, generally as quantitative formulas. 
Therefore, it is possible to use a scientific approach for automating portions of manage-
rial decision making.
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Computer support for unstructured decisions

Unstructured problems can be only partially supported by standard computerized quan-
titative methods. It is usually necessary to develop customized solutions. However, such 
solutions may benefit from data and information generated from corporate or external 
data sources. Intuition and judgment may play a large role in these types of decisions, as 
may computerized communication and collaboration technologies, as well as knowledge 
management (see Chapter 12).

Computer support for semistructured problems

Solving semistructured problems may involve a combination of standard solution pro-
cedures and human judgment. Management science can provide models for the portion 
of a decision-making problem that is structured. For the unstructured portion, a DSS can 
improve the quality of the information on which the decision is based by providing, for 
example, not only a single solution but also a range of alternative solutions, along with 
their potential impacts. These capabilities help managers to better understand the nature 
of problems and, thus, to make better decisions.

sectiOn 1.5 revieW QuestiOns

 1. What are structured, unstructured, and semistructured decisions? Provide two exam-
ples of each.

 2. Define operational control, managerial control, and strategic planning. Provide two 
examples of each.

 3. What are the nine cells of the decision framework? Explain what each is for.

 4. How can computers provide support for making structured decisions?

 5. How can computers provide support to semistructured and unstructured decisions?

1.6 the ConCept oF deCision support systems (dss)

In the early 1970s, Scott-Morton first articulated the major concepts of DSS. He defined 
decision support systems (dss) as “interactive computer-based systems, which help 
decision makers utilize data and models	 to	 solve	 unstructured	 problems”	 (Gorry	 and	
Scott-Morton, 1971). The following is another classic DSS definition, provided by Keen 
and Scott-Morton (1978):

Decision support systems couple the intellectual resources of individuals with 
the capabilities of the computer to improve the quality of decisions. It is a 
computer-based support system for management decision makers who deal 
with semistructured problems.

Note that the term decision support system, like management information system (MIS) 
and other terms in the field of IT, is a content-free expression (i.e., it means different 
things to different people). Therefore, there is no universally accepted definition of DSS. 
(We present additional definitions in Chapter 2.) Actually, DSS can be viewed as a con-
ceptual methodology—that is, a broad, umbrella term. However, some view DSS as a nar-
rower, specific decision support application.

dss as an umbrella term

The term DSS can be used as an umbrella term to describe any computerized system that 
supports decision making in an organization. An organization may have a knowledge 
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management system to guide all its personnel in their problem solving. Another organiza-
tion may have separate support systems for marketing, finance, and accounting; a sup-
ply chain management (SCM) system for production; and several rule-based systems for 
product repair diagnostics and help desks. DSS encompasses them all.

evolution of dss into Business intelligence

In the early days of DSS, managers let their staff do some supportive analysis by using 
DSS tools. As PC technology advanced, a new generation of managers evolved—one 
that was comfortable with computing and knew that technology can directly help 
make intelligent business decisions faster. New tools such as OLAP, data warehousing, 
data mining, and intelligent systems, delivered via Web technology, added promised 
capabilities and easy access to tools, models, and data for computer-aided decision 
making. These tools started to appear under the names BI and business analytics in 
the mid-1990s. We introduce these concepts next, and relate the DSS and BI concepts 
in the following sections.

sectiOn 1.6 revieW QuestiOns

 1. Provide two definitions of DSS.

 2. Describe DSS as an umbrella term.

1.7 a FrameWork For Business intelligenCe (Bi)

The decision support concepts presented in Sections 1.5 and 1.6 have been implemented 
incrementally, under different names, by many vendors that have created tools and meth-
odologies for decision support. As the enterprise-wide systems grew, managers were 
able to access user-friendly reports that enabled them to make decisions quickly. These 
systems, which were generally called executive information systems (EIS), then began to 
offer additional visualization, alerts, and performance measurement capabilities. By 2006, 
the major commercial products and services appeared under the umbrella term business 
intelligence (BI).

definitions of Bi

business intelligence (bi) is an umbrella term that combines architectures, tools, data-
bases, analytical tools, applications, and methodologies. It is, like DSS, a content-free 
expression, so it means different things to different people. Part of the confusion about 
BI lies in the flurry of acronyms and buzzwords that are associated with it (e.g., business 
performance management [BPM]). BI’s major objective is to enable interactive access 
(sometimes in real time) to data, to enable manipulation of data, and to give business 
managers and analysts the ability to conduct appropriate analyses. By analyzing historical 
and current data, situations, and performances, decision makers get valuable insights that 
enable them to make more informed and better decisions. The process of BI is based on 
the transformation of data to information, then to decisions, and finally to actions.

a Brief history of Bi

The term BI	was	coined	by	the	Gartner	Group	in	the	mid-1990s.	However,	the	concept	is	
much older; it has its roots in the MIS reporting systems of the 1970s. During that period, 
reporting systems were static, two dimensional, and had no analytical capabilities. In the 
early 1980s, the concept of executive information systems (EIS) emerged. This concept 
expanded the computerized support to top-level managers and executives. Some of the 
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capabilities introduced were dynamic multidimensional (ad hoc or on-demand) reporting, 
forecasting and prediction, trend analysis, drill-down to details, status access, and criti-
cal success factors. These features appeared in dozens of commercial products until the 
mid-1990s. Then the same capabilities and some new ones appeared under the name BI. 
Today, a good BI-based enterprise information system contains all the information execu-
tives need. So, the original concept of EIS was transformed into BI. By 2005, BI systems 
started to include artificial intelligence capabilities as well as powerful analytical capabili-
ties. Figure 1.3 illustrates the various tools and techniques that may be included in a BI 
system. It illustrates the evolution of BI as well. The tools shown in Figure 1.3 provide the 
capabilities of BI. The most sophisticated BI products include most of these capabilities; 
others specialize in only some of them. We will study several of these capabilities in more 
detail in Chapters 5 through 9.

the architecture of Bi

A BI system has four major components: a data warehouse, with its source data; business 
analytics, a collection of tools for manipulating, mining, and analyzing the data in the data 
warehouse; business performance management (BPM) for monitoring and analyzing perfor-
mance; and a user interface (e.g., a dashboard). The relationship among these components is 
illustrated in Figure 1.4. We will discuss these components in detail in Chapters 3 through 9.

styles of Bi

The architecture of BI depends on its applications. MicroStrategy Corp. distinguishes five 
styles of BI and offers special tools for each. The five styles are report delivery and alert-
ing; enterprise reporting (using dashboards and scorecards); cube analysis (also known as 
slice-and-dice analysis); ad hoc queries; and statistics and data mining.

Business
intelligence

Spreadsheets
(MS Excel)

DSS

ETL

Data warehouse

Data marts

Metadata

Querying and
reporting

EIS/ESS

Broadcasting
tools Portals

OLAP

Scorecards and
dashboards

Alerts and
notifications 

Data & text
mining Predictive

analytics 

Digital cockpits
and dashboards

Workflow

Financial
reporting

Figure 1.3 Evolution of Business Intelligence (BI).
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the origins and drivers of Bi

Where did modern approaches to data warehousing (DW) and BI come from? What are 
their roots, and how do those roots affect the way organizations are managing these initia-
tives today? Today’s investments in information technology are under increased scrutiny 
in terms of their bottom-line impact and potential. The same is true of DW and the BI 
applications that make these initiatives possible.

Organizations are being compelled to capture, understand, and harness their data 
to support decision making in order to improve business operations. Legislation and 
regulation (e.g., the Sarbanes-Oxley Act of 2002) now require business leaders to docu-
ment their business processes and to sign off on the legitimacy of the information they 
rely on and report to stakeholders. Moreover, business cycle times are now extremely 
compressed; faster, more informed, and better decision making is therefore a competitive 
imperative. Managers need the right information at the right time and in the right place. 
This is the mantra for modern approaches to BI.

Organizations have to work smart. Paying careful attention to the management of BI 
initiatives is a necessary aspect of doing business. It is no surprise, then, that organizations 
are increasingly championing BI. You will hear about more BI successes and the funda-
mentals of those successes in Chapters 3 through 9. Examples of many applications of BI 
are provided in Table 1.3. Application Case 1.1 illustrates one such application of BI that 
has helped many airlines, as well as the companies offering such services to the airlines.

a multimedia exercise in Business intelligence

Teradata University Network (TUN) includes some videos along the lines of the televi-
sion show CSI to illustrate concepts of analytics in different industries. These are called 
“BSI Videos (Business Scenario Investigations).” Not only these are entertaining, but 
they also provide the class with some questions for discussion. For starters, please go to 
teradatauniversitynetwork.com/teach-and-learn/library-item/?Libraryitemid=889. 
Watch the video that appears on YouTube. Essentially, you have to assume the role of a 
customer service center professional. An incoming flight is running late, and several pas-
sengers are likely to miss their connecting flights. There are seats on one outgoing flight 
that can accommodate two of the four passengers. Which two passengers should be given 
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warehouse
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Manipulation, results

Managers/executives
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Figure 1.4 A High-Level Architecture of BI. Source: Based on W. eckerson, Smart Companies in the 

21st Century: The Secrets of Creating Successful Business Intelligent Solutions. the Data Warehousing 

Institute, Seattle, Wa, 2003, p. 32, Illustration 5.
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taBle 1.3 Business Value of BI Analytical Applications

Analytic Application Business Question Business Value

Customer segmentation What market segments do my customers fall 
into, and what are their characteristics?

Personalize customer relationships for higher 
satisfaction and retention.

Propensity to buy Which customers are most likely to respond 
to my promotion?

Target customers based on their need to 
increase their loyalty to your product line.

Also, increase campaign profitability by focusing 
on the most likely to buy.

Customer profitability What is the lifetime profitability of my 
customer?

Make individual business  interaction  decisions 
based on the overall  profitability of 
customers.

Fraud detection How can I tell which transactions are likely 
to be fraudulent?

Quickly determine fraud and take  immediate 
action to minimize cost.

Customer attrition Which customer is at risk of leaving? Prevent loss of high-value customers and let go 
of lower-value customers.

Channel optimization What is the best channel to reach my cus-
tomer in each segment?

Interact with customers based on their 
 preference and your need to manage cost.

Source: A. Ziama and J. Kasher, Data Mining Primer for the Data Warehousing Professional. Teradata, Dayton, OH, 2004.

Application Case 1.1
Sabre Helps Its Clients Through Dashboards and Analytics
Sabre is one of the world leaders in the travel indus-
try, providing both business-to-consumer services as 
well as business-to-business services. It serves travel-
ers, travel agents, corporations, and travel suppliers 
through its four main companies: Travelocity, Sabre 
Travel Network, Sabre Airline Solutions, and Sabre 
Hospitality Solutions. The current volatile global eco-
nomic environment poses significant competitive chal-
lenges to the airline industry. To stay ahead of the 
competition, Sabre Airline Solutions recognized that 
airline executives needed enhanced tools for manag-
ing their business decisions by eliminating the tradi-
tional, manual, time-consuming process of collect-
ing and aggregating financial and other information 
needed for actionable initiatives. This enables real-time 
decision support at airlines throughout the world that 
maximize their (and, in turn, Sabre’s) return on infor-
mation by driving insights, actionable intelligence, and 
value for customers from the  growing data.

Sabre developed an Enterprise Travel Data 
Warehouse (ETDW) using Teradata to hold its mas-
sive reservations data. ETDW is updated in near-real 
time with batches that run every 15 minutes, gathering 

data from all of Sabre’s businesses. Sabre uses its 
ETDW to create Sabre Executive Dashboards that pro-
vide near–real-time executive insights using a Cognos 
8 BI platform with Oracle Data Integrator and Oracle 
Goldengate	technology	infrastructure.	The	Executive	
Dashboards offer their client airlines’ top-level man-
agers and decision makers a timely, automated, user-
friendly solution, aggregating critical performance 
metrics in a succinct way and providing at a glance 
a 360-degree view of the overall health of the airline. 
At one airline, Sabre’s Executive Dashboards provide 
senior management with a daily and intra-day snap-
shot of key performance indicators in a single appli-
cation, replacing the once-a-week, 8-hour process of 
generating the same report from various data sources. 
The use of dashboards is not limited to the external 
customers; Sabre also uses them for their assessment 
of internal operational performance.

The dashboards help Sabre’s customers to have 
a clear understanding of the data through the visual 
displays that incorporate interactive  drill-down capa-
bilities. It replaces flat presentations and allows for 
more focused review of the data with less effort and 

(Continued )
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Application Case 1.1  (Continued) 

time. This facilitates team dialog by making the data/
metrics pertaining to sales performance, including 
ticketing, seats sold and flown, operational perfor-
mance such as data on flight movement and track-
ing, customer reservations, inventory, and  revenue 
across an airline’s multiple distribution channels, avail-
able to many stakeholders. The dashboard systems 
provide scalable infrastructure, graphical user interface 
(GUI)	support,	data	integration,	and data	aggregation	
that empower airline executives to be more proactive 
in taking actions that lead to positive impacts on the 
overall health of their airline.

With its ETDW, Sabre could also develop other 
Web-based analytical and reporting solutions that lev-
erage data to gain customer insights through analysis 
of customer profiles and their sales interactions to cal-
culate customer value. This enables better customer 
segmentation and insights for value-added services.

Questions for Discussion

 1. What is traditional reporting? How is it used in 
organizations?

 2. How can analytics be used to transform tradi-
tional reporting?

 3. How can interactive reporting assist organiza-
tions in decision making?

What We can Learn from this application 
case

This Application Case shows that organizations 
that earlier used reporting only for tracking their 
internal business activities and meeting compliance 
requirements set out by the government are now 
moving toward generating actionable intelligence 
from their transactional business data. Reporting 
has become broader as organizations are now try-
ing to analyze archived transactional data to under-
stand underlying hidden trends and patterns that 
would enable them to make better decisions by 
gaining insights into problematic areas and resolv-
ing them to pursue current and future market 
opportunities. Reporting has advanced to interac-
tive online reports that enable users to pull and 
quickly build custom reports as required and even 
present the reports aided by visualization tools 
that  have the ability to connect to the database, 
providing the capabilities of digging deep into 
summarized data.

Source: Teradata.com, “Sabre Airline Solutions,” teradata.com/t/
case-studies/sabre-airline-solutions-eb6281 (accessed  
February 2013).

priority? You are given information about customers’ profiles and relationship with the air-
line. Your decisions might change as you learn more about those customers’ profiles.

Watch the video, pause it as appropriate, and answer the questions on which pas-
sengers should be given priority. Then resume the video to get more information. After 
the video is complete, you can see the slides related to this video and how the analysis 
was prepared on a slide set at teradatauniversitynetwork.com/templates/download.
aspx?contentitemid=891. Please note that access to this content requires initial registration.

This multimedia excursion provides an example of how additional information made 
available through an enterprise data warehouse can assist in decision making.

the dss–Bi Connection

By now, you should be able to see some of the similarities and differences between DSS 
and BI. First, their architectures are very similar because BI evolved from DSS. However, 
BI implies the use of a data warehouse, whereas DSS may or may not have such a feature. 
BI is, therefore, more appropriate for large organizations (because data warehouses are 
expensive to build and maintain), but DSS can be appropriate to any type of organization.

Second, most DSS are constructed to directly support specific decision making. BI 
systems, in general, are geared to provide accurate and timely information, and they sup-
port decision support indirectly. This situation is changing, however, as more and more 
decision support tools are being added to BI software packages.
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Third, BI has an executive and strategy orientation, especially in its BPM and dash-
board components. DSS, in contrast, is oriented toward analysts.

Fourth, most BI systems are constructed with commercially available tools and com-
ponents that are fitted to the needs of organizations. In building DSS, the interest may 
be in constructing solutions to very unstructured problems. In such situations, more pro-
gramming (e.g., using tools such as Excel) may be needed to customize the solutions.

Fifth, DSS methodologies and even some tools were developed mostly in the aca-
demic world. BI methodologies and tools were developed mostly by software companies. 
(See Zaman, 2005, for information on how BI has evolved.)

Sixth, many of the tools that BI uses are also considered DSS tools. For example, 
data mining and predictive analysis are core tools in both areas.

Although some people equate DSS with BI, these systems are not, at present, the 
same. It is interesting to note that some people believe that DSS is a part of BI—one of its 
analytical tools. Others think that BI is a special case of DSS that deals mostly with report-
ing, communication, and collaboration (a form of data-oriented DSS). Another explana-
tion (Watson, 2005) is that BI is a result of a continuous revolution and, as such, DSS is 
one of BI’s original elements. In this book, we separate DSS from BI. However, we point 
to the DSS–BI connection frequently. Further, as noted in the next section onward, in 
many circles BI has been subsumed by the new term analytics or data science.

sectiOn 1.7 revieW QuestiOns

 1. Define BI.

 2. List and describe the major components of BI.

 3. What are the major similarities and differences of DSS and BI?

1.8 Business analytiCs overvieW

The word “analytics” has replaced the previous individual components of computerized 
decision support technologies that have been available under various labels in the past. 
Indeed, many practitioners and academics now use the word analytics in place of BI. 
Although many authors and consultants have defined it slightly differently, one can view 
analytics as the process of developing actionable decisions or recommendation for actions 
based upon insights generated from historical data. The Institute for Operations Research 
and Management Science (INFORMS) has created a major initiative to organize and pro-
mote analytics. According to INFORMS, analytics represents the combination of computer 
technology, management science techniques, and statistics to solve real problems. Of 
course, many other organizations have proposed their own interpretations and motivation 
for analytics. For example, SAS Institute Inc. proposed eight levels of analytics that begin 
with standardized reports from a computer system. These reports essentially provide a 
sense of what is happening with an organization. Additional technologies have enabled 
us to create more customized reports that can be generated on an ad hoc basis. The next 
extension of reporting takes us to online analytical processing (OLAP)–type queries that 
allow a user to dig deeper and determine the specific source of concern or opportuni-
ties. Technologies available today can also automatically issue alerts for a decision maker 
when performance issues warrant such alerts. At a consumer level we see such alerts for 
weather or other issues. But similar alerts can also be generated in specific settings when 
sales fall above or below a certain level within a certain time period or when the inventory 
for a specific product is running low. All of these applications are made possible through 
analysis and queries on data being collected by an organization. The next level of analysis 
might entail statistical analysis to better understand patterns. These can then be taken a 
step further to develop forecasts or models for predicting how customers might respond to 
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a specific marketing campaign or ongoing service/product offerings. When an organization 
has a good view of what is happening and what is likely to happen, it can also employ 
other techniques to make the best decisions under the circumstances. These eight levels of 
analytics are described in more detail in a white paper by SAS (sas.com/news/sascom/
analytics_levels.pdf).

This idea of looking at all the data to understand what is happening, what will 
 happen, and how to make the best of it has also been encapsulated by INFORMS in 
proposing three levels of analytics. These three levels are identified (informs.org/
community/analytics) as descriptive, predictive, and prescriptive. Figure 1.5 presents 
two graphical views of these three levels of analytics. One view suggests that these three 
are somewhat independent steps (of a ladder) and one type of analytics application leads 
to another. The interconnected circles view suggests that there is actually some overlap 
across these three types of analytics. In either case, the interconnected nature of different 
types of analytics applications is evident. We next introduce these three levels of analytics.

descriptive analytics

descriptive or reporting analytics refers to knowing what is happening in the 
organization and understanding some underlying trends and causes of such occur-
rences. This involves, first of all, consolidation of data sources and availability of 
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Figure 1.5 Three Types of Analytics.
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Application Case 1.2
Eliminating Inefficiencies at Seattle Children’s Hospital
Seattle Children’s was the seventh highest ranked 
children’s hospital in 2011, according to U.S. News 
& World Report. For any organization that is com-
mitted to saving lives, identifying and removing the 
inefficiencies from systems and processes so that 
more resources become available to cater to patient 
care become very important. At Seattle Children’s, 
management is continuously looking for new ways 
to improve the quality, safety, and processes from 
the time a patient is admitted to the time they are 
discharged. To this end, they spend a lot of time in 
analyzing the data associated with the patient visits.

To quickly turn patient and hospital data into 
insights, Seattle Children’s implemented Tableau 
Software’s business intelligence application. It pro-
vides a browser based on easy-to-use analytics to the 
stakeholders; this makes it intuitive for individuals to 
create visualizations and to understand what the data 
has to offer. The data analysts, business managers, 
and financial analysts as well as clinicians, doctors, 
and researchers are all using descriptive analytics 
to solve different problems in a much faster way. 
They are developing visual systems on their own, 
resulting in dashboards and scorecards that help 
in defining the standards, the current performance 
achieved measured against the standards, and how 
these systems will grow into the future. Through the 
use of monthly and daily dashboards, day-to-day 
decision making at Seattle Children’s has improved 
significantly.

Seattle Children’s measures patient wait-times 
and analyzes them with the help of visualizations 
to discover the root causes and contributing factors 

for patient waiting. They found that early delays 
cascaded during the day. They focused on on-time 
appointments of patient services as one of the solu-
tions to improving patient overall waiting time and 
increasing the availability of beds. Seattle Children’s 
saved about $3 million from the supply chain, and 
with the help of tools like Tableau, they are find-
ing new ways to increase savings while treating as 
many patients as possible by making the existing 
processes more efficient.

Questions for Discussion

 1. Who are the users of the tool?
 2. What is a dashboard?
 3. How does visualization help in decision making?
 4. What are the significant results achieved by the 

use of Tableau?

What We can Learn from this application 
case

This Application Case shows that reporting analyt-
ics involving visualizations such as dashboards can 
offer major insights into existing data and show how 
a variety of users in different domains and depart-
ments can contribute toward process and qual-
ity improvements in an organization. Furthermore, 
exploring the data visually can help in identifying 
the root causes of problems and provide a basis for 
working toward possible solutions.

Source: Tableausoftware.com, “Eliminating Waste at Seattle 
Children’s,” tableausoftware.com/eliminating-waste-at-seattle-
childrens (accessed February 2013).

all relevant data in a form that enables appropriate reporting and analysis. Usually 
development of this data infrastructure is part of data warehouses, which we study in 
Chapter 3. From this data infrastructure we can develop appropriate reports, queries, 
alerts, and trends using various reporting tools and techniques. We study these in 
Chapter 4.

A significant technology that has become a key player in this area is visualization. 
Using the latest visualization tools in the marketplace, we can now develop powerful 
insights into the operations of our organization. Application Cases 1.2 and 1.3 highlight 
some such applications in the healthcare domain. Color renderings of such applications 
are available on the companion Web site and also on Tableau’s Web site. Chapter 4 
 covers visualization in more detail.
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Application Case 1.3
Analysis at the Speed of Thought
Kaleida Health, the largest healthcare provider in 
western New York, has more than 10,000 employ-
ees, five hospitals, a number of clinics and nursing 
homes, and a visiting-nurse association that deals 
with millions of patient records. Kaleida’s traditional 
reporting tools were inadequate to handle the grow-
ing data, and they were faced with the challenge of 
finding a business intelligence tool that could handle 
large data sets effortlessly, quickly, and with a much 
deeper analytic capability.

At Kaleida, many of the calculations are now 
done in Tableau, primarily pulling the data from 
Oracle databases into Excel and importing the 
data into Tableau. For many of the monthly ana-
lytic reports, data is directly extracted into Tableau 
from the data warehouse; many of the data queries 
are saved and rerun, resulting in time savings when 
dealing with millions of records—each having more 
than 40 fields per record. Besides speed, Kaleida 
also uses Tableau to merge different tables for gen-
erating extracts.

Using Tableau, Kaleida can analyze emergency 
room data to determine the number of patients who 
visit more than 10 times a year. The data often reveal 
that people frequently use emergency room and 
ambulance services inappropriately for stomach-
aches, headaches, and fevers. Kaleida can manage 
resource utilizations—the use and cost of supplies—
which will ultimately lead to efficiency and standard-
ization of supplies management across the system.

Kaleida now has its own business intelligence 
department and uses Tableau to compare itself to 

other hospitals across the country. Comparisons are 
made on various aspects, such as length of patient 
stay, hospital practices, market share, and partner-
ships with doctors.

Questions for Discussion

 1. What are the desired functionalities of a report-
ing tool?

 2. What advantages were derived by using a report-
ing tool in the case?

What We can Learn from this application 
case

Correct selection of a reporting tool is extremely 
important, especially if an organization wants to 
derive value from reporting. The generated reports 
and visualizations should be easily discernible; they 
should help people in different sectors make sense 
out of the reports, identify the problematic areas, 
and contribute toward improving them. Many future 
organizations will require reporting analytic tools 
that are fast and capable of handling huge amounts 
of data efficiently to generate desired reports with-
out the need for third-party consultants and service 
providers. A truly useful reporting tool can exempt 
organizations from unnecessary expenditure.

Source: Tableausoftware.com, “Kaleida Health Finds Efficiencies, 
Stays Competitive,” tableausoftware.com/learn/stories/user-
experience-speed-thought-kaleida-health (accessed February 
2013).

predictive analytics

Predictive analytics aims to determine what is likely to happen in the future. This analy-
sis is based on statistical techniques as well as other more recently developed techniques 
that fall under the general category of data mining. The goal of these techniques is to be 
able to predict if the customer is likely to switch to a competitor (“churn”), what the cus-
tomer is likely to buy next and how much, what promotion a customer would respond 
to, or whether this customer is a creditworthy risk. A number of techniques are used in 
developing predictive analytical applications, including various classification algorithms. 
For example, as described in Chapters 5 and 6, we can use classification techniques such 
as decision tree models and neural networks to predict how well a motion picture will 
do at the box office. We can also use clustering algorithms for segmenting customers 
into different clusters to be able to target specific promotions to them. Finally, we can 
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Application Case 1.4
Moneyball: Analytics in Sports and Movies
Moneyball, a biographical, sports, drama film, was 
released in 2011 and directed by Bennett Miller. The 
film was based on Michael Lewis’s book, Moneyball. 
The movie gave a detailed account of the Oakland 
Athletics baseball team during the 2002 season and 
the Oakland general manager’s efforts to assemble a 
competitive team.

The Oakland Athletics suffered a big loss to the 
New York Yankees in 2001 postseason. As a result, 
Oakland lost many of its star players to free agency 
and ended up with a weak team with unfavorable 
financial prospects. The general manager’s efforts to 
reassemble a competitive team were denied because 
Oakland had limited payroll. The scouts for the 
Oakland Athletics followed the old baseball custom 
of making subjective decisions when selecting the 
team members. The general manager then met a 
young, computer whiz with an economics degree 
from Yale. The general manager decided to appoint 
him as the new assistant general manager.

The assistant general manager had a deep pas-
sion for baseball and had the expertise to crunch 
the numbers for the game. His love for the game 
made him develop a radical way of understanding 
baseball statistics. He was a disciple of Bill James, a 
marginal figure who offered rationalized techniques 
to analyze baseball. James looked at baseball statis-
tics in a different way, crunching the numbers purely 
on facts and eliminating subjectivity. James pio-
neered the nontraditional analysis method called the 
Sabermetric approach, which derived from SABR—
Society for American Baseball Research.

The assistant general manager followed the 
Sabermetric approach by building a prediction 

model to help the Oakland Athletics select play-
ers based on their “on-base percentage” (OBP), a 
statistic that measured how often a batter reached 
base for any reason other than fielding error, field-
er’s choice, dropped/uncaught third strike, fielder’s 
obstruction, or catcher’s interference. Rather than 
relying on the scout’s experience and intuition, the 
assistant general manager selected players based 
almost exclusively on OBP.

Spoiler Alert: The new team beat all odds, won 
20 consecutive games, and set an American League 
record.

Questions for Discussion

 1. How is predictive analytics applied in Moneyball?
 2. What is the difference between objective and 

subjective approaches in decision making?

What We can Learn from this application 
case

Analytics finds its use in a variety of industries. It 
helps organizations rethink their traditional prob-
lem-solving abilities, which are most often subjec-
tive, relying on the same old processes to find a 
solution. Analytics takes the radical approach of 
using historical data to find fact-based solutions 
that will remain appropriate for making even future 
decisions.

Source: Wikipedia, “On-Base Percentage,” en.wikipedia.org/
wiki/On_base_percentage (accessed January 2013); Wikipedia, 
“Sabermetricsm,” wikipedia.org/wiki/sabermetrics (accessed 

January 2013).

use association mining techniques to estimate relationships between different purchasing 
behaviors. That is, if a customer buys one product, what else is the customer likely to pur-
chase? Such analysis can assist a retailer in recommending or promoting related products. 
For example, any product search on Amazon.com results in the retailer also suggesting 
other similar products that may interest a customer. We will study these techniques and 
their applications in Chapters 6 through 9. Application Cases 1.4 and 1.5 highlight some 
similar applications. Application Case 1.4 introduces a movie you may have heard of: 
Moneyball. It is perhaps one of the best examples of applications of predictive analysis 
in sports.
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Application Case 1.5
Analyzing Athletic Injuries
Any athletic activity is prone to injuries. If the inju-
ries are not handled properly, then the team suf-
fers. Using analytics to understand injuries can help 
in deriving valuable insights that would enable 
the coaches and team doctors to manage the team 
composition, understand player profiles, and ulti-
mately aid in better decision making concerning 
which players might be available to play at any 
given time.

In an exploratory study, Oklahoma State 
University analyzed American football-related sport 
injuries by using reporting and predictive  analytics. 
The project followed the CRISP-DM methodol-
ogy to  understand the problem of making recom-
mendations on managing injuries, understanding 
the various data elements collected about injuries, 
cleaning the data, developing visualizations to draw 
various inferences, building predictive models to 
analyze the injury healing time period, and drawing 
sequence rules to predict the relationship among the 
injuries and the various body part parts afflicted with 
injuries.

The injury data set consisted of more than 
560 football injury records, which were categorized 
into injury-specific variables—body part/site/later-
ality, action taken, severity, injury type, injury start 
and healing dates—and player/sport-specific varia-
bles—player ID, position played, activity, onset, and 
game location. Healing time was calculated for each 
record, which was classified into different sets of 
time periods: 0–1 month, 1–2 months, 2–4 months, 
4–6 months, and 6–24 months.

Various visualizations were built to draw 
inferences from injury data set information depict-
ing the healing time period associated with players’ 
positions, severity of injuries and the healing time 
period, treatment offered and the associated healing 
time period, major injuries afflicting body parts, and 
so forth.

Neural network models were built to pre-
dict each of the healing categories using IBM SPSS 
Modeler. Some of the predictor variables were cur-
rent status of injury, severity, body part, body site, 
type of injury, activity, event location, action taken, 
and position played. The success of classifying the 
healing category was quite good: Accuracy was 79.6 
percent. Based on the analysis, many business rec-
ommendations were suggested, including employ-
ing more specialists’ input from injury onset instead 
of letting the training room staff screen the injured 
players; training players at defensive positions to 
avoid being injured; and holding practice to thor-
oughly safety-check mechanisms.

Questions for Discussion

 1. What types of analytics are applied in the injury 
analysis?

 2. How do visualizations aid in understanding the 
data and delivering insights into the data?

 3. What is a classification problem?
 4. What can be derived by performing sequence 

analysis?

What We can Learn from this application 
case

For any analytics project, it is always important 
to understand the business domain and the cur-
rent state of the business problem through exten-
sive analysis of the only resource—historical data. 
Visualizations often provide a great tool for gaining 
the initial insights into data, which can be further 
refined based on expert opinions to identify the rela-
tive importance of the data elements related to the 
problem. Visualizations also aid in generating ideas 
for obscure business problems, which can be pur-
sued in building predictive models that could help 
organizations in decision making.

prescriptive analytics

The third category of analytics is termed prescriptive analytics. The goal of prescriptive 
analytics is to recognize what is going on as well as the likely forecast and make decisions 
to achieve the best performance possible. This group of techniques has historically been 
studied under the umbrella of operations research or management sciences and has gen-
erally been aimed at optimizing the performance of a system. The goal here is to provide 
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Application Case 1.6
Industrial and Commercial Bank of China (ICBC) Employs Models  
to Reconfigure Its Branch Network
The Industrial and Commercial Bank of China 
(ICBC) has more than 16,000 branches and serves 
over 230 million individual customers and 3.6 mil-
lion corporate clients. Its daily financial transactions 
total about $180 million. It is also the largest pub-
licly traded bank in the world in terms of market 
capitalization, deposit volume, and profitability. To 
stay competitive and increase profitability, ICBC was 
faced with the challenge to quickly adapt to the fast-
paced economic growth, urbanization, and increase 
in personal wealth of the Chinese. Changes had to be 
implemented in over 300 cities with high variability 
in customer behavior and financial status. Obviously, 
the nature of the challenges in such a huge economy 
meant that a large-scale optimization solution had to 
be developed to locate branches in the right places, 
with right services, to serve the right customers.

With their existing method, ICBC used to decide 
where to open new branches through a scoring model 
in which different variables with varying weight were 
used as inputs. Some of the variables were customer 
flow, number of residential households, and number 
of competitors in the intended geographic region. This 
method was deficient in determining the customer dis-
tribution of a geographic area. The existing method 
was also unable to optimize the distribution of bank 
branches in the branch network. With support from 
IBM, a branch reconfiguration (BR) tool was devel-
oped. Inputs for the BR system are in three parts:

 a. Geographic	data	with	83	different	categories
 b. Demographic and economic data with 22 dif-

ferent categories
 c. Branch transactions and performance data that 

consisted of more than 60 million transaction 
records each day

These three inputs helped generate accurate cus-
tomer distribution for each area and, hence, helped 
the bank optimize its branch network. The BR system 
consisted of a market potential calculation model, a 
branch network optimization model, and a branch 
site evaluation model. In the market potential model, 
the customer volume and value is measured based 
on input data and expert knowledge. For instance, 
expert knowledge would help determine if per-
sonal income should be weighted more than gross 
domestic	product	 (GDP).	The	geographic	areas	are	
also demarcated into cells, and the preference of one 
cell over the other is determined. In the branch net-
work optimization model, mixed integer program-
ming is used to locate branches in candidate cells 
so that they cover the largest market potential areas. 
In the  branch site evaluation model, the value for 
establishing bank branches at specific locations is 
determined.

Since 2006, the development of the BR has 
been improved through an iterative process. ICBC’s 
branch reconfiguration tool has increased deposits 
by $21.2 billion since its inception. This increase 
in deposit is because the bank can now reach 
more customers with the right services by use of 
its optimization tool. In a specific example, when 
BR was implemented in Suzhou in 2010, deposits 
increased to $13.67 billion from an initial level of 
$7.56 billion in 2007. Hence, the BR tool assisted 
in an increase of deposits to the tune of $6.11 
billion between 2007 and 2010. This project was 
selected as a finalist in the Edelman Competition 
2011, which is run by INFORMS to promote actual 
applications of management science/operations 
research models.

a decision or a recommendation for a specific action. These recommendations can be in 
the forms of a specific yes/no decision for a problem, a specific amount (say, price for a 
specific item or airfare to charge), or a complete set of production plans. The decisions 
may be presented to a decision maker in a report or may directly be used in an automated 
decision rules system (e.g., in airline pricing systems). Thus, these types of analytics can 
also be termed decision or normative analytics. Application Case 1.6 gives an example 
of such prescriptive analytic applications. We will learn about some of these techniques 
and several additional applications in Chapters 10 through 12.

(Continued )
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analytics applied to different domains

Applications of analytics in various industry sectors have spawned many related areas or 
at least buzzwords. It is almost fashionable to attach the word analytics to any specific 
industry or type of data. Besides the general category of text analytics—aimed at getting 
value out of text (to be studied in Chapter 6)—or Web analytics—analyzing Web data 
streams (Chapter 7)—many industry- or problem-specific analytics professions/streams 
have come up. Examples of such areas are marketing analytics, retail analytics, fraud ana-
lytics, transportation analytics, health analytics, sports analytics, talent analytics, behav-
ioral analytics, and so forth. For example, Application Case 1.1 could also be termed as 
a case study in airline analytics. Application Cases 1.2 and 1.3 would belong to health 
analytics; Application Cases 1.4 and 1.5 to sports analytics; Application Case 1.6 to bank 
analytics; and Application Case 1.7 to retail analytics. The End-of-Chapter Application 
Case could be termed insurance analytics. Literally, any systematic analysis of data in a 
specific sector is being labeled as “(fill-in-blanks)” Analytics. Although this may result in 
overselling the concepts of analytics, the benefit is that more people in specific industries 
are aware of the power and potential of analytics. It also provides a focus to professionals 
developing and applying the concepts of analytics in a vertical sector. Although many of 
the techniques to develop analytics applications may be common, there are unique issues 
within each vertical segment that influence how the data may be collected, processed, 
analyzed, and the applications implemented. Thus, the differentiation of analytics based 
on a vertical focus is good for the overall growth of the discipline.

analytics or data science?

Even as the concept of analytics is getting popular among industry and academic circles, 
another term has already been introduced and is becoming popular. The new term is data 
science. Thus the practitioners of data science are data scientists. Mr. D. J. Patil of LinkedIn 
is sometimes credited with creating the term data science. There have been some attempts 
to describe the differences between data analysts and data scientists (e.g., see this study at 
emc.com/collateral/about/news/emc-data-science-study-wp.pdf). One view is that 

Questions for Discussion

 1. How can analytical techniques help organiza-
tions to retain competitive advantage?

 2. How can descriptive and predictive analytics 
help in pursuing prescriptive analytics?

 3. What kinds of prescriptive analytic techniques 
are employed in the case study?

 4. Are the prescriptive models once built good 
forever?

What We can Learn from this application 
case

Many organizations in the world are now embrac-
ing analytical techniques to stay competitive 
and  achieve growth. Many organizations provide 

consulting solutions to the businesses in employ-
ing prescriptive analytical solutions. It is equally 
important to have proactive decision makers in the 
organizations who are aware of the changing eco-
nomic environment as well as the advancements 
in the field of analytics to ensure that appropriate 
models are employed. This case shows an example 
of geographic market segmentation and customer 
behavioral segmentation techniques to isolate the 
profitability of customers and employ optimization 
techniques to locate the branches that deliver high 
profitability in each geographic segment.

Source: X. Wang et al., “Branch Reconfiguration Practice Through 
Operations Research in Industrial and Commercial Bank of China,” 
Interfaces, January/February 2012, Vol. 42, No. 1, pp. 33–44; DOI: 
10.1287/inte.1110.0614.

Application Case 1.6  (Continued) 
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data analyst is just another term for professionals who were doing business intelligence in 
the form of data compilation, cleaning, reporting, and perhaps some visualization. Their 
skill sets included Excel, some SQL knowledge, and reporting. A reader of Section 1.8 
would recognize that as descriptive or reporting analytics. In contrast, a data scientist is 
responsible for predictive analysis, statistical analysis, and more advanced analytical tools 
and algorithms. They may have a deeper knowledge of algorithms and may recognize 
them under various labels—data mining, knowledge discovery, machine learning, and 
so forth. Some of these professionals may also need deeper programming knowledge to 
be able to write code for data cleaning and analysis in current Web-oriented languages 
such as Java and Python. Again, our readers should recognize these as falling under the 
predictive and prescriptive analytics umbrella. Our view is that the distinction between 
analytics and data science is more of a degree of technical knowledge and skill sets than 
the functions. It may also be more of a distinction across disciplines. Computer science, 
statistics, and applied mathematics programs appear to prefer the data science label, 
reserving the analytics label for more business-oriented professionals. As another example 
of this, applied physics professionals have proposed using network science as the term 
for describing analytics that relate to a group of people—social networks, supply chain 
networks, and so forth. See barabasilab.neu.edu/networksciencebook/downlPdf.
html for an evolving textbook on this topic.

Aside from a clear difference in the skill sets of professionals who only have to do 
descriptive/reporting analytics versus those who engage in all three types of analytics, the 
distinction is fuzzy between the two labels, at best. We observe that graduates of our 
 analytics programs tend to be responsible for tasks more in line with data science profes-
sionals (as defined by some circles) than just reporting analytics. This book is clearly aimed 
at introducing the capabilities and functionality of all analytics (which includes data sci-
ence), not just reporting analytics. From now on, we will use these terms interchangeably.

sectiOn 1.8 revieW QuestiOns

 1. Define analytics.

 2. What is descriptive analytics? What various tools are employed in descriptive analytics?

 3. How is descriptive analytics different from traditional reporting?

 4. What is a data warehouse? How can data warehousing technology help in ena-
bling analytics?

 5. What is predictive analytics? How can organizations employ predictive analytics?

 6. What is prescriptive analytics? What kinds of problems can be solved by prescrip-
tive analytics?

 7. Define modeling from the analytics perspective.

 8. Is it a good idea to follow a hierarchy of descriptive and predictive analytics before 
applying prescriptive analytics?

 9. How can analytics aid in objective decision making?

1.9 BrieF introduCtion to Big data analytiCs

What is Big data?

Our brains work extremely quickly and are efficient and versatile in processing large 
amounts of all kinds of data: images, text, sounds, smells, and video. We process all 
different forms of data relatively easily. Computers, on the other hand, are still finding it 
hard to keep up with the pace at which data is generated—let alone analyze it quickly. 
We have the problem of Big Data. So what is Big Data? Simply put, it is data that cannot 
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be stored in a single storage unit. Big Data typically refers to data that is arriving in 
many different forms, be they structured, unstructured, or in a stream. Major sources 
of such data are clickstreams from Web sites, postings on social media sites such as 
Facebook,	or	data	from	traffic,	sensors,	or	weather.	A	Web	search	engine	like	Google	
needs to search and index billions of Web pages in order to give you relevant search 
results in a fraction of a second. Although this is not done in real time, generating an 
index	of	all	the	Web	pages	on	the	Internet	is	not	an	easy	task.	Luckily	for	Google,	it	
was able to solve this problem. Among other tools, it has employed Big Data analytical 
techniques.

There are two aspects to managing data on this scale: storing and processing. If we 
could purchase an extremely expensive storage solution to store all the data at one place 
on one unit, making this unit fault tolerant would involve major expense. An ingenious 
solution was proposed that involved storing this data in chunks on different machines 
connected by a network, putting a copy or two of this chunk in different locations on 
the	network,	both	logically	and	physically.	It	was	originally	used	at	Google	(then	called	
Google File System) and later developed and released as an Apache project as the Hadoop 
Distributed File System (HDFS).

However, storing this data is only half the problem. Data is worthless if it does 
not provide business value, and for it to provide business value, it has to be analyzed. 
How are such vast amounts of data analyzed? Passing all computation to one powerful 
computer does not work; this scale would create a huge overhead on such a power-
ful computer. Another ingenious solution was proposed: Push computation to the data, 
instead of pushing data to a computing node. This was a new paradigm, and it gave rise 
to a whole new way of processing data. This is what we know today as the MapReduce 
programming paradigm, which made processing Big Data a reality. MapReduce was origi-
nally	developed	at	Google,	and	a	subsequent	version	was	released	by	the	Apache	project	
called Hadoop MapReduce.

Today, when we talk about storing, processing, or analyzing Big Data, HDFS and 
MapReduce are involved at some level. Other relevant standards and software solutions 
have been proposed. Although the major toolkit is available as open source, several 
companies have been launched to provide training or specialized analytical hardware or 
software services in this space. Some examples are HortonWorks, Cloudera, and Teradata 
Aster.

Over the past few years, what was called Big Data changed more and more as Big 
Data applications appeared. The need to process data coming in at a rapid rate added 
velocity to the equation. One example of fast data processing is algorithmic trading. It 
is the use of electronic platforms based on algorithms for trading shares on the financial 
market, which operates in the order of microseconds. The need to process different 
kinds of data added variety to the equation. Another example of the wide variety of 
data is sentiment analysis, which uses various forms of data from social media platforms 
and customer responses to gauge sentiments. Today Big Data is associated with almost 
any kind of large data that has the characteristics of volume, velocity, and variety. 
Application Case 1.7 illustrates one example of Big Data analytics. We will study Big 
Data characteristics in more detail in Chapters 3 and 13.

sectiOn 1.9 revieW QuestiOns

 1. What is Big Data analytics?

 2. What are the sources of Big Data?

 3. What are the characteristics of Big Data?

 4. What processing technique is applied to process Bi ta?
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Application Case 1.7
Gilt Groupe’s Flash Sales Streamlined by Big Data Analytics
Gilt	 Groupe	 is	 an	 online	 destination	 offering	 flash	
sales for major brands by selling their clothing and 
accessories. It offers its members exclusive discounts 
on high-end clothing and other apparel. After regis-
tering	with	Gilt,	customers	are	sent	e-mails	containing	
a variety of offers. Customers are given a 36-48 hour 
window to make purchases using these offers. There 
are about 30 different sales each day. While a typical 
department store turns over its inventory two or three 
times	a	year,	Gilt	does	it	eight	to	10	times	a	year.	Thus,	
they have to manage their inventory extremely well 
or they could incur extremely high inventory costs. 
In order to do this, analytics software developed at 
Gilt	 keeps	 track	 of	 every	 customer	 click—ranging	
from what brands the customers click on, what colors 
they choose, what styles they pick, and what they 
end	up	buying.	Then	Gilt	tries	to	predict	what	these	
customers are more likely to buy and stocks inven-
tory according to these predictions. Customers are 
sent customized alerts to sale offers depending on the 
suggestions by the analytics software.

That, however, is not the whole process. The 
software also monitors what offers the customers 
choose from the recommended offers to make more 
accurate predictions and to increase the effectiveness 
of its personalized recommendations. Some custom-
ers	 do	 not	 check	 e-mail	 that	 often.	 Gilt’s	 analytics	

software keeps track of responses to offers and sends 
the same offer 3 days later to those customers who 
haven’t	 responded.	 Gilt	 also	 keeps	 track	 of	 what	
customers	 are	 saying	 in	 general	 about	 Gilt’s	 prod-
ucts by analyzing Twitter feeds to analyze sentiment. 
Gilt’s	recommendation	software	is	based	on	Teradata	
Aster’s technology solution that includes Big Data 
analytics technologies.

Questions for Discussion

 1. What makes this case study an example of Big 
Data analytics?

 2. What	types	of	decisions	does	Gilt	Groupe	have	
to make?

What We can Learn from this application 
case

There is continuous growth in the amount of struc-
tured and unstructured data, and many organiza-
tions are now tapping these data to make actionable 
decisions. Big Data analytics is now enabled by the 
advancements in technologies that aid in storage and 
processing of vast amounts of rapidly growing data.

Source:	Asterdata.com,	“Gilt	Groupe	Speaks	on	Digital	Marketing	
Optimization,” asterdata.com/gilt_groupe_video.php (accessed 
February 2013).

1.10 plan oF the Book

The previous sections have given you an understanding of the need for using informa-
tion technology in decision making; an IT-oriented view of various types of decisions; 
and the evolution of decision support systems into business intelligence, and now into 
analytics. In the last two sections we have seen an overview of various types of analyt-
ics and their applications. Now we are ready for a more detailed managerial excursion 
into these topics, along with some potentially deep hands-on experience in some of the 
technical topics. The 14 chapters of this book are organized into five parts, as shown in 
Figure 1.6.

part i: Business analytics: an overview

In Chapter 1, we provided an introduction, definitions, and an overview of decision sup-
port systems, business intelligence, and analytics, including Big Data analytics. Chapter 2 
covers the basic phases of the decision-making process and introduces decision support 
systems in more detail.
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part ii: descriptive analytics

Part II begins with an introduction to data warehousing issues, applications, and technolo-
gies in Chapter 3. Data represent the fundamental backbone of any decision support and 
analytics application. Chapter 4 describes business reporting, visualization technologies, 
and applications. It also includes a brief overview of business performance management 
techniques and applications, a topic that has been a key part of traditional BI.

part iii: predictive analytics

Part III comprises a large part of the book. It begins with an introduction to predictive 
analytics applications in Chapter 5. It includes many of the common application tech-
niques: classification, clustering, association mining, and so forth. Chapter 6 includes a 
technical description of selected data mining techniques, especially neural network mod-
els. Chapter 7 focuses on text mining applications. Similarly, Chapter 8 focuses on Web 
analytics, including social media analytics, sentiment analysis, and other related topics.

Software Demos

Data Files for Exercises

PowerPoint Slides

Part I
Decision Making and Analytics: An Overview

Part VI
Online Supplements

Part V
Big Data and Future Directions

for Business Analytics

Part IV
Prescriptive Analytics

Part III
Predictive Analytics

Part II
Descriptive Analytics

Chapter 3
Data Warehousing

Chapter 4
Business Reporting, Visual

Analytics, and Business
Performance Management

Chapter 5
Data Mining

Chapter 6
Techniques for Predictive

Modeling

Chapter 7
Text Analytics, Text Mining, and

Sentiment Analysis

Chapter 8
Web Analytics, Web Mining, and

Social Analytics

Chapter 9
Model-Based Decision Making:
Optimization and Multi-Criteria

Systems

Chapter 10
Modeling and Analysis:

Heuristic Search Methods and
Simulation

Chapter 11
Automated Decision Systems and

Expert Systems

Chapter 12
Knowledge Management and

Collaborative Systems

Chapter 14
Business Analytics: Emerging
Trends and Future Impacts

Chapter 13
Big Data and Analytics

Chapter 1
An Overview of Business

Intelligence, Analytics, and
Decision Support

Chapter 2
Foundations and Technologies for

Decision Making

Figure 1.6 Plan of the Book.
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part iv: prescriptive analytics

Part IV introduces decision analytic techniques, which are also called prescriptive analyt-
ics. Specifically, Chapter 9 covers selected models that may be implemented in spread-
sheet environments. It also covers a popular multi-objective decision technique—analytic 
hierarchy processes.

Chapter 10 then introduces other model-based decision-making techniques, espe-
cially heuristic models and simulation. Chapter 11 introduces automated decision  systems 
including expert systems. This part concludes with a brief discussion of knowledge 
 management and group support systems in Chapter 12.

part v: Big data and Future directions for Business analytics

Part V begins with a more detailed coverage of Big Data and analytics in Chapter 13.
Chapter 14 attempts to integrate all the material covered in this book and 

 concludes with a discussion of emerging trends, such as how the ubiquity of wire-
less	 and	GPS	devices	and	other	 sensors	 is	 resulting	 in	 the	creation	of	massive	new	
databases and unique applications. A new breed of data mining and BI companies is 
emerging to analyze these new databases and create a much better and deeper under-
standing of customers’ behaviors and movements. The chapter also covers cloud-based 
analytics, recommendation systems, and a brief discussion of security/privacy dimen-
sions of analytics. It concludes the book by also presenting a discussion of the analytics 
ecosystem. An understanding of the ecosystem and the various players in the analytics 
industry highlights the various career opportunities for students and practitioners of 
analytics.

1.11  resourCes, links, and the teradata university 
netWork ConneCtion

The use of this chapter and most other chapters in this book can be enhanced by the tools 
described in the following sections.

resources and links

We recommend the following major resources and links:

•	The	Data	Warehousing	Institute	(tdwi.org)
•	Information	Management	(information-management.com)
•	DSS	Resources	(dssresources.com)
•	Microsoft	Enterprise	Consortium	(enterprise.waltoncollege.uark.edu/mec.asp)

vendors, products, and demos

Most vendors provide software demos of their products and applications. Information 
about products, architecture, and software is available at dssresources.com.

periodicals

We recommend the following periodicals:

•	Decision Support Systems
•	CIO Insight (cioinsight.com)
•	Technology Evaluation (technologyevaluation.com)
•	Baseline Magazine (baselinemag.com)
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the teradata university network Connection

This book is tightly connected with the free resources provided by Teradata University 
Network (TUN; see teradatauniversitynetwork.com). The TUN portal is divided 
into two major parts: one for students and one for faculty. This book is connected to 
the TUN portal via a special section at the end of each chapter. That section includes 
appropriate links for the specific chapter, pointing to relevant resources. In addition, 
we provide hands-on exercises, using software and other material (e.g., cases) avail-
able at TUN.

the Book’s Web site

This book’s Web site, pearsonglobaleditions.com/turban, contains supplemental tex-
tual material organized as Web chapters that correspond to the printed book’s chapters. 
The topics of these chapters are listed in the online chapter table of contents. Other con-
tent is also available on an independent Web site (dssbibook.com).2

Chapter Highlights

•	The	business	environment	is	becoming	complex	
and is rapidly changing, making decision making 
more difficult.

•	Businesses	must	respond	and	adapt	to	the	chang-
ing environment rapidly by making faster and 
better decisions.

•	The	time	frame	for	making	decisions	is		shrinking,	
whereas the global nature of decision making is 
expanding, necessitating the development and 
use of computerized DSS.

•	Computerized	 support	 for	 managers	 is	 often	
essential for the survival of an organization.

•	An	 early	 decision	 support	 framework	 divides	
 decision situations into nine categories, depending 
on the degree of structuredness and managerial 
activities. Each category is supported differently.

•	Structured	 repetitive	 decisions	 are	 supported	 by	
standard quantitative analysis methods, such as MS, 
MIS, and rule-based automated decision support.

•	DSS	use	data,	models,	and	sometimes	knowledge	
management to find solutions for semistructured 
and some unstructured problems.

•	BI	 methods	 utilize	 a	 central	 repository	 called	 a	
data warehouse that enables efficient data mining, 
OLAP, BPM, and data visualization.

•	BI	architecture	includes	a	data	warehouse,	busi-
ness analytics tools used by end users, and a user 
interface (such as a dashboard).

•	Many	organizations	employ	descriptive	analytics	
to replace their traditional flat reporting with inter-
active reporting that provides insights, trends, and 
patterns in the transactional data.

•	Predictive	analytics	enable	organizations	to	estab-
lish predictive rules that drive the business out-
comes through historical data analysis of the 
existing behavior of the customers.

•	Prescriptive	analytics	help	in	building	models	that	
involve forecasting and optimization techniques 
based on the principles of operations research 
and management science to help organizations to 
make better decisions.

•	Big	Data	analytics	focuses	on	unstructured,	large	
data sets that may also include vastly different 
types of data for analysis.

•	Analytics	 as	 a	 field	 is	 also	 known	 by	 industry-	
specific application names such as sports  analytics. 
It is also known by other related names such as 
data science or network science.

2As this book went to press, we verified that all the cited Web sites were active and valid. However, URLs are 
dynamic. Web sites to which we refer in the text sometimes change or are discontinued because companies 
change names, are bought or sold, merge, or fail. Sometimes Web sites are down for maintenance, repair, or 
redesign. Many organizations have dropped the initial “www” designation for their sites, but some still use it. If 
you have a problem connecting to a Web site that we mention, please be patient and simply run a Web search 
to try to identify the possible new site. Most times, you can quickly find the new site through one of the popular 
search engines. We apologize in advance for this inconvenience.
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Key terms

business intelligence 
(BI) 

dashboard 
data mining 

decision (or normative) 
analytics 

decision support system 
(DSS) 

descriptive (or reporting) 
analytics 

predictive analytics 
prescriptive analytics 

semistructured  
problem 

structured problem 
unstructured problem 

Questions for Discussion

 1. Distinguish between strategic and tactical planning?
 2. What is data mining and why is it classified under  predictive 

analytics? Search the Web for an example of data mining in 
an organization of your choice and illustrate the way it is 
currently in use.

 3. Prescriptive analytics is considered to be a step further 
ahead of predictive analysis and substantially different 

from it. Provide an example of each and outline their 
differences.

 4. Provide a definition of BI.
 5. Define managerial decision making. Discuss this  concept in 

the context of the four-step approach to decision making.

exercises

teradata university network (tun) and Other 
 hands-On exercises

 1. Go	to	teradatauniversitynetwork.com. Using the reg-
istration your instructor provides, log on and learn the 
content of the site. You will receive assignments related 
to this site. Prepare a list of 20 items in the site that you 
think could be beneficial to you.

 2. Enter the TUN site and select “cases, projects and assign-
ments.” Then select the case study: “Harrah’s High Payoff 
from Customer Information.” Answer the following ques-
tions about this case:

 a. What information does the data mining generate?
 b. How is this information helpful to management in 

decision making? (Be specific.)
 c. List the types of data that are mined.
 d. Is this a DSS or BI application? Why?
 3. Go	to	teradatauniversitynetwork.com and find the paper 

titled “Data Warehousing Supports Corporate Strategy at First 
American	Corporation”	(by	Watson,	Wixom,	and	Goodhue).	
Read the paper and answer the following questions:

 a. What were the drivers for the DW/BI project in the 
company?

 b. What strategic advantages were realized?
 c. What operational and tactical advantages were achieved?
 d. What were the critical success factors (CSF) for the 

implementation?
 4. Go	 to	 analytics-magazine.org/issues/digital-editions 

and find the January/February 2012 edition titled “Special 
Issue: The Future of Healthcare.” Read the article “Predictive 

Analytics—Saving Lives and Lowering Medical Bills.” 
Answer the following questions:

 a. What is the problem that is being addressed by apply-
ing predictive analytics?

 b. What is the FICO Medication Adherence Score?
 c. How is a prediction model trained to predict the FICO 

Medication Adherence Score? Did the prediction 
model classify FICO Medication Adherence Score?

 d. Zoom in on Figure 4 and explain what kind of tech-
nique is applied on the generated results.

 e. List some of the actionable decisions that were based 
on the results of the predictions.

 5. Visit http://www.ibm.com/analytics/us/en/what-is-
smarter-analytics/big-data-analysis.html. Read the sec-
tion	“Gain	actionable	insights	from	big	data	analysis,”	and	
watch the video “See how analytics can help organizations 
in all industries use big data to achieve significant outcomes” 
under Case Studies to answer the following questions:

 a. Explain big data and its importance in decision mak-
ing with examples.

 b. Appraise the maxim “without analytics, big data is just 
noise.”

 c. In which sectors and areas might big data analytics be 
most	useful?	Give	examples.

 d. What are the suggested solutions to managing risks?
 e. Review and analyze a case study from IBM’s Web site 

and explain how big data analytics provided solutions.
 6. Business analytics and computerized data processing 

support managers and decision making. Keeping current 
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end-of-Chapter Application Case

Nationwide Insurance Used BI to Enhance Customer Service

Nationwide Mutual Insurance Company, headquartered in 
Columbus, Ohio, is one of the largest insurance and financial 
services companies, with $23 billion in revenues and more 
than $160 billion in statutory assets. It offers a comprehensive 
range of products through its family of 100-plus companies with 
insurance products for auto, motorcycle, boat, life, homeown-
ers, and farms. It also offers financial products and services 
including annuities, mortgages, mutual funds, pensions, and 
investment management.

Nationwide strives to achieve greater efficiency in all 
operations by managing its expenses along with its ability to 
grow its revenue. It recognizes the use of its strategic asset of 
information combined with analytics to outpace competitors 
in strategic and operational decision making even in complex 
and unpredictable environments.

Historically, Nationwide’s business units worked inde-
pendently and with a lot of autonomy. This led to duplication 
of efforts, widely dissimilar data processing environments, and 
extreme data redundancy, resulting in higher expenses. The 
situation got complicated when Nationwide pursued any merg-
ers or acquisitions.

Nationwide, using enterprise data warehouse technology 
from Teradata, set out to create, from the ground up, a single, 
authoritative environment for clean, consistent, and complete 
data that can be effectively used for best-practice analytics to 
make strategic and tactical business decisions in the areas of 
customer growth, retention, product profitability, cost contain-
ment, and productivity improvements. Nationwide transformed 
its siloed business units, which were supported by stove-piped 
data environments, into integrated units by using cutting-edge 
analytics that work with clear, consolidated data from all of 
its business units. The Teradata data warehouse at Nationwide 
has grown from 400 gigabytes to more than 100 terabytes and 
supports 85 percent of Nationwide’s business with more than 
2,500 users.

integrated customer Knowledge
Nationwide’s Customer Knowledge Store (CKS) initiative 
developed a customer-centric database that integrated cus-
tomer, product, and externally acquired data from more 

than 48 sources into a single customer data mart to deliver a 
holistic view of customers. This data mart was coupled with 
Teradata’s customer relationship management application to 
create and manage effective customer marketing campaigns 
that use behavioral analysis of customer interactions to drive 
customer management actions (CMAs) for target segments. 
Nationwide added more sophisticated customer analytics 
that looked at customer portfolios and the effectiveness 
of various marketing campaigns. This data analysis helped 
Nationwide to initiate proactive customer communications 
around customer lifetime events like marriage, birth of child, 
or home purchase and had significant impact on improv-
ing customer satisfaction. Also, by integrating customer 
contact history, product ownership, and payment informa-
tion, Nationwide’s behavioral analytics teams further created 
prioritized models that could identify which specific cus-
tomer interaction was important for a customer at any given 
time. This resulted in one percentage point improvement 
in  customer retention rates and significant improvement 
in  customer enthusiasm scores. Nationwide also achieved 
3 percent annual growth in incremental sales by using CKS. 
There are other uses of the customer database. In one of 
the initiatives, by integrating customer telephone data from 
multiple systems into CKS, the relationship managers at 
Nationwide try to be proactives in contacting customers in 
advance of a possible weather catastrophe, such as a hur-
ricane or flood, to provide the primary policyholder infor-
mation and explain the claims processes. These and other 
analytic insights now drive Nationwide to provide extremely 
personal customer service.

financial Operations
A similar performance payoff from integrated information was 
also noted in financial operations. Nationwide’s decentralized 
management style resulted in a fragmented financial report-
ing environment that included more than 14 general ledgers, 
20 charts of accounts, 17 separate data repositories, 12 different 
reporting tools, and hundreds of thousands of spreadsheets. 
There was no common central view of the business, which 
resulted in labor-intensive slow and inaccurate reporting. 

business environment challenges in mind, along with 
Mintzberg’s 10 managerial roles (see Table 1.2), identify 
five such roles in companies/government’s press release 
and communications. 

 7. Go	to	oracle.com,	a	leading	company	in	BI.	Make	a	map	
of their Web site illustrating their products and communi-
cation styles with available resources for business.

 8. Search the Web for a company that uses the four major 
components of a standard BI system.

 9. In the company identified in the previous question, illus-
trate their main products and style of BI and discuss the 
main tools used. Refer to the tools mentioned in this 
chapter.
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About 75 percent of the effort was spent on acquiring, clean-
ing, and consolidating and validating the data, and very little 
time was spent on meaningful analysis of the data.

The Financial Performance Management initiative 
implemented a new operating approach that worked on a 
single data and technology architecture with a common set 
of systems standardizing the process of reporting. It enabled 
Nationwide to operate analytical centers of excellence with 
world-class planning, capital management, risk assessment, 
and other decision support capabilities that delivered timely, 
accurate, and efficient accounting, reporting, and analytical 
services.

The data from more than 200 operational systems was 
sent to the enterprise-wide data warehouse and then distrib-
uted to various applications and  analytics. This resulted in 
a 50 percent improvement in the monthly closing process 
with closing intervals reduced from 14 days to 7 days.

Postmerger data integration
Nationwide’s	 Goal	 State	 Rate	 Management	 initiative	 ena-
bled the company to merge Allied Insurance’s automobile 
policy system into its existing system. Both Nationwide and 
Allied source systems were custom-built applications that 
did not share any common values or process data in the 
same manner. Nationwide’s IT department decided to bring 
all the data from source systems into a centralized data 
warehouse, organized in an integrated fashion that resulted 
in standard dimensional reporting and helped Nationwide 
in performing what-if analyses. The data analysis team 
could identify previously unknown potential differences 
in the data environment where premiums rates were cal-
culated differently between Nationwide and Allied sides. 
Correcting all of these benefited Nationwide’s policyhold-
ers because they were safeguarded from  experiencing wide 
premium rate swings.

enhanced reporting
Nationwide’s legacy reporting system, which catered to the 
needs of property and casualty business units, took weeks 
to compile and deliver the needed reports to the agents. 
Nationwide determined that it needed better access to sales 
and policy information to reach its sales  targets. It chose a 

single data warehouse approach and, after careful assessment 
of the needs of sales management and individual agents, 
selected a business intelligence platform that would integrate 
dynamic enterprise dashboards into its reporting  systems, 
making it easy for the agents and associates to view policy 
information at a glance. The new reporting system, dubbed 
Revenue Connection, also enabled users to analyze the infor-
mation with a lot of interactive and drill-down-to-details capa-
bilities at various  levels that eliminated the need to generate 
custom ad hoc reports. Revenue Connection  virtually elimi-
nated requests for manual policy audits, resulting in huge 
savings in time and money for the  business and technology 
teams. The reports were produced in 4 to 45 seconds, rather 
than days or weeks, and productivity in some units improved 
by 20 to 30 percent.

Questions for Discussion

 1. Why did Nationwide need an enterprise-wide data 
warehouse?

 2. How did integrated data drive the business value?
 3. What forms of analytics are employed at  Nationwide?
 4. With integrated data available in an enterprise data 

warehouse, what other applications could Nationwide 
potentially develop?

What We can Learn from this application 
case
The proper use of integrated information in organiza-
tions can help achieve better business outcomes. Many 
organizations now rely on data warehousing technologies 
to perform  the online analytical processes on the data to 
derive valuable insights. The insights are used to develop 
predictive   models that further enable the growth of the 
organizations by more precisely assessing customer needs. 
Increasingly, organizations are moving toward deriving 
value from analytical applications in real time with the 
help of integrated data from real-time data warehousing 
technologies.

Source: Teradata.com, “Nationwide, Delivering an On Your Side 
Experience,” teradata.com/Workarea/linkit.aspx?Linkidentifie
r=id&itemid=14714 (accessed February 2013).
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Our major focus in this book is the support of decision making through 
 computer-based information systems. The purpose of this chapter is to describe 
the  conceptual foundations of decision making and how decision support is 

 provided. This chapter includes the following sections:

 2.1 Opening Vignette: Decision Modeling at HP Using Spreadsheets 68

 2.2 Decision Making: Introduction and Definitions 70

 2.3 Phases of the Decision-Making Process 72

 2.4 Decision Making: The Intelligence Phase 74

 2.5 Decision Making: The Design Phase 77

 2.6 Decision Making: The Choice Phase 85

 2.7 Decision Making: The Implementation Phase 85

 2.8 How Decisions Are Supported 86

 2.9 Decision Support Systems: Capabilities 89

 2.10 DSS Classifications 91

 2.11 Components of Decision Support Systems 94

Learning Objectives

Foundations and Technologies  
for Decision Making

C h a p t e r  

2

■ Understand the conceptual foundations 
of decision making

■ Understand Simon’s four phases of 
decision making: intelligence, design, 
choice, and implementation

■ Understand the essential definition  
of DSS

■ Understand important DSS classifications
■ Learn how DSS support for decision 

making can be provided in practice
■ Understand DSS components and how 

they integrate
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68	 Part	I	 •	 Decision	Making	and	Analytics:	An	Overview

2.1  Opening Vignette: Decision Modeling at Hp Using 
Spreadsheets

HP is a major manufacturer of computers, printers, and many industrial products. Its vast 
product line leads to many decision problems. Olavson and Fry (2008) have worked on 
many spreadsheet models for assisting decision makers at HP and have identified several 
lessons from both their successes and their failures when it comes to constructing and 
applying spreadsheet-based tools. They define a tool as “a reusable, analytical solution 
designed to be handed off to nontechnical end users to assist them in solving a repeated 
business problem.”

When trying to solve a problem, HP developers consider the three phases in devel-
oping a model. The first phase is problem framing, where they consider the following 
questions in order to develop the best solution for the problem:

•	Will	analytics	solve	the	problem?
•	Can	an	existing	solution	be	leveraged?
•	Is	a	tool	needed?

The first question is important because the problem may not be of an analytic nature, 
and	therefore,	a	spreadsheet	tool	may	not	be	of	much	help	in	the	long	run	without	fixing	
the	nonanalytical	part	of	the	problem	first.	For	example,	many	inventory-related	issues	
arise because of the inherent differences between the goals of marketing and supply 
chain	groups.	Marketing	likes	to	have	the	maximum	variety	in	the	product	line,	whereas	
supply chain management focuses on reducing the inventory costs. This difference is par-
tially outside the scope of any model. Coming up with nonmodeling solutions is impor-
tant as well. If the problem arises due to “misalignment” of incentives or unclear lines 
of authority or plans, no model can help. Thus, it is important to identify the root issue.

The	second	question	is	important	because	sometimes	an	existing	tool	may	solve	a	
problem	that	then	saves	time	and	money.	Sometimes	modifying	an	existing	tool	may	solve	
the problem, again saving some time and money, but sometimes a custom tool is neces-
sary	to	solve	the		problem.	This	is	clearly	worthwhile	to	explore.

The third question is important because sometimes a new computer-based system 
is not required to solve the problem. The developers have found that they often use 
analytically derived decision guidelines instead of a tool. This solution requires less time 
for development and training, has lower maintenance requirements, and also provides 
simpler	and	more	intuitive	results.	That	is,	after	they	have	explored	the	problem	deeper,	
the developers may determine that it is better to present decision rules that can be eas-
ily implemented as guidelines for decision making rather than asking the managers to 
run some type of a computer model. This results in easier training, better understanding 
of the rules being proposed, and increased acceptance. It also  typically leads to lower 
development costs and reduced time for deployment.

If a model has to be built, the developers move on to the second phase—the actual 
design and development of the tools. Adhering to five guidelines tends to increase the 
probability that the new tool will be successful. The first guideline is to develop a proto-
type as quickly as possible. This allows the developers to test the designs, demonstrate 
various features and ideas for the new tools, get early feedback from the end users to 
see what works for them and what needs to be changed, and test adoption. Developing 
a prototype also prevents the developers from overbuilding the tool and yet allows them 
to construct more scalable and standardized software applications later. Additionally, by 
developing a prototype, developers can stop the process once the tool is “good enough,” 
rather than building a standardized solution that would take longer to build and be more 
expensive.
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