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To the Student

With the hope that this work will stimulate  
an interest in Engineering Mechanics  

and provide an acceptable guide to its understanding.
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7

The main purpose of this book is to provide the student with a clear and thorough 
presentation of the theory and application of engineering mechanics. To achieve this 
objective, this work has been shaped by the comments and suggestions of hundreds 
of reviewers in the teaching profession, as well as many of the author’s students.

New to this Edition
Expanded Answer Section.  The answer section in the back of the book now  
includes additional information related to the solution of select Fundamental 
Problems in order to offer the student some guidance in solving the problems.

Re-writing of Text Material.  Some concepts have been clarified further in 
this edition, and throughout the book the accuracy has been enhanced, and important 
definitions are now in boldface throughout the text to highlight their importance.

New Photos.  The relevance of knowing the subject matter is reflected by the 
real-world applications depicted in the over 14 new or updated photos placed 
throughout the book. These photos generally are used to explain how the relevant 
principles apply to real-world situations and how materials behave under load.

New Problems.  There are approximately 30% new problems that have been  
added to this edition, which involve applications to many different fields of 
engineering.

New Videos.  Three types of videos are available that are designed to enhance 
the most important material in the book. Lecture Videos serve to test the student’s 
ability to understand the concepts, Example Problem Videos are intended to review 
these problems, and Fundamental Problem Videos guide the student in solving these  
problems that are in the book. They are available for selected sections in the chapters 
and marked with this icon. The videos appear on a companion website available for 
separate purchase at www.pearsonglobaleditions.com.

PREFACE
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8	 Preface

Hallmark Features
Besides the new features mentioned, other outstanding features that define the 
contents of the book include the following:

Organization and Approach.  Each chapter is organized into well-defined 
sections that contain an explanation of specific topics, illustrative example problems, 
and a set of homework problems. The topics within each section are placed into 
subgroups defined by boldface titles. The purpose of this is to present a structured 
method for introducing each new definition or concept and to make the book 
convenient for later reference and review.

Chapter Contents.  Each chapter begins with an illustration demonstrating a 
broad-range application of the material within the chapter. A bulleted list of the 
chapter contents is provided to give a general overview of the material that will  
be covered.

Emphasis on Free-Body Diagrams.  Drawing a free-body diagram is 
particularly important when solving problems, and for this reason this step is strongly 
emphasized throughout the book. In particular, special sections and examples are 
devoted to show how to draw free-body diagrams. Specific homework problems 
have also been added to develop this practice.

Procedures for Analysis.  A general procedure for analyzing any mechanics 
problem is presented at the end of the first chapter. Then this procedure is customized 
to relate to specific types of problems that are covered throughout the book. This  
unique feature provides the student with a logical and orderly method to follow when 
applying the theory. The example problems are solved using this outlined method in 
order to clarify its numerical application. Realize, however, that once the relevant 
principles have been mastered and enough confidence and judgment have been 
obtained, the student can then develop his or her own procedures for solving problems.

Important Points.  This feature provides a review or summary of the most 
important concepts in a section and highlights the most significant points that should 
be known when applying the theory to solve problems.

Fundamental Problems.  These problem sets are selectively located just after 
most of the example problems. They provide students with simple applications of  
the concepts, and therefore, the chance to develop their problem-solving skills  
before attempting to solve any of the standard problems that follow. In addition, 
they can be used for preparing for exams, and they can be used at a later time when 
preparing for the Fundamentals in Engineering Exam. The partial solutions are 
given in the back of the book.
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	 Preface	 9

Conceptual Understanding.  Through the use of photographs placed 
throughout the book, the theory is applied in a simplified way in order to illustrate 
some of its more important conceptual features and instill the physical meaning of 
many of the terms used in the equations.

Homework Problems.  Apart from the Fundamental and Conceptual type 
problems mentioned previously, other types of problems contained in the book 
include the following:

•	 Free-Body Diagram Problems.  Some sections of the book contain introduc
tory problems that only require drawing the free-body diagram for the specific 
problems within a problem set. These assignments will impress upon the student 
the importance of mastering this skill as a requirement for a complete solution of 
any equilibrium problem.

•	 General Analysis and Design Problems.  The majority of problems in the 
book depict realistic situations encountered in engineering practice. Some of these  
problems come from actual products used in industry. It is hoped that this realism 
will both stimulate the student’s interest in engineering mechanics and provide a  
means for developing the skill to reduce any such problem from its physical 
description to a model or symbolic representation to which the principles of 
mechanics may be applied.

Throughout the book, in any set of problems, an attempt has been made to arrange 
them in order of increasing difficulty except for the end of chapter review prob-
lems, which are presented in random order.

•	 Computer Problems.  An effort has been made to include a few problems that 
may be solved using a numerical procedure executed on either a desktop computer 
or a programmable pocket calculator. The intent here is to broaden the student’s 
capacity for using other forms of mathematical analysis without sacrificing the 
time needed to focus on the application of the principles of mechanics. Problems 
of this type, which either can or must be solved using numerical procedures, are 
identified by a “square” symbol (j) preceding the problem number.

The many homework problems in this edition, have been placed into two different 
categories. Problems that are simply indicated by a problem number have an 
answer and in some cases an additional numerical result given in the back of the 
book. An asterisk (*) before every fourth problem number indicates a problem 
without an answer.

Accuracy.  As with the previous editions, apart from the author, the accuracy of 
the text and problem solutions has been thoroughly checked by Kai Beng Yap and 
Jun Hwa Lee, along with a team of specialists at EPAM, including Georgii Kolobov, 
Ekaterina Radchenko, and Artur Akberov.
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10	 Preface

Contents
The book is divided into 11 chapters, in which the principles are first applied to 
simple, then to more complicated situations.

The kinematics of a particle is discussed in Chapter 12, followed by a discussion of 
particle kinetics in Chapter 13 (Equation of Motion), Chapter 14 (Work and Energy), 
and Chapter 15 (Impulse and Momentum). The concepts of particle dynamics 
contained in these four chapters are then summarized in a “review” section, and the  
student is given the chance to identify and solve a variety of problems. A similar 
sequence of presentation is given for the planar motion of a rigid body: Chapter 16  
(Planar Kinematics), Chapter 17 (Equations of Motion), Chapter 18 (Work and 
Energy), and Chapter 19 (Impulse and Momentum), followed by a summary and 
review set of problems for these chapters.

If time permits, some of the material involving three-dimensional rigid-body 
motion may be included in the course. The kinematics and kinetics of this motion are  
discussed in Chapters 20 and 21, respectively. Chapter 22 (Vibrations) may  
be included if the student has the necessary mathematical background. Sections of 
the book that are considered to be beyond the scope of the basic dynamics course  
are indicated by a star (★) and may be omitted. Note that this material also provides  
a suitable reference for basic principles when it is discussed in more advanced courses. 
Finally, Appendix A provides a list of mathematical formulas needed to solve the 
problems in the book, Appendix B provides a brief review of vector analysis, and 
Appendix C reviews application of the chain rule.

Alternative Coverage.  At the discretion of the instructor, it is possible to  
cover Chapters 12 through 19 in the following order with no loss in continuity: 
Chapters 12 and 16 (Kinematics), Chapters 13 and 17 (Equations of Motion),  
Chapter 14 and 18 (Work and Energy), and Chapters 15 and 19 (Impulse and 
Momentum).
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I have endeavored to write this book so that it will appeal to both the student and 
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Mastering Engineering
This online tutorial and assessment program allows you to integrate dynamic homework and practice problems 
with automated grading of exercises from the textbook. Tutorials and many end-of-section problems provide 
enhanced student feedback and optional hints. Mastering Engineering™ allows you to easily track the performance 
of your entire class on an assignment-by-assignment basis, or the detailed work of an individual student. For more 
information visit www.masteringengineering.com.

Resources for Instructors
Instructor’s Solutions Manual  This supplement provides complete solutions supported by problem statements 
and problem figures. The Instructor’s Solutions Manual is available in the Instructor Resource Center.

PowerPoint Slides  A complete set of all the figures and tables from the textbook are available in PowerPoint 
format.

Resources for Students
Videos  Developed by the author, three different types of videos are now available to reinforce learning the basic  
theory and applying the principles. The first set provides a lecture review and a self-test of the material related to 
the theory and concepts presented in the book. The second set provides a self-test of the example problems and the  
basic procedures used for their solution. The third set provides an engagement for solving the Fundamental 
Problems throughout the book. They are available for selected sections in the chapters and marked with a video 
icon. The videos can be accessed in the Pearson eText or from a website available for purchase separately at  
www.pearsonglobaleditions.com.
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CHAPTER  12

Although these jet planes are rather large, from a distance their motion can be analyzed 
as if each were a particle.
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KINEMATICS 
OF A  
PARTICLE

12.1  INTRODUCTION
Engineering mechanics is the study of the state of rest or motion of 
bodies subjected to the action of forces. It is divided into two areas, 
namely, statics and dynamics. Statics is concerned with the equilibrium 
of a body that is either at rest or moves with constant velocity. Here 
we will consider dynamics, which deals with the accelerated motion of 
a body. This subject will be presented in two parts: kinematics, which 
treats only the geometric aspects of the motion, and kinetics, which is 
the analysis of the forces causing the motion. To develop these principles, 
the dynamics of a particle will be discussed first, followed by topics in 
rigid-body dynamics in two and then three dimensions.

■■ To introduce the concepts of position, displacement, velocity, 
and acceleration.

■■ To study particle motion along a straight line and represent this 
motion graphically.

■■ To investigate particle motion along a curved path using different 
coordinate systems.

■■ To present an analysis of dependent motion of two particles.

■■ To examine the principles of relative motion of two particles 
using translating axes.

CHAPTER OBJECTIVES

Lecture Summary and Quiz,
Example, and Problem-

solving videos are available
where this icon appears.
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Historically, the principles of dynamics developed when it was possible 
to make an accurate measurement of time. Galileo Galilei (1564–1642) 
was one of the first major contributors to this field. His work consisted 
of experiments using pendulums and falling bodies. The most significant 
contributions to dynamics, however, were made by Isaac Newton  
(1642–1727), who is noted for his formulation of the three fundamental 
laws of motion and the law of universal gravitational attraction. Shortly 
after these laws were postulated, important techniques for their 
application were developed by Euler, D’Alembert, Lagrange, and others.

There are many problems in engineering whose solutions require 
application of the principles of dynamics. For example, bridges and 
frames are subjected to moving loads and natural forces caused by 
wind and earthquakes. The structural design of any vehicle, such as an 
automobile or airplane, requires consideration of the motion to which 
it is subjected. This is also true for many mechanical devices, such as 
motors, pumps, movable tools, industrial manipulators, and machinery. 
Furthermore, predictions of the motions of artificial satellites, projectiles, 
and spacecraft are based on the theory of dynamics. With further 
advances in technology, there will be an even greater need for knowing 
how to apply the principles of this subject.

Problem Solving.  Dynamics is considered to be more involved 
than statics since both the forces applied to a body and its motion must be 
taken into account. Also, many applications require using calculus, rather 
than just algebra and trigonometry. In any case, the most effective way of 
learning the principles of dynamics is to solve problems. To be successful 
at this, it is necessary to present the work in a logical and orderly manner 
as suggested by the following sequence of steps:

1. Read the problem carefully and try to correlate the actual physical
situation with the theory you have studied.

2. Draw any necessary diagrams and tabulate the problem data.

3. Establish a coordinate system and apply the relevant principles,
generally in mathematical form.

4. Solve the necessary equations using a consistent set of units, and
report the answer with no more than three significant figures, which
is generally the accuracy of the given data.

5. Study the answer using technical judgment and common sense to
determine whether or not it seems reasonable.

In applying this general procedure, do the work as neatly as possible. 
Being neat generally stimulates clear and orderly thinking, and vice versa. 
If you are having trouble developing your problem-solving skills, consider 
watching the videos available at https://media.pearsoncmg.com/intl/ge/
abp/resources/products/product.html#product,isbn=9781292451930.

M12_HIBB1930_15_GE_C12.indd   24 22/03/23   5:19 PM

https://media.pearsoncmg.com/intl/ge/abp/resources/products/product.html#product,isbn=9781292451930
https://media.pearsoncmg.com/intl/ge/abp/resources/products/product.html#product,isbn=9781292451930


	 12.2 R ectilinear Kinematics: Continuous Motion	 25

12

12.2 � RECTILINEAR KINEMATICS: 
CONTINUOUS MOTION

We will begin our study of dynamics by discussing the kinematics of 
a particle that moves along a straight path. Recall that a particle has 
a mass but negligible size and shape, so we will limit application to 
those objects that have dimensions that are of no consequence in the 
analysis of the motion. For example, a rocket, projectile, or a vehicle 
can be considered as a particle, as long as its motion is characterized 
by the motion of its mass center, and any rotation of the body is 
neglected.

Rectilinear Kinematics.  The kinematics of a particle is 
characterized by specifying, at any given instant, the particle’s position, 
velocity, and acceleration.

Position.  The rectilinear or straight-line path of a particle will be 
defined using a single coordinate axis s, Fig. 12–1a. The origin O on 
the path is a fixed point, and from this point the position coordinate s  
is used to specify the location of the particle at any given instant. 
The magnitude of s is the distance from O to the particle, usually 
measured in meters (m), and the sense of direction is defined by 
the algebraic sign of s. Although the choice is arbitrary, here s will 
be positive when the particle is located to the right of the origin, 
and it will be negative if the particle is located to the left of O.  
Position is actually a vector quantity since it has both magnitude and 
direction; however, it is being represented by the algebraic scalar s, 
rather than in boldface s, since the direction always remains along 
the coordinate axis.

Displacement.  The displacement of the particle is defined as the 
change in its position. For example, if the particle moves from one point 
to another, Fig. 12–1b, the displacement is

∆s = s′ - s

In this case ∆s is positive since the particle’s final position is to 
the right of its initial position, i.e., s′ 7 s. Displacement is also a 
vector quantity, and it should be distinguished from the distance 
the particle travels. Specifically, the distance traveled is a positive 
scalar that represents the total length of path over which the particle 
travels.

s

s

Position

(a)

O

Fig. 12–1

s

s

Displacement

(b)

s9

O
Ds
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Velocity.  If the particle moves through a displacement ∆s during the 
time interval ∆t, the average velocity of the particle is

vavg =
∆s
∆t

If we take smaller and smaller values of ∆t, the magnitude of ∆s becomes 
smaller and smaller. Consequently, the instantaneous velocity is a vector 
defined as v = lim

∆tS0
(∆s>∆t), or

( S+ )	 v =
ds
dt

	 (12–1)

Since ∆t or dt is always positive, the sign used to define the sense of the 
velocity is the same as that of ∆s or ds. For example, if the particle is 
moving to the right, Fig. 12–1c, the velocity is positive; whereas if it is 
moving to the left, the velocity is negative. (This is emphasized here by 
the arrow written at the left of Eq. 12–1.) The magnitude of the velocity is 
known as the speed, and it is generally expressed in units of m>s.

Occasionally, the term “average speed” is used. The average speed is 
always a positive scalar and is defined as the total distance traveled by a 
particle, sT , divided by the elapsed time ∆t; i.e.,

(vavg)sp =
sT

∆t

For example, the particle in Fig. 12–1d travels along the path of length sT  
in time ∆t, so its average speed is (vavg)sp = sT>∆t, but its average 
velocity is vavg = - ∆s>∆t.

s

Velocity

(c)

O
Ds

v

Ds

s
P

sT

Average velocity and
Average speed

O

P9

(d)

Fig. 12–1 (cont.)
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Acceleration.  If the velocity of the particle is known at two points, 
then the average acceleration of the particle during the time interval ∆t 
is defined as

aavg =
∆v

∆t

Here ∆v represents the difference in the velocity during the time interval 
∆t, i.e., ∆v = v′ - v, Fig. 12–1e.

The instantaneous acceleration at time t is a vector that is found by 
taking smaller and smaller values of ∆t and corresponding smaller and 
smaller values of ∆v, so that a = lim

∆tS0
(∆v>∆t), or

( S+ )	 a =
dv

dt
	 (12–2)

Substituting Eq. 12–1 into this result, we can also write

( S+ )	 a =
d2s

dt2

Both the average and instantaneous acceleration can be either positive 
or negative. In particular, when the particle is slowing down, or its speed is 
decreasing, the particle is said to be decelerating. In this case, v′ in Fig. 12–1f  
is less than v, and so ∆v = v′ - v will be negative. Consequently, a will 
also be negative, and therefore it will act to the left, in the opposite sense 
to v. Also, notice that if the particle is originally at rest, then it can have an 
acceleration if a moment later it has a velocity v′. Units commonly used 
to express the magnitude of acceleration are m>s2.

Finally, an important differential relation involving the displacement, 
velocity, and acceleration along the path may be obtained by eliminating 
the time differential dt between Eqs. 12–1 and 12–2. We have 

dt =
ds
v

=
dv

a
or

( S+ )	 a ds = v dv 	 (12–3)

Although we have now produced three important kinematic 
equations, realize that the above equation is not independent of  
Eqs. 12–1 and 12–2.

s

Acceleration

(e)

O

a

v v9

s
P

Deceleration

(f)

O

P9

v v9

a

Fig. 12–1 (cont.)
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Constant Acceleration, a = ac 

.  When the acceleration is 
constant, each of the three kinematic equations ac = dv>dt, v = ds>dt, 
and ac ds = v dv can be integrated to obtain formulas that relate ac , v, 
s, and t.

Velocity as a Function of Time.  Integrating ac = dv>dt, 
assuming that initially v = v0 when t = 0, we get

L
v

v0

dv = L
t

0
ac dt

( S+ )	 v = v0 + ac t	 (12–4)
Constant Acceleration

Position as a Function of Time.  Integrating  v =  ds>dt =  v0 +  act, 
assuming that initially s = s0 when t = 0, yields

L
s

s0

ds = L
t

0
(v0 + act) dt

( S+ )	 s = s0 + v0t + 1
2 ac t

2	 (12–5)
Constant Acceleration

Velocity as a Function of Position.  If we solve for t in Eq. 12–4 
and substitute it into Eq. 12–5, or integrate v dv = ac ds, assuming that 
initially v = v0 at s = s0, we get

L
v

v0

v dv = L
s

s0

ac ds

( S+ )	 v

2 = v0
2 + 2ac(s - s0)	 (12–6)

Constant Acceleration

The algebraic signs of s0 , v0, and ac , used in these equations, are 
determined from the positive direction of the s axis as indicated by the arrow 
written at the left of each equation. It is important to remember that these 
equations are useful only when the acceleration is constant and when t = 0, 
s = s0 , v = v0 . A typical example of constant accelerated motion occurs 
when a body falls freely toward the earth. If air resistance is neglected and 
the distance of fall is short, then the constant downward acceleration of the 
body when it is close to the earth is approximately 9.81 m>s2.

During the time this rocket undergoes 
rectilinear motion, its altitude as a 
function of time can be measured and 
expressed as s = s(t). Its velocity can 
then be found using v = ds>dt, and its 
acceleration can be determined from 
a = dv>dt.
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12•	 Dynamics is the study of bodies that have accelerated motion.

•	 Kinematics is a study of the geometry of the motion.

•	 Kinetics is a study of the forces that cause the motion.

•	 Rectilinear kinematics refers to straight-line motion.

•	 Speed refers to the magnitude of velocity.

•	 Average speed is the total distance traveled divided by the total time. This is different from the average 
velocity, which is the displacement divided by the time.

•	 A particle that is slowing down is decelerating.

•	 A particle can have an acceleration and yet have zero velocity.

•	 The relationship a ds = v dv is derived from a = dv>dt and v = ds>dt, by eliminating dt.

IMPORTANT POINTS

Coordinate System.
•	 Establish a position coordinate s along the path and specify its fixed origin and positive direction.

•	 Since motion is along a straight line, the vector quantities position, velocity, and acceleration can be 
represented as algebraic scalars. For analytical work the sense of s, v, and a is then defined by their 
algebraic signs.

•	 The positive sense for each of these scalars can be indicated by an arrow shown alongside each kinematic 
equation as it is applied.

Kinematic Equations.
•	 If a relation is known between any two of the four variables a, v, s, and t, then a third variable can be 

obtained by using one of the kinematic equations, a = dv>dt, v = ds>dt or a ds = v dv, since each 
equation relates all three variables.*

•	 Whenever integration is performed, it is important that the position and velocity be known at a given 
instant in order to evaluate either the constant of integration if an indefinite integral is used, or the limits 
of integration if a definite integral is used.

•	 Remember that Eqs. 12–4 through 12–6 have limited use. These equations apply only when the acceleration 
is constant and the initial conditions are s = s0 and v = v0 when t = 0.

* Some standard differentiation and integration formulas are given in Appendix A.

PROCEDURE FOR ANALYSIS

Refer to the companion website for  
Lecture Summary and Quiz videos.
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EXAMPLE 12.1

The car in Fig. 12–2 moves in a straight line such that for a short time 
its velocity is defined by v = (0.9t2 + 0.6t) m>s, where t is in seconds. 
Determine its position and acceleration when t = 3 s. When t = 0, s = 0.

s

O

a, v

Fig. 12–2

SOLUTION

Coordinate System.  The position coordinate extends from the 
fixed origin O to the car, positive to the right.

Position.  Since v = f(t), the car’s position can be determined from 
v = ds>dt, since this equation relates v, s, and t. Noting that s = 0 
when t = 0, we have*

( S+ )	  v =
ds
dt

= (0.9t2 + 0.6t)

 L
s

0
ds = L

t

0
(0.9t2 + 0.6t)dt

 s `
s

0
= 0.3t3 + 0.3t2 `

t

0

 s = 0.3t3 + 0.3t2

When t = 3 s,

	 s =  0.3(3)3 + 0.3(3)2 = 10.8 m� Ans.

Acceleration.  Since v = f(t), the acceleration is determined from 
a = dv>dt, since this equation relates a, v, and t.

( S+ )	   a =
dv

dt
=

d
dt

 (0.9t2 + 0.6t) = 1.8t + 0.6

When t = 3 s,

	 a = 1.8(3) + 0.6 = 6.00 m>s2 S � Ans.

NOTE: The formulas for constant acceleration cannot be used to solve 
this problem, because the acceleration is a function of time.

* The same result can be obtained by evaluating a constant of integration C rather than 
using definite limits on the integral. For example, integrating ds = (0.9t2 + 0.6t)dt 
yields s = 0.3t3 + 0.3t2 + C. Using the condition that at t = 0, s = 0, then C = 0.
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EXAMPLE 12.2

A small projectile is fired vertically downward into a fluid with an initial 
velocity of 60 m>s. Due to the drag resistance of the fluid the projectile 
experiences a deceleration of a = (-0.4v

3) m>s2, where v is in m>s. 
Determine the projectile’s velocity and position 4 s after it is fired.

SOLUTION

Coordinate System.  Since the motion is downward, the position 
coordinate is positive downward, with origin located at O, Fig. 12–3.

Velocity.  Here a = f(v) and so we must determine the velocity as a 
function of time using a = dv>dt, since this equation relates v, a, and t. 
(Why not use v = v0 + act?) Separating the variables and integrating, 
with v0 = 60 m>s when t = 0, yields*

(+ T)	 a =
dv

dt
= -0.4v

3	

L
v

60 m>s
 

dv

-0.4v

3 = L
t

0
dt

1
-0.4

 a 1
-2

b  
1
v

2 `
60

v

= t - 0

1
0.8

 c 1
v

2 -
1

(60)2 d = t

v = e c 1
(60)2 + 0.8t d

-1>2
f

 

m>s

Here the positive root is taken, since the projectile will continue to 
move downward. When t = 4 s,

	 v = 0.559 m>sT � Ans.

Position.  Knowing v = f(t), we can obtain the projectile’s position 
from v = ds>dt, since this equation relates s, v, and t. Using the initial 
condition s = 0, when t = 0, we have

(+ T)	 v =
ds
dt

= c 1
(60)2 + 0.8t d

-1>2

L
s

0
ds = L

t

0
c 1
(60)2 + 0.8t d

-1>2
dt

s =
2

0.8
 c 1

(60)2 + 0.8t d
1>2

`
0

t

s =
1

0.4
 e c 1

(60)2 + 0.8t d
1>2

-
1
60

f  m

When t = 4 s,
	 s = 4.43 m� Ans.
* The same result can be obtained by evaluating a constant of integration C rather than 
using definite limits on the integral.

s

O

Fig. 12–3
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A

O

vA 5 75 m>s

vB 5 0

sA 5 40 m

s

sB

B

C

Fig. 12–4

EXAMPLE 12.3

During a test the rocket in Fig. 12–4 travels upward at 75 m>s, and when 
it is 40 m from the ground its engine fails. Determine the maximum height 
sB reached by the rocket and its speed just before it hits the ground. While 
in motion the rocket is subjected to a constant downward acceleration of 
9.81 m>s2 due to gravity. Neglect the effect of air resistance.

SOLUTION

Coordinate System.  The origin O for the position coordinate s is 
taken at ground level with positive upward, Fig. 12–4.

Maximum Height.  Since the rocket is traveling upward, 
vA = +75 m>s when t = 0. At the maximum height s = sB the velocity 
vB = 0. For the entire motion, the acceleration is ac = -9.81 m>s2 
(negative since it acts in the opposite sense to positive velocity or 
positive displacement). Since ac is constant the rocket’s position may 
be related to its velocity at the two points A and B on the path by 
using Eq. 12–6, namely,

(+ c)	  vB
2 = vA

2 + 2ac(sB - sA)

 0 = (75 m>s)2 + 2(-9.81 m>s2)(sB - 40 m)

	   sB = 327 m� Ans.

Velocity.  To obtain the velocity of the rocket just before it hits the 
ground, we can apply Eq. 12–6 between points B and C, Fig. 12–4.

 (+ c)	 vC
2 = vB

2 + 2ac(sC - sB)

 = 0 + 2(-9.81 m>s2)(0 - 327 m)

 vC = -80.1 m>s = 80.1 m>s T � Ans.

The negative root was chosen since the rocket is moving downward.
Similarly, Eq. 12–6 may also be applied between points A and C, i.e.,

 (+ c)	  vC
2 = vA

2 + 2ac(sC - sA)

= (75 m>s)2 + 2(-9.81 m>s2)(0 - 40 m) 

 vC = -80.1 m>s = 80.1 m>s T � Ans.

NOTE: It should be realized that the rocket is subjected to a deceleration 
from A to B of 9.81 m>s2, and then from B to C it is accelerated at this 
rate. Furthermore, even though the rocket momentarily comes to rest 
at B (vB = 0) the acceleration at B is still 9.81 m>s2 downward!
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EXAMPLE 12.4

A metallic particle is subjected to the influence of a magnetic field 
as it travels downward from plate A to plate B, Fig. 12–5. If the 
particle is released from rest at the midpoint C, s = 100 mm, and 
the acceleration is a = (4s) m>s2, where s is in meters, determine the  
velocity of the particle when it reaches plate B, s = 200 mm, and  
the time it takes to travel from C to B.

SOLUTION

Coordinate System.  As shown in Fig. 12–5, s is positive downward, 
measured from plate A.

Velocity.  Since a = f(s), the velocity as a function of position can be 
obtained by using v dv = a ds. Realizing that v = 0 at s = 0.1 m, we have

 (+ T)	 v dv = a ds	

L
v

0
v dv = L

s

0.1 m
4s ds

1
2

 v2 `
0

v

=
4
2

 s2 `
0.1 m

s

	 v = 2(s2 - 0.01)1>2 m>s� (1)

At s = 200 mm = 0.2 m,

	 vB = 0.346 m>s = 346 mm>s T � Ans.

Time.  The time for the particle to travel from C to B can be 
obtained using v = ds>dt and Eq. 1, where s = 0.1 m when t = 0. 
From Appendix A,

 (+ T)	 ds = v dt

	 = 2(s2 - 0.01)1>2dt	

L
s

0.1
 

ds

(s2 - 0.01)1>2 = L
t

0
2 dt 

  ln12s2 - 0.01 + s2 `
0.1

s

= 2t `
0

t

 ln12s2 - 0.01 + s2 + 2.303 = 2t

At s = 0.2 m,

	 t =
ln12(0.2)2 - 0.01 + 0.22 + 2.303

2
= 0.658 s� Ans.

NOTE: The formulas for constant acceleration cannot be used here 
because the acceleration changes with position, i.e., a = 4s.

A

200 mm

100 mm

B

s
C

Fig. 12–5
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O

s 5 24.0 m s 5 6.125 m

t 5 2 s t 5 0 s t 5 3.5 s

(a)

Fig. 12–6

(0, 0)

v (m>s)

v 5 3t2 2 6t

(2 s, 0)
t (s)

(1 s, 23 m>s)

(b)

EXAMPLE 12.5

A particle moves along a horizontal path with a velocity of 
v = (3t2 - 6t) m>s, where t is in seconds. If it is initially located at 
the origin O, determine the distance traveled in 3.5 s, and the particle’s 
average velocity and average speed during the time interval.

SOLUTION

Coordinate System.  Here positive motion is to the right, measured 
from the origin O, Fig. 12–6a.

Distance Traveled.  Since v = f(t), the position as a function of 
time may be found by integrating v = ds>dt with t = 0, s = 0.

 ( S+ ) 	 ds = v dt	
= (3t2 - 6t) dt

L
s

0
ds = L

t

0
(3t2 - 6t) dt 

	s = (t3 - 3t2) m� (1)

In order to determine the distance traveled in 3.5 s, it is necessary 
to investigate the path of motion. If we graph the velocity function,  
Fig. 12–6b, then it shows that for 0 6 t 6 2 s the velocity is negative, 
which means the particle is traveling to the left, and for t 7 2 s the 
velocity is positive, and hence the particle is traveling to the right. 
Also, note that v = 0 when t = 2 s. The particle’s position when 
t = 0, t = 2 s, and t = 3.5 s can be determined from Eq. 1. This yields

s ∙ t = 0 = 0 s ∙ t = 2 s = -4.0 m s ∙ t = 3.5 s = 6.125 m

The path is shown in Fig. 12–6a. Hence, the distance traveled in 3.5 s is

	 sT = 4.0 + 4.0 + 6.125 = 14.125 m = 14.1 m� Ans.

Velocity.  The displacement from t = 0 to t = 3.5 s is

∆s = s ∙ t = 3.5 s - s ∙ t = 0 = 6.125 m - 0 = 6.125 m

and so the average velocity is

	 vavg =
∆s
∆t

=
6.125 m

3.5 s - 0
= 1.75 m>s S � Ans.

The average speed is defined in terms of the total distance traveled sT . 
This positive scalar is

	 (vavg)sp =
sT

∆t
=

14.125 m
3.5 s - 0

= 4.04 m>s� Ans.

NOTE: In this problem, the acceleration is a = dv>dt = (6t - 6) m>s2, 
which is not constant.

Refer to the companion website for a self quiz of these 
Example problems.
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F12–5.  The position of the particle is s = (2t2 - 8t + 6) m, 
where t is in seconds. Determine the time when the velocity 
of the particle is zero, and the total distance traveled by the 
particle when t = 3 s.

F12–1.  Initially, the car travels along a straight road with a 
speed of 35 m>s. If the brakes are applied and the speed of 
the car is reduced to 10 m>s in 15 s, determine the constant 
deceleration of the car.

FUNDAMENTAL PROBLEMS

s

Prob. F12–2

Prob. F12–1

s

Prob. F12–5

s

s

Prob. F12–6

F12–2.  A ball is thrown vertically upward with a speed of 
15 m>s. Determine the time of flight when it returns to its 
original position.

F12–3.  A particle travels along a straight line with a velocity 
of v = (4t - 3t2) m>s, where t is in seconds. Determine the 
position of the particle when t = 4 s. s = 0 when t = 0.

F12–4.  A particle travels along a straight line with a speed 
v = (0.5t3 - 8t) m>s, where t is in seconds. Determine the 
acceleration of the particle when t = 2 s.

F12–6.  A particle travels along a straight line with an 
acceleration of a = (10 - 0.2s) m>s2, where s is measured 
in meters. Determine the velocity of the particle when 
s = 10 m if v = 5 m>s at s = 0.

F12–7.  A particle moves along a straight line such that its 
acceleration is a = (4t2 - 2) m>s2, where t is in seconds. 
When t = 0, the particle is located 2 m to the left of the 
origin, and when t = 2 s, it is 20 m to the left of the origin. 
Determine the position of the particle when t = 4 s.

F12–8.  A particle travels along a straight line with a 
velocity of v = (20 - 0.05s2) m>s, where s is in meters. 
Determine the acceleration of the particle at s = 15 m.

Partial solutions and answers to all Fundamental Problems are given in the back of the book. Video solutions are 
available for select Fundamental Problems on the companion website.
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12–9.  When two cars A and B are next to one another, 
they are traveling in the same direction with speeds vA and 
vB, respectively. If B maintains its constant speed, while A 
begins to decelerate at aA, determine the distance d between 
the cars at the instant A stops.

12–1.  A particle is moving along a straight line such that 
its position is defined by s = (10t2 + 20) mm, where t is in 
seconds. Determine (a) the displacement of the particle 
during the time interval from t = 1 s to t = 5 s, (b) the average 
velocity of the particle during this time interval, and (c) the 
acceleration when t = 1 s.

12–2.  Starting from rest, a particle moving in a straight 
line has an acceleration of a = (2t - 6) m>s2, where t is in 
seconds. What is the particle’s velocity when t = 6 s, and 
what is its position when t = 11 s?

12–3.  A particle moves along a straight line such that its 
position is defined by s = (t2 - 6t + 5) m. Determine the 
average velocity, the average speed, and the acceleration of 
the particle when t = 6 s.

*12–4.  A particle travels along a straight line with a velocity 
v = (12 - 3t2) m>s, where t is in seconds. When t = 1 s, the 
particle is located 10 m to the left of the origin. Determine 
the acceleration when t = 4 s, the displacement from t = 0 
to t = 10 s, and the distance the particle travels during this  
time period.

12–5.  The acceleration of a particle as it moves along 
a straight line is given by a = (2t - 1) m>s2, where t is in 
seconds. If s = 1 m and v = 2 m>s when t = 0, determine 
the particle’s velocity and position when t = 6 s. Also, 
determine the total distance the particle travels during this 
time period.

12–6.  The velocity of a particle traveling in a straight 
line is given by v = (6t - 3t2) m>s, where t is in seconds. If 
s = 0 when t = 0, determine the particle’s deceleration and 
position when t = 3 s. How far has the particle traveled 
during the 3-s time interval, and what is its average speed?

12–7.  A particle moving along a straight line is subjected 
to a deceleration a = (-2v

3) m>s2, where v is in m>s. If it 
has a velocity v = 8 m>s and a position s = 10 m when t = 0, 
determine its velocity and position when t = 4 s.

*12–8.  A particle moves along a straight line such that its 
position is defined by s = (2t3 + 3t2 - 12t - 10) m. Determine 
the velocity, average velocity, and the average speed of the 
particle when t = 3 s.

PROBLEMS

BA

d

Prob. 12–9

12–10.  A particle moves along a straight path with an 
acceleration of a = (5>s)  m>s2, where s is in meters. 
Determine the particle’s velocity when s = 2 m, if it is 
released from rest when s = 1 m.

12–11.  A particle moves along a straight line with an 
acceleration of a = 5>(3s  1>3 + s  5>2) m>s2, where s is in 
meters. Determine the particle’s velocity when s = 2 m, if it 
starts from rest when s = 1 m. Use a numerical method to 
evaluate the integral.

*12–12.  A particle travels along a straight-line path such 
that in 4 s it moves from an initial position sA = -8 m to a 
position sB = +3 m. Then in another 5 s it moves from sB to 
sC = -6 m. Determine the particle’s average velocity and 
average speed during the 9-s time interval.

12–13.  The speed of a particle traveling along a straight 
line within a liquid is measured as a function of its position 
as v = (100 - s) mm>s, where s is in millimeters. Determine 
(a) the particle’s deceleration when it is located at point A,  
where sA = 75 mm, (b) the distance the particle travels 
before it stops, and (c) the time needed to stop the particle.
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12–18.  Car A starts from rest at t = 0 and travels along a  
straight road with a constant acceleration of 1.8 m>s2 until it 
reaches a speed of 24 m>s. Afterwards it maintains this speed. 
Also, when t = 0, car B located 1800 m down the road is 
traveling towards A at a constant speed of 18 m>s. Determine 
the distance traveled by car A when they pass each other.

12–14.  The acceleration of a rocket traveling upward is 
given by a = (6 + 0.02s) m>s2, where s is in meters. Determine 
the rocket’s velocity when s = 2 km and the time needed to 
reach this attitude. Initially, v = 0 and s = 0 when t = 0.

12–15.  The sports car travels along the straight road such 
that v = 32100 -  s m>s, where s is in meters. Determine 
the time for the car to reach s = 60 m. How much time does 
it take to stop?

s

v

Prob. 12–15

s

Prob. 12–14
12–19.  A train starts from rest at station A and accelerates 
at 0.5  m>s2 for 60 s. Afterwards it travels with a constant 
velocity for 15 min. It then decelerates at 1 m>s2 until it is  
brought to rest at station B. Determine the distance between 
the stations.

A B

1800 m

18 m>s

Prob. 12–18

 

s v

Prob. 12–21

*12–16.  A particle is moving with a velocity of v0 when 
s = 0 and t = 0. If it is subjected to a deceleration of a = -kv

3, 
where k is a constant, determine its velocity and position as 
functions of time.

12–17.  A particle is moving along a straight line with an 
initial velocity of 6 m>s when it is subjected to a deceleration 
of a = (-1.5v

1>2) m>s2, where v is in m>s. Determine how far 
it travels before it stops. How much time does this take?

*12–20.  A sandbag is dropped from a balloon which is 
ascending vertically at a constant speed of 6 m>s. If the bag 
is released with the same upward velocity of 6 m>s when  
t = 0 and hits the ground when t = 8 s, determine the speed of 
the bag as it hits the ground and the altitude of the balloon 
at this instant.

12–21.  When a train is traveling along a straight track at 
2 m>s, it begins to accelerate at a = (60v

-4) m>s2, where v is  
in m>s. Determine its velocity v and the position 3 s after 
the acceleration.
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*12–28.  As a body is projected to a high altitude above the 
earth’s surface, the variation of the acceleration of gravity 
with respect to altitude y must be taken into account. 
Neglecting air resistance, this acceleration is determined 
from the formula a = -g0[R

2>(R + y)2], where g0 is the 
constant gravitational acceleration at sea level, R is the 
radius of the earth, and the positive direction is measured 
upward. If g0 = 9.81 m>s2 and R = 6356 km, determine 
the minimum initial velocity (escape velocity) at which a 
projectile should be shot vertically from the earth’s surface 
so that it does not fall back to the earth. Hint: This requires 
that v = 0 as y S ∞ .

12–29.  Accounting for the variation of gravitational 
acceleration a with respect to altitude y (see Prob. 12–28), 
derive an equation that relates the velocity of a freely 
falling particle to its altitude. Assume that the particle is 
released from rest at an altitude y0 from the earth’s surface. 
With what velocity does the particle strike the earth if it 
is released from rest at an altitude y0 = 500 km? Use the 
numerical data in Prob. 12–28.

12–30.  A train is initially traveling along a straight track 
at a speed of 90 km>h. For 6 s it is subjected to a constant 
deceleration of 0.5 m>s2, and then for the next 5 s it has 
a constant deceleration ac. Determine ac so that the train 
stops at the end of the 11-s time period.

12–31.  Two cars A and B start from rest at a stop line.  
Car A has a constant acceleration of aA = 8 m>s2, while 
Car B has an acceleration of aB = (2t3>2) m>s2, where t is in 
seconds. Determine the distance between the cars when A 
reaches a velocity of vA = 120 km>h.

*12–32.  A sphere is fired downward into a medium with 
an initial speed of 27 m>s. If it experiences a deceleration 
of a = (-6t) m>s2, where t is in seconds, determine the 
distance traveled before it stops.

12–33.  The velocity of a particle traveling along a straight 
line is v =  v0 - ks, where k is constant. If s =  0 when t =  0, 
determine the position and acceleration of the particle as a 
function of time.

12–34.  Ball A is thrown vertically upward from the top 
of a 30-m-high building with an initial velocity of 5 m>s. At 
the same instant another ball B is thrown upward from the 
ground with an initial velocity of 20 m>s. Determine the 
height from the ground and the time at which they pass.

12–22.  When a particle falls through the air, its initial 
acceleration a = g diminishes until it is zero, and thereafter 
it falls at a constant or terminal velocity vf . If this variation of 
the acceleration can be expressed as a = (g>v

2
 f)(v

2
 f - v

2),  
determine the time needed for the velocity to become 
v = vf>2. Initially the particle falls from rest.

12–27.  A ball is thrown with an upward velocity of 5 m>s  
from the top of a 10-m-high building. One second later 
another ball is thrown upward from the ground with a 
velocity of 10 m>s. Determine the height from the ground 
where the two balls pass each other.

v

Prob. 12–23

12–23.  The acceleration of the boat is defined by  
a = (1.5 v1>2) m>s. Determine its speed when t = 4 s if it has 
a speed of 3 m>s when t = 0.

*12–24.  A particle is moving along a straight line such 
that its acceleration is defined as a = (-2v) m>s2, where v 
is in meters per second. If v = 20 m>s when s = 0 and t = 0, 
determine the particle’s position, velocity, and acceleration 
as functions of time.

12–25.  When a particle is projected vertically upward 
with an initial velocity of v0, it experiences an acceleration  
a =  -(g + kv

2), where g is the acceleration due to gravity, k 
is a constant, and v is the velocity of the particle. Determine 
the maximum height reached by the particle.

12–26.  If the effects of atmospheric resistance are 
accounted for, a freely falling body has an acceleration 
defined by the equation a = 9.81[1 - v

 2 (10 -4)] m>s2, 
where v is in m>s and the positive direction is downward. 
If the body is released from rest at a very high altitude, 
determine (a) the velocity when t = 5 s, and (b) the body’s 
terminal or maximum attainable velocity (as t S ∞).
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12.3 � RECTILINEAR KINEMATICS: 
ERRATIC MOTION

When a particle has erratic or changing motion, then its position, velocity, 
and acceleration cannot be described by a single continuous mathematical 
function along the entire path. Instead, a series of functions will be 
required to specify the motion at different intervals. For this reason, it is 
convenient to represent the motion as a graph. If this graph relates any 
two of the variables s, v, a, t, then it can be used to construct subsequent 
graphs relating two other variables since the variables are related by the 
differential relationships v = ds>dt, a = dv>dt, or a ds = v dv. Several 
situations are possible.

The s–t, V–t, and a–t Graphs.  To construct the v9t graph given 
the s–t graph, Fig. 12–7a, the equation v = ds>dt should be used, since it 
relates the variables s and t to v. This equation states that

 
ds
dt

= v

slope of
s9t graph

= velocity

For example, by measuring the slope on the s–t graph when t = t1, the 
velocity is v1, Fig. 12–7a. The v9t graph can be constructed by plotting 
this and other values at each instant, Fig. 12–7b.

The a–t graph can be constructed from the v9t graph in a similar 
manner, since

 
dv

dt
= a 

slope of
v9t graph

 = acceleration

Examples of various measurements are shown in Fig. 12–8a and plotted 
in Fig. 12–8b.

If the s–t curve for each interval of motion can be expressed by a 
mathematical function s = s(t), then the equation of the v9t and a–t 
graph for the same interval can be obtained from succesive derivatives of 
this function with respect to time since v = ds/dt and a = dv>dt. Since 
differentiation reduces a polynomial of degree n to that of degree n – 1, 
then if the s–t graph is parabolic (a second-degree curve), the v9t graph 
will be a sloping line (a first-degree curve), and the a–t graph will be a 
constant or a horizontal line (a zero-degree curve).

tO

v0 5 t 5 0

(a)

s

ds
dt

v1 5 t1

s1

t1 t2 t3

s2
s3

ds
dt

v2 5 t2
ds
dt

v3 5 t3
ds
dt

tO

(b)

v0

v

v1

v3

v2

t1 t2

t3

Fig. 12–7

a0 5

v

tt1 t2 t3

v1

v2

v3

v0

a1 5

a2 5

O

(a)

a3 5 t3
dv

dt

t2
dv

dtt 5 0
dv

dt

t1
dv

dt

t

a

a0 5 0
a1 a2

a3
t1 t2 t3O

(b)

Fig. 12–8
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If the a–t graph is given, Fig. 12–9a, the v9t graph may be constructed 
using a = dv>dt, written as

 ∆v = La dt 

 change in
velocity

 =  
area under
a9t graph

Therefore, to construct the v9t graph, we begin with the particle’s initial 
velocity v0 and then add to this small increments of area (∆v) determined 
from the a–t graph. In this manner successive points, v1 = v0 + ∆v, etc., 
are determined, Fig. 12–9b. When doing this, an algebraic addition of the 
area increments of the a–t graph is necessary, since areas lying above the  
t axis correspond to an increase in v (“positive” area), whereas those 
lying below the axis indicate a decrease in v (“negative” area).

Similarly, if the v9t graph is given, Fig. 12–10a, it is possible to determine 
the s–t graph using v = ds>dt, written as

 ∆s = Lv dt

 displacement =
area under
v9t graph

Here we begin with the particle’s initial position s0 and add 
(algebraically) to this small area increments ∆s determined from the  
v9t graph, Fig. 12–10b.

Due to the integration, if segments of the a–t graph can be described 
by a series of equations, then each of these equations can be successively 
integrated to yield equations describing the corresponding segments of 
the v9t and s–t graphs. As a result, if the a–t graph is linear (a first-degree 
curve), integration will yield a v9t graph that is parabolic (a second-
degree curve) and an s–t graph that is cubic (third-degree curve).

t

a

a0

t1

Dv 5 10

t1

t

v

v0

t1

v1
Dv

(a)

(b)

a dt

Fig. 12–9

t

v

v0

t1

t

s

s0

t1

s1
Ds

(b)

(a)

Ds 5 10

t1
v dt

Fig. 12–10
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The V–s and a–s Graphs.  If the a–s graph can be constructed, 
then points on the v9s graph can be determined by using v dv = a ds. 
Integrating this equation between the limits v = v0 at s = s0 and v = v1 
at s = s1 , we have,

1
2(v

2
1 - v

2
0) = L

s1

s0

 a ds 

 area under
  a9s graph

For example, if the red area in Fig. 12–11a is determined, and the initial 
velocity v0 at s0 = 0 is known, then v1 = 121 s1

0
a ds + v0

221>2, Fig. 12–11b. 
Other points on the v–s graph can be determined in this same manner.

If the v–s graph is known, the acceleration a at any position s can be 
determined using a ds = v dv, written as

 a = vadv

ds
b

velocity times
acceleration = slope of

v9s graph

For example, at point (s, v) in Fig. 12–12a, the slope dv>ds of the  
v–s graph is measured. Then with v and dv>ds known, the value of a can 
be calculated, Fig. 12–12b.

The v–s graph can also be constructed from the a–s graph, or vice 
versa, by approximating the known graph in various intervals with 
mathematical functions, v = f(s) or a = g(s), and then using a ds = v dv 
to obtain the other graph.

a

a0

s1

1  a ds 5    (v1
2
 2 v0

2)
0

s1

(a)

1—
2

s

Fig. 12–11

v

v0

s1

v1

(b)

s

v

v0

(a)

s

dv

ds

v

s

Fig. 12–12

a0

(b)

s

a

s

a 5 v(dv>ds)

Refer to the companion website for Lecture 
Summary and Quiz videos.
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t (s)

s (m)

150

30

10 30

(a)

s 5 0.3t2

s 5 6t 2 30

EXAMPLE 12.6

A bicycle moves along a straight road such that its position is described 
by the graph shown in Fig. 12–13a. Construct the v9t and a–t graphs for 
0 … t … 30 s.

SOLUTION

V–t Graph.  Since v = ds>dt, the v9t graph can be determined by 
differentiating the equations defining the s–t graph, Fig. 12–13a. We have

0 … t 6 10 s;	 s = (0.3t 2) m	  v =
ds
dt

= (0.6t) m>s

10 s 6 t … 30 s;	 s = (6t - 30) m	 v =
ds
dt

= 6 m>s

These results are plotted in Fig. 12–13b. We can also obtain specific 
values of v by measuring the slope of the s–t graph at a given instant. 
For example, at t = 20 s, the slope of the s–t graph is determined from 
the straight line from 10 s to 30 s, i.e.,

t = 20 s;	 v =
∆s
∆t

=
150 m - 30 m

30 s - 10 s
= 6 m>s

a–t Graph.  Since a = dv>dt, the a–t graph can be determined by 
differentiating the equations defining the lines of the v9t graph. This yields

0 … t 6 10 s;	    v = (0.6t) m>s    a =
dv

dt
= 0.6 m>s2

10 6 t … 30 s;	   v = 0.6 m>s            a =
dv

dt
= 0

These results are plotted in Fig. 12–13c.

NOTE: The sudden change in a at t = 10 s represents a discontinuity,  but 
actually this change must occur during a short, but finite time.

t (s)

v (m>s)

6

10 30

(b)

v 5 0.6t
v 5 6

t (s)

a (m>s2)

0.6

30

(c)

10

Fig. 12–13
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EXAMPLE 12.7

The car in Fig. 12–14a starts from rest and travels along a straight track 
such that it accelerates at 10 m>s2 for 10 s, and then decelerates at 
2 m>s2. Draw the v9t graph and determine the time t′ needed to stop 
the car.

SOLUTION

t (s)

a (m>s2)

(a)

10

22 10

A1

A2

t9

t (s)

v (m>s)

(b)

100

10

v 5 10t

v 5 22t 1 120

t9 5 60

Fig. 12–14

V–t Graph.  Since dv = a dt, the v9t graph is determined by 
integrating the straight-line segments of the a–t graph. Using the initial 
condition v = 0 when t = 0, we have

0 … t 6 10 s;  a = (10) m>s2;  L
v

0
dv = L

t

0
10 dt, v = 10t

When t = 10 s, v = 10(10) = 100 m>s. Using this as the initial 
condition for the next time period, we have

10 s 6 t … t′; a = (-2) m>s2;L
v

100 m>s
dv = L

t

10 s
-2 dt, v = (-2t + 120) m>s

When t = t′ we require v = 0. This yields, Fig. 12–14b,

	 t′ = 60 s� Ans.

A direct solution for t′ is also possible by realizing that the area under 
the a–t graph is equal to the change in the car’s velocity. We require 
∆v = 0 = A1 + A2 , Fig. 12–14a. Thus

	 0 = 10 m>s2(10 s) + (-2 m>s2) (t′ - 10 s)

	 t′ = 60 s� Ans.
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(b)

60 120
s (m)

a (m>s2)

3

0.6

a 5 0.04s 1 0.6

a 5 0

Fig. 12–15

(a)

v (m>s)

s (m)
3

15

60 120

v 5 0.2s 1 3
v 5 15

EXAMPLE 12.8

The v–s graph describing the motion of a motorcycle is shown in  
Fig. 12–15a. Construct the a–s graph of the motion and determine the 
time needed for the motorcycle to reach the position s = 120 m.

SOLUTION
a–s Graph.  Since the equations for segments of the v–s graph are 
given, the a–s graph can be determined using a ds = v dv.

0 … s 6 60 m;   v = (0.2s + 3) m>s

a = v 
dv

ds
= (0.2s + 3) 

d
ds

 (0.2s + 3) = 0.04s + 0.6

 60 m 6 s … 120  m;   v = 15 m>s

 a = v 
dv

ds
= (15) 

d
ds

 (15) = 0

The results are plotted in Fig. 12–15b.

Time.  The time can be obtained using the v–s graph and v = ds>dt, 
because this equation relates v, s, and t. For the first segment of 
motion, s = 0 when t = 0, so

0 … s 6 60 m;      v = (0.2s + 3) m>s;� dt =
ds
v

=
ds

0.2s + 3

	   L
t

0
dt = L

s

0
 

ds
0.2s + 3

	

	   t = (5 ln(0.2s + 3) - 5 ln 3) s

At s = 60  m, t = 5 ln[0.2(60) + 3] - 5 ln 3 = 8.05 s. Therefore, 
using these initial conditions for the second segment of motion,

60 m 6 s … 120  m;  v = 15 m>s;  dt =
ds
v

=
ds
15

 L
t

8.05 s
dt = L

s

60 m
 
ds
15

 

t - 8.05 =
s

15
- 4;

 t = a s
15

+ 4.05b  s

Therefore, at s = 120 m,

	 t =
120
15

+ 4.05 = 12.0 s� Ans.

NOTE: The graphical results can be checked in part by calculating slopes. 
For example, at s = 0, a = v(dv>ds) = 3(15 - 3)>60 = 0.6 m>s2. 
Also, the results can be checked in part by inspection. The v–s graph 
indicates the initial increase in velocity (acceleration) followed by constant 
velocity (a = 0).

Refer to the companion website for a self quiz of these 
Example problems.
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F12–12.  The sports car starts from rest and travels along a 
straight road. Its initial increasing acceleration is caused by the 
rear wheels of the car as shown on the graph. Construct the v9s 
graph. What is the velocity of the car when s = 10 m and s = 15 m?

F12–9.  Due to an external force, the particle travels along 
a straight track such that its position is described by the  
s9t graph. Construct the v9t graph for the same time 
interval. Take v = 0, a = 0 when t = 0.

FUNDAMENTAL PROBLEMS

t (s)

s (m)

6 8 10

108

s 5 0.5 t3

s 5 108

Prob. F12–9

 
t (s)

s (m)

s  30t  75

5

75

225

10
0

s  3t2

Prob. F12–10

F12–10.  The sports car travels along a straight road such 
that its position is described by the graph. Construct the v9t 
and a9t graphs for the time interval 0 ≤ t ≤ 10 s.

F12–11.  The rider begins to apply a force to the rear wheel 
of his bicycle, thereby initiating an acceleration. If his velocity 
is described by the v9s graph, construct the a9s graph for the 
same interval.

s (m)

v (m>s)

10

40

v 5 0.25 s

Prob. F12–11

s (m)
5

10

10
0

a (m>s2)

15

Prob. F12–12

t (s)
t9

a (m>s2)

5
0

20

210

Prob. F12–13

15
t (s)

v (m>s)

v 5 30 t

v 5 215 t 1 225

5

150

Prob. F12–14

F12–13.  The dragster starts from rest and has an 
acceleration described by the graph. Construct the v9t graph  
for the time interval 0 … t … t′, where t′ is the time for the 
car to come to rest.

F12–14.  The dragster starts from rest and has a velocity 
described by the graph. Construct the s9t graph during the 
time interval 0 … t … 15 s. Also, determine the total distance 
traveled during this time interval.
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12–41.  A car starting from rest moves along a straight 
track with an acceleration as shown. Determine the time t 
for the car to reach a speed of 50 m>s and construct the  
v–t  graph that describes the motion until the time t.

12–35.  If the position of a particle is defined by 
s = [3 sin(p>4)t + 8] m, where t is in seconds, construct the 
s9t, v9t, and a9t graphs for 0 … t … 10 s.

PROBLEMS

60

20 30

20

5
t (s)

v (m/s)

Prob. 12–37

10 t
t (s)

8

a (m>s2)

Prob. 12–41

t (s)

10

40 80

v (m/s)

Prob. 12–42

12–39.  A particle starts from s = 0 and travels along a 
straight line with a velocity v = (t2 - 4t + 3) m>s, where t 
is in seconds. Construct the v–t and a–t graphs for the time 
interval 0 … t … 4 s.

12–42.  The velocity of a car is plotted as shown. Determine 
the total distance the car moves until it stops (t = 80 s). 
Construct the a9t graph.

12–38.  Two rockets start from rest at the same elevation. 
Rocket A accelerates vertically at 20 m>s2 for 12 s and then 
maintains a constant speed. Rocket B accelerates at 15 m>s2  
until reaching a constant speed of 150 m>s. Construct the 
a–t, v–t, and s–t graphs for each rocket until t = 20 s. What is 
the distance between the rockets when t = 20 s?

*12–40.  If the position of a particle is defined by 
s = [2 sin (p>5)t + 4] m, where t is in seconds, construct 
the s9t, v9t, and a9t graphs for 0 … t … 10 s.

*12–36.  A train starts from station A and for the first 
kilometer, it travels with a uniform acceleration. Then, 
for the next two kilometers, it travels with a uniform 
speed. Finally, the train decelerates uniformly for another 
kilometer before coming to rest at station B. If the time for 
the whole journey is six minutes, draw the v9t graph and 
determine the maximum speed of the train.

12–37.  From experimental data, the motion of a jet plane 
while traveling along a runway is defined by the v9t graph. 
Construct the s9t and a9t graphs for the motion. When  
t =  0, s =  0.
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12–46.  The rocket has an acceleration described by the 
graph. If it starts from rest, construct the v-t and s-t graphs 
for the motion for the time interval 0 … t … 14 s.

12–43.  The v–t graph for a particle moving through an 
electric field from one plate to another has the shape shown 
in the figure. The acceleration and deceleration that occur 
are constant and both have a magnitude of 4 m>s2. If the 
plates are spaced 200 mm apart, determine the maximum 
velocity vmax  and the time t′ for the particle to travel from 
one plate to the other. Also draw the s–t graph. When 
t = t′>2 the particle is at s = 100 mm.

t9>2 t9
t

v

smax

vmax
s

Probs. 12–43/44

*12–44.  The v–t graph for a particle moving through an 
electric field from one plate to another has the shape shown 
in the figure, where t′ = 0.2 s and vmax = 10 m>s. Draw 
the s–t and a–t graphs for the particle. When t = t′>2 the 
particle is at s = 0.5 m.

12–47.  The race car starts from rest and travels along 
a straight road until it reaches a speed of 26 m>s in 8 s as 
shown on the v9t graph. The flat part of the graph is caused 
by shifting gears. Draw the a–t graph and determine the 
maximum acceleration of the car.

t(s)

a(m>s2)

38

18

9 14

a2  36t
a  4t  18

5
5 2

Prob. 12–46

26

14

5 84
t (s)

v (m/s)

v � 3.5t

v � 4t � 6

6

Prob. 12–47

24

30 60

12

A

B

a (m/s2)

t (s)

Prob. 12–45

12–45.  A two-stage rocket is fired vertically from rest at  
s =  0 with the acceleration as shown. After 30 s the first 
stage, A, burns out and the second stage, B, ignites. Plot the 
v9t and s9t graphs which describe the motion of the second 
stage for 0 … t … 60 s.
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12–50.  The v–t graph for a train has been experimentally 
determined. From the data, construct the s–t and a–t graphs 
for the motion for 0 … t … 180 s. When t = 0, s = 0.

*12–48.  The jet car is originally traveling at a velocity 
of 10 m>s when it is subjected to the acceleration shown. 
Determine the car’s maximum velocity and the time t′ 
when it stops. When t = 0, s = 0.

t (s)

600

360

30 40

s (m)

s  24t  360

s  0.4t2

5

5

Prob. 12–49

6

15

24

t (s)

a (m>s2)

t9

Prob. 12–48

12–49.  The s–t graph for a train has been determined 
experimentally. From the data, construct the v–t and  
a–t graphs for the motion.

10 40
t (s)

80

v(m>s)

Prob. 12–51

t (s)

v (m>s)

10

6

12060 180

Prob. 12–50

12–51.  From experimental data, the motion of a jet plane 
while traveling along a runway is defined by the v–t graph 
shown. Construct the s–t and a–t graphs for the motion.
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12–55.  A two-stage rocket is fired vertically from rest with 
the acceleration shown. After 15 s the first stage A burns out  
and the second stage B ignites. Plot the v–t and s–t graphs 
which describe the motion of the second stage for 0 … t … 40 s.

*12–52.  The v–t graph for the motion of a car as it moves 
along a straight road is shown. Draw the s–t and a–t graphs. 
Also determine the average speed and the distance traveled 
for the 15-s time interval. When t = 0, s = 0.

5

10 154
t (s)

v (m>s)

v 5 1.25t
v 5 5

v 5 2t 1 15

Probs. 12–53/54

5 15

15

v 5 0.6t2 

t (s)

v (m>s)

Prob. 12–52

A

B

t (s)

a (m/s2)

15

15

20

40

Prob. 12–55

t (s)

6

30 48

v (m/s)

v � �    (t � 48)1—
3

v �     t1—
5

Probs. 12–56/57

12–53.  A motorcycle starts from rest at s = 0 and travels 
along a straight road with the speed shown by the v–t graph. 
Determine the total distance the motorcycle travels until it 
stops when t = 15 s. Also plot the a–t and s–t graphs.

*12–56.  A car travels along a straight road with the speed 
shown by the v–t graph. Plot the a–t graph.

12–54.  A motorcycle starts from rest at s = 0 and travels 
along a straight road with the speed shown by the v–t 
graph. Determine the motorcycle’s acceleration and 
position when t = 8 s and t = 12 s.

12–57.  A car travels along a straight road with the speed 
shown by the v–t graph. Determine the total distance the 
car travels until it stops when t = 48 s. Also plot the s–t 
graph.
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12–62.  The boat is originally traveling at a speed of 8 m>s 
when it is subjected to the acceleration shown in the graph. 
Determine the boat’s maximum speed and the time t when 
it stops.

12–58.  Two cars start from rest side by side and travel 
along a straight road. Car A accelerates at 4 m>s2 for 10 s 
and then maintains a constant speed. Car B accelerates at 
5 m>s 2 until reaching a constant speed of 25 m>s and then 
maintains this speed. Construct the a–t, v–t, and s–t graphs 
for each car until t = 15 s. What is the distance between the 
two cars when t = 15 s?

6 10
t (s)

6
1—
6

a (m>s2)

a     t2 

Prob. 12–59

v(m>s)

v  5s1>2

75

15

225 525

v  0.2s  120

s(m)

Prob. 12–64

t(s)

a (m>s2)

24

6

t

a 5 2    t 1 61—
4

Prob. 12–62

*12–60.  The speed of a train during the first minute has 
been recorded as follows:

 t 1s2    0 20 40 60

  v1m>s2   0 16 21 24

Plot the v–t graph, approximating the curve as straight-line 
segments between the given points. Determine the total  
distance traveled.

12–63.  If the position of a particle is defined as s =  
(5t - 3t2) m, where t is in seconds, construct the s–t, v–t, and 
a–t graphs for 0 … t … 2.5 s

12–59.  A motorcyclist starting from rest travels along 
a straight road and for 10 s has an acceleration as shown. 
Draw the v–t graph that describes the motion and find the 
distance traveled in 10 s.

12–61.  A particle travels along a curve defined by the 
equation s = (t3 - 3t2 + 2t) m, where t is in seconds. Draw 
the s–t, v–t, and a–t graphs for the particle for 0 … t … 3 s.

*12–64.  The jet bike is moving along a straight road 
with the speed described by the v–s graph. Construct the  
a–s graph.
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12–65.  The a–s graph for a freight train is given for the 
first 200 m of its motion. Plot the v–s graph. The train starts 
from rest.

s(m)

a (m>s2)

100

2

200

Prob. 12–65

300 600

3

s (m)

a (m/s2)

Prob. 12–66

v (m/s)

100 400

20

80

s (m)

v2 � 4s

v � 0.2s

Prob. 12–67

50

150 200
s (m)

v (m/s)

Prob. 12–68

12–66.  The motion of a train is described by the a–s graph 
shown. Draw the v–s graph if v = 0 at s = 0.

12–67.  The boat travels along a straight line with the speed 
described by the graph. Construct the s–t and a–s graphs. 
Also, determine the time required for the boat to travel a 
distance s = 400 m if s = 0  when  t = 0.

*12–68.  The v–s graph for a test vehicle is shown. 
Determine its acceleration when s = 100 m and when 
s = 175 m.
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12.4  GENERAL CURVILINEAR MOTION
Curvilinear motion occurs when a particle moves along a curved path. 
Since this path is often described in three dimensions, vector analysis will 
be used to formulate the particle’s position, velocity, and acceleration.*  
In this section the general aspects of curvilinear motion are discussed, 
and in subsequent sections we will consider three types of coordinate 
systems often used to analyze this motion.

Position.  Consider a particle located at a point on a space curve 
defined by the path function s(t), Fig. 12–16a. The position of the particle, 
measured from a fixed point O, will be designated by the position vector 
r = r(t).

Displacement.  If the particle moves a distance ∆s along the 
curve to a new position, defined by r′ = r + ∆r, Fig. 12–16b, then the 
displacement ∆r represents the change in the particle’s position and is 
determined by vector subtraction; i.e., ∆r = r′ - r.

Velocity.  If ∆r occurs during the time ∆t, then the average velocity of 
the particle is

vavg =
∆r
∆t

The instantaneous velocity is determined from this equation by letting 
∆t S 0, and consequently the direction of ∆r approaches the tangent to 
the curve. Hence, v = lim

∆tS0
(∆r>∆t) or

	 v =
dr
dt

	 (12–7)

Since dr will be tangent to the curve, the direction of v is also tangent 
to the curve, Fig. 12–16c. The magnitude of v, which is called the speed, 
is obtained by realizing that the length of the straight-line segment ∆r 
in Fig. 12–16b approaches the arc length ∆s as ∆t S 0, and so we have 
v = lim

∆tS0
(∆r>∆t) = lim

∆tS0
(∆s>∆t), or

	 v =
ds
dt

	 (12–8)

Thus, the speed can be obtained by differentiating the path function s 
with respect to time.

s
r

O

Position

(a)
Path

s

Displacement

(b)

r

r9

Ds

Dr
s

O

Velocity

(c)

r

v

s

O

Fig. 12–16

* A summary of some of the important concepts of vector analysis is given in Appendix B.
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Acceleration.  If the particle has a velocity v at time t and a velocity 
v′ = v + ∆v at t + ∆t, Fig. 12–16d, then the average acceleration of the 
particle during the time interval ∆t is

aavg =
∆v
∆t

where ∆v = v′ - v. To study this time rate of change, the two velocity 
vectors in Fig. 12–16d are plotted in Fig. 12–16e such that their tails are 
located at the fixed point O′ and their arrowheads touch points on a 
curve. This curve is called a hodograph, and when constructed, it describes 
the locus of points for the arrowhead of the velocity vector in the same 
manner as the path describes the locus of points for the arrowhead of the 
position vector, Fig. 12–16a.

To obtain the instantaneous acceleration, let ∆t S 0, and so 
a = lim

∆tS0
(∆v>∆t), or

	 a =
dv
dt

	 (12–9)

Substituting Eq. 12–7 into this result, we can also write

a =
d2r
dt2

By definition of the derivative, a acts tangent to the hodograph,  
Fig. 12–16f, and, in general it is not tangent to the path of motion,  
Fig. 12–16g.

vv9

(d)

v

(e)

Dv

O9
v9

v
a

(f)

Hodograph

O9

Acceleration

(g)
Path

a

Fig. 12–16
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12.5 � CURVILINEAR MOTION: 
RECTANGULAR COMPONENTS

Occasionally the motion of a particle can best be described along a path 
that is expressed in terms of its x, y, z coordinates.

Position.  If the particle is at point (x, y, z) on the path shown in  
Fig. 12–17a, then its location is defined by the position vector

	 r = xi + yj + zk � (12–10)

When the particle moves, the x, y, z components of r will be functions of 
time; i.e., x = x(t), y = y(t), z = z(t), so that r = r(t).

At any instant the magnitude of r is determined from Eq. B–3 in 
Appendix B as

r = 2x2 + y2 + z2

And the direction of r is specified by the unit vector ur = r>r.

Velocity.  The time derivative of r yields the velocity of the  
particle. Hence,

v =
dr
dt

=
d
dt

 (xi) +
d
dt

 (yj) +
d
dt

 (zk)

When taking this derivative, it is necessary to account for changes in both 
the magnitude and direction of each of the vector’s components. For 
example, the derivative of the i component of r is

d
dt

 (xi) =
dx
dt

 i + x 
di
dt

The last term is zero, because the x, y, z reference frame is fixed, and 
therefore the direction (and the magnitude) of i does not change with 
time. Differentiation of the j and k components are carried out in a 
similar manner, and so the final result is

	 v =
dr
dt

= vxi + vy   

j + vzk 	 (12–11)

where

	 vx = x# vy = y# vz = z# 	 (12–12)

The “dot” notation x# , y# , z#  represents the first time derivatives of x = x(t), 
y = y(t), z = z(t), respectively.

y

x

z

z

y
x

s

k
i

j

Position

(a)

r 5 xi 1 yj 1 zk 

y

x

z

s

Velocity

(b)

v 5 vxi 1 vyj 1 vzk 

Fig. 12–17
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The velocity has a magnitude that is found from

v = 2vx
2 + vy

2 + vz
2

and a direction that is specified by the unit vector u
v

= v>v. As discussed 
in Sec. 12.4, this direction is always tangent to the path, as shown in  
Fig. 12–17b.

Acceleration.  The acceleration of the particle is obtained by taking 
the time derivative of Eq. 12–11 (or the second time derivative of  
Eq. 12–10). We have

	 a =
dv
dt

= ax i + ay  j + az k� (12–13)

where

	
 ax = v

#
x = x

$

 ay = v

#
y = y

$

 az = v

#
z = z

$
� (12–14)

Here ax , ay , az represent the time derivatives of vx = vx(t), vy = vy(t), 
vz = vz(t), or the second time derivatives of x = x(t), y = y(t), z = z(t).

The acceleration has a magnitude

a = 2ax
2 + ay

2 + az
2

and a direction specified by the unit vector ua = a>a. Since a represents 
the time rate of change in both the magnitude and direction of the 
velocity, in general a will not be tangent to the path, Fig. 12–17c.

y

x

z

s

Acceleration

(c)

a 5 axi 1 ayj 1 azk 

Fig. 12–17
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magnitude and direction of the particle’s position, velocity, and 
acceleration.

•	 The velocity is always directed tangent to the path.

•	 In general, the acceleration is not tangent to the path, but 
rather, it is tangent to the hodograph.

•	 If the motion is described using rectangular coordinates, then 
the components along the x, y, z axes do not change direction, 
only their magnitude and sense (algebraic sign) will change.

IMPORTANT POINTS

Coordinate System.
•	 A rectangular coordinate system should be used to solve 

problems in cases where the motion can conveniently be 
expressed in terms of its x, y, z components.

Kinematic Quantities.
•	 Since rectilinear or straight-line motion occurs along each 

coordinate axis, then v = ds>dt and a = dv>dt; or in cases 
where the motion is not expressed as a function of time, the 
equation a ds = v dv can be used.

•	 In two dimensions, the equation of the path y = f (x) can 
be used to relate the x and y components of velocity and 
acceleration by applying the chain rule of calculus. A review of 
this concept is given in Appendix C.

•	 Once the x, y, z components of v and a have been determined, 
the magnitudes of these vectors are found from the 
Pythagorean theorem, Eq. B–3, and their coordinate direction 
angles from the components of their unit vectors, Eqs. B–4 
and B–5.

PROCEDURE FOR ANALYSIS

Refer to the companion website for Lecture 
Summary and Quiz videos.
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EXAMPLE 12.9

At any instant the horizontal position of the weather balloon in  
Fig. 12–18a is defined by x = (2.4t) m, where t is in seconds. If the 
equation of the path is y = x2>3, determine the magnitude and 
direction of the balloon’s velocity and acceleration when t = 2 s.

SOLUTION

Velocity.  The velocity component in the x direction is

 vx = x# =
d
dt

 (2.4t) = 2.4 m>s S

To find the relationship between the velocity components we will 
use the chain rule of calculus. When t = 2 s, x = 2.4122 = 4.8 m,  
Fig. 12–18a, and so

  vy = y# =
d
dt

 (x2>3) = 2xx# >3 = 2(4.8)(2.4)>3 = 7.68 m>s c

When t = 2 s, the magnitude of velocity is therefore

	  v = 2(2.4 m>s)2 + (7.68 m>s)2 = 8.05 m>s� Ans.

The velocity is tangent to the path, Fig. 12–18b, where

	 u
v

= tan-1 
vy

vx
= tan-1 

7.68
2.4

= 72.6°� Ans.

Acceleration.  The relationship between the acceleration components 
is determined using the chain rule. (See Appendix C.) We have

ax = v

#
x =

d
dt

 (2.4) = 0

ay = v

#
y =

d
dt

 (2xx# >3) = 2(x# )x# >3 + 2x(x
$)>3

= 2(2.4)2>3 + 2(4.8)(0)>3 = 3.84 m>s2 c

Thus,
	  a = 2(0)2 + (3.84)2 = 3.84 m>s2� Ans.

The direction of a, as shown in Fig. 12–18c, is

	 ua = tan-1 
3.84

0
= 90°� Ans.

NOTE: It is also possible to obtain vy and ay by first expressing 
y = f (t) = (2.4t)2>3 = 1.92t2 and then taking successive time derivatives.

y

A

B

x

4.8 m

(a)

y 5 x2

3

(b)

B
u

v

 5 72.6˚

v 5 8.05 m>s

(c)

B

ua 5 90˚

a 5 3.84 m>s2

Fig. 12–18
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x

y

(b)

100 m

vy v

a
vx

Fig. 12–19

x

y

(a)

y 5 0.001x2

100 m

y

x

EXAMPLE 12.10

For a short time, the path of the plane in Fig. 12–19a is described by 
y = (0.001x2) m. If the plane is rising with a constant upward velocity 
of 10 m>s, determine the magnitudes of the velocity and acceleration 
of the plane when it reaches an altitude of y = 100 m.

SOLUTION

When y = 100 m, then 100 = 0.001x2 or x = 316.2 m. Also, due to 
constant velocity vy = 10 m>s, and so the time is

y = vy t;    100 m = (10 m>s) t    t = 10 s

Velocity.  Using the chain rule (see Appendix C, Eq. C–1) to find the 
relationship between the velocity components, we have

y = 0.001x2

	 vy = y# =
dy

dx
 x# =

d
dt

 (0.001x2) = (0.002x)x# = 0.002 xvx� (1)

Thus

 10 m>s = 0.002(316.2 m)(vx)
  vx = 15.81 m>s 

The magnitude of the velocity is therefore

 v = 2vx
2 + vy

2 = 2(15.81 m>s)2 + (10 m>s)2 = 18.7 m>s� Ans.

Acceleration.  Using the chain rule, or Eq. C–2, the time derivative 
of Eq. 1 gives the relation between the acceleration components.

ay = v

#
y = (0.002x# )x# + 0.002x(x$) = 0.002(vx

2  + xax)

When x = 316.2 m, vx = 15.81 m>s , v# y = ay = 0, so that

0 = 0.0023(15.81 m>s)2 + 316.2 m(ax)4
ax = -0.791 m>s2

The magnitude of the plane’s acceleration is therefore

  a = 2ax
2 + ay

2 = 2(-0.791 m>s2)2 + (0 m>s2)2

	 = 0.791 m>s2� Ans.

These results are shown in Fig. 12–19b.
Refer to the companion website for a self quiz of these 
Example problems.

M12_HIBB1930_15_GE_C12.indd   58 22/03/23   5:20 PM



	 12.6 M otion of a Projectile	 59

12

12.6  MOTION OF A PROJECTILE
It is convenient to analyze the free-flight motion of a projectile in terms 
of its rectangular components. To illustrate, consider a projectile launched 
at point (x0 , y0), with an initial velocity of v0 , having components (v0)x  
and (v0)y , Fig. 12–20. When air resistance is neglected, the only force 
acting on the projectile is its weight, and this causes the projectile to have a 
constant downward acceleration of ac = g = 9.81 m>s2.* 

y

x

(v0)y

(v0)x

v0

vx

vy v

r

y0

x0

y

x

a 5 g

Fig. 12–20

* This assumes that the earth’s gravitational field does not vary with altitude.

Horizontal Motion.  Since ax = 0, application of the constant 
acceleration equations, 12–4 to 12–6, yields

( S+ )	   v = v0 + act;	   vx = (v0)x

( S+ )	   x = x0 + v0t + 1
2 act

2;	   x = x0 + (v0)xt

( S+ )	    v2 = v0
2 + 2ac(x - x0);	   vx = (v0)x

The first and last equations simply indicate that the horizontal component 
of velocity always remains constant during the motion.

Vertical Motion.  Since ay = -g, then applying Eqs. 12–4 to 12–6, 
we get

(+ c)	   v = v0 + act;	   vy = (v0)y - gt

(+ c)	   y = y0 + v0t + 1
2 act

2;	   y = y0 + (v0)yt - 1
2 gt2

(+ c)	   v2 = v0
2 + 2ac(y -  y0);	   vy

2 = (v0)
2
y -  2g(y -  y0)

Since the last equation can be formulated on the basis of eliminating 
the time t from the first two equations, then only two of the above three 
equations are independent of one another.

Each picture in this sequence is taken after 
the same time period. In the horizontal 
direction the distance between the ball is 
the same because its velocity component 
is constant.  The vertical distance between 
the ball is different because of the vertical 
deceleration-acceleration due to gravity.
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To summarize, problems involving the motion of a projectile can have 
at most three unknowns since only three independent equations can be 
written; that is, one equation in the horizontal direction and two in the 
vertical direction. Once vx and vy are obtained, the resultant velocity v, 
which is always tangent to the path, can be determined by the vector 
sum of vx and vy, as shown in Fig. 12–20.

Coordinate System.
•	 Establish the x, y coordinate axes and sketch the trajectory of 

the particle. Between any two points on the path specify the 
given problem data and identify the three unknowns. In all 
cases the acceleration of gravity acts downward and equals 
9.81 m>s2. The particle’s initial and final velocities should be 
represented in terms of their x and y components.

•	 Positive and negative position, velocity, and acceleration 
components always act in accordance with their associated 
coordinate directions.

Kinematic Equations.
•	 Depending upon the known data and what is to be determined, 

a choice should be made as to which three of the following 
four equations should be applied between the two points on 
the path to obtain the most direct solution to the problem.

Horizontal Motion.
•	 The velocity in the horizontal or x direction is constant, i.e., 

vx = (v0)x , and 

x = x0 + (v0)x t

Vertical Motion.
•	 In the vertical or y direction only two of the following three 

equations can be used for the solution.

  vy = (v0)y + ac t

  y = y0 + (v0)y t + 1
2 ac t

2

  vy
2 = (v0)y

2 + 2ac( y - y0)

PROCEDURE FOR ANALYSIS
Once thrown, the basketball follows a 
parabolic trajectory.

Refer to the companion website for Lecture 
Summary and Quiz videos.
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EXAMPLE 12.11

A sack slides off the ramp, shown in Fig. 12–21, with a horizontal 
velocity of 12 m>s. If the height of the ramp is 6 m from the floor, 
determine the time needed for the sack to strike the floor and the 
range R where the sack strikes the ground.

x

y

R

6 m

12 m>sA

B
C

a 5 g

Fig. 12–21
SOLUTION

Coordinate System.  The origin of coordinates is established at 
the beginning of the path, point A, Fig. 12–21. The initial velocity 
of the sack has components (vA)x = 12 m>s and (vA)y = 0. Also, 
between points A and B the acceleration is ay = -9.81 m>s2. Since 
(vB)x = (vA)x = 12 m>s, the three unknowns are (vB)y , R, and the 
time of flight tAB . Here we do not need to determine (vB)y .

Vertical Motion.  The vertical distance from A to B is known, and 
therefore we can obtain a direct solution for tAB by using the equation

 (+ c)	   yB = yA + (vA)ytAB + 1
2 actAB

2

	  -6 m = 0 + 0 + 1
2(-9.81 m>s2)tAB

2

	 tAB = 1.11 s� Ans.

Horizontal Motion.  Since tAB has been calculated, R is determined 
as follows:
( S+ )	   xB = xA + (vA)xtAB

	  R = 0 + 12 m>s (1.11 s)

	  R = 13.3 m� Ans.

NOTE: The calculation for tAB also indicates that if the sack was 
released from rest at A, it would take the same amount of time to 
strike the floor at C, Fig. 12–21.
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EXAMPLE 12.12

The chipping machine is designed to eject wood chips at vO = 7.5 m>s 
as shown in Fig. 12–22. If the tube is oriented at 30° from the horizontal, 
determine how high, h, the chips strike the pile if they land on the pile 
6 m from the tube.

1.2 m

O

308

y

x

6 m

h

A

vo 5 7.5 m>s

Fig. 12–22

SOLUTION

Coordinate System.  The three unknowns are the height h, time 
of flight tOA , and vertical component of velocity (vA)y . [Note that 
(vA)x = (vO)x .] With the origin of coordinates at O, Fig. 12–22, the 
initial velocity of a chip has components of

(vO)x = (7.5 cos 30°) m>s = 6.495 m>s S

(vO)y = (7.5 sin 30°) m>s = 3.75 m>sc

Also, (vA)x = (vO)x = 6.495 m>s and ay = -9.81 m>s2. Since we do 
not need to determine (vA)y , we have

Horizontal Motion.

( S+ )	   xA = xO + (vO)xtOA

	 6 m = 0 + (6.495 m>s)tOA

	   tOA = 0.9238 s

Vertical Motion.  Relating tOA to the initial and final elevations of a 
chip, we have

(+ c)    yA = yO + (vO)ytOA + 1
2 ac tOA

2

(h - 1.2 m) = 0 + (3.75 m>s)(0.9238 s) + 1
2(-9.81 m>s2)(0.9238 s)2

h = 0.479 m� Ans.
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EXAMPLE 12.13

The track for this racing event was designed so that riders jump off the 
slope at 30°, from a height of 1 m. During a race it was observed that 
the rider shown in Fig. 12–23a remained in mid air for 1.5 s. Determine 
the speed at which he was traveling off the ramp, the horizontal 
distance he travels before striking the ground, and the maximum 
height he attains. Neglect the size of the bike and rider.

308

A

C

B

y

x

R

h 1 m

(b)

Fig. 12–23

SOLUTION

Coordinate System.  As shown in Fig. 12–23b, the origin of 
the coordinates is established at A. Between the end points of the  
path AB the three unknowns are the initial speed vA , range R, and 
the vertical component of velocity (vB)y .

Vertical Motion.  Since the time of flight and the vertical distance 
between the ends of the path are known, we can determine vA .

(+ c)	   yB = yA + (vA)ytAB + 1
2 act

2
AB

	   -1 m = 0 + vA sin 30°(1.5 s) + 1
2(-9.81 m>s2)(1.5 s)2

	   vA = 13.38 m>s = 13.4 m>s� Ans.

Horizontal Motion.  The range R can now be determined.

( S+ )	   xB = xA + (vA)xtAB

	   R = 0 + 13.38 cos 30° m>s (1.5 s)
	  = 17.4 m � Ans.

In order to find the maximum height h we will consider the path AC, 
Fig. 12–23b. Here the three unknowns are the time of flight tAC , the 
horizontal distance from A to C, and the height h. At the maximum 
height (vC)y = 0, and since vA is known, we can determine h directly 
without considering tAC using the following equation.

	   (vC)y
2 = (vA)y

2 + 2ac[ yC - yA]

	   02 = (13.38 sin 30° m>s)2 + 2(-9.81 m>s2)[(h - 1 m) - 0]

	   h = 3.28 m� Ans.
NOTE: Show that the bike will strike the ground at B with a velocity 
having components of

(vB)x = 11.6 m>s S , (vB)y = 8.02 m>sT

(a)

Refer to the companion website for a self quiz of these 
Example problems.
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F12–18.  A particle travels along a straight-line path 
y = 0.5x. If the x component of the particle’s velocity 
is vx = (2t2) m>s, where t is in seconds, determine the 
magnitudes of the particle’s velocity and acceleration when 
t = 4 s.

F12–15.  If the x and y components of a particle’s velocity 
are vx = (32t) m>s and vy = 8 m>s, determine the equation 
of the path y = f(x), if x = 0 and y = 0 when t = 0.

F12–16.  A particle is traveling along the straight path. 
If its position along the x axis is x = (8t) m, where t is in 
seconds, determine its speed when t = 2 s.

FUNDAMENTAL PROBLEMS

y

x

3 m

4 m

y 5 0.75x

x 5 8t

Prob. F12–16

x

y
y2 5 4x

x 5 (4t4) m

Prob. F12–17

x

y

y 5 0.5x

Prob. F12–18

x

y

y 5 0.25x2

Prob. F12–19

F12–17.  A particle is constrained to travel along the 
path. If x = (4t4) m, where t is in seconds, determine the 
magnitudes of the particle’s velocity and acceleration when 
t = 0.5 s.

y

x

y 5 0.05x2

Prob. F12–20

F12–19.  A particle is traveling along the parabolic path 
y = 0.25x2. If x = 8 m, vx = 8 m>s, and ax = 4 m>s2 when  
t = 2 s, determine the magnitudes of the particle’s velocity 
and acceleration at this instant.

F12–20.  The box slides down the path described by the 
equation y = (0.05x2) m, where x is in meters. If the box has  
x components of velocity and acceleration of vx = -3 m>s 
and ax = -1.5 m>s2 at x = 5 m, determine the y components  
of the velocity and the acceleration of the box at this instant.
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F12–25.  A ball is thrown from A. If it is required to clear 
the wall at B, determine the minimum magnitude of its 
initial velocity vA.

F12–21.  The ball is kicked from point A with the initial 
velocity vA = 10 m>s. Determine the maximum height h it 
reaches.

F12–22.  The ball is kicked from point A with the initial 
velocity vA = 10 m>s. Determine the range R, and the 
speed when the ball strikes the ground.

vA 5 10 m>s

y

xB

R

A

B

h
x

308 C

Probs. F12–21/22

3 m

B

A
x

y

vA

308

10 m

1.5 m

Prob. F12–23

R

vB 5 20 m>s

3
4

5

Prob. F12–24

A

B

x

y

2.4 m

0.9 m

3.6 m

30°

vA

Prob. F12–25
F12–23.  Determine the speed at which the basketball at A 
must be thrown at the angle of 30° so that it makes it to the 
basket at B.

F12–24.  Water is sprayed at an angle of 90° from the slope 
at 20 m>s. Determine the range R.

F12–26.  A projectile is fired with an initial velocity of 
vA = 150 m>s off the roof of the building. Determine the 
range R where it strikes the ground at B.

A

150 m

vA 5 150 m>s

B

y

4
35

x

R

Prob. F12–26
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12–74.  A particle travels along the curve from A to B in 5 s.  
It takes 8 s for it to go from B to C and then 10 s to go from 
C to A. Determine its average speed when it goes around 
the closed path.

12–69.  When a rocket reaches an altitude of 40 m it 
begins to travel along the parabolic path (y - 40)2 = 160x, 
where the coordinates are measured in meters. If the 
component of velocity in the vertical direction is constant 
at vy = 180 m/s, determine the magnitudes of the rocket’s 
velocity and acceleration when it reaches an altitude of 80 m.

PROBLEMS

40 m

y

x

(y 40)2 160x

Prob. 12–69

A

C

D

B

x

y

10 m

5 m
15 m

Prob. 12–76

A

B

x

y

C

20 m

30 m

Prob. 12–74

12–75.  The velocity of a particle is given by v = 516t   2
 i +

4t   3j + (5t + 2)k6 m>s, where t is in seconds. If the particle 
is at the origin when t = 0, determine the magnitude of the 
particle’s acceleration when t = 2 s. Also, what is the x, y, z 
coordinate position of the particle at this instant?12–70.  If the velocity of a particle is defined as v(t) = 

{0.8t2i + 12t1>2j + 5k} m>s, determine the magnitude 
and coordinate direction angles a, b, g of the particle’s 
acceleration when t = 2 s.

12–71.  The velocity of a particle is v =  53i +  (6 -  2t)j6  m>s,  
where t is in seconds. If r = 0 when t = 0, determine 
the displacement of the particle during the time interval 
t = 1 s to t = 3  s.

*12–72.  A particle travels along the parabolic path  
y = bx2. If its component of velocity along the y axis is  
vy = ct2, determine the x and y components of the particle’s 
acceleration. Here b and c are constants.

12–73.  A particle travels along the circular path  
x2 + y2 = r2. If the y component of the particle’s velocity is  
vy = 2r cos 2t, determine the x and y components of its 
acceleration at any instant.

*12–76.  A particle travels along the curve from A to B in 2 s.  
It takes 4 s for it to go from B to C and then 3 s to go from 
C to D. Determine its average speed when it goes from A 
to D.
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12–77.  The motorcycle travels with constant speed v0  
along the path that, for a short distance, takes the form of a 
sine curve. Determine the x and y components of its velocity 
at any instant on the curve.

45�

30�

30 m

x

y

A

B

C

Prob. 12–80

L L

c
c

x

y

v0

y 5 c sin (     x)––
L
p

Prob. 12–77

 40 m>s

A

B

C

 16 m>s

 12 m>s

y

x

Prob. 12–82

y

z

x

Prob. 12–81

12–78.  Show that if a projectile is fired at an angle u from 
the horizontal with an initial velocity v0, the maximum 
range the projectile can travel is given by Rmax = v0

2>g, 
where g is the acceleration of gravity. What is the angle u for 
this condition?

12–81.  The roller coaster car travels down the helical path 
at constant speed such that the parametric equations that 
define its position are x = c sin kt, y = c cos kt, z = h - bt, 
where c, h, and b are constants. Determine the magnitudes 
of its velocity and acceleration.

12–82.  A car traveling along the road has the velocities 
indicated in the figure when it arrives at points A, B, and C. 
If it takes 10 s to go from A to B, and then 15 s to go from B 
to C, determine the average acceleration between points A 
and B and between points A and C.

12–79.  A rocket is fired from rest at x = 0 and travels 
along a parabolic trajectory described by y2 = [120(103)x] m. 
If the x component of acceleration is ax = (1

4 t2) m>s2, where 
t is in seconds, determine the magnitudes of the rocket’s 
velocity and acceleration when t = 10 s.

*12–80.  A particle travels along the curve from A to B in  
1 s. If it takes 3 s for it to go from A to C, determine its 
average velocity when it goes from B to C.
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12–86.  Neglecting the size of the ball, determine the 
magnitude vA of the basketball’s initial velocity and its 
velocity when it passes through the basket.

12–83.  The flight path of the helicopter as it takes off from 
A is defined by the parametric equations x = (2t2) m and  
y = (0.04t3) m, where t is the time in seconds. Determine the 
distance the helicopter is from point A and the magnitudes 
of its velocity and acceleration when t = 10 s.

x

y

O

y � 0.5x2

Prob. 12–88

3 m

B

A

vA
308

10 m

2 m

Prob. 12–86

A

C D

B

y

x

v 5 10 m>s

x2

4  1 y2 5 1

Prob. 12–84

*12–84.  Pegs A and B are restricted to move in the 
elliptical slots due to the motion of the slotted link. If the link  
moves with a constant speed of 10 m>s, determine the 
magnitudes of the velocity and acceleration of peg A when 
x = 1 m.

12–85.  It is observed that the time for the ball to strike the 
ground at B is 2.5 s. Determine the speed vA and angle uA  at 
which the ball was thrown.

vA

A

B

1.2 m

50 m

uA

Prob. 12–85

y

x
A

Prob. 12–83

v0 3 m

6 m

u0

Prob. 12–87

12–87.  Determine the minimum initial velocity v0 and the 
corresponding angle u0 at which the ball must be kicked in 
order for it to just cross over the 3-m-high fence.

*12–88.  The particle travels along the path defined by the  
parabola y = 0.5x  2. If the component of velocity along  
the x axis is vx = (5t) m>s, where t is in seconds, determine the 
particle’s distance from the origin O and the magnitude of 
its acceleration when t = 1 s. When t = 0, x = 0, y = 0.
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12–89.  A projectile is given a velocity v0 at an angle f above  
the horizontal. Determine the distance d to where it strikes 
the sloped ground. The acceleration due to gravity is g.

4 m

vA

100 m

B

A

3
4

5

uA

Probs. 12–94/95

30 m

B

A

1.2 m

vA  30 m>s

uA

Prob. 12–93

R

BA

vA 5 10 m>s

u

Probs. 12–91/92

d
x

y

φ θ

v0

Probs. 12–89/90

12–93.  The pitching machine is adjusted so that the 
baseball is launched with a speed of vA = 30 m>s. If the ball 
strikes the ground at B, determine the two possible angles 
uA at which it was launched.

12–91.  The girl at A can throw a ball at vA = 10 m>s. 
Calculate the maximum possible range R = Rmax and the 
associated angle u at which it should be thrown. Assume the 
ball is caught at B at the same elevation from which it is 
thrown.

12–94.  It is observed that the skier leaves the ramp A at  
an angle uA = 25° with the horizontal. If he strikes the 
ground at B, determine his initial speed vA and the time 
of flight tAB.

12–90.  A projectile is given a velocity v0. Determine the  
angle f at which it should be launched so that d is a 
maximum. The acceleration due to gravity is g.

*12–92.  Show that the girl at A can throw the ball to the 
boy at B by launching it at equal angles measured up or 
down from a 45° inclination. If vA = 10 m>s, determine the 
range R if this value is 15°, i.e., u1 = 45° - 15° = 30° and  
u2 = 45° + 15° = 60°. Assume the ball is caught at the same 
elevation from which it is thrown.

12–95.  It is observed that the skier leaves the ramp A at an 
angle uA = 25° with the horizontal. If he strikes the ground 
at B, determine his initial speed vA and the speed at which 
he strikes the ground.
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*12–96.  The skateboard rider leaves the ramp at A with an 
initial velocity vA at a 305 angle. If he strikes the ground at B,  
determine vA and the time of flight.

8 m

4 m

1 m

AA

d

vA

C

u

Probs. 12–97/98

vA

5 m

1 m

A

B

30

Prob. 12–96

10 m

20 m

1.8 m

B

A
vA

30

C

Prob. 12–100

R

A

t (s)

a (m>s2)

B

40

8

D

CvB

hB

hC

458

Prob. 12–99

*12–100.  A projectile is fired from the platform at B. 
The shooter fires his gun from point A at an angle of 30°. 
Determine the muzzle speed of the bullet if it hits the 
projectile at C. 

12–97.  The boy at A attempts to throw a ball over the roof 
of a barn with an initial speed of vA = 15 m>s. Determine the  
angle uA at which the ball must be thrown so that it reaches 
its maximum height at C. Also, find the distance d where the 
boy should stand to make the throw.

12–98.  The boy at A attempts to throw a ball over the 
roof of a barn such that it is launched at an angle uA = 40°. 
Determine the minimum speed vA at which he must throw 
the ball so that it reaches its maximum height at C. Also, find  
the distance d where the boy must stand so that he can 
make the throw.

12–99.  The missile at A takes off from rest and rises 
vertically to B, where its fuel runs out in 8 s. If the 
acceleration varies with time as shown, determine  
the missile’s height hB and speed vB. If by internal controls 
the missile is then suddenly pointed 45° as shown, and 
allowed to travel in free flight, determine the maximum 
height attained, hC, and the range R to where it crashes at D.
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*12–104.  The velocity of a water jet discharging from an 
orifice can be obtained from v = 22gh, where h = 2 m  
is the depth of the orifice from the free water surface. 
Determine the time for a particle of water leaving the 
orifice to reach a point B and the horizontal distance x 
where it hits the surface.

12–101.  If the dart is thrown with a speed of 10 m>s, 
determine the shortest possible time before it strikes the 
target. Also, what is the corresponding angle uA at which it 
should be thrown, and what is the velocity of the dart when 
it strikes the target?

A

B C

vA

50 mm

100 mm

250 mm

408

100 mm

Prob. 12–103

B

4 m

A vA uA

Probs. 12–101/102

12–103.  The drinking fountain is designed such that the 
nozzle is located a distance away from the edge of the basin 
as shown. Determine the maximum and minimum speed at 
which water can be ejected from the nozzle so that it does 
not splash over the sides of the basin at B and C.

12–105.  The man at A wishes to throw two darts at the 
target at B so that they arrive at the same time. If each dart 
is thrown with a speed of 10 m>s, determine the angles 
uC  and uD at which they should be thrown and the time 
between each throw. Note that the first dart must be thrown 
at uC  (7  uD), then the second dart is thrown at uD.

B

5 m

A D

CuC

uD

Prob. 12–105

1.5 m

2 m A

x
B

vA

Prob. 12–104

12–102.  If the dart is thrown with a speed of 10 m>s,  
determine the longest possible time when it strikes the 
target. Also, what is the corresponding angle uA at which it 
should be thrown, and what is the velocity of the dart when 
it strikes the target?
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12–106.  The balloon A is ascending at the rate  
vA = 12 km>h and is being carried horizontally by the wind  
at vw = 20 km>h. If a ballast bag is dropped from the 
balloon at the instant h = 50 m, determine the time needed 
for it to strike the ground. Assume that the bag was released 
from the balloon with the same velocity as the balloon. 
Also, with what speed does the bag strike the ground?

408

3

4

5

R

B

A

Prob. 12–107

h

vw  20 km/h

vA  12 km/h

A

Prob. 12–106

x

y

B

O
u2u1

Prob. 12–108

vc  2 m/s

30

3 m

1 m

A B

R

Prob. 12–109

12–107.  The snowmobile is traveling at 10 m>s when it 
leaves the embankment at A. Determine the time of flight 
from A to B and the range R of the trajectory.

*12–108.  A boy throws a ball at O in the air with a speed 
v0 at an angle u1. If he then throws another ball with the 
same speed v0 at an angle u2 6 u1, determine the time 
between the throws so that the balls collide in midair at B.

12–109.  Small packages traveling on the conveyor belt 
fall off into a l-m-long loading car. If the conveyor is 
running at a constant speed of vC =  2 m>s, determine the 
smallest and largest distance R at which the end A of the 
car may be placed from the conveyor so that the packages 
enter the car.
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12.7 � CURVILINEAR MOTION: NORMAL 
AND TANGENTIAL COMPONENTS

When the path along which a particle travels is known, then it is often 
convenient to describe the motion using n and t axes that are normal and 
tangent to the path, respectively, and at the instant considered have their 
origin located at the particle.

Planar Motion.  To establish these axes, consider the particle in  
Fig. 12–24a, which is at position s, measured from point O. The t axis 
is tangent to the curve at the particle and is positive in the direction 
of increasing s. We will designate this positive direction with the unit 
vector ut . A unique choice for the normal axis can be made by noting 
that geometrically the curve is constructed from a series of differential 
arc segments ds, Fig. 12–24b. Each segment ds is formed from the arc 
of an associated circle having a radius of curvature r (rho) and center 
of curvature O′. The normal axis n is perpendicular to the t axis and 
its positive direction is towards the center of curvature O′, Fig. 12–24a. 
This direction, which is always on the concave side of the curve, will be 
designated by the unit vector un . The plane which contains the n and t 
axes is referred to as the embracing or osculating plane, and in this case 
it is fixed in the plane of motion.

Velocity.  As indicated in Sec. 12.4, the particle’s velocity v has a 
direction that is always tangent to the path, Fig. 12–24c, and a magnitude 
that is determined by taking the time derivative of the path function 
s = s(t), i.e., v = ds>dt (Eq. 12–8). Hence,

	 v = vut	 (12–15)

where

	 v = s# 	 (12–16)
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Acceleration.  The acceleration of the particle is the time rate of 
change of the velocity. Therefore,

	 a = v# = v

# ut + vu# t	 (12–17)

To determine the time derivative u# t , note that as the particle moves along 
the arc ds in time dt, ut preserves its magnitude of unity; however, its 
direction changes, and becomes u=

t , Fig. 12–24d. As shown in Fig. 12–24e,  
we require u=

t = ut + dut, where dut acts between the arrowheads of ut 
and u=

t. Since ut = u∙t = 1, then dut has a magnitude of dut = (1) du, and 
its direction is defined by un . Consequently, dut = duun , and therefore 
the time derivative becomes u# t = u

#
un . Since ds = rdu, Fig. 12–24d,  

then u
#

= s# >r, and therefore

u# t = u
#
un =

s#

r
 un =

v

r
 un

Substituting this into Eq. 12–17, a can be written as the sum of its two 
components,

	 a = atut + anun	 (12–18)

where

	 at = v

#   or   at ds = v dv	 (12–19)

and

	 an =
v

2

r
	 (12–20)

These two mutually perpendicular components are shown in Fig. 12–24f. 
Therefore, the magnitude of acceleration is

	 a = 2at
2 + an

2	 (12–21)
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