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Preface to the Instructor

This fifth edition of Physics for Scientists and Engineers: A 
Strategic Approach continues to build on the research-driven 
instructional techniques introduced in the first edition and the 
extensive feedback from thousands of users. From the begin-
ning, the objectives have been:

 ■ To produce a textbook that is more focused and coherent, 
less encyclopedic.

 ■ To integrate proven results from physics education research 
into the classroom in a way that allows instructors to use a 
range of teaching styles.

 ■ To provide a balance of quantitative reasoning and con-
ceptual understanding, with special attention to concepts 
known to cause student difficulties.

 ■ To develop students’ problem-solving skills in a systematic 
manner.

A more complete explanation of 
these goals and the rationale behind 
them can be found in the Ready-To-
Go Teaching Modules and in my 
 paperback book, Five Easy  Lessons: 
Strategies for Successful Physics 
Teaching. Please request a copy 
from your local Pearson sales rep-
resentative if it is of interest to you  
(ISBN 978-0-805-38702-5).

What’s New to This Edition
The fifth edition of Physics for Scientists and Engineers con-
tinues to utilize the best results from educational research and 
to tailor them for this course and its students. At the same time, 
the extensive feedback we’ve received from both instructors 
and students has led to many changes and improvements to 
the text, the figures, and the end-of-chapter problems. Changes 
include:

 ■ The Chapter 6 section on drag has been expanded to in-
clude drag in a viscous fluid (Stokes’ law). The Reynolds 
number is introduced as an indicator of whether drag is pri-
marily viscous or primarily inertial.

 ■ Chapter 14 on fluids now includes the flow of viscous flu-
ids (Poiseuille’s equation) and a discussion of turbulence.

 ■ An optional Advanced Topic section on coupled oscilla-
tions and normal modes has been added to Chapter 15.

 ■ Chapter 20 now includes an extensive quantitative section 
on entropy and its application.

 ■ A vector review has been added to Chapter 22, the first 
electricity chapter, and the worked examples make extra 

effort to remind students how to work with vectors. 
Returning to vectors after not having used them exten-
sively since mechanics is a stumbling block for many 
students.

 ■ The number of applications illustrated with sidebar figures 
has been increased and now includes accelerometers, heli-
copter rotors, quartz oscillators, laser printers, and wireless 
chargers.

 ■ There are more than 400 new or significantly revised end-
of-chapter problems. Scores of other problems have been 
edited to improve clarity. Difficulty ratings have been reca-
librated based on Mastering® Physics.

 ■ Several substantial new Challenge Problems have been 
added to cover interesting and contemporary topics such as 
gravitational waves, normal modes of the carbon dioxide 
molecule, and Bose-Einstein condensates.

 ■ New Ready-To-Go Teaching Modules are an easy-to-use 
online instructor’s guide. These modules provide back-
ground information about topics and techniques that are 
known student stumbling blocks along with suggestions 
and assignments for use before, during, and after class.

Textbook Organization
Physics for Scientists and Engineers is divided into eight parts: 
Part I: Newton’s Laws, Part II: Conservation Laws, Part III: 
 Applications of Newtonian Mechanics, Part IV: Oscillations 
and Waves, Part V: Thermodynamics, Part VI: Electricity and 
Magnetism, Part VII: Optics, and Part VIII: Relativity and 
Quantum Mechanics. Note that covering the parts in this or-
der is by no means essential. Each topic is self-contained, and 
Parts III–VII can be rearranged to suit an instructor’s needs. 
Part VII: Optics does need to follow Part IV: Oscillations and 
Waves; optics can be taught either before or after electricity 
and magnetism.

The complete 42-chapter version of Physics for Scien-
tists and Engineers is intended for a three-semester course. A 
two-semester course typically covers 30–32 chapters with the 
judicious omission of a few sections.

There’s a growing sentiment that quantum physics is be-
coming the province of engineers, not just physicists, and 
that even a two-semester course should include a reasonable 
introduction to quantum ideas. The Ready-To-Go Teaching 
Modules outline a couple of routes through the book that 
allow many of the quantum physics chapters to be included 
in a two-semester course. I’ve written the book with the hope 
that an increasing number of instructors will choose one of 
these routes.
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The Student Workbook
A key component of Physics for Scientists and Engineers: A 
Strategic Approach is the accompanying Student Workbook. 
The workbook bridges the gap between textbook and home-
work problems by providing students the opportunity to learn 
and practice skills prior to using those skills in quantitative end-
of-chapter problems, much as a musician practices technique 
separately from performance pieces. The workbook  exercises, 
which are keyed to each section of the textbook, focus on  
developing specific skills, ranging from identifying forces and 
drawing free-body diagrams to interpreting wave functions.

The workbook exercises, which are 
generally qualitative and/or graphical, 
draw heavily upon the physics educa-
tion research literature. The exercises 
deal with issues known to cause student 
difficulties and employ techniques that 
have proven to be effective at overcom-
ing those difficulties. The workbook 
exercises can be used in class as part 
of an active-learning teaching strategy, 
in recitation sections, or as assigned 
homework.

Force and Motion . C H A P T E R 5

9.

a. 2m b. 0.5m

Use triangles to show four points for the object of
mass 2m, then draw a line through the points. Use
squares for the object of mass 0.5m.

10. A constant force applied to object A causes A to
accelerate at 5 m/s2. The same force applied to object B
causes an acceleration of 3 m/s2. Applied to object C, it
causes an acceleration of 8 m/s2.

a. Which object has the largest mass? 

b. Which object has the smallest mass? 

c. What is the ratio of mass A to mass B? (mA/mB) = 

11. A constant force applied to an object causes the object to accelerate at 10 m/s2. What will the
acceleration of this object be if

a. The force is doubled? b. The mass is doubled? 

c. The force is doubled and the mass is doubled? 

d. The force is doubled and the mass is halved? 

12. A constant force applied to an object causes the object to accelerate at 8 m/s2. What will the
acceleration of this object be if

a. The force is halved? b. The mass is halved? 

c. The force is halved and the mass is halved? 

d. The force is halved and the mass is doubled? 

13. Forces are shown on two objects. For each:

a. Draw and label the net force vector. Do this right on the figure.
b. Below the figure, draw and label the object’s acceleration vector.

x
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The figure shows an acceleration-versus-force graph for
an object of mass m. Data have been plotted as individual
points, and a line has been drawn through the points.

Draw and label, directly on the figure, the acceleration-
versus-force graphs for objects of mass

Instructor Resources
A variety of resources are available to help instructors teach 
more effectively and efficiently. These can be downloaded 
from the Instructor Resources area of Mastering® Physics.

 ■ Ready-To-Go Teaching Modules are an online instruc-
tor’s guide. Each chapter contains background information 
on what is known from physics education research about 
student misconceptions and difficulties, suggested teaching 
strategies, suggested lecture demonstrations, and suggested 
pre- and post-class assignments.

 ■ Mastering® Physics is Pearson’s online homework system 
through which the instructor can assign pre-class reading 
quizzes, tutorials that help students solve a problem with 
hints and wrong-answer feedback, direct-measurement vid-
eos, and end-of-chapter questions and problems. Instructors 
can set up their own assignments or utilize pre-built assign-
ments that have been designed with a balance of problem 
types and difficulties.

 ■ PowerPoint Lecture Slides can be modified by the in-
structor but provide an excellent starting point for class 
presentations. The lecture slides include QuickCheck 
questions.

 ■ QuickCheck “Clicker Questions” are conceptual ques-
tions, based on known student misconceptions, for in-
class use with some form of personal response system. 

They are designed to be used as part of an active-learning 
teaching strategy. The Ready-To-Go teaching modules 
provide information on the effective use of QuickCheck 
questions.

 ■ The Instructor’s Solution Manual is available in both 
Word and PDF formats. We do require that solutions for 
student use be posted only on a secure course website.

 ■ All of the textbook figures, key equations, Problem-Solving 
Strategies, Tactics Boxes, and more can be downloaded.

 ■ The TestGen Test Bank contains over 2000 conceptual and 
multiple-choice questions. Test files are provided in both 
TestGen® and Word formats.
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Preface to the Student
From Me to You
The most incomprehensible thing about the universe is that it is 
comprehensible.

—Albert Einstein

The day I went into physics class it was death.
—Sylvia Plath, The Bell Jar

Let’s have a little chat before we start. A rather one-sided chat, 
admittedly, because you can’t respond, but that’s OK. I’ve 
 talked with many of your fellow students over the years, so I 
have a pretty good idea of what’s on your mind.

What’s your reaction to taking physics? Fear and loathing? 
Uncertainty? Excitement? All the above? Let’s face it, physics 
has a bit of an image problem on campus. You’ve probably 
heard that it’s difficult, maybe impossible unless you’re an 
Einstein. Things that you’ve heard, your experiences in other 
science courses, and many other factors all color your expecta-
tions about what this course is going to be like.

It’s true that there are many new ideas to be learned in phys-
ics and that the course, like college courses in general, is going 
to be much faster paced than science courses you had in high 
school. I think it’s fair to say that it will be an intense course. 
But we can avoid many potential problems and difficulties if 
we can establish, here at the beginning, what this course is 
about and what is expected of you—and of me!

Just what is physics, anyway? Physics is a way of thinking 
about the physical aspects of nature. Physics is not better than 
art or biology or poetry or religion, which are also ways to 
think about nature; it’s simply different. One of the things this 
course will emphasize is that physics is a human endeavor. The 
ideas presented in this book were not found in a cave or con-
veyed to us by aliens; they were discovered and developed by 
real people engaged in a struggle with real issues.

You might be surprised to hear that physics is not about 
“facts.” Oh, not that facts are unimportant, but physics is far 
more focused on discovering relationships and patterns than 
on learning facts for their own sake.

For example, the colors of the 
rainbow appear both when white 
light passes through a prism 
and—as in this photo—when 
white light reflects from a thin 
film of oil on water. What does 
this pattern tell us about the na-
ture of light?

Our emphasis on relation-
ships and patterns means that 
there’s not a lot of memorization 

when you study physics. Some—there are still definitions 
and equations to learn—but less than in many other courses. 
Our emphasis, instead, will be on thinking and reasoning. 
This is important to factor into your expectations for the 
course.

Perhaps most important of all, physics is not math! Physics 
is much broader. We’re going to look for patterns and relation-
ships in nature, develop the logic that relates different ideas, 
and search for the reasons why things happen as they do. In 
doing so, we’re going to stress qualitative reasoning, pictorial 
and graphical reasoning, and reasoning by analogy. And yes, 
we will use math, but it’s just one tool among many.

It will save you much frustration if you’re aware of this 
physics–math distinction up front. Many of you, I know, want 
to find a formula and plug numbers into it—that is, to do a math 
problem. Maybe that worked in high school science courses, 
but it is not what this course expects of you. We’ll certainly do 
many calculations, but the specific numbers are usually the last 
and least important step in the analysis.

As you study, you’ll sometimes be baffled, puzzled, and 
confused. That’s perfectly normal and to be expected. Making 
mistakes is OK too if you’re willing to learn from the expe-
rience. No one is born knowing how to do physics any more 
than he or she is born knowing how to play the piano or shoot 
basketballs. The ability to do physics comes from practice, rep-
etition, and struggling with the ideas until you “own” them and 
can apply them yourself in new situations. There’s no way to 
make learning effortless, at least for anything worth learning, so 
expect to have some difficult moments ahead. But also expect 
to have some moments of excitement at the joy of discovery. 
There will be instants at which the pieces suddenly click into 
place and you know that you understand a powerful idea. There 
will be times when you’ll surprise yourself by successfully  
working a difficult problem that you didn’t think you could 
solve. My hope, as an author, is that the excitement and sense 
of adventure will far outweigh the difficulties and frustrations.

Getting the Most Out of Your Course
Many of you, I suspect, would like to know the “best” way to 
study for this course. There is no best way. People are different 
and what works for one student is less effective for another. But  
I do want to stress that reading the text is vitally important. 
The basic knowledge for this course is written down on these 
 pages, and your instructor’s number-one expectation is that 
you will read carefully to find and learn that knowledge.

Despite there being no best way to study, I will suggest one 
way that is successful for many students.

1. Read each chapter before it is discussed in class. I can-
not stress too strongly how important this step is. Class at-
tendance is much more effective if you are prepared. When 
you first read a chapter, focus on learning new vocabulary, 
definitions, and notation. There’s a list of terms and nota-
tions at the end of each chapter. Learn them! You won’t un-
derstand what’s being discussed or how the ideas are being 
used if you don’t know what the terms and symbols mean.
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2. Participate actively in class. Take notes, ask and  
answer questions, and participate in discussion groups. 
There is ample scientific evidence that active partici-
pation is much more effective for learning science than 
passive listening.

3. After class, go back for a careful re-reading of the 
chapter. In your second reading, pay closer attention 
to the details and the worked examples. Look for the 
logic behind each example (I’ve highlighted this to 
make it clear), not just at what formula is being used. 
And use the textbook tools that are designed to help 
your learning, such as the problem-solving strategies, 
the chapter summaries, and the exercises in the Student 
Workbook.

4. Finally, apply what you have learned to the home-
work problems at the end of each chapter. I strongly 
encourage you to form a study group with two or three 
classmates. There’s good evidence that students who 
study regularly with a group do better than the rugged 
individualists who try to go it alone.

Did someone mention a workbook? The companion Student 
Workbook is a vital part of the course. Its questions and exercises  
ask you to reason qualitatively, to use graphical informa-
tion, and to give explanations. It is through these exercises 
that you will learn what the concepts mean and will practice 
the reasoning skills appropriate to the chapter. You will then 
have acquired the baseline knowledge and confidence you 
need before turning to the end-of-chapter homework prob-
lems. In sports or in music, you would never think of per-
forming before you practice, so why would you want to do 
so in physics? The workbook is where you practice and work 
on basic skills.

Many of you, I know, will be tempted to go straight to the 
homework problems and then thumb through the text looking 
for a formula that seems like it will work. That approach will 
not succeed in this course, and it’s guaranteed to make you 
frustrated and discouraged. Very few homework problems are 
of the “plug and chug” variety where you simply put numbers 
into a formula. To work the homework problems successfully, 
you need a better study strategy—either the one outlined above 
or your own—that helps you learn the concepts and the rela-
tionships between the ideas.

Getting the Most Out of Your Textbook
Your textbook provides many features designed to help you learn 
the concepts of physics and solve problems more effectively.

 ■ TACTICS BOXES give step-by-step procedures for particular 
skills, such as interpreting graphs or drawing special dia-
grams. Tactics Box steps are explicitly illustrated in sub-
sequent worked examples, and these are often the starting 
point of a full Problem-Solving Strategy.

 ■ PROBLEM-SOLVING STRATEGIES are provided for each broad 
class of problems—problems characteristic of a chapter or 
group of chapters. The strategies follow a consistent four-
step approach to help you develop confidence and proficient 
problem-solving skills: MODEL, VISUALIZE, SOLVE, REVIEW.

 ■ Worked EXAMPLES illustrate good problem-solving 
practices through the consistent use of the four-step 
problem-solving approach The worked examples are 
often very detailed and carefully lead you through the 
reasoning behind the solution as well as the numerical 
calculations.

 ■ STOP TO THINK questions embedded in the chapter allow you 
to quickly assess whether you’ve understood the main idea 
of a section. A correct answer will give you confidence to 
move on to the next section. An incorrect answer will alert 
you to re-read the previous section.

 ■ Blue annotations on figures 
help you better understand 
what the figure is show-
ing. They will help you to 
interpret graphs; translate 
between graphs, math, and 
pictures; grasp difficult 
concepts through a visual 
analogy; and develop many 
other important skills.

 ■ Schematic Chapter Summaries help you organize what you 
have learned into a hierarchy, from general principles (top) 
to applications (bottom). Side-by-side pictorial, graphical, 
textual, and mathematical representations are used to help 
you translate between these key representations.

 ■ Each part of the book ends with a KNOWLEDGE STRUCTURE 
designed to help you see the forest rather than just the trees.

Now that you know more about what is expected of you, 
what can you expect of me? That’s a little trickier because the 
book is already written! Nonetheless, the book was prepared 
on the basis of what I think my students throughout the years 
have expected—and wanted—from their physics textbook. 
Further, I’ve listened to the extensive feedback I have received 
from thousands of students like you, and their instructors, who 
used the first four editions of this book.

You should know that these course materials—the text 
and the workbook—are based on extensive research about 
how  students learn physics and the challenges they face. The 
effec tiveness of many of the exercises has been demonstrated 
through extensive class testing. I’ve written the book in an in-
formal style that I hope you will find appealing and that will 
encourage you to do the reading. And, finally, I have endeav-
ored to make clear not only that physics, as a technical body of 
knowledge, is relevant to your profession but also that physics 
is an exciting adventure of the human mind.

I hope you’ll enjoy the time we’re going to spend together.

I

The current in a wire is
the same at all points.

I = constant
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Useful Data

Me Mass of the earth 5.97 * 1024 kg
Re Radius of the earth 6.37 * 106 m
g Free-fall acceleration on earth 9.80 m/s2

G Gravitational constant 6.67 * 10-11 N m2/kg2

kB Boltzmann’s constant 1.38 * 10-23 J/K
R Gas constant 8.31 J/mol K
NA Avogadro’s number 6.02 * 1023 particles/mol
T0 Absolute zero -273°C
s Stefan-Boltzmann constant 5.67 * 10-8 W/m2 K4

patm Standard atmosphere 101,300 Pa
vsound Speed of sound in air at 20°C 343 m/s
mp Mass of the proton (and the neutron) 1.67 * 10-27 kg
me Mass of the electron 9.11 * 10-31 kg
K Coulomb’s law constant (1/4pP0) 8.99 * 109 N m2/C2

P0 Permittivity constant 8.85 * 10-12 C2/N m2

m0 Permeability constant 1.26 * 10-6 T m/A
e Fundamental unit of charge 1.60 * 10-19 C
c Speed of light in vacuum 3.00 * 108 m/s
h Planck’s constant 6.63 * 10-34 J s 4.14 * 10-15 e V s
U Planck’s constant 1.05 * 10-34 J s 6.58 * 10-16 e V s
aB Bohr radius 5.29 * 10-11 m

Common Prefixes

Prefix Meaning

femto- 10-15

pico- 10-12

nano- 10-9

micro- 10-6

milli- 10-3

centi- 10-2

kilo- 103

mega- 106

giga- 109

terra- 1012

Conversion Factors

Length
1 in = 2.54 cm
1 mi = 1.609 km
1 m = 39.37 in
1 km = 0.621 mi

Velocity
1 mph = 0.447 m/s
1 m/s = 2.24 mph = 3.28 ft/s

Mass and energy
1 u = 1.661 * 10-27 kg
1 cal = 4.19 J
1 eV = 1.60 * 10-19 J

Time
1 day = 86,400 s
1 year = 3.16 * 107 s

Pressure
1 atm = 101.3 kPa = 760 mm of Hg
1 atm = 14.7 lb/in2

Rotation
1 rad = 180°/p = 57.3°
1 rev = 360° = 2p rad
1 rev/s = 60 rpm

Mathematical Approximations

Binomial approximation: (1 + x)n ≈ 1 + nx if x V 1
Small-angle approximation: sin u ≈ tan u ≈ u and cos u ≈ 1 if u V 1 radian

Greek Letters Used in Physics

Alpha a Mu m

Beta b Pi p

Gamma Γ g Rho r

Delta ∆ d Sigma g s

Epsilon P Tau t

Eta h Phi Φ f

Theta ϴ u Psi c

Lambda l Omega Ω v
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Motion can be slow and steady, or fast and sudden. 
This rocket, with its rapid acceleration, is responding to 
forces exerted on it by thrust, gravity, and the air.

OVERVIEW

Why Things Move
Each of the seven parts of this book opens with an overview to give you a look 
ahead, a glimpse at where your journey will take you in the next few chapters. 
It’s easy to lose sight of the big picture while you’re busy negotiating the terrain 
of each chapter. In addition, each part closes with a Knowledge Structure to help 
you consolidate your knowledge. You might want to look ahead now to the Part I 
Knowledge Structure on page 230. 

In Part I, the big picture, in a word, is motion.

 ■ How do we describe motion? It is easy to say that an object moves, but it’s 
not obvious how we should measure or characterize the motion if we want to 
analyze it mathematically. The mathematical description of motion is called 
kinematics, and it is the subject matter of Chapters 1 through 4.

 ■ How do we explain motion? Why do objects have the particular motion they 
do? Why, when you toss a ball upward, does it go up and then come back 
down rather than keep going up? What “laws of nature” allow us to predict 
an object’s motion? The explanation of motion in terms of its causes is called 
dynamics, and it is the topic of Chapters 5 through 8.

Two key ideas for answering these questions are force (the “cause”) and accel-
eration (the “effect”). A variety of pictorial and graphical tools will be developed 
in Chapters 1 through 5 to help you develop an intuition for the connection be-
tween force and acceleration. You’ll then put this knowledge to use in Chapters 5 
through 8 as you analyze motion of increasing complexity.

Another important tool will be the use of models. Reality is extremely com-
plicated. We would never be able to develop a science if we had to keep track 
of every little detail of every situation. A model is a simplified description of 
reality—much as a model airplane is a simplified version of a real airplane—used 
to reduce the complexity of a problem to the point where it can be analyzed and 
understood. We will introduce several important models of motion, paying close 
attention, especially in these earlier chapters, to where simplifying assumptions 
are being made, and why.

The laws of motion were discovered by Isaac Newton roughly 350 years ago, 
so the study of motion is hardly cutting-edge science. Nonetheless, it is still ex-
tremely important. Mechanics—the science of motion—is the basis for much of 
engineering and applied science, and many of the ideas introduced here will be 
needed later to understand things like the motion of waves and the motion of 
electrons through circuits. Newton’s mechanics is the foundation of much of con-
temporary science, thus we will start at the beginning.

Newton’s Laws
PA R T

I
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Concepts of Motion

What is a chapter preview?
Each chapter starts with an overview. Think of it as a roadmap 
to help you get oriented and make the most of your studying.
❮❮ LOOKING BACK A Looking Back reference tells you what material from 
previous chapters is especially important for understanding the new 
topics. A quick review will help your learning. You will find additional 
Looking Back references within the chapter, right at the point they’re 
needed.

What is motion?
Before solving motion problems, we must 
learn to describe motion. We will use

■■ Motion diagrams
■■ Graphs
■■ Pictures

Motion concepts introduced in this 
chapter include position, velocity, and 
acceleration.

Why do we need vectors?
Many of the quantities used to describe 
 motion, such as velocity, have both a size 
and a direction. We use vectors to represent 
these quantities. This chapter introduces 
graphical techniques to add and subtract 
vectors. Chapter 3 will explore vectors in 
more detail.

Why are units and significant  
figures important?
Scientists and engineers must commu-
nicate their ideas to others. To do so, we 
have to agree about the units in which 
quantities are measured. In physics we 
use metric units, called SI units. We also  
need rules for telling others how accurately  
a quantity is known. You will learn the rules  
for using significant figures correctly.

Why is motion important?
The universe is in motion, from the smallest scale of 
 electrons and atoms to the largest scale of entire  
galaxies. We’ll start with the motion of everyday objects,  
such as cars and balls and people. Later we’ll study  
the motions of waves, of atoms in gases, and of electrons  
in circuits. Motion is the one theme that will be with us  
from the first chapter to the last.

IN THIS CHAPTER, you will learn the fundamental concepts of motion.

1

Motion takes many 
forms. The cyclists seen 
here are an example of 
translational motion.

a
u

v
u

x0 = v0x = t0 = 0

ax

x1

x
x0

Known

ax = 2.0 m/s2

Find
x1

A
u

A + B
u u

B
u

0.00620 = 6.20 * 10-3
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1.1 Motion Diagrams 25

1.1 Motion Diagrams
Motion is a theme that will appear in one form or another throughout this entire 
book. Although we all have intuition about motion, based on our experiences, some 
of the important aspects of motion turn out to be rather subtle. So rather than jumping 
immediately into a lot of mathematics and calculations, this first chapter focuses on 
visualizing motion and becoming familiar with the concepts needed to describe a 
moving object. Our goal is to lay the foundations for understanding motion.

Linear motion Circular motion Projectile motion Rotational motion

FIGURE 1.1 Four basic types of motion.

To begin, let’s define motion as the change of an object’s position with time. 
FIGURE 1.1 shows four basic types of motion that we will study in this book. The first 
three—linear, circular, and projectile motion—in which the object moves through 
space are called translational motion. The path along which the object moves, 
whether straight or curved, is called the object’s trajectory. Rotational motion 
is somewhat different because there’s movement but the object as a whole doesn’t 
change position. We’ll defer rotational motion until later and, for now, focus on 
translational motion.

Making a Motion Diagram
An easy way to study motion is to make a video of a moving object. A video camera, 
as you probably know, takes images at a fixed rate, typically 30 every second. Each 
separate image is called a frame. As an example, FIGURE 1.2 shows four frames from a 
video of a car going past. Not surprisingly, the car is in a somewhat different position 
in each frame.

Suppose we edit the video by layering the frames on top of each other, creating 
the composite image shown in FIGURE 1.3. This edited image, showing an object’s 
position at several equally spaced instants of time, is called a motion diagram. As 
the examples below show, we can define concepts such as constant speed, speeding 
up, and slowing down in terms of how an object appears in a motion diagram.

   NOTE    It’s important to keep the camera in a fixed position as the object moves by. 
Don’t “pan” it to track the moving object.

Examples of motion diagrams

Images that are equally spaced indicate an 
object moving with constant speed.

An increasing distance between the images 
shows that the object is speeding up.

A decreasing distance between the images 
shows that the object is slowing down.

FIGURE 1.2 Four frames from a video.

The same amount of time elapses
between each image and the next.

FIGURE 1.3 A motion diagram of the car 
shows all the frames simultaneously.
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26 CHAPTER 1 Concepts of Motion

   NOTE    Each chapter will have several Stop to Think questions. These questions are 
designed to see if you’ve understood the basic ideas that have been presented. The 
answers are given at the end of the book, but you should make a serious effort to 
think about these questions before turning to the answers.

1.2 Models and Modeling
The real world is messy and complicated. Our goal in physics is to brush aside many of 
the real-world details in order to discern patterns that occur over and over. For example, 
a swinging pendulum, a vibrating guitar string, a sound wave, and jiggling atoms in a 
crystal are all very different—yet perhaps not so different. Each is an example of a 
system moving back and forth around an equilibrium position. If we focus on under-
standing a very simple oscillating system, such as a mass on a spring, we’ll automati-
cally understand quite a bit about the many real-world manifestations of oscillations.

Stripping away the details to focus on essential features is a process called 
modeling. A model is a highly simplified picture of reality, but one that still captures 
the essence of what we want to study. Thus “mass on a spring” is a simple but realistic 
model of almost all oscillating systems.

Models allow us to make sense of complex situations by providing a framework for 
thinking about them. One could go so far as to say that developing and testing models 
is at the heart of the scientific process. Albert Einstein once said, “Physics should 
be as simple as possible—but not simpler.” We want to find the simplest model that 
allows us to understand the phenomenon we’re studying, but we can’t make the model 
so simple that key aspects of the phenomenon get lost.

We’ll develop and use many models throughout this textbook; they’ll be one of our 
most important thinking tools. These models will be of two types:

■■ Descriptive models: What are the essential characteristics and properties of a 
phenomenon? How do we describe it in the simplest possible terms? For example, 
the mass-on-a-spring model of an oscillating system is a descriptive model.

■■ Explanatory models: Why do things happen as they do? Explanatory models, based 
on the laws of physics, have predictive power, allowing us to test—against experi-
mental data—whether a model provides an adequate explanation of our observations.

The Particle Model
For many types of motion, such as that of balls, cars, and rockets, the motion of the 
object as a whole is not influenced by the details of the object’s size and shape. All we 
really need to keep track of is the motion of a single point on the object, so we can treat 
the object as if all its mass were concentrated into this single point. An object that can 
be represented as a mass at a single point in space is called a particle. A particle has  
no size, no shape, and no distinction between top and bottom or between front and back.

If we model an object as a particle, we can represent the object in each frame of a  
motion diagram as a simple dot rather than having to draw a full picture. FIGURE 1.4 
shows how much simpler motion diagrams appear when the object is represented as 
a particle. Note that the dots have been numbered 0, 1, 2, . . . to tell the sequence in 
which the frames were taken.

0
1

2

3

(a) Motion diagram of a rocket launch

(b) Motion diagram of a car stopping

Numbers show
the order in
which the frames
were taken.

4

0

The same amount of time elapses
between each image and the next.

1 2 3 4

FIGURE 1.4 Motion diagrams in which the 
object is modeled as a particle.

We can model an airplane’s takeoff as a 
particle (a descriptive model) undergoing 
constant acceleration (a descriptive 
model) in response to constant forces 
(an explanatory model).

STOP TO THINK 1.1 Which car is going faster, A or B? Assume there are equal intervals of time between 
the frames of both videos.

Car A Car B
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1.3 Position, Time, and Displacement 27

Treating an object as a particle is, of course, a simplification of reality—but that’s 
what modeling is all about. The particle model of motion is a simplification in which 
we treat a moving object as if all of its mass were concentrated at a single point. The 
particle model is an excellent approximation of reality for the translational motion of 
cars, planes, rockets, and similar objects.

Of course, not everything can be modeled as a particle; models have their limits. 
Consider, for example, a rotating gear. The center doesn’t move at all while each tooth is 
moving in a different direction. We’ll need to develop new models when we get to new 
types of motion, but the particle model will serve us well throughout Part I of this book.

STOP TO THINK 1.2 Three motion diagrams 
are shown. Which is a dust particle settling to the 
floor at constant speed, which is a ball dropped 
from the roof of a building, and which is a 
descending rocket slowing to make a soft landing  
on Mars?

(a) (c) 0

1

2

3

4
5

0
1

2

3

4

5

(b) 0

1

2

3

4

5

1.3 Position, Time, and Displacement
To use a motion diagram, you would like to know where the object is (i.e., its position) 
and when the object was at that position (i.e., the time). Position measurements can  
be made by laying a coordinate-system grid over a motion diagram. You can then 
measure the 1x, y2 coordinates of each point in the motion diagram. Of course, the 
world does not come with a coordinate system attached. A coordinate system is an 
artificial grid that you place over a problem in order to analyze the motion. You place 
the origin of your coordinate system wherever you wish, and different observers of a 
moving object might all choose to use different origins.

Time, in a sense, is also a coordinate system, although you may never have thought 
of time this way. You can pick an arbitrary point in the motion and label it ;t = 0 
seconds.” This is simply the instant you decide to start your clock or stopwatch, so 
it is the origin of your time coordinate. Different observers might choose to start 
their clocks at different moments. A video frame labeled ;t = 4 seconds” was taken 
4  seconds after you started your clock.

We typically choose t = 0 to represent the “beginning” of a problem, but the object 
may have been moving before then. Those earlier instants would be measured as neg-
ative times, just as objects on the x-axis to the left of the origin have negative values of 
position. Negative numbers are not to be avoided; they simply locate an event in space 
or time relative to an origin.

To illustrate, FIGURE 1.5a shows a sled sliding down a snow-covered hill. FIGURE 1.5b is  
a motion diagram for the sled, over which we’ve drawn an xy-coordinate system. You 
can see that the sled’s position is 1x3, y32 = 115 m, 15 m2 at time t3 = 3 s. Notice how 
we’ve used subscripts to indicate the time and the object’s position in a specific frame 
of the motion diagram.

   NOTE    The frame at t = 0 s is frame 0. That is why the fourth frame is labeled 3.

Another way to locate the sled is to draw its position vector: an arrow from the 
origin to the point representing the sled. The position vector is given the symbol r u. 
Figure 1.5b shows the position vector r u

3 = 121 m, 45°2. The position vector r u does not 
tell us anything different than the coordinates 1x, y2. It simply provides the informa-
tion in an alternative form.

(a)

The sled’s position in frame 3
can be specified with coordinates.

Alternatively, the position
can be specified by the
position vector.

r3 = (21 m, 45°)

(x3, y3) = (15 m, 15 m)
t3 = 3 s

u

(b)

45°

y (m)

x (m) 0

10

20

100 20 30

FIGURE 1.5 Motion diagram of a sled with 
frames made every 1 s.
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28 CHAPTER 1 Concepts of Motion

Scalars and Vectors
Some physical quantities, such as time, mass, and temperature, can be described com-
pletely by a single number with a unit. For example, the mass of an object is 6 kg 
and its temperature is 30°C. A single number (with a unit) that describes a physical 
quantity is called a scalar. A scalar can be positive, negative, or zero.

Many other quantities, however, have a directional aspect and cannot be described 
by a single number. To describe the motion of a car, for example, you must specify not 
only how fast it is moving, but also the direction in which it is moving. A quantity hav-
ing both a size (the “How far?” or “How fast?”) and a direction (the “Which way?”) is 
called a vector. The size or length of a vector is called its magnitude. Vectors will be 
studied thoroughly in Chapter 3, so all we need for now is a little basic information.

We indicate a vector by drawing an arrow over the letter that represents the quan-
tity. Thus r u and A

u
 are symbols for vectors, whereas r and A, without the arrows, are 

symbols for scalars. In handwritten work you must draw arrows over all symbols that 
represent vectors. This may seem strange until you get used to it, but it is very important 
because we will often use both r and r u, or both A and A

u
, in the same problem, and they 

mean different things! Note that the arrow over the symbol always points to the right, 
regardless of which direction the actual vector points. Thus we write r u or A

u
, never r z or A

z
.

Displacement
We said that motion is the change in an object’s position with time, but how do we 
show a change of position? A motion diagram is the perfect tool. FIGURE 1.6 is the 
motion diagram of a sled sliding down a snow-covered hill. To show how the sled’s 
position changes between, say, t3 = 3 s and t4 = 4 s, we draw a vector arrow between 
the two dots of the motion diagram. This vector is the sled’s displacement, which  
is given the symbol ∆r u. The Greek letter delta 1∆2 is used in math and science to 
indicate the change in a quantity. In this case, as we’ll show, the displacement ∆r u is 
the change in an object’s position.

   NOTE    ∆r u is a single symbol. It shows “from here to there.” You cannot cancel out 
or remove the ∆.

Notice how the sled’s position vector r u
4 is a combination of its early position r u

3 with  
the displacement vector ∆r u. In fact, r u

4 is the vector sum of the vectors r u
3 and  

∆r u. This is written

    r u
4 = r u

3 + ∆r u (1.1)

Here we’re adding vector quantities, not numbers, and vector addition differs from “reg-
ular” addition. We’ll explore vector addition more thoroughly in Chapter 3, but for now 
you can add two vectors A

u
 and B

u
 with the three-step procedure of ❮❮■TACTICS BOX 1.1.

The sled’s displacement between
t3 = 3 s and t4 = 4 s is the vector 
drawn from one postion to the next.

t3 = 3 s

t4 = 4 s

r4
u

r3
u

∆r
u

y (m)

x (m)0

10

20

100 20 30

FIGURE 1.6 The sled undergoes a 
displacement ∆r u from position r u

3 
to position r u

4.

TACTICS BOX 1.1

Vector addition
1

2

3

To add B to A: Draw A.

Place the tail of
B at the tip of A.

Draw an arrow from
the tail of A to the
tip of B. This is
vector A + B. A + B

A
u

B
u

A
u

A
u

A
u

B
u

u

u

u

u

u

u

u

u u

uu

B
u
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1.3 Position, Time, and Displacement 29

If you examine Figure 1.6, you’ll see that the steps of Tactics Box 1.1 are exactly 
how r u

3 and ∆r u are added to give r u
4.

   NOTE    A vector is not tied to a particular location on the page. You can move a 
vector around as long as you don’t change its length or the direction it points. Vector 
B
u

 is not changed by sliding it to where its tail is at the tip of A
u

.

Equation 1.1 told us that r u
4 = r u

3 + ∆r u. This is easily rearranged to give a more 
precise definition of displacement: The displacement 𝚫ru of an object as it moves 
from one position rua to a different position rub is

 ∆ru = rub - rua (1.2)

That is, displacement is the change (i.e., the difference) in position. Graphically, 𝚫ru 
is a vector arrow drawn from position rua to position rub.

Motion Diagrams with Displacement Vectors
The first step in analyzing a motion diagram is to determine all of the displacement 
vectors, which are simply the arrows connecting each dot to the next. Label each 
arrow with a vector symbol ∆r u

n, starting with n = 0. FIGURE 1.7 shows the motion dia-
grams of Figure 1.4 redrawn to include the displacement vectors.

   NOTE    When an object either starts from rest or ends at rest, the initial or final dots 
are as close together as you can draw the displacement vector arrow connecting 
them. In addition, just to be clear, you should write “Start” or “Stop” beside the 
initial or final dot. It is important to distinguish stopping from merely slowing down.

Now we can conclude, more precisely than before, that, as time proceeds:

■■ An object is speeding up if its displacement vectors are increasing in length.
■■ An object is slowing down if its displacement vectors are decreasing in length.

(a) Rocket launch

(b) Car stopping 

Start

Stop

∆r3

∆r2

∆r1

∆r0

∆r1 ∆r2 ∆r3

u

u

u

u

∆r0
u u u u

FIGURE 1.7 Motion diagrams with the 
displacement vectors.

Alice is sliding along a smooth, icy road on her sled when she suddenly runs headfirst  
into a large, very soft snowbank that gradually brings her to a halt. Draw a motion 
diagram for Alice. Show and label all displacement vectors.

MODEL The details of Alice and the sled—their size, shape, color, and so on—are not 
relevant to understanding their overall motion. So we can model Alice and the sled as 
one particle.

VISUALIZE FIGURE 1.8 shows a motion diagram. The problem statement suggests that 
the sled’s speed is very nearly constant until it hits the snowbank. Thus the displacement 
vectors are of equal length as Alice slides along the icy road. She begins slowing when 
she hits the snowbank, so the displacement vectors then get shorter until the sled stops. 
We’re told that her stop is gradual, so we want the vector lengths to get shorter gradually 
rather than suddenly.

EXAMPLE 1.1 ■ Headfirst into the snow

The displacement vectors
are getting shorter, so she’s
slowing down.

Stop

Hits snowbank

This is motion at constant speed
because the displacement vectors 
are a constant length.

∆r0 ∆r1 ∆r2 ∆r3
u u u u ∆r4

u ∆r5
u ∆r6

u

FIGURE 1.8 The motion diagram of Alice and the sled.
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30 CHAPTER 1 Concepts of Motion

Time Interval
It’s also useful to consider a change in time. For example, the clock readings of two 
frames of a video might be t1 and t2. The specific values are arbitrary because they 
are timed relative to an arbitrary instant that you chose to call t = 0. But the time 
interval ∆t = t2 - t1 is not arbitrary. It represents the elapsed time for the object to 
move from one position to the next.

The time interval 𝚫t ∙ tb ∙ ta measures the elapsed time as an object moves 
from position rua at time ta to position rub at time tb. The value of 𝚫t is independent 
of the specific clock used to measure the times.

To summarize the main idea of this section, we have added coordinate systems 
and clocks to our motion diagrams in order to measure when each frame was exposed 
and where the object was located at that time. Different observers of the motion may 
choose different coordinate systems and different clocks. However, all observers find 
the same values for the displacements ∆r u and the time intervals ∆t because these are 
independent of the specific coordinate system used to measure them.

1.4 Velocity
It’s no surprise that, during a given time interval, a speeding bullet travels farther than 
a speeding snail. To extend our study of motion so that we can compare the bullet to 
the snail, we need a way to measure how fast or how slowly an object moves.

One quantity that measures an object’s fastness or slowness is its average speed, 
defined as the ratio

   average speed =
distance traveled

time interval spent traveling
=

d
∆t

 (1.3)

If you drive 15 miles (mi) in 30 minutes 11
2 h2, your average speed is

   average speed =
15 mi

1
2 h

= 30 mph (1.4)

Although the concept of speed is widely used in our day-to-day lives, it is not a 
sufficient basis for a science of motion. To see why, imagine you’re trying to land a jet 
plane on an aircraft carrier. It matters a great deal to you whether the aircraft carrier 
is moving at 20 mph (miles per hour) to the north or 20 mph to the east. Simply know-
ing that the ship’s speed is 20 mph is not enough information!

It’s the displacement ∆r u, a vector quantity, that tells us not only the distance trav-
eled by a moving object, but also the direction of motion. Consequently, a more useful 
ratio than d /∆t is the ratio ∆r u/∆t. In addition to measuring how fast an object moves, 
this ratio is a vector that points in the direction of motion.

It is convenient to give this ratio a name. We call it the average velocity, and it 
has the symbol v 

u
avg. The average velocity of an object during the time interval 𝚫  t, 

in which the object undergoes a displacement 𝚫ru, is the vector

   v 

u
avg =

∆r u

∆t
 (1.5)

An object’s average velocity vector points in the same direction as the displace-
ment vector 𝚫ru. This is the direction of motion.

   NOTE    In everyday language we do not make a distinction between speed and 
velocity, but in physics the distinction is very important. In particular, speed is 
simply “How fast?” whereas velocity is “How fast, and in which direction?” As we 
go along we will be giving other words more precise meanings in physics than they 
have in everyday language.

A stopwatch is used to measure a time 
interval.

The victory goes to the runner with the 
highest average speed.
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1.4 Velocity 31

As an example, FIGURE 1.9a shows two ships that move 5 miles in 15 minutes. Using 
Equation 1.5 with ∆t = 0.25 h, we find

 v 

u
avg  A = (20 mph, north) 

 v 

u
avg  B = (20 mph, east) 

(1.6)

Both ships have a speed of 20 mph, but their velocities differ. Notice how the velocity 
vectors in FIGURE 1.9b point in the direction of motion.

   NOTE    Our goal in this chapter is to visualize motion with motion diagrams. Strictly 
speaking, the vector we have defined in Equation 1.5, and the vector we will show on 
motion diagrams, is the average velocity v 

u
avg. But to allow the motion diagram to be 

a useful tool, we will drop the subscript and refer to the average velocity as simply v 

u. 
Our definitions and symbols, which somewhat blur the distinction between average 
and instantaneous quantities, are adequate for visualization purposes, but they’re not 
the final word. We will refine these definitions in Chapter 2, where our goal will be  
to develop the mathematics of motion.

Motion Diagrams with Velocity Vectors
The velocity vector points in the same direction as the displacement ∆r u, and the 
length of v 

u is directly proportional to the length of ∆r u. Consequently, the vectors 
connecting each dot of a motion diagram to the next, which we previously labeled as 
displacements, could equally well be identified as velocity vectors.

This idea is illustrated in FIGURE 1.10, which shows four frames from the motion 
diagram of a tortoise racing a hare. The vectors connecting the dots are now labeled 
as velocity vectors v 

u. The length of a velocity vector represents the average speed 
with which the object moves between the two points. Longer velocity vectors indi-
cate faster motion. You can see that the hare moves faster than the tortoise.

Notice that the hare’s velocity vectors do not change; each has the same length and 
direction. We say the hare is moving with constant velocity. The tortoise is also mov-
ing with its own constant velocity.

vavg A = (20 mph, north)
u

(a)

vavg B = (20 mph, east)

(b)

A

B

∆rA = (5 mi, north)

∆rB = (5 mi, east)

The velocity vectors point
in the direction of motion.

u

u

u

FIGURE 1.9 The displacement vectors and 
velocities of ships A and B.

v1
u

v2
u

v0
u

v1
u

v2
u

v0
u

The length of each arrow represents
the average speed. The hare moves
faster than the tortoise.

These are average velocity vectors.

Hare

Tortoise

FIGURE 1.10 Motion diagram of the 
tortoise racing the hare.

EXAMPLE 1.2 ■ Accelerating up a hill

The light turns green and a car accelerates, starting from rest, up a 20° hill. Draw a motion 
diagram showing the car’s velocity.

MODEL Use the particle model to represent the car as a dot.

VISUALIZE The car’s motion takes place along a straight line, but the line is neither hor-
izontal nor vertical. A motion diagram should show the object moving with the correct 
orientation—in this case, at an angle of 20°. FIGURE 1.11 shows several frames of the 
motion diagram, where we see the car speeding up. The car starts from rest, so the first 
arrow is drawn as short as possible and the first dot is labeled “Start.” The displacement 
vectors have been drawn from each dot to the next, but then they are identified and labeled 
as average velocity vectors v 

u.

v
u

This labels the whole row of
vectors as velocity vectors.

The velocity vectors
are getting longer, so
the car is speeding up.Start

FIGURE 1.11 Motion diagram of a car accelerating up a hill.
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32 CHAPTER 1 Concepts of Motion

1.5 Linear Acceleration
Position, time, and velocity are important concepts, and at first glance they might 
appear to be sufficient to describe motion. But that is not the case. Sometimes an 
object’s velocity is constant, as it was in Figure 1.10. More often, an object’s velocity 
changes as it moves, as in Figures 1.11 and 1.12. We need one more motion concept to 
describe a change in the velocity.

Because velocity is a vector, it can change in two possible ways:

1. The magnitude can change, indicating a change in speed; or
2. The direction can change, indicating that the object has changed direction.

We will concentrate for now on the first case, a change in speed. The car accel-
erating up a hill in Figure 1.11 was an example in which the magnitude of the  
velocity vector changed but not the direction. We’ll return to the second case in 
Chapter 4.

When we wanted to measure changes in position, the ratio ∆r u/∆t was useful. This 
ratio is the rate of change of position. By analogy, consider an object whose velocity 
changes from v 

u
a to v 

u
b during the time interval ∆t. Just as ∆r u = r u

b - r u
a is the change 

of position, the quantity ∆v 

u = v 

u
b - v 

u
a is the change of velocity. The ratio ∆v 

u
 /∆t is 

then the rate of change of velocity. It has a large magnitude for objects that speed up 
quickly and a small magnitude for objects that speed up slowly.

Marcos kicks a soccer ball. It rolls along the ground until stopped 
by Jose. Draw a motion diagram of the ball.

MODEL This example is typical of how many problems in science 
and engineering are worded. The problem does not give a clear 
statement of where the motion begins or ends. Are we interested in 
the motion of the ball just during the time it is rolling between Mar-
cos and Jose? What about the motion as Marcos kicks it (ball rap-
idly speeding up) or as Jose stops it (ball rapidly slowing down)? 
The point is that you will often be called on to make a reasonable 
interpretation of a problem statement. In this problem, the details 
of kicking and stopping the ball are complex. The motion of the 
ball across the ground is easier to describe, and it’s a motion you 
might expect to learn about in a physics class. So our interpretation 
is that the motion diagram should start as the ball leaves Marcos’s 
foot (ball already moving) and should end the instant it touches 

Jose’s foot (ball still moving). In between, the ball will slow down 
a little. We will model the ball as a particle.

VISUALIZE With this interpretation in mind, FIGURE 1.12 shows 
the motion diagram of the ball. Notice how, in contrast to the car 
of Figure 1.11, the ball is already moving as the motion diagram 
video begins. As before, the average velocity vectors are found 
by connecting the dots. You can see that the average velocity vec-
tors get shorter as the ball slows. Each v  

u is different, so this is not 
constant-velocity motion.

EXAMPLE 1.3 ■ A rolling soccer ball

v
u

Marcos Jose

The velocity vectors are gradually getting shorter.

FIGURE 1.12 Motion diagram of a soccer ball rolling from 
Marcos to Jose.

STOP TO THINK 1.3 A particle moves from position 1 to position 2 during the time 
interval ∆t. Which vector shows the particle’s average velocity?

(e)(d)(c)(b)(a)

1

2

y

x
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1.5 Linear Acceleration 33

The ratio ∆vu  /∆t is called the average acceleration, and its symbol is auavg. The 
average acceleration of an object during the time interval 𝚫t, in which the object’s 
velocity changes by 𝚫v 

u, is the vector

   auavg =
∆v 

u

∆t
 (1.7)

The average acceleration vector points in the same direction as the vector 𝚫v 

u.
Acceleration is a fairly abstract concept. Yet it is essential to develop a good in-

tuition about acceleration because it will be a key concept for understanding why 
objects move as they do. Motion diagrams will be an important tool for developing 
that intuition.

   NOTE    As we did with velocity, we will drop the subscript and refer to the average 
acceleration as simply au. This is adequate for visualization purposes, but not the 
final word. We will refine the definition of acceleration in Chapter 2.

Finding the Acceleration Vectors on a Motion Diagram
Perhaps the most important use of a motion diagram is to determine the acceleration 
vector au at each point in the motion. From its definition in Equation 1.7, we see that  
au points in the same direction as ∆v 

u, the change of velocity, so we need to find the 
direction of ∆v 

u. To do so, we rewrite the definition ∆v 

u = v 

u
b - v 

u
a as v 

u
b = v 

u
a + ∆v 

u. 
This is now a vector addition problem: What vector must be added to v 

u
a to turn it into 

v 

u
b? Tactics Box 1.2 shows how to do this.

The Audi TT accelerates from 0 to 60 mph 
in 6 s.

TACTICS BOX 1.2

Finding the acceleration vector

a
u

3

1

Return to the original motion 
diagram. Draw a vector at the 
middle dot in the direction of
∆v; label it a. This is the average
acceleration at the midpoint
between va and vb. 

Draw velocity vectors va and vb with
their tails together.

2 Draw the vector from the tip of va

to the tip of vb. This is ∆v because
vb = va + ∆v.

vb

va

vb

va

u

u

u

va
u

u

u

vb
u

va
u

vb
u

uu

u u

To find the acceleration as the
velocity changes from va to vb,
we must determine the change
of velocity ∆v = vb - va.

u u

u u u

u

uu

uuu

u u

∆v

Exercises 21–24 

Many Tactics Boxes will refer you to exercises in the 
Student Workbook where you can practice the new skill.
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34 CHAPTER 1 Concepts of Motion

Notice that the acceleration vector goes beside the middle dot, not beside the veloc-
ity vectors. This is because each acceleration vector is determined by the difference 
between the two velocity vectors on either side of a dot. The length of au does not have 
to be the exact length of ∆v 

u; it is the direction of au that is most important.
The procedure of ❮❮■TACTICS BOX 1.2 can be repeated to find au at each point in the 

motion diagram. Note that we cannot determine au at the first and last points because 
we have only one velocity vector and can’t find ∆v 

u.

The Complete Motion Diagram
You’ve now seen two Tactics Boxes. Tactics Boxes to help you accomplish specific 
tasks will appear in nearly every chapter in this book. We’ll also, where appropriate, 
provide Problem-Solving Strategies.

PROBLEM-SOLVING STRATEGY 1.1

Motion diagrams

MODEL Determine whether it is appropriate to model the moving object as a parti-
cle. Make simplifying assumptions when interpreting the problem statement.

VISUALIZE A complete motion diagram consists of:
■■ The position of the object in each frame of the video, shown as a dot. Use five 
or six dots to make the motion clear but without overcrowding the picture. The 
motion should change gradually from one dot to the next, not drastically. More 
complex motions will need more dots.

■■ The average velocity vectors, found by connecting each dot in the motion dia-
gram to the next with a vector arrow. There is one velocity vector linking each 
two position dots. Label the row of velocity vectors v 

u.

■■ The average acceleration vectors, found using Tactics Box 1.2. There is one 
acceleration vector linking each two velocity vectors. Each acceleration vector 
is drawn at the dot between the two velocity vectors it links. Use 0

u
 to indicate a 

point at which the acceleration is zero. Label the row of acceleration vectors au.

STOP TO THINK 1.4 A particle undergoes acceleration au while 
moving from point 1 to point 2. Which of the choices shows the 
most likely velocity vector v  

u
2 as the particle leaves point 2?

2

(a)

2

(c)

2

(d)

v22

(b)

u
v2
u

v2
u

v2
u

a
u

v1
u

2 1

Examples of Motion Diagrams
Let’s look at some examples of the full strategy for drawing motion diagrams.
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1.5 Linear Acceleration 35

A spaceship carrying the first astronauts to Mars descends safely 
to the surface. Draw a motion diagram for the last few seconds of 
the descent.

MODEL The spaceship is small in comparison with the distance 
traveled, and the spaceship does not change size or shape, so it’s 
reasonable to model the spaceship as a particle. We’ll assume that 
its motion in the last few seconds is straight down. The problem 
ends as the spacecraft touches the surface.

VISUALIZE FIGURE 1.13 shows a complete motion diagram as the 
spaceship descends and slows, using its rockets, until it comes  
to rest on the surface. Notice how the dots get closer together as  
it slows. The inset uses the steps of Tactics Box 1.2 (numbered 
circles) to show how the acceleration vector au is determined at one 
point. All the other acceleration vectors will be similar because  
for each pair of velocity vectors the earlier one is longer than the 
later one.

EXAMPLE 1.4 ■ The first astronauts land on Mars

v and a point in opposite 
directions. The object is 
slowing down.

v
u

u

a
u

u

a
u

∆v

va
u

va
u

vb
u

vb
u

Stops

1

2

3

u

FIGURE 1.13 Motion diagram of a spaceship landing on Mars.

A skier glides along smooth, horizontal snow at constant speed, then speeds up going 
down a hill. Draw the skier’s motion diagram.

MODEL Model the skier as a particle. It’s reasonable to assume that the downhill slope is a 
straight line. Although the motion as a whole is not linear, we can treat the skier’s motion 
as two separate linear motions.

VISUALIZE FIGURE 1.14 shows a complete motion diagram of the skier. The dots are 
equally spaced for the horizontal motion, indicating constant speed; then the dots get 
farther apart as the skier speeds up going down the hill. The insets show how the average 
acceleration vector au is determined for the horizontal motion and along the slope. All the 
other acceleration vectors along the slope will be similar to the one shown because each 
velocity vector is longer than the preceding one. Notice that we’ve explicitly written 0

u
 

for the acceleration beside the dots where the velocity is constant. The acceleration at the 
point where the direction changes will be considered in Chapter 4.

EXAMPLE 1.5 ■ Skiing through the woods

∆v = 0

0
u

0
u

u

v
u

a
u

a
u

a
u

va
u

vc
u

vb
u

vb
u

vd
u

vd
u

v and a point in the same direction. 
The object is speeding up.

va
u

vc
u

u ∆v
u

u u

FIGURE 1.14 Motion diagram of a skier.
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36 CHAPTER 1 Concepts of Motion

Notice something interesting in Figures 1.13 and 1.14. Where the object is speed-
ing up, the acceleration and velocity vectors point in the same direction. Where 
the object is slowing down, the acceleration and velocity vectors point in opposite 
directions. These results are always true for motion in a straight line. For motion 
along a line:

■■ An object is speeding up if and only if v u and au point in the same direction.
■■ An object is slowing down if and only if v u and au point in opposite directions.
■■ An object’s velocity is constant if and only if au ∙ 0

u
.

   NOTE    In everyday language, we use the word accelerate to mean “speed up” and the 
word decelerate to mean “slow down.” But speeding up and slowing down are both 
changes in the velocity and consequently, by our definition, both are accelerations. 
In physics, acceleration refers to changing the velocity, no matter what the change 
is, and not just to speeding up.

Draw the motion diagram of a ball tossed straight up in the air.

MODEL This problem calls for some interpretation. Should we in-
clude the toss itself, or only the motion after the ball is released? 
What about catching it? It appears that this problem is really con-
cerned with the ball’s motion through the air. Consequently, we 
begin the motion diagram at the instant that the tosser releases the 
ball and end the diagram at the instant the ball touches his hand. We 
will consider neither the toss nor the catch. And, of course, we will 
model the ball as a particle.

VISUALIZE We have a slight difficulty here because the ball retraces 
its route as it falls. A literal motion diagram would show the upward 
motion and downward motion on top of each other, leading to con-
fusion. We can avoid this difficulty by horizontally separating the 
upward motion and downward motion diagrams. This will not af-
fect our conclusions because it does not change any of the vectors. 
FIGURE 1.15 shows the motion diagram drawn this way. Notice that 
the very top dot is shown twice—as the end point of the upward 
motion and the beginning point of the downward motion.

The ball slows down as it rises. You’ve learned that the accel-
eration vectors point opposite the velocity vectors for an object 
that is slowing down along a line, and they are shown accordingly. 
Similarly, au and vu point in the same direction as the falling ball 
speeds up. Notice something interesting: The acceleration vectors 
point downward both while the ball is rising and while it is fall-
ing. Both “speeding up” and “slowing down” occur with the same 
acceleration vector. This is an important conclusion, one worth 
pausing to think about.

Now look at the top point on the ball’s trajectory. The velocity 
vectors point upward but are getting shorter as the ball approaches 
the top. As the ball starts to fall, the velocity vectors point down-
ward and are getting longer. There must be a moment—just an 
instant as vu switches from pointing up to pointing down—when 
the velocity is zero. Indeed, the ball’s velocity is zero for an in-
stant at the precise top of the motion!

But what about the acceleration at the top? The inset shows 
how the average acceleration is determined from the last upward 
velocity before the top point and the first downward velocity. We 

find that the acceleration at the top is pointing downward, just as it 
does elsewhere in the motion.

Many people expect the acceleration to be zero at the highest 
point. But the velocity at the top point is changing—from up to 
down. If the velocity is changing, there must be an acceleration. 
A downward-pointing acceleration vector is needed to turn the ve-
locity vector from up to down. Another way to think about this is 
to note that zero acceleration would mean no change of velocity. 
When the ball reached zero velocity at the top, it would hang there 
and not fall if the acceleration were also zero!

EXAMPLE 1.6 ■ Tossing a ball

v
u

v
u

a
u

a
u

a
u

a
u

a
u

a
u

∆v
u

∆v
u

∆v
u

va

ve

vc
u

vb
u

vf
u

vb
u

vf
u

vc
u

ve
u

va
u

vd
u

Finding a while
going down

Finding a while
going up

u

u

For clarity, we displace the upward and downward 
motions. They really occur along the same line.

The topmost point is 
shown twice for clarity.

The acceleration at
the top is not zero.

Finding a at the top
u

vd
u

u

u

FIGURE 1.15 Motion diagram of a ball tossed straight up in the air.
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1.6 Motion in One Dimension
An object’s motion can be described in terms of three fundamental quantities: its posi-
tion r u, velocity v 

u, and acceleration au. These are vectors, but for motion in one dimen-
sion, the vectors are restricted to point only “forward” or “backward.” Consequently, 
we can describe one-dimensional motion with the simpler quantities x, vx  , and ax 
(or y, vy  , and ay). However, we need to give each of these quantities an explicit sign, 
positive or negative, to indicate whether the position, velocity, or acceleration vector 
points forward or backward.

Determining the Signs of Position, Velocity,  
and Acceleration
Position, velocity, and acceleration are measured with respect to a coordinate system, 
a grid or axis that you impose on a problem to analyze the motion. We will find it 
convenient to use an x-axis to describe both horizontal motion and motion along an 
inclined plane. A y-axis will be used for vertical motion. A coordinate axis has two 
essential features:

1. An origin to define zero; and
2. An x or y label (with units) at the positive end of the axis.

   NOTE    In this textbook, we will follow the convention that the positive end of an 
x-axis is to the right and the positive end of a y-axis is up. The signs of position, 
velocity, and acceleration are based on this convention.

TACTICS BOX 1.3

Determining the sign of the position, velocity, and acceleration

a
u

a
u

a
u

a
u

v
u

v
u

v
u

v
u

x x 7 0

y 7 0 y 6 0

Position to right of origin.

Position above origin. Position below origin.

vy 7 0 vy 6 0

Direction of motion is up. Direction of motion is down.

ay 7 0 ay 6 0

Acceleration vector points up. Acceleration vector points down.

Position to left of origin.

Direction of motion is to the right.

Direction of motion is to the left.

Acceleration vector points to the right.

Acceleration vector points to the left.

x 6 0

vx 7 0

vx 6 0

ax 7 0

ax 6 0

0

y

0

y

0
x

0

The sign of position (x or y) tells us where an object is.

The sign of velocity (vx or vy) tells us which direction 
the object is moving.

The sign of acceleration (ax or ay) tells us which way 
the acceleration vector points, not whether the object 
is speeding up or slowing down.

Exercises 30–31 
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38 CHAPTER 1 Concepts of Motion

Acceleration is where things get a bit tricky. A natural tendency is to think that a 
positive value of ax or ay describes an object that is speeding up while a negative value 
describes an object that is slowing down (decelerating). However, this interpretation 
does not work.

Acceleration is defined as auavg = ∆vu  /∆t. The direction of au can be determined by 
using a motion diagram to find the direction of ∆v 

u. The one-dimensional acceleration 
ax (or ay) is then positive if the vector au points to the right (or up), negative if au points 
to the left (or down).

FIGURE 1.16 shows that this method for determining the sign of a does not con-
form to the simple idea of speeding up and slowing down. The object in Figure 1.16a 
has a positive acceleration 1ax 7 02 not because it is speeding up but because the 
vector au points in the positive direction. Compare this with the motion diagram of 
Figure 1.16b. Here the object is slowing down, but it still has a positive acceleration 
1ax 7 02 because au points to the right.

In the previous section, we found that an object is speeding up if v 

u and au point 
in the same direction, slowing down if they point in opposite directions. For 
one-dimensional motion this rule becomes:

■■ An object is speeding up if and only if vx and ax have the same sign.
■■ An object is slowing down if and only if vx and ax have opposite signs.
■■ An object’s velocity is constant if and only if ax = 0.

Notice how the first two of these rules are at work in Figure 1.16.

Position-versus-Time Graphs
FIGURE 1.17 is a motion diagram, made at 1 frame per minute, of a student walking to 
school. You can see that she leaves home at a time we choose to call t = 0 min and 
makes steady progress for a while. Beginning at t = 3 min there is a period where the 
distance traveled during each time interval becomes less—perhaps she slowed down 
to speak with a friend. Then she picks up the pace, and the distances within each 
interval are longer.

a
u

v
u

a
u

v
u

x
x 7 0 vx 6 0 ax 7 00

x
x 7 0 vx 7 0 ax 7 00

(a) Speeding up to the right

(b) Slowing down to the left

FIGURE 1.16 One of these objects is 
speeding up, the other slowing down, but 
they both have a positive acceleration ax.

u
v

x (m)
0 100

1 frame per minute

200 300 400 500

t = 0 min

FIGURE 1.17 The motion diagram of a student walking to school and a coordinate axis for 
making measurements.

TABLE 1.1 Measured positions of a 
student walking to school

Time  
t (min)

Position  
x (m)

Time  
t (min)

Position  
x (m)

0   0 5 220

1  60 6 240

2 120 7 340

3 180 8 440

4 200 9 540

Figure 1.17 includes a coordinate axis, and you can see that every dot in a motion 
diagram occurs at a specific position. TABLE 1.1 shows the student’s positions at dif-
ferent times as measured along this axis. For example, she is at position x = 120 m  
at t = 2 min.

The motion diagram is one way to represent the student’s motion. Another is to 
make a graph of the measurements in Table 1.1. FIGURE 1.18a is a graph of x versus t for 
the student. The motion diagram tells us only where the student is at a few discrete 
points of time, so this graph of the data shows only points, no lines.

   NOTE    A graph of “a versus b” means that a is graphed on the vertical axis and b 
on the horizontal axis. Saying “graph a versus b” is really a shorthand way of saying 
“graph a as a function of b.”
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1.7 Solving Problems in Physics 39

However, common sense tells us the following. First, the student was some-
where specific at all times. That is, there was never a time when she failed to have 
a well-defined position, nor could she occupy two positions at one time. Second, the 
student moved continuously through all intervening points of space. She could not go 
from x = 100 m to x = 200 m without passing through every point in between. It is 
thus quite reasonable to believe that her motion can be shown as a continuous line pass-
ing through the measured points, as shown in FIGURE 1.18b. A continuous line or curve 
showing an object’s position as a function of time is called a position-versus-time 
graph or, sometimes, just a position graph.

   NOTE    A graph is not a “picture” of the motion. The student is walking along a 
straight line, but the graph itself is not a straight line. Further, we’ve graphed her 
position on the vertical axis even though her motion is horizontal. Graphs are 
abstract representations of motion. We will place significant emphasis on the 
process of interpreting graphs, and many of the exercises and problems will give you 
a chance to practice these skills.

t (min)

t (min)

x (m)

x (m)

0 2 4 6 8 10

600

400

200

0

0 2 4 6 8 10

600

400

200

0

(a)

(b)

Dots show the student’s position
at discrete instants of time.

A continuous line shows her
position at all instants of time.

FIGURE 1.18 Position graphs of the 
student’s motion.

The graph in FIGURE 1.19a represents the motion of a car along a 
straight road. Describe the motion of the car.

MODEL We’ll model the car as a particle with a precise position at 
each instant.

VISUALIZE As FIGURE 1.19b shows, the graph represents a car that 
travels to the left for 30 minutes, stops for 10 minutes, then travels 
back to the right for 40 minutes.

EXAMPLE 1.7 ■ Interpreting a position graph

t (min)

x (km)

20 40 60 80

(a)

20

10

0

-10

-20

t (min)

x (km)

20 40 60 80

(b)

20

10

0

-10

-20

1. At t = 0 min, the car is 10 km
    to the right of the origin.

5. The car reaches the
 origin at t = 80 min.

4. The car starts moving back
 to the right at t = 40 min.

2. The value of x decreases for
 30 min, indicating that the car
 is moving to the left.

3. The car stops for 10 min at a position
    20 km to the left of the origin.

FIGURE 1.19 Position-versus-time graph of a car.

1.7 Solving Problems in Physics
Physics is not mathematics. Math problems are clearly stated, such as “What is 
2 + 2?< Physics is about the world around us, and to describe that world we must use 
language. Now, language is wonderful—we couldn’t communicate without it—but 
language can sometimes be imprecise or ambiguous.

The challenge when reading a physics problem is to translate the words into 
symbols that can be manipulated, calculated, and graphed. The translation from 
words to symbols is the heart of problem solving in physics. This is the point 
where ambiguous words and phrases must be clarified, where the imprecise must 
be made precise, and where you arrive at an understanding of exactly what the 
question is asking.
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Using Symbols
Symbols are a language that allows us to talk with precision about the relationships 
in a problem. As with any language, we all need to agree to use words or symbols in 
the same way if we want to communicate with each other. Many of the ways we use 
symbols in science and engineering are somewhat arbitrary, often reflecting historical 
roots. Nonetheless, practicing scientists and engineers have come to agree on how to 
use the language of symbols. Learning this language is part of learning physics.

We will use subscripts on symbols, such as x3, to designate a particular point in the 
problem. Scientists usually label the starting point of the problem with the subscript 
“0,” not the subscript “1” that you might expect. When using subscripts, make sure 
that all symbols referring to the same point in the problem have the same numerical 
subscript. To have the same point in a problem characterized by position x1 but veloc-
ity v2x is guaranteed to lead to confusion!

Drawing Pictures
You may have been told that the first step in solving a physics problem is to “draw a 
picture,” but perhaps you didn’t know why, or what to draw. The purpose of drawing a 
picture is to aid you in the words-to-symbols translation. Complex problems have far 
more information than you can keep in your head at one time. Think of a picture as a 
“memory extension,” helping you organize and keep track of vital information.

Although any picture is better than none, there really is a method for draw-
ing pictures that will help you be a better problem solver. It is called the pictorial 
representation of the problem. We’ll add other pictorial representations as we go 
along, but the following procedure is appropriate for motion problems.

TACTICS BOX 1.4

Drawing a pictorial representation
1  Draw a motion diagram. The motion diagram develops your intuition for the 

motion.
2  Establish a coordinate system. Select your axes and origin to match the mo-

tion. For one-dimensional motion, you want either the x-axis or the y-axis  
parallel to the motion. The coordinate system determines whether the signs of 
v and a are positive or negative.

3  Sketch the situation. Not just any sketch. Show the object at the beginning of the 
motion, at the end, and at any point where the character of the motion changes. 
Show the object, not just a dot, but very simple drawings are adequate.

4  Define symbols. Use the sketch to define symbols representing quantities such as 
position, velocity, acceleration, and time. Every variable used later in the mathe-
matical solution should be defined on the sketch. Some will have known values, 
others are initially unknown, but all should be given symbolic names.

5  List known information. Make a table of the quantities whose values you can 
determine from the problem statement or that can be found quickly with sim-
ple geometry or unit conversions. Some quantities are implied by the problem, 
rather than explicitly given. Others are determined by your choice of coordi-
nate system.

6  Identify the desired unknowns. What quantity or quantities will allow you 
to answer the question? These should have been defined as symbols in step 4. 
Don’t list every unknown, only the one or two needed to answer the question.

It’s not an overstatement to say that a well-done pictorial representation of the 
problem will take you halfway to the solution. The following example illustrates how 
to construct a pictorial representation for a problem that is typical of problems you 
will see in the next few chapters.
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1.7 Solving Problems in Physics 41

Draw a pictorial representation for the following problem: A rocket 
sled accelerates horizontally at 50 m/s2 for 5.0 s, then coasts for 
3.0 s. What is the total distance traveled?

VISUALIZE FIGURE 1.20 is the pictorial representation. The motion 
diagram shows an acceleration phase followed by a coasting phase. 
Because the motion is horizontal, the appropriate coordinate sys-
tem is an x-axis. We’ve chosen to place the origin at the starting 
point. The motion has a beginning, an end, and a point where the 
motion changes from accelerating to coasting, and these are the 
three sled positions sketched in the figure. The quantities x, vx 

, and 
t are needed at each of three points, so these have been defined on 

the sketch and distinguished by subscripts. Accelerations are asso-
ciated with intervals between the points, so only two accelerations 
are defined. Values for three quantities are given in the problem 
statement, although we need to use the motion diagram, where we 
find that au points to the right, to know that a0x = +50 m/s2 rather 
than -50 m/s2. The values x0 = 0 m and t0 = 0 s are choices we 
made when setting up the coordinate system. The value v0x = 0 m/s 
is part of our interpretation of the problem. Finally, we identify x2 
as the quantity that will answer the question. We now understand 
quite a bit about the problem and would be ready to start a quanti-
tative analysis.

EXAMPLE 1.8 ■ Drawing a pictorial representation

5

4

2

1

a
u
v
u

0
u

0
u

y

x

a0x

x0, v0x , t0 x1, v1x , t1 x2, v2x , t2

a1x

Sketch the situation.

Establish a
coordinate system.

Define symbols.

List known information.

Identify desired unknown. Find

t0 = 0 s

x2

a0x = 50 m/s2

a1x = 0 m/s2

t1 = 5.0 s

t2 = t1 + 3.0 s = 8.0 s

Known
x0 = 0 m  v0x = 0 m/s

Draw a
motion diagram.

3

6

FIGURE 1.20 A pictorial representation.

A new building requires careful planning. 
The architect’s visualization and drawings 
have to be complete before the detailed 
procedures of construction get under 
way. The same is true for solving prob-
lems in physics.

We didn’t solve the problem; that is not the purpose of the pictorial representation. The 
pictorial representation is a systematic way to go about interpreting a problem and getting 
ready for a mathematical solution. Although this is a simple problem, and you probably 
know how to solve it if you’ve taken physics before, you will soon be faced with much 
more challenging problems. Learning good problem-solving skills at the beginning, while 
the problems are easy, will make them second nature later when you really need them.

Representations
A picture is one way to represent your knowledge of a situation. You could also rep-
resent your knowledge using words, graphs, or equations. Each representation of 
knowledge gives us a different perspective on the problem. The more tools you have 
for thinking about a complex problem, the more likely you are to solve it.

There are four representations of knowledge that we will use over and over:

1. The verbal representation. A problem statement, in words, is a verbal represen-
tation of knowledge. So is an explanation that you write.

2. The pictorial representation. The pictorial representation, which we’ve just pre-
sented, is the most literal depiction of the situation.

3. The graphical representation. We will make extensive use of graphs.
4. The mathematical representation. Equations that can be used to find the numeri-

cal values of specific quantities are the mathematical representation.

   NOTE    The mathematical representation is only one of many. Much of physics is 
more about thinking and reasoning than it is about solving equations.
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42 CHAPTER 1 Concepts of Motion

A Problem-Solving Strategy
One of the goals of this textbook is to help you learn a strategy for solving physics prob-
lems. The purpose of a strategy is to guide you in the right direction with minimal wasted 
effort. The four-part problem-solving strategy—Model, Visualize, Solve, Review—is 
based on using different representations of knowledge. You will see this problem-solving 
strategy used consistently in the worked examples throughout this textbook, and you 
should endeavor to apply it to your own problem solving.

GENERAL PROBLEM-SOLVING STRATEGY

MODEL It’s impossible to treat every detail of a situation. Simplify the situation 
with a model that captures the essential features. For example, the object in a me-
chanics problem is often represented as a particle.

VISUALIZE This is where expert problem solvers put most of their effort.
■■ Draw a pictorial representation. This helps you visualize important aspects of 
the physics and assess the information you are given. It starts the process of 
translating the problem into symbols.

■■ Use a graphical representation if it is appropriate for the problem.
■■ Go back and forth between these representations; they need not be done in any 
particular order.

SOLVE Only after modeling and visualizing are complete is it time to develop a 
mathematical representation with specific equations that must be solved. All sym-
bols used here should have been defined in the pictorial representation.

REVIEW Is your result believable? Does it have proper units? Does it make sense?

Use the first two steps of the problem-solving strategy to analyze 
the following problem: A small rocket, such as those used for me-
teorological measurements of the atmosphere, is launched verti-
cally with an acceleration of 30 m/s2. It runs out of fuel after 30 s. 
What is its maximum altitude?

MODEL We need to do some interpretation. Common sense tells us 
that the rocket does not stop the instant it runs out of fuel. Instead, 
it continues upward, while slowing, until it reaches its maximum 
altitude. This second half of the motion, after running out of fuel, is 
like the ball that was tossed upward in the first half of Example 1.6. 
Because the problem does not ask about the rocket’s descent, we 
conclude that the problem ends at the point of maximum altitude. 
We’ll model the rocket as a particle.

VISUALIZE FIGURE 1.21 shows the pictorial representation in 
pencil-sketch style. The rocket is speeding up during the first half of 
the motion, so au0 points upward, in the positive y-direction. Thus the 
initial acceleration is a0y = 30 m/s2. During the second half, as the 
rocket slows, au1 points downward. Thus a1y is a negative number.

EXAMPLE 1.9 ■ Launching a weather rocket

FIGURE 1.21 Pictorial representation for the rocket.

Throughout this textbook we will emphasize the first two steps. They are the phys-
ics of the problem, as opposed to the mathematics of solving the resulting equations. 
This is not to say that those mathematical operations are always easy—in many cases 
they are not. But our primary goal is to understand the physics.

Textbook illustrations are obviously more sophisticated than what you would draw 
on your own paper. To show you a figure very much like what you should draw, the 
final example of this section is in a “pencil sketch” style. We will include one or more 
pencil-sketch examples in nearly every chapter to illustrate exactly what a good prob-
lem solver would draw.
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Our task in this chapter is not to solve problems—all that in due time—but to 
focus on what is happening in a problem. In other words, to make the translation from 
words to symbols in preparation for subsequent mathematical analysis. Modeling and 
the pictorial representation will be our most important tools.

1.8 Units and Significant Figures
Science is based upon experimental measurements, and measurements require units. 
The system of units used in science is called le Système Internationale d’Unités. 
These are commonly referred to as SI units. In casual speaking we often refer to 
metric units.

All of the quantities needed to understand motion can be expressed in terms of the 
three basic SI units shown in TABLE 1.2. Other quantities can be expressed as a combi-
nation of these basic units. Velocity, expressed in meters per second or m/s, is a ratio 
of the length unit to the time unit.

Time
The standard of time prior to 1960 was based on the mean solar day. As time-keeping 
accuracy and astronomical observations improved, it became apparent that the earth’s 
rotation is not perfectly steady. Meanwhile, physicists had been developing a device 
called an atomic clock. This instrument is able to measure, with incredibly high pre-
cision, the frequency of radio waves absorbed by atoms as they move between two 
closely spaced energy levels. This frequency can be reproduced with great accuracy at 
many laboratories around the world. Consequently, the SI unit of time—the second—
was redefined in 1967 as follows:

One second is the time required for 9,192,631,770 oscillations of the radio wave 
absorbed by the cesium-133 atom. The abbreviation for second is the letter s.

Several radio stations around the world broadcast a signal whose frequency 
is linked directly to the atomic clocks. This signal is the time standard, and any 
time-measuring equipment you use was calibrated from this time standard.

Length
The SI unit of length—the meter—was originally defined as one ten-millionth of the 
distance from the north pole to the equator along a line passing through Paris. There 
are obvious practical difficulties with implementing this definition, and it was later 
abandoned in favor of the distance between two scratches on a platinum-iridium bar 
stored in a special vault in Paris. The present definition, agreed to in 1983, is as follows:

One meter is the distance traveled by light in vacuum during 1/299,792,458 of a 
second. The abbreviation for meter is the letter m.

This is equivalent to defining the speed of light to be exactly 299,792,458 m/s. 
Laser technology is used in various national laboratories to implement this definition 
and to calibrate secondary standards that are easier to use. These standards ultimately 

An atomic clock at the National Institute 
of Standards and Technology is the pri-
mary standard of time.

This information is included with the known information. Al-
though the velocity v2y wasn’t given in the problem statement, it 
must—just like for the ball in Example 1.6—be zero at the very 
top of the trajectory. Last, we have identified y2 as the desired un-
known. This, of course, is not the only unknown in the problem, 
but it is the one we are specifically asked to find.

REVIEW If you’ve had a previous physics class, you may be tempted 
to assign a1y the value -9.8 m/s2, the free-fall acceleration. However,  
that would be true only if there is no air resistance on the rocket. We 
will need to consider the forces acting on the rocket during the sec-
ond half of its motion before we can determine a value for a1y. For 
now, all that we can safely conclude is that a1y is negative.

TABLE 1.2 The basic SI units

Quantity Unit Abbreviation

time second s

length meter m

mass kilogram kg
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44 CHAPTER 1 Concepts of Motion

make their way to your ruler or to a meter stick. It is worth keeping in mind that any 
measuring device you use is only as accurate as the care with which it was calibrated.

Mass
For 130 years, the kilogram was defined as the mass of a polished platinum-iridium 
cylinder stored in a vault in Paris. By the 1990s, this was the only SI unit still defined 
by a manufactured object rather than by natural phenomena. That changed in 2019 
with a new definition of the kilogram, although one that is rather hard to understand:

One kilogram is defined by fixing the value of the Planck constant—a quantity 
that appears in quantum physics—to be 6.626 070 15 * 10-34 kg m2/s . The abbre-
viation for kilogram is kg.

This obscure definition is implemented using a device called a Kibble balance in 
which an electromagnet is used to balance the weight of a test mass, and the required 
electric current is measured using quantum standards that depend on the Planck con-
stant. Despite the prefix kilo, it is the kilogram, not the gram, that is the SI unit.

Using Prefixes
We will have many occasions to use lengths, times, and masses that are either much 
less or much greater than the standards of 1 meter, 1 second, and 1 kilogram. We will 
do so by using prefixes to denote various powers of 10. TABLE 1.3 lists the common 
prefixes that will be used frequently throughout this book. Memorize it! Few things in 
science are learned by rote memory, but this list is one of them. A more extensive list 
of prefixes is shown inside the front cover of the book.

Although prefixes make it easier to talk about quantities, the SI units are seconds, 
meters, and kilograms. Quantities given with prefixed units must be converted to SI 
units before any calculations are done. Unit conversions are best done at the very be-
ginning of a problem, as part of the pictorial representation.

Unit Conversions
Although SI units are our standard, we cannot entirely forget that the United States 
still uses English units. Thus it remains important to be able to convert back and forth 
between SI units and English units. TABLE 1.4 shows several frequently used conver-
sions, and these are worth memorizing if you do not already know them. While the 
English system was originally based on the length of the king’s foot, it is interesting 
to note that today the conversion 1 in = 2.54 cm is the definition of the inch. In other 
words, the English system for lengths is now based on the meter!

There are various techniques for doing unit conversions. One effective method is to 
write the conversion factor as a ratio equal to one. For example, using information in 
Tables 1.3 and 1.4, we have

10-6 m
1 mm

= 1  and  
2.54 cm

1 in
= 1

Because multiplying any expression by 1 does not change its value, these ratios are 
easily used for conversions. To convert 3.5 mm to meters we compute

3.5 mm *
10-6 m
1 mm

= 3.5 * 10-6 m

Similarly, the conversion of 2 feet to meters is

2.00 ft *
12 in
1 ft

*
2.54 cm

1 in
*

10-2 m
1 cm

= 0.610 m

Notice how units in the numerator and in the denominator cancel until only the de-
sired units remain at the end. You can continue this process of multiplying by 1 as 
many times as necessary to complete all the conversions.

TABLE 1.3 Common prefixes

Prefix Power of 10 Abbreviation

giga- 109 G

mega- 106 M

kilo- 103 k

centi- 10-2 c

milli- 10-3 m

micro- 10-6 m

nano- 10-9 n

In 1999, the $125-million Mars Climate 
Orbiter burned up in the Martian 
atmosphere instead of entering a safe 
orbit. The problem was faulty units! 
The engineering team supplied data in 
English units, but the navigation team as-
sumed that the data were in metric units.

TABLE 1.4 Useful unit conversions

1 in = 2.54 cm

1 mi = 1.609 km

1 mph = 0.447 m/s

1 m = 39.37 in

1 km = 0.621 mi

1 m/s = 2.24 mph
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Assessment
As we get further into problem solving, you will need to decide whether or not the 
answer to a problem “makes sense.” To determine this, at least until you have more 
experience with SI units, you may need to convert from SI units back to the English 
units in which you think. But this conversion does not need to be very accurate. For 
example, if you are working a problem about automobile speeds and reach an answer 
of 35 m/s, all you really want to know is whether or not this is a realistic speed for a 
car. That requires a “quick and dirty” conversion, not a conversion of great accuracy.

TABLE 1.5 shows several approximate conversion factors that can be used to as-
sess the answer to a problem. Using 1 m/s ≈ 2 mph, you find that 35 m/s is roughly 
70 mph, a reasonable speed for a car. But an answer of 350 m/s, which you might get 
after making a calculation error, would be an unreasonable 700 mph. Practice with 
these will allow you to develop intuition for metric units.

   NOTE    These approximate conversion factors are accurate to only one significant 
figure. This is sufficient to assess the answer to a problem, but do not use the 
conversion factors from Table 1.5 for converting English units to SI units at the start 
of a problem. Use Table 1.4.

Significant Figures
It is necessary to say a few words about a perennial source of difficulty: significant 
figures. Mathematics is a subject where numbers and relationships can be as precise 
as desired, but physics deals with a real world of ambiguity. It is important in science 
and engineering to state clearly what you know about a situation—no less and, espe-
cially, no more. Numbers provide one way to specify your knowledge.

If you report that a length has a value of 6.2 m, the implication is that the actual 
value falls between 6.15 m and 6.25 m and thus rounds to 6.2 m. If that is the case, 
then reporting a value of simply 6 m is saying less than you know; you are with-
holding information. On the other hand, to report the number as 6.213 m is wrong. 
Any person reviewing your work—perhaps a client who hired you—would interpret 
the number 6.213 m as meaning that the actual length falls between 6.2125 m and 
6.2135 m, thus rounding to 6.213 m. In this case, you are claiming to have knowledge 
and information that you do not really possess.

The way to state your knowledge precisely is through the proper use of significant 
figures. You can think of a significant figure as being a digit that is reliably known. A 
number such as 6.2 m has two significant figures because the next decimal place—the 
one-hundredths—is not reliably known. As FIGURE 1.22 shows, the best way to deter-
mine how many significant figures a number has is to write it in scientific notation.

TABLE 1.5 Approximate conversion 
factors. Use these for assessment,  
not in problem solving.

1 cm ≈ 1
2 in

10 cm ≈ 4 in

1 m ≈ 1 yard

1 m ≈ 3 feet

1 km ≈ 0.6 mile

1 m/s ≈ 2 mph

c

A trailing zero after the
decimal place is reliably
known. It is significant.

Leading zeros locate the decimal point.
They are not significant.

The number of significant
figures is the number of
digits when written in
scientific notation.

The number of significant figures
≠ the number of decimal places.

Changing units shifts the decimal
point but does not change the
number of significant figures.

0.00620 = 6.20 * 10-3

FIGURE 1.22 Determining significant figures.

What about numbers like 320 m and 20 kg? Whole numbers with trailing zeros 
are ambiguous unless written in scientific notation. Even so, writing 2.0 * 101 kg is 
tedious, and few practicing scientists or engineers would do so. In this textbook, we’ll 
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46 CHAPTER 1 Concepts of Motion

   NOTE    Be careful! Many calculators have a default setting that shows two decimal 
places, such as 5.23. This is dangerous. If you need to calculate 5.23/58.5, your 
calculator will show 0.09 and it is all too easy to write that down as an answer. By 
doing so, you have reduced a calculation of two numbers having three significant 
figures to an answer with only one significant figure. The proper result of this div-
ision is 0.0894 or 8.94 * 10-2. You will avoid this error if you keep your calculator 
set to display numbers in scientific notation with two decimal places.

TACTICS BOX 1.5

Using significant figures
1  When multiplying or dividing several numbers, or taking roots, the number 

of significant figures in the answer should match the number of significant 
figures of the least precisely known number used in the calculation.

2  When adding or subtracting several numbers, the number of decimal places in 
the answer should match the smallest number of decimal places of any number 
used in the calculation.

3  Exact numbers are perfectly known and do not affect the number of signifi-
cant figures an answer should have. Examples of exact numbers are the 2 and 
the p in the formula C = 2pr for the circumference of a circle.

4  It is acceptable to keep one or two extra digits during intermediate steps of a 
calculation, to minimize rounding error, as long as the final answer is reported 
with the proper number of significant figures.

5  For examples and problems in this textbook, the appropriate number of sig-
nificant figures for the answer is determined by the data provided. Whole 
numbers with trailing zeros, such as 20 kg, are interpreted as having at least 
two significant figures.

Exercises 38–39 

An object consists of two pieces. The mass of one piece has been measured to be 6.47 kg.  
The volume of the second piece, which is made of aluminum, has been measured to be 
4.44 * 10-4 m3. A handbook lists the density of aluminum as 2.7 * 103 kg/m3. What is 
the total mass of the object?

SOLVE First, calculate the mass of the second piece:

  m = 14.44 * 10-4 m3212.7 * 103 kg/m32
  = 1.199 kg = 1.2 kg

EXAMPLE 1.10 ■ Using significant figures

adopt the rule that whole numbers always have at least two significant figures, even 
if one of those is a trailing zero. By this rule, 320 m, 20 kg, and 8000 s each have two 
significant figures, but 8050 s would have three.

Calculations with numbers follow the “weakest link” rule. The saying, which you prob-
ably know, is that “a chain is only as strong as its weakest link.” If nine out of ten links 
in a chain can support a 1000 pound weight, that strength is meaningless if the tenth link 
can support only 200 pounds. Nine out of the ten numbers used in a calculation might be 
known with a precision of 0.01%; but if the tenth number is poorly known, with a precision 
of only 10%, then the result of the calculation cannot possibly be more precise than 10%.
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Proper use of significant figures is part of the “culture” of science and engineer-
ing. We will frequently emphasize these “cultural issues” because you must learn to 
speak the same language as the natives if you wish to communicate effectively. Most 
students know the rules of significant figures, having learned them in high school, 
but many fail to apply them. It is important to understand the reasons for significant 
figures and to get in the habit of using them properly.

Orders of Magnitude and Estimating
Precise calculations are appropriate when we have precise data, but there are many 
times when a very rough estimate is sufficient. Suppose you see a rock fall off a cliff 
and would like to know how fast it was going when it hit the ground. By doing a 
mental comparison with the speeds of familiar objects, such as cars and bicycles, you 
might judge that the rock was traveling at “about” 20 mph.

This is a one-significant-figure estimate. With some luck, you can distinguish 
20 mph from either 10 mph or 30 mph, but you certainly cannot distinguish 20 mph 
from 21 mph. A one-significant-figure estimate or calculation, such as this, is called 
an order-of-magnitude estimate. An order-of-magnitude estimate is indicated by 
the symbol ∙ , which indicates even less precision than the “approximately equal” 
symbol ≈ . You would say that the speed of the rock is v ∙  20 mph.

A useful skill is to make reliable estimates on the basis of known informa-
tion, simple reasoning, and common sense. This is a skill that is acquired by prac-
tice. Many chapters in this book will have homework problems that ask you to 
make order-of-magnitude estimates. The following example is a typical estimation 
problem.

TABLES 1.6 and 1.7 have information that will be useful for doing estimates.

TABLE 1.6 Some approximate lengths

Length (m)

Altitude of jet planes 10,000

Distance across campus 1000

Length of a football field 100

Length of a classroom 10

Length of your arm 1

Width of a textbook 0.1

Length of a fingernail 0.01

TABLE 1.7 Some approximate masses

Mass (kg)

Small car 1000

Large human 100

Medium-size dog 10

Science textbook 1

Apple 0.1

Pencil 0.01

Raisin 0.001

The number of significant figures of a product must match that of the least precisely known 
number, which is the two-significant-figure density of aluminum. Now add the two masses:

6.47 kg
+  1.2  kg

7.7  kg

The sum is 7.67 kg, but the hundredths place is not reliable because the second mass has 
no reliable information about this digit. Thus we must round to the one decimal place of 
the 1.2 kg. The best we can say, with reliability, is that the total mass is 7.7 kg.
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Estimate the speed with which an Olympic sprinter crosses the finish line of the 100 m 
dash.

SOLVE We do need one piece of information, but it is a widely known piece of sports 
trivia. That is, world-class sprinters run the 100 m dash in about 10 s. Their average 
speed is vavg ≈ 1100 m2/110 s2 ≈ 10 m/s. But that’s only average. They go slower than 
average at the beginning, and they cross the finish line at a speed faster than average. How 
much faster? Twice as fast, 20 m/s, would be ≈40 mph. Sprinters don’t seem like they’re 
running as fast as a 40 mph car, so this probably is too fast. Let’s estimate that their final 
speed is 50% faster than the average. Thus they cross the finish line at v ∙  15 m/s.

EXAMPLE 1.11 ■ Estimating a sprinter’s speed

STOP TO THINK 1.5 Rank in order, from the most to the least, the number of 
significant figures in the following numbers. For example, if b has more than c,  
c has the same number as a, and a has more than d, you could give your answer as 
b 7 c = a 7 d.

a. 82 b. 0.0052 c. 0.430 d. 4.321 * 10-10
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Problem Solving
MODEL Make simplifying assumptions.

VISUALIZE Use:

• Pictorial representation

• Graphical representation
SOLVE Use a mathematical representation to find numerical 
answers.

REVIEW Does the answer have the proper units and correct sig-
nificant figures? Does it make sense?

Motion Diagrams
• Help visualize motion.

• Provide a tool for finding acceleration vectors.

v0
u

v1
u ∆v

u

a
u

a
u

v1
u

v0
u

Dots show positions at
equal time intervals.

Velocity vectors go dot to dot.

The acceleration
vector points in the
direction of ∆v.

u

▶ These are the average velocity and acceleration vectors.

General Strategy

Summary
 

The goal of Chapter 1 has been to learn the fundamental 
concepts of motion.

For motion along a line:
• Speeding up: vu and au point in the same direction, vx and ax have 

the same sign.

• Slowing down: vu and au point in opposite directions, vx and ax  
have opposite signs.

• Constant speed: au = 0
u
, ax = 0.

Acceleration ax is positive if au ptoints right, negative if au points 
left. The sign of ax does not imply speeding up or slowing down.

Pictorial Representation

1  Draw a motion diagram.

2  Establish coordinates.

3  Sketch the situation.

4  Define symbols.

5  List knowns.

6  Identify desired unknown.

Significant figures are reliably known digits. The number of 
significant figures for:

• Multiplication, division, powers is set by the value with the fewest 
significant figures.

• Addition, subtraction is set by the value with the smallest number 
of decimal places.

The appropriate number of significant figures in a calculation is 
determined by the data provided.

The particle model represents a moving object as if all its mass 
were concentrated at a single point.

Position locates an object with respect to a chosen coordinate sys-
tem. Change in position is called displacement.

Velocity is the rate of change of the position vector r u.

Acceleration is the rate of change of the velocity vector vu.

An object has an acceleration if it

• Changes speed and/or

• Changes direction.

Important Concepts

Applications

a
u

v
u

x0 = v0x = t0 = 0

ax

x0, v0x, t0 x1, v1x, t1

x
0

Known

ax = 2.0 m/s2  t1 = 2.0 s

Find
x1

motion
translational motion
trajectory
motion diagram
model
particle

particle model
position vector, r u

scalar
vector
displacement, ∆r u

time interval, ∆t

average speed
average velocity, vu

average acceleration, au

position-versus-time graph
pictorial representation
representation of knowledge

SI units
significant figures
order-of-magnitude estimate

Terms and Notation

M01B_KNIG8221_05_GE_C01.indd   49 02/06/2022   15:50



50 CHAPTER 1 Concepts of Motion

CONCEPTUAL QUESTIONS

1. How many significant figures does each of the following num-
bers have?
a. 9.90 b. 0.99 c. 0.099 d. 99

2. How many significant figures does each of the following num-
bers have?
a. 0.0044 b. 4.40 * 10-4 c. 440 d. 2.90

3. Is the particle in FIGURE Q1.3 speeding up? Slowing down? Or 
can you tell? Explain.

FIGURE Q1.3

v
u

FIGURE Q1.4

4. Does the object represented in FIGURE Q1.4 have 
a positive or negative value of ax? Explain.

5. Does the object represented in FIGURE Q1.5 have 
a positive or negative value of ay? Explain.

v
u

FIGURE Q1.5

6. Determine the signs (positive, negative, or zero) of the position, 
velocity, and acceleration for the particle in FIGURE Q1.6.

0
x

FIGURE Q1.6

0

y

FIGURE Q1.7

0

y

FIGURE Q1.8

7. Determine the signs (positive, negative, or zero) of the position, 
velocity, and acceleration for the particle in FIGURE Q1.7.

8. Determine the signs (positive, negative, or zero) of the position, 
velocity, and acceleration for the particle in FIGURE Q1.8.

EXERCISES AND PROBLEMS

Exercises

Section 1.1 Motion Diagrams

1. | A jet plane lands on the deck of an aircraft carrier and 
quickly comes to a halt. Draw a basic motion diagram, using 
the images from the video, from the time the jet touches down 
until it stops.

2. | You are watching a jet ski race. A racer speeds up from rest to 
70 mph in 10 s, then continues at a constant speed. Draw a basic 
motion diagram of the jet ski, using images from the video, from 
its start until 10 s after reaching top speed.

3. | A rocket is launched straight up. Draw a basic motion dia-
gram, using the images from the video, from the moment of lift-
off until the rocket is at an altitude of 500 m.

Section 1.2 Models and Modeling

4. | a. Write a paragraph describing the particle model. What is it, 
and why is it important?

b. Give two examples of situations, different from those  described 
in the text, for which the particle model is appropriate.

c. Give an example of a situation, different from those de-
scribed in the text, for which it would be inappropriate.

Section 1.3 Position, Time, and Displacement

Section 1.4 Velocity

5. | A baseball player starts running to the left to catch the ball as 
soon as the hit is made. Use the particle model to draw a motion 
diagram showing the position and average velocity vectors of the 
player during the first few seconds of the run.

6. | You drop a soccer ball from your third-story balcony. Use the 
particle model to draw a motion diagram showing the ball’s po-
sition and average velocity vectors from the time you release the 
ball until the instant it touches the ground.

7. | A car skids to a halt to avoid hitting an object in the road. Use 
the particle model to draw a motion diagram showing the car’s 
position and its average velocity from the time the skid begins 
until the car stops.

Section 1.5 Linear Acceleration

8.   |  a.   FIGURE EX1.8 shows the first three points of a motion 
diagram. Is the object’s average speed between points 1 
and 2 greater than, less than, or equal to its average speed 
between points 0 and 1? Explain how you can tell.

b. Use Tactics Box 1.2 to find the average acceleration vector 
at point 1. Draw the completed motion diagram, showing the 
velocity vectors and acceleration vector.

1

2

0

FIGURE EX1.8 FIGURE EX1.9

2 3 410

9. | FIGURE EX1.9 shows five points of a motion diagram. Use 
Tactics Box 1.2 to find the average acceleration vectors at points 
1, 2, and 3. Draw the completed motion diagram showing veloc-
ity vectors and acceleration vectors.
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Exercises and Problems 51

19. | Write a short description of the motion of a real object for 
which FIGURE EX1.19 would be a realistic position-versus-time 
graph.

10. || FIGURE EX1.10 shows two dots of a motion diagram and 
 vector vu2. Copy this figure, then add dot 4 and the next velocity 
vector vu3 if the acceleration vector au at dot 3 (a) points right and 
(b) points left.

2 3

v2
u

FIGURE EX 1.10

v
u

1 frame every 2 s

x (m)
0 200 400 600 800

FIGURE EX1.18

FIGURE EX1.11

v1

2

1

u

11. || FIGURE EX1.11 shows two dots of a motion diagram and 
 vector vu1. Copy this figure, then add dot 3 and the next velocity  
vector vu2 if the acceleration vector au at dot 2 (a) points up and  
(b) points down.

12. | A car travels to the left at a steady speed for a few seconds, 
then brakes for a stop sign. Draw a complete motion diagram of 
the car.

13. | A speed skater accelerates from rest and then keeps skating at 
a constant speed. Draw a complete motion diagram of the skater.

14. | A bowling ball rolls up an incline and then onto a smooth, 
level surface. Draw a complete motion diagram of the bowling 
ball. Don’t try to find the acceleration vector at the point where 
the motion changes direction; that’s an issue for Chapter 4.

15. | You use a long rubber band to launch a paper wad straight 
up. Draw a complete motion diagram of the paper wad from the 
moment you release the stretched rubber band until the paper 
wad reaches its highest point.

16. | A roof tile falls straight down from a two-story building. It 
lands in a swimming pool and settles gently to the bottom. Draw 
a complete motion diagram of the tile.

17. | Your roommate drops a tennis ball from a third-story bal-
cony. It hits the sidewalk and bounces as high as the second 
story. Draw a complete motion diagram of the tennis ball from 
the time it is released until it reaches the maximum height on its 
bounce. Be sure to determine and show the acceleration at the 
lowest point.

Section 1.6 Motion in One Dimension

18. || FIGURE EX1.18 shows the motion diagram of a drag racer. The 
camera took one frame every 2 s.

a. Measure the x-value of the racer at each dot. List your data 
in a table similar to Table 1.1, showing each position and the 
time at which it occurred.

b. Make a position-versus-time graph for the drag racer. Because 
you have data only at certain instants, your graph should con-
sist of dots that are not connected together.

9

6

3

0

y (m)

t (s)
0 10 20 30FIGURE EX 1.19

120

80

40

0

x (mi)

t (h)
543210FIGURE EX1.20

20. | Write a short description of the motion of a real object for 
which FIGURE EX1.20 would be a realistic position-versus-time 
graph.

Section 1.7 Solving Problems in Physics

21. || Draw a pictorial representation for the following problem. Do 
not solve the problem. What acceleration does a rocket need to 
reach a speed of 200 m/s at a height of 1.0 km?

22. || Draw a pictorial representation for the following problem. Do 
not solve the problem. The light turns green, and a bicyclist starts 
forward with an acceleration of 1.5 m/s2. How far must she travel 
to reach a speed of 7.5 m/s?

Section 1.8 Units and Significant Figures

23. | How many significant figures are there in each of the follow-
ing values?
a. 8.263 * 10-1 b. 0.0414
c. 75.0 d. 0.07 * 108

24. || Convert the following to basic SI units or a combination of 
basic SI units:
a. 8.0 in b. 66 ft/s
c. 60 mph d. 14 in2

25. | Convert the following to basic SI units or a combination of 
basic SI units:
a. 87 in b. 7.89 * 106 yr
c. 48 ft/day d. 1.7 * 103 mi2

26. || Using the approximate conversion factors in Table 1.5, con-
vert the following to SI units without using your calculator.
a. 20 ft
c. 60 mph

b. 60 mi
d. 8 in

27. | Using the approximate conversion factors in Table 1.5, con-
vert the following SI units to English units without using your 
calculator.
a. 50 cm b. 15 km
c. 35 m/s d. 3 m
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52 CHAPTER 1 Concepts of Motion

Problems 44 through 48 show a motion diagram. For each of these 
problems, write a one or two sentence “story” about a real object that 
has this motion diagram. Your stories should talk about people or ob-
jects by name and say what they are doing. Problems 34 through 43 
are examples of motion short stories.

44. |

45. |

46. |

47. |

48. |

28. | Perform the following calculations with the correct number of 
significant figures.
a. 159.31 * 204.6 b. 5.1125 + 0.67 + 3.2

FIGURE P1.48

a
u

v
u

0
u

FIGURE P1.46

a
u

a
u

a
u

v
u

v
u

Start

Stop

Same
point

FIGURE P1.47

Start

a
u

v
u

FIGURE P1.44 a
u

v
u

StopStart

FIGURE P1.45
a
uv

u

0
u

0
u

0
u

c. 7.662 - 7.425 d. 16.5/3.45
29. | Compute the following numbers, applying the significant fig-

ure rules adopted in this textbook.
a. 33.3 * 25.4 b. 33.3 - 25.4
c. 133.3 d. 333.3 , 25.4

30. | Estimate (don’t measure!) the length of a typical car. Give 
your answer in both feet and meters. Briefly describe how you 
arrived at this estimate.

31. | Estimate the height of a telephone pole. Give your answer in 
both feet and meters. Briefly describe how you arrived at this 
estimate.

32. || Estimate the average speed with which the hair on your head 
grows. Give your answer in both m/s and mm/hour. Briefly de-
scribe how you arrived at this estimate.

33. | Motor neurons in mammals transmit signals from the brain to 
skeletal muscles at approximately 25 m/s. Estimate how long in 
ms it takes a signal to get from your brain to your hand.

Problems
For Problems 34 through 43, draw a complete pictorial representa-
tion. Do not solve these problems or do any mathematics.
34. | A jet plane is cruising at 300 m/s when suddenly the pilot 

turns the engines up to full throttle. After traveling 4.0 km, the 
jet is moving with a speed of 400 m/s. What is the jet’s accelera-
tion as it speeds up?

35. | A Porsche accelerates from a stoplight at 5.0 m/s2 for five 
seconds, then coasts for three more seconds. How far has it 
traveled?

36. | Sam is recklessly driving 60 mph in a 30 mph speed zone 
when he suddenly sees the police. He steps on the brakes and 
slows to 30 mph in three seconds, looking nonchalant as he 
passes the officer. How far does he travel while braking?

37. | A car starts from rest at a stop sign. It accelerates at 4.0 m/s2 
for 6.0 s, coasts for 2.0 s, and then slows at a rate of 2.5 m/s2 for 
the next stop sign. How far apart are the stop signs?

38. | Santa loses his footing and slides down a frictionless, 
snowy roof that is tilted at an angle of 30°. If Santa slides  
10 m before reaching the edge, what is his speed as he leaves 
the roof?

39. | A speed skater moving across frictionless ice at 8.0 m/s hits a 
5.0-m-wide patch of rough ice. She slows steadily, then continues 
on at 6.0 m/s. What is her acceleration on the rough ice?

40. | A motorist is traveling at 20 m/s. He is 60 m from a stoplight 
when he sees it turn yellow. His reaction time, before stepping on 
the brake, is 0.50 s. What steady deceleration while braking will 
bring him to a stop right at the light?

41. | A car traveling at 30 m/s runs out of gas while traveling up a 
10° slope. How far up the hill will the car coast before starting to 
roll back down?

42. || A Porsche challenges a Honda to a 400 m race. Because the 
Porsche’s acceleration of 3.5 m/s2 is greater than the Honda’s 
3.0 m/s2, the Honda gets a 1.0 s head start. Who wins?

43. || David is driving a steady 30 m/s when he passes Tina, who 
is sitting in her car at rest. Tina begins to accelerate at a steady 
2.0 m/s2 at the instant when David passes. How far does Tina 
drive before passing David?
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Exercises and Problems 53

57. || The quantity called mass density is the mass per unit volume 
of a substance. What are the mass densities in basic SI units of 
the following objects?
a. A 245 cm3 solid with a mass of 0.0159 kg
b. 82 cm3 of a liquid with a mass of 59 g

58. | FIGURE P1.58 shows a motion diagram of a car traveling down 
a street. The camera took one frame every 10 s. A distance scale 
is provided.

Problems 49 through 52 show a partial motion diagram. For each:
a. Complete the motion diagram by adding acceleration vectors.
b. Write a physics problem for which this is the correct motion 

diagram. Be imaginative! Don’t forget to include enough 
 information to make the problem complete and to state clearly 
what is to be found.

c. Draw a pictorial representation for your problem.

49. 

50. 

51. 

52. 

53. | As an architect, you are designing a new house. A window 
has a height between 140 cm and 150 cm and a width between  
74 cm and 70 cm. What are the smallest and largest areas that the 
window could be?

54. | A regulation soccer field for international play is a rectangle 
with a length between 100 m and 110 m and a width between  
64 m and 75 m. What are the smallest and largest areas that the 
field could be?

55. || A 5.8-cm-diameter cylinder has a length of 15.5 cm. What is 
the cylinder’s volume in basic SI units?

56. || An intravenous saline drip has 4.5 g of sodium chloride per 
liter of water. By definition, 1 mL = 1 cm3. Express the salt con-
centration in kg/m3.

FIGURE P1.49

v
u

FIGURE P1.50

v
u

Stop

FIGURE P1.52

v
u

Stop

Top view of motion
in a horizontal plane

FIGURE P1.60 
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FIGURE P1.59
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FIGURE P1.58
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1 frame every 10 s
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FIGURE P1.51

vA
u

vB
u

Start

Start
a. Measure the x-value of the car at each dot. Place your data in 

a table, similar to Table 1.1, showing each position and the 
instant of time at which it occurred.

b. Make a position-versus-time graph for the car. Because you 
have data only at certain instants of time, your graph should 
consist of dots that are not connected together.

59. | Write a short description of a real object for which 
FIGURE P1.59 would be a realistic position-versus-time graph.

60. | Write a short description of a real object for which 
FIGURE P1.60 would be a realistic position-versus-time graph.
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2

What is kinematics?
Kinematics is the mathematical description 
of motion. We begin with motion along a 
straight line. Our primary tools will be an 
object’s position, velocity, and acceleration.

❮❮ LOOKING BACK Sections 1.4–1.6 Velocity, 
acceleration, and Tactics Box 1.3 about signs

How are graphs used in kinematics?
Graphs are a very important visual 
 representation of motion, and learning to 
“think graphically” is one of our goals. We’ll 
work with graphs showing how position,  
velocity, and acceleration change with time. 
These graphs are related to each other:

■■ Velocity is the slope of the position graph.
■■ Acceleration is the slope of the velocity 

graph.

How is calculus used in kinematics?
Motion is change, and calculus is the 
mathematical tool for describing a  
quantity’s rate of change. We’ll find that

■■ Velocity is the time derivative of position.
■■ Acceleration is the time derivative of 

velocity.

What are models?
A model is a simplified  description  
of a situation that focuses on essential 
features while ignoring many details. 
Models allow us to make sense of complex 
situations by seeing them as variations  
on a common theme, all with the same  
underlying physics.

What is free fall?
Free fall is motion under the influence of 
 gravity only. Free fall is not literally “falling” 
 because it also applies to objects thrown 
straight up and to projectiles. Surprisingly,  
all objects in free fall, regardless of their  
mass, have the same acceleration. Motion  
on a  frictionless inclined plane is closely  
related to free-fall motion.

How will I use kinematics?
The equations of motion that you learn in this chapter will be 
used throughout the entire book. In Part I, we’ll see how an 
object’s  motion is related to forces acting on the object. We’ll 
later apply these kinematic equations to the motion of waves 
and to the  motion of charged particles in electric and magnetic  
fields.

IN THIS CHAPTER, you will learn to solve problems about motion along a straight line.

Kinematics in One Dimension

This Japanese “bullet train” 
accelerates slowly but 
steadily until reaching a 
speed of 300 km/h.

MODEL 2.1

Look for model boxes 
like this throughout the 
book.

■■ Key figures

■■ Key equations

■■ Model limitations

ax
u

vx
u

x

vx

t

t

Value

Slope

∆x = area

vx

t

Displacement is the
integral of velocity.

afree fall
u

v
u
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2.1 Uniform Motion 55

2.1 Uniform Motion
The simplest possible motion is motion along a straight line at a constant, unvarying 
speed. We call this uniform motion. Because velocity is the combination of speed 
and direction, uniform motion is motion with constant velocity.

FIGURE 2.1 shows the motion diagram of an object in uniform motion. For example, 
this might be you riding your bicycle along a straight line at a perfectly steady 5 m/s 
(≈10 mph). Notice how all the displacements are exactly the same; this is a charac-
teristic of uniform motion.

If we make a position-versus-time graph—remember that position is graphed on the 
vertical axis—it’s a straight line. In fact, an alternative definition is that an object’s 
 motion is uniform if and only if its position-versus-time graph is a straight line.

❮❮■SECTION 1.4 defined an object’s average velocity as ∆r u/∆t. For one-dimensional 
motion, this is simply ∆x/ ∆t (for horizontal motion) or ∆y/ ∆t (for vertical motion). 
Recall that ∆x is the object’s displacement during the time interval ∆t. You can see in 
Figure 2.1 that ∆x and ∆t are, respectively, the “rise” and “run” of the position graph. 
Because rise over run is the slope of a line,

 vavg K
∆x
∆t

  or  
∆y

∆t
= slope of the position@versus@time graph (2.1)

That is, the average velocity is the slope of the position-versus-time graph. Velocity 
has units of “length per time,” such as “miles per hour.” The SI units of velocity are 
meters per second, abbreviated m/s.

   NOTE    The symbol K in Equation 2.1 stands for “is defined as.” This is a stronger 
statement than the two sides simply being equal.

The constant slope of a straight-line graph is another way to see that the velocity is 
constant for uniform motion. There’s no real need to specify “average” for a velocity that 
doesn’t change, so we will drop the subscript and refer to the average velocity as vx or vy.

An object’s speed v is how fast it’s going, independent of direction. This is simply 
v = � vx �  or v = � vy �, the magnitude or absolute value of the object’s velocity. Although 
we will use speed from time to time, our mathematical analysis of motion is based  
on velocity, not speed. The subscript in vx or vy is an essential part of the notation, 
 reminding us that, even in one dimension, the velocity is a vector.

FIGURE 2.2 on the next page is the position-versus-time graph of  
a car.

a. Draw the car’s velocity-versus-time graph.

b. Describe the car’s motion.

MODEL Model the car as a particle, with a well-defined position at 
each instant of time.

VISUALIZE Figure 2.2 is the graphical representation.

SOLVE a. The car’s position-versus-time graph is a sequence 
of three straight lines. Each of these straight lines represents 
 uniform motion at a constant velocity. We can determine the 
car’s velocity during each interval of time by measuring the 
slope of the line.

The position graph starts out sloping downward—a negative 
slope. Although the car moves a distance of 4.0 m during the first 
2.0 s, its displacement is

∆x = xat 2.0 s - xat 0.0 s = -4.0 m - 0.0 m = -4.0 m

The time interval for this displacement is ∆t = 2.0 s, so the  velocity 
during this interval is

vx =
∆x
∆t

=
-4.0 m
2.0 s

= -2.0 m/s

The car’s position does not change from t = 2 s to t = 4 s 1∆x = 02, 
so vx = 0. Finally, the displacement between t = 4 s and t = 6 s is 
∆x = 10.0 m. Thus the velocity during this interval is

vx =
10.0 m
2.0 s

= 5.0 m/s

These velocities are shown on the velocity-versus-time graph of 
FIGURE 2.3 on the next page.

b. The car backs up for 2 s at 2.0 m/s, sits at rest for 2 s, then drives 
forward at 5.0 m/s for at least 2 s. We can’t tell from the graph what 
happens for t 7 6 s.

REVIEW The velocity graph and the position graph look completely 
different. The value of the velocity graph at any instant of time 
equals the slope of the position graph.

EXAMPLE 2.1 ■ Relating a velocity graph to a position graph

Continued

v
u

t

The position graph is a
straight line. Its slope
is ∆x/∆t. 

∆x is the displacement
during time interval ∆ t.

The displacements between
successive frames are the same.

x

∆x
∆t

FIGURE 2.1 Motion diagram and position 
graph for uniform motion.
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56 CHAPTER 2 Kinematics in One Dimension

   NOTE    We are distinguishing between the actual slope and the physically mean
ingful slope. If you were to use a ruler to measure the rise and the run of the graph,  
you could compute the actual slope of the line as drawn on the page. That is not the 
slope to which we are referring when we equate the velocity with the slope of the 
line. Instead, we find the physically meaningful slope by measuring the rise and run  
using the scales along the axes. The “rise” ∆x is some number of meters; the “run” 
∆t is some number of seconds. The physically meaningful rise and run include units,  
and the ratio of these units gives the units of the slope.

The Mathematics of Uniform Motion
The physics of the motion is the same regardless of whether an object moves along 
the x-axis, the y-axis, or any other straight line. Consequently, it will be convenient 
to write equations for a “generic axis” that we will call the s-axis. The position of an  
object will be represented by the symbol s and its velocity by vs.

   NOTE    In a specific problem you should use either x or y rather than s.

Consider an object in uniform motion along the s-axis with the linear position- 
versus-time graph shown in FIGURE 2.4. The object’s initial position is si at time ti. 
The term initial position, designated with subscript i, refers to the starting point of 
our analysis or the starting point in a problem; the object may or may not have been in 
motion prior to ti. At a later time tf, the ending point of our analysis, the object’s final 
position, denoted by f, is sf.

The object’s velocity vs along the s-axis can be determined by finding the slope of 
the graph:

 vs =
rise
run

=
∆s
∆t

=
sf - si

tf - ti
 (2.2)

6

4

2

0

-2

-4

1 3 52 4 6

x (m)

t (s)

Slope = -2.0 m/s

Slope = 5.0 m/s

Slope = 0 m/s

Slopes on the position
graph become values
on the velocity graph.

6

4

2

0

-2
1 3 52 4 6

vx (m/s)

t (s)

Value = -2.0 m/s

Value = 5.0 m/s

Value = 0 m/s

FIGURE 2.3 The corresponding velocity-versus-time graph.FIGURE 2.2 Position-versus-time graph.

TACTICS BOX 2.1

Interpreting position-versus-time graphs
1  Steeper slopes correspond to faster speeds.
2  Negative slopes correspond to negative velocities and, hence, to motion to the 

left (or down).
3  The slope is a ratio of intervals, ∆x / ∆t, not a ratio of coordinates. That is, the 

slope is not simply x /t.

Exercises 1–3 

sf

ti tf

s

si
Initial
position

Final
position

∆t

∆s

t

The slope of the line is vs = ∆s /∆t.

We will use s as a generic label for position.
In practice, s could be either x or y.

FIGURE 2.4 The velocity is found from the 
slope of the position-versus-time graph.

Example 2.1 brought out several points that are worth emphasizing.
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2.1 Uniform Motion 57

Equation 2.2 is easily rearranged to give

 sf = si + vs ∆t  (uniform motion) (2.3)

Equation 2.3 tells us that the object’s position increases linearly as the elapsed time ∆t 
increases—exactly as we see in the straight-line position graph.

The Uniform-Motion Model
Chapter 1 introduced a model as a simplified picture of reality, but one that still 
captures the essence of what we want to study. When it comes to motion, few real 
objects move with a precisely constant velocity. Even so, there are many cases in 
which it is quite reasonable to model their motion as being uniform. That is, uni-
form motion is a very good approximation of their actual, but more complex, motion. 
The  uniform-motion model is a coherent set of representations—words, pictures, 
graphs, and equations—that allows us to explain an object’s motion and to predict 
where the object will be at a future instant of time.

Bob leaves home in Chicago at 9:00 a.m. and drives east at 60 mph. 
Susan, 400 miles to the east in Pittsburgh, leaves at the same time 
and travels west at 40 mph. Where will they meet for lunch?

MODEL Here is a problem where, for the first time, we can really  
put all four aspects of our problem-solving strategy into play.  
To begin, we’ll model Bob’s and Susan’s cars as being in uniform 

motion. Their real motion is certainly more complex, but over a 
long drive it’s reasonable to approximate their motion as constant 
speed along a straight line.

VISUALIZE FIGURE 2.5 shows the pictorial representation. The 
equal spacings of the dots in the motion diagram indicate that  
the motion is uniform. In evaluating the given information, we 

EXAMPLE 2.2 ■ Lunch in Cleveland?

FIGURE 2.5 Pictorial representation for Example 2.2.

Continued

MODEL 2.1

Uniform motion
For motion with constant velocity.

■■ Model the object as a particle moving  
in a straight line at constant speed:

■■ Mathematically:

• vs = ∆s/ ∆t

• sf = si + vs ∆t
■■ Limitations: Model fails if the particle has  
a significant change of speed or direction.

Exercise 4 

Straight line

s

si
t

The slope is vs.

Horizontal linevs

t

The velocity is constant.v
u

M02_KNIG8221_05_GE_C02.indd   57 02/06/2022   15:58



58 CHAPTER 2 Kinematics in One Dimension

It is instructive to look at this example from a graphical perspective. FIGURE 2.6 
shows position-versus-time graphs for Bob and Susan. Notice the negative slope for 
Susan’s graph, indicating her negative velocity. The point of interest is the intersection 
of the two lines; this is where Bob and Susan have the same position at the same time. 
Our method of solution, in which we equated 1x12B and 1x12S, is really just solving 
the mathematical problem of finding the intersection of two lines. This procedure is 
useful for many problems in which there are two moving objects.

 recognize that the starting time of 9:00 a.m. is not relevant to 
the problem. Consequently, the initial time is chosen as simply  
t0 = 0 h. Bob and Susan are traveling in opposite directions,  
hence one of the velocities must be a negative number. We have 
chosen a coordinate system in which Bob starts at the origin and 
moves to the right (east) while Susan is moving to the left (west). 
Thus Susan has the negative velocity. Notice how we’ve assigned 
position, velocity, and time symbols to each point in the motion. 
Pay special attention to how subscripts are used to distinguish 
 different points in the problem and to distinguish Bob’s symbols 
from Susan’s.

One purpose of the pictorial representation is to establish what 
we need to find. Bob and Susan meet when they have the same 
position at the same time t1. Thus we want to find 1x12B at the 
time when 1x12B = (x1)S. Notice that 1x12B and 1x12S are Bob’s and  
 Susan’s positions, which are equal when they meet, not the dis-
tances they have traveled.

SOLVE The goal of the mathematical representation is to proceed 
from the pictorial representation to a mathematical solution of the 
problem. We can begin by using Equation 2.3 to find Bob’s and 
Susan’s positions at time t1 when they meet:

 1x12B = 1x02B + 1vx 2B 1t1 - t02 = 1vx2B  t1

 1x12S = 1x02S + 1vx 2S 1t1 - t02 = 1x02S + 1vx2S  t1

Notice two things. First, we started by writing the full statement 
of Equation 2.3. Only then did we simplify by dropping those 
terms known to be zero. You’re less likely to make accidental er-
rors if you follow this procedure. Second, we replaced the generic 
 symbol s with the specific horizontal-position symbol x, and we 
replaced the generic subscripts i and f with the specific symbols 0 
and 1 that we defined in the pictorial representation. This is also 
good problem-solving technique.

The condition that Bob and Susan meet is

1x12B = 1x12S

By equating the right-hand sides of the above equations, we get

1vx2B  t1 = 1x02S + 1vx2S  t1

Solving for t1 we find that they meet at time

t1 =
1x02S

1vx2B - 1vx2S
=

400 miles
60 mph - 1-402 mph

= 4.0 hours

Finally, inserting this time back into the equation for 1x12B gives

1x12B = 160 
miles
hour 2 * 14.0 hours2 = 240 miles

As noted in Chapter 1, this textbook will assume that all data 
are good to at least two significant figures, even when one of those 
is a trailing zero. So 400 miles, 60 mph, and 40 mph each have two 
significant figures, and consequently we’ve calculated results to 
two significant figures.

While 240 miles is a number, it is not yet the answer to the 
question. The phrase “240 miles” by itself does not say anything 
meaningful. Because this is the value of Bob’s position, and 
Bob was driving east, the answer to the question is, “They meet 
240 miles east of Chicago.”

REVIEW Before stopping, we should check whether or not this an-
swer seems reasonable. We certainly expected an answer between 
0 miles and 400 miles. We also know that Bob is driving faster than 
Susan, so we expect that their meeting point will be more than half-
way from Chicago to Pittsburgh. Our review tells us that 240 miles 
is a reasonable answer.

t (h)

x (mi)

0 2 4 6

400

300

200

100

0

Susan

Slope = -40 mi/h

Bob

Bob and Susan
meet here.

Slope = 60 mi/h

FIGURE 2.6 Position-versus-time graphs 
for Bob and Susan.

STOP TO THINK 2.1 Which position- versus-time 
graph represents the motion shown in the motion 
diagram?

v
u

x
0

t

x

(b)

0 t t t

x x x

(c) (d) (e)

t

x

(a)

0 0 0 0
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2.2 Instantaneous Velocity 59

2.2 Instantaneous Velocity
Uniform motion is simple, but objects rarely travel for long with a constant velocity. 
Far more common is a velocity that changes with time. For example, FIGURE 2.7 shows 
the motion diagram and position graph of a car speeding up after the light turns green. 
Notice how the velocity vectors increase in length, causing the graph to curve upward 
as the car’s displacements get larger and larger.

If you were to watch the car’s speedometer, you would see it increase from 0 mph 
to 10 mph to 20 mph and so on. At any instant of time, the speedometer tells you how 
fast the car is going at that instant. If we include directional information, we can 
 define an object’s instantaneous velocity—speed and direction—as its velocity at 
a single instant of time.

For uniform motion, the slope of the straight-line position graph is the object’s 
velocity. FIGURE 2.8 shows that there’s a similar connection between instantaneous 
 velocity and the slope of a curved position graph.

∆t

∆s

t

s

t

s

t

s

t t t

What is the velocity at time t? Zoom in on a very small segment of the
curve centered on the point of interest.
This little piece of the curve is essentially
a straight line. Its slope ∆s/∆t is the
average velocity during the interval ∆t.

The little segment of straight line,
when extended, is the tangent to
the curve at time t. Its slope is the
instantaneous velocity at time t.

FIGURE 2.8 Instantaneous velocity at time t is the slope of the tangent to the curve at that 
instant.

v
u

t

x

The position graph is
curved because the
velocity is changing.

The spacing between the dots
increases as the car speeds up.

FIGURE 2.7 Motion diagram and position 
graph of a car speeding up.

What we see graphically is that the average velocity vavg = ∆s/ ∆t becomes a 
 better and better approximation to the instantaneous velocity vs as the time interval 
∆t over which the average is taken gets smaller and smaller. We can state this idea 
mathematically in terms of the limit ∆t S 0:

 vs K lim
∆tS0

 
∆s
∆t

=
ds
dt
  (instantaneous velocity) (2.4)

As ∆t continues to get smaller, the average velocity vavg = ∆s/ ∆t reaches a con-
stant or limiting value. That is, the instantaneous velocity at time t is the  average 
 velocity during a time interval ∆t, centered on t, as ∆t approaches zero. In   
calculus, this limit is called the derivative of s with respect to t, and it is denoted  
ds/dt.

Graphically, ∆s/ ∆t is the slope of a straight line. As ∆t gets smaller (i.e., more 
and more magnification), the straight line becomes a better and better approxima-
tion of  the curve at that one point. In the limit ∆t S 0, the straight line is tangent  
to the curve. As Figure 2.8 shows, the instantaneous velocity at time t is the  
slope of the line that is tangent to the position-versus-time graph at time t.  
That is,

 vs = slope of the position@versus@time graph at time t (2.5)

The steeper the slope, the larger the magnitude of the velocity.
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60 CHAPTER 2 Kinematics in One Dimension

A Little Calculus: Derivatives
Calculus—invented simultaneously in England by Newton and in Germany by 
Leibniz—is designed to deal with instantaneous quantities. In other words, it provides 
us with the tools for evaluating limits such as the one in Equation 2.4.

The notation ds  /dt is called the derivative of s with respect to t, and Equation 2.4  
 defines it as the limiting value of a ratio. As Figure 2.8 showed, ds  /dt can be  interpreted 
graphically as the slope of the line that is tangent to the position graph.

The most common functions we will use in Parts I and II of this book are powers 
and polynomials. Consider the function u1t2 = ctn, where c and n are constants. The 
symbol u is a “dummy name” to represent any function of time, such as x1t2 or y1t2. 
The following result is proven in calculus:

 The derivative of u = ctn is 
du
dt

= nctn-1 (2.6)

For example, suppose the position of a particle as a function of time is s1t2 = 2t2 m, 
where t is in s. We can find the particle’s velocity vs = ds /dt by using Equation 2.6 
with c = 2 and n = 2 to calculate

vs =
ds
dt

= 2 # 2t2-1 = 4t

This is an expression for the particle’s velocity as a function of time.

FIGURE 2.9 shows the position-versus-time graph of an elevator.

a. At which labeled point or points does the elevator have the 
least velocity?

b. At which point or points does the elevator have maximum velocity?

c. Sketch an approximate velocity-versus-time graph for the elevator.

MODEL Model the elevator as a particle.

VISUALIZE Figure 2.9 is the graphical representation.

SOLVE a. At any instant, an object’s velocity is the slope of its 
 position graph. FIGURE 2.10a shows that the elevator has the least 
velocity—no velocity at all!—at points 1 and 3 where the slope 
is zero. At point 1, the velocity is only instantaneously zero. At 
point 3, the elevator has actually stopped and remains at rest.

b. The elevator has maximum velocity at 2, the point of steepest slope.

c. Although we cannot find an exact velocity-versus-time graph, we 
can see that the slope, and hence vy, is initially negative,  becomes 
zero at point 1, rises to a maximum value at point 2, decreases 
back to zero a little before point 3, then remains at zero  thereafter. 

Thus FIGURE 2.10b shows, at least approximately, the elevator’s 
 velocity-versus-time graph.

REVIEW Once again, the shape of the velocity graph bears no 
 resemblance to the shape of the position graph. You must transfer 
slope information from the position graph to value information on 
the velocity graph.

EXAMPLE 2.3 ■ Finding velocity from position graphically

1

2
0

3

t

y

FIGURE 2.9 Position-versus-time graph.

1

1

2

2

0

0

3

3

t

t

y Slope is maximum
at 2. This is where
vy is maximum.

Slope is zero at 1 and 3,
so the velocity is zero.

Slope is negative
before 1, so vy 6 0.

vy

(a)

(b)

FIGURE 2.10 The velocity-versus-time graph is found from the 
slope of the position graph.

Scientists and engineers must use calculus 
to calculate the orbits of satellites.
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2.2 Instantaneous Velocity 61

FIGURE 2.11 shows the particle’s position and velocity graphs. It is critically important  
to understand the relationship between these two graphs. The value of the velocity 
graph at any instant of time, which we can read directly off the vertical axis, is the 
slope of the position graph at that same time. This is illustrated at t = 3 s.

A value that doesn’t change with time, such as the position of an object at rest, can 
be represented by the function u = c = constant. That is, the exponent of tn is n = 0. 
You can see from Equation 2.6 that the derivative of a constant is zero. That is,

 
du
dt

= 0 if u = c = constant (2.7)

This makes sense. The graph of the function u = c is simply a horizontal line. The 
slope of a horizontal line—which is what the derivative du/dt measures—is zero.

The only other information we need about derivatives for now is how to evaluate 
the derivative of the sum of two functions. Let u and w be two separate functions of 
time. You will learn in calculus that

 
d
dt

 1u + w2 =
du
dt

+
dw
dt

 (2.8)

That is, the derivative of a sum is the sum of the derivatives.

   NOTE    You may have learned in calculus to take the derivative dy/dx, where y is a 
function of x. The derivatives we use in physics are the same; only the notation is 
different. We’re interested in how quantities change with time, so our derivatives are 
with respect to t instead of x.

40

20

0

20
16
12
8
4
0

0 1 2 3 4

0 1 2 3 4

s (m)
(a)

(b)

Position s = 2t2

Velocity vs = 4t

Slope = 12 m/s

Value = 12 m/s

t (s)

vs (m/s)

t (s)

FIGURE 2.11 Position-versus-time graph 
and the corresponding velocity-versus-
time graph.

A particle’s position is given by the function x1t2 = 1- t3 + 3t2 m, 
where t is in s.

a. What are the particle’s position and velocity at t = 2 s?

b. Draw graphs of x and vx during the interval -3 s … t … 3 s.

c. Draw a motion diagram to illustrate this motion.

SOLVE a. We can compute the position directly from the function x:

x1at t = 2 s2 = -1223 + 132122 = -8 + 6 = -2 m

The velocity is vx = dx/dt. The function for x is the sum of two 
polynomials, so

vx =
dx
dt

=
d
dt

 1- t3 + 3t2 =
d
dt

 1-t32 +
d
dt

 13t2
The first derivative is a power with c = -1 and n = 3; the second 
has c = 3 and n = 1. Using Equation 2.6, we have

vx = 1-3t2 + 32 m/s

where t is in s. Evaluating the velocity at t = 2 s gives

vx  1at t = 2 s2 = -31222 + 3 = -9 m/s

The negative sign indicates that the particle, at this instant of time, 
is moving to the left at a speed of 9 m/s.

b. FIGURE 2.12 shows the position graph and the velocity graph. You 
can make graphs like these with a graphing calculator or graphing 
software. The slope of the position-versus-time graph at t = 2 s is 
-9 m/s; this becomes the value that is graphed for the velocity at 
t = 2 s.

x (m)

vx (m/s)

t (s)

t (s)

20

10

0

-10

-20

10

0

-10

-20

-2 0 2-1 1 3

-2 0 2-1 1 3

Slope = -9 m/s

Value = -9 m/s

FIGURE 2.12 Position and velocity graphs.

Continued

EXAMPLE 2.4 ■ Using calculus to find the velocity
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62 CHAPTER 2 Kinematics in One Dimension

2.3 Finding Position from Velocity
Equation 2.4 allows us to find the instantaneous velocity vs if we know the position 
s as a function of time. But what about the reverse problem? Can we use the object’s 
velocity to calculate its position at some future time t? Equation 2.3, sf = si + vs ∆t, 
does this for the case of uniform motion with a constant velocity. We need to find a 
more general expression that is valid when vs is not constant.

FIGURE 2.14a is a velocity-versus-time graph for an object whose velocity varies with 
time. Suppose we know the object’s position to be si at an initial time ti. Our goal is to 
find its final position sf at a later time tf.

Because we know how to handle constant velocities, using Equation 2.3, let’s 
 approximate the velocity function of Figure 2.14a as a series of constant-velocity steps 
of width ∆t. This is illustrated in FIGURE 2.14b. During the first step, from time ti to 
time ti + ∆t, the velocity has the constant value 1vs21. The velocity during step k has 
the constant value 1vs2k. Although the approximation shown in the figure is rather 
rough, with only 11 steps, we can easily imagine that it could be made as accurate as 
desired by having more and more ever-narrower steps.

The velocity during each step is constant (uniform motion), so we can apply 
 Equation 2.3 to each step. The object’s displacement ∆s1 during the first step is simply  
∆s1 = 1vs21 ∆t. The displacement during the second step ∆s2 = 1vs22 ∆t, and during 
step k the displacement is ∆sk = 1vs2k ∆t.

c. Finally, we can interpret the graphs in Figure 2.12 to draw the 
motion diagram shown in FIGURE 2.13.

■■ The particle is initially to the right of the origin 1x 7 0 at t = -3 s2 
but moving to the left 1vx 6 02. Its speed is slowing 1v = � vx �  is 
decreasing2, so the velocity vector arrows are getting shorter.

■■ The particle passes the origin x = 0 m at t ≈ -1.5 s, but it is 
still moving to the left.

■■ The position reaches a minimum at t = -1 s; the particle is as 
far left as it is going. The velocity is instantaneously vx = 0 m/s 
as the particle reverses direction.

■■ The particle moves back to the right between t = -1 s and 
t = 1 s 1vx 7 02.

■■ The particle turns around again at t = 1 s and begins moving 
back to the left 1vx 6 02. It keeps speeding up, then disappears 
off to the left.

A point in the motion where a particle reverses direction is called a 
turning point. It is a point where the velocity is instantaneously  
zero while the position is a maximum or minimum. This particle  
has two turning points, at t = -1 s and again at t = +1 s. We will  
see many other examples of turning points.

v
u

v
u

-20 -10 0 10 20

Turn at t = 1 s

Turn at t = -1 s Position at t = -3 s.
The particle is moving to
the left (vx 6 0) and slowing.

Position at t = 3 s.
The particle is continuing
to speed up to the left.

The velocity is positive
between t = -1 s and t = 1 s.

x (m)

FIGURE 2.13 Motion diagram for Example 2.4.

STOP TO THINK 2.2 Which velocity-versus-time graph goes with the position- versus- 
time graph on the left?

s vsvsvsvs

t tttt

(a) (b) (c) (d)

tfti

tfti

vs

vs

The velocity varies
with time.

The velocity curve is
approximated by constant-
velocity steps of width ∆t.

St
ep

 1

St
ep

 k

St
ep

 N

t

t

∆t

(vs)k

(vs)1

(a)

(b)

FIGURE 2.14 Approximating a velocity-
versus-time graph with a series of 
constant-velocity steps.
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2.3 Finding Position from Velocity 63

The total displacement of the object between ti and tf can be approximated as the sum  
of all the individual displacements during each of the N constant-velocity steps. That is,

 ∆s = sf - si ≈ ∆s1 + ∆s2 + g + ∆sN = a
N

k=1
1vs2k ∆t (2.9)

where g  (Greek sigma) is the symbol for summation. With a simple rearrangement, 
the particle’s final position is

 sf ≈ si + a
N

k=1
1vs2k ∆t (2.10)

Our goal was to use the object’s velocity to find its final position sf. Equation 2.10  
nearly reaches that goal, but Equation 2.10 is only approximate because the 
 constant-velocity steps are only an approximation of the true velocity graph. But if we 
now let ∆t S 0, each step’s width approaches zero while the total number of steps N 
approaches infinity. In this limit, the series of steps becomes a perfect replica of the 
velocity-versus-time graph and Equation 2.10 becomes exact. Thus

 sf = si + lim
∆tS0a

N

k=1
1vs2k ∆t = si + 3

tf

ti

 vs dt (2.11)

The expression on the right is read, “the integral of vs dt from ti to tf.” Equation 2.11 is the 
result that we were seeking. It allows us to predict an object’s position sf at a future time tf.

We can give Equation 2.11 an important geometric interpretation. FIGURE 2.15 shows 
step k in the approximation of the velocity graph as a tall, thin rectangle of height 1vs2k 
and width ∆t. The product ∆sk = 1vs2k ∆t is the area 1base * height2 of this small rect-
angle. The sum in Equation 2.11 adds up all of these rectangular areas to give the total 
area enclosed between the t-axis and the tops of the steps. The limit of this sum as 
∆  t S 0 is the total area enclosed between the t-axis and the velocity curve. This is 
called the “area under the curve.” Thus a graphical interpretation of Equation 2.11 is

 sf = si + area under the velocity curve vs between ti and tf (2.12)

   NOTE    Wait a minute! The displacement ∆s = sf - si is a length. How can a length 
equal an area? Recall earlier, when we found that the velocity is the slope of the 
position graph, we made a distinction between the actual slope and the physically 
meaningful slope? The same distinction applies here. We need to measure the 
quantities we are using, vs and ∆t, by referring to the scales on the axes. ∆t is  
some number of seconds while vs is some number of meters per second. When  
these are multiplied together, the physically meaningful area has units of meters.

vs

t
ti tf

∆t

During step k, the product
∆sk = (vs)k∆t is the area
of the shaded rectangle.

During the interval ti to tf,
the total displacement ∆s is
the “area under the curve.”

FIGURE 2.15 The total displacement ∆s is 
the “area under the curve.”

FIGURE 2.16 shows the velocity-versus-time graph of a drag racer. 
How far does the racer move during the first 3.0 s?

MODEL Model the drag racer as a particle with a well-defined position 
at all times.

VISUALIZE Figure 2.16 is the graphical representation.

SOLVE The question “How far?” indicates that we need to find a dis-
placement ∆x rather than a position x. According to Equation 2.12, 
the car’s displacement ∆x = xf - xi between t = 0 s and t = 3 s is 
the area under the curve from t = 0 s to t = 3 s. The curve in this case  
is an angled line, so the area is that of a triangle:

  ∆x = area of triangle between t = 0 s and t = 3 s

  = 1
2 * base * height

  = 1
2 * 3 s * 12 m/s = 18 m

The drag racer moves 18 m during the first 3 seconds.

REVIEW The “area” is a product of s with m/s, so ∆x has the proper 
units of m.

EXAMPLE 2.5 ■ The displacement during a drag race

vx (m/s)

16

12

8

4

0
0 1 2 3 4

t (s)

The line is the function
vx = 4t m/s.

The displacement
∆x is the area of the
shaded triangle.

FIGURE 2.16 Velocity-versus-time graph for Example 2.5.
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64 CHAPTER 2 Kinematics in One Dimension

A Little More Calculus: Integrals
Taking the derivative of a function is equivalent to finding the slope of a graph of the 
function. Similarly, evaluating an integral is equivalent to finding the area under a 
graph of the function. The graphical method is very important for building intuition 
about motion but is limited in its practical application. Just as derivatives of standard 
functions can be evaluated and tabulated, so can integrals.

The integral in Equation 2.11 is called a definite integral because there are two 
definite boundaries to the area we want to find. These boundaries are called the lower 
1ti2 and upper 1tf2 limits of integration. For the important function u1t2 = ctn, the 
essential result from calculus is that

 3
tf

ti

u dt = 3
tf

ti

ctn dt =
ctn+1

n + 1
  `

tf

ti

=
ctf 

n+1

n + 1
-

cti 

n+1

n + 1
   1n ≠ -12 (2.13)

The vertical bar in the third step with subscript ti and superscript tf is a shorthand 
 notation from calculus that means—as seen in the last step—the integral evaluated at 
the upper limit tf minus the integral evaluated at the lower limit ti. You also need to 
know that for two functions u and w,

 3
tf

ti

1u + w2 dt = 3
tf

ti

u dt + 3
tf

ti

w dt (2.14)

That is, the integral of a sum is equal to the sum of the integrals.

FIGURE 2.17 is the velocity graph for a particle that starts at 
xi = 30 m at time ti = 0 s.

a. Draw a motion diagram for the particle.

b. Where is the particle’s turning point?

c. At what time does the particle reach the origin?

VISUALIZE The particle is initially 30 m to the right of the origin 
and moving to the right 1vx 7 02 with a speed of 10 m/s. But vx is 
decreasing, so the particle is slowing down. At t = 2 s the veloci-
ty, just for an instant, is zero before becoming negative. This is the 
turning point. The velocity is negative for t 7 2 s, so the particle 
has reversed direction and moves back toward the origin. At some 
later time, which we want to find, the particle will pass x = 0 m.

SOLVE a. FIGURE 2.18 shows the motion diagram. The distance scale 
will be established in parts b and c but is shown here for convenience.

b. The particle reaches the turning point at t = 2 s. To learn where 
it is at that time we need to find the displacement during the first 
two seconds. We can do this by finding the area under the curve 
between t = 0 s and t = 2 s:

  x1at t = 2 s2 = xi + area under the curve between 0 s and 2 s

  = 30 m + 1
2 12 s - 0 s2110 m/s - 0 m/s2

  = 40 m

The turning point is at x = 40 m.

c. The particle needs to move ∆x = -40 m to get from the turning 
point to the origin. That is, the area under the curve from t = 2 s to 
the desired time t needs to be -40 m. Because the curve is below 
the axis, with negative values of vx, the area to the right of t = 2 s 
is a negative area. With a bit of geometry, you will find that the 
triangle with a base extending from t = 2 s to t = 6 s has an area of 
-40 m. Thus the particle reaches the origin at t = 6 s.

vx (m/s)

t (s)

10

0

-10

-20

2 4 6

FIGURE 2.17 Velocity-versus-time graph for the particle of 
Example 2.6.

v
u

0 m

t = 6 s t = 0 s

Start at xi = 30 m Turning point
at t = 2 s

10 m 20 m 30 m 40 m
x

FIGURE 2.18 Motion diagram for the particle whose velocity 
graph was shown in Figure 2.17.

EXAMPLE 2.6 ■ Finding the turning point
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2.4 Motion with Constant Acceleration 65

2.4 Motion with Constant Acceleration
We need one more major concept to describe one-dimensional motion: acceleration. 
Acceleration, as we noted in Chapter 1, is a rather abstract concept. Nonetheless, 
 acceleration is the linchpin of mechanics. We will see very shortly that Newton’s laws 
relate the acceleration of an object to the forces that are exerted on it.

Let’s conduct a race between a Volkswagen Beetle and a Porsche to see which can 
reach a speed of 30 m/s 1≈60 mph2 in the shortest time. Both cars are equipped with 
computers that will record the speedometer reading 10 times each second. This gives 
a nearly continuous record of the instantaneous velocity of each car. TABLE 2.1 shows 
some of the data. The velocity-versus-time graphs, based on these data, are shown in 
FIGURE 2.19 on the next page.

How can we describe the difference in performance of the two cars? It is not that 
one has a different velocity from the other; both achieve every velocity between 0 and 
30 m/s. The distinction is how long it took each to change its velocity from 0 to 30 m/s. 
The Porsche changed velocity quickly, in 6.0 s, while the VW needed 15 s to make 

Use calculus to solve Example 2.6.

SOLVE Figure 2.17 is a linear graph. Its “y-intercept” is seen to  
be 10 m/s and its slope is -5 1m/s2/s. Thus the velocity can be 
described by the equation

vx = 110 - 5 t2 m/s

where t is in s. We can find the position x at time t by using   
Equation 2.11:

  x = xi + 3
t

0
vx dt = 30 m + 3

t

0
110 - 5 t2 dt

  = 30 m + 3
t

0
10 dt - 3

t

0
5 t dt

We used Equation 2.14 for the integral of a sum to get the final 
expression. The first integral is a function of the form u = ctn with 
c = 10 and n = 0; the second is of the form u = ctn with c = 5 and 
n = 1. Using Equation 2.13, we have

3
t

0
10 d t = 10 t `

t

0
= 10 # t - 10 # 0 = 10 t m

and   3
t

0
5t dt = 5

2 t2
 `

t

0
= 5

2
# t2 - 5

2
# 02 = 5

2 t2 m

Combining the pieces gives

x = 130 + 10 t - 5
2 t22  m

This is a general result for the position at any time t.
The particle’s turning point occurs at t = 2 s, and its position 

at that time is

x1at t = 2 s2 = 30 + 1102122 - 5
2 1222 = 40 m

The time at which the particle reaches the origin is found by setting 
x = 0 m:

30 + 10 t - 5
2 t2 = 0

This quadratic equation has two solutions: t = -2 s or t = 6 s.
When we solve a quadratic equation, we cannot just arbitrarily  

select the root we want. Instead, we must decide which is the 
meaningful root. Here the negative root refers to a time before the 
problem began, so the meaningful one is the positive root, t = 6 s.

REVIEW The results agree with the answers we found previously 
from a graphical solution.

STOP TO THINK 2.3 Which position-versus-time graph goes with the velocity-versus-time graph on the 
left? The particle’s position at ti = 0 s is xi = -10 m.

EXAMPLE 2.7 ■ Using calculus to find the position

vx (m/s) x (m)

4

2

0

-2

10

5

0

-5

-10

10

5

0

-5

-10

10

5

0

-5

-10

10

5

0

-5

-10

t (s)

x (m)

t (s)

x (m)

t (s)t (s)

x (m)

t (s)

(a) (b) (c) (d)

5 10 5 10 5 105 105 10

TABLE 2.1 Velocities of a Porsche and a 
Volkswagen Beetle

t (s) v Porsche (m/s) v VW (m/s)

0.0 0.0 0.0

0.1 0.5 0.2

0.2 1.0 0.4

0.3 1.5 0.6

f f f
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66 CHAPTER 2 Kinematics in One Dimension

the same velocity change. Because the Porsche had a velocity change ∆vs = 30 m/s 
during a time interval ∆t = 6.0 s, the rate at which its velocity changed was

 rate of velocity change =
∆vs

∆t
=

30 m/s
6.0 s

= 5.0 1m/s2/s (2.15)

Notice the units. They are units of “velocity per second.” A rate of velocity change 
of 5.0 “meters per second per second” means that the velocity increases by 5.0 m/s 
during the first second, by another 5.0 m/s during the next second, and so on. In fact, 
the velocity will increase by 5.0 m/s during any second in which it is changing at the 
rate of 5.0 1m/s2/s.

Chapter 1 introduced acceleration as “the rate of change of velocity.” That is, 
 acceleration measures how quickly or slowly an object’s velocity changes. In parallel 
with our treatment of velocity, let’s define the average acceleration aavg during the 
time interval ∆t to be

 aavg K
∆vs

∆t
  (average acceleration) (2.16)

Equations 2.15 and 2.16 show that the Porsche had the rather large acceleration of 
5.0 1m/s2/s.

Because ∆vs and ∆t are the “rise” and “run” of a velocity-versus-time graph, we see 
that aavg can be interpreted graphically as the slope of a straight-line velocity- versus- 
time graph. In other words,

 aavg = slope of the velocity@versus@time graph (2.17)

Figure 2.19 uses this idea to show that the VW’s average acceleration is

aVW avg =
∆vs

∆t
=

10 m/s
5.0 s

= 2.0 1m/s2/s

This is less than the acceleration of the Porsche, as expected.
An object whose velocity-versus-time graph is a straight-line graph has a steady 

and unchanging acceleration. There’s no need to specify “average” if the acceleration 
is constant, so we’ll use the symbol as as we discuss motion along the s-axis with 
constant acceleration.

Signs and Units
An important aspect of acceleration is its sign. Acceleration au, like position r u and 
 velocity v 

u, is a vector. For motion in one dimension, the sign of ax (or ay) is positive if 
the vector au points to the right (or up), negative if it points to the left (or down). This 
was illustrated in ❮❮ FIGURE 1.18 and the very important ❮❮ TACTICS BOX 1.3, which you  
may wish to review. It’s particularly important to emphasize that positive and negative  
values of as do not correspond to “speeding up” and “slowing down.”

a. A bicyclist has a velocity of 6 m/s and a constant acceleration 
of 2 1m/s2/s. What is her velocity 1 s later? 2 s later?

b. A bicyclist has a velocity of -6 m/s and a constant acceleration 
of 2 1m/s2/s. What is his velocity 1 s later? 2 s later?

SOLVE

a. An acceleration of 2 1m/s2/s means that the velocity  increases 
by 2 m/s every 1 s. If the bicyclist’s initial velocity is 6 m/s, then 
1 s later her velocity will be 8 m/s. After 2 s, which is 1 additional 

second later, it will increase by another 2 m /s to 10 m/s. After 3 s  
it will be 12 m/s. Here a positive ax is causing the bicyclist to 
speed up.

b. If the bicyclist’s initial velocity is a negative -6 m/s but the 
 acceleration is a positive +2 1m/s2/s, then 1 s later his velocity will 
be -4 m/s. After 2 s it will be -2 m/s, and so on. In this case, a 
positive ax is causing the object to slow down (decreasing speed v). 
This agrees with the rule from Tactics Box 1.3: An object is slowing 
down if and only if vx and ax have opposite signs.

EXAMPLE 2.8 ■ Relating acceleration to velocity

Porsche

The Porsche reaches 30 m/s
in 6 s. The VW takes 15 s.

VW
vs (m/s)

30

20

10

0
0 5 10 15

t (s)

Slope = aPorsche avg = 5.0 (m/s)/s

Slope = aVW avg = 2.0 (m/s)/s

∆t = 5.0 s

∆vs = 10 m/s

FIGURE 2.19 Velocity-versus-time graphs 
for the Porsche and the VW Beetle.
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2.4 Motion with Constant Acceleration 67

   NOTE    It is customary to abbreviate the acceleration units (m/s)/s as m/s2. For 
example, the bicyclists in Example 2.8 had an acceleration of 2 m/s2. We will use 
this notation, but keep in mind the meaning of the notation as “(meters per second) 
per second.”

A basketball player starts at the left end of the court and moves 
with the velocity shown in FIGURE 2.20. Draw a motion diagram 
and an acceleration-versus-time graph for the basketball player.

VISUALIZE The velocity is positive (motion to the right) and 
 increasing for the first 6 s, so the velocity arrows in the motion 
diagram are to the right and getting longer. From t = 6 s to 9 s the 
motion is still to the right (vx is still positive), but the arrows are 
getting shorter because vx is decreasing. There’s a turning point at 
t = 9 s, when vx = 0 m/s, and after that the motion is to the left (vx is  
negative) and getting faster. The motion diagram of FIGURE 2.21a 
shows the velocity and the acceleration vectors.

SOLVE Acceleration is the slope of the velocity graph. For the first 
6 s, the slope has the constant value

ax =
∆vx

∆t
=

6.0  m/s
6.0 s

= 1.0  m/s2

The velocity then decreases by 12 m/s during the 6 s interval from 
t = 6 s to t = 12 s, so

ax =
∆vx

∆t
=

-12 m/s
6.0 s

= -2.0 m/s2

The acceleration graph for these 12 s is shown in FIGURE 2.21b. 
 Notice that there is no change in the acceleration at t = 9 s, the 
 turning point.

REVIEW The sign of ax does not tell us whether the object is speed-
ing up or slowing down. The basketball player is slowing down 
from t = 6 s to t = 9 s, then speeding up from t = 9 s to t = 12 s. 
Nonetheless, his acceleration is negative during this entire interval 
because his acceleration vector, as seen in the motion diagram, al-
ways points to the left.

a
u

v
u

a
u

a
u

v
ut = 0 s

Maximum speed
at t = 6 s

Turning point
at t = 9 s

t = 12 s

2

1

0

-1

-2

t (s)

ax (m/s2)

3 6 9 12

(a)

(b)

Each segment of the motion 
has constant acceleration.

FIGURE 2.21 Motion diagram and acceleration graph for  
Example 2.9.

EXAMPLE 2.9 ■ Running the court

6

3

0

-3

-6

3 6 9 12
t (s)

vx (m/s)

FIGURE 2.20 Velocity-versus-time graph for the basketball player 
of Example 2.9.

The Kinematic Equations of Constant Acceleration
Consider an object whose acceleration as remains constant during the time interval 
∆t = tf - ti. At the beginning of this interval, at time ti, the object has initial velocity 
vis and initial position si. Note that ti is often zero, but it does not have to be. We would 
like to predict the object’s final position sf and final velocity vfs at time tf.

The object’s velocity is changing because the object is accelerating. FIGURE 2.22a 
shows the acceleration-versus-time graph, a horizontal line between ti and tf. It is not 
hard to find the object’s velocity vfs at a later time tf. By definition,

 as =
∆vs

∆t
=

vfs - vis

∆t
 (2.18)

which is easily rearranged to give

 vfs = vis + as ∆t (2.19)

The velocity-versus-time graph, shown in FIGURE 2.22b, is a straight line that starts at 
vis and has slope as.

Acceleration Constant acceleration as

Velocity

Constant slope = as

as

vfs

vis

0

0

∆t

as∆t

vis

ti tf

∆t

ti tf

t

t

Displacement ∆s is the area
under the curve, consisting of
a rectangle and a triangle.

(a)

(b)

FIGURE 2.22 Acceleration and velocity 
graphs for constant acceleration.

M02_KNIG8221_05_GE_C02.indd   67 02/06/2022   15:59



68 CHAPTER 2 Kinematics in One Dimension

As you learned in the last section, the object’s final position is

 sf = si + area under the velocity curve vs between ti and tf (2.20)

The shaded area in Figure 2.22b can be subdivided into a rectangle of area vis ∆t and a 
triangle of area 12 1as ∆t21∆t2 = 1

2 as1∆t22. Adding these gives

 sf = si + vis ∆t + 1
2 as  1∆t22 (2.21)

where ∆t = tf - ti is the elapsed time. The quadratic dependence on ∆t causes the 
position-versus-time graph for constant-acceleration motion to have a parabolic shape, 
as shown in Model 2.2.

Equations 2.19 and 2.21 are two of the basic kinematic equations for motion with 
constant acceleration. They allow us to predict an object’s position and velocity at a 
future instant of time. We need one more equation to complete our set, a direct relation  
between position and velocity. First use Equation 2.19 to write ∆t = 1vfs - vis2/as. 
Substitute this into Equation 2.21, giving

 sf = si + vis  1vfs - vis

as
2 + 1

2 as  1vfs - vis

as
22

 (2.22)

With a bit of algebra, this is rearranged to read

 vfs 

2 = vis 

2 + 2as ∆s (2.23)

where ∆s = sf - si is the displacement (not the distance!). Equation 2.23 is the last of 
the three kinematic equations for motion with constant acceleration.

The Constant-Acceleration Model
Few objects with changing velocity have a perfectly constant acceleration, but it is 
often reasonable to model their acceleration as being constant. We do so by utilizing 
the constant-acceleration model. Once again, a model is a set of words, pictures, 
graphs, and equations that allows us to explain and predict an object’s motion.

Your phone contains a miniature 
accelerometer, smaller than a millimeter, 
built into an integrated-circuit chip 
like the one shown here. These little 
accelerometers—the long bar on the 
lower right—have a tiny block of metal 
attached to a thin cantilever that acts 
like a spring. The block and a nearby 
electrode form what’s called a capacitor, 
an electronic device you’ll study in 
Chapter 26. Acceleration causes the block 
to sway slightly toward or away from the 
electrode, thus changing a current that is 
continuously monitored and used to infer 
the acceleration along that axis. Miniature 
accelerometers are used in navigation 
systems, robotics, medical devices, and 
even the activity tracker you wear while 
exercising. Most devices have three 
independent sensors, one for each axis. 
A continuous record of acceleration can 
be numerically integrated to determine 
velocity and position changes.

MODEL 2.2

Constant acceleration
For motion with constant acceleration.

■■ Model the object as a particle moving  
in a straight line with constant acceleration.

■■ Mathematically:

• vfs = vis + as  ∆t

• sf = si + vis ∆t + 1
2 as  1∆t22

• vfs 

2 = vis 

2 + 2as ∆s
■■ Limitations: Model fails if the particle’s  
acceleration changes.

Exercise 16 

In this text, we’ll usually model runners, cars, planes, and rockets as having con-
stant acceleration. Their actual acceleration is often more complicated (for example, a 
car’s acceleration gradually decreases rather than remaining constant until full speed 
is reached), but the mathematical complexity of dealing with realistic accelerations 
would detract from the physics we’re trying to learn.

The constant-acceleration model is the basis for a problem-solving strategy.

Current
meter

VoltageFixed
electrode

Acceleration axisCantilever

L0.5 mm

Moveable
block

a
u

v
u

Parabola

s

si t

The slope is vs.

Horizontal lineas

0 t

The acceleration is constant.

Straight linevs

vis t

The slope is as.
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2.4 Motion with Constant Acceleration 69

   NOTE    You are strongly encouraged to solve problems on the Dynamics Worksheets 
found at the back of the Student Workbook. These worksheets will help you use the 
Problem-Solving Strategy and develop good problem-solving skills.

PROBLEM-SOLVING STRATEGY 2.1

Kinematics with constant acceleration

MODEL Model the object as having constant acceleration.

VISUALIZE Use different representations of the information in the problem.
■■ Draw a pictorial representation. This helps you assess the information you  
are given and starts the process of translating the problem into symbols.

■■ Use a graphical representation if it is appropriate for the problem.
■■ Go back and forth between these two representations as needed.

SOLVE The mathematical representation is based on the three kinematic equations:

 vfs = vis + as  ∆t

 sf = si + vis ∆t + 1
2 as  1∆t22

 vfs 

2 = vis 

2 + 2as ∆s

■■ Use x or y, as appropriate to the problem, rather than the generic s.
■■ Replace i and f with numerical subscripts defined in the pictorial representation.

REVIEW Check that your result has the correct units and significant figures, is 
 reasonable, and answers the question.

EXAMPLE 2.10 ■ The motion of a rocket sled

A rocket sled’s engines fire for 5.0 s, boosting the sled to a speed  
of 250 m/s. The sled then deploys a braking parachute, slowing by 
3.0 m/s per second until it stops. What is the total distance traveled?

MODEL We’re not given the sled’s initial acceleration, while the 
rockets are firing, but rocket sleds are aerodynamically shaped to 
minimize air resistance and so it seems reasonable to model the 
sled as a particle undergoing constant acceleration.

VISUALIZE FIGURE 2.23 shows the pictorial representation. We’ve 
made the reasonable assumptions that the sled starts from rest 
and that the braking parachute is deployed just as the rocket burn 
ends. There are three points of interest in this problem: the start, 
the change from propulsion to braking, and the stop. Each of these 
points has been assigned a position, velocity, and time. Notice 
that we’ve replaced the generic subscripts i and f of the kinematic 
equations with the numerical subscripts 0, 1, and 2. Accelerations 
are associated not with specific points in the motion but with the 

 intervals between the points, so acceleration a0x is the acceleration 
between points 0 and 1 while acceleration a1x is the acceleration 
between points 1 and 2. The acceleration vector au1 points to the left, 
so a1x is negative. The sled stops at the end point, so v2x = 0 m/s.

SOLVE We know how long the rocket burn lasts and the velocity 
at the end of the burn. Because we’re modeling the sled as having 
uniform acceleration, we can use the first kinematic equation of 
Problem-Solving Strategy 2.1 to write

v1x = v0x + a0x1t1 - t02 = a0x  t1

We started with the complete equation, then simplified by noting which 
terms were zero. Solving for the boost-phase acceleration, we have

a0x =
v1x

t1
=

250 m/s
5.0 s

= 50 m/s2

Notice that we worked algebraically until the last step—a hallmark 
of good problem-solving technique that minimizes the chances of  

FIGURE 2.23 Pictorial representation of the rocket sled.

Continued
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70 CHAPTER 2 Kinematics in One Dimension

calculation errors. Also, in accord with the significant figure  
rules of Chapter 1, 50 m/s2 is considered to have two significant 
figures.

Now we have enough information to find out how far the sled 
travels while the rockets are firing. The second kinematic equation 
of Problem-Solving Strategy 2.1 is

  x1 = x0 + v0x1t1 - t02 + 1
2 a0x1t1 - t022 = 1

2 a0x t1 

2

  = 1
2 150 m/s2215.0 s22 = 625 m

The braking phase is a little different because we don’t know how 
long it lasts. But we do know both the initial and final velocities, 
so we can use the third kinematic equation of Problem-Solving 
Strategy 2.1:

v2x 

2 = v1x 

2 + 2a1x ∆x = v1x 

2 + 2a1x1x2 - x12

Notice that ∆x is not x2; it’s the displacement 1x2 - x12 during the 
braking phase. We can now solve for x2:

  x2 = x1 +
v2x 

2 - v1x 

2

2a1x

  = 625 m +
0 - 1250 m/s22

21-3.0 m/s22 = 11,000 m

We kept three significant figures for x1 at an intermediate stage of 
the calculation but rounded to two significant figures at the end.

REVIEW The total distance is 11 km ≈ 7 mi. That’s large but be-
lievable. Using the approximate conversion factor 1 m/s ≈ 2 mph  
from Table 1.5, we see that the top speed is ≈ 500 mph. It will 
take a long distance for the sled to gradually stop from such a 
high speed.

EXAMPLE 2.11 ■ A two-car race

Fred is driving his Volkswagen Beetle at a steady 20 m/s when he 
passes Betty sitting at rest in her Porsche. Betty instantly begins accel-
erating at 5.0 m/s2. How far does Betty have to drive to overtake Fred?

MODEL Model the VW as a particle in uniform motion and the 
Porsche as a particle with constant acceleration.

VISUALIZE FIGURE 2.24 is the pictorial representation. Fred’s motion 
diagram is one of uniform motion, while Betty’s shows uniform accel-
eration. Fred is ahead in frames 1, 2, and 3, but Betty catches up with 
him in frame 4. The coordinate system shows the cars with the same 
position at the start and at the end—but with the important difference 
that Betty’s Porsche has an acceleration while Fred’s VW does not.

SOLVE This problem is similar to Example 2.2, in which Bob 
and Susan met for lunch. As we did there, we want to find  Betty’s 
position 1x12B at the instant t1 when 1x12B = 1x12F. We know, 
from the models of uniform motion and uniform acceleration, that 
Fred’s position graph is a straight line but Betty’s is a parabola. 
The  position graphs in Figure 2.24 show that we’re solving for the 
intersection point of the line and the parabola.

Fred’s and Betty’s positions at t1 are

 1x12F = 1x02F + 1v0x2F1t1 - t02 = 1v0x2F t1

 1x12B = 1x02B + 1v0x2B1t1 - t02 + 1
2 1a0x2 B1t1 - t022 = 1

2 1a0x2B t1 

2

By equating these,

1v0x2F t1 = 1
2 1a0x2B t1 

2

we can solve for the time when Betty passes Fred:

t131
2  1a0x2B t1 - 1

  

v0x2F4 = 0

t1 = e0 s
21v0x2F /1a0x2B = 8.0 s

Interestingly, there are two solutions. That’s not surprising, when you 
think about it, because the line and the parabola of the position graphs 
have two intersection points: when Fred first passes Betty, and 8.0 s 
later when Betty passes Fred. We’re interested in only the second of 
these points. We can now use either of the distance equations to find 
1x12B = 1x12F = 160 m. Betty has to drive 160 m to overtake Fred.

REVIEW 160 m ≈ 160 yards. Because Betty starts from rest while 
Fred is moving at 20 m/s ≈ 40 mph, needing 160 yards to catch 
him seems reasonable.

   NOTE    The purpose of the Review step is not to prove that an 
answer must be right but to rule out answers that, with a little 
thought, are clearly wrong.

vF
u

vB
u

aB
u

0 1 2 3 4

0 1 2 3 4

x
0  (x0)F, (v0x)F, t0 (x1)F, (v1x)F, t1

x
0  (x0)B, (v0x)B, t0 (x1)B, (v1x)B, t1

Betty

Fred

Known

Find

(x0)F = 0 m  (x0)B = 0 m  t0 = 0 s
(v0x)F = 20 m/s     (v0x)B = 0 m/s
(a0x)B = 5.0 m/s2    (v1x)F = 20 m/s

(x1)B at t1 when (x1)B = (x1)F

x

t
t0 t1

Betty

Fred

Betty passes Fred
at time t1.

FIGURE 2.24 Pictorial representation for Example 2.11.
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2.5 Free Fall 71

2.5 Free Fall
The motion of an object moving under the influence of gravity only, and no other forces, 
is called free fall. Strictly speaking, free fall occurs only in a vacuum, where there is no 
air resistance. Fortunately, the effect of air resistance is small for “heavy objects,” so we’ll 
make only a very slight error in treating these objects as if they were in free fall. For very 
light objects, such as a feather, or for objects that fall through very large distances and gain 
very high speeds, the effect of air resistance is not negligible. Motion with air resistance is 
a problem we will study in Chapter 6. Until then, we will restrict our attention to “heavy 
objects” and will make the reasonable assumption that falling objects are in free fall.

Galileo, in the 17th century, was the first to make detailed measurements of falling 
objects. The story of Galileo dropping different weights from the leaning bell tower 
at the cathedral in Pisa is well known, although historians cannot confirm its truth. 
Based on his measurements, wherever they took place, Galileo developed a model for 
motion in the absence of air resistance:

■■ Two objects dropped from the same height will, if air resistance can be neglected, 
hit the ground at the same time and with the same speed.

■■ Consequently, any two objects in free fall, regardless of their mass, have the  
same acceleration aufree fall.

FIGURE 2.25a shows the motion diagram of an object that was released from rest and 
falls freely. FIGURE 2.25b shows the object’s velocity graph. The motion diagram and graph 
are identical for a falling pebble and a falling boulder. The fact that the velocity graph is a 
straight line tells us the motion is one of constant acceleration, and afree fall is found from 
the slope of the graph. Careful measurements show that the value of aufree fall varies ever so 
slightly at different places on the earth, due to the slightly nonspherical shape of the earth 
and to the fact that the earth is rotating. A global average, at sea level, is

 aufree fall = (9.80 m/s2, vertically downward) (2.24)

Vertically downward means along a line toward the center of the earth.
The length, or magnitude, of aufree fall is known as the free-fall acceleration, and 

it has the special symbol g:

g = 9.80 m/s2 (free@fall acceleration)

Several points about free fall are worthy of note:

■■ g, by definition, is always positive. There will never be a problem that will use a 
negative value for g. But, you say, objects fall when you release them rather than 
rise, so how can g be positive?

■■ g is not the acceleration afree fall, but simply its magnitude. Because we’ve chosen 
the y-axis to point vertically upward, the downward acceleration vector aufree fall has 
the vertical component

 ay = afree fall = -g (2.25)

It is ay that is negative, not g.

ax vx vx vx vx

0 0 0 0 0t t t t t

(a) (b) (c) (d)

STOP TO THINK 2.4 Which velocity-versus-time graph or graphs go with the 
 acceleration-versus-time graph on the left? The particle is initially moving to the right.

In a vacuum, the apple and feather fall at 
the same rate and hit the ground at the 
same time.

v
u

(a)

afree fall
u

FIGURE 2.25 Motion of an object in free 
fall.

afree fall = slope
 = -9.80 m/s2

(b)
vy (m/s)

t (s)0

-9.8

-19.6

-29.4

1 2 3
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72 CHAPTER 2 Kinematics in One Dimension

■■ We can model free fall as motion with constant acceleration, with ay = -g.
■■ g is not called “gravity.” Gravity is a force, not an acceleration. The symbol g 

 recognizes the influence of gravity, but g is the freefall acceleration. You may also 
see g called the acceleration due to gravity.

■■ g = 9.80 m/s2 only on earth. Other planets have different values of g. You will learn 
in Chapter 13 how to determine g for other planets.

   NOTE    Despite the name, free fall is not restricted to objects that are literally falling. 
Any object moving under the influence of gravity only, and no other forces, is in free 
fall. This includes objects falling straight down, objects that have been tossed or shot 
straight up, and projectile motion.

EXAMPLE 2.12 ■ A falling rock

A rock is dropped from the top of a 20-m-tall building. What is its 
impact velocity?

MODEL A rock is fairly heavy, and air resistance is probably not 
a serious concern in a fall of only 20 m. It seems reasonable to 
model the rock’s motion as free fall: constant acceleration with 
ay = afree fall = -g.

VISUALIZE FIGURE 2.26 shows the pictorial representation. We  
have placed the origin at the ground, which makes y0 = 20 m. 
Although the rock falls 20 m, it is important to notice that the 
 displacement is ∆y = y1 - y0 = -20 m.

SOLVE In this problem we know the displacement but not the time, 
which suggests that we use the third kinematic equation from 
 Problem-Solving Strategy 2.1:

v1y 

2 = v0y 

2 + 2ay   ∆y = -2g ∆y

We started by writing the general equation, then noted that 
v0y = 0 m/s and substituted ay = -g. Solving for v1y:

v1y = 2-2g∆y = 2-219.8 m/s221-20 m2 = {20 m/s

A common error would be to say, “The rock fell 20 m, so 
∆y = 20 m.” That would have you trying to take the square root 
of a negative number. As noted above, ∆y is a displacement, not a 
distance, and in this case ∆y = -20 m.

The { sign indicates that there are two mathematical solutions; 
therefore, we have to use physical reasoning to choose between 
them. The rock does hit with a speed of 20 m/s, but the question 
asks for the impact velocity. The velocity vector points down, so 
the sign of v1y is negative. Thus the impact velocity is -20 m/s.

REVIEW Is the answer reasonable? Well, 20 m is about 60 feet,  
or about the height of a five- or six-story building. Using 1 m/s ≈
2 mph, we see that 20 m/s ≈ 40 mph. That seems quite reasonable  
for the speed of an object after falling five or six stories. If we had 
misplaced a decimal point, though, and found 2.0 m/s, we would 
be suspicious that this was much too small after converting it  
to ≈4 mph.

a
u

v
u

0

ay

y0, v0y, t0

y1, v1y, t1

y

Known
y0 = 20 m
v0y = 0 m/s t0 = 0 s

ay = -g = -9.80 m/s2
y1 = 0 m

Find
v1y

Start

FIGURE 2.26 Pictorial representation of a falling rock.

The springbok, an antelope found 
in Africa, gets its name from its re-
markable jumping ability. When 
startled, a springbok will leap 
straight up into the air—a maneuver 
called a “pronk.” A springbok goes 
into a crouch to perform a pronk. It 
then extends its legs forcefully, ac-
celerating at 35 m/s2 for 0.70 m as 

its legs straighten. Legs fully extended, it leaves the ground and 
rises into the air. How high does it go?

MODEL The springbok is changing shape as it leaps, so can we 
reasonably model it as a particle? We can if we focus on the body 
of the springbok, treating the expanding legs like external springs. 
Initially, the body of the springbok is driven upward by its legs. 
We’ll model this as a particle—the body—undergoing constant 
acceleration. Once the springbok’s feet leave the ground, we’ll 
model the motion of the springbok’s body as a particle in free fall.

EXAMPLE 2.13 ■ Finding the height of a leap
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2.6 Motion on an Inclined Plane 73

2.6 Motion on an Inclined Plane
FIGURE 2.28a shows a problem closely related to free fall: that of motion down a straight, 
but frictionless, inclined plane, such as a skier going down a slope on frictionless snow. 
What is the object’s acceleration? Although we’re not yet prepared to give a rigorous 
derivation, we can deduce the acceleration with a plausibility argument.

FIGURE 2.28b shows the free-fall acceleration aufree fall the object would have if the in-
cline suddenly vanished. The free-fall acceleration points straight down. This vector 
can be broken into two pieces: a vector au ‘ that is parallel to the incline and a vector au# 
that is perpendicular to the incline. The surface of the incline somehow “blocks” au#  , 
through a process we will examine in Chapter 6, but au ‘ is unhindered. It is this piece 
of aufree fall , parallel to the incline, that accelerates the object.

By definition, the length, or magnitude, of aufree fall is g. Vector au ‘ is opposite angle u  
(Greek theta), so the length, or magnitude, of au ‘ must be g sin u. Consequently, the 
one-dimensional acceleration along the incline is

 as = {g sin u (2.26)

The correct sign depends on the direction in which the ramp is tilted. Examples will 
illustrate.

Equation 2.26 makes sense. Suppose the plane is perfectly horizontal. If you place 
an object on a horizontal surface, you expect it to stay at rest with no acceleration. 
Equation 2.26 gives as = 0 when u = 0°, in agreement with our expectations. Now sup-
pose you tilt the plane until it becomes vertical, at u = 90°. Without friction, an  object  
would simply fall, in free fall, parallel to the vertical surface. Equation 2.26 
gives  as = -g = afree fall when u = 90°, again in agreement with our expectations. 
Equation 2.26 gives the correct result in these limiting cases.

a
u

v
u

Same angle

(b)

Angle of
incline

(a)

u

u

u

This piece of afree fall

accelerates the object
down the incline.

a ‘

a#

afree fall

u

u

u

u

FIGURE 2.28 Acceleration on an inclined 
plane.

VISUALIZE FIGURE 2.27 shows the pictorial representation. This  
is a problem with a beginning point, an end point, and a point in 
between where the nature of the motion changes. We’ve identified 
these points with subscripts 0, 1, and 2. The motion from 0 to 1 
is a rapid upward acceleration until the springbok’s feet leave the 
ground at 1. Even though the springbok is moving upward from 1 
to 2, this is free-fall motion because the springbok is now moving 
under the influence of gravity only.

How do we put “How high?” into symbols? The clue is that 
the very top point of the trajectory is a turning point, and we’ve 
seen that the instantaneous velocity at a turning point is v2y = 0. 

This was not explicitly stated but is part of our interpretation of 
the problem.

SOLVE For the first part of the motion, pushing off, we know a  
displacement but not a time interval. We can use

 v1y 

2 = v0y 

2 +  2a0y ∆y = 2135 m/s2210.70 m2 = 49 m2/s2

 v1y = 249 m2/s2 = 7.0 m/s

The springbok leaves the ground with a velocity of 7.0 m/s. This is 
the starting point for the problem of a projectile launched straight 
up from the ground. One possible solution is to use the velocity 
equation to find how long it takes to reach maximum height, then 
the position equation to calculate the maximum height. But that 
takes two separate calculations. It is easier to make another use of 
the velocity-displacement equation:

v2y 

2 = 0 = v1y 

2 + 2a1y ∆y = v1y 

2 - 2g1y2 - y12
where now the acceleration is a1y = -g. Using y1 = 0, we can 
solve for y2, the height of the leap:

y2 =
v1y 

2

2g
=

17.0 m/s22

219.80 m/s22 = 2.5 m

REVIEW 2.5 m is a bit over 8 feet, a remarkable vertical jump. But 
these animals are known for their jumping ability, so the answer 
seems reasonable. Note that it is especially important in a multipart 
problem like this to use numerical subscripts to distinguish different  
points in the motion.

FIGURE 2.27 Pictorial representation of a startled springbok.

M02_KNIG8221_05_GE_C02.indd   73 02/06/2022   15:59



74 CHAPTER 2 Kinematics in One Dimension

In the laboratory, a 2.00-m-long track has been inclined as shown 
in FIGURE 2.29. Your task is to measure the acceleration of a cart 
on the ramp and to compare your result with what you might have 
expected. You have available five “photogates” that measure the 
cart’s speed as it passes through. You place a gate every 30 cm 
from a line you mark near the top of the track as the starting line. 
One run generates the data shown in the table. The first entry isn’t 
a photogate, but it is a valid data point because you know the cart’s 
speed is zero at the point where you release it.

Distance (cm) Speed (m/s)

0 0.00

30 0.75

60 1.15

90 1.38

120 1.56

150 1.76

 NOTE   Physics is an experimental science. Our knowledge of 
the universe is grounded in observations and measurements. 
Consequently, some examples and homework problems 
throughout this book will be based on data. Data-based 
homework problems require the use of a spreadsheet, graphing 
software, or a graphing calculator in which you can “fit” data 
with a straight line.

MODEL Model the cart as a particle.

VISUALIZE FIGURE 2.30 shows the pictorial representation. The track 
and axis are tilted at angle u = tan-1 120.0 cm /180 cm2 = 6.34°. 
This is motion on an inclined plane, so you might expect the cart’s 
acceleration to be ax = g sin u = 1.08 m/s2.

SOLVE In analyzing data, we want to use all the data. Further, we 
almost always want to use graphs when we have a series of measure-
ments. We might start by graphing speed versus distance traveled. 
This is shown in FIGURE 2.31a, where we’ve converted distances to 
meters. As expected, speed increases with distance, but the graph 
isn’t linear and that makes it hard to analyze.

Rather than proceeding by trial and error, let’s be guided by 
theory. If the cart has constant acceleration—which we don’t yet 
know and need to confirm—the third kinematic equation tells us 
that velocity and displacement should be related by

vx 

2 = v0x 

2 +  2ax ∆x = 2ax  x

The last step was based on starting from rest 1v0x = 02 at the origin 
1∆x = x - x0 = x2.

Rather than graphing vx versus x, suppose we graph vx 

2 versus x.  
If we let y = vx 

2, the kinematic equation reads

y = 2ax  x

This is in the form of a linear equation: y = mx + b, where m is 
the slope and b is the y-intercept. In this case, m = 2ax and b = 0. 
So if the cart really does have constant acceleration, a graph of 
vx 

2 versus x should be linear with a y-intercept of zero. This is a 
prediction that we can test.

Thus our analysis has three steps:

1. Graph vx 

2 versus x. If the graph is a straight line with a y- intercept 
of zero (or very close to zero), then we can conclude that the cart 
has constant acceleration on the ramp. If not, the acceleration 
is not constant and we cannot use the kinematic equations for 
constant acceleration.

2. If the graph has the correct shape, we can determine its slope m.
3. Because kinematics predicts m = 2ax, the acceleration must be 

ax = m/2.

FIGURE 2.31b is the graph of vx 

2 versus x. It does turn out to be 
a straight line with a y-intercept of zero, and this is the evidence 
we need that the cart has a constant acceleration on the ramp. To 
proceed, we want to determine the slope by finding the straight 
line that is the “best fit” to the data. This is a statistical technique, 
justified in a statistics class, but one that is implemented in spread-
sheets and graphing calculators. The solid line in Figure 2.31b is 
the best-fit line for this data, and its equation is shown. We see 
that the slope is m = 2.06 m /s2. Slopes have units, and the units 
come not from the fitting procedure but by looking at the axes of 
the graph. Here the vertical axis is velocity squared, with units of 
m2/s2, while the horizontal axis is position, measured in m. Thus 
the slope, rise over run, has units of m/s2.

Finally, we can determine that the cart’s acceleration was

ax =
m
2

= 1.03 m/s2

This is about 5% less than the 1.08 m/s2 we expected. Two possibilities 
come to mind. Perhaps the distances used to find the tilt angle weren’t 
measured accurately. Or, more likely, the cart rolls with a small bit of 
friction. The predicted acceleration ax = g sin u is for a frictionless 
inclined plane; any friction would decrease the acceleration.

REVIEW The acceleration is just slightly less than predicted for a 
frictionless incline, so the result is reasonable.

180 cm

20.0 cm

FIGURE 2.29 The experimental 
setup.

EXAMPLE 2.14 ■ Measuring acceleration

3.0

0.0

1.0

2.0

0.0 0.3 0.6 0.9 1.51.2

y = 2.06x + 0.00

Best-fit line

x (m)

1.5

2.0

0.0

0.5

1.0

0.0 0.3 0.6 0.9 1.51.2

(b)
vx

2 (m2/s2)
(a)
vx (m/s)

x (m)

FIGURE 2.31 Graphs of velocity and of velocity squared. The 
equation of the best-fit line is given as y = because that is how it 
would be shown in a spreadsheet.

Known

0

Find

x0 = 0 m
t0 = 0 s u = 6.34°

v0x = 0 m/s

x0, v0x, t0 x, vx, t x

ax

ax

u

FIGURE 2.30 The pictorial representation of the cart on 
the track.
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2.6 Motion on an Inclined Plane 75

Thinking Graphically
A good way to solidify your intuitive understanding of motion is to consider the 
 problem of a hard, smooth ball rolling on a smooth track. The track is made up of 
several straight segments connected together. Each segment may be either horizontal 
or inclined. Your task is to analyze the ball’s motion graphically.

There are a small number of rules to follow:

1. Assume that the ball passes smoothly from one segment of the track to the next, 
with no abrupt change of speed and without ever leaving the track.

2. The graphs have no numbers, but they should show the correct relationships. 
For example, the position graph should be steeper in regions of higher speed.

3. The position s is the position measured along the track. Similarly, vs and as are 
the velocity and acceleration parallel to the track.

Draw position, velocity, and acceleration graphs for the ball on the 
smooth track of FIGURE 2.32.

VISUALIZE It is often easiest to begin with the velocity. There is 
no acceleration on the horizontal surface 1as = 0 if u = 0°2, so the 
velocity remains constant at v0s until the ball reaches the slope. The 
slope is an inclined plane where the ball has constant acceleration.  
The velocity increases linearly with time during constant- 
acceleration motion. The ball returns to constant-velocity motion 
after reaching the bottom horizontal segment. The middle graph of 
FIGURE 2.33 shows the velocity.

We can easily draw the acceleration graph. The acceleration is 
zero while the ball is on the horizontal segments and has a constant 
positive value on the slope. These accelerations are consistent with 
the slope of the velocity graph: zero slope, then positive slope, then a 
return to zero. The acceleration cannot really change instantly from 

zero to a nonzero value, but 
the change can be so quick 
that we do not see it on the 
time scale of the graph. That 
is what the vertical dashed 
lines imply.

Finally, we need to find 
the position- versus-time 
graph. The position in-
creases linearly with time 
during the first  segment at 
constant velocity. It also 
does so during the third 
segment of motion, but with 
a steeper slope to indicate a 
faster  velocity. In between, 
while the  acceleration is 
nonzero but constant, the 
position graph has a para
bolic shape. Notice that the parabolic section blends smoothly 
into the straight lines on either side. An abrupt change of slope (a 
“kink”) would indicate an abrupt change in velocity and would 
violate rule 1.

s

vs

v0s

as

t

t

t

The position graph changes
smoothly, without kinks.

FIGURE 2.33 Motion graphs for 
the ball in Example 2.15.

EXAMPLE 2.15 ■ From track to graphs

v0s 7 0

FIGURE 2.32 A ball rolling along a track.

FIGURE 2.34 shows a set of motion graphs for a ball moving on a 
track. Draw a picture of the track and describe the ball’s initial 
condition. Each segment of the track is straight, but the segments 
may be tilted.

VISUALIZE The ball starts with initial velocity v0s 7 0 and 
 maintains this velocity for awhile; there’s no acceleration. Thus the  
ball must start out rolling to the right on a horizontal track. At the  
end of the motion, the ball is again rolling on a horizontal track (no  
acceleration, constant velocity), but it’s rolling to the left because vs  
is negative. Further, the final speed 1 0 vs 0 2 is greater than the initial 
speed. The middle section of the graph shows us what happens. 
The ball starts slowing with constant acceleration (rolling uphill), 
reaches a turning point 1s is maximum, vs = 02, then speeds up in  
the opposite direction (rolling downhill). This is still a nega-
tive acceleration because the ball is speeding up in the  negative  

s

vs

v0s

as

t

t

t

0

0

0

FIGURE 2.34 Motion graphs 
of a ball rolling on a track of 
unknown shape.

Continued

EXAMPLE 2.16 ■ From graphs to track
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2.7   ADVANCED TOPIC   Instantaneous 
Acceleration

Although the constant-acceleration model is very useful, real moving objects only 
rarely have constant acceleration. For example, FIGURE 2.36a is a realistic velocity- 
versus-time graph for a car leaving a stop sign. The graph is not a straight line, so this 
is not motion with constant acceleration.

We can define an instantaneous acceleration much as we defined the instantaneous 
velocity. The instantaneous velocity at time t is the slope of the position- versus-time 
graph at that time or, mathematically, the derivative of the position with respect to 
time. By analogy: The instantaneous acceleration as is the slope of the line that 
is tangent to the velocity-versus-time curve at time t.  Mathematically, this is

 as =
dvs

dt
= slope of the velocity@versus@time graph at time t (2.27)

FIGURE 2.36b applies this idea by showing the car’s acceleration graph. At each  instant 
of time, the value of the car’s acceleration is the slope of its velocity graph. The 
 initially steep slope indicates a large initial acceleration. The acceleration decreases to 
zero as the car reaches cruising speed.

The reverse problem—to find the velocity vs if we know the acceleration as at all 
instants of time—is also important. Again, with analogy to velocity and position, we 
have

 vfs = vis + 3
tf

ti

as dt (2.28)

The graphical interpretation of Equation 2.28 is

 vfs = vis + area under the acceleration curve as between ti and tf (2.29)

vx

t

The car speeds up from rest until
it reaches a steady cruising speed.

ax

t

The slope of the velocity
graph is the value of the
acceleration.

(a)

(b)

FIGURE 2.36 Velocity and acceleration 
graphs of a car leaving a stop sign.

s- direction. It must roll farther downhill than it had rolled uphill 
 before reaching a horizontal section of track. FIGURE 2.35 shows 
the track and the initial conditions that are responsible for the 
graphs of Figure 2.34.

v0s 7 0

This track has a “switch.”  A ball 
moving to the right goes up the incline, 
but a ball rolling downhill goes
straight through.

FIGURE 2.35 Track responsible for the motion graphs of  
Figure 2.34.

STOP TO THINK 2.5 The ball rolls up the ramp, then back down. Which is the correct acceleration graph?

(a) (b) (c) (d) (e)

as as as as as

t t t t t
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2.7  Advanced Topic: Instantaneous Acceleration 77

FIGURE 2.37 shows the acceleration graph for a particle with an 
 initial velocity of 10 m/s. What is the particle’s velocity at t = 8 s?

MODEL We’re told this is the motion of a particle.

VISUALIZE Figure 2.37 is a graphical representation of the motion.

SOLVE The change in velocity is found as the area under the accel-
eration curve:

vfs = vis + area under the acceleration curve as between ti and  tf

The area under the curve between ti = 0 s and tf = 8 s can be subdi-
vided into a rectangle 10 s … t … 4 s2 and a triangle 14 s …  t … 8 s2. 
These areas are easily computed. Thus

  vs1at t = 8 s2 = 10 m/s + 14 m/s2214 s2
  + 1

2 14 m/s2214 s2
  = 34 m/s

as (m/s2)

t (s)
2 4 6 8 10

∆vs is the area
under the curve.4

2

0

-2

FIGURE 2.37 Acceleration graph for Example 2.17.

EXAMPLE 2.17 ■ Finding velocity from acceleration

Starting from rest, a car takes T seconds to reach its cruising 
speed vmax. A plausible expression for the velocity as a function 
of time is

vx1t2 = c vmax 12t
T

-
t2

T 22 t … T

vmax t Ú T

a. Demonstrate that this is a plausible function by drawing velocity 
and acceleration graphs.

b. Find an expression for the distance traveled at time T in terms  
of T and the maximum acceleration a max.

c. What are the maximum acceleration and the distance traveled 
for a car that reaches a cruising speed of 15 m/s in 8.0 s?

MODEL Model the car as a particle.

VISUALIZE FIGURE 2.38a shows the velocity graph. It’s an inverted 
parabola that reaches vmax at time T and then holds that value. From 
the slope, we see that the acceleration should start at a maximum 
value amax, steadily decrease until T, and be zero for t 7 T.

SOLVE a. We can find an expression for ax by taking the deriv-
ative of vx. Starting with t … T, and using Equation 2.6 for the 
derivatives of polynomials, we find

ax =
dvx

dt
= vmax 12

T
-

2t

T 22 =
2vmax

T
 11 -

t
T2 = amax 11 -

t
T2

where amax = 2vmax/T. For t Ú T, ax = 0. Altogether,

ax1t2 = c amax 11 -
t
T2 t … T

0 t Ú T

This expression for the acceleration is graphed in FIGURE 2.38b. 
The acceleration decreases linearly from amax to 0 as the car accel-
erates from rest to its cruising speed.

b. To find the position as a function of time, we need to integrate 
the velocity (Equation 2.11) using Equation 2.13 for the integrals of 
polynomials. At time T, when cruising speed is reached,

  xT = x0 + 3
T

0
vx  dt = 0 +

2vmax

T 3
T

0
t dt -

vmax

T 2 3
T

0
t2 dt

  =
2vmax 

T
 
t2

2
`
T

0
-

vmax

T 2  
 t3

3
`
T

0

  = vmaxT - 1
3 vmaxT = 2

3 vmaxT

Recalling that amax = 2vmax/T, we can write the distance traveled as

xT = 2
3 vmaxT = 1

3 12vmax

T 2T 2 = 1
3 amaxT

2

If the acceleration stayed constant, the distance would be 1
2 aT 2. 

We have found a similar expression but, because the acceleration is 
steadily decreasing, with a smaller fraction in front.

c. With vmax = 15 m /s and T = 8.0 s, realistic values for city driving,  
we find

  amax =
2vmax

T
=

2115 m/s2
8.0 s

= 3.75  m/s2

  xT = 1
3 amaxT

2 = 1
3 13.75 m /s2218.0 s22 = 80 m

REVIEW 80 m in 8.0 s to reach a cruising speed of 15 m /s ≈ 30 mph  
is very reasonable. This gives us good reason to believe that a car’s 

initial acceleration is ≈ 1
3 g.

EXAMPLE 2.18 ■ A realistic car acceleration

ax

t
T0

vx

0

vmax

0

amax

t
T0

(a)

(b)

FIGURE 2.38 Velocity and acceleration graphs for Example 2.18.
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STOP TO THINK 2.6 Rank in order, from most 
positive to least positive, the accelerations at 
points 1 to 3.

a. a1 7 a2 7 a3 

b. a3 7 a1 7 a2 

c. a3 7 a2 7 a1 

d. a2 7 a1 7 a3 

vs

t0

1

2

3

   CHAPTER 2 CHALLENGE EXAMPLE    Rocketing along

A rocket sled accelerates along a long, horizontal rail. Starting from 
rest, two rockets burn for 10 s, providing a constant acceleration. 
One rocket then burns out, halving the acceleration, but the other 
burns for an additional 5 s to boost the sled’s speed to 625 m/s. How  
far has the sled traveled when the second rocket burns out?

MODEL Model the rocket sled as a particle with constant acceleration.

VISUALIZE FIGURE 2.39 shows the pictorial representation. This is 
a two-part problem with a beginning, an end (the second rocket 
burns out), and a point in between where the motion changes (the 
first rocket burns out).

SOLVE The difficulty with this problem is that there’s not enough 
information to completely analyze either the first or the second  
part of the motion. A successful solution will require combining 
information about both parts of the motion, and that can be done 
only by working algebraically, not worrying about numbers until 
the end of the problem. A well-drawn pictorial representation and 
clearly defined symbols are essential.

The first part of the motion, with both rockets firing, has accel-
eration a0x. The sled’s position and velocity when the first rocket 
burns out are

 x1 = x0 + v0x ∆t + 1
2 a0x1∆t22 = 1

2 a0x  t1 

2

 v1x = v0x + a0x ∆t = a0x  t1

where we simplified as much as possible by knowing that the sled 
started from rest at the origin at t0 = 0 s. We can’t compute numerical  
values, but these are valid algebraic expressions that we can carry 
over to the second part of the motion.

From t1 to t2, the acceleration is a smaller a1x. The velocity when  
the second rocket burns out is

v2x = v1x + a1x ∆t = a0x  t1 + a1x1t2 - t12
where for v1x we used the algebraic result from the first part of the 
motion. Now we have enough information to complete the solution. 
We know that the acceleration is halved when the first rocket burns 
out, so a1x = 1

2 a0x. Thus

v2 x = 625 m/s = a0 x110 s2 + 1
2 a0x15 s2 = 112.5 s2a0x  

Solving, we find a0x = 50 m/s2.
With the acceleration now known, we can calculate the position 

and velocity when the first rocket burns out:

  x1 = 1
2 a0x  t1 

2 = 1
2 150 m/s22110 s22 = 2500 m

  v1x = a0x  t1 = 150 m/s22110 s2 = 500 m/s

Finally, the position when the second rocket burns out is

  x2 = x1 + v1x ∆t + 1
2 a1x1∆t22

  = 2500 m + 1500 m/s215 s2 + 1
2 125 m/s2215 s22 = 5300 m

The sled has traveled 5300 m when it reaches 625 m/s at the burnout  
of the second rocket.

REVIEW 5300 m is 5.3 km, or roughly 3 miles. That’s a long way 
to travel in 15 s! But the sled reaches incredibly high speeds. At the 
final speed of 625 m/s, over 1200 mph, the sled would travel nearly 
10 km in 15 s. So 5.3 km in 15 s for the accelerating sled seems 
reasonable.

FIGURE 2.39 The pictorial representation of the rocket sled.
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Solving Kinematics Problems
MODEL Uniform motion or constant acceleration.

VISUALIZE Draw a pictorial representation.

SOLVE

• Uniform motion sf = si + vs ∆t

• Constant acceleration vfs = vis + as ∆t

sf = si + vis ∆t + 1
2 as1∆t22

vfs 

2 = vis 

2 + 2as ∆s

REVIEW Is the result reasonable?

Kinematics describes motion in terms of position, velocity, and acceleration.

General kinematic relationships are given mathematically by:

Instantaneous velocity  vs = ds/dt = slope of position graph

Instantaneous acceleration  as = dvs/dt = slope of velocity graph

Final position  sf = si + 3
tf

ti

vs dt = si + e area under the velocity
curve from ti to tf

Final velocity vfs = vis + 3
tf

ti

as dt = vis + e area under the acceleration
curve from ti to tf

General Principles

The goal of Chapter 2 has been to learn to solve problems 
about motion along a straight line.

Summary

Position, velocity, and acceleration are  
related graphically.
• The slope of the position-versus-time  

graph is the value on the velocity graph.

• The slope of the velocity graph is the  
value on the acceleration graph.

• s is a maximum or minimum at a turning  
point, and vs = 0.

The sign of vs indicates the direction of motion.
• vs 7 0 is motion to the right or up.

• vs 6 0 is motion to the left or down.
The sign of as indicates which way au points, not whether the  
object is speeding up or slowing down.

• as 7 0 if au points to the right or up.

• as 6 0 if au points to the left or down.

• The direction of au is found with a motion diagram.

An object is speeding up if and only if vs and as have the same sign. 

An object is slowing down if and only if vs and as have opposite signs.

Free fall is constant-acceleration motion with

ay = -g = -9.80 m/s2

Motion on an inclined plane has as = {g sin u.  
The sign depends on the direction of the tilt.

Important Concepts

Applications

s

vs

as

t

t

t

Turning
point

vs

Area

s

t

t

• Displacement is the area under the 
velocity curve.

u

kinematics
uniform motion
average velocity, vavg

speed, v

initial position, si

final position, sf

uniform-motion model
instantaneous velocity, vs

turning point
average acceleration, aavg

constant-acceleration model
free fall

free-fall acceleration, g
instantaneous acceleration, as

Terms and Notation
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CONCEPTUAL QUESTIONS
7. FIGURE Q2.7 shows the position-versus-time graph for a moving 

object. At which numbered point or points:
a. Is the object moving the fastest?
b. Is the object moving to the left?
c. Is the object speeding up?
d. Is the object turning around?

For Questions 1 through 3, interpret the position graph given in each 
figure by writing a very short “story” of what is happening. Be cre-
ative! Have characters and situations! Simply saying that “a car moves 
100 meters to the right” doesn’t qualify as a story. Your stories should 
make specific reference to information you obtain from the graph, 
such as distance moved or time elapsed.

1. 

4. FIGURE Q2.4 shows a position-versus-time graph for the motion 
of objects A and B as they move along the same axis.
a. At the instant t = 1 s, is the speed of A greater than, less than, 

or equal to the speed of B? Explain.
b. Do objects A and B ever have the same speed? If so, at what 

time or times? Explain.

5. FIGURE Q2.5 shows a position-versus-time graph for the motion of  
objects A and B as they move along the same axis.
a. At the instant t = 1 s, is the speed of A greater than, less than, 

or equal to the speed of B? Explain.
b. Do objects A and B ever have the same speed? If so, at what 

time or times? Explain.
6. FIGURE Q2.6 shows the position-versus-time graph for a moving 

object. At which numbered point or points:
a. Is the object moving the slowest?
b. Is the object moving the fastest?
c. Is the object at rest?
d. Is the object moving to the left?

8. FIGURE Q2.8 shows six frames from the motion diagrams of two 
moving cars, A and B.
a. Do the two cars ever have the same position at one instant of 

time? If so, in which frame number (or numbers)?
b. Do the two cars ever have the same velocity at one instant of 

time? If so, between which two frames?

9. You want to pass on a note to your friend who is traveling by a bus 
that does not stop in front of your house. You start jogging toward the 
bus the moment you see it at a distance. As the bus crosses you, do 
you think you can pass the note to your friend’s outstretched hand?

10. When a space shuttle lands on a runway, it immediately deploys 
parachutes to reduce its tremendous speed. At this point, do the 
velocity and acceleration of the shuttle have the same direction? 
Explain.

11. Give an example of a motion 
a. where there is a positive acceleration, yet zero velocity.
b. with zero acceleration but positive velocity.

12. You travel by car at a constant 90 km/h for 90 km. Then, due 
to heavy traffic, you need to reduce your speed to 50 km/h 
for another 100 km. What is your car’s average speed for the  
190-km trip?

13. A rock is thrown (not dropped) straight down from a bridge into the 
river below. At each of the following instants, is the magnitude of the 
rock’s acceleration greater than g, equal to g, less than g, or 0? Explain.
a. Immediately after being released.
b. Just before hitting the water.

14. FIGURE Q2.14 shows the velocity-versus-time graph for a moving 
object. At which numbered point or points:
a. Is the object speeding up?
b. Is the object slowing down?
c. Is the object moving to the left?
d. Is the object moving to the right?

2. 

3. 
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EXERCISES AND PROBLEMS

Exercises

Section 2.1 Uniform Motion

1. || Larry leaves home at 9:05 and runs at constant speed to the lamp-
post seen in FIGURE EX2.1. He reaches the lamppost at 9:07, immedi-
ately turns, and runs to the tree. Larry arrives at the tree at 9:10.
a. What is Larry’s average velocity, in m/min, during each of 

these two intervals?
b. What is Larry’s average velocity for the entire run?

7. | FIGURE EX2.7 shows the velocity graph for a particle having 
initial position x0 = 0 m at t0 = 0 s. At what time or times is the 
particle found at x = 35 m?

2. || Julie drives 120 miles to her grandmother’s house. She covers 
half the distance at 40 mph and the other half at 60 mph. On 
her return trip, she drives half the time at 40 mph and the rest at  
60 mph.
a. What is Julie’s average speed on the way to her grandmother’s 

house?
b. What is her average speed on the return trip?

3. || Alan leaves London at 8:00 a.m. to drive to Leeds, 200 mi 
away. He travels at a steady 50 mph. Beth leaves London at  
8:45 a.m. and drives a steady 60 mph.
a. Who gets to Leeds first?
b. How long does the first to arrive have to wait for the second?

4. || FIGURE EX2.4 is the position-versus-time graph of a bicycle. 
What is the bicycle’s velocity at (a) t = 5 s, (b) t = 15 s, and  
(c) t = 30 s?

Section 2.2 Instantaneous Velocity

Section 2.3 Finding Position from Velocity

5. | FIGURE EX2.5 shows the position graph of a particle.
a. Draw the particle’s velocity graph for the interval 

0 s … t … 4 s.
b. Does this particle have a turning point or points? If so, at 

what time or times?

6. || A particle starts from x0 = 10 m at t0 = 0 s and moves with 
the velocity graph shown in FIGURE EX2.6.
a. Does this particle have a turning point? If so, at what time?
b. What is the object’s position at t = 2 s and 4 s?

8. || FIGURE EX2.8 is a somewhat idealized graph of the veloc-
ity of blood in the ascending aorta during one beat of the heart. 
Approximately how far, in cm, does the blood move during one beat?

10. || FIGURE EX2.10 shows the velocity graph of a particle moving 
along the x-axis. Its initial position is x0 = 2.0 m at t0 = 0 s. At 
t = 2.0 s, what are the particle’s (a) position, (b) velocity, and (c) 
acceleration?

Section 2.4 Motion with Constant Acceleration

9. | FIGURE EX2.9 shows the velocity graph of a particle. Draw 
the particle’s acceleration graph for the interval 0 s … t … 4 s.
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11. || FIGURE EX2.8 showed the velocity graph of blood in the aorta. 
What is the blood’s acceleration during each phase of the mo-
tion, speeding up and slowing down?
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21. || A rock is tossed straight up from ground level with a speed of 
20 m/s. When it returns, it falls into a hole 10 m deep.
a. What is the rock’s speed as it hits the bottom of the hole?
b. How long is the rock in the air, from the instant it is released 

until it hits the bottom of the hole?
22. || A student standing on the ground throws a ball straight up. The 

ball leaves the student’s hand with a speed of 15 m/s when the hand 
is 2.0 m above the ground. How long is the ball in the air before it 
hits the ground? (The student moves her hand out of the way.)

23. || A science project involves dropping a watermelon from the 
Empire State Building to the sidewalk below, from a height of 
350 m. It so happens that Superman is flying by at the instant the 
watermelon is dropped. He is headed straight down at a speed 
of 40 m/s. How fast is the watermelon falling when it passes 
Superman?

24. |||  When jumping, a flea accelerates at an astounding 1000 m/s2, 
but over only the very short distance of 0.50 mm. If a flea jumps 
straight up, and if air resistance is neglected (a rather poor ap-
proximation in this situation), how high does the flea go?

25. ||| A rock is dropped from the top of a tall building. The rock’s 
displacement in the last second before it hits the ground is 45% 
of the entire distance it falls. How tall is the building?

Section 2.6 Motion on an Inclined Plane

26. || A car traveling at 30 m/s runs out of gas while traveling up a 
10° slope. How far up the hill will it coast before starting to roll 
back down?

27. || A skier is gliding along at 3.0 m/s on horizontal, frictionless 
snow. He suddenly starts down a 10° incline. His speed at the 
bottom is 15 m/s.
a. What is the length of the incline?
b. How long does it take him to reach the bottom?

28. || Santa loses his footing and slides down a frictionless, snowy 
roof that is tilted at an angle of 30°. If Santa slides 10 m before 
reaching the edge, what is his speed as he leaves the roof?

29. || A bicycle coasting at 7.0 m/s comes to a 6.0-m-long, 1.0-m-high 
ramp. What is the bicycle’s speed as it leaves the top of the ramp?

30. || A snowboarder glides down a 50-m-long, 15° hill. She then 
glides horizontally for 10 m before reaching a 25° upward slope. 
Assume the snow is frictionless.
a. What is her speed at the bottom of the hill?
b. How far can she travel up the 25° slope?

Section 2.7 Instantaneous Acceleration

31. || FIGURE EX2.31 shows the acceleration-versus-time graph of 
a particle moving along the x-axis. Its initial velocity is v0x =
8.0 m/s at t0 = 0 s. What is the particle’s velocity at t = 4.0 s?

12. | FIGURE EX2.12 shows the velocity-versus-time graph for a 
 particle moving along the x-axis. Its initial position is x0 = 2.0 m 
at t0 = 0 s.
a. What are the particle’s position, velocity, and acceleration at 

t = 1.0 s?
b. What are the particle’s position, velocity, and acceleration at 

t = 3.0 s?

13. || a.  What constant acceleration, in SI units, must a car have to 
go from zero to 60 mph in 4.9 s?

b. How far has the car traveled when it reaches 60 mph? Give 
your answer both in SI units and in feet.

14. || A jet plane is cruising at 280 m/s when suddenly the pilot 
turns the engines to full throttle. After traveling 4.0 km, the jet 
moves with a speed of 380 m/s. What is the jet’s acceleration, 
assuming it to be a constant acceleration?

15. || It has been proposed that a very small probe could be sent to a 
nearby star system by using a powerful laser beam, fired from an 
earth-orbiting satellite, to push on a lightweight “solar sail.” Very 
high speeds could be reached in the vacuum of space by a fairly 
modest acceleration that continues for a long interval of time.
a. Write an expression for the constant acceleration ax an object 

needs to reach velocity vmax in time tpush, starting from rest.
b. Write an expression in terms of vmax and tpush for the distance 

d the object travels during this time.
c. For the mission to be feasible, the probe needs to reach 10% 

of the speed of light after being pushed for 1.0 year. The 
probe would then coast the rest of the way. What constant 
acceleration is needed? Note that the speed of light and much 
other useful data needed to solve problems are given inside 
the front and back covers of the book.

d. What fraction of a light year will the probe have traveled at 
the end of the year? A light year (ly) is the distance traveled 
by light in 1 year.

16. || When you sneeze, the air in your lungs accelerates from rest 
to 150 km/h in approximately 0.50 s. What is the magnitude of 
the acceleration of the air in m/s2?

17. || A speed skater moving to the left across frictionless ice at 7.0 m/s  
hits a 5.0-m-wide patch of rough ice. She slows steadily, then con-
tinues on at 4.0 m/s. What is her acceleration on the rough ice?

18. || A Porsche challenges a Honda to a 400 m race. Because the 
Porsche’s acceleration of 3.5 m/s2 is larger than the Honda’s 
3.0 m/s2, the Honda gets a 1.0 s head start. Who wins? By how 
many seconds?

19. || A Lamborghini Aventador S can go from 0 to 60 mph in 2.7 s. 
Assume the acceleration is constant.
a. What is the magnitude of the acceleration?
b. How far has the car traveled when it reaches 60 mph?

Section 2.5 Free Fall

20. | Ball bearings are made by letting spherical drops of molten 
metal fall inside a tall tower—called a “shot tower”—and solidify 
as they fall.
a. If a bearing needs 5 seconds to solidify enough for impact, 

how high must the tower be?
b. What is the bearing’s impact velocity?

32. || FIGURE EX2.32 shows the acceleration graph for a particle 
that starts from rest at t = 0 s. What is the particle’s velocity at 
t = 6 s?
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41. || A particle’s acceleration is described by the function 
ax = 110 - t2 m/s2, where t is in s. Its initial conditions are 
x0 = 0 m and v0x = 0 m/s at t = 0 s.
a. At what time is the velocity again zero?
b. What is the particle’s position at that time?

42. || A particle’s velocity is given by the function 
vx = 12.0 m/s2 sin1pt2, where t is in s.
a. What is the first time after t = 0 s when the particle reaches 

a turning point?
b. What is the particle’s acceleration at that time?

43. || A ball rolls along the smooth track shown in FIGURE P2.43. 
Each segment of the track is straight, and the ball passes smoothly 
from one segment to the next without changing speed or leaving 
the track. Draw three vertically stacked graphs showing position, 
velocity, and acceleration versus time. Each graph should have 
the same time axis, and the proportions of the graph should be 
qualitatively correct. Assume that the ball has enough speed to 
reach the top.

33. | A particle moving along the x-axis has its position described 
by the function x = 13.00t3 - 3.00t + 5.002 m, where t is time  
(in seconds). At t = 2.00, what is 
a. the position of the particle?
b. its velocity?
c. its acceleration?

34. | A particle moving along the x-axis has its velocity described 
by the function vx = 2t2 m/s, where t is in s. Its initial position is 
x0 = 1 m at t0 = 0 s. At t = 1 s what are the particle’s (a) position,  
(b) velocity, and (c) acceleration?

35. || The vertical position of a particle is given by the function 
y = 1t2 - 4t + 22 m, where t is in s.
a. At what time does the particle have a turning point in its 

motion?
b. What is the particle’s position at that time?

36. || The position of a particle is given by the function 
x = 12t3 - 6t2 + 122 m, where t is in s.
a. At what time does the particle reach its minimum velocity? 

What is 1vx2min?
b. At what time is the acceleration zero?

Problems
37. || Particles A, B, and C move along the x-axis. Particle C has an 

initial velocity of 10 m/s. In FIGURE P2.37, the graph for A is a 
position-versus-time graph; the graph for B is a velocity-versus- 
time graph; the graph for C is an acceleration-versus-time graph. 
Find each particle’s velocity at t = 7.0 s.
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38. | A block is suspended from a spring, pulled down, and released. 
The block’s position-versus-time graph is shown in FIGURE P2.38.
a. At what times is the velocity zero? At what times is the veloc-

ity most positive? Most negative?
b. Draw a reasonable velocity-versus-time graph.

39. || A particle’s velocity is described by the function 
vx = 1t2 - 10t + 212 m/s, where t is in s.
a. At what times does the particle reach its turning points?
b. What is the particle’s acceleration at each of the turning points?

40. |||  A particle’s velocity is described by the function vx = k t2 m/s, 
where k is a constant and t is in s. The particle’s position 
at t0 = 0 s is x0 = - 9.0 m. At t1 = 3.0 s, the particle is at 
x1 = 9.0 m. Determine the value of the constant k. Be sure to 
include the proper units.

44. || Draw position, velocity, and acceleration graphs for the ball 
shown in FIGURE P2.44. See Problem 43 for more information.

45. || FIGURE P2.45 shows a set of kinematic graphs for a ball rolling 
on a track. All segments of the track are straight lines, but some 
may be tilted. Draw a picture of the track and also indicate the 
ball’s initial condition.

46. || FIGURE P2.46 shows a set of kinematic graphs for a ball rolling 
on a track. All segments of the track are straight lines, but some 
may be tilted. Draw a picture of the track and also indicate the 
ball’s initial condition.
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54. || Bob is driving the getaway car after the big bank robbery. 
He’s going 50 m/s when his headlights suddenly reveal a nail 
strip that the cops have placed across the road 150 m in front of 
him. If Bob can stop in time, he can throw the car into reverse 
and escape. But if he crosses the nail strip, all his tires will go 
flat and he will be caught. Bob’s reaction time before he can 
hit the brakes is 0.60 s, and his car’s maximum deceleration is 
10 m/s2. Does Bob stop before or after the nail strip? By what 
distance?

55. ||| A 1000 kg weather rocket is launched straight up. The rocket 
motor provides a constant acceleration for 16 s, then the motor 
stops. The rocket altitude 20 s after launch is 5100 m. You can 
ignore any effects of air resistance. What was the rocket’s accel-
eration during the first 16 s?

56. || A 200 kg weather rocket is loaded with 100 kg of fuel and 
fired straight up. It accelerates upward at 30 m/s2 for 30 s, then 
runs out of fuel. Ignore any air resistance effects.
a. What is the rocket’s maximum altitude?
b. How long is the rocket in the air before hitting the ground?

57. || A lead ball is dropped into a lake from a diving board 5.0 m 
above the water. After entering the water, it sinks to the bottom 
with a constant velocity equal to the velocity with which it hit the 
water. The ball reaches the bottom 3.0 s after it is released. How 
deep is the lake?

58. || A hotel elevator ascends 200 m with a maximum speed of 5.0 m/s. 
Its acceleration and deceleration both have a magnitude of 1.0 m/s2.
a. How far does the elevator move while accelerating to full 

speed from rest?
b. How long does it take to make the complete trip from bottom 

to top?
59. || Your car’s anti-lock brake system is designed to keep the 

wheels from “locking” and starting to skid. The deceleration of 
a skidding car is less than that of a car that has the maximum 
braking without skidding—a topic we’ll explore in Chapter 6. 
In one test, a car equipped with anti-lock brakes was able to de-
celerate at 7.0 m/s2. while the same car without anti-lock brakes 
decelerated at 4.8 m/s2 while skidding. In an emergency stop at a 
highway speed of 30 m/s, how much additional stopping distance 
would be needed by the skidding car compared to the car with 
anti-lock brakes?

60. || You are 9.0 m from the door of your bus, behind the bus, when 
it pulls away with an acceleration of 1.0 m/s2. You instantly start 
running toward the still-open door at 4.5 m/s.
a. How long does it take for you to reach the open door and jump in?
b. What is the maximum time you can wait before starting to 

run and still catch the bus?
61. || Ann and Carol are driving their cars along the same straight 

road. Carol is located at x = 2.4 mi at t = 0 h and drives at a 
steady 36 mph. Ann, who is traveling in the same direction, is 
located at x = 0.0 mi at t = 0.50 h and drives at a steady 50 mph.
a. At what time does Ann overtake Carol?
b. What is their position at this instant?
c. Draw a position-versus-time graph showing the motion of 

both Ann and Carol.
62. || A steel ball rolls across a 30-cm-wide felt pad, starting from 

one edge. The ball’s speed has dropped to half after traveling  
20 cm. Will the ball stop on the felt pad or roll off?

63. || A very slippery block of ice slides down a smooth ramp tilted 
at angle u. The ice is released from rest at vertical height h above 
the bottom of the ramp. Find an expression for the speed of the 
ice at the bottom.

47. || You are driving to the grocery store at 20 m/s. You are 110 m  
from an intersection when the traffic light turns red. Assume 
that your reaction time is 0.50 s and that your car brakes with 
constant acceleration. What magnitude braking acceleration will 
bring you to a stop exactly at the intersection?

48. | The takeoff speed for an Airbus A320 jetliner is 80 m/s. 
Velocity data measured during takeoff are as shown.

t 1s2 vx 1m/s2
 0  0

10 23

20 46

30 69

a. Is the jetliner’s acceleration constant during takeoff? Explain.
b. At what time do the wheels leave the ground?
c. For safety reasons, in case of an aborted takeoff, the runway 

must be three times the takeoff distance. Can an A320 take 
off safely on a 2.5-mi-long runway?

49. || You’re driving down the highway late one night at 20 m/s 
when a deer steps onto the road 35 m in front of you. Your reac-
tion time before stepping on the brakes is 0.50 s, and the maxi-
mum deceleration of your car is 10 m/s2.
a. How much distance is between you and the deer when you 

come to a stop?
b. What is the maximum speed you could have and still not hit 

the deer?
50. || The Smooth Company has proposed transporting people 

 between Paris and Amsterdam, a distance of 430 km, through 
an underground tube from which the air has been removed to 
eliminate air drag. Small pods carrying four passengers would 
accelerate at 2.5 m/s2 until reaching a speed of 180 m/s. Later, 
they would brake at 1.5 m/s2. A launch of one pod per minute  
would transport 240 passengers per hour, roughly equivalent to 
one jet plane per hour.
a. What would be the trip time in minutes from Paris to 

Amsterdam?
b. How far apart would two adjacent pods be on the 

 constant-speed segment of the journey?
51. || A car starts from rest at a stop sign. It accelerates at 4.0 m/s2 

for 6.0 s, coasts for 2.0 s, and then slows down at a rate of 3.0 m/s2  
for the next stop sign. How far apart are the stop signs?

52. || A cheetah spots a Thomson’s gazelle, its preferred prey, and 
leaps into action, quickly accelerating to its top speed of 30 m/s, 
the highest of any land animal. However, a cheetah can maintain 
this extreme speed for only 15 s before having to let up. The 
cheetah is 170 m from the gazelle as it reaches top speed, and 
the gazelle sees the cheetah at just this instant. With negligible 
reaction time, the gazelle heads directly away from the cheetah, 
accelerating at 4.6 m/s2 for 5.0 s, then running at constant speed. 
Does the gazelle escape? If so, by what distance is the gazelle in 
front when the cheetah gives up?

53. || a.  Find an expression for the minimum stopping distance 
dstop of a car traveling at speed v0 if the driver’s reaction 
time is Treact and the magnitude of the acceleration during 
maximum braking is a constant abrake.

b. A car traveling at 30 m/s can stop in a distance of 60 m, 
including the distance traveled during the driver’s reaction 
time of 0.50 s. What is the minimum stopping distance for 
the same car traveling at 40 m/s?
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Height (m) Fall time (s)

0.0 0.00

1.0 0.54

2.0 0.72

3.0 0.91

4.0 1.01

5.0 1.17

Analyze these data to determine the free-fall acceleration on Planet 
X. Your analysis method should involve fitting a straight line to an 
appropriate graph, similar to the analysis in Example 2.14.

72. ||| A ball is launched straight up at speed v0. The second half 
of the total distance to the highest point is traveled during the 
final 1.0 s. How long does it take the ball to reach its maximum 
height?

73. || When a 1984 Alfa Romeo Spider sports car accelerates at 
the maximum possible rate, its motion during the first 20 s is  
extremely well modeled by the simple equation

vx 

2 =
2P
m

 t

where P = 3.6 * 104 watts is the car’s power output, m = 1200 kg 
is its mass, and vx is in m/s. That is, the square of the car’s velocity 
increases linearly with time.
a. Find an algebraic expression in terms of P, m, and t for the 

car’s acceleration at time t.
b. What is the car’s speed at t = 2 s and t = 10 s?
c. Evaluate the acceleration at t = 2 s and t = 10 s.

74. || Masses A and B in FIGURE P2.74 slide on frictionless wires. 
They are connected by a pivoting rigid rod of length L. Prove 
that vBx = -vAy tan u.

64. || FIGURE P2.64 shows a fixed vertical disk of radius R. A thin, 
frictionless rod is attached to the bottom point of the disk and to 
a point on the edge, making angle f (Greek phi) with the verti-
cal. Find an expression for the time it takes a bead to slide from 
the top end of the rod to the bottom.

u

A

B

L

FIGURE P2.74

f

R

FIGURE P2.64

65. || A skateboarder starts up a 3.0-m-long ramp at 4.0 m/s. What 
is the maximum height of the ramp for which the skateboarder 
goes off the end rather than rolling back down?

66. || A motorist is driving at 20 m/s when she sees that a traffic 
light 200 m ahead has just turned red. She knows that this light 
stays red for 15 s, and she wants to reach the light just as it turns 
green again. It takes her 1.0 s to step on the brakes and begin 
slowing. What is her speed as she reaches the light at the instant 
it turns green?

67. || Nicole throws a ball straight up. Chad watches the ball from 
a window 5.0 m above the point where Nicole released it. The 
ball passes Chad on the way up, and it has a speed of 10 m/s as it 
passes him on the way back down. How fast did Nicole throw the 
ball?

68. || David is driving a steady 30 m/s when he passes Tina, who 
is sitting in her car at rest. Tina begins to accelerate at a steady 
2.0 m/s2 at the instant when David passes.
a. How far does Tina drive before passing David?
b. What is her speed as she passes him?

69. ||| If a Tesla Model S P100D in “Ludicrous mode” is pushed to 
its limit, the first 3.0 s of acceleration can be modeled as

ax = e 135 m/s32t 0 s … t … 0.40 s
14.6 m/s2 - 11.5 m/s32t 0.40 s … t … 3.0 s

a. How long does it take to accelerate to 60 mph? Your answer, 
which seems impossibly short, is confirmed by track tests.

b. What acceleration would be needed to achieve the same 
speed in the same time at constant acceleration? Give your 
answer as a multiple of g.

70. ||| I was driving along at 20 m/s, trying to change a CD and not 
watching where I was going. When I looked up, I found myself 
45 m from a railroad crossing. And wouldn’t you know it, a train 
moving at 30 m/s was only 60 m from the crossing. In a split sec-
ond, I realized that the train was going to beat me to the crossing 
and that I didn’t have enough distance to stop. My only hope was 
to accelerate enough to cross the tracks before the train arrived. 
If my reaction time before starting to accelerate was 0.50 s, what 
minimum acceleration did my car need for me to be here today 
writing these words?

71. || As an astronaut visiting Planet X, you’re assigned to measure 
the free-fall acceleration. Getting out your meter stick and stop 
watch, you time the fall of a heavy ball from several heights. 
Your data are as follows:

In Problems 75 through 78, you are given the kinematic equation or 
equations that are used to solve a problem. For each of these, you are to:

a. Write a realistic problem for which this is the correct equation(s). 
Be sure that the answer your problem requests is consistent with 
the equation(s) given.

b. Draw the pictorial representation for your problem.
c. Finish the solution of the problem.

75. 64 m = 0 m + 132 m/s214 s - 0 s2 + 1
2 ax14 s - 0 s22

76. 110 m/s22 = v0y 

2 - 219.8 m/s22110 m - 0 m2
77. 10 m/s22 = 15 m/s22 - 219.8 m/s221sin 10°21x1 - 0 m2
78. v1x = 0 m/s + 120 m/s2215 s - 0 s2

x1 = 0 m + 10 m/s215 s - 0 s2 + 1
2 120 m/s2215 s - 0 s22

x2 = x1 + v1x110 s - 5 s2

Challenge Problems
79. ||| Water drops fall from the edge of a roof at a steady rate. A fifth 

drop starts to fall just as the first drop hits the ground. At this in-
stant, the second and third drops are exactly at the bottom and top 
edges of a 1.00-m-tall window. How high is the edge of the roof?
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86 CHAPTER 2 Kinematics in One Dimension

83. ||| A sprinter can accelerate with constant acceleration for 4.0 s  
before reaching top speed. He can run the 100 meter dash in 10.0 s. 
What is his speed as he crosses the finish line?

84. ||| A rubber ball is shot straight up from the ground with speed 
v0 . Simultaneously, a second rubber ball at height h directly 
above the first ball is dropped from rest.
a. At what height above the ground do the balls collide? Your 

answer will be an algebraic expression in terms of h, v0, 
and g.

b. What is the maximum value of h for which a collision occurs 
before the first ball falls back to the ground?

c. For what value of h does the collision occur at the instant 
when the first ball is at its highest point?

85. ||| The Starship Enterprise returns from warp drive to ordinary 
space with a forward speed of 50 km/s. To the crew’s great sur-
prise, a Klingon ship is 100 km directly ahead, traveling in the 
same direction at a mere 20 km/s. Without evasive action, the 
Enterprise will overtake and collide with the Klingons in just 
slightly over 3.0 s. The Enterprise’s computers react instantly to 
brake the ship. What magnitude acceleration does the  Enterprise 
need to just barely avoid a collision with the Klingon ship? 
Assume the acceleration is constant.
Hint: Draw a position-versus-time graph showing the motions 
of both the Enterprise and the Klingon ship. Let x0 = 0 km be 
the location of the Enterprise as it returns from warp drive. How 
do you show graphically the situation in which the collision is 
“barely avoided”? Once you decide what it looks like graphically, 
express that situation mathematically.

80. ||| A rocket is launched straight up with constant acceleration.  
Four seconds after liftoff, a bolt falls off the side of the rocket. The 
bolt hits the ground 6.0 s later. What was the rocket’s acceleration?

81. ||| A good model for the acceleration of a car trying to reach top 
speed in the least amount of time is ax = a0 - kvx, where a0 is the 
initial acceleration and k is a constant.
a. Find an expression for k in terms of a0 and the car’s top  

speed vmax.
b. Find an expression for the car’s velocity as a function of time.
c. A MINI Cooper S has an initial acceleration of 4.0 m/s2 and 

a top speed of 60 m/s. At maximum acceleration, how long 
does it take the car to reach 95% of its top speed?

82. ||| Careful measurements have been made of Olympic sprinters 
in the 100 meter dash. A quite realistic model is that the sprint-
er’s velocity is given by

vx = a11 - e-bt2
where t is in s, vx is in m/s, and the constants a and b are  
characteristic of the sprinter. Sprinter Carl Lewis’s run at the 
1987 World Championships is modeled with a = 11.81 m/s and 
b = 0.6887 s-1.
a. What was Lewis’s acceleration at t = 0 s, 2.00 s, and 4.00 s?
b. Find an expression for the distance traveled at time t.
c. Your expression from part b is a transcendental equation, 

meaning that you can’t solve it for t. However, it’s not hard to 
use trial and error to find the time needed to travel a specific 
distance. To the nearest 0.01 s, find the time Lewis needed to 
sprint 100.0 m. His official time was 0.01 s more than your 
answer, showing that this model is very good, but not perfect.
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87

Vectors and Coordinate  
Systems

3

Wind has both a speed and a 
direction, hence the motion 
of the wind is described by a 
vector.

What are components?
Components of vectors are the pieces of 
vectors parallel to the coordinate axes— 
in the directions of the unit vectors.  
We write 

E
u

= Ex dn + Ey  en 

Components simplify vector math.

How are components used?
Components let us do vector math with  
algebra, which is easier and more precise 
than adding and subtracting vectors using 
geometry and trigonometry. Multiplying  
a vector by a number simply multiplies  
all of the vector’s components by that 
number.

IN THIS CHAPTER, you will learn how vectors are represented and used.

What is a vector?
A vector is a quantity with both a size—  
its magnitude—and a direction. Vectors 
you’ll meet in the next few chapters include  
position, displacement, velocity, accelera-
tion, force, and momentum.

❮❮ LOOKING BACK Tactics Box 1.1 on  
vector addition

How are vectors added and subtracted?
Vectors are added “tip to tail.” The order  
of addition does not matter. To subtract 
vectors, turn the subtraction into addition 
by writing A

u
- B

u
= A

u
+ 1-B

u2. The vector 
-B

u
 is the same length as B

u
 but points in 

the opposite direction.

What are unit vectors?
Unit vectors define what we mean by  
the ∙x@ and ∙y@directions in space.

■■ A unit vector has magnitude 1.
■■ A unit vector has no units.

Unit vectors simply point.

Magnitude

Name

v = 5 m/s

Direction
v
u

A
u

B
u

A + B
u u

x

y

en

dn

E
u

Ey

Exen

dn
x

y
Components

C
u

= 2A
u

+ 3B
u

means

Cx = 2Ax + 3Bx

Cy = 2Ay + 3By

How will I use vectors?
Vectors appear everywhere in physics and engineering—
from velocities to electric fields and from forces to fluid 
flows. The tools and techniques you learn in this chapter 
will be used throughout your studies and your professional 
career.

e   
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Magnitude
of vector

Name of vector
v = 5 m/s

Direction
of vector

The vector is drawn across
the page, but it represents
the particle’s velocity at
this one point.

v
u

FIGURE 3.1 The velocity vector v 

u has both 
a magnitude and a direction.

B
u

S
u

S
u

B and S have the
same magnitude
and direction, so
B = S. 

u u

u u

Sam’s actual path

(a)

(b)

Bill

Sam

Sam
Displacement is the
straight-line connection
from the initial to
the final position.

20
0 f

t
Sam’s
displacement

N

FIGURE 3.2 Displacement vectors.

3.1 Scalars and Vectors
A quantity that is fully described by a single number (with units) is called a scalar. 
Mass, temperature, volume, and energy are all scalars. We will often use an algebraic 
symbol to represent a scalar quantity. Thus m will represent mass, T temperature, V 
volume, E energy, and so on.

Our universe has three dimensions, so some quantities also need a direction for a 
full description. If you ask someone for directions to the post office, the reply “Go 
three blocks” will not be very helpful. A full description might be, “Go three blocks 
south.” A quantity having both a size and a direction is called a vector.

The mathematical term for the length, or size, of a vector is magnitude, so we can 
also say that a vector is a quantity having a magnitude and a direction.

FIGURE 3.1 shows that the geometric representation of a vector is an arrow, with 
the tail of the arrow (not its tip!) placed at the point where the measurement is made. 
An arrow makes a natural representation of a vector because it inherently has both a 
length and a direction. As you’ve already seen, we label vectors by drawing a small 
arrow over the letter that represents the vector: r u for position, v 

u for velocity, au for 
acceleration.

   NOTE    Although the vector arrow is drawn across the page, from its tail to its tip, 
this does not indicate that the vector “stretches” across this distance. Instead, the 
vector arrow tells us the value of the vector quantity only at the one point where the 
tail of the vector is placed.

The magnitude of a vector can be written using absolute value signs or, more 
frequently, as the letter without the arrow. For example, the magnitude of the velocity  
vector in Figure 3.1 is v = 0 v 

u 0 = 5 m/s. This is the object’s speed. The magnitude of  
the acceleration vector au is written a. The magnitude of a vector is a scalar. Note  
that magnitude of a vector cannot be a negative number; it must be positive or zero, 
with appropriate units.

It is important to get in the habit of using the arrow symbol for vectors. If you omit 
the vector arrow from the velocity vector v 

u and write only v, then you’re referring only 
to the object’s speed, not its velocity. The symbols r u and r, or v 

u and v, do not represent 
the same thing.

3.2 Using Vectors
Suppose Sam starts from his front door, walks across the street, and ends up 200 ft  
to the northeast of where he started. Sam’s displacement, which we will label S

u
, is 

shown in FIGURE 3.2a. The displacement vector is a straight-line connection from his 
initial to his final position, not necessarily his actual path.

To describe a vector we must specify both its magnitude and its direction. We can  
write Sam’s displacement as S

u
= 1200 ft, northeast2. The magnitude of Sam’s displace-

ment is S = 0 Su 0 = 200 ft, the distance between his initial and final points.
Sam’s next-door neighbor Bill also walks 200 ft to the northeast, starting from his  

own front door. Bill’s displacement B
u

= 1200 ft, northeast2 has the same magnitude 
and direction as Sam’s displacement S

u
. Because vectors are defined by their mag-

nitude and direction, two vectors are equal if they have the same magnitude and 
direction. Thus the two displacements in FIGURE 3.2b are equal to each other, and we 
can write B

u
= S

u
.

   NOTE    A vector is unchanged if you move it to a different point on the page as long 
as you don’t change its length or the direction it points.
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Vector Addition
If you earn $50 on Saturday and $60 on Sunday, your net income for the weekend is  
the sum of $50 and $60. With numbers, the word net implies addition. The same is 
true with vectors. For example, FIGURE 3.3 shows the displacement of a hiker who first  
hikes 4 miles to the east, then 3 miles to the north. The first leg of the hike is described by  
the displacement A

u
= 14 mi, east2. The second leg of the hike has displacement 

B
u

= 13 mi, north2. Vector C
u

 is the net displacement because it describes the net result of  
the hiker’s first having displacement A

u
, then displacement B

u
.

The net displacement C
u

 is an initial displacement A
u

 plus a second displacement B
u

, or

   C
u

= A
u

+ B
u
 (3.1)

The sum of two vectors is called the resultant vector. It’s not hard to show that vector ad-
dition is commutative: A

u
+ B

u
= B

u
+ A

u
. That is, you can add vectors in any order you wish.

❮❮■TACTICS BOX 1.1 on page 28 showed the three-step procedure for adding two vectors,  
and it’s highly recommended that you turn back for a quick review. This tip-to-tail 
method for adding vectors, which is used to find C

u
= A

u
+ B

u
 in Figure 3.3, is called 

graphical addition. Any two vectors of the same type—two velocity vectors or two 
force vectors—can be added in exactly the same way.

The graphical method for adding vectors is straightforward, but we need to do a little  
geometry to come up with a complete description of the resultant vector C

u
. Vector C

u
  

of Figure 3.3 is defined by its magnitude C and by its direction. Because the three 
vectors A

u
, B

u
, and C

u
 form a right triangle, the magnitude, or length, of C

u
 is given by 

the Pythagorean theorem:

   C = 2A2 + B2 = 214 mi22 + 13 mi22 = 5 mi (3.2)

Notice that Equation 3.2 uses the magnitudes A and B of the vectors A
u

 and B
u

. The 
angle u, which is used in Figure 3.3 to describe the direction of C

u
, is easily found for 

a right triangle:

   u = tan-11B
A2 = tan-113 mi

4 mi2 = 37° (3.3)

Altogether, the hiker’s net displacement is C
u

= A
u

+ B
u

= (5 mi, 37° north of east).

   NOTE    Vector mathematics makes extensive use of geometry and trigonometry. 
Appendix A, at the end of this book, contains a brief review of these topics.

Start

Net displacement

Individual
displacements

End

4 mi

3 mi

N

u A
u

B
uC

u

FIGURE 3.3 The net displacement C
u

 
resulting from two displacements A

u
  

and B
u

.

A bird flies 100 m due east from a tree, then 50 m northwest (that 
is, 45° north of west). What is the bird’s net displacement?

VISUALIZE FIGURE 3.4 shows the two individual displacements, 
which we’ve called A

u
 and B

u
. The net displacement is the vector 

sum C
u

= A
u

+ B
u
, which is found graphically.

SOLVE The two displacements are A
u

= 1100 m, east2 and B
u

= 
150 m, northwest2. The net displacement C

u
= A

u
+ B

u
 is found  

by drawing a vector from the initial to the final position. But 

describing C
u
 is a bit trickier than the example of the hiker because 

A
u

 and B
u
 are not at right angles. First, we can find the magnitude of 

C
u
 by using the law of cosines from trigonometry:

  C 2 = A2 + B2 - 2AB cos 45°

  = 1100 m22 + 150 m22 - 21100 m2150 m2 cos 45°

  = 5430 m2

Thus C = 25430 m2 = 74 m. Then a second use of the law of 
 cosines can determine angle f (the Greek letter phi):

B2 = A2 + C 2 - 2AC cos f

f = cos-1 c A2 + C 2 - B2

2AC
d = 29°

The bird’s net displacement is

C
u

= 174 m, 29° north of east2

EXAMPLE 3.1 ■ Using graphical addition to find a displacement

The bird’s net
displacement is
C = A + B. A

u
B
uC

u

u uu
f

End

Start 100 m

50 m

45°

N

FIGURE 3.4 The bird’s net displacement is C
u

= A
u

+ B
u
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It is often convenient to draw two vectors with their tails together, as shown in 
FIGURE 3.5a. To evaluate D

u
+ E

u
, you could move vector E

u
 over to where its tail is 

on the tip of D
u

, then use the tip-to-tail rule of graphical addition. That gives vector 
F
u

= D
u

+ E
u

 in FIGURE 3.5b. Alternatively, FIGURE 3.5c shows that the vector sum D
u

+ E
u

 
can be found as the diagonal of the parallelogram defined by D

u
 and E

u
. This method 

for vector addition is called the parallelogram rule of vector addition.

D
u

D
u

D
u

E
u

E
u

E
u

(c)(b)(a)

What is D + E? Parallelogram rule:
Find the diagonal of
the parallelogram
formed by D and E.

Tip-to-tail rule:
Slide the tail of E 
to the tip of D.

F = D
 + E

F = D
 + Eu

u

u
u

u

u

u u

u

u

u u

▶ FIGURE 3.5 Two vectors can be 
added using the tip-to-tail rule or 
the parallelogram rule.

Vector addition is easily extended to more than two vectors. FIGURE 3.6 shows the 
path of a hiker moving from initial position 0 to position 1, then position 2, then 
position 3, and finally arriving at position 4. These four segments are described by 
displacement vectors D

u

1, D
u

2, D
u

3, and D
u

4. The hiker’s net displacement, an arrow from 
position 0 to position 4, is the vector D

u

net. In this case,

  D
u

net = D
u

1 + D
u

2 + D
u

3 + D
u

4 (3.4)

The vector sum is found by using the tip-to-tail method three times in succession.

STOP TO THINK 3.1: Which figure shows A
u

1 + A
u

2 + A
u

3?

(a) (b) (c) (d) (e)

A1

A3 A2

u

u
u

More Vector Mathematics
In addition to adding vectors, we will need to subtract vectors, multiply vectors by 
scalars, and understand how to interpret the negative of a vector. These operations are 
illustrated in FIGURE 3.7.

Start

Net displacement
End

4
2

1

0

3

Dnet

D1

D4

D2

D3

u

u

u

u

u

FIGURE 3.6 The net displacement after 
four individual displacements.

The length of B is “stretched”
by the factor c. That is, B = cA.

B = cA = (cA, u)

A = (A, u)

-A
-2A

Vector -A is 
equal in magnitude
but opposite in
direction to A.

Multiplication by a positive scalar The negative of a vector Multiplication by a negative scalar

A - C

A - C-C

-C
Parallelogram subtraction using -C

u

u

B points in the same direction as A.

Vector subtraction: What is A - C?
Write it as A + (-C ) and add!

u

A
u

A
u

u

u

A
u

A
u

A
u

u

u

u

u

u

u

u

u

C
u

u

u

u

u

Tip-to-tail subtraction using -C

u

u

u

u

u
A + (-A) = 0. The tip of -A
returns to the starting point.

u u uu

The zero vector 0 has zero length
u

u u

FIGURE 3.7 Working with vectors.
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3.3  Coordinate Systems and  
Vector Components

Vectors do not require a coordinate system. We can add and subtract vectors graphically, 
and we will do so frequently to clarify our understanding of a situation. But the graphical 
addition of vectors is not an especially good way to find quantitative results. In this sec-
tion we will introduce a coordinate representation of vectors that will be the basis of an 
easier method for doing vector calculations.

Coordinate Systems
The world does not come with a coordinate system attached to it. A coordinate system 
is an artificially imposed grid that you place on a problem in order to make quantitative  
measurements. You are free to choose:

■■ Where to place the origin, and
■■ How to orient the axes.

Different problem solvers may choose to use different coordinate systems; that is per-
fectly acceptable. However, some coordinate systems will make a problem easier to 

Carolyn drives her car north at 30 km/h for 1 hour, east at 60 km/h 
for 2 hours, then north at 50 km/h for 1 hour. What is Carolyn’s net 
displacement?

SOLVE Chapter 1 defined average velocity as

v 

u =
∆r u

∆t

so the displacement ∆r u during the time interval ∆t is ∆r u = 1∆t2 v 

u.  
This is multiplication of the vector v 

u by the scalar ∆t. Carolyn’s  
velocity during the first hour is v 

u
1 = 130 km/h, north2, so her 

displacement during this interval is

  ∆r u
1 = 11 hour2130 km/h, north2 = 130 km, north2

Similarly,

  ∆r u
2 = 12 hours2160 km/h, east2 = 1120 km, east2

  ∆r u
3 = 11 hour2150 km/h, north2 = 150 km, north2

In this case, multiplication by a scalar changes not only the length 
of the vector but also its units, from km/h to km. The direction, 
however, is unchanged. Carolyn’s net displacement is

∆r u
net = ∆r u

1 + ∆r u
2 + ∆r u

3

This addition of the three vectors is shown in FIGURE 3.8, using the  
tip-to-tail method. ∆r u

net stretches from Carolyn’s initial position 
to her final position. The magnitude of her net displacement is 
found using the Pythagorean theorem:

rnet = 21120 km22 + 180 km22 = 144 km

The direction of ∆r u
net is described by angle u, which is

u = tan-11 80 km
120 km2 = 34°

Thus Carolyn’s net displacement is ∆r u
net = 1144 km, 34° north

of east2.

EXAMPLE 3.2 ■ Velocity and displacement

u

80 km

120 km
Start

EndN

∆rnet ∆r3

∆r2∆r1

u
u

uu

FIGURE 3.8 The net displacement is the vector sum 
∆r u

net = ∆r u
1 + ∆r u

2 + ∆r u
3 .

STOP TO THINK 3.2: Which figure shows 2A
u

- B
u

A
u

B
u

(a) (b) (c) (d) (e)

A GPS uses satellite signals to find your 
position in the earth’s coordinate system 
with amazing accuracy.
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III

IVIII

y

x
90°

FIGURE 3.9 A conventional xy-coordinate 
system and the quadrants of the  
xy-plane.

x

y

The x-component
vector is parallel
to the x-axis.

The y-component
vector is parallel
to the y-axis.

A = Ax + Ay
Ay A

Ax

u u u

u
u

u

FIGURE 3.10 Component vectors A
u

x and A
u

y 
are drawn parallel to the coordinate  
axes such that A

u
= A

u

x + A
u

y.

solve. Part of our goal is to learn how to choose an appropriate coordinate system for 
each problem.

FIGURE 3.9 shows the xy-coordinate system we will use in this book. The place-
ment of the axes is not entirely arbitrary: the positive y-axis is always located 90° 
counterclockwise (ccw) from the positive x-axis. Figure 3.9 also identifies the four 
quadrants of the coordinate system, I through IV.

Coordinate axes have a positive end and a negative end, separated by zero at the 
origin where the two axes cross. When you draw a coordinate system, it is important 
to label the axes. This is done by placing x and y labels at the positive ends of the axes, 
as in Figure 3.9. The purpose of the labels is twofold:

■■ To identify which axis is which, and
■■ To identify the positive ends of the axes.

This will be important when you need to determine whether the quantities in a prob-
lem should be assigned positive or negative values. This textbook will follow the 
convention that the positive direction of the x-axis is to the right and the positive 
direction of the y-axis is up.

Component Vectors
FIGURE 3.10 shows a vector A

u
 and an xy-coordinate system that we’ve chosen. Once the 

directions of the axes are known, we can define two new vectors parallel to the axes  
that we call the component vectors of A

u
. You can see, using the parallelogram  

rule, that A
u

 is the vector sum of the two component vectors:

 A
u

= A
u

x + A
u

y (3.5)

In essence, we have broken vector A
u

 into two perpendicular vectors that are parallel  
to the coordinate axes. This process is called the decomposition of vector A

u
 into its 

component vectors.

   NOTE    It is not necessary for the tail of A
u

 to be at the origin. All we need to know 
is the orientation of the coordinate system so that we can draw A

u

x and A
u

y parallel  
to the axes.

Components
You learned in Chapters 1 and 2 to give the kinematic variable vx a positive sign if  
the velocity vector v 

u points toward the positive end of the x-axis, a negative sign if v 

u 
points in the negative x-direction. We need to extend this idea to vectors in general.

Suppose vector A
u

 has been decomposed into component vectors A
u

x and A
u

y parallel 
to the coordinate axes. We can describe each component vector with a single number 
called the component. The x-component and y-component of vector A

u
, denoted Ax 

and Ay  , are determined as follows:

TACTICS BOX 3.1

Determining the components of a vector
1  The absolute value 0Ax 0  of the x-component Ax is the magnitude of the 

 component vector A
u

x.
2  The sign of A

u

x is positive if A
u

x points in the positive x-direction (right),  negative 
if A

u

x points in the negative x-direction (left).
3  The y-component Ay is determined similarly.

Exercises 10–18 

In other words, the component Ax tells us two things: how big A
u

x is and, with its sign,  
which end of the axis A

u

x points toward. FIGURE 3.11 shows three examples of determining  
the components of a vector.

M03_KNIG8221_05_GE_C03.indd   92 02/06/2022   16:23



3.3 Coordinate Systems and Vector Components  93

   NOTE    Beware of the somewhat confusing terminology. A
u

x and A
u

y are called 
component vectors, whereas Ax and Ay are simply called components. The com-
ponents Ax and Ay are just numbers (with units), so make sure you do not put arrow 
symbols over the components.

We will frequently need to decompose a vector into its components. We will also 
need to “reassemble” a vector from its components. In other words, we need to move 
back and forth between the geometric and the component representations of a vector. 
FIGURE 3.12 shows how this is done.

Ay

Ax

A
uu

u

x (m)

y (m)

1

1

-1-2 2 3 4
-1

-2

2

3

Ax points in the positive
x-direction, so Ax = +3 m.

Ay points in
the positive
y-direction, so 
Ay = +2 m.

u

u

FIGURE 3.11 Determining the components of a vector.
By points in the 
positive y-direction, 
so By = +2 m.

Cx

Cy C
u

u

u

u

x (m)

y (m)

1-1-2 2 3 4
-1

-2

2

3

x (m)

y (m)

1

1

-2 2 3 4
-1

-2

3
By

Bx

Bx points in the negative
x-direction, so Bx = -2 m.

The x-component
of C is Cx = +4 m.The y-compo-

nent of C is 
Cy = -3 m.B

u

u

u

u

u

u

A
u

B
u

x
y

x

y

Ax = A cosu

Ay = A sinu

Bx = B sinf

By = -B cosf

Bfu

A = 2Ax
2 + Ay

2 B = 2Bx
2 + By

2 

A

The components of A are found from the
magnitude and direction.

u = tan-1 1Ay /Ax2 f = tan-1 1Bx / 0By 02

The angle is defined differently. In this
example, the magnitude and direction are

Minus signs must be inserted manually,
depending on the vector’s direction.

The magnitude and direction of A are found
from the components. In this example,

u

u

FIGURE 3.12 Moving between the geometric representation and the 
component representation.

Each decomposition requires that you pay close attention to the direction in which 
the vector points and the angles that are defined.

■■ If a component vector points left (or down), you must manually insert a minus sign 
in front of the component, as was done for By in Figure 3.12.

■■ The role of sines and cosines can be reversed, depending upon which angle is used 
to define the direction. Compare Ax and Bx.

■■ The angle used to define direction is almost always between 0° and 90°, so you must  
take the inverse tangent of a positive number. Use absolute values of the components,  
as was done to find angle f (Greek phi) in Figure 3.12.

Seen from above, a hummingbird’s acceleration is (6.0 m/s2, 30° south 
of west). Find the x- and y-components of the acceleration vector au.

VISUALIZE It’s important to draw vectors. FIGURE 3.13 establishes 
a map-like coordinate system with the x-axis pointing east and the 
y-axis north. Vector au is then decomposed into components parallel 
to the axes. Notice that the axes are “acceleration axes” with units of  
acceleration, not xy-axes, because we’re measuring an acceleration 
vector.

EXAMPLE 3.3 ■ Finding the components of an acceleration vector

ay is negative.

ax is negative.

N

FIGURE 3.13  
Decomposition  
of au.

Continued
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3.4 Unit Vectors and Vector Algebra
The vectors (1, +x-direction) and (1, +y-direction), shown in FIGURE 3.16, have some  
interesting and useful properties. Each has a magnitude of 1, has no units, and is parallel to  
a coordinate axis. A vector with these properties is called a unit vector. These unit  
vectors have the special symbols

 in K 11, positive x@direction2
 jn K 11, positive y@direction2

The notation in (read “i hat”) and jn (read “j hat”) indicates a unit vector with a magni-
tude of 1. Recall that the symbol K means “is defined as.”

Unit vectors establish the directions of the positive axes of the coordinate system. 
Our choice of a coordinate system may be arbitrary, but once we decide to place a 
coordinate system on a problem we need something to tell us “That direction is the 
positive x-direction.” This is what the unit vectors do.

SOLVE The acceleration vector points to the left (negative 
x-direction) and down (negative y-direction), so the components ax 
and ay are both negative:

ax = -a cos 30° = -16.0 m/s22 cos 30° = -5.2 m/s2

ay = -a sin 30° = -16.0 m/s22 sin 30° = -3.0 m/s2

REVIEW The units of ax and ay are the same as the units of vector au. 
Notice that we had to insert the minus signs manually by observing 
that the vector points left and down.

FIGURE 3.14 shows a car’s velocity vector v 

u. Determine the car’s 
speed and direction of motion.

VISUALIZE FIGURE 3.15 shows the components vx and vy and de-
fines an angle u with which we can specify the direction of motion.

SOLVE We can read the components of v 

u directly from the axes: 
vx = -6.0 m/s and vy = 4.0 m/s. Notice that vx is negative. This is 
enough information to find the car’s speed v, which is the magnitude  
of v 

u:

v = 2vx 

2 + vy 

2 = 21-6.0 m/s22 + 14.0 m/s22 = 7.2 m/s

From trigonometry, angle u is

u = tan-11 vy

0 vx 0 2 = tan-114.0 m/s
6.0 m/s2 = 34°

The absolute value signs are necessary because vx is a negative 
number. The velocity vector v 

u can be written in terms of the speed 
and the direction of motion as

v 

u = 17.2 m/s, 34° above the negative x@axis2

EXAMPLE 3.4 ■ Finding the direction of motion

v
u

vx (m/s)

vy (m/s)

-2-4-6

2

4

FIGURE 3.14 The velocity vector v  

u of Example 3.4.

-6
vx (m/s)

vy (m/s)

Direction u = tan-11vy / 0 vx 02
-2-4

2

4

Magnitude

v = 2vx
2 + vy

2

vy = 4.0 m/s

vx = -6.0 m/s

u

FIGURE 3.15 Decomposition of v u.

STOP TO THINK 3.3: What are the x- and y-components Cx and Cy of vector C
u

?

C
u

x (cm)

y (cm)

1

-3-4 -1-2 1
-1

2

x

y

1

1

2

2 The unit vectors have 
magnitude 1, no units, and 
point in the + x-direction 
and + y-direction.

en

dn

FIGURE 3.16 The unit vectors in and jn.
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3.4 Unit Vectors and Vector Algebra 95

The unit vectors provide a useful way to write component vectors. The component 
vector A

u

x is the piece of vector A
u

 that is parallel to the x-axis. Similarly, A
u

y is parallel 
to the y-axis. Because, by definition, the vector in points along the x-axis and jn points 
along the y-axis, we can write

  A
u

x = Ax  in 

  A
u

y = Ay  jn 
(3.6)

Equations 3.6 separate each component vector into a length and a direction. The full  
decomposition of vector A

u
 can then be written

   A
u

= A
u

x + A
u

y = Ax  in + Ay  jn (3.7)

FIGURE 3.17 shows how the unit vectors and the components fit together to form vector A
u

.

   NOTE    In three dimensions, the unit vector along the +z@direction is called kn, and to 
describe vector A

u
 we would include an additional component vector A

u

z = Az  kn.

x

y

Unit vectors
identify the x-
and y-directions.

A = Axd + Aye
Ay = Aye

Ax = Axden

n

dn

n

nn

u

u

u

Vector Ax d has length 
Ax  and points in the 
direction of d.

n

n

FIGURE 3.17 The decomposition of vector 
A
u

 is Ax  in + Ay  jn.

A rabbit, escaping a fox, runs 40.0° north of west at 10.0 m/s. A 
coordinate system is established with the positive x-axis to the east 
and the positive y-axis to the north. Write the rabbit’s velocity in 
terms of components and unit vectors.

VISUALIZE FIGURE 3.18 shows the rabbit’s velocity vector and the 
coordinate axes. We’re showing a velocity vector, so the axes are 
labeled vx and vy rather than x and y.

SOLVE 10.0 m/s is the rabbit’s speed, not its velocity. The velocity, 
which includes directional information, is

v 

u = 110.0 m/s, 40.0° north of west2
Vector v 

u points to the left and up, so the components vx and vy 
are negative and positive, respectively. The components are

 vx = -110.0 m/s2 cos 40.0° = -7.66 m/s

 vy = +110.0 m/s2 sin 40.0° = 6.43 m/s

With vx and vy now known, the rabbit’s velocity vector is

v 

u = vx  in + vy  jn = 1-7.66in + 6.43jn2 m /s

Notice that we’ve pulled the units to the end, rather than writing 
them with each component.

REVIEW Notice that the minus sign for vx was inserted manually. 
Signs don’t occur automatically; you have to set them after 
checking the vector’s direction.

EXAMPLE 3.5 ■ Run rabbit run!

v
u

vy = v sin40.0°

vx

vy

vx = -v cos40.0°

v = 10.0 m/s

40.0°

N

FIGURE 3.18 The velocity vector v  

u is decomposed into 
components vx and vy  .

Vector Math
You learned in Section 3.2 how to add vectors graphically, but it can be a tedious prob-
lem in geometry and trigonometry to find precise values for the magnitude and 
 direction of the resultant. The addition and subtraction of vectors become much easier 
if we use components and unit vectors.

To see this, let’s evaluate the vector sum D
u

= A
u

+ B
u

+ C
u
. To begin, write this sum 

in terms of the components of each vector:

  D
u

= Dx  in + Dy  jn = A
u

+ B
u

+ C
u
 

    = 1Ax  in + Ay  jn2 + 1Bx  in + By  jn2 + 1Cx  in + Cy  jn2  
(3.8)

We can group together all the x-components and all the y-components on the right 
side, in which case Equation 3.8 is

   1Dx2 in + 1Dy2 jn = 1Ax + Bx + Cx2 in + 1Ay + By + Cy2 jn (3.9)

Comparing the x- and y-components on the left and right sides of Equation 3.9, we find:

   Dx = Ax + Bx + Cx 

   Dy = Ay + By + Cy 
(3.10)
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96 CHAPTER 3 Vectors and Coordinate Systems 

Stated in words, Equation 3.10 says that we can perform vector addition by adding the  
x-components of the individual vectors to give the x-component of the resultant and 
by adding the y-components of the individual vectors to give the y-component of the 
resultant. This method of vector addition is called algebraic addition.

Example 3.1 was about a bird that flew 100 m to the east, then 50 m  
to the northwest. Use the algebraic addition of vectors to find the 
bird’s net displacement.

VISUALIZE FIGURE 3.19 shows displacement vectors A
u

= 1100 m, 
east2 and B

u
= (50 m, northwest). We draw vectors tip-to-tail to add 

them graphically, but it’s usually easier to draw them all from the 
origin if we are going to use algebraic addition.

SOLVE To add the vectors algebraically we must know their com-
ponents. From the figure these are seen to be

A
u

= 100 in m

B
u

= 1-50 cos 45° in + 50 sin 45°jn2 m = 1-35.3in + 35.3jn2 m

Notice that vector quantities must include units. Also notice, as you 
would expect from the figure, that C

u
 has a negative x-component. 

Adding A
u

 and B
u
 by components gives

  C
u

= A
u

 + B
u

= 100 in m + 1-35.3in + 35.3jn2 m

  = 1100 m - 35.3 m2in + 135.3 m2jn = 164.7in + 35.3jn2 m

This would be a perfectly acceptable answer for many purposes. 
However, we need to calculate the magnitude and direction of C

u
 if  

we want to compare this result to our earlier answer. The magnitude  
of C

u
 is

C = 2Cx 

2 + Cy 

2 = 2164.7 m22 + 135.3 m22 = 74 m

The angle f, as defined in Figure 3.19, is

f = tan-11Cy

Cx
2 = tan-1135.3 m

64.7 m2 = 29°

Thus C
u

= 174 m, 29° north of east2, in perfect agreement with 
 Example 3.1.

EXAMPLE 3.6 ■ Using algebraic addition to find a displacement

x

y

A
u

B
u C

u

f

100 m

50 m

N

The net displacement C = A + B is drawn
according to the parallelogram rule.

u uu

FIGURE 3.19 The net displacement is C
u

= A
u

+ B
u

.

Vector subtraction and the multiplication of a vector by a scalar, using components, 
are very much like vector addition. To find R

u
= P

u
- Q

u
 we would compute

   Rx = Px - Qx 
   Ry = Py - Qy 

(3.11)

Similarly, T 
u

= cS
u
 would be

   Tx = cSx 
   Ty = cSy 

(3.12)

In other words, a vector equation is interpreted as meaning: Equate the x-components  
on both sides of the equals sign, then equate the y-components, and then the z-components. 
Vector notation allows us to write these three equations in a compact form.

Tilted Axes and Arbitrary Directions
As we’ve noted, the coordinate system is entirely your choice. It is a grid that you impose  
on the problem in a manner that will make the problem easiest to solve. As you saw in 
Chapter 2, it is often convenient to tilt the axes of the coordinate system, such as those 
shown in FIGURE 3.20. The axes are perpendicular, and the y-axis is oriented correctly 
with respect to the x-axis, so this is a legitimate coordinate system. There is no require-
ment that the x-axis has to be horizontal.

Finding components with tilted axes is no harder than what we have done so far. 
Vector C

u
 in Figure 3.20 can be decomposed into C

u
= Cx  in + Cy  jn, where Cx = C cos u 

and Cy = C sin u. Note that the unit vectors in and jn correspond to the axes, not to  
“horizontal” and “vertical,” so they are also tilted.

Tilted axes are useful if you need to determine component vectors “parallel to” and 
“perpendicular to” an arbitrary line or surface. This is illustrated in the following example.

u

x
y

C = Cxd + Cye

Cy Cx

en

n

dn

n

u
u

The components of C are found 
with respect to the tilted axes.

u

u

Unit vectors d and e
define the x- and y-axes.

nn

FIGURE 3.20 A coordinate system with 
tilted axes.
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The deltoid—the rounded muscle across the top of your upper 
arm—allows you to lift your arm away from your side. It does so  
by pulling on an attachment point on the humerus, the upper arm  
bone, at an angle of 15° with respect to the humerus. If you hold 
your arm at an angle 30° below horizontal, the deltoid must pull  
with a force of 720 N to support the weight of your arm, as shown 
in FIGURE 3.21a. (You’ll learn in Chapter 5 that force is a vector 

quantity measured in units of newtons, abbreviated N.) What are 
the components of the muscle force parallel to and perpendicular 
to the bone?

VISUALIZE FIGURE 3.21b shows a tilted coordinate system with  
the x-axis parallel to the humerus. The force F

u
 is shown 15°  

from the x-axis. The component of force parallel to the bone,  
which we can denote F ‘, is equivalent to the x-component:  
F ‘ = Fx. Similarly, the component of force perpendicular to the 
bone is F# = Fy.

SOLVE From the geometry of Figure 3.21b, we see that

 F ‘ = F cos 15° = 1720 N2 cos 15° = 695 N

 F# = F sin 15° = 1720 N2 sin 15° = 186 N

REVIEW The muscle pulls nearly parallel to the bone, so we expect-
ed F ‘ ≈ 720 N and F# V F ‘. Thus our results seem reasonable.

EXAMPLE 3.7 ■ Muscle and bone

(a) (b)

Deltoid muscle

Humerus

720 N

72
0 N

Shoulder
socket

30°

15° 30°

15°

F#

F ‘

y

x

u

u

F
u

FIGURE 3.21 Finding the components of force parallel and 
perpendicular to the humerus.

FIGURE 3.22 shows three forces acting at one point. What is the net 
force F

u

net = F
u

1 + F
u

2 + F
u

3?

VISUALIZE Figure 3.22 shows the forces and a tilted coordinate 
system.

SOLVE The vector equation F
u

net = F
u

1 + F
u

2 + F
u

3 is really two simul-
taneous equations:

 1Fnet2x = F1x + F2x + F3x

 1Fnet2y = F1y + F2y + F3y

The components of the forces are determined with respect to the 
axes. Thus

 F1x = F1 cos 45° = 150 N2 cos 45° = 35 N

 F1y = F1 sin 45° = 150 N2 sin 45° = 35 N

F
u

2 is easier. It is pointing along the y-axis, so F2x = 0 N  
and F2y = 20 N. To find the components of F

u

3, we need to  
recognize—because F

u

3 points straight down—that the angle  
between F

u

3 and the x-axis is 75°. Thus

 F3x = F3 cos 75° = 157 N2 cos 75° = 15 N

 F3y = -F3 sin 75° = -157 N2 sin 75° = -55 N

The minus sign in F3y is critical, and it appears not from some 
formula but because we recognized—from the figure—that the 
y-component of F

u

3 points in the -y-direction. Combining the 
pieces, we have

 1Fnet2x = 35 N + 0 N + 15 N = 50 N

 1Fnet2y = 35 N + 20 N + 1-55 N2 = 0 N

Thus the net force is F
u

net = 50in N. It points along the x-axis of the 
tilted coordinate system.

REVIEW Notice that all work was done with reference to the axes 
of the coordinate system, not with respect to vertical or horizontal.

   CHAPTER 3 CHALLENGE EXAMPLE    Finding the net force

45°

15°

F3

F2
F1

y

x

20 N 50 N

57 N

u u

u

FIGURE 3.22 Three forces.

STOP TO THINK 3.4: Angle f that specifies the direction  
of C

u
 is given by

a. tan-11 0Cx 0 /Cy2 b. tan-11Cx / 0Cy 0 2
C
u

f

x

y

c. tan-11 0Cx 0 / 0Cy 0 2 d. tan-11 0Cy 0 /Cx2
e. tan-11Cy / 0Cx 0 2 f. tan-11 0Cy 0 / 0Cx 0 2
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Summary The goals of Chapter 3 have been to learn how vectors are 
represented and used.

Important Concepts
A vector is a quantity described by both a magnitude and a direction.

A
uThe vector

describes the
situation at
this point.

Direction

The length or magnitude is
denoted A. Magnitude is a scalar.

A

Unit Vectors
Unit vectors have magnitude 1 
and no units. Unit vectors in and jn 
define the directions of the x- and 
y-axes. x

y

en

dn

Using Vectors
Components
The component vectors are parallel to the x- and y-axes:

A
u

= A
u

x + A
u

y = Ax  in + Ay  jn

In the figure at the right, for example:

Ax = A cos u  A = 2Ax 

2 + Ay 

2

Ay = A sin u  u = tan-11Ay /Ax2
▶  Minus signs need to be included if the vector points  

down or left.

u

x

y

x

y

Ax 6 0

Ay 7 0

Ax 7 0

Ay 7 0

Ax 6 0

Ay 6 0

Ax 7 0

Ay 6 0

Ay = Aye

Ax = Axdn

n

A
u

u

u
The components Ax and Ay are 
the magnitudes of the component 
vectors A

u

x and A
u

y and a plus or 
minus sign to show whether the 
component vector points toward 
the positive end or the negative 
end of the axis.

Working Graphically

Addition Negative Subtraction Multiplication

cA
A + B

A
u

A
u

A
u

A
u u

u B
u

u

A + B
u u

B
u

B
u

B
u

A - B

-B
u

-B
u

u u

Working Algebraically

Vector calculations are done component by component: C
u

= 2A
u

y + B
u
 means bCx = 2Ax + Bx

Cy = 2Ay + By

The magnitude of C
u
 is then C = 2Cx 

2 + Cy 

2 and its direction is found using tan-1.

Terms and Notation
scalar
vector
magnitude

resultant vector
graphical addition
zero vector, 0

u

quadrants
component vector
decomposition

component
unit vector, in or jn
algebraic addition
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CONCEPTUAL QUESTIONS

1. Can the magnitude of the displacement vector be more than the 
distance traveled? Less than the distance traveled? Explain.

2. If C
u

= A
u

+ B
u
, can C = A + B? Can C 7 A + B? For each, show 

how or explain why not.
3. If C

u
= A

u
+ B

u
, can C = 0? Can C 6 0? For each, show how or 

explain why not.
4. Is it possible to add a scalar to a vector? If so, demonstrate. If not, 

explain why not.
5. How would you define the zero vector 0

u
?

6. Two vectors have lengths of 4 units each. What is the range of 
possible lengths obtainable for the vector representing the sum 
of the two?

7. Can a vector have zero magnitude if one of its components is 
nonzero? Explain.

8. Two vectors of unequal magnitudes can never add up to a zero 
vector. Does this hold true for three unequal vectors? Explain 
with an example.

9. Are the following statements true or false? Explain your answer.
a. The magnitude of a vector can be different in different coor-

dinate systems.
b. The direction of a vector can be different in different 

coordinate systems.
c. The components of a vector can be different in different 

coordinate systems.

EXERCISES AND PROBLEMS
Exercises

Section 3.1 Scalars and Vectors

Section 3.2 Using Vectors

1. | Trace the vectors in FIGURE EX3.1 onto your paper. Then find 
(a) A

u
+ B

u
, and (b) A

u
- B

u
.

A
u

B
u

FIGURE EX3.1

A
u

B
u

FIGURE EX3.2

2. | Trace the vectors in FIGURE EX3.2 onto your paper. Then find 
(a) A

u
+ B

u
, and (b) A

u
- B

u
.

Section 3.3 Coordinate Systems and Vector Components

3. || a. What are the x- and y-components 
of vector E

u
 shown in FIGURE EX3.3 

in terms of the angle u and the  
magnitude E?

b. For the same vector, what are the 
x- and y-components in terms of the 
angle f and the magnitude E?

4. || A velocity vector 40° below the positive x-axis has a 
y-component of -10 m/s. What is the value of its x-component?

5. | A position vector in the first quadrant has an x-component of  
10 m and a magnitude of 12 m. What is the value of its 
y-component?

6. | Draw each of the following vectors. Then find its x- and y-  
components.
a. au = 13.5 m/s2, negative x@direction2
b. v 

u = 1440 m/s, 30° below the positive x@axis2
c. r u = 112 m, 40° above the positive x@axis2

7. || Draw each of the following vectors. Then find its x- and y-  
components.
a. v 

u = 17.5 m/s, 30° clockwise from the positive y@axis2
b. au = 11.5 m/s2, 30° above the negative x@axis2
c. F

u
= 150.0 N, 36.9° counterclockwise from the positive y@axis2

E
u

u

f
x

y

FIGURE EX3.3

8. || Let C
u

= 13.15 m, 15° above the negative x-axis) and D
u

=  
125.6 m, 30° to the right of the negative y-axis2. Find the x- and 
y-components of each vector.

9. || A runner is training for an upcoming marathon by running 
around a 100-m-diameter circular track at constant speed. Let a 
coordinate system have its origin at the center of the circle with 
the x-axis pointing east and the y-axis north. The runner starts 
at 1x, y2 = 150 m, 0 m2 and runs 2.5 times around the track in a 
clockwise direction. What is his displacement vector? Give your 
answer as a magnitude and direction.

Section 3.4 Unit Vectors and Vector Algebra

10. | Draw each of the following vectors, label an angle that spec-
ifies the vector’s direction, and then find the vector’s magnitude  
and direction.
a. A

u
= 3.0in + 7.0jn

b. au = 1-2.0in + 4.5jn2 m/s2

c. v 

u = 114in - 11jn2 m/s
d. r u = 1-2.2in - 3.3jn2 m

11. | Draw each of the following vectors, label an angle that specifies 
the vector’s direction, then find its magnitude and direction.
a. B

u
= -4.0in + 4.0jn

b. r u = 1-2.0in - 1.0jn2 cm
c. v 

u = 1-10in - 100jn2 m/s
d. au = 120in + 10jn2 m/s2

12. | Let A
u

= 4in - 2jn, B
u

= -3in + 5jn, and C
u

= A
u

+ B
u
.

a. Write vector C
u
 in component form.

b. Draw a coordinate system and on it show vectors A
u

, B
u
, and C

u
.

c. What are the magnitude and direction of vector C
u
?

13. | Let A
u

= 2in + 3jn, B
u

= 2in - 4jn, and C
u

= A
u

+ B
u
.

a. Write vector C
u
 in component form.

b. Draw a coordinate system and on it show vectors A
u

, B
u
, and C

u
.

c. What are the magnitude and direction of vector C
u
?

14. | Let A
u

= 4in - 2jn, B
u

= -3in + 5jn, and E
u

= 2A
u

+ 3B
u
.

a. Write vector E
u

 in component form.
b. Draw a coordinate system and on it show vectors A

u
, B

u
, and E

u
.

c. What are the magnitude and direction of vector E
u

?
15. | Let A

u
= 4in - 2jn, B

u
= -3in + 5jn, and D

u
= A

u
- B

u
.

a. Write vector D
u

 in component form.
b. Draw a coordinate system and on it show vectors A

u
, B

u
, and D

u
.

c. What are the magnitude and direction of vector D
u

?
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FIGURE EX3.20
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FIGURE EX3.19
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u
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u
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FIGURE P3.24

A
u

B
u

x

y
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FIGURE P3.25

A
u

B
u

C
u

x

y

4.0

3.0

FIGURE EX3.18

FIGURE EX3.21

x

x

y y

30°

(a) (b)

16. | Let A
u

= 4in - 2jn, B
u

= -3in + 5jn, and F
u

= A
u

- 4B
u
.

a. Write vector F
u
 in component form.

b. Draw a coordinate system and on it show vectors A
u

, B
u
, and F

u
.

c. What are the magnitude and direction of vector F
u
?

17. | Let E
u

= 4 in + 5jn and F
u

= 2 in - 3jn. Find the magnitude of
a. E

u
 and F

u
b. E

u
+ F

u
c. -E

u
- 2F

u

18. || For the three vectors shown in FIGURE EX3.18, A
u

+ B
u

+ C
u
 =  

1jn. What is vector B
u
.

19. || FIGURE EX3.19 shows vectors A
u

 and B
u
. What is C

u
= A

u
+ B

u
? 

Write your answer in component form using unit vectors.

20. | What are the x- and y-components of the velocity vector 
shown in FIGURE EX3.20?

21. ||| Let B
u

= (5.0 m, 30° counterclockwise from vertically up). 
Find the x- and y-components of B

u
 in each of the two coordinate 

systems shown in FIGURE EX3.21.

25. ||| FIGURE P3.25 shows vectors A
u

 and B
u
. Find vector C

u
 such that 

A
u

+ B
u

+ C
u

= 0
u
. Write your answer in component form.

26. || FIGURE P3.26 shows vectors A
u

 and B
u
. Find D

u
= 2A

u
+ B

u
. 

Write your answer in component form.

A
u

B
u15°

15° 2.0 m

4.0 m

x

y

FIGURE P3.26

27. || Find a vector that points in the same direction as the vector 
1in + jn2 and whose magnitude is 1.

28. || The minute hand on a watch is 2.0 cm in length. What is the 
displacement vector of the tip of the minute hand in each case? 
Use a coordinate system in which the y-axis points toward the 12 
on the watch face.
a. From 8:00 to 8:20 a.m.
b. From 8:00 to 9:00 a.m.

29. || While vacationing in the mountains you do some hiking. In 
the morning, your displacement is S

u

morning = 12000 m, east2 +  
 13000 m, north2 + 1200 m, vertical2. Continuing on after lunch, 
your displacement is S

u

afternoon = (1500 m, west) + (2000 m,  
north) - (300 m, vertical). 
a. At the end of the hike, how much higher or lower are you 

compared to your starting point?
b. What is the magnitude of your net displacement for the day?

30. || Lucia drives with velocity v u
1 = 125 in - 35jn2 mph for 1.0 h, then 

v u
2 = 130 in + 40jn2 mph for 2.0 h. What is Lucia’s displacement? 

Write your answer in component form using unit vectors.
31. || Ruth sets out to visit her friend Ward, who lives 50 mi north and 

100 mi east of her. She starts by driving east, but after 30 mi she 
comes to a detour that takes her 15 mi south before going east again. 
She then drives east for 8 mi and runs out of gas, so Ward flies there 
in his small plane to get her. What is Ward’s displacement vector? 
Give your answer (a) in component form, using a coordinate system in 
which the y-axis points north, and (b) as a magnitude and direction.

32. | A cannon tilted upward at 30° fires a cannonball with a speed 
of 100 m/s. What is the component of the cannonball’s velocity 
parallel to the ground?

33. || A cannonball leaves the barrel with velocity v u =
165in + 75jn2 m/s . At what angle is the barrel tilted above 
horizontal?

34. | You are fixing the roof of your house when the head of your 
hammer breaks loose and slides down. The roof makes an angle 
of 30° with the horizontal, and the head is moving at 3.5 m/s 
when it reaches the edge. What are the horizontal and vertical 
components of the head’s velocity just as it leaves the roof? 

35. | Jack and Jill ran up the hill at 4 m/s. The horizontal compo-
nent of Jill’s velocity vector was 3.5 m/s.
a. What was the angle of the hill?
b. What was the vertical component of Jill’s velocity?

a. Write B
u
 in component form.

b. Write B
u
 as a magnitude and a direction.

Problems

22. || Let A
u

= 13.0 m, 20° south of east2, B
u

= 12.0 m, north2, and 
C
u

= 15.0 m, 70° south of west2.
a. Draw and label A

u
, B

u
, and C

u
 with their tails at the origin. Use a  

coordinate system with the x-axis to the east.
b. Write A

u
, B

u
, and C

u
 in component form, using unit vectors.

c. Find the magnitude and the direction of D
u

= A
u

+ B
u

+ C
u
.

23. ||  The position of a particle as a function of time is given by 
r u = 13.0 in + 8.0jn2t2 m, where t is in seconds.

a. What is the particle’s distance from the origin at t = 0, 2, and 5 s?
b. Find an expression for the particle’s velocity v 

u as a function 
of time.

c. What is the particle’s speed at t = 0, 2, and 5 s?
24. | a. What is the angle f between vectors E

u
 and F

u
 in FIGURE P3.24?

b. Use geometry and trigonometry to determine the magnitude  
and direction of G

u
= E

u
+ F

u
.

c. Use components to determine the magnitude and direction of  
G
u

= E
u

+ F
u
.
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36. | Kami is walking through the airport with her two-wheeled 
suitcase. The suitcase handle is tilted 40° from vertical, and 
Kami pulls parallel to the handle with a force of 120 N. (Force 
is measured in newtons, abbreviated N.) What are the horizontal 
and vertical components of her applied force?

37. | A pine cone falls straight down from a pine tree growing 
on a 20° slope. The pine cone hits the ground with a speed of 
10 m/s. What is the component of the pine cone’s impact velocity 
(a)  parallel to the ground and (b) perpendicular to the ground?

38. | A jet plane taking off from an aircraft carrier has acceleration 
a u = 114 m/s2, 21° above horizontal2. What are the horizontal 
and vertical components of the jet’s acceleration?

39. | Your neighbor Paul has rented a truck with a loading ramp. 
The ramp is tilted upward at 25°, and Paul is pulling a large crate 
up the ramp with a rope that angles 10° above the ramp. If Paul 
pulls with a force of 550 N, what are the horizontal and vertical 
components of his force? (Force is measured in newtons, abbre-
viated N.)

40. || Tom is climbing a 3.0-m-long ladder that leans against a verti-
cal wall, contacting the wall 2.5 m above the ground. His weight 
of 680 N is a vector pointing vertically downward. (Weight is 
measured in newtons, abbreviated N.) What are the components 
of Tom’s weight parallel and perpendicular to the ladder?

41. || The treasure map in FIGURE P3.41 gives the following directions 
to the buried treasure: “Start at the old oak tree, walk due north for 
500 paces, then due east for 100 paces. Dig.” But when you arrive, 
you find an angry dragon just north of the tree. To avoid the dragon, 
you set off along the yellow brick road at an angle 60° east of north. 
After walking 300 paces you see an opening through the woods. 
In which direction should you walk, as an angle west of north, and 
how far, to reach the treasure?

42. ||| The bacterium E. coli is a single-cell organism that lives in 
the gut of healthy animals, including humans. When grown in 
a uniform medium in the laboratory, these bacteria swim along 
zig-zag paths at a constant speed of 20 mm/s. FIGURE P3.42 
shows the trajectory of an E. coli as it moves from point A to 
point E. What are the magnitude and direction of the bacterium’s 
average velocity for the entire trip?

43. || FIGURE P3.43 shows three ropes tied together in a knot. One 
of your friends pulls on a rope with 3.0 units of force and another 
pulls on a second rope with 5.0 units of force. How hard and in what 
 direction must you pull on the third rope to keep the knot from mov-
ing? Give the direction as an angle below the negative x-axis.

44. || A crate, seen from above, is pulled with three ropes that have 
the tensions shown in FIGURE P3.44. Tension is a vector directed 
along the rope, measured in newtons (abbreviated N). Suppose 
the three ropes are replaced with a single rope that has exactly 
the same effect on the crate. What is the tension in this rope? 
Write your answer in component form using unit vectors.

45. || Four forces are exerted on the object shown in FIGURE P3.45. 
(Forces are measured in newtons, abbreviated N.) The net force on 
the object is F

u

net = F
u

1 + F
u

2 + F
u

3 + F
u

4 = 4.0in N. What are (a) F
u

3  
and (b) F

u

4? Give your answers in component form.
46. || FIGURE P3.46 shows four electric charges located at the cor-

ners of a rectangle. Like charges, you will recall, repel each 
other while opposite charges attract. Charge B exerts a repulsive 
force (directly away from B) on charge A of 3.0 N. Charge C ex-
erts an attractive force (directly toward C) on charge A of 6.0 N. 
Finally, charge D exerts an attractive force of 2.0 N on charge A.  
Assuming that forces are vectors, what are the magnitude and 
direction of the net force F

u

net exerted on charge A?
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102

Kinematics in Two  
Dimensions

How do objects accelerate in two dimensions?
An object accelerates when it changes 
velocity. In two dimensions, velocity can 
change by changing magnitude (speed) 
or by changing direction. These are 
represented by acceleration components 
tangent to and perpendicular to an 
object’s trajectory.

❮❮ LOOKING BACK Section 1.5 Finding 
 acceleration vectors on a motion diagram

What is projectile motion?
Projectile motion is two-dimensional 
free-fall motion under the influence of 
only gravity. Projectile motion follows 
a parabolic trajectory. It has uniform 
motion in the horizontal direction and 
ay = -g in the vertical direction.

❮❮ LOOKING BACK  Section 2.5 Free fall

What is relative motion?
Coordinate systems that move relative to  
each other are called reference frames. 
If object C has velocity vuCA relative to a 
reference frame A, and if A moves with 
velocity vuAB relative to another reference 
frame B, then the velocity of C in refer-
ence frame B is vuCB = vuCA + vuAB.

What is circular motion?
An object moving in a circle (or rotating) has 
an angular displacement instead of a linear 
displacement. Circular motion is described 
by angular velocity v (analogous to velocity 
vs) and angular acceleration a (analogous 
to acceleration as). We’ll study both uniform 
and accelerated circular motion.

What is centripetal acceleration?
An object in circular motion is always 
changing direction. The acceleration of 
changing direction—called centripetal 
acceleration—points to the center of the 
circle. All circular motion has a centripetal 
acceleration. An object also has a tangential 
acceleration if it is changing speed.

Where is two-dimensional motion used?
Linear motion allowed us to introduce the concepts of mo-
tion, but most real motion takes place in two or even three 
dimensions. Balls move along curved trajectories, cars turn 
corners, planets orbit the sun, and electrons spiral in the 
earth’s magnetic field. Where is two-dimensional motion 
used? Everywhere!

IN THIS CHAPTER, you will learn how to solve problems about motion in a plane.

4

This motocross bike  follows the 
parabolic trajectory of projectile 
motion.

a
u

v
u

u
a#

x

y Change speed

Change direction

a ‘
u

y Parabola

u

x

v0

A

yy

x

B x

C vAB
u

v
u

v
u

v
u

r

v

v

v

a
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v
u

a
u

v
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u

v
u
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4.1 Motion in Two Dimensions 103

4.1 Motion in Two Dimensions
Motion diagrams are an important tool for visualizing motion, and we’ll continue to 
use them, but we also need to develop a mathematical description of motion in two 
dimensions. For convenience, we’ll say that any two-dimensional motion is in the 
xy-plane regardless of whether the plane of motion is horizontal or vertical.

FIGURE 4.1 shows a particle moving along a curved path—its trajectory—in the 
xy-plane. We can locate the particle in terms of its position vector r u = xin + yjn.

   NOTE    In Chapter 2 we made extensive use of position-versus-time graphs, either x 
versus t or y versus t. Figure 4.1, like many of the graphs we’ll use in this chapter, is 
a graph of y versus x. In other words, it’s an actual picture of the trajectory, not an 
abstract representation of the motion.

FIGURE 4.2a shows the particle moving from position r u
1 at time t1 to position r u

2 at a 
later time t2 . The average velocity—pointing in the direction of the displacement ∆r u—is

 vuavg =
∆r u

∆t
=

∆x
∆t

 in +
∆y

∆t
 jn (4.1)

You learned in Chapter 2 that the instantaneous velocity is the limit of v 

u
avg as ∆t S 0. 

As ∆t decreases, point 2 moves closer to point 1 until, as FIGURE 4.2b shows, the 
displacement vector becomes tangent to the curve. Consequently, the instantaneous 
velocity vector vu is tangent to the trajectory.

Mathematically, the limit of Equation 4.1 gives

 vu = lim
∆tS0

 
∆r u

∆t
=

d r u

dt
=

dx
dt

 in +
dy

dt
 jn (4.2)

We can also write the velocity vector in terms of its x- and y-components as

 v 

u = vx dn + vy en (4.3)

Comparing Equations 4.2 and 4.3, you can see that the velocity vector v 

u has x- and 
y-components

 vx =
dx
dt
  and  vy =

dy

dt
 (4.4)

That is, the x-component vx of the velocity vector is the rate dx/dt at which the particle’s 
x-coordinate is changing. The y-component is similar.

FIGURE 4.2c illustrates another important feature of the velocity vector. If the vector’s 
angle u is measured from the positive x-direction, the velocity vector components are

  vx = v cos u (4.5)
 vy = v sin u

where

 v = 2vx 

2 + vy 

2 (4.6)

is the particle’s speed at that point. Speed is always a positive number (or zero), 
whereas the components are signed quantities (i.e., they can be positive or negative) to 
convey information about the direction of the velocity vector. Conversely, we can use 
the two velocity components to determine the direction of motion:

 u = tan-11vy

vx
2 (4.7)

   NOTE    In Chapter 2, you learned that the value of the velocity is the slope of the 
position-versus-time graph. Now we see that the direction of the velocity vector v 

u is the 
tangent to the y-versus-x graph of the trajectory. FIGURE 4.3, on the next page, reminds 
you that these two graphs use different interpretations of the tangent lines. The tangent 
to the trajectory does not tell us anything about how fast the particle is moving.

r =
 x
d +

 y
e

u

x

y

Position vector

Trajectory

r y
 =

 y

rx = x

The x- and y-components of r are simply x and y.
u

n

n

FIGURE 4.1 A particle moving along a 
trajectory in the xy-plane.

vavg
u

v
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∆y
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(b)
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y
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(c)

22
2

1
As ∆t S 0, ∆r becomes
tangent to the curve at 1.

u

u

u

r2
u

The average velocity
points in the direction
of ∆r.

u

The instantaneous velocity v
is tangent to the
curve at 1.

u

x

y

vx = v cosu
Angle u describes the
direction of motion.

v y
 =

 v
 s

in
u

v =
    

 vx
2  + v y

2

u

2

The displacement is ∆r = ∆x d + ∆y eu
nn

∆r
u

FIGURE 4.2 The instantaneous velocity 
vector is tangent to the trajectory.
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Acceleration Graphically
In ❮❮ SECTION 1.5 we defined the average acceleration auavg of a moving object to be

 auavg =
∆v 

u

∆t
 (4.8)

From its definition, we see that au points in the same direction as ∆vu, the change of 
velocity. As an object moves, its velocity vector can change in two possible ways:

1. The magnitude of v 

u can change, indicating a change in speed, or
2. The direction of v 

u can change, indicating that the object has changed direction.

Chapters 1 and 2 considered only the acceleration of changing speed. The accel-
eration of changing direction can be determined by finding the direction of ∆v 

u. If an 
object changes from velocity v 

u
a to velocity v 

u
b, its change of velocity ∆v 

u = v 

u
b - v 

u
a can be 

written as v 

u
b = v 

u
a + ∆v 

u. Thus ∆v 

u is the vector that must be added to v 

u
a to get v 

u
b. Tactics 

Box 4.1 shows how to use graphical vector addition to find the acceleration vector.

v
u

The value of the
velocity is the slope
of the position graph.

The direction of the
velocity is tangent
to the trajectory.

x

y

t

s

TrajectoryPosition-versus-time graph

 FIGURE 4.3 Two different uses of tangent lines.

A sports car’s position on a winding road is given by

r 
u = (6.0t - 0.10t2) in + (8.0t - 0.00095t3)en

where the y-axis points north, t is in s, and r is in m. What are the 
car’s speed and direction at t = 120 s?

MODEL Model the car as a particle.

SOLVE Velocity is the derivative of position, so

 vx =
dx
dt

= 6.0 - 2  10.10t)

 vy =
dy

dt
= 8.0 - 3  10.00095t22

Written as a vector, the velocity is

  v 

u = 16.0 - 0.20t2in + 18.0 - 0.00285t22jn

where t is in s and v is in m/s. At t = 120 s, we can calculate v 

u =  
1-18 in - 33jn2 m/s. The car’s speed at this instant is

v = 2vx 

2 + vy 

2 = 21-18 m/s22 + 1-33 m/s22 = 38 m/s

Both components of the velocity vector are negative, so the 
direction of motion is to the left (west) and down (south). The angle 
below the negative x-axis is

u =  tan-11 ∙ -33 m/s ∙
∙ -18 m/s ∙ 2 = 61°

So, at this instant, the car is headed 61° south of west at a speed 
of 38 m/s.

EXAMPLE 4.1 ■ Finding velocity

STOP TO THINK 4.1 During which time interval or intervals is the particle described 
by these position graphs at rest? More than one may be correct.

a. 0–1 s
b. 1–2 s
c. 2–3 s
d. 3–4 s

10 0
0

32 4
t (s)

x

1 32 4
t (s)

y

0
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A ball rolls down a long hill, through the valley, and back up the 
other side. Draw a complete motion diagram of the ball.

MODEL Model the ball as a particle.

VISUALIZE FIGURE 4.4 is the motion diagram. Where the particle 
moves along a straight line, it speeds up if a 

u and v 

u point in the 
same direction and slows down if a 

u and v 

u point in opposite direc-
tions. This important idea was the basis for the one-dimensional 

kinematics we developed in Chapter 2. When the direction of v 

u 
changes, as it does when the ball goes through the valley, we need 
to use Tactics Box 4.1 to find the direction of ∆v 

u and thus of a 

u. The 
procedure is shown at one point in the motion diagram. Notice that 
a 

u is perpendicular to the trajectory at the bottom point where only 
the direction, not the speed, is changing. We’ll return to this idea 
when we discuss circular motion.

EXAMPLE 4.2 ■ Through the valley

Our everyday use of the word “accelerate” means “speed up.” The mathematical 
definition of acceleration—the rate of change of velocity—also includes slowing 
down, as you learned in Chapter 2, as well as changing direction. All these are  motions 
that change the velocity.

TACTICS BOX 4.1

Finding the acceleration vector

1

3

Draw velocity vectors va and vb

with their tails together.

2 Draw the vector from the tip of va

to the tip of vb. This is ∆v because
vb = va + ∆v.

u

u

u u

uuu

u

a
u

va
u

va
u

vb
u

va
u

vb
u

vb
u

va
u

vb
u

u∆v

u

Return to the original motion 
diagram. Draw a vector at the 
middle dot in the direction of
∆v; label it a. This is the average
acceleration between va and vb. 

u

u

u

To find the acceleration between
velocity va and velocity vb:

u u

Exercises 1–4 

a vav

a
a is parallel to v.
Only speed is changing.

va
vb

va

vb

∆v

Both speed and direction are changing.
a has components parallel and perpendicular to v.

a is perpendicular to v.
Only direction is changing.

FIGURE 4.4 The motion diagram of the ball of Example 4.2.
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106 CHAPTER 4 Kinematics in Two Dimensions 

FIGURE 4.5 shows that an object’s acceleration vector can be decomposed into a 
component parallel to the velocity—that is, parallel to the direction of motion—and 
a component perpendicular to the velocity. au ‘ is the piece of the acceleration that 
causes the object to change speed, speeding up if au ‘ points in the same direction as v 

u, 
slowing down if they point in opposite directions. au# is the piece of the acceleration 
that causes the object to change direction. An object changing direction always has 
a component of acceleration perpendicular to the direction of motion.

Looking back at Example 4.2, we see that au is parallel to v 

u on the straight portions 
of the hill where only speed is changing. At the very bottom, where the ball’s direction 
is changing but not its speed, au is perpendicular to v 

u. The acceleration is angled with 
respect to velocity—having both parallel and perpendicular components—at those 
points where both speed and direction are changing.

v
u

x

y

Instantaneous
acceleration

Instantaneous velocity

(a) The parallel component is associated
with a change of speed.

The perpendicular
component is associated
with a change of direction.

a ‘

a#
a
u

u

u

FIGURE 4.6 The instantaneous 
acceleration au.

a#

a ‘

a
u

u

u

This component of a is changing
the speed of the motion.

u

This component of a is changing
the direction of motion.

u

v
u

FIGURE 4.5 Analyzing the acceleration 
vector.

STOP TO THINK 4.2 This acceleration will cause the 
particle to a

u
v
u

a. Speed up and curve upward. b. Speed up and curve downward. 
c. Slow down and curve upward. d. Slow down and curve downward.
e. Move to the right and down. f. Reverse direction.

Acceleration Mathematically
In Tactics Box 4.1, the average acceleration is found from two velocity vectors separated  
by the time interval ∆t. If we let ∆t get smaller and smaller, the two velocity vectors 
get closer and closer. In the limit ∆t S 0, we have the instantaneous acceleration a 

u at 
the same point on the trajectory (and the same instant of time) as the instantaneous 
velocity v 

u. This is shown in FIGURE 4.6.
By definition, the acceleration vector a 

u is the rate at which the velocity v 

u is changing 
at that instant. To show this, Figure 4.6a decomposes a 

u into components au ‘ and au# that 
are parallel and perpendicular to the trajectory. As we just showed, au ‘ is associated 
with a change of speed, and au# is associated with a change of direction. Both kinds 
of changes are accelerations. Notice that au# always points toward the “inside” of the 
curve because that is the direction in which v 

u is changing.
Although the parallel and perpendicular components of au convey important 

ideas about acceleration, it’s often more practical to write au in terms of the x- and 
y-components shown in Figure 4.6b. Because v 

u = vx in + vy  jn, we find

 au = ax  in + ay  jn =
dv 

u

dt
=

dvx

dt
 in +

dvy

dt
 jn (4.9)

from which we see that

 ax =
dvx

dt
  and  ay =

dvy

dt
 (4.10)

That is, the x-component of a 

u is the rate dvx /dt at which the x-component of velocity 
is changing.

   NOTE    Figures 4.6a and Figure 4.6b show the same acceleration vector; all that 
differs is how we’ve chosen to decompose it. For motion with constant acceleration, 
which includes projectile motion, the decomposition into x- and y-components is 
most convenient. But we’ll find that the parallel and perpendicular components are 
especially suited to an analysis of circular motion.

Constant Acceleration
If the acceleration au = ax in + ay  jn is constant, then the two components ax and ay are 
both constant. In this case, everything you learned about constant-acceleration kine-
matics in ❮❮ SECTION 2.4 carries over to two-dimensional motion.

a
u

v
u

Instantaneous velocity

x

y

Instantaneous
acceleration

The x- and y-components
are mathematically more
convenient.

(b)

ax

ay

u

u
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4.2 Projectile Motion 107

Consider a particle that moves with constant acceleration from an initial position 
r u

i = xi in + yi jn, starting with initial velocity v 

u
i = vix  in + viy  jn. Its position and velocity at 

a final point f are

vfx = vix + ax ∆t vfy = viy + ay ∆t 
(4.11)

 xf = xi + vix ∆t + 1
2 ax  1∆t22 yf = yi + viy ∆t + 1

2 ay  1
 

∆t22

There are many quantities to keep track of in two-dimensional kinematics, making 
the pictorial representation all the more important as a problem-solving tool.

   NOTE    For constant acceleration, the x-component of the motion and the y-component  
of the motion are independent of each other. However, they remain connected 
through the fact that ∆t must be the same for both.

In the distant future, a small spacecraft is drifting “north” through 
the galaxy at 680 m/s when it receives a command to return to the 
starship. The pilot rotates the spacecraft until the nose is pointed 
25° north of east, then engages the ion engine. The spacecraft 
accelerates at 75 m/s2. Plot the spacecraft’s trajectory for the  
first 20 s.

MODEL Model the spacecraft as a particle with constant acceleration.

VISUALIZE FIGURE 4.7 shows a pictorial representation in which 
the y-axis points north and the spacecraft starts at the origin. 
Notice that each point in the motion is labeled with two posi-
tions 1x and y2, two velocity components 1vx and vy2, and the  
time t. This will be our standard labeling scheme for trajectory 
problems.

SOLVE The acceleration vector has both x- and y-components; their 
values have been calculated in the pictorial representation. But it is 
a constant acceleration, so we can write

  x1 = x0 + v0x1t1 - t02 + 1
2 a x1t1 - t022

  = 34.0 t1 

2 m

  y1 = y0 + v0y1t1 - t02 + 1
2 ay1t1 - t022

  = 680t1 + 15.8t1 

2 m

where t1 is in s. Graphing software produces the trajectory shown in 
FIGURE 4.8. The trajectory is a parabola, which is characteristic of 
two-dimensional motion with constant acceleration.

EXAMPLE 4.3 ■ Plotting a spacecraft trajectory

x

y

Known
x0 = y0 = 0 m   v0x = 0 m/s     v0y = 680 m/s

ay = (75 m/s2) sin25° = 31.6 m/s2

ax = (75 m/s2) cos25° = 68.0 m/s2

x1, y1, t1

v1x, v1y 

x0, y0, t0

v0x, v0y

t0 = 0 s  t1 = 0 s to 20 s

Find
x1 and y1

v0
u

25°

a
u

FIGURE 4.7 Pictorial representation of the spacecraft.

x (km)

y (km)

50
0

10 15

5

10

15

20

FIGURE 4.8 The spacecraft trajectory.

4.2 Projectile Motion
Baseballs and tennis balls flying through the air, Olympic divers, and daredevils shot 
from cannons all exhibit what we call projectile motion. A projectile is an object 
that moves in two dimensions under the influence of only gravity. Projectile motion 
is an extension of the free-fall motion we studied in Chapter 2. We will continue to 
neglect the influence of air resistance, leading to results that are a good approximation 
of reality for relatively heavy objects moving relatively slowly over relatively short 
distances. As we’ll see, projectiles in two dimensions follow a parabolic trajectory 
like the one seen in FIGURE 4.9.

The start of a projectile’s motion, be it thrown by hand or shot from a gun, is called 
the launch, and the angle u of the initial velocity v 

u
0 above the horizontal (i.e., above  

The ball’s trajectory
between bounces is
a parabola.

FIGURE 4.9 A parabolic trajectory.
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108 CHAPTER 4 Kinematics in Two Dimensions 

the x-axis) is called the launch angle. FIGURE 4.10 illustrates the relationship be-
tween the initial velocity vector v 

u
0 and the initial values of the components v0x and 

v0y  . You can see that

  v0x = v0 cos u 
(4.12)

 v0y = v0 sin u

where v0 is the initial speed.

   NOTE    A projectile launched at an angle below the horizontal (such as a ball thrown 
downward from the roof of a building) has negative values for u and v0y  . However, 
the speed v0 is always positive.

Gravity acts downward, and we know that objects released from rest fall straight 
down, not sideways. Hence a projectile has no horizontal acceleration, while its verti-
cal acceleration is simply that of free fall. Thus

 ax = 0

u
x

y

Launch angle

Parabolic
trajectory

Initia
l sp

eed
 v 0

v0x = v0 cosu

v 0
y 

=
 v

0 
si

n
u

v0
u

FIGURE 4.10 A projectile launched with 
initial velocity v  

u
0.

a
u v

u

v
u

v
u

v
u

v
u

x

y

19.6

Velocity vectors are
shown every 1 s.
Values are in m/s.

-19.6

9.8

9.8

9.8

ay = -9.8 m/s per s

9.8

9.8

9.8

-9.8

When the particle returns
to its initial height, v  y is
opposite its initial value.

v  y decreases by
9.8 m/s every second.

v  x is constant
throughout the motion.

FIGURE 4.11 The velocity and acceleration 
vectors of a projectile.

(projectile motion) (4.13)
 ay = -g 

In other words, the vertical component of acceleration ay is just the familiar ∙g 
of free fall, while the horizontal component ax is zero. Projectiles are in free fall.

To see how these conditions influence the motion, FIGURE 4.11 shows a projectile 
launched from 1x0, y02 = 10 m, 0 m2 with an initial velocity v 

u
0 = 19.8 in + 19.6jn2 m/s. 

The value of vx never changes because there’s no horizontal acceleration, but 
vy decreases by 9.8 m/s every second. This is what it means to accelerate at 
ay = -9.8 m/s2 =  1-9.8 m/s2 per second.

You can see from Figure 4.11 that projectile motion is made up of two independent 
motions: uniform motion at constant velocity in the horizontal direction and free- 
fall motion in the vertical direction. The kinematic equations that describe these two 
motions are simply Equations 4.11 with ax = 0 and ay = -g.

A stunt man drives a car off a 10.0-m-high cliff at a speed of 
20.0 m/s. How far does the car land from the base of the cliff?

MODEL Model the car as a particle in free fall. Assume that the car 
is moving horizontally as it leaves the cliff.

VISUALIZE The pictorial representation, shown in FIGURE 4.12, is 
very important because the number of quantities to keep track of is 
quite large. We have chosen to put the origin at the base of the cliff. 
The assumption that the car is moving horizontally as it leaves the 
cliff leads to v0x = v0 and v0y = 0 m/s.

SOLVE Each point on the trajectory has x- and y-components of 
position, velocity, and acceleration but only one value of time. The 
time needed to move horizontally to x1 is the same time needed to 
fall vertically through distance y0. Although the horizontal and 
vertical motions are independent, they are connected through 
the time t. This is a critical observation for solving projectile 
motion problems. The kinematics equations with  ax = 0 and  
ay = -g are

  x1 = x0 + v0x  1t1 - t02 = v0 t1

  y1 = 0 = y0 + v0y  1t1 - t02 - 1
2 g1t1 - t022 = y0 - 1

2 gt1 

2

We can use the vertical equation to determine the time t1 needed 
to fall distance y0:

t1 = B 2y0

g
= B 2110.0 m2

9.80 m/s2 = 1.43 s

We then insert this expression for t into the horizontal equation to 
find the distance traveled:

x1 = v0  t1 = 120.0 m/s211.43 s2 = 28.6 m

REVIEW The cliff height is ≈  33 ft and the initial speed is 
v0 ≈ 40 mph. Traveling x1 = 29 m ≈ 95 ft before hitting the ground  
seems reasonable.

EXAMPLE 4.4 ■ Don’t try this at home!

a
u

x0, y0, t0

v0x, v0y

x1, y1, t1

v1x, v1y

0
0

x

y

Known
x0 = 0 m    v0y = 0 m/s    t0 = 0 s
y0 = 10.0 m  v0x = v0 = 20.0 m/s
ax = 0 m/s2  ay = -g  y1 = 0 m

Find
x1

v0
u

FIGURE 4.12 Pictorial representation for the car of Example 4.4.
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4.2 Projectile Motion 109

The x- and y-equations of Example 4.4 are parametric equations. It’s not hard to 
eliminate t and write an expression for y as a function of x. From the x1 equation, 
t1 = x1/v0 . Substituting this into the y1 equation, we find

 y = y0 -
g

2v0 

2 x2 (4.14)

The graph of y = cx2 is a parabola, so Equation 4.14 represents an inverted parabola 
that starts from height y0. This proves, as we asserted previously, that a projectile 
follows a parabolic trajectory.

Reasoning About Projectile Motion
Suppose a heavy ball is launched exactly horizontally at height h above a horizontal 
field. At the exact instant that the ball is launched, a second ball is simply dropped 
from height h. Which ball hits the ground first?

It may seem hard to believe, but—if air resistance is neglected—the balls hit the 
ground simultaneously. They do so because the horizontal and vertical components of 
projectile motion are independent of each other. The initial horizontal velocity of the 
first ball has no influence over its vertical motion. Neither ball has any initial motion 
in the vertical direction, so both fall distance h in the same amount of time. You can 
see this in FIGURE 4.13.

FIGURE 4.14a shows a useful way to think about the trajectory of a projectile. 
Without gravity, a projectile would follow a straight line. Because of gravity, the 
particle at time t has “fallen” a distance 12 gt2 below this line. The separation grows as 
1
2 gt2, giving the trajectory its parabolic shape.

Use this idea to think about the following “classic” problem in physics:

A hungry bow-and-arrow hunter in the jungle wants to shoot down a coconut that is 
hanging from the branch of a tree. He points his arrow directly at the coconut, but as 
luck would have it, the coconut falls from the branch at the exact instant the hunter 
releases the string. Does the arrow hit the coconut?

You might think that the arrow will miss the falling coconut, but it doesn’t. Although 
the arrow travels very fast, it follows a slightly curved parabolic trajectory, not a straight 
line. Had the coconut stayed on the tree, the arrow would have curved under its target 
as gravity caused it to fall a distance 1

2 gt2 below the straight line. But 1
2 gt2 is also the 

distance the coconut falls while the arrow is in flight. Thus, as FIGURE 4.14b shows,  
the arrow and the coconut fall the same distance and meet at the same point!

FIGURE 4.13 A projectile launched 
horizontally falls in the same time as a 
projectile that is released from rest.

1
21

2

1
2

x

y
Trajectory
without
gravity

Actual trajectory

The distance between
the gravity-free trajectory
and the actual trajectory 
grows as the particle
“falls” gt 2.

gt 2

(a) (b)

Actual trajectory
of arrow x

y

Trajectory
without gravity

gt 2
1
2gt 2

FIGURE 4.14 A projectile follows a parabolic trajectory because it “falls” a distance 12 gt2 
below a straight-line trajectory.

The Projectile Motion Model
Projectile motion is an ideal that’s rarely achieved by real objects. Nonetheless, the 
projectile motion model is another important simplification of reality that we can 
add to our growing list of models.
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110 CHAPTER 4 Kinematics in Two Dimensions 

MODEL 4.1

Projectile motion
For motion under the influence of only gravity.

 ■ Model the object as a particle launched 
with speed v0 at angle u:

 ■ Mathematically:
• Uniform motion in the horizontal  

direction with vx = v0 cos u.

• Constant acceleration in the vertical 
direction with ay = -g.

• Same ∆t for both motions.
 ■ Limitations: Model fails if air resistance is significant.

Exercise 9 

A projectile follows a 
parabolic trajectory.

u
x

y

Launch angle

Parabolic
trajectory

Initia
l sp

eed
 v 0

Frogs, with their long, strong legs, are excellent jumpers. And 
thanks to the good folks of Calaveras County, California, who have 
a jumping frog contest every year in honor of a Mark Twain story, 
we have very good data on how far a determined frog can jump.

High-speed cameras show that a good jumper goes into a 
crouch, then rapidly extends his legs by typically 15 cm during 
a 65 ms push off, leaving the ground at a 30° angle. How far does 
this frog leap?

MODEL Model the push off as linear motion with uniform acceler-
ation. A bullfrog is fairly heavy and dense, so ignore air resistance 
and model the leap as projectile motion.

VISUALIZE This is a two-part problem: linear acceleration followed 
by projectile motion. A key observation is that the final velocity 
for pushing off the ground becomes the initial velocity of 
the projectile motion. FIGURE 4.15 shows a separate pictorial 
representation for each part. Notice that we’ve used different 
coordinate systems for the two parts; coordinate systems are our 
choice, and for each part of the motion we’ve chosen the coordinate 
system that makes the problem easiest to solve.

SOLVE While pushing off, the frog travels 15 cm = 0.15 m in 
65 ms = 0.065 s. We could find his speed at the end of pushing off 
if we knew the acceleration. Because the initial velocity is zero,  

EXAMPLE 4.5 ■ Jumping frog contest

PROBLEM-SOLVING STRATEGY 4.1

Projectile motion problems

MODEL Is it reasonable to ignore air resistance? If so, use the projectile motion 
model.

VISUALIZE Establish a coordinate system with the x-axis horizontal and the  
y-axis vertical. Define symbols and identify what the problem is trying to find.  
For a launch at angle u, the initial velocity components are vix = v0 cos u  
and viy = v0 sin u.

SOLVE The acceleration is known: ax = 0 and ay = -g. Thus the problem is one  
of two-dimensional kinematics. The kinematic equations are

Horizontal Vertical

xf = xi + vix ∆t yf = yi + viy ∆t - 1
2 g1∆t22

vfx = vix = constant vfy = viy - g ∆t

∆t is the same for the horizontal and vertical components of the motion. Find ∆t 
from one component, then use that value for the other component.

REVIEW Check that your result has correct units and significant figures, is 
reasonable, and answers the question.
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4.2 Projectile Motion 111

we can find the acceleration from the position-acceleration-time 
kinematic equation:

  x1 = x0 + v0x ∆t + 1
2 ax 1∆t22 = 1

2 ax 1∆t22

  ax =
2x1

1∆t22 =
210.15 m2
10.065 s22 = 71 m/s2

This is a substantial acceleration, but it doesn’t last long. At the end 
of the 65 ms push off, the frog’s velocity is

v1x = v0x + ax ∆t = 171 m/s2210.065 s) = 4.62 m/s

We’ll keep an extra significant figure here to avoid round-off error 
in the second half of the problem.

The end of the push off is the beginning of the projectile 
motion, so the second part of the problem is to find the distance 
of a projectile launched with velocity v 

u
0 = 14.62 m/s, 30°2. The 

initial x- and y-components of the launch velocity are

v0x = v0 cos u    v0y = v0 sin u

The kinematic equations of projectile motion, with ax = 0 and 
ay = -g, are

  x1 = x0 + v0x ∆t

  = 1v0 cos u2∆t

  y1 = y0 + v0y ∆t - 1
2 g1∆t22

    = 1v0 sin u2∆t - 1
2 g1∆t22

We can find the time of flight from the vertical equation by setting 
y1 = 0:

0 = 1v0 sin u2∆t - 1
2 g1∆t2 

2 = 1v0 sin u - 1
2 g ∆t2∆t

and thus

∆t = 0  or  ∆t =
2v0 sin u

g

Both are legitimate solutions. The first corresponds to the instant 
when y = 0 at the launch, the second to when y = 0 as the frog hits 
the ground. Clearly, we want the second solution. Substituting this 
expression for ∆t into the equation for x1 gives

x1 = 1v0 cos u2 
2v0 sin u

g
=

2v0 

2 sin u cos u

g

We can simplify this result with the trigonometric identity 
2 sin u cos u = sin12u2. Thus the distance traveled by the frog is

x1 =
v0 

2 sin12u2
g

Using v0 = 4.62 m/s and u = 30°, we find that the frog leaps a dis-
tance of 1.9 m.

REVIEW 1.9 m is about 6 feet, or about 10 times the frog’s body 
length. That’s pretty amazing, but true. Jumps of 2.2 m have been 
recorded in the lab. And the Calaveras County record holder, Rosie 
the Ribeter, covered 6.5 m—21 feet—in three jumps!

FIGURE 4.15 Pictorial representations of the jumping frog.

The distance a projectile travels is called its range. As Example 4.5 found, a 
projectile that lands at the same elevation from which it was launched has

 range =
v0 

2 sin12u2
g

 (4.15)

The maximum range occurs for u = 45°, where sin12u2 = 1. But there’s more that 
we can learn from this equation. Because sin1180° - x2 = sin x, it follows that 
sin12190° - u22 = sin12u2. Consequently, a projectile launched either at angle u or 
at angle 190° - u2 will travel the same distance over level ground. FIGURE 4.16 shows 
several trajectories of projectiles launched with the same initial speed.

   NOTE    Equation 4.15 is not a general result. It applies only in situations where the 
projectile lands at the same elevation from which it was fired.

x (m)

y (m)

2000

100

0
400 600 800 1000

200

300

400

500 75°

60°

45°
30°
15°

Maximum range
is achieved at 45°.

Launch angles of u and
90° - u give the same range.

v0 = 99 m/s

FIGURE 4.16 Trajectories of a projectile 
launched at different angles with a speed 
of 99 m/s.
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112 CHAPTER 4 Kinematics in Two Dimensions 

STOP TO THINK 4.3 A 50 g marble rolls off a table and hits 2 m from the base of the 
table. A 100 g marble rolls off the same table with the same speed. It lands at distance

a. Less than 1 m. b. 1 m. c. Between 1 m and 2 m.

4.3 Relative Motion
FIGURE 4.17 shows Amy and Bill watching Carlos on his bicycle. According to Amy, 
Carlos’s velocity is vx = 5 m/s. Bill sees the bicycle receding in his rearview mirror, in 
the negative x-direction, getting 10 m farther away from him every second. According 
to Bill, Carlos’s velocity is vx = -10 m/s. Which is Carlos’s true velocity?

Velocity is not a concept that can be true or false. Carlos’s velocity relative to Amy 
is 1vx2CA = 5 m/s, where the subscript notation means “C relative to A.” Similarly, 
Carlos’s velocity relative to Bill is 1vx2CB = -10 m/s. These are both valid descrip-
tions of Carlos’s motion.

It’s not hard to see how to combine the velocities for one-dimensional motion:

(vx)CB = (vx)CA + (vx)AB

The first subscript is the
same on both sides.

The inner subscripts “cancel.”

The last subscript is the
same on both sides.

  (4.16)

We’ll justify this relationship later in this section and then extend it to two-dimensional 
motion.

Equation 4.16 tells us that the velocity of C relative to B is the velocity of C relative 
to A plus the velocity of A relative to B. Note that

 1vx2AB = -1vx2BA (4.17)

because if B is moving to the right relative to A, then A is moving to the left relative 
to B. In Figure 4.17, Bill is moving to the right relative to Amy with 1vx2BA = 15 m/s, 
so 1vx2AB = -15 m/s. Knowing that Carlos’s velocity relative to Amy is 5 m/s, we 
find that Carlos’s velocity relative to Bill is, as expected, 1vx2CB = 1vx2CA + 1vx2AB =  
5 m/s + 1-152 m/s = -10 m/s.

5 m/s
Carlos

Amy

15 m/s

Bill

FIGURE 4.17 Velocities in Amy’s reference 
frame.

d. 2 m. e. Between 2 m and 4 m. f. 4 m.

The police are chasing a bank robber. While driving at 50 m/s, they 
fire a bullet to shoot out a tire of his car. The police gun shoots 
bullets at 300 m/s. What is the bullet’s speed as measured by a TV 
camera crew parked beside the road?

MODEL Assume that all motion is in the positive x-direction. The 
bullet is the object that is observed from both the police car and  
the ground.

SOLVE The bullet B’s velocity relative to the gun G is 1vx2BG =  
300 m/s. The gun, inside the car, is traveling relative to the TV crew 
C at 1vx2GC = 50 m/s. We can combine these values to find that the 
bullet’s velocity relative to the TV crew on the ground is

1vx2BC = 1vx2BG + 1vx2GC = 300 m/s + 50 m/s = 350 m/s

REVIEW It should be no surprise in this simple situation that we 
simply add the velocities.

EXAMPLE 4.6 ■ A speeding bullet

Reference Frames
A coordinate system in which an experimenter (possibly with the assistance of helpers) 
makes position and time measurements of physical events is called a reference 
frame. In Figure 4.17, Amy and Bill each had their own reference frame (where they 
were at rest) in which they measured Carlos’s velocity.
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A

y

x

B

y

x

Reference frame A

Reference frame B

C

rAB

rCB

rCA

Object C can be
located relative
to A or to B.

u
u

u

FIGURE 4.18 Two reference frames.More generally, FIGURE 4.18 shows two reference frames, A and B, and an object 
C. It is assumed that the reference frames are moving with respect to each other. At 
this instant of time, the position vector of C in reference frame A is r u

CA, meaning “the 
position of C relative to the origin of frame A.” Similarly, r u

CB is the position vector of 
C in reference frame B. Using vector addition, you can see that

 r u
CB = r u

CA + r u
AB (4.18)

where ruAB locates the origin of A relative to the origin of B.
In general, object C is moving relative to both reference frames. To find its velocity 

in each reference frame, take the time derivative of Equation 4.18:

 
d r u

CB

dt
=

d r u
CA

dt
+

d r u
AB

dt
 (4.19)

By definition, d r u/dt is a velocity. The first derivative in Equation 4.19 is v 

u
CB, the ve-

locity of C relative to B. Similarly, the second is the velocity of C relative to A, v 

u
CA. 

The last derivative is slightly different because it doesn’t refer to object C. Instead, 
this is the velocity v 

u
AB of reference frame A relative to reference frame B. As we noted 

in one dimension, v 

u
AB = -v 

u
BA.

Writing Equation 4.19 in terms of velocities, we have

 v 

u
CB = v 

u
CA + v 

u
AB (4.20)

This relationship between velocities in different reference frames was recognized 
by Galileo in his pioneering studies of motion, hence it is known as the  Galilean 
transformation of velocity. If you know an object’s velocity in one reference 
frame, you can transform it into the velocity that would be measured in a different 
reference frame. Just as in one dimension, the velocity of C relative to B is the velocity 
of C relative to A plus the velocity of A relative to B, but you must add the velocities 
as vectors for two-dimensional motion.

As we’ve seen, the Galilean velocity transformation is pretty much common sense 
for one-dimensional motion. The real usefulness appears when an object travels in a 
medium moving with respect to the earth. For example, a boat moves relative to the 
water. What is the boat’s net motion if the water is a flowing river? Airplanes fly 
relative to the air, but the air at high altitudes often flows at high speed. Navigation of 
boats and planes requires knowing both the motion of the vessel in the medium and 
the motion of the medium relative to the earth.

Cleveland is 300 miles east of Chicago. A plane leaves Chicago 
flying due east at 500 mph. The pilot forgot to check the weather 
and doesn’t know that the wind is blowing to the south at 50 mph. 
What is the plane’s ground speed? Where is the plane 0.60 h later, 
when the pilot expects to land in Cleveland?

MODEL Establish a coordinate system with the x-axis pointing east 
and the y-axis north. The plane P flies in the air, so its velocity rel-
ative to the air A is v 

u
PA = 500 in mph. Meanwhile, the air is moving 

relative to the ground G at v 

u
AG = -50 jn mph.

SOLVE The velocity equation v 

u
PG = v 

u
PA + v 

u
AG is a vector-addition 

equation. FIGURE 4.19 shows graphically what happens. Although the 
nose of the plane points east, the wind carries the plane in a direction 
somewhat south of east. The plane’s velocity relative to the ground is

v 

u
PG = v 

u
PA + v 

u
AG = 1500in - 50jn2 mph

The plane’s ground speed is

v = 21vx2PG 

2 + 1vy2PG 

2 = 502 mph

After flying for 0.60 h at this velocity, the plane’s location (relative 
to Chicago) is

 x = 1vx2PG 
 

t = 1500 mph210.60 h2 = 300 mi

 y = 1vy2PG 
 

t = 1-50 mph210.60 h2 = -30 mi

The plane is 30  mi due south of Cleveland! Although the pilot 
thought he was flying to the east, his actual heading has been 
tan-1150 mph/500 mph2 = tan-110.102 = 5.71° south of east.

EXAMPLE 4.7 ■ Flying to Cleveland I

Chicago Cleveland

vAG of air

vPG of plane
relative to ground

vPA of plane relative to air
u

u

u

FIGURE 4.19 The wind causes a plane flying due east in the air to 
move to the southeast relative to the ground.
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114 CHAPTER 4 Kinematics in Two Dimensions 

4.4 Uniform Circular Motion
Projectile motion is one important example of motion in a plane. Another quite differ-
ent type of motion in a plane is circular motion. FIGURE 4.21 shows a particle moving 
around a circle of radius r. The particle might be a satellite in an orbit, a ball on the 
end of a string, or even just a dot painted on the side of a rotating wheel.

To begin the study of circular motion, consider a particle that moves at con-
stant speed around a circle of radius r. This is called uniform circular  motion. 
Regardless of what the particle represents, its velocity vector v 

u is always tangent 
to the circle. The particle’s speed v is constant, so vector v 

u is always the same 
length.

The time interval it takes the particle to go around the circle once, completing 
one revolution (abbreviated rev), is called the period of the motion. Period is rep-
resented by the symbol T. It’s easy to relate the particle’s period T to its speed v. 
For a particle moving with constant speed, speed is simply distance/time. In one 
period, the particle moves once around a circle of radius r and travels the circum-
ference 2pr. Thus

 v =
1 circumference

1 period
=

2pr
T

 (4.21)

A wiser pilot flying from Chicago to Cleveland on the same day 
plots a course that will take her directly to Cleveland. In which 
direction does she fly the plane? How long does it take to reach 
Cleveland?

MODEL Establish a coordinate system with the x-axis pointing east 
and the y-axis north. The air is moving relative to the ground at 
v 

u
AG = -50 jn mph.

SOLVE The objective of navigation is to move between two points 
on the earth’s surface. The wiser pilot, who knows that the wind will 
affect her plane, draws the vector picture of FIGURE 4.20. She sees 
that she’ll need 1vy2PG = 0 in order to fly due east to Cleveland.  
This will require turning the nose of the plane at an angle u north of 
east, making v 

u
PA = 1500 cos u  in +  500 sin u  jn2 mph.

The velocity equation is v 

u
PG = v 

u
PA+v 

u
AG. The desired head-

ing  is found from setting the y-component of this equation to  
zero:

1vy2PG = 1vy2PA + 1vy2AG = 1500 sin u - 502 mph = 0 mph

u = sin-11 50 mph

500 mph2 = 5.74°

The plane’s velocity relative to the ground is then v 

u
PG =  

500 cos 5.74° in mph = 497 in mph. This is slightly slower than the 
speed relative to the air. The time needed to fly to Cleveland at this 
speed is

t =
300 mi

497 mph
= 0.604 h

It takes 0.004 h = 14 s longer to reach Cleveland than it would on 
a day without wind.

REVIEW A boat crossing a river or an ocean current faces the same 
difficulties. These are exactly the kinds of calculations performed 
by pilots of boats and planes as part of navigation.

EXAMPLE 4.8 ■ Flying to Cleveland II

u
Chicago Cleveland

vAG of air

vPG of plane
relative to ground

vPA of plane relative to air
u

u

u

FIGURE 4.20 To travel due east in a south wind, a pilot has to 
point the plane somewhat to the northeast.

STOP TO THINK 4.4 A plane traveling horizontally to the right at 100 m/s flies past 
a helicopter that is going straight up at 20 m/s. From the helicopter’s perspective, the 
plane’s direction and speed are

c. Right and up, more than 100 m/s. d. Right and down, less than 100 m/s.
e. Right and down, 100 m/s. f. Right and down, more than 100 m/s.

a. Right and up, less than 100 m/s. b. Right and up, 100 m/s.

v
u

v
u

v
u

The velocity is tangent to the circle.
The velocity vectors are all the same length.

r

r

r

FIGURE 4.21 A particle in uniform circular 
motion.
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4.4 Uniform Circular Motion 115

Angular Position
Rather than using xy-coordinates, it will be more convenient to describe the position 
of a particle in circular motion by its distance r from the center of the circle and its 
angle u from the positive x-axis. This is shown in FIGURE 4.22. The angle u is the 
angular position of the particle.

We can distinguish a position above the x-axis from a position that is an equal 
angle below the x-axis by defining u to be positive when measured counterclockwise 
(ccw) from the positive x-axis. An angle measured clockwise (cw) from the positive 
x-axis has a negative value. “Clockwise” and “counterclockwise” in circular motion 
are analogous, respectively, to “left of the origin” and “right of the origin” in linear 
motion, which we associated with negative and positive values of x. A particle 30° 
below the positive x-axis is equally well described by either u = -30° or u = +330°. 
We could also describe this particle by u = 11

12 rev, where revolutions are another way 
to measure the angle.

Although degrees and revolutions are widely used measures of angle, mathemati-
cians and scientists usually find it more useful to measure the angle u in Figure 4.22 
by using the arc length s that the particle travels along the edge of a circle of radius 
r. We define the angular unit of radians such that

 u1radians2 K
s
r
 (4.22)

The radian, which is abbreviated rad, is the SI unit of angle. An angle of 1 rad has an 
arc length s exactly equal to the radius r.

The arc length completely around a circle is the circle’s circumference 2pr. Thus 
the angle of a full circle is

ufull circle =
2pr

r
= 2p rad

This relationship is the basis for the well-known conversion factors

1 rev = 360° = 2p rad

As a simple example of converting between radians and degrees, let’s convert an 
angle of 1 rad to degrees:

1 rad = 1 rad *
360°

2p rad
= 57.3°

A 4.0-cm-diameter crankshaft turns at 2400 rpm (revolutions per minute). What is the 
speed of a point on the surface of the crankshaft?

SOLVE We need to determine the time it takes the crankshaft to make 1 rev. First, we 
convert 2400 rpm to revolutions per second:

2400 rev
1 min

*
1 min
60 s

= 40 rev/s

If the crankshaft turns 40 times in 1 s, the time for 1 rev is

T =
1
40

 s = 0.025 s

Thus the speed of a point on the surface, where r = 2.0 cm = 0.020 m, is

v =
2pr

T
=

2p10.020 m2
0.025 s

= 5.0 m/s

EXAMPLE 4.9 ■ A rotating crankshaft

u

r
s

Particle
Arc length

Center of
circular motion

x

y

This is the particle’s
angular position.

FIGURE 4.22 A particle’s position is 
described by distance r and angle u.

Circular motion is one of the most 
common types of motion.

M04_KNIG8221_05_GE_C04.indd   115 02/06/2022   16:30



116 CHAPTER 4 Kinematics in Two Dimensions 

Thus a rough approximation is 1 rad ≈ 60°. We will often specify angles in degrees, 
but keep in mind that the SI unit is the radian.

An important consequence of Equation 4.22 is that the arc length spanning  
angle u is

 s = r  u  1with u in rad2 (4.23)

This is a result that we will use often, but it is valid only if u is measured in radians 
and not in degrees. This very simple relationship between angle and arc length is one 
of the primary motivations for using radians.

   NOTE    Units of angle are often troublesome. Unlike the kilogram or the second, for 
which we have standards, the radian is a defined unit. It’s really just a name to remind 
us that we’re dealing with an angle. Consequently, the radian unit sometimes appears 
or disappears without warning. This seems rather mysterious until you get used to it. 
This textbook will call your attention to such behavior the first few times it occurs. 
With a little practice, you’ll soon learn when the rad unit is needed and when it’s not.

Angular Velocity
FIGURE 4.23 shows a particle moving in a circle from an initial angular position ui at 
time ti to a final angular position uf at a later time tf . The change ∆u = uf - ui is called 
the angular displacement. We can measure the particle’s circular motion in terms 
of the rate of change of u, just as we measured the particle’s linear motion in terms of 
the rate of change of its position s.

In analogy with linear motion, let’s define the average angular velocity to be

 average angular velocity K
∆u

∆t
 (4.24)

As the time interval ∆t becomes very small, ∆t S 0, we arrive at the definition of the 
instantaneous angular velocity:

 v K lim
∆tS0

 
∆u

∆t
=

du
dt
  1angular velocity2 (4.25)

The symbol v is a lowercase Greek omega, not an ordinary w. The SI unit of angular 
velocity is rad/s, but °/s, rev/s, and rev/min are also common units. Revolutions per 
minute is abbreviated rpm.

Angular velocity is the rate at which a particle’s angular position is changing as it 
moves around a circle. A particle that starts from u = 0 rad with an angular velocity 
of 0.5 rad/s will be at angle u = 0.5 rad after 1 s, at u = 1.0 rad after 2 s, at u = 1.5 
rad after 3 s, and so on. Its angular position is increasing at the rate of 0.5 radian per 
second. A particle moves with uniform circular motion if and only if its angular 
velocity V is constant and unchanging.

Angular velocity, like the velocity vs of one-dimensional motion, can be positive or 
negative. The signs shown in FIGURE 4.24 are based on the fact that u was defined to be 
positive for a counterclockwise rotation. Because the definition v = du/dt for circular 
motion parallels the definition vs = ds/dt for linear motion, the graphical relationships 
we found between vs and s in Chapter 2 apply equally well to v and u:

v

r

Position
at time ti

x

y Position at
time tf = ti + ∆t

∆uuf

ui

The particle has
an angular dis-
placement ∆u.

FIGURE 4.23 A particle moves with 
angular velocity v.

v is positive for a
counterclockwise
rotation.

v is negative for a
clockwise rotation.

FIGURE 4.24 Positive and negative 
angular velocities.

 v = slope of the u@versus@t graph at time t

  uf = ui + area under the v@versus@t curve between ti and tf (4.26)

 = ui + v  

∆t 

You will see many more instances where circular motion is analogous to linear motion  
with angular variables replacing linear variables. Thus much of what you learned 
about linear kinematics carries over to circular motion.
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4.4 Uniform Circular Motion 117

   NOTE    In physics, we nearly always want to give results as numerical values. 
 Example 4.9 had a p in the equation, but we used its numerical value to compute 
v = 5.0 m/s. However, angles in radians are an exception to this rule. It’s okay to 
leave a p in the value of u or v, and we have done so in Example 4.10.

Not surprisingly, the angular velocity v is closely related to the period and speed 
of the motion. As a particle goes around a circle one time, its angular displacement  
is ∆u = 2p rad during the interval ∆t = T. Thus, using the definition of angular 
velocity, we find

 0v 0 =
2p rad

T
  or  T =

2p rad

0v 0  (4.27)

The period alone gives only the absolute value of 0v 0 , which is the angular speed. 
You need to know the direction of motion to determine the sign of v.

FIGURE 4.25 shows the angular position of a painted dot on the 
edge of a rotating wheel. Describe the wheel’s motion and draw an 
v@versus@t graph.

SOLVE Although circular motion seems to “start over” every revo-
lution (every 2p rad), the angular position u continues to increase. 
u = 6p rad corresponds to three revolutions. This wheel makes  
3 ccw rev (because u is getting more positive) in 3 s, immediately 
reverses direction and makes 1 cw rev in 2 s, then stops at t = 5 s 

and holds the position u = 4p rad. The angular velocity is found by 
measuring the slope of the graph:

  t = 093 s    slope = ∆u/∆t = 6p rad/3 s = 2p rad/s

  t = 395 s  slope = ∆u/∆t = -2p rad/2 s = -p rad/s

  t 7 5 s  slope = ∆u/∆t = 0 rad/s

These results are shown as an v@versus@t graph in FIGURE 4.26. 
For the first 3 s, the motion is uniform circular motion with v =  
2p rad/s. The wheel then changes to a different uniform circular 
motion with v = -p rad/s for 2 s, then stops.

EXAMPLE 4.10 ■ A graphical representation of circular motion

1 3 6520 4

2p

0

4p

6p

t (s)

u (rad)

FIGURE 4.25 Angular position graph for the wheel of 
Example 4.10.

-p

0

p

2p
v (rad/s)

1 3 652 4
t (s)

The value of v is the 
slope of the angular 
position graph.

FIGURE 4.26 v@versus-t graph for the wheel of Example 4.10.

A small steel roulette ball rolls ccw around the inside of a 30-cm- 
diameter roulette wheel. The ball completes 2.0 rev in 1.20 s.

a. What is the ball’s angular velocity?

b. What is the ball’s position at t = 2.0 s? Assume ui = 0.

MODEL Model the ball as a particle in uniform circular motion.

SOLVE a. The period of the ball’s motion, the time for 1 rev, is 
T = 0.60 s. Angular velocity is positive for ccw motion, so

v =
2p rad

T
=

2p rad
0.60 s

= 10.47 rad/s

b. The ball starts at ui = 0 rad. After ∆t = 2.0 s, its position is

uf = 0 rad + 110.47 rad/s212.0 s2 = 20.94 rad

where we’ve kept an extra significant figure to avoid round-off 
error. Although this is a mathematically acceptable answer, an 
observer would say that the ball is always located somewhere 
between 0° and 360°. Thus it is common practice to subtract an 
integer number of 2p rad, representing the completed revolutions. 
Because 20.94/2p = 3.333, we can write

  uf = 20.94 rad = 3.333 * 2p rad

  = 3 * 2p rad + 0.333 * 2p rad

  = 3 * 2p rad + 2.09 rad

In other words, at t = 2.0 s the ball has completed 3 rev and is 
2.09 rad = 120° into its fourth revolution. An observer would say 
that the ball’s position is uf = 120°.

EXAMPLE 4.11 ■ At the roulette wheel
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118 CHAPTER 4 Kinematics in Two Dimensions 

As Figure 4.21 showed, the velocity vector v 

u is always tangent to the circle. In other 
words, the velocity vector has only a tangential component, which we will designate 
vt. The tangential velocity is positive for ccw motion, negative for cw motion.

Combining v = 2pr/T  for the speed with v = 2p/T  for the angular velocity—but 
keeping the sign of v to indicate the direction of motion—we see that the tangential 
velocity and the angular velocity are related by

 vt = vr  1with v in rad/s2 (4.28)

Because vt is the only nonzero component of v 

u, the particle’s speed is v = 0 vt 0 = 0v 0 r. 
We’ll sometimes write this as v = vr if there’s no ambiguity about the sign of v.

   NOTE    While it may be convenient in some problems to measure v in rev/s or rpm, 
you must convert to SI units of rad/s before using Equation 4.28.

As a simple example, a particle moving cw at 2.0 m/s in a circle of radius 40 cm 
has angular velocity

v =
vt

r
=

-2.0 m/s
0.40 m

= -5.0 rad/s

where vt and v are negative because the motion is clockwise. Notice the units. Velocity 
divided by distance has units of s-1. But because the division, in this case, gives us an 
angular quantity, we’ve inserted the dimensionless unit rad to give v the appropriate 
units of rad/s.

STOP TO THINK 4.5 A particle moves cw around a circle at constant speed for 2.0 s.  
It then reverses direction and moves ccw at half the original speed until it has traveled 
through the same angle. Which is the particle’s angle-versus-time graph?

u u u u

t t t t

(a) (b) (c) (d)

4.5 Centripetal Acceleration
FIGURE 4.27 shows a motion diagram of Maria riding a Ferris wheel at the amusement 
park. Maria has constant speed but not constant velocity because her velocity vector 
is changing direction. She may not be speeding up, but Maria is accelerating because 
her velocity is changing. The inset to Figure 4.27 applies the rules of Tactics Box 4.1 
to find that—at every point—Maria’s acceleration vector points toward the center 
of the circle. This is an acceleration due to changing direction rather than changing 
speed. Because the instantaneous velocity is tangent to the circle, vu and au are perpen-
dicular to each other at all points on the circle.

The acceleration of uniform circular motion is called centripetal acceleration, 
a term from a Greek root meaning “center seeking.” Centripetal acceleration is not 
a new type of acceleration; all we are doing is naming an acceleration that corre-
sponds to a particular type of motion. The magnitude of the centripetal acceleration 
is constant because each successive ∆vu in the motion diagram has the same length.

The motion diagram tells us the direction of au, but it doesn’t give us a value for 
the magnitude a. To complete our description of uniform circular motion, we need to 
find a quantitative relationship between a and the particle’s speed v. FIGURE 4.28 shows 

a
ua

u

a
u

a
u

a
u

va
u

va
u

vb
u

vb
u

All acceleration
vectors point to the
center of the circle.

Maria’s acceleration is an acceleration of
changing direction, not of changing speed.

Velocity 
vectors

u∆v

Whichever dot is 
selected, this method 
will show that ∆v 
points to the center 
of the circle.

u

FIGURE 4.27 Using Tactics Box 4.1 to find 
Maria’s acceleration on the Ferris wheel.

M04_KNIG8221_05_GE_C04.indd   118 02/06/2022   16:30



4.5 Centripetal Acceleration 119

va
u

vb
u

va
uvb

u

These are the velocities 
at times t and t + dt. 

Same
angle

ds

du

du
r

u
dv is the arc of a circle 
with arc length dv = vdu.

dv
u

FIGURE 4.28 Finding the acceleration of 
circular motion.

the velocity v 

u
a at one instant of motion and the velocity v 

u
b an infinitesimal amount of 

time dt later. During this small interval of time, the particle has moved through the 
infinitesimal angle du and traveled distance ds = r du.

By definition, the acceleration is au = d v 

u/dt. We can see from the inset to Figure 4.28 
that d v 

u points toward the center of the circle—that is, au is a centripetal acceleration. 
To find the magnitude of au, we can see from the isosceles triangle of velocity vectors 
that, if du is in radians,

 dv = 0 d v 

u 0 = vt du (4.29)

For uniform circular motion at constant speed, vt = ds/dt = r du/dt and thus the time 
to rotate through angle du is

 dt =
r du
vt

 (4.30)

Combining Equations 4.29 and 4.30, we see that the acceleration has magnitude

a = 0 au 0 =
0 d v 

u 0
dt

=
v du

r du/vt
=

vt
2

r

In vector notation, we can write

 au = 1vt
2

r
 , toward center of circle2  (centripetal acceleration) (4.31)

Using Equation 4.28, vt = vr, we can also express the magnitude of the centripetal 
acceleration in terms of the angular velocity v as

 a = v2r (4.32)

   NOTE    Centripetal acceleration is not a constant acceleration. The magnitude of the 
centripetal acceleration is constant during uniform circular motion, but the direction 
of au is continuously changing. Thus the constant-acceleration kinematics 
 equations of Chapter 2 do not apply to circular motion.

The Uniform Circular Motion Model
The uniform circular motion model is especially important because it applies not 
only to particles moving in circles but also to the uniform rotation of solid objects.

MODEL 4.2

Uniform circular motion
For motion with constant angular velocity v.

 ■ Applies to a particle moving along a circular 
trajectory at constant speed or to points on  
a solid object rotating at a steady rate.

 ■ Mathematically:
• The tangential velocity is vt = vr.

• The centripetal acceleration is vt
2/r or v2r.

• v and vt are positive for ccw rotation, 
negative for cw rotation.

 ■ Limitations: Model fails if rotation isn’t steady.
Exercise 20 

The velocity is tangent to the circle.
The acceleration points to the center.

a
u

a
u

a
u

r

v
u

v
u

v
u

v
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4.6 Nonuniform Circular Motion
A roller coaster car doing a loop-the-loop slows down as it goes up one side, speeds up 
as it comes back down the other. The ball in a roulette wheel gradually slows until it 
stops. Circular motion with a changing speed is called nonuniform circular motion. 
As you’ll see, nonuniform circular motion is analogous to accelerated linear motion.

FIGURE 4.29 shows a point speeding up as it moves around a circle. This might be a 
car speeding up around a curve or simply a point on a solid object that is rotating faster 
and faster. The key feature of the motion is a changing angular velocity. For linear 
motion, we defined acceleration as ax = dvx /dt. By analogy, let’s define the angular 
acceleration a (Greek alpha) of a rotating object, or a point on the object, to be

 a K
dv
dt
  (angular acceleration) (4.33)

Angular acceleration is the rate at which the angular velocity v changes, just as linear 
acceleration is the rate at which the linear velocity vx changes. The units of angular 
acceleration are rad/s2.

For linear acceleration, you learned that ax and vx have the same sign when an 
object is speeding up, opposite signs when it is slowing down. The same rule applies to 
circular and rotational motion: v and a have the same sign when the rotation is speed-
ing up, opposite signs if it is slowing down. These ideas are illustrated in FIGURE 4.30.

   NOTE    Be careful with the sign of a. You learned in Chapter 2 that positive and 
negative values of the acceleration can’t be interpreted as simply “speeding up” and 
“slowing down.” Similarly, positive and negative values of angular acceleration can’t 
be interpreted as a rotation that is speeding up or slowing down.

A typical carnival Ferris wheel has a radius of 9.0 m and rotates 
2.0 times per minute. What speed and acceleration do the riders 
experience?

MODEL Model the rider as a particle in uniform circular motion.

SOLVE The period is T = 1
2 min = 30 s. From Equation 4.21, a 

rider’s speed is

vt =
2pr

T
=

2p19.0 m2
30 s

= 1.88 m/s

Consequently, the centripetal acceleration has magnitude

a =
vt

2

r
=

11.88 m/s22

9.0 m
= 0.39 m/s2

REVIEW This was not intended to be a profound problem, merely 
to illustrate how centripetal acceleration is computed. The acceler-
ation is enough to be noticed and make the ride interesting, but not 
enough to be scary.

EXAMPLE 4.12 ■ The acceleration of a Ferris wheel

STOP TO THINK 4.6 Rank in order, from largest to smallest, the centripetal acceler-
ations aA to aE of particles A to E.

r

A

v

2r

D

v

2r

E

r

C

vr

B

2v

2v

v

v

The angular velocity is changing.

FIGURE 4.29 Circular motion with a 
changing angular velocity.
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4.6 Nonuniform Circular Motion 121

Angular position, angular velocity, and angular acceleration are defined exactly 
the same as linear position, velocity, and acceleration—simply starting with an an-
gular rather than a linear measurement of position. Consequently, the graphical 
interpretation and the kinematic equations of circular/rotational motion with 
constant angular acceleration are exactly the same as for linear motion with con-
stant acceleration. This is shown in the constant angular acceleration model 
below. All the problem-solving techniques you learned in Chapter 2 for linear motion 
carry over to circular and rotational motion.

v 7 0

a 7 0

Speeding up ccw

v 7 0

a 6 0

Slowing down ccw

v 6 0

a 7 0

Slowing down cw

v 6 0

a 6 0

Speeding up cw

Initial angular velocity

FIGURE 4.30 The signs of angular velocity and acceleration. The rotation is speeding up if  
v and a have the same sign, slowing down if they have opposite signs.

FIGURE 4.31a is a graph of angular velocity versus time for a rotating  
wheel. Describe the motion and draw a graph of angular acceleration  
versus time.

SOLVE This is a wheel that starts from rest, gradually speeds up 
counterclockwise until reaching top speed at t1, maintains a constant 
angular velocity until t2, then gradually slows down until stopping 
at t3. The motion is always ccw because v is always positive. The 
angular acceleration graph of FIGURE 4.31b is based on the fact that 
a is the slope of the v@versus@t graph.

Conversely, the initial linear increase of v can be seen as the 
increasing area under the a@versus@t graph as t increases from 0 to 
t1 . The angular velocity doesn’t change from t1  to t2  when the area 
under the a@versus@t is zero.

EXAMPLE 4.13 ■ A rotating wheel

t
0 t1 t2 t3

Constant positive
slope, so a is positive.

Zero slope,
so a is zero.

Constant negative
slope, so a is negative.

t
0 t1

t2 t3

(a)

(b) a

v

▶ FIGURE 4.31 v-versus-t graph and the corresponding  
a-versus-t graph for a rotating wheel.

MODEL 4.3

Constant angular acceleration
For motion with constant angular acceleration a.

 ■ Applies to particles with  
circular trajectories and  
to rotating solid objects.

 ■ Mathematically: The graphs and equations for this  
circular/rotational motion are analogous to linear  
motion with constant acceleration.

• Analogs: s S u vs S v as S a 

Rotational kinematics Linear kinematics 

vf = vi + a ∆t vfs = vis + as ∆t

uf = ui + vi ∆t + 1
2

 
a1∆t22 sf = si + vis ∆t + 1

2 as1∆t22

vf
2 = vi

2 + 2a ∆u vfs
2 = vis

2 + 2as ∆s

a

u

v

t
v is the
slope of u 

a is the
slope of v

v

t

t
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122 CHAPTER 4 Kinematics in Two Dimensions 

Tangential Acceleration
FIGURE 4.32 shows a particle in nonuniform circular motion. Any circular motion, 
whether uniform or nonuniform, has a centripetal acceleration because the particle is 
changing direction; this was the acceleration component au# of Figure 4.6. As a vector 
component, the centripetal acceleration, which points radially toward the center of the 
circle, is the radial acceleration ar. The expression ar = vt 

2/r = v2r is still valid in 
nonuniform circular motion.

For a particle to speed up or slow down as it moves around a circle, it needs—
in addition to the centripetal acceleration—an acceleration parallel to the trajectory 
or, equivalently, parallel to vu. This is the acceleration component au ‘ associated with 
changing speed. We’ll call this the tangential acceleration at because, like the 
velocity vt 

, it is always tangent to the circle. Because of the tangential acceleration, 
the acceleration vector au of a particle in nonuniform circular motion does not 
point toward the center of the circle. It points “ahead” of center for a particle that 
is speeding up, as in Figure 4.32, but it would point “behind” center for a particle 
slowing down. You can see from Figure 4.32 that the magnitude of the acceleration is

 a = 2ar 

2 + at 

2 (4.34)

If at is constant, then the arc length s traveled by the particle around the circle and the 
tangential velocity vt are found from constant-acceleration kinematics:

  sf = si + vit ∆t + 1
2 at 1∆t22 

(4.35)
 vft = vit + at ∆t

Because tangential acceleration is the rate at which the tangential velocity changes, 
at = dvt /dt, and we already know that the tangential velocity is related to the angular 
velocity by vt = vr, it follows that

 at =
dvt

dt
=

d1vr2
dt

=
dv
dt

 r = ar (4.36)

Thus vt = vr and at = ar are analogous equations for the tangential velocity and 
acceleration. In Example 4.14, where we found the fan to have angular acceleration 
a = -0.25 rad/s2, a blade tip 65 cm from the center would have tangential acceleration

at = ar = 1-0.25 rad/s2210.65 m2 = -0.16 m/s2

a
u

at

ar

The radial or centripetal 
acceleration causes the 
particle to change direction. 

The velocity is always tangent to the circle,
so the radial component vr is always zero.

The tangential acceleration 
causes the particle to 
change speed.

v
u

v

FIGURE 4.32 Acceleration in nonuniform 
circular motion.

A ceiling fan spinning at 60 rpm coasts to a stop 25 s after being 
turned off. How many revolutions does it make while stopping?

MODEL Model the fan as a rotating object with constant angular 
acceleration.

SOLVE We don’t know which direction the fan is rotating, but the 
fact that the rotation is slowing tells us that v and a have opposite 
signs. We’ll assume that v is positive. We need to convert the initial 
angular velocity to SI units:

vi = 60 
rev

 min 
*

1 min
60 s

*
2p rad
1 rev

= 6.28 rad/s

We can use the first rotational kinematics equation in Model 4.3 to 
find the angular acceleration:

a =
vf - vi

∆t
=

0 rad/s - 6.28 rad/s
25 s

= -0.25 rad/s2

Then, from the second rotational kinematic equation, the angular 
displacement during these 25 s is

  ∆u = vi ∆t + 1
2 a1∆t22

  = 16.28 rad/s2125 s2 + 1
2 1-0.25 rad/s22125 s22

  = 78.9 rad *
1 rev

2p rad
= 13 rev

The kinematic equation returns an angle in rad, but the question 
asks for revolutions, so the last step was a unit conversion.

REVIEW Turning through 13 rev in 25 s while stopping seems rea-
sonable. Notice that the problem is solved just like the linear kine-
matics problems you learned to solve in Chapter 2.

EXAMPLE 4.14 ■ A slowing fan
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4.6 Nonuniform Circular Motion 123

You’ve been assigned the task of measuring the start-up character-
istics of a large industrial motor. After several seconds, when the 
motor has reached full speed, you know that the angular acceleration 
will be zero, but you hypothesize that the angular acceleration 
may be constant during the first couple of seconds as the motor 
speed increases. To find out, you attach a shaft encoder to the  
3.0-cm-diameter axle. A shaft encoder is a device that converts the 
angular position of a shaft or axle to a signal that can be read by a 
computer. After setting the computer program to read four values a 
second, you start the motor and acquire the following data:

Time (s) Angle (°) Time (s) Angle (°)

0.00 0 1.00 267

0.25 16 1.25 428

0.50 69 1.50 620

0.75 161

a. Do the data support your hypothesis of a constant angular 
acceleration? If so, what is the angular acceleration? If not, is the 
angular acceleration increasing or decreasing with time?

b. A 76-cm-diameter blade is attached to the motor shaft. At what 
time does the acceleration of the tip of the blade reach 10 m/s2?

MODEL The axle is rotating with nonuniform circular motion. 
Model the tip of the blade as a particle.

VISUALIZE FIGURE 4.33 shows that the blade tip has both a 
tangential and a radial acceleration.

SOLVE a. If the motor starts up with constant angular acceleration, 
with ui = 0 and vi = 0 rad/s, the angle-time equation of rotational 
kinematics is u = 1

2  at2. This can be written as a linear equation 
y = mx + b if we let u = y and t2 = x. That is, constant angular ac-
celeration predicts that a graph of u versus t2 should be a straight 
line with slope m = 1

2  a and y-intercept b = 0. We can test this.
FIGURE 4.34 is the graph of u versus t2, and it confirms 

our hypothesis that the motor starts up with constant angular 
acceleration. The best-fit line, found using a spreadsheet, gives a 

slope of 274.6°/s2. The units come not from the spreadsheet but by 
looking at the units of rise 1°2 over run (s2 because we’re graphing 
t2 on the x-axis). Thus the angular acceleration is

a = 2m = 549.2°/s2 *
p rad
180°

= 9.6 rad/s2

where we used 180° = p rad to convert to SI units of rad/s2.

b. The magnitude of the linear acceleration is

a = 2ar 

2 + at 

2

The tangential acceleration of the blade tip is

at = ar = 19.6 rad/s2210.38 m2 = 3.65 m/s2

We were careful to use the blade’s radius, not its diameter, and we 
kept an extra significant figure to avoid round-off error. The radial 
(centripetal) acceleration increases as the rotation speed increases, 
and the total acceleration reaches 10 m/s2 when

ar = 2a2 - at 

2 = 2110 m/s222 - 13.65 m/s222 = 9.31 m/s2

Radial acceleration is ar = v2r, so the corresponding angular ve-
locity is

v = Aar

r
= B 9.31 m/s2

0.38 m
= 4.95 rad/s

For constant angular acceleration, v = at, so this angular velocity 
is achieved at

t =
v

a
=

4.95 rad/s

9.6 rad/s2 = 0.52 s

Thus it takes 0.52 s for the acceleration of the blade tip to reach 10 m/s2.

REVIEW The acceleration at the tip of a long blade is likely to be 
large. It seems plausible that the acceleration would reach 10 m/s2 
in ≈0.5 s.

EXAMPLE 4.15 ■ Analyzing rotational data

FIGURE 4.33 Pictorial representation of the axle and blade.

t 2 (s2)

u (°)

1.00.50.0
0

1.5 2.0 2.5

200

100

400

300

700

600

500

y = 274.6x + 0.1

Best-fit line

FIGURE 4.34 Graph of u versus t2 for the motor shaft.

STOP TO THINK 4.7 The fan blade is slowing down. What 
are the signs of v and a?

a. v is positive and a is positive.
b. v is positive and a is negative.
c. v is negative and a is positive.
d. v is negative and a is negative.
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124 CHAPTER 4 Kinematics in Two Dimensions 

Amanda is riding on a 20.0-m-diameter Ferris wheel. The bottom 
of the wheel is at ground level. As Amanda goes over the top, she 
throws a 120 g ball forward, parallel to the ground, at a speed of 
7.00 m/s. What angular speed, in rpm, must the Ferris wheel have 
for the ball to hit a target on the ground 20.0 m from the bottom of 
the wheel?

MODEL Model the ball as a particle. It first undergoes uniform 
circular motion with constant angular velocity. We will ignore air 
resistance and model the subsequent motion as projectile motion.

VISUALIZE FIGURE 4.35 is a pictorial representation. We’ve estab-
lished a coordinate system with the origin at the base of the Ferris 
wheel. We don’t know which direction the Ferris wheel rotates, so 
we’ve assumed a clockwise rotation. This is a two-part problem 
in which the tangential velocity of the rotating ball combines with 
Amanda’s throwing speed to give the initial velocity of the projec-
tile motion. Each point in the projectile motion requires two com-
ponents of position, two components of velocity, and the time.

SOLVE Amanda and the ball are initially moving in uniform circu-
lar motion with speed v = ∙v ∙R. We need the absolute value signs 
because v is negative for the clockwise rotation we used in the pic-
torial representation. Velocity vectors are tangent to the circle, so 
Amanda’s velocity at the top point, the instant she throws the ball, 
is v 

u
AG = ∙v ∙R in. The notation v 

u
AG indicates that this is Amanda’s 

velocity relative to the ground. Amanda’s throwing speed allows us 
to infer that the ball’s velocity relative to Amanda is v 

u
BA = vthrowin. 

We can add these velocities, using the Galilean transformation of 
velocity, to find that the ball’s velocity relative to the ground, just 
as Amanda releases it, is

v 

u
BG = v 

u
BA + v 

u
AG = (vthrow + ∙v ∙R) in

Thus the projectile is launched from the top of the Ferris wheel with 
v0x = vthrow + ∙v ∙R and v0y = 0.

The vertical motion, with zero initial velocity, is simply the mo-
tion of an object dropped from height y0 = 2R = 20.0 m. We can 
find the time it takes to fall to the ground from

y1 = 0 m = y0 + v0y ∆t - 1
2 g(∆t)2 = 2R - 1

2 gt1
2

Thus the ball hits the ground at time

t1 = A4R
g

= A 40.0 m

9.80 m/s2 = 2.02 s

During this time, the ball travels horizontally with constant velocity 
v0x to

x1 = x0 + v0x ∆t = (vthrow + ∙v ∙R)t1

Amanda is trying to hit a target at x1 = 20.0 m, and she will suc-
ceed if the Ferris wheel’s angular speed is

∙v ∙ =
x1/t1 - vthrow

R
=

(20.0 m)/(2.02 s) - 7.00 m/s

10.0 m
= 0.290 rad/s

The SI units of angular speed are rad/s, but the question asks for an 
answer in rpm. Thus we need to convert the units:

∙v ∙ = 0.290 
rad
s

*
1 rev

2p rad
*

60 s
1 min

= 2.77 rpm

REVIEW 2.77 revolutions every minute, or a revolution every 22 s,  
seems appropriate for a fairly small carnival-size Ferris wheel. 
Remember that the purpose of a review is not to prove that the 
answer is correct but to rule out answers that are obviously incorrect. 
Notice that we did not need to know the ball’s mass. Real-world 
problems don’t come neatly packaged with exactly the information 
we need and nothing else, so part of becoming a better problem 
solver is learning to judge which information is relevant. Some 
homework problems will help you develop this skill by providing 
details that aren’t necessary.

 CHAPTER 4 CHALLENGE EXAMPLE   Hit the target!

FIGURE 4.35 Pictorial representation of the motion of the ball.
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Relative Motion
If object C moves relative to reference 
frame A with velocity v 

u
CA, then it moves  

relative to a different reference frame B 
with velocity

v 

u
CB = v 

u
CA + v 

u
AB

where v 

u
AB is the velocity of A relative 

to B. This is the Galilean transformation 
of velocity.

Nonuniform Circular Motion
Angular acceleration a = dv/dt.
The radial acceleration

ar =
vt

2

r
= v2r

changes the particle’s direction. The tangential component

at = ar

changes the particle’s speed.

Projectile motion is motion under the 
influence of only gravity.

MODEL Model as a particle launched 
with speed v0 at angle u.

VISUALIZE Use coordinates with the 
x-axis horizontal and the y-axis vertical.

SOLVE The horizontal motion is uniform with vx = v0 cos u. The 
vertical motion is free fall with ay = -g. The x and y kinematic 
equations have the same value for ∆t.

The instantaneous velocity

v 

u = d r u/dt

is a vector tangent to the trajectory.

The instantaneous acceleration is

au = d v 

u/dt

au ‘, the component of au parallel to v 

u, is responsible for change of 
speed. au#, the component of au perpendicular to v 

u, is responsible 
for change of direction.

Uniform Circular Motion
Angular velocity v = du/dt.
vt and v are constant:

vt = vr

The centripetal acceleration points toward the 
center of the circle with magnitude

a = 0 au 0 =
vt

2

r
= v2r

It changes the particle’s direction but not its speed.

Kinematics in two dimensions
If au is constant, then the x- and y-components of motion are 
independent of each other.

 xf = xi + vix ∆t + 1
2 ax  1∆t22

 yf = yi + viy ∆t + 1
2 ay  1∆t22

 vfx = vix + ax ∆t

 vfy = viy + ay ∆t

Circular motion kinematics

Period T =
2pr

v
=

2p
v

Angular position u =
s
r

Constant angular acceleration

vf = vi + a ∆t

uf = ui + vi ∆t + 1
2 a1∆t22

vf 

2 = vi 

2 + 2a ∆u

Circular motion graphs and  
kinematics are analogous to linear 
motion with constant acceleration.

Angle, angular velocity, and angular 
acceleration are related graphically.

• The angular velocity is the slope of 
the angular position graph.

• The angular acceleration is the slope 
of the angular velocity graph.

General Principles

Important Concepts

Applications

The goal of Chapter 4 has been to learn how to solve problems 
about motion in a plane.

Summary

v
u

x

y

a ‘

a#

a
u

u

u

A

y

x

B

y

x

Reference
frame A

Reference frame B

C

Object C moves relative
to both A and B.

a
u

v
u

v
a
u

v
u

v

ar

at

u
x

y

v0
u

The trajectory
is a parabola.

v
u

u

v

sr

a

u

v

t

t

t
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126 CHAPTER 4 Kinematics in Two Dimensions 

projectile
launch angle, u
projectile motion model
reference frame
Galilean transformation  
 of velocity

uniform circular motion
period, T
angular position, u
arc length, s
radians
angular displacement, ∆u

angular velocity, v
centripetal acceleration
uniform circular motion  
 model
nonuniform circular  
 motion

angular acceleration, a
constant angular acceleration  
 model
radial acceleration, ar

tangential acceleration, at

Terms and Notation

CONCEPTUAL QUESTIONS

Which ball was thrown at a faster speed? Or were they thrown 
with the same speed? Explain.

1. a. At this instant, is the particle in FIGURE Q4.1 speeding up, 
slowing down, or traveling at constant speed?

b. Is this particle curving to the right, curving to the left,  
or traveling straight?

a
u

v
u

FIGURE Q4.1

a
u

v
u

FIGURE Q4.2

2. a. At this instant, is the particle in FIGURE Q4.2 speeding up, 
slowing down, or traveling at constant speed?

b. Is this particle curving upward, curving downward, or 
traveling straight?

3. Three cricket balls are thrown from a tall tower—the first one 
is released from rest; the second one is thrown with a horizon-
tal velocity of 7 m/s eastward; and the last one is thrown with a 
 horizontal velocity of 10 m/s westward. Which of the balls will 
be the first to touch the ground?

4. A projectile is launched at an angle of 45°.
a. Is there any point on the trajectory where v 

u and au are parallel 
to each other? If so, where?

b. Is there any point where v 

u and au are perpendicular to one 
other? If so, where?

5. For a projectile, which of the following quantities are constant 
during the flight: x, y, r, vx  , vy  , v, ax  , ay  ? Which of these quantities 
are zero throughout the flight?

6. A cart that is rolling at constant velocity on a level table fires a 
ball straight up.
a. When the ball comes back down, will it land in front of the 

launching tube, behind the launching tube, or directly in the 
tube? Explain.

b. Will your answer change if the cart is accelerating in the 
forward direction? If so, how?

7. A rock is thrown from a bridge at an angle 45° below the hori-
zontal. Is the magnitude of acceleration, immediately after the 
rock is released, greater than, less than, or equal to g? Explain.

8. Anita is running to the right at 5 m/s in FIGURE Q4.8. Balls 1 
and 2 are thrown toward her by friends standing on the ground. 
According to Anita, both balls are approaching her at 10 m/s. 

5 m/s

1 2

FIGURE Q4.8

Zack

13
2

FIGURE Q4.10

Zack

Yvette

13

2

FIGURE Q4.11

9. An electromagnet on the ceiling of an airplane holds a steel ball. 
When a button is pushed, the magnet releases the ball. First, the 
button is pushed while the plane is parked on the ground. The 
point where the ball hits the floor is marked with an X. Next, the 
experiment is repeated while the plane is flying horizontally at 
a steady speed of 620 mph. Does the ball land in front of the X 
(toward the nose of the plane), on the X, or behind the X (toward 
the tail of the plane)? Explain.

10. Zack is driving past his house in FIGURE Q4.10. He wants to toss 
his physics book out the window and have it land in his driveway. 
If he lets go of the book exactly as he passes the end of the drive-
way, should he direct his throw outward and toward the front 
of the car (throw 1), straight outward (throw 2), or outward and 
toward the back of the car (throw 3)? Explain.

11. In FIGURE Q4.11, Yvette and Zack are driving down the freeway  
side by side with their windows down. Zack wants to toss 
his physics book out the window and have it land in Yvette’s 
front seat. Ignoring air resistance, should he direct his throw 
outward and toward the front of the car (throw 1), straight 
outward (throw 2), or outward and toward the back of the car 
(throw 3)? Explain.
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14. FIGURE Q4.14 shows four rotating wheels. For each, determine 
the signs 1+  or -2 of v and a.

12. You tie a cricket ball with a string and hang it from a tall pole. 
The ball is then struck with a cricket bat. Ignoring the mass of 
the string, what should be the direction of the acceleration if it 
attains a constant speed along a circular path centering the pole? 
Which force is responsible for this acceleration?

13. FIGURE Q4.13 shows three points on a 
steadily rotating wheel.
a. Rank in order, from largest to smallest,  

the angular velocities v1, v2, and 
v3 of these points. Explain.

b. Rank in order, from largest to 
smallest, the speeds v1, v2, and v3 of 
these points. Explain.

1 2

3

FIGURE Q4.13

Speeding
up

Slowing
down

Slowing
down

Speeding
up

(a) (b) (c) (d)

FIGURE Q4.14

FIGURE Q4.15

FIGURE EX4.1

v
u Side view of motion in

a vertical plane

FIGURE EX4.2 v
u

Top view of motion in
a horizontal plane

Circular arc

15. FIGURE Q4.15 shows a pendulum at one end 
point of its arc.
a. At this point, is v positive, negative, or 

zero? Explain.
b. At this point, is a positive, negative, or 

zero? Explain.

EXERCISES AND PROBLEMS

Exercises

Section 4.1 Motion in Two Dimensions

Problems 1 and 2 show a partial motion diagram. For each:
a. Complete the motion diagram by adding acceleration vectors.
b. Write a physics problem for which this is the correct motion 

diagram. Be imaginative! Don’t forget to include enough infor-
mation to make the problem complete and to state clearly what 
is to be found.

1. |

5. |  a. At this moment, is the particle in 
FIGURE EX4.5 speeding up, slowing 
down, or moving at constant speed?

b. Is this particle curving upward, curv-
ing downward, or moving in a straight 
line?

6. || A rocket-powered hockey puck moves on a horizontal friction-
less table. FIGURE EX4.6 shows graphs of vx and vy, the x- and 
y-components of the puck’s velocity. The puck starts at the origin.
a. In which direction is the puck moving at t = 2 s? Give your 

answer as an angle from the x-axis.
b. How far from the origin is the puck at t = 5 s?

2. |

Answer Problems 3 and 4 by choosing one 
of the eight labeled acceleration vectors or 
selecting option I: au = 0

u
.

A.

E.

B.

C.G.

D.

H.

F.

I. a = 0
u u

3. || At this instant, the particle has 
steady speed and is curving to the 
right. What is the direction of its 
acceleration?

4. || At this instant, the particle is speed-
ing up and curving upward. What is 
the direction of its acceleration?

FIGURE EX4.3

v
u

FIGURE EX4.4

v
u

FIGURE EX4.5

a
u

v
u

t (s)

vx (cm/s)

10

10

0
2 3 4 5

20

30

40

t (s)

vy (cm/s)

10

10

0
2 3 4 5

20

30

40

FIGURE EX4.6

7. || A rocket-powered hockey puck moves on a horizontal 
frictionless table. FIGURE EX4.7 shows graphs of vx and vy, the 
x- and y-components of the puck’s velocity. The puck starts at 
the origin. What is the magnitude of the puck’s acceleration  
at t = 5 s?

t (s)

vx (m/s)

10

-10

5
0

10

t (s)

vy (m/s)

10

-10

5
0

10

FIGURE EX4.7
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19. | Mary needs to row her boat across a river 100 m wide that 
is flowing to the east at a speed of 2 m/s. Mary can row with a 
speed of 4 m/s.
a. If Mary points her boat due north, how far will she be from her 

intended landing spot when she reaches the opposite shore?
b. What is her speed with respect to the shore?

20. || When the moving sidewalk at the airport is broken, as it often 
seems to be, it takes you 50 s to walk from your gate to baggage 
claim. When it is working and you stand on the moving sidewalk 
the entire way, without walking, it takes 75 s to travel the same 
distance. How long will it take you to travel from the gate to 
baggage claim if you walk while riding on the moving sidewalk?

21. | A kayaker needs to paddle north across an 80-m-wide harbor. 
The tide is going out, creating a current that flows to the east at 
3 m/s. The kayaker can paddle with a speed of 4 m/s.
a. In which direction should he paddle in order to travel straight 

across the harbor?
b. How long will it take him to cross the harbor?

22. || Harmeet, driving west at 54 km/h, and Kenza, driving south 
at 72 km/h, are approaching an intersection. What is Kenza’s 
speed relative to Harmeet’s reference frame?

Section 4.4 Uniform Circular Motion

23. || FIGURE EX4.23 shows the angular-velocity-versus-time graph 
for a particle moving in a circle. How many revolutions does the 
object make during the first 4 s?

8. || A particle moving in the xy-plane has velocity v 

u =   
12tin + (3 - t2)jn2 m/s,  where t is in s. What is the particle’s accel-
eration vector at t = 4 s?

9. || A particle’s trajectory is described by x = 11
6 t3 - t22m and 

y = 11
6 t2 - t2m, where t is in s.

a. What are the particle’s position and speed at t = 0 s and 
t = 6 s?

b. What is the particle’s direction of motion, measured as an 
angle from the x-axis, at t = 0 s and t = 6 s?

10. || You have a remote-controlled car that has been programmed 
to have velocity v 

u = 1-3tin + 2t2jn2 m/s, where t is in s. At t = 0 s, 
the car is at r u

0 = 13.0in + 2.0jn2 m. What are the car’s (a) position 
 vector and (b) acceleration vector at t = 2.0 s?

Section 4.2 Projectile Motion

11. || A ball thrown horizontally at 20 m/s travels a horizontal dis-
tance of 40 m before hitting the ground. From what height was 
the ball thrown?

12. || A supply plane needs to drop a package of food to scientists 
working on a glacier in Greenland. The plane flies 80 m above 
the glacier at a speed of 100 m/s. How far short of the target 
should it drop the package?

13. | A physics student on Planet Exidor throws a ball, and it follows  
the parabolic trajectory shown in FIGURE EX4.13. The ball’s 
 position is shown at 1 s intervals until t = 3 s. At t = 1 s, the 
ball’s velocity is v 

u = 12.0 in + 2.0 jn2 m/s.
a. Determine the ball’s velocity at t = 0 s, 2 s, and 3 s.
b. What is the value of g on Planet Exidor?
c. What was the ball’s launch angle?

x

y

0 s

1 s 3 s

2 s

v = (2.0d + 2.0e ) m/s
u

nn

FIGURE EX4.13

14. || In the Olympic shotput event, an athlete throws the shot with 
an initial speed of 12.0 m/s at a 40.0° angle from the horizontal. 
The shot leaves her hand at a height of 1.80 m above the ground. 
How far does the shot travel?

15. | A rifle is aimed horizontally at a target 40 m away. The bullet 
hits 1 cm below the target.
a. What was the bullet’s flight time?
b. What was the bullet’s speed as it left the barrel?

16. || A friend of yours is a baseball player and wants to determine 
his pitching speed. You have him stand on a ledge and throw the 
ball horizontally from an elevation of 6 m above the ground. The 
ball lands 40 m away. What is his pitching speed?

17. || On the Apollo 14 mission to the moon, astronaut Alan Shepard  
hit a golf ball with a 6 iron. The free-fall acceleration on the 
moon is 1/6 of its value on earth. Suppose he hit the ball with a 
speed of 25 m/s at an angle 30° above the horizontal.
a. How much farther did the ball travel on the moon than it 

would have on earth?
b. For how much more time was the ball in flight?

Section 4.3 Relative Motion

18. || A boat takes 3.0 hours to travel 24 km down a river, then  
4.0 hours to return. How fast is the river flowing?

t (s)
10 2 3 4

v (rad/s)

10

20

0

FIGURE EX4.23
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FIGURE EX4.24
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24. | FIGURE EX4.24 shows the angular-position-versus-time graph 
for a particle moving in a circle. What is the particle’s angular 
velocity at (a) t = 1 s, (b) t = 4 s, and (c) t = 7 s?

25. || FIGURE EX4.25 shows the angular-velocity-versus-time graph 
for a particle moving in a circle, starting from u0 = 0 rad at 
t = 0 s. Draw the angular-position-versus-time graph. Include an 
appropriate scale on both axes.

26. | An old-fashioned single-play vinyl record rotates on a 
 turntable at 72 rpm. What is
a. the angular velocity in rad/s?
b. the period of the motion?

27. || The earth’s radius is about 4000 miles. Kampala, the capital 
of Uganda, and Singapore are both nearly on the equator. The 
distance between them is 5000 miles. The flight from Kampala 
to Singapore takes 9.0 hours. What is the plane’s angular velocity 
with respect to the earth’s surface? Give your answer in °/h.
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39. || A wheel initially rotating 
at 60 rpm experiences the an-
gular acceleration shown in 
FIGURE EX4.39. What is the 
wheel’s angular velocity, in 
rpm, at t = 3.0 s?

28. || As the earth rotates, what is the speed of (a) a physics  student 
in Kyoto, Japan, at latitude 35°, and (b) a physics student in 
Copenhagen, Denmark, at latitude 56°? Ignore the revolution of 
the earth around the sun. The radius of the earth is 6400 km.

29. || Mount Chimborazo is located on the equator and is the highest 
point above the center of the earth. The summit of Chimborazo 
is 6263 m above sea level. How much faster does a climber on 
top of the mountain move than a surfer at a nearby beach? The 
earth’s radius is 6400 km.

30. | How fast must a plane fly along the earth’s equator so that 
the sun stands still relative to the passengers? In which direction 
must the plane fly, east to west or west to east? Give your answer 
in both km/h and mph. The earth’s radius is 6400 km.

Section 4.5 Centripetal Acceleration

31. | Peregrine falcons are known for their maneuvering ability. In 
a tight circular turn, a falcon can attain a centripetal acceleration 
1.5 times the free-fall acceleration. What is the radius of the turn 
if the falcon is flying at 25 m/s?

32. | To withstand “g-forces” of up to 10 g’s, caused by suddenly 
pulling out of a steep dive, fighter jet pilots train on a “human cen-
trifuge.” 10 g’s is an acceleration of 98 m/s2. If the length of the  
centrifuge arm is 12 m, at what speed is the rider moving when she  
experiences 10 g’s?

33. | The radius of the earth’s very nearly circular orbit around 
the sun is 1.5 * 1011 m. Find the magnitude of the earth’s  
(a) velocity, (b) angular velocity, and (c) centripetal acceleration 
as it travels around the sun. Assume a year of 365 days.

34. | A speck of dust on a spinning DVD has a centripetal acceler-
ation of 20 m/s2.
a. What is the acceleration of a different speck of dust that is 

twice as far from the center of the disk?
b. What would be the acceleration of the first speck of dust if 

the disk’s angular velocity was doubled?
35. || Your roommate is working on her bicycle and has the bike 

 upside down. She spins the 70-cm-diameter wheel, and you 
 notice that a pebble stuck in the tread goes by four times every 
second. What are the pebble’s speed and acceleration?

Section 4.6 Nonuniform Circular Motion

36. | FIGURE EX4.36 shows the angular velocity graph of the crank-
shaft in a car. What is the crankshaft’s angular acceleration at  
(a) t = 1 s, (b) t = 3 s, and (c) t = 5 s?
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FIGURE EX4.36

t (s)
5 10

a (rad/s2)

2

4

-4

-2

0

FIGURE EX4.37

t (s)
1 2 3

a (rad/s2)

2

4

0
0FIGURE EX4.39

t (s)
10 2 3 4

v (rad/s)

10

20

0
FIGURE EX4.38

37. | A turntable initially rotating at 20 rad/s experiences the angu-
lar acceleration shown in FIGURE EX4.37. What is the turntable’s 
angular velocity at (a) t = 5 s and (b) t = 10 s?

38. || FIGURE EX4.38 shows the an - 
gular-velocity-versus-time graph  
for a particle moving in a circle.  
How many revolutions does the  
object make during the first 4 s?

40. || A 5.0-m-diameter merry-
go-round is initially turning with a 4.0 s period. It slows down 
and stops in 20 s.
a. Before slowing, what is the speed of a child on the rim?
b. How many revolutions does the merry-go-round make as it 

stops?
41. || A bicycle wheel is rotating at 50 rpm when the cyclist begins 

to pedal harder, giving the wheel a constant angular acceleration 
of 0.50 rad/s2.
a. What is the wheel’s angular velocity, in rpm, 10 s later?
b. How many revolutions does the wheel make during this time?

42. || An electric fan goes from rest to 1800 rpm in 4.0 s. What is its 
angular acceleration?

43. || Starting from rest, a DVD steadily accelerates to 500 rpm in  
1.0 s, rotates at this angular speed for 3.0 s, then steadily 
decelerates to a halt in 2.0 s. How many revolutions does it make?

Problems
44. ||| A spaceship maneuvering near Planet Zeta is located at 

r u = 1600in - 400jn + 200kn2 * 103 km, relative to the planet, and 
traveling at v 

u = 9500in m/s. It turns on its thruster engine and 
accelerates with a u = 140in - 20kn2 m/s2 for 35 min. What is the 
spaceship’s position when the engine shuts off? Give your answer 
as a position vector measured in km.

45. ||| A particle moving in the xy-plane has velocity v 

u
0 = v0x in + v0yjn 

at t = 0. It undergoes acceleration au = btin - cvyjn, where b and c 
are constants. Find an expression for the particle’s velocity at a 
later time t.

46. || a. A projectile is launched with speed v0 and angle u. Derive 
an expression for the projectile’s maximum height h.

b. A baseball is hit with a speed of 33.6 m/s. Calculate its 
height and the distance traveled if it is hit at angles of 
30.0°, 45.0°, and 60.0°.

47. || A projectile’s horizontal range over level ground is v0 

2 sin 2u/g.  
At what launch angle or angles will the projectile land at half of 
its maximum possible range?

48. || A projectile is launched from ground level at angle u and 
speed v0 into a headwind that causes a constant horizontal 
acceleration of magnitude a opposite the direction of motion.
a. Find an expression in terms of a and g for the launch angle 

that gives maximum range.
b. What is the angle for maximum range if a is 10% of g?

49. || A gray kangaroo can bound across level ground with each 
jump carrying it 10 m from the takeoff point. Typically the kan- 
garoo leaves the ground at a 20° angle. If this is so:
a. What is its takeoff speed?
b. What is its maximum height above the ground?

50. || A ball is thrown toward a cliff of height h with a speed of 
30 m/s and an angle of 60° above horizontal. It lands on the edge 
of the cliff 4.0 s later.
a. How high is the cliff?
b. What was the maximum height of the ball?
c. What is the ball’s impact speed?
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b. How far has the cannonball traveled horizontally when it 
reaches its maximum height?

c. What is the angle after the cannonball travels 500 m?
60. || Ships A and B leave port together. For the next two hours, 

ship A travels at 20 mph in a direction 30° west of north while 
ship B travels 20° east of north at 25 mph.
a. What is the distance between the two ships two hours after 

they depart?
b. What is the speed of ship A as seen by ship B?

61. || While driving north at 10 m/s during a rainstorm, you notice 
that the rain makes an angle of 41° with the vertical. While 
driving back home moments later at the same speed but in the 
opposite direction, you see that the rain is falling straight down. 
From these observations, determine the speed and angle of the 
raindrops relative to the ground.

62. || You are asked to consult for the city’s research hospital, 
where a group of doctors is investigating the bombardment of 
cancer tumors with high-energy ions. As FIGURE P4.62 shows, 
ions are fired directly toward the center of the tumor at speeds 
of 5.0 * 106 m/s. To cover the entire tumor area, the ions are de-
flected sideways by passing them between two charged metal 
plates that accelerate the ions perpendicular to the direction of 
their initial motion. The acceleration region is 5.0 cm long, and 
the ends of the acceleration plates are 1.5 m from the target. 
What sideways acceleration is required to deflect an ion 2.0 cm 
to one side?

51. || You are target shooting using a toy gun that fires a small ball 
at a speed of 15 m/s. When the gun is fired at an angle of 30° 
above horizontal, the ball hits the bull’s-eye of a target at the 
same height as the gun. Then the target distance is halved. At 
what angle must you aim the gun to hit the bull’s-eye in its new 
position? (Mathematically there are two solutions to this prob-
lem; the physically reasonable answer is the smaller of the two.)

52. || A tennis player hits a ball 2.0 m above the ground. The ball 
leaves his racquet with a speed of 20.0 m/s at an angle 5.0° above 
the horizontal. The horizontal distance to the net is 7.0 m, and 
the net is 1.0 m high. Does the ball clear the net? If so, by how 
much? If not, by how much does it miss?

53. || A snowboarder starts down a frictionless, 8.0-m-tall, 15° 
slope. The slope ends abruptly at the top of a 4.0-m-high wall 
that has level packed snow at its base. How far does the snow-
boarder land from the base of the wall?

54. || You are watching an archery tournament when you start won-
dering how fast an arrow is shot from the bow. Remembering your 
physics, you ask one of the archers to shoot an arrow parallel to the 
ground. You find the arrow stuck in the ground 60 m away, making 
a 3.0° angle with the ground. How fast was the arrow shot?

55. || You’re 6.0 m from one wall of the house seen in FIGURE P4.55. 
You want to toss a ball to your friend who is 6.0 m from the opposite 
wall. The throw and catch each occur 1.0 m above the ground.
a. What minimum speed will allow the ball to clear the roof?
b. At what angle should you toss the ball?

6.0 m

1.0 m
3.0 m

6.0 m 6.0 m

45°

FIGURE P4.55

15°
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FIGURE P4.56 Ion
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56. || Sand moves without slipping at 6.0 m/s down a conveyer that 
is tilted at 15°. The sand enters a pipe 3.0 m below the end of the 
conveyer belt, as shown in FIGURE P4.56. What is the horizontal 
distance d between the conveyer belt and the pipe?

57. || A stunt man drives a 1500 kg car at a speed of 20 m/s off a 
30-m-high cliff. The road leading to the cliff is inclined upward 
at an angle of 20°.
a. How far from the base of the cliff does the car land?
b. What is the car’s impact speed?

58. ||| A javelin thrower standing at rest holds the center of the jav-
elin behind her head, then accelerates it through a distance of 
70 cm as she throws. She releases the 600 g javelin 2.0 m above 
the ground traveling at an angle of 30° above the horizontal. 
Top-rated javelin throwers do throw at about a 30° angle, not the 
45° you might have expected, because the biomechanics of the 
arm allow them to throw the javelin much faster at 30° than they 
would be able to at 45°. In this throw, the javelin hits the ground 
62 m away. What was the acceleration of the javelin during the 
throw? Assume that it has a constant acceleration.

59. || A cannonball is fired at 100 m/s from a barrel tilted upward  
at 25°.
a. Find an expression for the cannonball’s direction of travel, 

measured as an angle from horizontal, after traveling hori-
zontal distance d.

63. || The angular velocity of a spinning gyroscope is measured 
every 0.5 s. The results and the best-fit line from a spreadsheet 
are shown in FIGURE P4.63.
a. What is the gyroscope’s initial angular velocity, at t = 0 s?
b. What is the angular acceleration at t = 2.0 s?
c. How many revolutions does the gyroscope make between t = 

0 s and t = 2.0 s?
64. || A ball rolling on a circular track, starting from rest, has 

angular acceleration a. Find an expression, in terms of a, for the 
time at which the ball’s acceleration vector a 

u is 45° away from a 
radial line toward the center of the circle.

65. || A typical laboratory centrifuge rotates at 4000 rpm. Test tubes  
have to be placed into a centrifuge very carefully because of the 
very large accelerations.
a. What is the acceleration at the end of a test tube that is 10 cm 

from the axis of rotation?
b. For comparison, what is the magnitude of the acceleration  

a test tube would experience if dropped from a height of  
1.0 m and stopped in a 1.0-ms-long encounter with a hard 
floor?
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76. ||| A car starts from rest on a curve with a radius of 120 m and 
accelerates tangentially at 1.0 m/s2. Through what angle will the 
car have traveled when the magnitude of its total acceleration is 
2.0 m/s2?

77. ||| A long string is wrapped around a 6.0-cm-diameter cylinder, 
initially at rest, that is free to rotate on an axle. The string is 
then pulled with a constant acceleration of 1.5 m/s2 until 1.0 m of 
string has been unwound. If the string unwinds without slipping, 
what is the cylinder’s angular speed, in rpm, at this time?

In Problems 78 through 80 you are given the equations that are used 
to solve a problem. For each of these, you are to

a. Write a realistic problem for which these are the correct equa-
tions. Be sure that the answer your problem requests is consis-
tent with the equations given.

b. Finish the solution of the problem, including a pictorial 
representation.

78. 100 m = 0 m + 150 cos u m/s) t1

0 m = 0 m + 150 sin u m/s2t1 - 1
2 19.80 m/s22 t1 

2

79. vx = -16.0 cos 45°2 m/s + 3.0 m/s
vy = 16.0 sin 45°2 m/s + 0 m/s 
100 m = vy  t1, x1 = vx  t1

80. 2.5 rad = 0 rad + vi 110 s2 + 111.5 m/s22/2150 m22110 s22

vf = vi + 111.5 m/s22/150 m22110 s2

Challenge Problems
81. ||| A skateboarder starts up a 1.0-m-high, 30° ramp at a speed of 

7.0 m/s. The skateboard wheels roll without friction. At the top 
she leaves the ramp and sails through the air. How far from the 
end of the ramp does the skateboarder touch down?

82. ||| An archer standing on a 15° slope shoots an arrow 20° above 
the horizontal, as shown in FIGURE CP4.82. How far down the 
slope does the arrow hit if it is shot with a speed of 50 m/s from 
1.75 m above the ground?

66. || Astronauts use a centrifuge to simulate the acceleration of a 
rocket launch. The centrifuge takes 30 s to speed up from rest to 
its top speed of 1 rotation every 1.3 s. The astronaut is strapped 
into a seat 6.0 m from the axis.
a. What is the astronaut’s tangential acceleration during the first 

30 s?
b. How many g’s of acceleration does the astronaut experience 

when the device is rotating at top speed? Each 9.8 m/s2 of 
acceleration is 1 g.

67. || A Ferris wheel of radius R speeds up with angular accelera-
tion a starting from rest. Find expressions for the (a) velocity and 
(b) centripetal acceleration of a rider after the Ferris wheel has 
rotated through angle ∆u.

68. || Communications satellites are placed in a circular orbit where 
they stay directly over a fixed point on the equator as the earth 
rotates. These are called geosynchronous orbits. The radius of 
the earth is 6.37 * 106 m, and the altitude of a  geosynchronous 
orbit is 3.58 * 107 m 1≈22,000 miles2. What are (a) the speed 
and (b) the magnitude of the acceleration of a satellite in a 
 geosynchronous orbit?

69. || A computer hard disk 8.0 cm in diameter is initially at rest. A 
small dot is painted on the edge of the disk. The disk accelerates 
at 600 rad/s2 for 1

2 s, then coasts at a steady angular velocity for 
another 12 s.
a. What is the speed of the dot at t = 1.0 s?
b. Through how many revolutions has the disk turned?

70. || A high-speed drill rotating ccw at 2400 rpm comes to a halt 
in 2.5 s.
a. What is the magnitude of the drill’s angular acceleration?
b. How many revolutions does it make as it stops?

71. || Flywheels—rapidly rotating disks—are widely used in indus-
try for storing energy. They are spun up slowly when extra en-
ergy is available, then decelerate quickly when needed to supply 
a boost of energy. A 20-cm-diameter rotor made of advanced 
materials can spin at 100,000 rpm.
a. What is the speed of a point on the rim of this rotor?
b. Suppose the rotor’s angular velocity decreases by 40% over 

30 s as it supplies energy. What is the magnitude of the rotor’s 
angular acceleration? Assume that the angular acceleration 
is constant.

c. How many revolutions does the rotor make during these  
30 s?

72. || A 25 g steel ball is attached to the top of a 24-cm-diameter 
vertical wheel. Starting from rest, the wheel accelerates at 
470 rad/s2. The ball is released after 34 of a revolution. How high 
does it go above the center of the wheel?

73. || The angular velocity of a process control motor is 
v = 120 - 1

2  t22rad/s, where t is in seconds.
a. At what time does the motor reverse direction?
b. Through what angle does the motor turn between t =  0 s 

and the instant at which it reverses direction?
74. || A 6.0-cm-diameter gear rotates with angular velocity v =  

120 - 1
2  t22rad/s, where t is in seconds. At t =  4.0 s, what are:

a. The gear’s angular acceleration?
b. The tangential acceleration of a tooth on the gear?

75. || A painted tooth on a spinning gear has angular position 
u = 13.0 rad/s42t4. What is the tooth’s angular acceleration at the 
end of 16 revolutions?

15°

20°

FIGURE CP4.82

u
f

d

FIGURE CP4.83

83. ||| The cannon in FIGURE CP4.83 fires a projectile at launch 
angle u with respect to the slope, which is at angle f. Find the 
launch angle that maximizes d.
Hint: Choosing the proper coordinate system is essential. There 
are two options.

84. ||| A cannon on a flat railroad car travels to the east with its bar-
rel tilted 30° above horizontal. It fires a cannonball at 50 m/s. 
At t = 0 s, the car, starting from rest, begins to accelerate to the 
east at 2.0 m/s2. At what time should the cannon be fired to hit 
a target on the tracks that is 400 m to the east of the car’s initial 
position? Assume that the cannonball is fired from ground level.

||| A child in danger of drowning in a river is being carried down-
stream by a current that flows uniformly with a speed of 2.0 m/s. 
The child is 200 m from the shore and 1500 m upstream of the 
boat dock from which the rescue team sets out. If the boat speed is  
8.0 m/s with respect to the water, at what angle from the shore must 
the boat travel in order to reach the child?

Exercises and Problems 131
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132

Force and Motion

What is a force?
The fundamental concept of mechanics 
is force.

 ■ A force is a push or a pull.
 ■ A force acts on an object.
 ■ A force requires an agent.
 ■ A force is a vector.

How do we identify forces?
A force can be a contact force or a 
 long-range force.

 ■ Contact forces occur at points where 
the environment touches the object.

 ■ Contact forces disappear the instant 
contact is lost. Forces have no memory.

 ■ Long-range forces include gravity and 
magnetism.

How do we show forces?
Forces can be displayed on a free-body 
 diagram. You’ll draw all forces—both 
pushes and pulls—as vectors with  
their tails on the particle. A well-drawn  
free-body diagram is an essential step  
in solving  problems, as you’ll see in the  
next chapter.

What do forces do?
A net force causes an object to accelerate 
with an acceleration directly proportional 
to the size of the force. This is Newton’s 
second law, the most important statement 
in mechanics. For a particle of mass m,

au =
1
m

 F
u

net

❮❮ LOOKING BACK Sections 1.4, 2.4, and 3.2  
Acceleration and vector addition

What is Newton’s first law?
Newton’s first law—an object at rest stays at 
rest and an object in motion continues moving at 
constant speed in a straight line if and only if the 
net force on the object is zero—helps us define 
what a force is. It is also the basis for identifying 
the reference frames—called inertial reference 
frames—in which Newton’s laws are valid.

What good are forces?
Kinematics describes how an object moves. For the more 
 important tasks of knowing why an object moves and being 
able to predict its position and orientation at a future time, we 
have to know the forces acting on the object. Relating force to  
motion is the subject of dynamics, and it is one of the most 
important underpinnings of all science and  engineering.

IN THIS CHAPTER, you will learn about the connection between force and motion.

5

The motion of a  
sailboat is a response  
to the forces of wind 
and water.
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5.1 Force 133

5.1 Force
The two major issues that this chapter will examine are:

 ■ What is a force?
 ■ What is the connection between force and motion?

We begin with the first of these questions in the table below.

What is a force?

A force is a push or a pull.

Our commonsense idea of a force is that it is a push or a pull. We will refine this idea as we go along, but it is 
an adequate starting point. Notice our careful choice of words: We refer to “a force,” rather than simply “force.” 
We want to think of a force as a very specific action, so that we can talk about a single force or perhaps about 
two or three individual forces that we can clearly distinguish. Hence the concrete idea of “a force” acting on 
an object.

Object A force acts on an object.

Implicit in our concept of force is that a force acts on an object. In other words, pushes and pulls are applied 
to  something—an object. From the object’s perspective, it has a force exerted on it. Forces do not exist in 
 isolation from the object that experiences them.

Agent

A force requires an agent.

Every force has an agent, something that acts or exerts power. That is, a force has a specific, identifiable cause. 
As you throw a ball, it is your hand, while in contact with the ball, that is the agent or the cause of the force 
exerted on the ball. If a force is being exerted on an object, you must be able to identify a specific cause (i.e., the 
agent) of that force. Conversely, a force is not exerted on an object unless you can identify a specific cause or 
agent. Although this idea may seem to be stating the obvious, you will find it to be a powerful tool for avoiding 
some common misconceptions about what is and is not a force.

A force is a vector.

If you push an object, you can push either gently or very hard. Similarly, you can push either left or right, up 
or down. To quantify a push, we need to specify both a magnitude and a direction. It should thus come as no 
surprise that force is a vector. The general symbol for a force is the vector symbol F

u
. The size or strength of a 

force is its magnitude F.

A force can be either a contact force . . .

There are two basic classes of forces, depending on whether the agent touches the object or not. Contact 
forces are forces that act on an object by touching it at a point of contact. The bat must touch the ball to hit 
it. A string must be tied to an object to pull it. The majority of forces that we will examine are contact forces.

. . . or a long-range force.

Long-range forces are forces that act on an object without physical contact. Magnetism is an example of a 
long-range force. You have undoubtedly held a magnet over a paper clip and seen the paper clip leap up to the 
magnet. A coffee cup released from your hand is pulled to the earth by the long-range force of gravity.

   NOTE    In the particle model, objects cannot exert forces on themselves. A force on an 
object will always have an agent or cause external to the object. Now, there are certainly 
objects that have internal forces (think of all the forces inside the engine of your car!), 
but the particle model is not valid if you need to consider those internal forces. If you 
are going to treat your car as a particle and look only at the overall motion of the car as 
a whole, that motion will be a consequence of external forces acting on the car.
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134 CHAPTER 5 Force and Motion

Force Vectors
We can use a simple diagram to visualize how forces are exerted on objects.

The spring is the agent.The rope is the agent.

Pushing force of spring

Earth is the agent.

Long-range
force of
gravity

Box

Box

Pulling force of rope

Box

FIGURE 5.1 Three examples of forces and their vector representations.

Top view
of box

(a)

FIGURE 5.2 Two forces applied to a box.

TACTICS BOX 5.1

Drawing force vectors

F
u

Model the object as a particle.

Draw the force vector as an arrow pointing in the proper
direction and with a length proportional to the size of the force.

Give the vector an appropriate label.

Place the tail of the force vector on the particle.

1

2

3

4

Step 2 may seem contrary to what a “push” should do, but recall that moving a 
vector does not change it as long as the length and angle do not change. The vector F

u
 

is the same regardless of whether the tail or the tip is placed on the particle. FIGURE 5.1 
shows three examples of force vectors.

Combining Forces
FIGURE 5.2a shows a box being pulled by two ropes, each exerting a force on the box. 
How will the box respond? Experimentally, we find that when several forces F

u

1, F
u

2, 
F
u

3, . . . are exerted on an object, they combine to form a net force given by the vector 
sum of all the forces:

 F
u

net K a
N

i=1
F
u

i = F
u

1 + F
u

2 + g + F
u

N (5.1)

Recall that K is the symbol meaning “is defined as.” Mathematically, this summation 
is called a superposition of forces. FIGURE 5.2b shows the net force on the box.

This is the
net force on
the box.

Pulling forces
of the ropes

Box

(b) F1

Fnet = F1 + F2

F2

u

u u u

u

STOP TO THINK 5.1 Two of the three forces exerted on an object are shown. The net 
force points to the left. Which is the missing third force?

(a)

F1

Two of the three
forces exerted on
an object

F2

F3

u

u

u

    

F3

u

(b)     (c)

F3

u

    (d)

F3

u
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5.2 A Short Catalog of Forces
There are many forces we will deal with over and over. This section will introduce you 
to some of them. Many of these forces have special symbols. As you learn the major 
forces, be sure to learn the symbol for each.

Gravity
Gravity—the only long-range force we will encounter in the next few chapters—keeps 
you in your chair and the planets in their orbits around the sun. We’ll have a thorough 
look at gravity in Chapter 13. For now we’ll concentrate on objects on or near the 
 surface of the earth (or other planet).

The pull of a planet on an object on or near the surface is called the  gravitational 
force. The agent for the gravitational force is the entire planet. Gravity acts on all 
objects, whether moving or at rest. The symbol for gravitational force is F

u

G. The  
gravitational force vector always points vertically downward, as shown in FIGURE 5.3.

   NOTE    We often refer to “the weight” of an object. For an object at rest on the surface 
of a planet, its weight is simply the magnitude FG  of the gravitational force. However, 
weight and gravitational force are not the same thing, nor is weight the same as mass. 
We will briefly examine mass later in the chapter, and we’ll explore the rather subtle 
connections among gravity, weight, and mass in Chapter 6.

Spring Force
Springs exert one of the most common contact forces. A spring can either push 
(when compressed) or pull (when stretched). FIGURE 5.4 shows the spring force, for 
which we use the symbol F

u

Sp. In both cases, pushing and pulling, the tail of the force 
vector is placed on the particle in the force diagram.

Although you may think of a spring as a metal coil that can be stretched or com-
pressed, this is only one type of spring. Hold a ruler, or any other thin piece of wood 
or metal, by the ends and bend it slightly. It flexes. When you let go, it “springs” back 
to its original shape. This is just as much a spring as is a metal coil.

Tension Force
When a string or rope or wire pulls on an object, it exerts a contact force that we call 
the tension force, represented by a capital T 

u
. The direction of the tension force 

is always along the direction of the string or rope, as you can see in FIGURE 5.5. The 
commonplace reference to “the tension” in a string is an informal expression for T,  
the size or magnitude of the tension force.

   NOTE    Tension is represented by the symbol T. This is logical, but there’s a risk of 
confusing the tension T with the identical symbol T for the period of a particle in 
circular motion. The number of symbols used in science and engineering is so large 
that some letters are used several times to represent different quantities. The use of 
T is the first time we’ve run into this problem, but it won’t be the last. You must be 
alert to the context of a symbol’s use to deduce its meaning.

We can obtain a deeper understanding of some forces and interactions with a  
picture of what’s happening at the atomic level. You’ll recall from chemistry that  
matter consists of atoms that are attracted to each other by molecular bonds. 
 Although the details are complex, governed by quantum physics, we can often use 
a simple ball-and-spring model of a solid to get an idea of what’s happening at  
the atomic level.

Ground

The gravitational force
pulls the box down.

FG

u

FIGURE 5.3 Gravity.

FSp

(b) A stretched spring exerts
a pulling force on an object.

u

(a) A compressed spring exerts
a pushing force on an object.

FSp

u

FIGURE 5.4 The spring force.

T
u

The rope exerts a tension
force on the sled.

FIGURE 5.5 Tension.
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