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Preface

Artificial Intelligence (Al) is a big field, and this is a big book. We have tried to explore
the full breadth of the field, which encompasses logic, probability, and continuous mathemat-
ics; perception, reasoning, learning, and action; fairness, trust, social good, and safety; and
applications that range from microelectronic devices to robotic planetary explorers to online
services with billions of users.

The subtitle of this book is “A Modern Approach.” That means we have chosen to tell
the story from a current perspective. We synthesize what is now known into a common
framework, recasting early work using the ideas and terminology that are prevalent today.
We apologize to those whose subfields are, as a result, less recognizable.

New to this edition
This edition reflects the changes in Al since the last edition in 2010:

* We focus more on machine learning rather than hand-crafted knowledge engineering,
due to the increased availability of data, computing resources, and new algorithms.

* Deep learning, probabilistic programming, and multiagent systems receive expanded
coverage, each with their own chapter.

* The coverage of natural language understanding, robotics, and computer vision has
been revised to reflect the impact of deep learning.

* The robotics chapter now includes robots that interact with humans and the application
of reinforcement learning to robotics.

* Previously we defined the goal of Al as creating systems that try to maximize expected
utility, where the specific utility information—the objective—is supplied by the human
designers of the system. Now we no longer assume that the objective is fixed and known
by the Al system; instead, the system may be uncertain about the true objectives of the
humans on whose behalf it operates. It must learn what to maximize and must function
appropriately even while uncertain about the objective.

* We increase coverage of the impact of Al on society, including the vital issues of ethics,
fairness, trust, and safety.

* We have moved the exercises from the end of each chapter to an online site. This
allows us to continuously add to, update, and improve the exercises, to meet the needs
of instructors and to reflect advances in the field and in Al-related software tools.

* Overall, about 25% of the material in the book is brand new. The remaining 75% has
been largely rewritten to present a more unified picture of the field. 22% of the citations
in this edition are to works published after 2010.

Overview of the book

The main unifying theme is the idea of an intelligent agent. We define Al as the study of
agents that receive percepts from the environment and perform actions. Each such agent
implements a function that maps percept sequences to actions, and we cover different ways
to represent these functions, such as reactive agents, real-time planners, decision-theoretic
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systems, and deep learning systems. We emphasize learning both as a construction method
for competent systems and as a way of extending the reach of the designer into unknown
environments. We treat robotics and vision not as independently defined problems, but as
occurring in the service of achieving goals. We stress the importance of the task environment
in determining the appropriate agent design.

Our primary aim is to convey the ideas that have emerged over the past seventy years
of Al research and the past two millennia of related work. We have tried to avoid exces-
sive formality in the presentation of these ideas, while retaining precision. We have included
mathematical formulas and pseudocode algorithms to make the key ideas concrete; mathe-
matical concepts and notation are described in Appendix A and our pseudocode is described
in Appendix B.

This book is primarily intended for use in an undergraduate course or course sequence.
The book has 29 chapters, each requiring about a week’s worth of lectures, so working
through the whole book requires a two-semester sequence. A one-semester course can use
selected chapters to suit the interests of the instructor and students. The book can also be
used in a graduate-level course (perhaps with the addition of some of the primary sources
suggested in the bibliographical notes), or for self-study or as a reference.

Throughout the book, important points are marked with a triangle icon in the margin.
Wherever a new term is defined, it is also noted in the margin. Subsequent significant uses
of the term are in bold, but not in the margin. We have included a comprehensive index and
an extensive bibliography.

The only prerequisite is familiarity with basic concepts of computer science (algorithms,
data structures, complexity) at a sophomore level. Freshman calculus and linear algebra are
useful for some of the topics.

Online resources

Online resources are available through pearsonglobaleditions.com. There you will find:

» Exercises, programming projects, and research projects. These are no longer at the end
of each chapter; they are online only. Within the book, we refer to an online exercise
with a name like “Exercise 6.NARY.” Instructions on the Web site allow you to find
exercises by name or by topic.

* Implementations of the algorithms in the book in Python, Java, and other programming
languages.

* Supplementary material and links for students and instructors.

* Instructions on how to report errors in the book in the likely event that some exist.

Book cover

The cover depicts the final position from the decisive game 6 of the 1997 chess match in
which the program Deep Blue defeated Garry Kasparov (playing Black), making this the first
time a computer had beaten a world champion in a chess match. Kasparov is shown at the
top. To his right is a pivotal position from the second game of the historic Go match be-
tween former world champion Lee Sedol and DeepMind’s ALPHAGO program. Move 37 by
ALPHAGO violated centuries of Go orthodoxy and was immediately seen by human experts
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as an embarrassing mistake, but it turned out to be a winning move. At top left is an Atlas
humanoid robot built by Boston Dynamics. A depiction of a self-driving car sensing its en-
vironment appears between Ada Lovelace, the world’s first computer programmer, and Alan
Turing, whose fundamental work defined artificial intelligence. At the bottom of the chess
board are a Mars Exploration Rover robot and a statue of Aristotle, who pioneered the study
of logic; his planning algorithm from De Motu Animalium appears behind the authors’ names.
Behind the chess board is a probabilistic programming model used by the UN Comprehensive
Nuclear-Test-Ban Treaty Organization for detecting nuclear explosions from seismic signals.
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INTRODUCTION

In which we try to explain why we consider artificial intelligence to be a subject most
worthy of study, and in which we try to decide what exactly it is, this being a good thing to
decide before embarking.

We call ourselves Homo sapiens—man the wise—because our intelligence is so important
to us. For thousands of years, we have tried to understand how we think and act—that is,
how our brain, a mere handful of matter, can perceive, understand, predict, and manipulate a
world far larger and more complicated than itself. The field of artificial intelligence, or Al,
is concerned with not just understanding but also building intelligent entities—machines that
can compute how to act effectively and safely in a wide variety of novel situations.

Surveys regularly rank Al as one of the most interesting and fastest-growing fields, and it
is already generating over a trillion dollars a year in revenue. Al expert Kai-Fu Lee predicts
that its impact will be “more than anything in the history of mankind.” Moreover, the intel-
lectual frontiers of Al are wide open. Whereas a student of an older science such as physics
might feel that the best ideas have already been discovered by Galileo, Newton, Curie, Ein-
stein, and the rest, Al still has many openings for full-time masterminds.

Al currently encompasses a huge variety of subfields, ranging from the general (learning,
reasoning, perception, and so on) to the specific, such as playing chess, proving mathemat-
ical theorems, writing poetry, driving a car, or diagnosing diseases. Al is relevant to any
intellectual task; it is truly a universal field.

1.1 What Is Al?

We have claimed that Al is interesting, but we have not said what it is. Historically, re-
searchers have pursued several different versions of Al. Some have defined intelligence in
terms of fidelity to human performance, while others prefer an abstract, formal definition of
intelligence called rationality—Iloosely speaking, doing the “right thing.” The subject matter
itself also varies: some consider intelligence to be a property of internal thought processes
and reasoning, while others focus on intelligent behavior, an external characterization.!
From these two dimensions—human vs. rational® and thought vs. behavior—there are
four possible combinations, and there have been adherents and research programs for all

1 In the public eye, there is sometimes confusion between the terms “artificial intelligence” and “machine learn-
ing.” Machine learning is a subfield of Al that studies the ability to improve performance based on experience.
Some Al systems use machine learning methods to achieve competence, but some do not.

2 We are not suggesting that humans are “irrational” in the dictionary sense of “deprived of normal mental
clarity.” We are merely conceding that human decisions are not always mathematically perfect.

Intelligence

Artificial intelligence

Rationality
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four. The methods used are necessarily different: the pursuit of human-like intelligence must
be in part an empirical science related to psychology, involving observations and hypotheses
about actual human behavior and thought processes; a rationalist approach, on the other hand,
involves a combination of mathematics and engineering, and connects to statistics, control
theory, and economics. The various groups have both disparaged and helped each other. Let
us look at the four approaches in more detail.

1.1.1 Acting humanly: The Turing test approach

The Turing test, proposed by Alan Turing (1950), was designed as a thought experiment that
would sidestep the philosophical vagueness of the question “Can a machine think?” A com-
puter passes the test if a human interrogator, after posing some written questions, cannot tell
whether the written responses come from a person or from a computer. Chapter 28 discusses
the details of the test and whether a computer would really be intelligent if it passed. For
now, we note that programming a computer to pass a rigorously applied test provides plenty
to work on. The computer would need the following capabilities:

¢ natural language processing to communicate successfully in a human language;

e knowledge representation to store what it knows or hears;

e automated reasoning to answer questions and to draw new conclusions;

e machine learning to adapt to new circumstances and to detect and extrapolate patterns.
Turing viewed the physical simulation of a person as unnecessary to demonstrate intelligence.
However, other researchers have proposed a total Turing test, which requires interaction with
objects and people in the real world. To pass the total Turing test, a robot will need

e computer vision and speech recognition to perceive the world;

e robotics to manipulate objects and move about.

These six disciplines compose most of Al. Yet Al researchers have devoted little effort to
passing the Turing test, believing that it is more important to study the underlying princi-
ples of intelligence. The quest for “artificial flight” succeeded when engineers and inventors
stopped imitating birds and started using wind tunnels and learning about aerodynamics.
Aeronautical engineering texts do not define the goal of their field as making “machines that
fly so exactly like pigeons that they can fool even other pigeons.”

1.1.2 Thinking humanly: The cognitive modeling approach

To say that a program thinks like a human, we must know how humans think. We can learn
about human thought in three ways:

* introspection—trying to catch our own thoughts as they go by;
 psychological experiments—observing a person in action;
* brain imaging—observing the brain in action.

Once we have a sufficiently precise theory of the mind, it becomes possible to express the
theory as a computer program. If the program’s input—output behavior matches correspond-
ing human behavior, that is evidence that some of the program’s mechanisms could also be
operating in humans.

For example, Allen Newell and Herbert Simon, who developed GPS, the “General Prob-
lem Solver” (Newell and Simon, 1961), were not content merely to have their program solve
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problems correctly. They were more concerned with comparing the sequence and timing of
its reasoning steps to those of human subjects solving the same problems. The interdisci-
plinary field of cognitive science brings together computer models from Al and experimental
techniques from psychology to construct precise and testable theories of the human mind.

Cognitive science is a fascinating field in itself, worthy of several textbooks and at least
one encyclopedia (Wilson and Keil, 1999). We will occasionally comment on similarities or
differences between Al techniques and human cognition. Real cognitive science, however, is
necessarily based on experimental investigation of actual humans or animals. We will leave
that for other books, as we assume the reader has only a computer for experimentation.

In the early days of Al there was often confusion between the approaches. An author
would argue that an algorithm performs well on a task and that it is therefore a good model
of human performance, or vice versa. Modern authors separate the two kinds of claims; this
distinction has allowed both Al and cognitive science to develop more rapidly. The two fields
fertilize each other, most notably in computer vision, which incorporates neurophysiological
evidence into computational models. Recently, the combination of neuroimaging methods
combined with machine learning techniques for analyzing such data has led to the beginnings
of a capability to “read minds”—that is, to ascertain the semantic content of a person’s inner
thoughts. This capability could, in turn, shed further light on how human cognition works.

1.1.3 Thinking rationally: The “laws of thought” approach

The Greek philosopher Aristotle was one of the first to attempt to codify “right thinking”—
that is, irrefutable reasoning processes. His syllogisms provided patterns for argument struc-
tures that always yielded correct conclusions when given correct premises. The canonical
example starts with Socrates is a man and all men are mortal and concludes that Socrates is
mortal. (This example is probably due to Sextus Empiricus rather than Aristotle.) These laws
of thought were supposed to govern the operation of the mind; their study initiated the field
called logic.

Logicians in the 19th century developed a precise notation for statements about objects
in the world and the relations among them. (Contrast this with ordinary arithmetic notation,
which provides only for statements about numbers.) By 1965, programs could, in principle,
solve any solvable problem described in logical notation. The so-called logicist tradition
within artificial intelligence hopes to build on such programs to create intelligent systems.

Logic as conventionally understood requires knowledge of the world that is certain—
a condition that, in reality, is seldom achieved. We simply don’t know the rules of, say,
politics or warfare in the same way that we know the rules of chess or arithmetic. The theory
of probability fills this gap, allowing rigorous reasoning with uncertain information. In
principle, it allows the construction of a comprehensive model of rational thought, leading
from raw perceptual information to an understanding of how the world works to predictions
about the future. What it does not do, is generate intelligent behavior. For that, we need a
theory of rational action. Rational thought, by itself, is not enough.

1.1.4 Acting rationally: The rational agent approach

An agent is just something that acts (agent comes from the Latin agere, to do). Of course,
all computer programs do something, but computer agents are expected to do more: operate
autonomously, perceive their environment, persist over a prolonged time period, adapt to
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change, and create and pursue goals. A rational agent is one that acts so as to achieve the
best outcome or, when there is uncertainty, the best expected outcome.

In the “laws of thought” approach to Al, the emphasis was on correct inferences. Mak-
ing correct inferences is sometimes part of being a rational agent, because one way to act
rationally is to deduce that a given action is best and then to act on that conclusion. On the
other hand, there are ways of acting rationally that cannot be said to involve inference. For
example, recoiling from a hot stove is a reflex action that is usually more successful than a
slower action taken after careful deliberation.

All the skills needed for the Turing test also allow an agent to act rationally. Knowledge
representation and reasoning enable agents to reach good decisions. We need to be able to
generate comprehensible sentences in natural language to get by in a complex society. We
need learning not only for erudition, but also because it improves our ability to generate
effective behavior, especially in circumstances that are new.

The rational-agent approach to Al has two advantages over the other approaches. First, it
is more general than the “laws of thought” approach because correct inference is just one of
several possible mechanisms for achieving rationality. Second, it is more amenable to scien-
tific development. The standard of rationality is mathematically well defined and completely
general. We can often work back from this specification to derive agent designs that provably
achieve it—something that is largely impossible if the goal is to imitate human behavior or
thought processes.

For these reasons, the rational-agent approach to Al has prevailed throughout most of
the field’s history. In the early decades, rational agents were built on logical foundations
and formed definite plans to achieve specific goals. Later, methods based on probability
theory and machine learning allowed the creation of agents that could make decisions under
uncertainty to attain the best expected outcome. In a nutshell, Al has focused on the study
and construction of agents that do the right thing. What counts as the right thing is defined
by the objective that we provide to the agent. This general paradigm is so pervasive that we
might call it the standard model. It prevails not only in Al but also in control theory, where a
controller minimizes a cost function; in operations research, where a policy maximizes a sum
of rewards; in statistics, where a decision rule minimizes a loss function; and in economics,
where a decision maker maximizes utility or some measure of social welfare.

We need to make one important refinement to the standard model to account for the fact
that perfect rationality—always taking the exactly optimal action—is not feasible in complex
environments. The computational demands are just too high. Chapters 6 and 16 deal with the
issue of limited rationality—acting appropriately when there is not enough time to do all
the computations one might like. However, perfect rationality often remains a good starting
point for theoretical analysis.

1.1.5 Beneficial machines

The standard model has been a useful guide for Al research since its inception, but it is
probably not the right model in the long run. The reason is that the standard model assumes
that we will supply a fully specified objective to the machine.

For an artificially defined task such as chess or shortest-path computation, the task comes
with an objective built in—so the standard model is applicable. As we move into the real
world, however, it becomes more and more difficult to specify the objective completely and
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correctly. For example, in designing a self-driving car, one might think that the objective is
to reach the destination safely. But driving along any road incurs a risk of injury due to other
errant drivers, equipment failure, and so on; thus, a strict goal of safety requires staying in the
garage. There is a tradeoff between making progress towards the destination and incurring a
risk of injury. How should this tradeoff be made? Furthermore, to what extent can we allow
the car to take actions that would annoy other drivers? How much should the car moderate
its acceleration, steering, and braking to avoid shaking up the passenger? These kinds of
questions are difficult to answer a priori. They are particularly problematic in the general
area of human-robot interaction, of which the self-driving car is one example.

The problem of achieving agreement between our true preferences and the objective we
put into the machine is called the value alignment problem: the values or objectives put into
the machine must be aligned with those of the human. If we are developing an Al system in
the lab or in a simulator—as has been the case for most of the field’s history—there is an easy
fix for an incorrectly specified objective: reset the system, fix the objective, and try again.
As the field progresses towards increasingly capable intelligent systems that are deployed
in the real world, this approach is no longer viable. A system deployed with an incorrect
objective will have negative consequences. Moreover, the more intelligent the system, the
more negative the consequences.

Returning to the apparently unproblematic example of chess, consider what happens if
the machine is intelligent enough to reason and act beyond the confines of the chessboard.
In that case, it might attempt to increase its chances of winning by such ruses as hypnotiz-
ing or blackmailing its opponent or bribing the audience to make rustling noises during its
opponent’s thinking time.> It might also attempt to hijack additional computing power for
itself. These behaviors are not “unintelligent” or “insane”; they are a logical consequence
of defining winning as the sole objective for the machine.

It is impossible to anticipate all the ways in which a machine pursuing a fixed objective
might misbehave. There is good reason, then, to think that the standard model is inadequate.
We don’t want machines that are intelligent in the sense of pursuing their objectives; we want
them to pursue our objectives. If we cannot transfer those objectives perfectly to the machine,
then we need a new formulation—one in which the machine is pursuing our objectives, but
is necessarily uncertain as to what they are. When a machine knows that it doesn’t know the
complete objective, it has an incentive to act cautiously, to ask permission, to learn more about
our preferences through observation, and to defer to human control. Ultimately, we want
agents that are provably beneficial to humans. We will return to this topic in Section 1.5.

1.2 The Foundations of Artificial Intelligence

In this section, we provide a brief history of the disciplines that contributed ideas, viewpoints,
and techniques to Al. Like any history, this one concentrates on a small number of people,
events, and ideas and ignores others that also were important. We organize the history around
a series of questions. We certainly would not wish to give the impression that these questions
are the only ones the disciplines address or that the disciplines have all been working toward
Al as their ultimate fruition.

3 In one of the first books on chess, Ruy Lopez (1561) wrote, “Always place the board so the sun is in your
opponent’s eyes.”
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1.2.1 Philosophy

* Can formal rules be used to draw valid conclusions?
* How does the mind arise from a physical brain?
* Where does knowledge come from?

* How does knowledge lead to action?

Aristotle (384—-322 BCE) was the first to formulate a precise set of laws governing the rational
part of the mind. He developed an informal system of syllogisms for proper reasoning, which
in principle allowed one to generate conclusions mechanically, given initial premises.

Ramon Llull (c. 1232-1315) devised a system of reasoning published as Ars Magna or
The Great Art (1305). Llull tried to implement his system using an actual mechanical device:
a set of paper wheels that could be rotated into different permutations.

Around 1500, Leonardo da Vinci (1452-1519) designed but did not build a mechanical
calculator; recent reconstructions have shown the design to be functional. The first known
calculating machine was constructed around 1623 by the German scientist Wilhelm Schickard
(1592-1635). Blaise Pascal (1623-1662) built the Pascaline in 1642 and wrote that it “pro-
duces effects which appear nearer to thought than all the actions of animals.” Gottfried Wil-
helm Leibniz (1646-1716) built a mechanical device intended to carry out operations on
concepts rather than numbers, but its scope was rather limited. In his 1651 book Leviathan,
Thomas Hobbes (1588—1679) suggested the idea of a thinking machine, an “artificial animal”
in his words, arguing “For what is the heart but a spring; and the nerves, but so many strings;
and the joints, but so many wheels.” He also suggested that reasoning was like numerical
computation: “For ‘reason’ ...is nothing but ‘reckoning,” that is adding and subtracting.”

It’s one thing to say that the mind operates, at least in part, according to logical or nu-
merical rules, and to build physical systems that emulate some of those rules. It’s another to
say that the mind itself is such a physical system. René Descartes (1596-1650) gave the first
clear discussion of the distinction between mind and matter. He noted that a purely physical
conception of the mind seems to leave little room for free will. If the mind is governed en-
tirely by physical laws, then it has no more free will than a rock “deciding” to fall downward.
Descartes was a proponent of dualism. He held that there is a part of the human mind (or
soul or spirit) that is outside of nature, exempt from physical laws. Animals, on the other
hand, did not possess this dual quality; they could be treated as machines.

An alternative to dualism is materialism, which holds that the brain’s operation accord-
ing to the laws of physics constitutes the mind. Free will is simply the way that the perception
of available choices appears to the choosing entity. The terms physicalism and naturalism
are also used to describe this view that stands in contrast to the supernatural.

Given a physical mind that manipulates knowledge, the next problem is to establish the
source of knowledge. The empiricism movement, starting with Francis Bacon’s (1561-1626)
Novum Organum,”* is characterized by a dictum of John Locke (1632-1704): “Nothing is in
the understanding, which was not first in the senses.”

David Hume’s (1711-1776) A Treatise of Human Nature (Hume, 1739) proposed what
is now known as the principle of induction: that general rules are acquired by exposure to
repeated associations between their elements.

4 The Novum Organum is an update of Aristotle’s Organon, or instrument of thought.
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Building on the work of Ludwig Wittgenstein (1889-1951) and Bertrand Russell (1872—
1970), the famous Vienna Circle (Sigmund, 2017), a group of philosophers and mathemati-
cians meeting in Vienna in the 1920s and 1930s, developed the doctrine of logical positivism.
This doctrine holds that all knowledge can be characterized by logical theories connected, ul-
timately, to observation sentences that correspond to sensory inputs; thus logical positivism
combines rationalism and empiricism.

The confirmation theory of Rudolf Carnap (1891-1970) and Carl Hempel (1905-1997)
attempted to analyze the acquisition of knowledge from experience by quantifying the degree
of belief that should be assigned to logical sentences based on their connection to observations
that confirm or disconfirm them. Carnap’s book The Logical Structure of the World (1928)
was perhaps the first theory of mind as a computational process.

The final element in the philosophical picture of the mind is the connection between
knowledge and action. This question is vital to Al because intelligence requires action as well
as reasoning. Moreover, only by understanding how actions are justified can we understand
how to build an agent whose actions are justifiable (or rational).

Aristotle argued (in De Motu Animalium) that actions are justified by a logical connection
between goals and knowledge of the action’s outcome:

But how does it happen that thinking is sometimes accompanied by action and sometimes
not, sometimes by motion, and sometimes not? It looks as if almost the same thing
happens as in the case of reasoning and making inferences about unchanging objects. But
in that case the end is a speculative proposition ... whereas here the conclusion which
results from the two premises is an action. ... I need covering; a cloak is a covering. |
need a cloak. What I need, I have to make; I need a cloak. I have to make a cloak. And
the conclusion, the “I have to make a cloak,” is an action.

In the Nicomachean Ethics (Book IIL. 3, 1112b), Aristotle further elaborates on this topic,
suggesting an algorithm:

We deliberate not about ends, but about means. For a doctor does not deliberate whether
he shall heal, nor an orator whether he shall persuade, ... They assume the end and con-
sider how and by what means it is attained, and if it seems easily and best produced
thereby; while if it is achieved by one means only they consider how it will be achieved
by this and by what means this will be achieved, till they come to the first cause, ... and
what is last in the order of analysis seems to be first in the order of becoming. And if we
come on an impossibility, we give up the search, e.g., if we need money and this cannot
be got; but if a thing appears possible we try to do it.

Aristotle’s algorithm was implemented 2300 years later by Newell and Simon in their Gen-
eral Problem Solver program. We would now call it a greedy regression planning system
(see Chapter 11). Methods based on logical planning to achieve definite goals dominated the
first few decades of theoretical research in Al.

Thinking purely in terms of actions achieving goals is often useful but sometimes inap-
plicable. For example, if there are several different ways to achieve a goal, there needs to be
some way to choose among them. More importantly, it may not be possible to achieve a goal
with certainty, but some action must still be taken. How then should one decide? Antoine Ar-
nauld (1662), analyzing the notion of rational decisions in gambling, proposed a quantitative
formula for maximizing the expected monetary value of the outcome. Later, Daniel Bernoulli
(1738) introduced the more general notion of utility to capture the internal, subjective value
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of an outcome. The modern notion of rational decision making under uncertainty involves
maximizing expected utility, as explained in Chapter 15.

In matters of ethics and public policy, a decision maker must consider the interests of
multiple individuals. Jeremy Bentham (1823) and John Stuart Mill (1863) promoted the idea
of utilitarianism: that rational decision making based on maximizing utility should apply
to all spheres of human activity, including public policy decisions made on behalf of many
individuals. Utilitarianism is a specific kind of consequentialism: the idea that what is right
and wrong is determined by the expected outcomes of an action.

In contrast, Immanuel Kant, in 1785, proposed a theory of rule-based or deontological
ethics, in which “doing the right thing” is determined not by outcomes but by universal social
laws that govern allowable actions, such as “don’t lie” or “don’t kill.” Thus, a utilitarian could
tell a white lie if the expected good outweighs the bad, but a Kantian would be bound not to,
because lying is inherently wrong. Mill acknowledged the value of rules, but understood them
as efficient decision procedures compiled from first-principles reasoning about consequences.
Many modern Al systems adopt exactly this approach.

1.2.2 Mathematics

¢ What are the formal rules to draw valid conclusions?
* What can be computed?

e How do we reason with uncertain information?

Philosophers staked out some of the fundamental ideas of Al but the leap to a formal science
required the mathematization of logic and probability and the introduction of a new branch
of mathematics: computation.

The idea of formal logic can be traced back to the philosophers of ancient Greece, India,
and China, but its mathematical development really began with the work of George Boole
(1815-1864), who worked out the details of propositional, or Boolean, logic (Boole, 1847).
In 1879, Gottlob Frege (1848-1925) extended Boole’s logic to include objects and relations,
creating the first-order logic that is used today.> In addition to its central role in the early pe-
riod of Al research, first-order logic motivated the work of Godel and Turing that underpinned
computation itself, as we explain below.

The theory of probability can be seen as generalizing logic to situations with uncertain
information—a consideration of great importance for Al. Gerolamo Cardano (1501-1576)
first framed the idea of probability, describing it in terms of the possible outcomes of gam-
bling events. In 1654, Blaise Pascal (1623-1662), in a letter to Pierre Fermat (1601-1665),
showed how to predict the future of an unfinished gambling game and assign average pay-
offs to the gamblers. Probability quickly became an invaluable part of the quantitative sci-
ences, helping to deal with uncertain measurements and incomplete theories. Jacob Bernoulli
(1654-1705, uncle of Daniel), Pierre Laplace (1749-1827), and others advanced the theory
and introduced new statistical methods. Thomas Bayes (1702-1761) proposed a rule for up-
dating probabilities in the light of new evidence; Bayes’ rule is a crucial tool for Al systems.

The formalization of probability, combined with the availability of data, led to the emer-
gence of statistics as a field. One of the first uses was John Graunt’s analysis of Lon-

5 Frege’s proposed notation for first-order logic—an arcane combination of textual and geometric features—
never became popular.
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don census data in 1662. Ronald Fisher is considered the first modern statistician (Fisher,
1922). He brought together the ideas of probability, experiment design, analysis of data, and
computing—in 1919, he insisted that he couldn’t do his work without a mechanical calculator
called the MILLIONAIRE (the first calculator that could do multiplication), even though the
cost of the calculator was more than his annual salary (Ross, 2012).

The history of computation is as old as the history of numbers, but the first nontrivial
algorithm is thought to be Euclid’s algorithm for computing greatest common divisors. The
word algorithm comes from Muhammad ibn Musa al-Khwarizmi, a 9th century mathemati-
cian, whose writings also introduced Arabic numerals and algebra to Europe. Boole and
others discussed algorithms for logical deduction, and, by the late 19th century, efforts were
under way to formalize general mathematical reasoning as logical deduction.

Kurt Godel (1906-1978) showed that there exists an effective procedure to prove any true
statement in the first-order logic of Frege and Russell, but that first-order logic could not cap-
ture the principle of mathematical induction needed to characterize the natural numbers. In
1931, Godel showed that limits on deduction do exist. His incompleteness theorem showed
that in any formal theory as strong as Peano arithmetic (the elementary theory of natural
numbers), there are necessarily true statements that have no proof within the theory.

This fundamental result can also be interpreted as showing that some functions on the
integers cannot be represented by an algorithm—that is, they cannot be computed. This
motivated Alan Turing (1912-1954) to try to characterize exactly which functions are com-
putable—capable of being computed by an effective procedure. The Church-Turing thesis
proposes to identify the general notion of computability with functions computed by a Turing
machine (Turing, 1936). Turing also showed that there were some functions that no Turing
machine can compute. For example, no machine can tell in general whether a given program
will return an answer on a given input or run forever.

Although computability is important to an understanding of computation, the notion of
tractability has had an even greater impact on Al. Roughly speaking, a problem is called
intractable if the time required to solve instances of the problem grows exponentially with
the size of the instances. The distinction between polynomial and exponential growth in
complexity was first emphasized in the mid-1960s (Cobham, 1964; Edmonds, 1965). It is
important because exponential growth means that even moderately large instances cannot be
solved in any reasonable time.

The theory of NP-completeness, pioneered by Cook (1971) and Karp (1972), provides a
basis for analyzing the tractability of problems: any problem class to which the class of NP-
complete problems can be reduced is likely to be intractable. (Although it has not been proved
that NP-complete problems are necessarily intractable, most theoreticians believe it.) These
results contrast with the optimism with which the popular press greeted the first computers—
“Electronic Super-Brains” that were “Faster than Einstein!” Despite the increasing speed of
computers, careful use of resources and necessary imperfection will characterize intelligent
systems. Put crudely, the world is an extremely large problem instance!

1.2.3 Economics

* How should we make decisions in accordance with our preferences?
* How should we do this when others may not go along?
* How should we do this when the payoff may be far in the future?

Algorithm
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theorem

Computability
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NP-completeness
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The science of economics originated in 1776, when Adam Smith (1723-1790) published An
Inquiry into the Nature and Causes of the Wealth of Nations. Smith proposed to analyze
economies as consisting of many individual agents attending to their own interests. Smith
was not, however, advocating financial greed as a moral position: his earlier (1759) book The
Theory of Moral Sentiments begins by pointing out that concern for the well-being of others
is an essential component of the interests of every individual.

Most people think of economics as being about money, and indeed the first mathemati-
cal analysis of decisions under uncertainty, the maximum-expected-value formula of Arnauld
(1662), dealt with the monetary value of bets. Daniel Bernoulli (1738) noticed that this for-
mula didn’t seem to work well for larger amounts of money, such as investments in maritime
trading expeditions. He proposed instead a principle based on maximization of expected
utility, and explained human investment choices by proposing that the marginal utility of an
additional quantity of money diminished as one acquired more money.

Léon Walras (pronounced “Valrasse”) (1834-1910) gave utility theory a more general
foundation in terms of preferences between gambles on any outcomes (not just monetary
outcomes). The theory was improved by Ramsey (1931) and later by John von Neumann
and Oskar Morgenstern in their book The Theory of Games and Economic Behavior (1944).
Economics is no longer the study of money; rather it is the study of desires and preferences.

Decision theory, which combines probability theory with utility theory, provides a for-
mal and complete framework for individual decisions (economic or otherwise) made under
uncertainty—that is, in cases where probabilistic descriptions appropriately capture the de-
cision maker’s environment. This is suitable for “large” economies where each agent need
pay no attention to the actions of other agents as individuals. For “small” economies, the
situation is much more like a game: the actions of one player can significantly affect the
utility of another (either positively or negatively). Von Neumann and Morgenstern’s develop-
ment of game theory (see also Luce and Raiffa, 1957) included the surprising result that, for
some games, a rational agent should adopt policies that are (or least appear to be) random-
ized. Unlike decision theory, game theory does not offer an unambiguous prescription for
selecting actions. In Al, decisions involving multiple agents are studied under the heading of
multiagent systems (Chapter 17).

Economists, with some exceptions, did not address the third question listed above: how to
make rational decisions when payoffs from actions are not immediate but instead result from
several actions taken in sequence. This topic was pursued in the field of operations research,
which emerged in World War II from efforts in Britain to optimize radar installations, and later
found innumerable civilian applications. The work of Richard Bellman (1957) formalized a
class of sequential decision problems called Markov decision processes, which we study in
Chapter 16 and, under the heading of reinforcement learning, in Chapter 23.

Work in economics and operations research has contributed much to our notion of rational
agents, yet for many years Al research developed along entirely separate paths. One reason
was the apparent complexity of making rational decisions. The pioneering Al researcher
Herbert Simon (1916-2001) won the Nobel Prize in economics in 1978 for his early work
showing that models based on satisficing—making decisions that are “good enough,” rather
than laboriously calculating an optimal decision—gave a better description of actual human
behavior (Simon, 1947). Since the 1990s, there has been a resurgence of interest in decision-
theoretic techniques for Al
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1.2.4 Neuroscience

* How do brains process information?

Neuroscience is the study of the nervous system, particularly the brain. Although the exact
way in which the brain enables thought is one of the great mysteries of science, the fact that it
does enable thought has been appreciated for thousands of years because of the evidence that
strong blows to the head can lead to mental incapacitation. It has also long been known that
human brains are somehow different; in about 335 BCE Aristotle wrote, “Of all the animals,
man has the largest brain in proportion to his size.”® Still, it was not until the middle of the
18th century that the brain was widely recognized as the seat of consciousness. Before then,
candidate locations included the heart and the spleen.

Paul Broca’s (1824-1880) investigation of aphasia (speech deficit) in brain-damaged pa-
tients in 1861 initiated the study of the brain’s functional organization by identifying a lo-
calized area in the left hemisphere—now called Broca’s area—that is responsible for speech
production.” By that time, it was known that the brain consisted largely of nerve cells, or neu-
rons, but it was not until 1873 that Camillo Golgi (1843-1926) developed a staining technique
allowing the observation of individual neurons (see Figure 1.1). This technique was used by
Santiago Ramon y Cajal (1852-1934) in his pioneering studies of neuronal organization.®
It is now widely accepted that cognitive functions result from the electrochemical operation
of these structures. That is, a collection of simple cells can lead to thought, action, and
consciousness. In the pithy words of John Searle (1992), brains cause minds.

We now have some data on the mapping between areas of the brain and the parts of the
body that they control or from which they receive sensory input. Such mappings are able to
change radically over the course of a few weeks, and some animals seem to have multiple
maps. Moreover, we do not fully understand how other areas can take over functions when
one area is damaged. There is almost no theory on how an individual memory is stored or on
how higher-level cognitive functions operate.

The measurement of intact brain activity began in 1929 with the invention by Hans Berger
of the electroencephalograph (EEG). The development of functional magnetic resonance
imaging (fMRI) (Ogawa et al., 1990; Cabeza and Nyberg, 2001) is giving neuroscientists
unprecedentedly detailed images of brain activity, enabling measurements that correspond in
interesting ways to ongoing cognitive processes. These are augmented by advances in single-
cell electrical recording of neuron activity and by the methods of optogenetics (Crick, 1999;
Zemelman et al., 2002; Han and Boyden, 2007), which allow both measurement and control
of individual neurons modified to be light-sensitive.

The development of brain—-machine interfaces (Lebedev and Nicolelis, 2006) for both
sensing and motor control not only promises to restore function to disabled individuals, but
also sheds light on many aspects of neural systems. A remarkable finding from this work is
that the brain is able to adjust itself to interface successfully with an external device, treating
it in effect like another sensory organ or limb.

6 It has since been discovered that the tree shrew and some bird species exceed the human brain/body ratio.

7 Many cite Alexander Hood (1824) as a possible prior source.

8 Golgi persisted in his belief that the brain’s functions were carried out primarily in a continuous medium in
which neurons were embedded, whereas Cajal propounded the “neuronal doctrine.” The two shared the Nobel
Prize in 1906 but gave mutually antagonistic acceptance speeches.

Neuroscience

Neuron

<

Optogenetics

Brain—machine
interface

29



30

Singularity

Chapter 1 Introduction

Axonal arborization

\ Axon from another cell

Synapse
Dendrite

Nucleus

\/

Synapses

Cell body or Soma

Figure 1.1 The parts of a nerve cell or neuron. Each neuron consists of a cell body, or soma,
that contains a cell nucleus. Branching out from the cell body are a number of fibers called
dendrites and a single long fiber called the axon. The axon stretches out for a long distance,
much longer than the scale in this diagram indicates. Typically, an axon is 1 cm long (100
times the diameter of the cell body), but can reach up to 1 meter. A neuron makes connec-
tions with 10 to 100,000 other neurons at junctions called synapses. Signals are propagated
from neuron to neuron by a complicated electrochemical reaction. The signals control brain
activity in the short term and also enable long-term changes in the connectivity of neurons.
These mechanisms are thought to form the basis for learning in the brain. Most information
processing goes on in the cerebral cortex, the outer layer of the brain. The basic organi-
zational unit appears to be a column of tissue about 0.5 mm in diameter, containing about
20,000 neurons and extending the full depth of the cortex (about 4 mm in humans).

Brains and digital computers have somewhat different properties. Figure 1.2 shows that
computers have a cycle time that is a million times faster than a brain. The brain makes up
for that with far more storage and interconnection than even a high-end personal computer,
although the largest supercomputers match the brain on some metrics. Futurists make much
of these numbers, pointing to an approaching singularity at which computers reach a su-
perhuman level of performance (Vinge, 1993; Kurzweil, 2005; Doctorow and Stross, 2012),
and then rapidly improve themselves even further. But the comparisons of raw numbers are
not especially informative. Even with a computer of virtually unlimited capacity, we still re-
quire further conceptual breakthroughs in our understanding of intelligence (see Chapter 29).
Crudely put, without the right theory, faster machines just give you the wrong answer faster.

1.2.5 Psychology
e How do humans and animals think and act?

The origins of scientific psychology are usually traced to the work of the German physi-
cist Hermann von Helmholtz (1821-1894) and his student Wilhelm Wundt (1832-1920).
Helmbholtz applied the scientific method to the study of human vision, and his Handbook of
Physiological Optics has been described as “the single most important treatise on the physics
and physiology of human vision” (Nalwa, 1993, p.15). In 1879, Wundt opened the first labo-
ratory of experimental psychology, at the University of Leipzig. Wundt insisted on carefully
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Supercomputer Personal Computer Human Brain
Computational units 10° GPUs + CPUs 8 CPU cores 10% columns

10" transistors 10'° transistors 10'! neurons
Storage units 10'® bytes RAM 10'° bytes RAM 10! neurons

10'7 bytes disk 10'2 bytes disk 104 synapses
Cycle time 107 sec 10~ sec 1073 sec
Operations/sec 10'8 1010 107

Figure 1.2 A crude comparison of a leading supercomputer, Summit (Feldman, 2017);
a typical personal computer of 2019; and the human brain. Human brain power has
not changed much in thousands of years, whereas supercomputers have improved from
megaFLOPs in the 1960s to gigaFLOPs in the 1980s, teraFLOPs in the 1990s, petaFLOPs
in 2008, and exaFLOPs in 2018 (1 exaFLOP = 10'® floating point operations per second).

controlled experiments in which his workers would perform a perceptual or associative task
while introspecting on their thought processes. The careful controls went a long way to-
ward making psychology a science, but the subjective nature of the data made it unlikely that
experimenters would ever disconfirm their own theories.

Biologists studying animal behavior, on the other hand, lacked introspective data and de-
veloped an objective methodology, as described by H. S. Jennings (1906) in his influential
work Behavior of the Lower Organisms. Applying this viewpoint to humans, the behav-
iorism movement, led by John Watson (1878-1958), rejected any theory involving mental
processes on the grounds that introspection could not provide reliable evidence. Behaviorists
insisted on studying only objective measures of the percepts (or stimulus) given to an animal
and its resulting actions (or response). Behaviorism discovered a lot about rats and pigeons
but had less success at understanding humans.

Cognitive psychology, which views the brain as an information-processing device, can
be traced back at least to the works of William James (1842-1910). Helmholtz also in-
sisted that perception involved a form of unconscious logical inference. The cognitive view-
point was largely eclipsed by behaviorism in the United States, but at Cambridge’s Ap-
plied Psychology Unit, directed by Frederic Bartlett (1886—1969), cognitive modeling was
able to flourish. The Nature of Explanation, by Bartlett’s student and successor Kenneth
Craik (1943), forcefully reestablished the legitimacy of such “mental” terms as beliefs and
goals, arguing that they are just as scientific as, say, using pressure and temperature to talk
about gases, despite gasses being made of molecules that have neither.

Craik specified the three key steps of a knowledge-based agent: (1) the stimulus must be
translated into an internal representation, (2) the representation is manipulated by cognitive
processes to derive new internal representations, and (3) these are in turn retranslated back
into action. He clearly explained why this was a good design for an agent:

If the organism carries a “small-scale model” of external reality and of its own possible
actions within its head, it is able to try out various alternatives, conclude which is the best
of them, react to future situations before they arise, utilize the knowledge of past events
in dealing with the present and future, and in every way to react in a much fuller, safer,
and more competent manner to the emergencies which face it. (Craik, 1943)
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After Craik’s death in a bicycle accident in 1945, his work was continued by Donald Broad-
bent, whose book Perception and Communication (1958) was one of the first works to model
psychological phenomena as information processing. Meanwhile, in the United States, the
development of computer modeling led to the creation of the field of cognitive science. The
field can be said to have started at a workshop in September 1956 at MIT—just two months
after the conference at which Al itself was “born.”

At the workshop, George Miller presented The Magic Number Seven, Noam Chomsky
presented Three Models of Language, and Allen Newell and Herbert Simon presented The
Logic Theory Machine. These three influential papers showed how computer models could
be used to address the psychology of memory, language, and logical thinking, respectively. It
is now a common (although far from universal) view among psychologists that “a cognitive
theory should be like a computer program” (Anderson, 1980); that is, it should describe the
operation of a cognitive function in terms of the processing of information.

For purposes of this review, we will count the field of human—computer interaction
(HCI) under psychology. Doug Engelbart, one of the pioneers of HCI, championed the idea of
intelligence augmentation—IA rather than Al. He believed that computers should augment
human abilities rather than automate away human tasks. In 1968, Engelbart’s “mother of all
demos” showed off for the first time the computer mouse, a windowing system, hypertext, and
video conferencing—all in an effort to demonstrate what human knowledge workers could
collectively accomplish with some intelligence augmentation.

Today we are more likely to see IA and Al as two sides of the same coin, with the former
emphasizing human control and the latter emphasizing intelligent behavior on the part of the
machine. Both are needed for machines to be useful to humans.

1.2.6 Computer engineering
* How can we build an efficient computer?

The modern digital electronic computer was invented independently and almost simultane-
ously by scientists in three countries embattled in World War II. The first operational com-
puter was the electromechanical Heath Robinson,” built in 1943 by Alan Turing’s team for
a single purpose: deciphering German messages. In 1943, the same group developed the
Colossus, a powerful general-purpose machine based on vacuum tubes.!® The first opera-
tional programmable computer was the Z-3, the invention of Konrad Zuse in Germany in
1941. Zuse also invented floating-point numbers and the first high-level programming lan-
guage, Plankalkiil. The first electronic computer, the ABC, was assembled by John Atanasoff
and his student Clifford Berry between 1940 and 1942 at Iowa State University. Atanasoff’s
research received little support or recognition; it was the ENIAC, developed as part of a se-
cret military project at the University of Pennsylvania by a team including John Mauchly and
J. Presper Eckert, that proved to be the most influential forerunner of modern computers.
Since that time, each generation of computer hardware has brought an increase in speed
and capacity and a decrease in price—a trend captured in Moore’s law. Performance doubled
every 18 months or so until around 2005, when power dissipation problems led manufacturers

9 A complex machine named after a British cartoonist who depicted whimsical and absurdly complicated con-
traptions for everyday tasks such as buttering toast.

10 In the postwar period, Turing wanted to use these computers for Al research—for example, he created an
outline of the first chess program (Turing et al., 1953)—but the British government blocked this research.
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to start multiplying the number of CPU cores rather than the clock speed. Current expecta-
tions are that future increases in functionality will come from massive parallelism—a curious
convergence with the properties of the brain. We also see new hardware designs based on
the idea that in dealing with an uncertain world, we don’t need 64 bits of precision in our
numbers; just 16 bits (as in the bfloat16 format) or even 8 bits will be enough, and will
enable faster processing.

We are just beginning to see hardware tuned for Al applications, such as the graphics
processing unit (GPU), tensor processing unit (TPU), and wafer scale engine (WSE). From
the 1960s to about 2012, the amount of computing power used to train top machine learn-
ing applications followed Moore’s law. Beginning in 2012, things changed: from 2012 to
2018 there was a 300,000-fold increase, which works out to a doubling every 100 days or
so (Amodei and Hernandez, 2018). A machine learning model that took a full day to train
in 2014 takes only two minutes in 2018 (Ying et al., 2018). Although it is not yet practical,
quantum computing holds out the promise of far greater accelerations for some important
subclasses of Al algorithms.

Of course, there were calculating devices before the electronic computer. The earliest
automated machines, dating from the 17th century, were discussed on page 24. The first
programmable machine was a loom, devised in 1805 by Joseph Marie Jacquard (1752-1834),
that used punched cards to store instructions for the pattern to be woven.

In the mid-19th century, Charles Babbage (1792—-1871) designed two computing ma-
chines, neither of which he completed. The Difference Engine was intended to compute
mathematical tables for engineering and scientific projects. It was finally built and shown
to work in 1991 (Swade, 2000). Babbage’s Analytical Engine was far more ambitious: it
included addressable memory, stored programs based on Jacquard’s punched cards, and con-
ditional jumps. It was the first machine capable of universal computation.

Babbage’s colleague Ada Lovelace, daughter of the poet Lord Byron, understood its
potential, describing it as “a thinking or ...a reasoning machine,” one capable of reasoning
about “all subjects in the universe” (Lovelace, 1843). She also anticipated AI’s hype cycles,
writing, “It is desirable to guard against the possibility of exaggerated ideas that might arise as
to the powers of the Analytical Engine.” Unfortunately, Babbage’s machines and Lovelace’s
ideas were largely forgotten.

Al also owes a debt to the software side of computer science, which has supplied the
operating systems, programming languages, and tools needed to write modern programs (and
papers about them). But this is one area where the debt has been repaid: work in Al has pio-
neered many ideas that have made their way back to mainstream computer science, including
time sharing, interactive interpreters, personal computers with windows and mice, rapid de-
velopment environments, the linked-list data type, automatic storage management, and key
concepts of symbolic, functional, declarative, and object-oriented programming.

1.2.7 Control theory and cybernetics
* How can artifacts operate under their own control?

Ktesibios of Alexandria (c. 250 BCE) built the first self-controlling machine: a water clock
with a regulator that maintained a constant flow rate. This invention changed the definition
of what an artifact could do. Previously, only living things could modify their behavior in
response to changes in the environment. Other examples of self-regulating feedback control

33

Quantum computing



34

Control theory

Cybernetics

Homeostatic

Cost function

Computational
linguistics

Chapter 1 Introduction

systems include the steam engine governor, created by James Watt (1736-1819), and the
thermostat, invented by Cornelis Drebbel (1572-1633), who also invented the submarine.
James Clerk Maxwell (1868) initiated the mathematical theory of control systems.

A central figure in the post-war development of control theory was Norbert Wiener
(1894—-1964). Wiener was a brilliant mathematician who worked with Bertrand Russell,
among others, before developing an interest in biological and mechanical control systems
and their connection to cognition. Like Craik (who also used control systems as psycholog-
ical models), Wiener and his colleagues Arturo Rosenblueth and Julian Bigelow challenged
the behaviorist orthodoxy (Rosenblueth et al., 1943). They viewed purposive behavior as
arising from a regulatory mechanism trying to minimize “error’—the difference between
current state and goal state. In the late 1940s, Wiener, along with Warren McCulloch, Walter
Pitts, and John von Neumann, organized a series of influential conferences that explored the
new mathematical and computational models of cognition. Wiener’s book Cybernetics (1948)
became a bestseller and awoke the public to the possibility of artificially intelligent machines.

Meanwhile, in Britain, W. Ross Ashby pioneered similar ideas (Ashby, 1940). Ashby,
Alan Turing, Grey Walter, and others formed the Ratio Club for “those who had Wiener’s
ideas before Wiener’s book appeared.” Ashby’s Design for a Brain (1948, 1952) elaborated
on his idea that intelligence could be created by the use of homeostatic devices containing
appropriate feedback loops to achieve stable adaptive behavior.

Modern control theory, especially the branch known as stochastic optimal control, has as
its goal the design of systems that minimize a cost function over time. This roughly matches
the standard model of Al: designing systems that behave optimally. Why, then, are Al and
control theory two different fields, despite the close connections among their founders? The
answer lies in the close coupling between the mathematical techniques that were familiar to
the participants and the corresponding sets of problems that were encompassed in each world
view. Calculus and matrix algebra, the tools of control theory, lend themselves to systems that
are describable by fixed sets of continuous variables, whereas Al was founded in part as a way
to escape from these perceived limitations. The tools of logical inference and computation
allowed Al researchers to consider problems such as language, vision, and symbolic planning
that fell completely outside the control theorist’s purview.

1.2.8 Linguistics
* How does language relate to thought?

In 1957, B. F. Skinner published Verbal Behavior. This was a comprehensive, detailed ac-
count of the behaviorist approach to language learning, written by the foremost expert in
the field. But curiously, a review of the book became as well known as the book itself, and
served to almost kill off interest in behaviorism. The author of the review was the linguist
Noam Chomsky, who had just published a book on his own theory, Syntactic Structures.
Chomsky pointed out that the behaviorist theory did not address the notion of creativity in
language—it did not explain how children could understand and make up sentences that they
had never heard before. Chomsky’s theory—based on syntactic models going back to the
Indian linguist Panini (c. 350 BCE)—could explain this, and unlike previous theories, it was
formal enough that it could in principle be programmed.

Modern linguistics and Al, then, were “born” at about the same time, and grew up to-
gether, intersecting in a hybrid field called computational linguistics or natural language
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processing. The problem of understanding language turned out to be considerably more
complex than it seemed in 1957. Understanding language requires an understanding of the
subject matter and context, not just an understanding of the structure of sentences. This might
seem obvious, but it was not widely appreciated until the 1960s. Much of the early work in
knowledge representation (the study of how to put knowledge into a form that a computer
can reason with) was tied to language and informed by research in linguistics, which was
connected in turn to decades of work on the philosophical analysis of language.

1.3 The History of Artificial Intelligence

One quick way to summarize the milestones in Al history is to list the Turing Award winners:
Marvin Minsky (1969) and John McCarthy (1971) for defining the foundations of the field
based on representation and reasoning; Allen Newell and Herbert Simon (1975) for symbolic
models of problem solving and human cognition; Ed Feigenbaum and Raj Reddy (1994) for
developing expert systems that encode human knowledge to solve real-world problems; Judea
Pearl (2011) for developing probabilistic reasoning techniques that deal with uncertainty in
a principled manner; and finally Yoshua Bengio, Geoffrey Hinton, and Yann LeCun (2019)
for making “deep learning” (multilayer neural networks) a critical part of modern computing.
The rest of this section goes into more detail on each phase of Al history.

1.3.1 The inception of artificial intelligence (1943-1956)

The first work that is now generally recognized as Al was done by Warren McCulloch and
Walter Pitts (1943). Inspired by the mathematical modeling work of Pitts’s advisor Nicolas
Rashevsky (1936, 1938), they drew on three sources: knowledge of the basic physiology
and function of neurons in the brain; a formal analysis of propositional logic due to Russell
and Whitehead; and Turing’s theory of computation. They proposed a model of artificial
neurons in which each neuron is characterized as being “on” or “off,” with a switch to “on”
occurring in response to stimulation by a sufficient number of neighboring neurons. The
state of a neuron was conceived of as “factually equivalent to a proposition which proposed
its adequate stimulus.” They showed, for example, that any computable function could be
computed by some network of connected neurons, and that all the logical connectives (AND,
OR, NOT, etc.) could be implemented by simple network structures. McCulloch and Pitts also
suggested that suitably defined networks could learn. Donald Hebb (1949) demonstrated a
simple updating rule for modifying the connection strengths between neurons. His rule, now
called Hebbian learning, remains an influential model to this day.

Two undergraduate students at Harvard, Marvin Minsky (1927-2016) and Dean Ed-
monds, built the first neural network computer in 1950. The SNARC, as it was called, used
3000 vacuum tubes and a surplus automatic pilot mechanism from a B-24 bomber to simulate
a network of 40 neurons. Later, at Princeton, Minsky studied universal computation in neural
networks. His Ph.D. committee was skeptical about whether this kind of work should be con-
sidered mathematics, but von Neumann reportedly said, “If it isn’t now, it will be someday.”

There were a number of other examples of early work that can be characterized as Al,
including two checkers-playing programs developed independently in 1952 by Christopher
Strachey at the University of Manchester and by Arthur Samuel at IBM. However, Alan Tur-
ing’s vision was the most influential. He gave lectures on the topic as early as 1947 at the
London Mathematical Society and articulated a persuasive agenda in his 1950 article “Com-
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puting Machinery and Intelligence.” Therein, he introduced the Turing test, machine learning,
genetic algorithms, and reinforcement learning. He dealt with many of the objections raised
to the possibility of Al as described in Chapter 28. He also suggested that it would be easier
to create human-level Al by developing learning algorithms and then teaching the machine
rather than by programming its intelligence by hand. In subsequent lectures he warned that
achieving this goal might not be the best thing for the human race.

In 1955, John McCarthy of Dartmouth College convinced Minsky, Claude Shannon, and
Nathaniel Rochester to help him bring together U.S. researchers interested in automata the-
ory, neural nets, and the study of intelligence. They organized a two-month workshop at
Dartmouth in the summer of 1956. There were 10 attendees in all, including Allen Newell
and Herbert Simon from Carnegie Tech,!! Trenchard More from Princeton, Arthur Samuel
from IBM, and Ray Solomonoff and Oliver Selfridge from MIT. The proposal states:'?

We propose that a 2 month, 10 man study of artificial intelligence be carried out
during the summer of 1956 at Dartmouth College in Hanover, New Hampshire.
The study is to proceed on the basis of the conjecture that every aspect of learning
or any other feature of intelligence can in principle be so precisely described that a
machine can be made to simulate it. An attempt will be made to find how to make
machines use language, form abstractions and concepts, solve kinds of problems
now reserved for humans, and improve themselves. We think that a significant
advance can be made in one or more of these problems if a carefully selected
group of scientists work on it together for a summer.

Despite this optimistic prediction, the Dartmouth workshop did not lead to any breakthroughs.
Newell and Simon presented perhaps the most mature work, a mathematical theorem-proving
system called the Logic Theorist (LT). Simon claimed, “We have invented a computer pro-
gram capable of thinking non-numerically, and thereby solved the venerable mind-body
problem.”!3 Soon after the workshop, the program was able to prove most of the theorems
in Chapter 2 of Russell and Whitehead’s Principia Mathematica. Russell was reportedly de-
lighted when told that LT had come up with a proof for one theorem that was shorter than
the one in Principia. The editors of the Journal of Symbolic Logic were less impressed; they
rejected a paper coauthored by Newell, Simon, and Logic Theorist.

1.3.2 Early enthusiasm, great expectations (1952-1969)

The intellectual establishment of the 1950s, by and large, preferred to believe that “a machine
can never do X.” (See Chapter 28 for a long list of X’s gathered by Turing.) Al researchers
naturally responded by demonstrating one X after another. They focused in particular on tasks
considered indicative of intelligence in humans, including games, puzzles, mathematics, and
1Q tests. John McCarthy referred to this period as the “Look, Ma, no hands!” era.

11 Now Carnegie Mellon University (CMU).

12 This was the first official usage of McCarthy’s term artificial intelligence. Perhaps “computational rationality”
would have been more precise and less threatening, but “AI” has stuck. At the 50th anniversary of the Dartmouth
conference, McCarthy stated that he resisted the terms “computer” or “computational” in deference to Norbert
Wiener, who was promoting analog cybernetic devices rather than digital computers.

13 Newell and Simon also invented a list-processing language, IPL, to write LT. They had no compiler and
translated it into machine code by hand. To avoid errors, they worked in parallel, calling out binary numbers to
each other as they wrote each instruction to make sure they agreed.
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Newell and Simon followed up their success with LT with the General Problem Solver,
or GPS. Unlike LT, this program was designed from the start to imitate human problem-
solving protocols. Within the limited class of puzzles it could handle, it turned out that the
order in which the program considered subgoals and possible actions was similar to that in
which humans approached the same problems. Thus, GPS was probably the first program to
embody the “thinking humanly” approach. The success of GPS and subsequent programs as
models of cognition led Newell and Simon (1976) to formulate the famous physical symbol
system hypothesis, which states that “a physical symbol system has the necessary and suf-
ficient means for general intelligent action.” What they meant is that any system (human or
machine) exhibiting intelligence must operate by manipulating data structures composed of
symbols. We will see later that this hypothesis has been challenged from many directions.

At IBM, Nathaniel Rochester and his colleagues produced some of the first Al programs.
Herbert Gelernter (1959) constructed the Geometry Theorem Prover, which was able to prove
theorems that many students of mathematics would find quite tricky. This work was a precur-
sor of modern mathematical theorem provers.

Of all the exploratory work done during this period, perhaps the most influential in the
long run was that of Arthur Samuel on checkers (draughts). Using methods that we now call
reinforcement learning (see Chapter 23), Samuel’s programs learned to play at a strong am-
ateur level. He thereby disproved the idea that computers can do only what they are told to:
his program quickly learned to play a better game than its creator. The program was demon-
strated on television in 1956, creating a strong impression. Like Turing, Samuel had trouble
finding computer time. Working at night, he used machines that were still on the testing floor
at IBM’s manufacturing plant. Samuel’s program was the precursor of later systems such
as TD-GAMMON (Tesauro, 1992), which was among the world’s best backgammon players,
and ALPHAGO (Silver et al., 2016), which shocked the world by defeating the human world
champion at Go (see Chapter 6).

In 1958, John McCarthy made two important contributions to Al. In MIT AI Lab Memo
No. 1, he defined the high-level language Lisp, which was to become the dominant Al pro-
gramming language for the next 30 years. In a paper entitled Programs with Common Sense,
he advanced a conceptual proposal for Al systems based on knowledge and reasoning. The
paper describes the Advice Taker, a hypothetical program that would embody general knowl-
edge of the world and could use it to derive plans of action. The concept was illustrated with
simple logical axioms that suffice to generate a plan to drive to the airport. The program was
also designed to accept new axioms in the normal course of operation, thereby allowing it
to achieve competence in new areas without being reprogrammed. The Advice Taker thus
embodied the central principles of knowledge representation and reasoning: that it is useful
to have a formal, explicit representation of the world and its workings and to be able to ma-
nipulate that representation with deductive processes. The paper influenced the course of Al
and remains relevant today.

1958 also marked the year that Marvin Minsky moved to MIT. His initial collaboration
with McCarthy did not last, however. McCarthy stressed representation and reasoning in for-
mal logic, whereas Minsky was more interested in getting programs to work and eventually
developed an anti-logic outlook. In 1963, McCarthy started the Al lab at Stanford. His plan
to use logic to build the ultimate Advice Taker was advanced by J. A. Robinson’s discov-
ery in 1965 of the resolution method (a complete theorem-proving algorithm for first-order
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Figure 1.3 A scene from the blocks world. SHRDLU (Winograd, 1972) has just completed
the command “Find a block which is taller than the one you are holding and put it in the box.”

logic; see Chapter 9). Work at Stanford emphasized general-purpose methods for logical
reasoning. Applications of logic included Cordell Green’s question-answering and planning
systems (Green, 1969b) and the Shakey robotics project at the Stanford Research Institute
(SRI). The latter project, discussed further in Chapter 26, was the first to demonstrate the
complete integration of logical reasoning and physical activity.

At MIT, Minsky supervised a series of students who chose limited problems that appeared
to require intelligence to solve. These limited domains became known as microworlds.
James Slagle’s SAINT program (1963) was able to solve closed-form calculus integration
problems typical of first-year college courses. Tom Evans’s ANALOGY program (1968)
solved geometric analogy problems that appear in IQ tests. Daniel Bobrow’s STUDENT pro-
gram (1967) solved algebra story problems, such as the following:

If the number of customers Tom gets is twice the square of 20 percent of the number
of advertisements he runs, and the number of advertisements he runs is 45, what is the
number of customers Tom gets?

The most famous microworld is the blocks world, which consists of a set of solid blocks
placed on a tabletop (or more often, a simulation of a tabletop), as shown in Figure 1.3.
A typical task in this world is to rearrange the blocks in a certain way, using a robot hand
that can pick up one block at a time. The blocks world was home to the vision project of
David Huffman (1971), the vision and constraint-propagation work of David Waltz (1975),
the learning theory of Patrick Winston (1970), the natural-language-understanding program
of Terry Winograd (1972), and the planner of Scott Fahlman (1974).

Early work building on the neural networks of McCulloch and Pitts also flourished. The
work of Shmuel Winograd and Jack Cowan (1963) showed how a large number of elements
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could collectively represent an individual concept, with a corresponding increase in robust-
ness and parallelism. Hebb’s learning methods were enhanced by Bernie Widrow (Widrow
and Hoff, 1960; Widrow, 1962), who called his networks adalines, and by Frank Rosen-
blatt (1962) with his perceptrons. The perceptron convergence theorem (Block ef al.,
1962) says that the learning algorithm can adjust the connection strengths of a perceptron to
match any input data, provided such a match exists.

1.3.3 A dose of reality (1966-1973)

From the beginning, Al researchers were not shy about making predictions of their coming
successes. The following statement by Herbert Simon in 1957 is often quoted:

It is not my aim to surprise or shock you—but the simplest way I can summarize is to say
that there are now in the world machines that think, that learn and that create. Moreover,
their ability to do these things is going to increase rapidly until—in a visible future—the
range of problems they can handle will be coextensive with the range to which the human
mind has been applied.

The term “visible future” is vague, but Simon also made more concrete predictions: that
within 10 years a computer would be chess champion and a significant mathematical theorem
would be proved by machine. These predictions came true (or approximately true) within 40
years rather than 10. Simon’s overconfidence was due to the promising performance of early
Al systems on simple examples. In almost all cases, however, these early systems failed on
more difficult problems.

There were two main reasons for this failure. The first was that many early Al systems
were based primarily on “informed introspection” as to how humans perform a task, rather
than on a careful analysis of the task, what it means to be a solution, and what an algorithm
would need to do to reliably produce such solutions.

The second reason for failure was a lack of appreciation of the intractability of many of
the problems that Al was attempting to solve. Most of the early problem-solving systems
worked by trying out different combinations of steps until the solution was found. This strat-
egy worked initially because microworlds contained very few objects and hence very few
possible actions and very short solution sequences. Before the theory of computational com-
plexity was developed, it was widely thought that “scaling up” to larger problems was simply
a matter of faster hardware and larger memories. The optimism that accompanied the devel-
opment of resolution theorem proving, for example, was soon dampened when researchers
failed to prove theorems involving more than a few dozen facts. The fact that a program can
find a solution in principle does not mean that the program contains any of the mechanisms
needed to find it in practice.

The illusion of unlimited computational power was not confined to problem-solving pro-
grams. Early experiments in machine evolution (now called genetic programming) (Fried-
berg, 1958; Friedberg et al., 1959) were based on the undoubtedly correct belief that by
making an appropriate series of small mutations to a machine-code program, one can gen-
erate a program with good performance for any particular task. The idea, then, was to try
random mutations with a selection process to preserve mutations that seemed useful. Despite
thousands of hours of CPU time, almost no progress was demonstrated.

Failure to come to grips with the “combinatorial explosion” was one of the main criti-
cisms of Al contained in the Lighthill report (Lighthill, 1973), which formed the basis for the
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decision by the British government to end support for Al research in all but two universities.
(Oral tradition paints a somewhat different and more colorful picture, with political ambitions
and personal animosities whose description is beside the point.)

A third difficulty arose because of some fundamental limitations on the basic structures
being used to generate intelligent behavior. For example, Minsky and Papert’s book Percep-
trons (1969) proved that, although perceptrons (a simple form of neural network) could be
shown to learn anything they were capable of representing, they could represent very little.
In particular, a two-input perceptron could not be trained to recognize when its two inputs
were different. Although their results did not apply to more complex, multilayer networks,
research funding for neural-net research soon dwindled to almost nothing. Ironically, the new
back-propagation learning algorithms that were to cause an enormous resurgence in neural-
net research in the late 1980s and again in the 2010s had already been developed in other
contexts in the early 1960s (Kelley, 1960; Bryson, 1962).

1.3.4 Expert systems (1969-1986)

The picture of problem solving that had arisen during the first decade of Al research was of
a general-purpose search mechanism trying to string together elementary reasoning steps to
find complete solutions. Such approaches have been called weak methods because, although
general, they do not scale up to large or difficult problem instances. The alternative to weak
methods is to use more powerful, domain-specific knowledge that allows larger reasoning
steps and can more easily handle typically occurring cases in narrow areas of expertise. One
might say that to solve a hard problem, you have to almost know the answer already.

The DENDRAL program (Buchanan et al., 1969) was an early example of this approach.
It was developed at Stanford, where Ed Feigenbaum (a former student of Herbert Simon),
Bruce Buchanan (a philosopher turned computer scientist), and Joshua Lederberg (a Nobel
laureate geneticist) teamed up to solve the problem of inferring molecular structure from the
information provided by a mass spectrometer. The input to the program consists of the ele-
mentary formula of the molecule (e.g., CcH3NO;) and the mass spectrum giving the masses
of the various fragments of the molecule generated when it is bombarded by an electron beam.
For example, the mass spectrum might contain a peak at m = 15, corresponding to the mass
of a methyl (CH3) fragment.

The naive version of the program generated all possible structures consistent with the
formula, and then predicted what mass spectrum would be observed for each, comparing this
with the actual spectrum. As one might expect, this is intractable for even moderate-sized
molecules. The DENDRAL researchers consulted analytical chemists and found that they
worked by looking for well-known patterns of peaks in the spectrum that suggested common
substructures in the molecule. For example, the following rule is used to recognize a ketone
(C=0) subgroup (which weighs 28):

if M is the mass of the whole molecule and there are two peaks at x; and x; such that
(a) x1 +x = M +28; (b) x; — 28 is a high peak; (c) x, — 28 is a high peak; and

(d) At least one of x| and x; is high

then there is a ketone subgroup.

Recognizing that the molecule contains a particular substructure reduces the number of pos-
sible candidates enormously. According to its authors, DENDRAL was powerful because it
embodied the relevant knowledge of mass spectroscopy not in the form of first principles but



Section 1.3 The History of Artificial Intelligence

in efficient “cookbook recipes” (Feigenbaum et al., 1971). The significance of DENDRAL
was that it was the first successful knowledge-intensive system: its expertise derived from
large numbers of special-purpose rules. In 1971, Feigenbaum and others at Stanford began
the Heuristic Programming Project (HPP) to investigate the extent to which the new method-
ology of expert systems could be applied to other areas.

The next major effort was the MYCIN system for diagnosing blood infections. With about
450 rules, MYCIN was able to perform as well as some experts, and considerably better than
junior doctors. It also contained two major differences from DENDRAL. First, unlike the
DENDRAL rules, no general theoretical model existed from which the MYCIN rules could be
deduced. They had to be acquired from extensive interviewing of experts. Second, the rules
had to reflect the uncertainty associated with medical knowledge. MYCIN incorporated a
calculus of uncertainty called certainty factors (see Chapter 13), which seemed (at the time)
to fit well with how doctors assessed the impact of evidence on the diagnosis.

The first successful commercial expert system, R 1, began operation at the Digital Equip-
ment Corporation (McDermott, 1982). The program helped configure orders for new com-
puter systems; by 1986, it was saving the company an estimated $40 million a year. By 1988,
DEC’s Al group had 40 expert systems deployed, with more on the way. DuPont had 100 in
use and 500 in development. Nearly every major U.S. corporation had its own Al group and
was either using or investigating expert systems.

The importance of domain knowledge was also apparent in the area of natural language
understanding. Despite the success of Winograd’s SHRDLU system, its methods did not ex-
tend to more general tasks: for problems such as ambiguity resolution it used simple rules
that relied on the tiny scope of the blocks world.

Several researchers, including Eugene Charniak at MIT and Roger Schank at Yale, sug-
gested that robust language understanding would require general knowledge about the world
and a general method for using that knowledge. (Schank went further, claiming, “There is
no such thing as syntax,” which upset a lot of linguists but did serve to start a useful dis-
cussion.) Schank and his students built a series of programs (Schank and Abelson, 1977;
Wilensky, 1978; Schank and Riesbeck, 1981) that all had the task of understanding natural
language. The emphasis, however, was less on language per se and more on the problems of
representing and reasoning with the knowledge required for language understanding.

The widespread growth of applications to real-world problems led to the development of
a wide range of representation and reasoning tools. Some were based on logic—for example,
the Prolog language became popular in Europe and Japan, and the PLANNER family in the
United States. Others, following Minsky’s idea of frames (1975), adopted a more structured
approach, assembling facts about particular object and event types and arranging the types
into a large taxonomic hierarchy analogous to a biological taxonomy.

In 1981, the Japanese government announced the “Fifth Generation” project, a 10-year
plan to build massively parallel, intelligent computers running Prolog. The budget was to
exceed a $1.3 billion in today’s money. In response, the United States formed the Micro-
electronics and Computer Technology Corporation (MCC), a consortium designed to assure
national competitiveness. In both cases, Al was part of a broad effort, including chip design
and human-interface research. In Britain, the Alvey report reinstated the funding removed by
the Lighthill report. However, none of these projects ever met its ambitious goals in terms of
new Al capabilities or economic impact.
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Overall, the Al industry boomed from a few million dollars in 1980 to billions of dollars
in 1988, including hundreds of companies building expert systems, vision systems, robots,
and software and hardware specialized for these purposes.

Soon after that came a period called the “Al winter,” in which many companies fell by the
wayside as they failed to deliver on extravagant promises. It turned out to be difficult to build
and maintain expert systems for complex domains, in part because the reasoning methods
used by the systems broke down in the face of uncertainty and in part because the systems
could not learn from experience.

1.3.5 The return of neural networks (1986—present)

In the mid-1980s at least four different groups reinvented the back-propagation learning
algorithm first developed in the early 1960s. The algorithm was applied to many learning
problems in computer science and psychology, and the widespread dissemination of the re-
sults in the collection Parallel Distributed Processing (Rumelhart and McClelland, 1986)
caused great excitement.

These so-called connectionist models were seen by some as direct competitors both to
the symbolic models promoted by Newell and Simon and to the logicist approach of Mc-
Carthy and others. It might seem obvious that at some level humans manipulate symbols—in
fact, the anthropologist Terrence Deacon’s book The Symbolic Species (1997) suggests that
this is the defining characteristic of humans. Against this, Geoff Hinton, a leading figure
in the resurgence of neural networks in the 1980s and 2010s, has described symbols as the
“luminiferous aether of AI”—a reference to the non-existent medium through which many
19th-century physicists believed that electromagnetic waves propagated. Certainly, many
concepts that we name in language fail, on closer inspection, to have the kind of logically
defined necessary and sufficient conditions that early Al researchers hoped to capture in ax-
iomatic form. It may be that connectionist models form internal concepts in a more fluid
and imprecise way that is better suited to the messiness of the real world. They also have
the capability to learn from examples—they can compare their predicted output value to the
true value on a problem and modify their parameters to decrease the difference, making them
more likely to perform well on future examples.

1.3.6 Probabilistic reasoning and machine learning (1987—present)

The brittleness of expert systems led to a new, more scientific approach incorporating proba-
bility rather than Boolean logic, machine learning rather than hand-coding, and experimental
results rather than philosophical claims.!# It became more common to build on existing theo-
ries than to propose brand-new ones, to base claims on rigorous theorems or solid experimen-
tal methodology (Cohen, 1995) rather than on intuition, and to show relevance to real-world
applications rather than toy examples.

Shared benchmark problem sets became the norm for demonstrating progress, including
the UC Irvine repository for machine learning data sets, the International Planning Compe-

14 Some have characterized this change as a victory of the neats—those who think that Al theories should be
grounded in mathematical rigor—over the scruffies—those who would rather try out lots of ideas, write some
programs, and then assess what seems to be working. Both approaches are important. A shift toward neatness
implies that the field has reached a level of stability and maturity. The present emphasis on deep learning may
represent a resurgence of the scruffies.
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tition for planning algorithms, the LibriSpeech corpus for speech recognition, the MNIST
data set for handwritten digit recognition, ImageNet and COCO for image object recogni-
tion, SQUAD for natural language question answering, the WMT competition for machine
translation, and the International SAT Competitions for Boolean satisfiability solvers.

Al was founded in part as a rebellion against the limitations of existing fields like control
theory and statistics, but in this period it embraced the positive results of those fields. As
David McAllester (1998) put it:

In the early period of Al it seemed plausible that new forms of symbolic computation,
e.g., frames and semantic networks, made much of classical theory obsolete. This led to
a form of isolationism in which Al became largely separated from the rest of computer
science. This isolationism is currently being abandoned. There is a recognition that
machine learning should not be isolated from information theory, that uncertain reasoning
should not be isolated from stochastic modeling, that search should not be isolated from
classical optimization and control, and that automated reasoning should not be isolated
from formal methods and static analysis.

The field of speech recognition illustrates the pattern. In the 1970s, a wide variety of different
architectures and approaches were tried. Many of these were rather ad hoc and fragile, and
worked on only a few carefully selected examples. In the 1980s, approaches using hidden
Markov models (HMMs) came to dominate the area. Two aspects of HMMs are relevant.
First, they are based on a rigorous mathematical theory. This allowed speech researchers to
build on several decades of mathematical results developed in other fields. Second, they are
generated by a process of training on a large corpus of real speech data. This ensures that the
performance is robust, and in rigorous blind tests HMMs improved their scores steadily. As
a result, speech technology and the related field of handwritten character recognition made
the transition to widespread industrial and consumer applications. Note that there was no
scientific claim that humans use HMMs to recognize speech; rather, HMMs provided a math-
ematical framework for understanding and solving the problem. We will see in Section 1.3.8,
however, that deep learning has rather upset this comfortable narrative.

1988 was an important year for the connection between Al and other fields, including
statistics, operations research, decision theory, and control theory. Judea Pearl’s (1988) Prob-
abilistic Reasoning in Intelligent Systems led to a new acceptance of probability and decision
theory in Al. Pearl’s development of Bayesian networks yielded a rigorous and efficient
formalism for representing uncertain knowledge as well as practical algorithms for proba-
bilistic reasoning. Chapters 12, 13, 14, 15, and 18 cover this area, in addition to more recent
developments that have greatly increased the expressive power of probabilistic formalisms;
Chapter 21 describes methods for learning Bayesian networks and related models from data.

A second major contribution in 1988 was Rich Sutton’s work connecting reinforcement
learning—which had been used in Arthur Samuel’s checker-playing program in the 1950s—
to the theory of Markov decision processes (MDPs) developed in the field of operations re-
search. A flood of work followed connecting Al planning research to MDPs, and the field of
reinforcement learning found applications in robotics and process control as well as acquiring
deep theoretical foundations.

One consequence of Al's newfound appreciation for data, statistical modeling, optimiza-
tion, and machine learning was the gradual reunification of subfields such as computer vision,
robotics, speech recognition, multiagent systems, and natural language processing that had
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become somewhat separate from core Al. The process of reintegration has yielded signifi-
cant benefits both in terms of applications—for example, the deployment of practical robots
expanded greatly during this period—and in a better theoretical understanding of the core
problems of Al

1.3.7 Big data (2001-present)

Remarkable advances in computing power and the creation of the World Wide Web have
facilitated the creation of very large data sets—a phenomenon sometimes known as big data.
These data sets include trillions of words of text, billions of images, and billions of hours of
speech and video, as well as vast amounts of genomic data, vehicle tracking data, clickstream
data, social network data, and so on.

This has led to the development of learning algorithms specially designed to take advan-
tage of very large data sets. Often, the vast majority of examples in such data sets are un-
labeled; for example, in Yarowsky’s (1995) influential work on word-sense disambiguation,
occurrences of a word such as “plant” are not labeled in the data set to indicate whether they
refer to flora or factory. With large enough data sets, however, suitable learning algorithms
can achieve an accuracy of over 96% on the task of identifying which sense was intended in a
sentence. Moreover, Banko and Brill (2001) argued that the improvement in performance ob-
tained from increasing the size of the data set by two or three orders of magnitude outweighs
any improvement that can be obtained from tweaking the algorithm.

A similar phenomenon seems to occur in computer vision tasks such as filling in holes in
photographs—holes caused either by damage or by the removal of ex-friends. Hays and Efros
(2007) developed a clever method for doing this by blending in pixels from similar images;
they found that the technique worked poorly with a database of only thousands of images but
crossed a threshold of quality with millions of images. Soon after, the availability of tens of
millions of images in the ImageNet database (Deng et al., 2009) sparked a revolution in the
field of computer vision.

The availability of big data and the shift towards machine learning helped Al recover
commercial attractiveness (Havenstein, 2005; Halevy er al., 2009). Big data was a crucial fac-
tor in the 2011 victory of IBM’s Watson system over human champions in the Jeopardy! quiz
game, an event that had a major impact on the public’s perception of Al

1.3.8 Deep learning (2011—present)

The term deep learning refers to machine learning using multiple layers of simple, adjustable
computing elements. Experiments were carried out with such networks as far back as the
1970s, and in the form of convolutional neural networks they found some success in hand-
written digit recognition in the 1990s (LeCun et al., 1995). It was not until 2011, however,
that deep learning methods really took off. This occurred first in speech recognition and then
in visual object recognition.

In the 2012 ImageNet competition, which required classifying images into one of a thou-
sand categories (armadillo, bookshelf, corkscrew, etc.), a deep learning system created in
Geoffrey Hinton’s group at the University of Toronto (Krizhevsky et al., 2013) demonstrated
a dramatic improvement over previous systems, which were based largely on handcrafted
features. Since then, deep learning systems have exceeded human performance on some vi-
sion tasks (and lag behind in some other tasks). Similar gains have been reported in speech
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recognition, machine translation, medical diagnosis, and game playing. The use of a deep
network to represent the evaluation function contributed to ALPHAGO’s victories over the
leading human Go players (Silver et al., 2016, 2017, 2018).

These remarkable successes have led to a resurgence of interest in Al among students,
companies, investors, governments, the media, and the general public. It seems that every
week there is news of a new Al application approaching or exceeding human performance,
often accompanied by speculation of either accelerated success or a new Al winter.

Deep learning relies heavily on powerful hardware. Whereas a standard computer CPU
can do 10° or 10'% operations per second. a deep learning algorithm running on specialized
hardware (e.g., GPU, TPU, or FPGA) might consume between 10'* and 10!7 operations per
second, mostly in the form of highly parallelized matrix and vector operations. Of course,
deep learning also depends on the availability of large amounts of training data, and on a few
algorithmic tricks (see Chapter 22).

1.4 The State of the Art

Stanford University’s One Hundred Year Study on Al (also known as AI100) convenes panels
of experts to provide reports on the state of the art in Al. Their 2016 report (Stone et al.,
2016; Grosz and Stone, 2018) concludes that “Substantial increases in the future uses of Al
applications, including more self-driving cars, healthcare diagnostics and targeted treatment,
and physical assistance for elder care can be expected” and that “Society is now at a crucial
juncture in determining how to deploy Al-based technologies in ways that promote rather than
hinder democratic values such as freedom, equality, and transparency.” AI100 also produces
an Al Index at aiindex.org to help track progress. Some highlights from the 2018 and
2019 reports (comparing to a year 2000 baseline unless otherwise stated):

* Publications: Al papers increased 20-fold between 2010 and 2019 to about 20,000 a
year. The most popular category was machine learning. (Machine learning papers
in arXiv.org doubled every year from 2009 to 2017.) Computer vision and natural
language processing were the next most popular.

* Sentiment: About 70% of news articles on Al are neutral, but articles with positive tone
increased from 12% in 2016 to 30% in 2018. The most common issues are ethical: data
privacy and algorithm bias.

» Students: Course enrollment increased 5-fold in the U.S. and 16-fold internationally
from a 2010 baseline. Al is the most popular specialization in Computer Science.

* Diversity: Al Professors worldwide are about 80% male, 20% female. Similar numbers
hold for Ph.D. students and industry hires.

e Conferences: Attendance at NeurIPS increased 800% since 2012 to 13,500 attendees.
Other conferences are seeing annual growth of about 30%.

* Industry: Al startups in the U.S. increased 20-fold to over 800.
* Internationalization: China publishes more papers per year than the U.S. and about
as many as all of Europe. However, in citation-weighted impact, U.S. authors are 50%

ahead of Chinese authors. Singapore, Brazil, Australia, Canada, and India are the fastest
growing countries in terms of the number of Al hires.

Al Index
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* Vision: Error rates for object detection (as achieved in LSVRC, the Large-Scale Visual
Recognition Challenge) improved from 28% in 2010 to 2% in 2017, exceeding human
performance. Accuracy on open-ended visual question answering (VQA) improved
from 55% to 68% since 2015, but lags behind human performance at 83%.

* Speed: Training time for the image recognition task dropped by a factor of 100 in just
the past two years. The amount of computing power used in top Al applications is
doubling every 3.4 months.

» Language: Accuracy on question answering, as measured by F1 score on the Stanford
Question Answering Dataset (SQUAD), increased from 60 to 95 from 2015 to 2019; on
the SQUAD 2 variant, progress was faster, going from 62 to 90 in just one year. Both
scores exceed human-level performance.

* Human benchmarks: By 2019, Al systems had reportedly met or exceeded human-
level performance in chess, Go, poker, Pac-Man, Jeopardy!, ImageNet object detection,
speech recognition in a limited domain, Chinese-to-English translation in a restricted
domain, Quake III, Dota 2, StarCraft II, various Atari games, skin cancer detection,
prostate cancer detection, protein folding, and diabetic retinopathy diagnosis.

When (if ever) will Al systems achieve human-level performance across a broad variety
of tasks? Ford (2018) interviews Al experts and finds a wide range of target years, from 2029
to 2200, with a mean of 2099. In a similar survey (Grace et al., 2017) 50% of respondents
thought this could happen by 2066, although 10% thought it could happen as early as 2025,
and a few said “never.” The experts were also split on whether we need fundamental new
breakthroughs or just refinements on current approaches. But don’t take their predictions
too seriously; as Philip Tetlock (2017) demonstrates in the area of predicting world events,
experts are no better than amateurs.

How will future Al systems operate? We can’t yet say. As detailed in this section, the field
has adopted several stories about itself—first the bold idea that intelligence by a machine was
even possible, then that it could be achieved by encoding expert knowledge into logic, then
that probabilistic models of the world would be the main tool, and most recently that machine
learning would induce models that might not be based on any well-understood theory at all.
The future will reveal what model comes next.

What can Al do today? Perhaps not as much as some of the more optimistic media
articles might lead one to believe, but still a great deal. Here are some examples:

Robotic vehicles: The history of robotic vehicles stretches back to radio-controlled cars
of the 1920s, but the first demonstrations of autonomous road driving without special guides
occurred in the 1980s (Kanade et al., 1986; Dickmanns and Zapp, 1987). After success-
ful demonstrations of driving on dirt roads in the 132-mile DARPA Grand Challenge in
2005 (Thrun, 2006) and on streets with traffic in the 2007 Urban Challenge, the race to de-
velop self-driving cars began in earnest. In 2018, Waymo test vehicles passed the landmark
of 10 million miles driven on public roads without a serious accident, with the human driver
stepping in to take over control only once every 6,000 miles. Soon after, the company began
offering a commercial robotic taxi service.

In the air, autonomous fixed-wing drones have been providing cross-country blood deliv-
eries in Rwanda since 2016. Quadcopters perform remarkable aerobatic maneuvers, explore
buildings while constructing 3-D maps, and self-assemble into autonomous formations.
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Legged locomotion: BigDog, a quadruped robot by Raibert et al. (2008), upended our
notions of how robots move—no longer the slow, stiff-legged, side-to-side gait of Hollywood
movie robots, but something closely resembling an animal and able to recover when shoved
or when slipping on an icy puddle. Atlas, a humanoid robot, not only walks on uneven terrain
but jumps onto boxes and does backflips (Ackerman and Guizzo, 2016).

Autonomous planning and scheduling: A hundred million miles from Earth, NASA’s
Remote Agent program became the first on-board autonomous planning program to control
the scheduling of operations for a spacecraft (Jonsson et al., 2000). Remote Agent generated
plans from high-level goals specified from the ground and monitored the execution of those
plans—detecting, diagnosing, and recovering from problems as they occurred. Today, the
EUROPA planning toolkit (Barreiro et al., 2012) is used for daily operations of NASA’s Mars
rovers and the SEXTANT system (Winternitz, 2017) allows autonomous navigation in deep
space, beyond the global GPS system.

During the Persian Gulf crisis of 1991, U.S. forces deployed a Dynamic Analysis and
Replanning Tool, DART (Cross and Walker, 1994), to do automated logistics planning and
scheduling for transportation. This involved up to 50,000 vehicles, cargo, and people at a
time, and had to account for starting points, destinations, routes, transport capacities, port
and airfield capacities, and conflict resolution among all parameters. The Defense Advanced
Research Project Agency (DARPA) stated that this single application more than paid back
DARPA’s 30-year investment in Al

Every day, ride hailing companies such as Uber and mapping services such as Google
Maps provide driving directions for hundreds of millions of users, quickly plotting an optimal
route taking into account current and predicted future traffic conditions.

Machine translation: Online machine translation systems now enable the reading of
documents in over 100 languages, including the native languages of over 99% of humans,
and render hundreds of billions of words per day for hundreds of millions of users. While not
perfect, they are generally adequate for understanding. For closely related languages with a
great deal of training data (such as French and English) translations within a narrow domain
are close to the level of a human (Wu et al., 2016b).

Speech recognition: In 2017, Microsoft showed that its Conversational Speech Recog-
nition System had reached a word error rate of 5.1%, matching human performance on the
Switchboard task, which involves transcribing telephone conversations (Xiong et al., 2017).
About a third of computer interaction worldwide is now done by voice rather than keyboard;
Skype provides real-time speech-to-speech translation in ten languages. Alexa, Siri, Cortana,
and Google offer assistants that can answer questions and carry out tasks for the user; for
example the Google Duplex service uses speech recognition and speech synthesis to make
restaurant reservations for users, carrying out a fluent conversation on their behalf.

Recommendations: Companies such as Amazon, Facebook, Netflix, Spotify, YouTube,
Walmart, and others use machine learning to recommend what you might like based on your
past experiences and those of others like you. The field of recommender systems has a long
history (Resnick and Varian, 1997) but is changing rapidly due to new deep learning methods
that analyze content (text, music, video) as well as history and metadata (van den Oord et al.,
2014; Zhang et al., 2017). Spam filtering can also be considered a form of recommendation
(or dis-recommendation); current Al techniques filter out over 99.9% of spam, and email
services can also recommend potential recipients, as well as possible response text.

47



48

Chapter 1 Introduction

Game playing: When Deep Blue defeated world chess champion Garry Kasparov in
1997, defenders of human supremacy placed their hopes on Go. Piet Hut, an astrophysicist
and Go enthusiast, predicted that it would take “a hundred years before a computer beats
humans at Go—maybe even longer.” But just 20 years later, ALPHAGO surpassed all human
players (Silver et al., 2017). Ke Jie, the world champion, said, “Last year, it was still quite
human-like when it played. But this year, it became like a god of Go.” ALPHAGO benefited
from studying hundreds of thousands of past games by human Go players, and from the
distilled knowledge of expert Go players that worked on the team.

A followup program, ALPHAZERO, used no input from humans (except for the rules
of the game), and was able to learn through self-play alone to defeat all opponents, human
and machine, at Go, chess, and shogi (Silver et al., 2018). Meanwhile, human champions
have been beaten by Al systems at games as diverse as Jeopardy! (Ferrucci et al., 2010),
poker (Bowling et al., 2015; Morav¢ik et al., 2017; Brown and Sandholm, 2019), and the
video games Dota 2 (Fernandez and Mahlmann, 2018), StarCraft II (Vinyals et al., 2019),
and Quake III (Jaderberg et al., 2019).

Image understanding: Not content with exceeding human accuracy on the challenging
ImageNet object recognition task, computer vision researchers have taken on the more dif-
ficult problem of image captioning. Some impressive examples include “A person riding a
motorcycle on a dirt road,” “Two pizzas sitting on top of a stove top oven,” and “A group
of young people playing a game of frisbee” (Vinyals et al., 2017b). Current systems are far
from perfect, however: a “refrigerator filled with lots of food and drinks” turns out to be a
no-parking sign partially obscured by lots of small stickers.

Medicine: Al algorithms now equal or exceed expert doctors at diagnosing many condi-
tions, particularly when the diagnosis is based on images. Examples include Alzheimer’s dis-
ease (Ding et al., 2018), metastatic cancer (Liu et al., 2017; Esteva et al., 2017), ophthalmic
disease (Gulshan et al., 2016), and skin diseases (Liu et al., 2019c). A systematic review and
meta-analysis (Liu et al., 2019a) found that the performance of Al programs, on average, was
equivalent to health care professionals. One current emphasis in medical Al is in facilitating
human-machine partnerships. For example, the LYNA system achieves 99.6% overall accu-
racy in diagnosing metastatic breast cancer—better than an unaided human expert—but the
combination does better still (Liu et al., 2018; Steiner et al., 2018).

The widespread adoption of these techniques is now limited not by diagnostic accuracy
but by the need to demonstrate improvement in clinical outcomes and to ensure transparency,
lack of bias, and data privacy (Topol, 2019). In 2017, only two medical Al applications were
approved by the FDA, but that increased to 12 in 2018, and continues to rise.

Climate science: A team of scientists won the 2018 Gordon Bell Prize for a deep learning
model that discovers detailed information about extreme weather events that were previously
buried in climate data. They used a supercomputer with specialized GPU hardware to exceed
the exaop level (10'® operations per second), the first machine learning program to do so
(Kurth et al., 2018). Rolnick et al. (2019) present a 60-page catalog of ways in which machine
learning can be used to tackle climate change.

These are just a few examples of artificial intelligence systems that exist today. Not
magic or science fiction—but rather science, engineering, and mathematics, to which this
book provides an introduction.
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1.5 Risks and Benefits of Al

Francis Bacon, a philosopher credited with creating the scientific method, noted in The Wis-
dom of the Ancients (1609) that the “mechanical arts are of ambiguous use, serving as well
for hurt as for remedy.” As Al plays an increasingly important role in the economic, so-
cial, scientific, medical, financial, and military spheres, we would do well to consider the
hurts and remedies—in modern parlance, the risks and benefits—that it can bring. The topics
summarized here are covered in greater depth in Chapters 28 and 29.

To begin with the benefits: put simply, our entire civilization is the product of our human
intelligence. If we have access to substantially greater machine intelligence, the ceiling on
our ambitions is raised substantially. The potential for Al and robotics to free humanity from
menial repetitive work and to dramatically increase the production of goods and services
could presage an era of peace and plenty. The capacity to accelerate scientific research could
result in cures for disease and solutions for climate change and resource shortages. As Demis
Hassabis, CEO of Google DeepMind, has suggested: “First solve Al, then use Al to solve
everything else.”

Long before we have an opportunity to “solve AL’ however, we will incur risks from
the misuse of Al, inadvertent or otherwise. Some of these are already apparent, while others
seem likely based on current trends:

* Lethal autonomous weapons: These are defined by the United Nations as weapons that
can locate, select, and eliminate human targets without human intervention. A primary
concern with such weapons is their scalability: the absence of a requirement for human
supervision means that a small group can deploy an arbitrarily large number of weapons
against human targets defined by any feasible recognition criterion. The technologies
needed for autonomous weapons are similar to those needed for self-driving cars. In-
formal expert discussions on the potential risks of lethal autonomous weapons began
at the UN in 2014, moving to the formal pre-treaty stage of a Group of Governmental
Experts in 2017.

* Surveillance and persuasion: While it is expensive, tedious, and sometimes legally
questionable for security personnel to monitor phone lines, video camera feeds, emails,
and other messaging channels, Al (speech recognition, computer vision, and natural
language understanding) can be used in a scalable fashion to perform mass surveillance
of individuals and detect activities of interest. By tailoring information flows to individ-
uals through social media, based on machine learning techniques, political behavior can
be modified and controlled to some extent—a concern that became apparent in elections
beginning in 2016.

* Biased decision making: Careless or deliberate misuse of machine learning algorithms
for tasks such as evaluating parole and loan applications can result in decisions that are
biased by race, gender, or other protected categories. Often, the data themselves reflect
pervasive bias in society.

* Impact on employment: Concerns about machines eliminating jobs are centuries old.
The story is never simple: machines do some of the tasks that humans might otherwise
do, but they also make humans more productive and therefore more employable, and
make companies more profitable and therefore able to pay higher wages. They may
render some activities economically viable that would otherwise be impractical. Their
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use generally results in increasing wealth but tends to have the effect of shifting wealth
from labor to capital, further exacerbating increases in inequality. Previous advances
in technology—such as the invention of mechanical looms—have resulted in serious
disruptions to employment, but eventually people find new kinds of work to do. On the
other hand, it is possible that Al will be doing those new kinds of work too. This topic
is rapidly becoming a major focus for economists and governments around the world.

* Safety-critical applications: As Al techniques advance, they are increasingly used in
high-stakes, safety-critical applications such as driving cars and managing the water
supplies of cities. Fatal accidents have already occurred and highlight the difficulty
of formal verification and statistical risk analysis for systems developed using machine
learning techniques. The field of Al will need to develop technical and ethical standards
at least comparable to those prevalent in other engineering and healthcare disciplines
where people’s lives are at stake.

* Cybersecurity: Al techniques are useful in defending against cyberattack, for exam-
ple by detecting unusual patterns of behavior, but they will also contribute to the po-
tency, survivability, and proliferation capability of malware. For example, reinforce-
ment learning methods have been used to create highly effective tools for automated,
personalized blackmail and phishing attacks.

We will revisit these topics in more depth in Section 28.3. As Al systems become more
capable, they will take on more of the societal roles previously played by humans. Just as
humans have used these roles in the past to perpetrate mischief, we can expect that humans
may misuse Al systems in these roles to perpetrate even more mischief. All of the examples
given above point to the importance of governance and, eventually, regulation. At present, the
research community and the major corporations involved in Al research have developed vol-
untary self-governance principles for Al-related activities (see Section 28.3). Governments
and international organizations are setting up advisory bodies to devise appropriate regula-
tions for each specific use case, to prepare for the economic and social impacts, and to take
advantage of Al capabilities to address major societal problems.

What of the longer term? Will we achieve the long-standing goal: the creation of intelli-
gence comparable to or more capable than human intelligence? And, if we do, what then?

For much of AI’s history, these questions have been overshadowed by the daily grind of
getting Al systems to do anything even remotely intelligent. As with any broad discipline, the
great majority of Al researchers have specialized in a specific subfield such as game-playing,
knowledge representation, vision, or natural language understanding—often on the assump-
tion that progress in these subfields would contribute to the broader goals of Al. Nils Nilsson
(1995), one of the original leaders of the Shakey project at SRI, reminded the field of those
broader goals and warned that the subfields were in danger of becoming ends in themselves.
Later, some influential founders of Al, including John McCarthy (2007), Marvin Minsky
(2007), and Patrick Winston (Beal and Winston, 2009), concurred with Nilsson’s warnings,
suggesting that instead of focusing on measurable performance in specific applications, Al
should return to its roots of striving for, in Herb Simon’s words, “machines that think, that
learn and that create.” They called the effort human-level AI or HLAI—a machine should
be able to learn to do anything a human can do. Their first symposium was in 2004 (Min-
sky et al., 2004). Another effort with similar goals, the artificial general intelligence (AGI)
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movement (Goertzel and Pennachin, 2007), held its first conference and organized the Jour-
nal of Artificial General Intelligence in 2008.

At around the same time, concerns were raised that creating artificial superintelligence
or ASI—intelligence that far surpasses human ability—might be a bad idea (Yudkowsky,
2008; Omohundro, 2008). Turing (1996) himself made the same point in a lecture given in
Manchester in 1951, drawing on earlier ideas from Samuel Butler (1863):1

It seems probable that once the machine thinking method had started, it would not take

long to outstrip our feeble powers. ... At some stage therefore we should have to expect
the machines to take control, in the way that is mentioned in Samuel Butler’s Erewhon.

These concerns have only become more widespread with recent advances in deep learning,
the publication of books such as Superintelligence by Nick Bostrom (2014), and public pro-
nouncements from Stephen Hawking, Bill Gates, Martin Rees, and Elon Musk.

Experiencing a general sense of unease with the idea of creating superintelligent ma-
chines is only natural. We might call this the gorilla problem: about seven million years
ago, a now-extinct primate evolved, with one branch leading to gorillas and one to humans.
Today, the gorillas are not too happy about the human branch; they have essentially no control
over their future. If this is the result of success in creating superhuman Al—that humans cede
control over their future—then perhaps we should stop work on Al, and, as a corollary, give
up the benefits it might bring. This is the essence of Turing’s warning: it is not obvious that
we can control machines that are more intelligent than us.

If superhuman Al were a black box that arrived from outer space, then indeed it would
be wise to exercise caution in opening the box. But it is not: we design the Al systems, so if
they do end up “taking control,” as Turing suggests, it would be the result of a design failure.

To avoid such an outcome, we need to understand the source of potential failure. Norbert
Wiener (1960), who was motivated to consider the long-term future of Al after seeing Arthur
Samuel’s checker-playing program learn to beat its creator, had this to say:

If we use, to achieve our purposes, a mechanical agency with whose operation we cannot

interfere effectively ... we had better be quite sure that the purpose put into the machine
is the purpose which we really desire.

Many cultures have myths of humans who ask gods, genies, magicians, or devils for some-
thing. Invariably, in these stories, they get what they literally ask for, and then regret it. The
third wish, if there is one, is to undo the first two. We will call this the King Midas problem:
Midas, a legendary King in Greek mythology, asked that everything he touched should turn
to gold, but then regretted it after touching his food, drink, and family members.'®

We touched on this issue in Section 1.1.5, where we pointed out the need for a significant
modification to the standard model of putting fixed objectives into the machine. The solu-
tion to Wiener’s predicament is not to have a definite “purpose put into the machine” at all.
Instead, we want machines that strive to achieve human objectives but know that they don’t
know for certain exactly what those objectives are.

15 Even earlier, in 1847, Richard Thornton, editor of the Primitive Expounder, railed against mechanical calcula-
tors: “Mind ...outruns itself and does away with the necessity of its own existence by inventing machines to do
its own thinking. ...But who knows that such machines when brought to greater perfection, may not think of a
plan to remedy all their own defects and then grind out ideas beyond the ken of mortal mind!”

16 Midas would have done better if he had followed basic principles of safety and included an “undo” button and
a “pause” button in his wish.
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It is perhaps unfortunate that almost all Al research to date has been carried out within
the standard model, which means that almost all of the technical material in this edition
reflects that intellectual framework. There are, however, some early results within the new
framework. In Chapter 15, we show that a machine has a positive incentive to allow itself
to be switched off if and only if it is uncertain about the human objective. In Chapter 17,
we formulate and study assistance games, which describe mathematically the situation in
which a human has an objective and a machine tries to achieve it, but is initially uncertain
about what it is. In Chapter 23, we explain the methods of inverse reinforcement learning
that allow machines to learn more about human preferences from observations of the choices
that humans make. In Chapter 28, we explore two of the principal difficulties: first, that
our choices depend on our preferences through a very complex cognitive architecture that is
hard to invert; and, second, that we humans may not have consistent preferences in the first
place—either individually or as a group—so it may not be clear what Al systems should be
doing for us.

Summary

This chapter defines Al and establishes the cultural background against which it has devel-
oped. Some of the important points are as follows:

* Different people approach Al with different goals in mind. Two important questions to
ask are: Are you concerned with thinking, or behavior? Do you want to model humans,
or try to achieve the optimal results?

* According to what we have called the standard model, Al is concerned mainly with
rational action. An ideal intelligent agent takes the best possible action in a situation.
We study the problem of building agents that are intelligent in this sense.

* Two refinements to this simple idea are needed: first, the ability of any agent, human
or otherwise, to choose rational actions is limited by the computational intractability of
doing so; second, the concept of a machine that pursues a definite objective needs to be
replaced with that of a machine pursuing objectives to benefit humans, but uncertain as
to what those objectives are.

* Philosophers (going back to 400 BCE) made Al conceivable by suggesting that the mind
is in some ways like a machine, that it operates on knowledge encoded in some internal
language, and that thought can be used to choose what actions to take.

* Mathematicians provided the tools to manipulate statements of logical certainty as well
as uncertain, probabilistic statements. They also set the groundwork for understanding
computation and reasoning about algorithms.

* Economists formalized the problem of making decisions that maximize the expected
utility to the decision maker.

* Neuroscientists discovered some facts about how the brain works and the ways in which
it is similar to and different from computers.

* Psychologists adopted the idea that humans and animals can be considered information-
processing machines. Linguists showed that language use fits into this model.

* Computer engineers provided the ever-more-powerful machines that make Al applica-
tions possible, and software engineers made them more usable.
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* Control theory deals with designing devices that act optimally on the basis of feedback
from the environment. Initially, the mathematical tools of control theory were quite
different from those used in Al but the fields are coming closer together.

* The history of Al has had cycles of success, misplaced optimism, and resulting cutbacks
in enthusiasm and funding. There have also been cycles of introducing new, creative
approaches and systematically refining the best ones.

* Al has matured considerably compared to its early decades, both theoretically and
methodologically. As the problems that Al deals with became more complex, the field
moved from Boolean logic to probabilistic reasoning, and from hand-crafted knowledge
to machine learning from data. This has led to improvements in the capabilities of real
systems and greater integration with other disciplines.

* As Al systems find application in the real world, it has become necessary to consider a
wide range of risks and ethical consequences.

* In the longer term, we face the difficult problem of controlling superintelligent Al sys-
tems that may evolve in unpredictable ways. Solving this problem seems to necessitate
a change in our conception of Al.

Bibliographical and Historical Notes

A comprehensive history of Al is given by Nils Nilsson (2009), one of the early pioneers of
the field. Pedro Domingos (2015) and Melanie Mitchell (2019) give overviews of machine
learning for a general audience, and Kai-Fu Lee (2018) describes the race for international
leadership in Al. Martin Ford (2018) interviews 23 leading Al researchers.

The main professional societies for Al are the Association for the Advancement of Arti-
ficial Intelligence (AAAI), the ACM Special Interest Group in Artificial Intelligence (SIGAI,
formerly SIGART), the European Association for Al, and the Society for Artificial Intel-
ligence and Simulation of Behaviour (AISB). The Partnership on AI brings together many
commercial and nonprofit organizations concerned with the ethical and social impacts of Al.
AAAT’s Al Magazine contains many topical and tutorial articles, and its Web site, aaai . org,
contains news, tutorials, and background information.

The most recent work appears in the proceedings of the major Al conferences: the In-
ternational Joint Conference on Al (IJCAI), the annual European Conference on Al (ECAI),
and the AAAI Conference. Machine learning is covered by the International Conference
on Machine Learning and the Neural Information Processing Systems (NeurIPS) meeting.
The major journals for general Al are Artificial Intelligence, Computational Intelligence, the
IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE Intelligent Systems,
and the Journal of Artificial Intelligence Research. There are also many conferences and
journals devoted to specific areas, which we cover in the appropriate chapters.
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INTELLIGENT AGENTS

In which we discuss the nature of agents, perfect or otherwise, the diversity of environments,
and the resulting menagerie of agent types.

Chapter 1 identified the concept of rational agents as central to our approach to artificial
intelligence. In this chapter, we make this notion more concrete. We will see that the concept
of rationality can be applied to a wide variety of agents operating in any imaginable environ-
ment. Our plan in this book is to use this concept to develop a small set of design principles
for building successful agents—systems that can reasonably be called intelligent.

We begin by examining agents, environments, and the coupling between them. The ob-
servation that some agents behave better than others leads naturally to the idea of a rational
agent—one that behaves as well as possible. How well an agent can behave depends on the
nature of the environment; some environments are more difficult than others. We give a crude
categorization of environments and show how properties of an environment influence the de-
sign of suitable agents for that environment. We describe a number of basic “skeleton” agent
designs, which we flesh out in the rest of the book.

2.1 Agents and Environments

An agent is anything that can be viewed as perceiving its environment through sensors and
acting upon that environment through actuators. This simple idea is illustrated in Figure 2.1.
A human agent has eyes, ears, and other organs for sensors and hands, legs, vocal tract,
and so on for actuators. A robotic agent might have cameras and infrared range finders for
sensors and various motors for actuators. A software agent receives file contents, network
packets, and human input (keyboard/mouse/touchscreen/voice) as sensory inputs and acts on
the environment by writing files, sending network packets, and displaying information or
generating sounds. The environment could be everything—the entire universe! In practice it
is just that part of the universe whose state we care about when designing this agent—the part
that affects what the agent perceives and that is affected by the agent’s actions.

We use the term percept to refer to the content an agent’s sensors are perceiving. An
agent’s percept sequence is the complete history of everything the agent has ever perceived.
In general, an agent’s choice of action at any given instant can depend on its built-in knowl-
edge and on the entire percept sequence observed to date, but not on anything it hasn’t per-
ceived. By specifying the agent’s choice of action for every possible percept sequence, we
have said more or less everything there is to say about the agent. Mathematically speak-
ing, we say that an agent’s behavior is described by the agent function that maps any given
percept sequence to an action.
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Figure 2.1 Agents interact with environments through sensors and actuators.

We can imagine tabulating the agent function that describes any given agent; for most
agents, this would be a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent does in response.! The table is, of course, an external characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an
agent program. It is important to keep these two ideas distinct. The agent function is an
abstract mathematical description; the agent program is a concrete implementation, running
within some physical system.

To illustrate these ideas, we use a simple example—the vacuum-cleaner world, which
consists of a robotic vacuum-cleaning agent in a world consisting of squares that can be
either dirty or clean. Figure 2.2 shows a configuration with just two squares, A and B. The
vacuum agent perceives which square it is in and whether there is dirt in the square. The
agent starts in square A. The available actions are to move to the right, move to the left, suck
up the dirt, or do nothing.? One very simple agent function is the following: if the current
square is dirty, then suck; otherwise, move to the other square. A partial tabulation of this
agent function is shown in Figure 2.3 and an agent program that implements it appears in
Figure 2.8 on page 67.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by filling in the right-hand column in various ways. The obvious question, then, is this: What
is the right way to fill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questions in the next section.

1 If the agent uses some randomization to choose its actions, then we would have to try each sequence many
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we
show later in this chapter that it can be very intelligent.

2 In a real robot, it would be unlikely to have an actions like “move right” and “move left.” Instead the actions
would be “spin wheels forward” and “spin wheels backward.” We have chosen the actions to be easier to follow
on the page, not for ease of implementation in an actual robot.

Agent program

<
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Figure 2.2 A vacuum-cleaner world with just two locations. Each location can be clean or
dirty, and the agent can move left or right and can clean the square that it occupies. Different
versions of the vacuum world allow for different rules about what the agent can perceive,
whether its actions always succeed, and so on.

Percept sequence Action
[A, Clean] Right
[A, Dirty] Suck
[B, Clean] Left
[B, Dirty] Suck
[A, Clean], [A, Clean] Right
[A, Clean], [A, Dirty| Suck
[A, Clean], [A, Clean], [A, Clean] Right
[A, Clean], [A, Clean], [A, Dirty] Suck

Figure 2.3 Partial tabulation of a simple agent function for the vacuum-cleaner world shown
in Figure 2.2. The agent cleans the current square if it is dirty, otherwise it moves to the other
square. Note that the table is of unbounded size unless there is a restriction on the length of
possible percept sequences.

Before closing this section, we should emphasize that the notion of an agent is meant to
be a tool for analyzing systems, not an absolute characterization that divides the world into
agents and non-agents. One could view a hand-held calculator as an agent that chooses the
action of displaying “4” when given the percept sequence “2 + 2 =, but such an analysis
would hardly aid our understanding of the calculator. In a sense, all areas of engineering can
be seen as designing artifacts that interact with the world; Al operates at (what the authors
consider to be) the most interesting end of the spectrum, where the artifacts have significant
computational resources and the task environment requires nontrivial decision making.
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2.2 Good Behavior: The Concept of Rationality

A rational agent is one that does the right thing. Obviously, doing the right thing is better
than doing the wrong thing, but what does it mean to do the right thing?

2.2.1 Performance measures

Moral philosophy has developed several different notions of the “right thing,” but Al has
generally stuck to one notion called consequentialism: we evaluate an agent’s behavior by its
consequences. When an agent is plunked down in an environment, it generates a sequence of
actions according to the percepts it receives. This sequence of actions causes the environment
to go through a sequence of states. If the sequence is desirable, then the agent has performed
well. This notion of desirability is captured by a performance measure that evaluates any
given sequence of environment states.

Humans have desires and preferences of their own, so the notion of rationality as applied
to humans has to do with their success in choosing actions that produce sequences of envi-
ronment states that are desirable from their point of view. Machines, on the other hand, do not
have desires and preferences of their own; the performance measure is, initially at least, in the
mind of the designer of the machine, or in the mind of the users the machine is designed for.
We will see that some agent designs have an explicit representation of (a version of) the per-
formance measure, while in other designs the performance measure is entirely implicit—the
agent may do the right thing, but it doesn’t know why.

Recalling Norbert Wiener’s warning to ensure that “the purpose put into the machine is
the purpose which we really desire” (page 51), notice that it can be quite hard to formulate
a performance measure correctly. Consider, for example, the vacuum-cleaner agent from the
preceding section. We might propose to measure performance by the amount of dirt cleaned
up in a single eight-hour shift. With a rational agent, of course, what you ask for is what
you get. A rational agent can maximize this performance measure by cleaning up the dirt,
then dumping it all on the floor, then cleaning it up again, and so on. A more suitable per-
formance measure would reward the agent for having a clean floor. For example, one point
could be awarded for each clean square at each time step (perhaps with a penalty for elec-
tricity consumed and noise generated). As a general rule, it is better to design performance
measures according to what one actually wants to be achieved in the environment, rather
than according to how one thinks the agent should behave.

Even when the obvious pitfalls are avoided, some knotty problems remain. For example,
the notion of “clean floor” in the preceding paragraph is based on average cleanliness over
time. Yet the same average cleanliness can be achieved by two different agents, one of which
does a mediocre job all the time while the other cleans energetically but takes long breaks.
Which is preferable might seem to be a fine point of janitorial science, but in fact it is a
deep philosophical question with far-reaching implications. Which is better—a reckless life
of highs and lows, or a safe but humdrum existence? Which is better—an economy where
everyone lives in moderate poverty, or one in which some live in plenty while others are very
poor? We leave these questions as an exercise for the diligent reader.

For most of the book, we will assume that the performance measure can be specified
correctly. For the reasons given above, however, we must accept the possibility that we might
put the wrong purpose into the machine—precisely the King Midas problem described on
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page 51. Moreover, when designing one piece of software, copies of which will belong to
different users, we cannot anticipate the exact preferences of each individual user. Thus, we
may need to build agents that reflect initial uncertainty about the true performance measure
and learn more about it as time goes by; such agents are described in Chapters 15, 17, and 23.

2.2.2 Rationality
What is rational at any given time depends on four things:

* The performance measure that defines the criterion of success.
* The agent’s prior knowledge of the environment.

* The actions that the agent can perform.

» The agent’s percept sequence to date.

This leads to a definition of a rational agent:

For each possible percept sequence, a rational agent should select an action that is ex-
pected to maximize its performance measure, given the evidence provided by the percept
sequence and whatever built-in knowledge the agent has.

Consider the simple vacuum-cleaner agent that cleans a square if it is dirty and moves to the
other square if not; this is the agent function tabulated in Figure 2.3. Is this a rational agent?
That depends! First, we need to say what the performance measure is, what is known about
the environment, and what sensors and actuators the agent has. Let us assume the following:

* The performance measure awards one point for each clean square at each time step,
over a “lifetime” of 1000 time steps.

* The “geography” of the environment is known a priori (Figure 2.2) but the dirt distri-
bution and the initial location of the agent are not. Clean squares stay clean and sucking
cleans the current square. The Right and Left actions move the agent one square ex-
cept when this would take the agent outside the environment, in which case the agent
remains where it is.

* The only available actions are Right, Left, and Suck.
* The agent correctly perceives its location and whether that location contains dirt.

Under these circumstances the agent is indeed rational; its expected performance is at least
as good as any other agent’s.

One can see easily that the same agent would be irrational under different circumstances.
For example, once all the dirt is cleaned up, the agent will oscillate needlessly back and forth;
if the performance measure includes a penalty of one point for each movement, the agent will
fare poorly. A better agent for this case would do nothing once it is sure that all the squares
are clean. If clean squares can become dirty again, the agent should occasionally check and
re-clean them if needed. If the geography of the environment is unknown, the agent will need
to explore it. Exercise 2.VACR asks you to design agents for these cases.

2.2.3 Omniscience, learning, and autonomy

We need to be careful to distinguish between rationality and omniscience. An omniscient
agent knows the actual outcome of its actions and can act accordingly; but omniscience is
impossible in reality. Consider the following example: I am walking along the Champs
Elysées one day and I see an old friend across the street. There is no traffic nearby and I'm
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not otherwise engaged, so, being rational, I start to cross the street. Meanwhile, at 33,000
feet, a cargo door falls off a passing airliner, and before I make it to the other side of the
street I am flattened. Was I irrational to cross the street? It is unlikely that my obituary would
read “Idiot attempts to cross street.”

This example shows that rationality is not the same as perfection. Rationality maximizes
expected performance, while perfection maximizes actual performance. Retreating from a
requirement of perfection is not just a question of being fair to agents. The point is that if we
expect an agent to do what turns out after the fact to be the best action, it will be impossible
to design an agent to fulfill this specification—unless we improve the performance of crystal
balls or time machines.

Our definition of rationality does not require omniscience, then, because the rational
choice depends only on the percept sequence to date. We must also ensure that we haven’t
inadvertently allowed the agent to engage in decidedly underintelligent activities. For exam-
ple, if an agent does not look both ways before crossing a busy road, then its percept sequence
will not tell it that there is a large truck approaching at high speed. Does our definition of
rationality say that it’s now OK to cross the road? Far from it!

First, it would not be rational to cross the road given this uninformative percept sequence:
the risk of accident from crossing without looking is too great. Second, a rational agent should
choose the “looking” action before stepping into the street, because looking helps maximize
the expected performance. Doing actions in order to modify future percepts—sometimes
called information gathering—is an important part of rationality and is covered in depth in
Chapter 15. A second example of information gathering is provided by the exploration that
must be undertaken by a vacuum-cleaning agent in an initially unknown environment.

Our definition requires a rational agent not only to gather information but also to learn as
much as possible from what it perceives. The agent’s initial configuration could reflect some
prior knowledge of the environment, but as the agent gains experience this may be modified
and augmented. There are extreme cases in which the environment is completely known a
priori and completely predictable. In such cases, the agent need not perceive or learn; it
simply acts correctly.

Of course, such agents are fragile. Consider the lowly dung beetle. After digging its nest
and laying its eggs, it fetches a ball of dung from a nearby heap to plug the entrance. If the
ball of dung is removed from its grasp en route, the beetle continues its task and pantomimes
plugging the nest with the nonexistent dung ball, never noticing that it is missing. Evolu-
tion has built an assumption into the beetle’s behavior, and when it is violated, unsuccessful
behavior results.

Slightly more intelligent is the sphex wasp. The female sphex will dig a burrow, go out
and sting a caterpillar and drag it to the burrow, enter the burrow again to check all is well,
drag the caterpillar inside, and lay its eggs. The caterpillar serves as a food source when the
eggs hatch. So far so good, but if an entomologist moves the caterpillar a few inches away
while the sphex is doing the check, it will revert to the “drag the caterpillar” step of its plan
and will continue the plan without modification, re-checking the burrow, even after dozens of
caterpillar-moving interventions. The sphex is unable to learn that its innate plan is failing,
and thus will not change it.

3 See N. Henderson, “New door latches urged for Boeing 747 jumbo jets,” Washington Post, August 24, 1989.
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To the extent that an agent relies on the prior knowledge of its designer rather than on its
own percepts and learning processes, we say that the agent lacks autonomy. A rational agent
should be autonomous—it should learn what it can to compensate for partial or incorrect
prior knowledge. For example, a vacuum-cleaning agent that learns to predict where and
when additional dirt will appear will do better than one that does not.

As a practical matter, one seldom requires complete autonomy from the start: when the
agent has had little or no experience, it would have to act randomly unless the designer gave
some assistance. Just as evolution provides animals with enough built-in reflexes to survive
long enough to learn for themselves, it would be reasonable to provide an artificial intelligent
agent with some initial knowledge as well as an ability to learn. After sufficient experience
of its environment, the behavior of a rational agent can become effectively independent of its
prior knowledge. Hence, the incorporation of learning allows one to design a single rational
agent that will succeed in a vast variety of environments.

2.3 The Nature of Environments

Now that we have a definition of rationality, we are almost ready to think about building
rational agents. First, however, we must think about task environments, which are essen-
tially the “problems” to which rational agents are the “solutions.” We begin by showing how
to specify a task environment, illustrating the process with a number of examples. We then
show that task environments come in a variety of flavors. The nature of the task environment
directly affects the appropriate design for the agent program.

2.3.1 Specifying the task environment

In our discussion of the rationality of the simple vacuum-cleaner agent, we had to specify
the performance measure, the environment, and the agent’s actuators and sensors. We group
all these under the heading of the task environment. For the acronymically minded, we call
this the PEAS (Performance, Environment, Actuators, Sensors) description. In designing an
agent, the first step must always be to specify the task environment as fully as possible.

The vacuum world was a simple example; let us consider a more complex problem:
an automated taxi driver. Figure 2.4 summarizes the PEAS description for the taxi’s task
environment. We discuss each element in more detail in the following paragraphs.

First, what is the performance measure to which we would like our automated driver
to aspire? Desirable qualities include getting to the correct destination; minimizing fuel con-
sumption and wear and tear; minimizing the trip time or cost; minimizing violations of traffic
laws and disturbances to other drivers; maximizing safety and passenger comfort; maximiz-
ing profits. Obviously, some of these goals conflict, so tradeoffs will be required.

Next, what is the driving environment that the taxi will face? Any taxi driver must deal
with a variety of roads, ranging from rural lanes and urban alleys to 12-lane freeways. The
roads contain other traffic, pedestrians, stray animals, road works, police cars, puddles, and
potholes. The taxi must also interact with potential and actual passengers. There are also
some optional choices. The taxi might need to operate in Southern California, where snow
is seldom a problem, or in Alaska, where it seldom is not. It could always be driving on the
right, or we might want it to be flexible enough to drive on the left when in Britain or Japan.
Obviously, the more restricted the environment, the easier the design problem.
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Agent Type Performance  Environment  Actuators Sensors
Measure

Taxi driver Safe, fast, Roads, other Steering, Cameras, radar,
legal, traffic, police, accelerator, speedometer, GPS, engine
comfortable pedestrians, brake, signal, sensors, accelerometer,
trip, maximize customers, horn, display, microphones, touchscreen
profits, weather speech
minimize
impact on
other road
users

Figure 2.4 PEAS description of the task environment for an automated taxi driver.

The actuators for an automated taxi include those available to a human driver: control
over the engine through the accelerator and control over steering and braking. In addition, it
will need output to a display screen or voice synthesizer to talk back to the passengers, and
perhaps some way to communicate with other vehicles, politely or otherwise.

The basic sensors for the taxi will include one or more video cameras so that it can see, as
well as lidar and ultrasound sensors to detect distances to other cars and obstacles. To avoid
speeding tickets, the taxi should have a speedometer, and to control the vehicle properly,
especially on curves, it should have an accelerometer. To determine the mechanical state of
the vehicle, it will need the usual array of engine, fuel, and electrical system sensors. Like
many human drivers, it might want to access GPS signals so that it doesn’t get lost. Finally,
it will need touchscreen or voice input for the passenger to request a destination.

In Figure 2.5, we have sketched the basic PEAS elements for a number of additional
agent types. Further examples appear in Exercise 2.PEAS. The examples include physical
as well as virtual environments. Note that virtual task environments can be just as complex
as the “real” world: for example, a software agent (or software robot or softbot) that trades
on auction and reselling Web sites deals with millions of other users and billions of objects,
many with real images.

2.3.2 Properties of task environments

The range of task environments that might arise in Al is obviously vast. We can, however,
identify a fairly small number of dimensions along which task environments can be catego-
rized. These dimensions determine, to a large extent, the appropriate agent design and the
applicability of each of the principal families of techniques for agent implementation. First
we list the dimensions, then we analyze several task environments to illustrate the ideas. The
definitions here are informal; later chapters provide more precise statements and examples of
each kind of environment.

Fully observable vs. partially observable: If an agent’s sensors give it access to the
complete state of the environment at each point in time, then we say that the task environ-
ment is fully observable. A task environment is effectively fully observable if the sensors
detect all aspects that are relevant to the choice of action; relevance, in turn, depends on the
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Agent Type

Medical
diagnosis system

Satellite image
analysis system

Part-picking
robot

Refinery
controller

Interactive
English tutor

Performance
Measure

Healthy patient,
reduced costs

Correct
categorization of
objects, terrain

Percentage of
parts in correct
bins

Purity, yield,
safety

Student’s score
on test

Environment

Patient, hospital,
staff

Orbiting satellite,
downlink,
weather

Conveyor belt
with parts; bins

Refinery, raw
materials,
operators

Set of students,
testing agency

Actuators

Display of
questions, tests,
diagnoses,
treatments

Display of scene
categorization

Jointed arm and
hand

Valves, pumps,
heaters, stirrers,
displays

Display of
exercises,

Sensors

Touchscreen/voice
entry of
symptoms and
findings

High-resolution
digital camera

Camera, tactile
and joint angle
sensors

Temperature,
pressure, flow,
chemical sensors

Keyboard entry,
voice

feedback, speech

Figure 2.5 Examples of agent types and their PEAS descriptions.

performance measure. Fully observable environments are convenient because the agent need
not maintain any internal state to keep track of the world. An environment might be partially
observable because of noisy and inaccurate sensors or because parts of the state are simply
missing from the sensor data—for example, a vacuum agent with only a local dirt sensor
cannot tell whether there is dirt in other squares, and an automated taxi cannot see what other
drivers are thinking. If the agent has no sensors at all then the environment is unobserv-
able. One might think that in such cases the agent’s plight is hopeless, but, as we discuss in
Chapter 4, the agent’s goals may still be achievable, sometimes with certainty.

Single-agent vs. multiagent: The distinction between single-agent and multiagent en-
vironments may seem simple enough. For example, an agent solving a crossword puzzle by
itself is clearly in a single-agent environment, whereas an agent playing chess is in a two-
agent environment. However, there are some subtle issues. First, we have described how an
entity may be viewed as an agent, but we have not explained which entities must be viewed
as agents. Does an agent A (the taxi driver for example) have to treat an object B (another
vehicle) as an agent, or can it be treated merely as an object behaving according to the laws of
physics, analogous to waves at the beach or leaves blowing in the wind? The key distinction
is whether B’s behavior is best described as maximizing a performance measure whose value
depends on agent A’s behavior.
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For example, in chess, the opponent entity B is trying to maximize its performance mea-
sure, which, by the rules of chess, minimizes agent A’s performance measure. Thus, chess is
a competitive multiagent environment. On the other hand, in the taxi-driving environment,
avoiding collisions maximizes the performance measure of all agents, so it is a partially co-
operative multiagent environment. It is also partially competitive because, for example, only
one car can occupy a parking space.

The agent-design problems in multiagent environments are often quite different from
those in single-agent environments; for example, communication often emerges as a rational
behavior in multiagent environments; in some competitive environments, randomized behav-
ior is rational because it avoids the pitfalls of predictability.

Deterministic vs. nondeterministic. If the next state of the environment is completely
determined by the current state and the action executed by the agent(s), then we say the
environment is deterministic; otherwise, it is nondeterministic. In principle, an agent need not
worry about uncertainty in a fully observable, deterministic environment. If the environment
is partially observable, however, then it could appear to be nondeterministic.

Most real situations are so complex that it is impossible to keep track of all the unobserved
aspects; for practical purposes, they must be treated as nondeterministic. Taxi driving is
clearly nondeterministic in this sense, because one can never predict the behavior of traffic
exactly; moreover, one’s tires may blow out unexpectedly and one’s engine may seize up
without warning. The vacuum world as we described it is deterministic, but variations can
include nondeterministic elements such as randomly appearing dirt and an unreliable suction
mechanism (Exercise 2.VFIN).

One final note: the word stochastic is used by some as a synonym for “nondeterministic,”
but we make a distinction between the two terms; we say that a model of the environment
is stochastic if it explicitly deals with probabilities (e.g., “there’s a 25% chance of rain to-
morrow”’) and “nondeterministic” if the possibilities are listed without being quantified (e.g.,
“there’s a chance of rain tomorrow”).

Episodic vs. sequential: In an episodic task environment, the agent’s experience is di-
vided into atomic episodes. In each episode the agent receives a percept and then performs
a single action. Crucially, the next episode does not depend on the actions taken in pre-
vious episodes. Many classification tasks are episodic. For example, an agent that has to
spot defective parts on an assembly line bases each decision on the current part, regardless
of previous decisions; moreover, the current decision doesn’t affect whether the next part is
defective. In sequential environments, on the other hand, the current decision could affect
all future decisions.* Chess and taxi driving are sequential: in both cases, short-term actions
can have long-term consequences. Episodic environments are much simpler than sequential
environments because the agent does not need to think ahead.

Static vs. dynamic: If the environment can change while an agent is deliberating, then
we say the environment is dynamic for that agent; otherwise, it is static. Static environments
are easy to deal with because the agent need not keep looking at the world while it is deciding
on an action, nor need it worry about the passage of time. Dynamic environments, on the
other hand, are continuously asking the agent what it wants to do; if it hasn’t decided yet,

4 The word “sequential” is also used in computer science as the antonym of “parallel.” The two meanings are
largely unrelated.
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that counts as deciding to do nothing. If the environment itself does not change with the
passage of time but the agent’s performance score does, then we say the environment is
semidynamic. Taxi driving is clearly dynamic: the other cars and the taxi itself keep moving
while the driving algorithm dithers about what to do next. Chess, when played with a clock,
is semidynamic. Crossword puzzles are static.

Discrete vs. continuous: The discrete/continuous distinction applies to the state of the
environment, to the way time is handled, and to the percepts and actions of the agent. For
example, the chess environment has a finite number of distinct states (excluding the clock).
Chess also has a discrete set of percepts and actions. Taxi driving is a continuous-state and
continuous-time problem: the speed and location of the taxi and of the other vehicles sweep
through a range of continuous values and do so smoothly over time. Taxi-driving actions are
also continuous (steering angles, etc.). Input from digital cameras is discrete, strictly speak-
ing, but is typically treated as representing continuously varying intensities and locations.

Known vs. unknown: Strictly speaking, this distinction refers not to the environment
itself but to the agent’s (or designer’s) state of knowledge about the “laws of physics” of
the environment. In a known environment, the outcomes (or outcome probabilities if the
environment is nondeterministic) for all actions are given. Obviously, if the environment is
unknown, the agent will have to learn how it works in order to make good decisions.

The distinction between known and unknown environments is not the same as the one
between fully and partially observable environments. It is quite possible for a known environ-
ment to be partially observable—for example, in solitaire card games, I know the rules but
am still unable to see the cards that have not yet been turned over. Conversely, an unknown
environment can be fully observable—in a new video game, the screen may show the entire
game state but I still don’t know what the buttons do until I try them.

As noted on page 57, the performance measure itself may be unknown, either because
the designer is not sure how to write it down correctly or because the ultimate user—whose
preferences matter—is not known. For example, a taxi driver usually won’t know whether a
new passenger prefers a leisurely or speedy journey, a cautious or aggressive driving style.
A virtual personal assistant starts out knowing nothing about the personal preferences of its
new owner. In such cases, the agent may learn more about the performance measure based on
further interactions with the designer or user. This, in turn, suggests that the task environment
is necessarily viewed as a multiagent environment.

The hardest case is partially observable, multiagent, nondeterministic, sequential, dy-
namic, continuous, and unknown. Taxi driving is hard in all these senses, except that the
driver’s environment is mostly known. Driving a rented car in a new country with unfamiliar
geography, different traffic laws, and nervous passengers is a lot more exciting.

Figure 2.6 lists the properties of a number of familiar environments. Note that the prop-
erties are not always cut and dried. For example, we have listed the medical-diagnosis task
as single-agent because the disease process in a patient is not profitably modeled as an agent;
but a medical-diagnosis system might also have to deal with recalcitrant patients and skepti-
cal staff, so the environment could have a multiagent aspect. Furthermore, medical diagnosis
is episodic if one conceives of the task as selecting a diagnosis given a list of symptoms; the
problem is sequential if the task can include proposing a series of tests, evaluating progress
over the course of treatment, handling multiple patients, and so on.
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Task Environment ~ Observable Agents Deterministic ~ Episodic Static Discrete
Crossword puzzle Fully Single Deterministic Sequential  Static Discrete
Chess with a clock Fully Multi  Deterministic Sequential Semi Discrete
Poker Partially Multi Stochastic ~ Sequential  Static Discrete
Backgammon Fully Multi Stochastic ~ Sequential ~ Static Discrete
Taxi driving Partially Multi Stochastic ~ Sequential Dynamic Continuous
Medical diagnosis Partially ~ Single Stochastic ~ Sequential Dynamic Continuous
Image analysis Fully Single Deterministic  Episodic Semi Continuous
Part-picking robot Partially  Single Stochastic Episodic Dynamic Continuous
Refinery controller Partially  Single Stochastic ~ Sequential Dynamic Continuous
English tutor Partially Multi Stochastic ~ Sequential Dynamic  Discrete

Figure 2.6 Examples of task environments and their characteristics.

We have not included a “known/unknown” column because, as explained earlier, this is
not strictly a property of the environment. For some environments, such as chess and poker,
it is quite easy to supply the agent with full knowledge of the rules, but it is nonetheless
interesting to consider how an agent might learn to play these games without such knowledge.

The code repository associated with this book (aima. cs.berkeley.edu) includes mul-
tiple environment implementations, together with a general-purpose environment simulator
for evaluating an agent’s performance. Experiments are often carried out not for a single
environment but for many environments drawn from an environment class. For example, to
evaluate a taxi driver in simulated traffic, we would want to run many simulations with dif-
ferent traffic, lighting, and weather conditions. We are then interested in the agent’s average
performance over the environment class.

2.4 The Structure of Agents

So far we have talked about agents by describing behavior—the action that is performed after
any given sequence of percepts. Now we must bite the bullet and talk about how the insides
work. The job of Al is to design an agent program that implements the agent function—
the mapping from percepts to actions. We assume this program will run on some sort of
computing device with physical sensors and actuators—we call this the agent architecture:

agent = architecture + program.

Obviously, the program we choose has to be one that is appropriate for the architecture. If the
program is going to recommend actions like Walk, the architecture had better have legs. The
architecture might be just an ordinary PC, or it might be a robotic car with several onboard
computers, cameras, and other sensors. In general, the architecture makes the percepts from
the sensors available to the program, runs the program, and feeds the program’s action choices
to the actuators as they are generated. Most of this book is about designing agent programs,
although Chapters 26 and 27 deal directly with the sensors and actuators.
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function TABLE-DRIVEN-AGENT(percept) returns an action
persistent: percepts, a sequence, initially empty
table, a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts
action < LOOKUP(percepts, table)
return action

Figure 2.7 The TABLE-DRIVEN-AGENT program is invoked for each new percept and re-
turns an action each time. It retains the complete percept sequence in memory.

2.4.1 Agent programs

The agent programs that we design in this book all have the same skeleton: they take the
current percept as input from the sensors and return an action to the actuators.’ Notice the
difference between the agent program, which takes the current percept as input, and the agent
function, which may depend on the entire percept history. The agent program has no choice
but to take just the current percept as input because nothing more is available from the envi-
ronment; if the agent’s actions need to depend on the entire percept sequence, the agent will
have to remember the percepts.

We describe the agent programs in the simple pseudocode language that is defined in
Appendix B. (The online code repository contains implementations in real programming
languages.) For example, Figure 2.7 shows a rather trivial agent program that keeps track of
the percept sequence and then uses it to index into a table of actions to decide what to do.
The table—an example of which is given for the vacuum world in Figure 2.3—represents
explicitly the agent function that the agent program embodies. To build a rational agent in
this way, we as designers must construct a table that contains the appropriate action for every
possible percept sequence.

It is instructive to consider why the table-driven approach to agent construction is doomed
to failure. Let P be the set of possible percepts and let T be the lifetime of the agent (the total
number of percepts it will receive). The lookup table will contain ¥/_ | |P|" entries. Consider
the automated taxi: the visual input from a single camera (eight cameras is typical) comes
in at the rate of roughly 70 megabytes per second (30 frames per second, 1080 x 720 pixels
with 24 bits of color information). This gives a lookup table with over 10600:000.000.000 eprieg
for an hour’s driving. Even the lookup table for chess—a tiny, well-behaved fragment of the
real world—has (it turns out) at least 10"° entries. In comparison, the number of atoms in
the observable universe is less than 10%°. The daunting size of these tables means that (a) no
physical agent in this universe will have the space to store the table; (b) the designer would
not have time to create the table; and (c) no agent could ever learn all the right table entries
from its experience.

Despite all this, TABLE-DRIVEN-AGENT does do what we want, assuming the table is
filled in correctly: it implements the desired agent function.

5 There are other choices for the agent program skeleton; for example, we could have the agent programs be
coroutines that run asynchronously with the environment. Each such coroutine has an input and output port and
consists of a loop that reads the input port for percepts and writes actions to the output port.
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function REFLEX-VACUUM-AGENT([location,status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

Figure 2.8 The agent program for a simple reflex agent in the two-location vacuum environ-
ment. This program implements the agent function tabulated in Figure 2.3.

The key challenge for Al is to find out how to write programs that, to the extent possible,
produce rational behavior from a smallish program rather than from a vast table.

We have many examples showing that this can be done successfully in other areas: for
example, the huge tables of square roots used by engineers and schoolchildren prior to the
1970s have now been replaced by a five-line program for Newton’s method running on elec-
tronic calculators. The question is, can Al do for general intelligent behavior what Newton
did for square roots? We believe the answer is yes.

In the remainder of this section, we outline four basic kinds of agent programs that em-
body the principles underlying almost all intelligent systems:

* Simple reflex agents;

* Model-based reflex agents;
* Goal-based agents; and

* Utility-based agents.

Each kind of agent program combines particular components in particular ways to generate
actions. Section 2.4.6 explains in general terms how to convert all these agents into learning
agents that can improve the performance of their components so as to generate better actions.
Finally, Section 2.4.7 describes the variety of ways in which the components themselves can
be represented within the agent. This variety provides a major organizing principle for the
field and for the book itself.

2.4.2 Simple reflex agents

The simplest kind of agent is the simple reflex agent. These agents select actions on the basis
of the current percept, ignoring the rest of the percept history. For example, the vacuum agent
whose agent function is tabulated in Figure 2.3 is a simple reflex agent, because its decision
is based only on the current location and on whether that location contains dirt. An agent
program for this agent is shown in Figure 2.8.

Notice that the vacuum agent program is very small indeed compared to the correspond-
ing table. The most obvious reduction comes from ignoring the percept history, which cuts
down the number of relevant percept sequences from 47 to just 4. A further, small reduc-
tion comes from the fact that when the current square is dirty, the action does not depend on
the location. Although we have written the agent program using if-then-else statements, it is
simple enough that it can also be implemented as a Boolean circuit.

Simple reflex behaviors occur even in more complex environments. Imagine yourself as
the driver of the automated taxi. If the car in front brakes and its brake lights come on, then
you should notice this and initiate braking. In other words, some processing is done on the
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Figure 2.9 Schematic diagram of a simple reflex agent. We use rectangles to denote the
current internal state of the agent’s decision process, and ovals to represent the background
information used in the process.

visual input to establish the condition we call “The car in front is braking.” Then, this triggers
some established connection in the agent program to the action “initiate braking.” We call
such a connection a condition—action rule,® written as

if car-in-front-is-braking then initiate-braking.

Humans also have many such connections, some of which are learned responses (as for driv-
ing) and some of which are innate reflexes (such as blinking when something approaches the
eye). In the course of the book, we show several different ways in which such connections
can be learned and implemented.

The program in Figure 2.8 is specific to one particular vacuum environment. A more
general and flexible approach is first to build a general-purpose interpreter for condition—
action rules and then to create rule sets for specific task environments. Figure 2.9 gives the
structure of this general program in schematic form, showing how the condition—action rules
allow the agent to make the connection from percept to action. Do not worry if this seems
trivial; it gets more interesting shortly.

An agent program for Figure 2.9 is shown in Figure 2.10. The INTERPRET-INPUT
function generates an abstracted description of the current state from the percept, and the
RULE-MATCH function returns the first rule in the set of rules that matches the given state
description. Note that the description in terms of “rules” and “matching” is purely concep-
tual; as noted above, actual implementations can be as simple as a collection of logic gates
implementing a Boolean circuit. Alternatively, a “neural” circuit can be used, where the logic
gates are replaced by the nonlinear units of artificial neural networks (see Chapter 22).

Simple reflex agents have the admirable property of being simple, but they are of limited
intelligence. The agent in Figure 2.10 will work only if the correct decision can be made on
the basis of just the current percept—that is, only if the environment is fully observable.

6 Also called situation—action rules, productions, or if-then rules.
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function SIMPLE-REFLEX-AGENT(percept) returns an action
persistent: rules, a set of condition—action rules

state <— INTERPRET-INPUT(percept)
rule < RULE-MATCH(state, rules)
action < rule. ACTION

return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches the
current state, as defined by the percept.

Even a little bit of unobservability can cause serious trouble. For example, the braking
rule given earlier assumes that the condition car-in-front-is-braking can be determined from
the current percept—a single frame of video. This works if the car in front has a centrally
mounted (and hence uniquely identifiable) brake light. Unfortunately, older models have
different configurations of taillights, brake lights, and turn-signal lights, and it is not always
possible to tell from a single image whether the car is braking or simply has its taillights
on. A simple reflex agent driving behind such a car would either brake continuously and
unnecessarily, or, worse, never brake at all.

We can see a similar problem arising in the vacuum world. Suppose that a simple reflex
vacuum agent is deprived of its location sensor and has only a dirt sensor. Such an agent
has just two possible percepts: [Dirty] and [Clean]. It can Suck in response to [Dirty]; what
should it do in response to [Clean]? Moving Left fails (forever) if it happens to start in square
A, and moving Right fails (forever) if it happens to start in square B. Infinite loops are often
unavoidable for simple reflex agents operating in partially observable environments.

Escape from infinite loops is possible if the agent can randomize its actions. For exam-
ple, if the vacuum agent perceives [Clean], it might flip a coin to choose between Right and
Left. 1t is easy to show that the agent will reach the other square in an average of two steps.
Then, if that square is dirty, the agent will clean it and the task will be complete. Hence, a
randomized simple reflex agent might outperform a deterministic simple reflex agent.

We mentioned in Section 2.3 that randomized behavior of the right kind can be rational in
some multiagent environments. In single-agent environments, randomization is usually not
rational. It is a useful trick that helps a simple reflex agent in some situations, but in most
cases we can do much better with more sophisticated deterministic agents.

2.4.3 Model-based reflex agents

The most effective way to handle partial observability is for the agent to keep track of the
part of the world it can’t see now. That is, the agent should maintain some sort of internal
state that depends on the percept history and thereby reflects at least some of the unobserved
aspects of the current state. For the braking problem, the internal state is not too extensive—
just the previous frame from the camera, allowing the agent to detect when two red lights at
the edge of the vehicle go on or off simultaneously. For other driving tasks such as changing
lanes, the agent needs to keep track of where the other cars are if it can’t see them all at once.
And for any driving to be possible at all, the agent needs to keep track of where its keys are.

Randomization

Internal state
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Figure 2.11 A model-based reflex agent.

Updating this internal state information as time goes by requires two kinds of knowledge
to be encoded in the agent program in some form. First, we need some information about how
the world changes over time, which can be divided roughly into two parts: the effects of the
agent’s actions and how the world evolves independently of the agent. For example, when the
agent turns the steering wheel clockwise, the car turns to the right, and when it’s raining the
car’s cameras can get wet. This knowledge about “how the world works”—whether imple-
mented in simple Boolean circuits or in complete scientific theories—is called a transition
model of the world.

Second, we need some information about how the state of the world is reflected in the
agent’s percepts. For example, when the car in front initiates braking, one or more illumi-
nated red regions appear in the forward-facing camera image, and, when the camera gets
wet, droplet-shaped objects appear in the image partially obscuring the road. This kind of
knowledge is called a sensor model.

Together, the transition model and sensor model allow an agent to keep track of the state
of the world—to the extent possible given the limitations of the agent’s sensors. An agent
that uses such models is called a model-based agent.

Figure 2.11 gives the structure of the model-based reflex agent with internal state, show-
ing how the current percept is combined with the old internal state to generate the updated
description of the current state, based on the agent’s model of how the world works. The agent
program is shown in Figure 2.12. The interesting part is the function UPDATE-STATE, which
is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design.

Regardless of the kind of representation used, it is seldom possible for the agent to deter-
mine the current state of a partially observable environment exactly. Instead, the box labeled
“what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or sometimes
best guesses, if the agent entertains multiple possibilities). For example, an automated taxi
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function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state

transition_model, a description of how the next state depends on
the current state and action

sensor_model, a description of how the current world state is reflected
in the agent’s percepts

rules, a set of condition—action rules

action, the most recent action, initially none

state <— UPDATE-STATE(state, action, percept, transition_model, sensor_model)
rule < RULE-MATCH(state, rules)

action < rule. ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

may not be able to see around the large truck that has stopped in front of it and can only guess
about what may be causing the hold-up. Thus, uncertainty about the current state may be
unavoidable, but the agent still has to make a decision.

2.4.4 Goal-based agents

Knowing something about the current state of the environment is not always enough to decide
what to do. For example, at a road junction, the taxi can turn left, turn right, or go straight
on. The correct decision depends on where the taxi is trying to get to. In other words,

as well as a current state description, the agent needs some sort of goal information that Goal

describes situations that are desirable—for example, being at a particular destination. The
agent program can combine this with the model (the same information as was used in the
model-based reflex agent) to choose actions that achieve the goal. Figure 2.13 shows the
goal-based agent’s structure.

Sometimes goal-based action selection is straightforward—for example, when goal sat-
isfaction results immediately from a single action. Sometimes it will be more tricky—for
example, when the agent has to consider long sequences of twists and turns in order to find
a way to achieve the goal. Search (Chapters 3, 4, and 6) and planning (Chapter 11) are the
subfields of Al devoted to finding action sequences that achieve the agent’s goals.

Notice that decision making of this kind is fundamentally different from the condition—
action rules described earlier, in that it involves consideration of the future—both “What will
happen if I do such-and-such?” and “Will that make me happy?” In the reflex agent designs,
this information is not explicitly represented, because the built-in rules map directly from
percepts to actions. The reflex agent brakes when it sees brake lights, period. It has no idea
why. A goal-based agent brakes when it sees brake lights because that’s the only action that
it predicts will achieve its goal of not hitting other cars.

Although the goal-based agent appears less efficient, it is more flexible because the
knowledge that supports its decisions is represented explicitly and can be modified. For
example, a goal-based agent’s behavior can easily be changed to go to a different destination,
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Figure 2.13 A model-based, goal-based agent. It keeps track of the world state as well as
a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the
achievement of its goals.

simply by specifying that destination as the goal. The reflex agent’s rules for when to turn
and when to go straight will work only for a single destination; they must all be replaced to
go somewhere new.

2.4.5 Utility-based agents

Goals alone are not enough to generate high-quality behavior in most environments. For
example, many action sequences will get the taxi to its destination (thereby achieving the
goal), but some are quicker, safer, more reliable, or cheaper than others. Goals just provide a
crude binary distinction between “happy” and “unhappy” states. A more general performance
measure should allow a comparison of different world states according to exactly how happy
they would make the agent. Because “happy’ does not sound very scientific, economists and
computer scientists use the term utility instead.’

We have already seen that a performance measure assigns a score to any given sequence
of environment states, so it can easily distinguish between more and less desirable ways of
getting to the taxi’s destination. An agent’s utility function is essentially an internalization
of the performance measure. Provided that the internal utility function and the external per-
formance measure are in agreement, an agent that chooses actions to maximize its utility will
be rational according to the external performance measure.

Let us emphasize again that this is not the only way to be rational—we have already seen
a rational agent program for the vacuum world (Figure 2.8) that has no idea what its utility
function is—but, like goal-based agents, a utility-based agent has many advantages in terms
of flexibility and learning. Furthermore, in two kinds of cases, goals are inadequate but a
utility-based agent can still make rational decisions. First, when there are conflicting goals,
only some of which can be achieved (for example, speed and safety), the utility function
specifies the appropriate tradeoff. Second, when there are several goals that the agent can

7 The word “utility” here refers to “the quality of being useful,” not to the electric company or waterworks.
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Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with a
utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging
over all possible outcome states, weighted by the probability of the outcome.
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aim for, none of which can be achieved with certainty, utility provides a way in which the
likelihood of success can be weighed against the importance of the goals.

Partial observability and nondeterminism are ubiquitous in the real world, and so, there-
fore, is decision making under uncertainty. Technically speaking, a rational utility-based
agent chooses the action that maximizes the expected utility of the action outcomes—that
is, the utility the agent expects to derive, on average, given the probabilities and utilities of
each outcome. (Appendix A defines expectation more precisely.) In Chapter 15, we show
that any rational agent must behave as if it possesses a utility function whose expected value
it tries to maximize. An agent that possesses an explicit utility function can make rational de-
cisions with a general-purpose algorithm that does not depend on the specific utility function
being maximized. In this way, the “global” definition of rationality—designating as rational
those agent functions that have the highest performance—is turned into a “local” constraint
on rational-agent designs that can be expressed in a simple program.

The utility-based agent structure appears in Figure 2.14. Utility-based agent programs
appear in Chapters 15 and 16, where we design decision-making agents that must handle the
uncertainty inherent in nondeterministic or partially observable environments. Decision mak-
ing in multiagent environments is also studied in the framework of utility theory, as explained
in Chapter 17.

At this point, the reader may be wondering, “Is it that simple? We just build agents that
maximize expected utility, and we’re done?” It’s true that such agents would be intelligent,
but it’s not simple. A utility-based agent has to model and keep track of its environment,
tasks that have involved a great deal of research on perception, representation, reasoning,
and learning. The results of this research fill many of the chapters of this book. Choosing
the utility-maximizing course of action is also a difficult task, requiring ingenious algorithms
that fill several more chapters. Even with these algorithms, perfect rationality is usually

Expected utility
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Figure 2.15 A general learning agent. The “performance element” box represents what we
have previously considered to be the whole agent program. Now, the “learning element” box
gets to modify that program to improve its performance.

unachievable in practice because of computational complexity, as we noted in Chapter 1. We
also note that not all utility-based agents are model-based; we will see in Chapters 23 and 26
that a model-free agent can learn what action is best in a particular situation without ever
learning exactly how that action changes the environment.

Finally, all of this assumes that the designer can specify the utility function correctly;
Chapters 16, 17, and 23 consider the issue of unknown utility functions in more depth.

2.4.6 Learning agents

We have described agent programs with various methods for selecting actions. We have
not, so far, explained how the agent programs come into being. In his famous early paper,
Turing (1950) considers the idea of actually programming his intelligent machines by hand.
He estimates how much work this might take and concludes, “Some more expeditious method
seems desirable.” The method he proposes is to build learning machines and then to teach
them. In many areas of Al, this is now the preferred method for creating state-of-the-art
systems. Any type of agent (model-based, goal-based, utility-based, etc.) can be built as a
learning agent (or not).

Learning has another advantage, as we noted earlier: it allows the agent to operate in
initially unknown environments and to become more competent than its initial knowledge
alone might allow. In this section, we briefly introduce the main ideas of learning agents.
Throughout the book, we comment on opportunities and methods for learning in particu-
lar kinds of agents. Chapters 19, 21, 22, and 23 go into much more depth on the learning
algorithms themselves.

A learning agent can be divided into four conceptual components, as shown in Fig-
ure 2.15. The most important distinction is between the learning element, which is re-
sponsible for making improvements, and the performance element, which is responsible for
selecting external actions. The performance element is what we have previously considered
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to be the entire agent: it takes in percepts and decides on actions. The learning element uses
feedback from the critic on how the agent is doing and determines how the performance
element should be modified to do better in the future.

The design of the learning element depends very much on the design of the performance
element. When trying to design an agent that learns a certain capability, the first question is
not “How am I going to get it to learn this?” but “What kind of performance element will my
agent use to do this once it has learned how?” Given a design for the performance element,
learning mechanisms can be constructed to improve every part of the agent.

The critic tells the learning element how well the agent is doing with respect to a fixed
performance standard. The critic is necessary because the percepts themselves provide no
indication of the agent’s success. For example, a chess program could receive a percept
indicating that it has checkmated its opponent, but it needs a performance standard to know
that this is a good thing; the percept itself does not say so. It is important that the performance
standard be fixed. Conceptually, one should think of it as being outside the agent altogether
because the agent must not modify it to fit its own behavior.

The last component of the learning agent is the problem generator. It is responsible
for suggesting actions that will lead to new and informative experiences. If the performance
element had its way, it would keep doing the actions that are best, given what it knows, but
if the agent is willing to explore a little and do some perhaps suboptimal actions in the short
run, it might discover much better actions for the long run. The problem generator’s job is to
suggest these exploratory actions. This is what scientists do when they carry out experiments.
Galileo did not think that dropping rocks from the top of a tower in Pisa was valuable in itself.
He was not trying to break the rocks or to modify the brains of unfortunate pedestrians. His
aim was to modify his own brain by identifying a better theory of the motion of objects.

The learning element can make changes to any of the “knowledge” components shown
in the agent diagrams (Figures 2.9, 2.11, 2.13, and 2.14). The simplest cases involve learning
directly from the percept sequence. Observation of pairs of successive states of the environ-
ment can allow the agent to learn “What my actions do” and “How the world evolves” in
response to its actions. For example, if the automated taxi exerts a certain braking pressure
when driving on a wet road, then it will soon find out how much deceleration is actually
achieved, and whether it skids off the road. The problem generator might identify certain
parts of the model that are in need of improvement and suggest experiments, such as trying
out the brakes on different road surfaces under different conditions.

Improving the model components of a model-based agent so that they conform better
with reality is almost always a good idea, regardless of the external performance standard.
(In some cases, it is better from a computational point of view to have a simple but slightly
inaccurate model rather than a perfect but fiendishly complex model.) Information from the
external standard is needed when trying to learn a reflex component or a utility function.

For example, suppose the taxi-driving agent receives no tips from passengers who have
been thoroughly shaken up during the trip. The external performance standard must inform
the agent that the loss of tips is a negative contribution to its overall performance; then the
agent might be able to learn that violent maneuvers do not contribute to its own utility. In
a sense, the performance standard distinguishes part of the incoming percept as a reward
(or penalty) that provides direct feedback on the quality of the agent’s behavior. Hard-wired
performance standards such as pain and hunger in animals can be understood in this way.
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More generally, human choices can provide information about human preferences. For
example, suppose the taxi does not know that people generally don’t like loud noises, and
settles on the idea of blowing its horn continuously as a way of ensuring that pedestrians
know it’s coming. The consequent human behavior—covering ears, using bad language, and
possibly cutting the wires to the horn—would provide evidence to the agent with which to
update its utility function. This issue is discussed further in Chapter 23.

In summary, agents have a variety of components, and those components can be repre-
sented in many ways within the agent program, so there appears to be great variety among
learning methods. There is, however, a single unifying theme. Learning in intelligent agents
can be summarized as a process of modification of each component of the agent to bring the
components into closer agreement with the available feedback information, thereby improv-
ing the overall performance of the agent.

2.4.7 How the components of agent programs work

We have described agent programs (in very high-level terms) as consisting of various compo-
nents, whose function it is to answer questions such as: “What is the world like now?” “What
action should I do now?” “What do my actions do?” The next question for a student of Al
is, “How on Earth do these components work?” It takes about a thousand pages to begin to
answer that question properly, but here we want to draw the reader’s attention to some basic
distinctions among the various ways that the components can represent the environment that
the agent inhabits.

Roughly speaking, we can place the representations along an axis of increasing complex-
ity and expressive power—atomic, factored, and structured. To illustrate these ideas, it helps
to consider a particular agent component, such as the one that deals with “What my actions
do.” This component describes the changes that might occur in the environment as the result
of taking an action, and Figure 2.16 provides schematic depictions of how those transitions
might be represented.

bs-0)
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(a) Atomic (b) Factored (c) Structured

Figure 2.16 Three ways to represent states and the transitions between them. (a) Atomic
representation: a state (such as B or C) is a black box with no internal structure; (b) Factored
representation: a state consists of a vector of attribute values; values can be Boolean, real-
valued, or one of a fixed set of symbols. (c) Structured representation: a state includes
objects, each of which may have attributes of its own as well as relationships to other objects.
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In an atomic representation cach state of the world is indivisible—it has no internal
structure. Consider the task of finding a driving route from one end of a country to the other
via some sequence of cities (we address this problem in Figure 3.1 on page 82). For the pur-
poses of solving this problem, it may suffice to reduce the state of the world to just the name of
the city we are in—a single atom of knowledge, a “black box” whose only discernible prop-
erty is that of being identical to or different from another black box. The standard algorithms
underlying search and game-playing (Chapters 3, 4, and 6), hidden Markov models (Chap-
ter 14), and Markov decision processes (Chapter 16) all work with atomic representations.

A factored representation splits up each state into a fixed set of variables or attributes,
each of which can have a value. Consider a higher-fidelity description for the same driving
problem, where we need to be concerned with more than just atomic location in one city or
another; we might need to pay attention to how much gas is in the tank, our current GPS
coordinates, whether or not the oil warning light is working, how much money we have for
tolls, what station is on the radio, and so on. While two different atomic states have nothing in
common—they are just different black boxes—two different factored states can share some
attributes (such as being at some particular GPS location) and not others (such as having lots
of gas or having no gas); this makes it much easier to work out how to turn one state into an-
other. Many important areas of Al are based on factored representations, including constraint
satisfaction algorithms (Chapter 5), propositional logic (Chapter 7), planning (Chapter 11),
Bayesian networks (Chapters 12, 13, 14, 15, and 18), and various machine learning algorithms.

For many purposes, we need to understand the world as having things in it that are re-
lated to each other, not just variables with values. For example, we might notice that a large
truck ahead of us is reversing into the driveway of a dairy farm, but a loose cow is block-
ing the truck’s path. A factored representation is unlikely to be pre-equipped with the at-
tribute TruckAheadBackingIntoDairyFarmDrivewayBlockedByLooseCow with value true or
false. Instead, we would need a structured representation, in which objects such as cows
and trucks and their various and varying relationships can be described explicitly (see Fig-
ure 2.16(c)). Structured representations underlie relational databases and first-order logic
(Chapters 8, 9, and 10), first-order probability models (Chapter 18), and much of natural lan-
guage understanding (Chapters 24 and 25). In fact, much of what humans express in natural
language concerns objects and their relationships.

As we mentioned earlier, the axis along which atomic, factored, and structured repre-
sentations lie is the axis of increasing expressiveness. Roughly speaking, a more expressive
representation can capture, at least as concisely, everything a less expressive one can capture,
plus some more. Often, the more expressive language is much more concise; for example, the
rules of chess can be written in a page or two of a structured-representation language such
as first-order logic but require thousands of pages when written in a factored-representation
language such as propositional logic and around 103® pages when written in an atomic lan-
guage such as that of finite-state automata. On the other hand, reasoning and learning become
more complex as the expressive power of the representation increases. To gain the benefits
of expressive representations while avoiding their drawbacks, intelligent systems for the real
world may need to operate at all points along the axis simultaneously.

Another axis for representation involves the mapping of concepts to locations in physical
memory, whether in a computer or in a brain. If there is a one-to-one mapping between
concepts and memory locations, we call that a localist representation. On the other hand,
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if the representation of a concept is spread over many memory locations, and each memory
location is employed as part of the representation of multiple different concepts, we call
that a distributed representation. Distributed representations are more robust against noise
and information loss. With a localist representation, the mapping from concept to memory
location is arbitrary, and if a transmission error garbles a few bits, we might confuse Truck
with the unrelated concept Truce. But with a distributed representation, you can think of each
concept representing a point in multidimensional space, and if you garble a few bits you move
to a nearby point in that space, which will have similar meaning.

Summary

This chapter has been something of a whirlwind tour of Al, which we have conceived of as
the science of agent design. The major points to recall are as follows:

* An agent is something that perceives and acts in an environment. The agent function
for an agent specifies the action taken by the agent in response to any percept sequence.

* The performance measure evaluates the behavior of the agent in an environment. A
rational agent acts so as to maximize the expected value of the performance measure,
given the percept sequence it has seen so far.

* A task environment specification includes the performance measure, the external en-
vironment, the actuators, and the sensors. In designing an agent, the first step must
always be to specify the task environment as fully as possible.

* Task environments vary along several significant dimensions. They can be fully or par-
tially observable, single-agent or multiagent, deterministic or nondeterministic, episodic
or sequential, static or dynamic, discrete or continuous, and known or unknown.

* In cases where the performance measure is unknown or hard to specify correctly, there
is a significant risk of the agent optimizing the wrong objective. In such cases the agent
design should reflect uncertainty about the true objective.

* The agent program implements the agent function. There exists a variety of basic
agent program designs reflecting the kind of information made explicit and used in the
decision process. The designs vary in efficiency, compactness, and flexibility. The
appropriate design of the agent program depends on the nature of the environment.

» Simple reflex agents respond directly to percepts, whereas model-based reflex agents
maintain internal state to track aspects of the world that are not evident in the current
percept. Goal-based agents act to achieve their goals, and utility-based agents try to
maximize their own expected “happiness.”

* All agents can improve their performance through learning.

Bibliographical and Historical Notes

The central role of action in intelligence—the notion of practical reasoning—goes back at
least as far as Aristotle’s Nicomachean Ethics. Practical reasoning was also the subject of
McCarthy’s influential paper “Programs with Common Sense” (1958). The fields of robotics
and control theory are, by their very nature, concerned principally with physical agents. The
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concept of a controller in control theory is identical to that of an agent in Al. Perhaps sur-
prisingly, AI has concentrated for most of its history on isolated components of agents—
question-answering systems, theorem-provers, vision systems, and so on—rather than on
whole agents. The discussion of agents in the text by Genesereth and Nilsson (1987) was an
influential exception. The whole-agent view is now widely accepted and is a central theme in
recent texts (Padgham and Winikoff, 2004; Jones, 2007; Poole and Mackworth, 2017).

Chapter 1 traced the roots of the concept of rationality in philosophy and economics. In
Al, the concept was of peripheral interest until the mid-1980s, when it began to suffuse many
discussions about the proper technical foundations of the field. A paper by Jon Doyle (1983)
predicted that rational agent design would come to be seen as the core mission of Al, while
other popular topics would spin off to form new disciplines.

Careful attention to the properties of the environment and their consequences for ra-
tional agent design is most apparent in the control theory tradition—for example, classical
control systems (Dorf and Bishop, 2004; Kirk, 2004) handle fully observable, deterministic
environments; stochastic optimal control (Kumar and Varaiya, 1986; Bertsekas and Shreve,
2007) handles partially observable, stochastic environments; and hybrid control (Henzinger
and Sastry, 1998; Cassandras and Lygeros, 2006) deals with environments containing both
discrete and continuous elements. The distinction between fully and partially observable en-
vironments is also central in the dynamic programming literature developed in the field of
operations research (Puterman, 1994), which we discuss in Chapter 16.

Although simple reflex agents were central to behaviorist psychology (see Chapter 1),
most Al researchers view them as too simple to provide much leverage. (Rosenschein (1985)
and Brooks (1986) questioned this assumption; see Chapter 26.) A great deal of work
has gone into finding efficient algorithms for keeping track of complex environments (Bar-
Shalom et al., 2001; Choset et al., 2005; Simon, 2006), most of it in the probabilistic setting.

Goal-based agents are presupposed in everything from Aristotle’s view of practical rea-
soning to McCarthy’s early papers on logical Al. Shakey the Robot (Fikes and Nilsson,
1971; Nilsson, 1984) was the first robotic embodiment of a logical, goal-based agent. A
full logical analysis of goal-based agents appeared in Genesereth and Nilsson (1987), and a
goal-based programming methodology called agent-oriented programming was developed by
Shoham (1993). The agent-based approach is now extremely popular in software engineer-
ing (Ciancarini and Wooldridge, 2001). It has also infiltrated the area of operating systems,
where autonomic computing refers to computer systems and networks that monitor and con-
trol themselves with a perceive—act loop and machine learning methods (Kephart and Chess,
2003). Noting that a collection of agent programs designed to work well together in a true
multiagent environment necessarily exhibits modularity—the programs share no internal state
and communicate with each other only through the environment—it is common within the
field of multiagent systems to design the agent program of a single agent as a collection of
autonomous sub-agents. In some cases, one can even prove that the resulting system gives
the same optimal solutions as a monolithic design.

The goal-based view of agents also dominates the cognitive psychology tradition in the
area of problem solving, beginning with the enormously influential Human Problem Solv-
ing (Newell and Simon, 1972) and running through all of Newell’s later work (Newell, 1990).
Goals, further analyzed as desires (general) and intentions (currently pursued), are central to
the influential theory of agents developed by Michael Bratman (1987).
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As noted in Chapter 1, the development of utility theory as a basis for rational behavior
goes back hundreds of years. In Al, early research eschewed utilities in favor of goals, with
some exceptions (Feldman and Sproull, 1977). The resurgence of interest in probabilistic
methods in the 1980s led to the acceptance of maximization of expected utility as the most
general framework for decision making (Horvitz et al., 1988). The text by Pearl (1988) was
the first in Al to cover probability and utility theory in depth; its exposition of practical meth-
ods for reasoning and decision making under uncertainty was probably the single biggest
factor in the rapid shift towards utility-based agents in the 1990s (see Chapter 15). The for-
malization of reinforcement learning within a decision-theoretic framework also contributed
to this shift (Sutton, 1988). Somewhat remarkably, almost all Al research until very recently
has assumed that the performance measure can be exactly and correctly specified in the form
of a utility function or reward function (Hadfield-Menell et al., 2017a; Russell, 2019).

The general design for learning agents portrayed in Figure 2.15 is classic in the machine
learning literature (Buchanan et al., 1978; Mitchell, 1997). Examples of the design, as em-
bodied in programs, go back at least as far as Arthur Samuel’s (1959, 1967) learning program
for playing checkers. Learning agents are discussed in depth in Chapters 19, 21, 22, and 23.

Some early papers on agent-based approaches are collected by Huhns and Singh (1998)
and Wooldridge and Rao (1999). Texts on multiagent systems provide a good introduction to
many aspects of agent design (Weiss, 2000a; Wooldridge, 2009). Several conference series
devoted to agents began in the 1990s, including the International Workshop on Agent The-
ories, Architectures, and Languages (ATAL), the International Conference on Autonomous
Agents (AGENTS), and the International Conference on Multi-Agent Systems (ICMAS). In
2002, these three merged to form the International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS). From 2000 to 2012 there were annual workshops on
Agent-Oriented Software Engineering (AOSE). The journal Autonomous Agents and Multi-
Agent Systems was founded in 1998. Finally, Dung Beetle Ecology (Hanski and Cambefort,
1991) provides a wealth of interesting information on the behavior of dung beetles. YouTube
has inspiring video recordings of their activities.



SOLVING PROBLEMS BY SEARCHING

In which we see how an agent can look ahead to find a sequence of actions that will even-
tually achieve its goal.

When the correct action to take is not immediately obvious, an agent may need to plan
ahead: to consider a sequence of actions that form a path to a goal state. Such an agent is
called a problem-solving agent, and the computational process it undertakes is called search.

Problem-solving agents use atomic representations, as described in Section 2.4.7—that
is, states of the world are considered as wholes, with no internal structure visible to the
problem-solving algorithms. Agents that use factored or structured representations of states
are called planning agents and are discussed in Chapters 7 and 11.

We will cover several search algorithms. In this chapter, we consider only the simplest
environments: episodic, single agent, fully observable, deterministic, static, discrete, and
known. We distinguish between informed algorithms, in which the agent can estimate how
far it is from the goal, and uninformed algorithms, where no such estimate is available.
Chapter 4 relaxes the constraints on environments, and Chapter 6 considers multiple agents.

This chapter uses the concepts of asymptotic complexity (that is, O(n) notation). Readers
unfamiliar with these concepts should consult Appendix A.

3.1 Problem-Solving Agents

Imagine an agent enjoying a touring vacation in Romania. The agent wants to take in the
sights, improve its Romanian, enjoy the nightlife, avoid hangovers, and so on. The decision
problem is a complex one. Now, suppose the agent is currently in the city of Arad and
has a nonrefundable ticket to fly out of Bucharest the following day. The agent observes
street signs and sees that there are three roads leading out of Arad: one toward Sibiu, one to
Timisoara, and one to Zerind. None of these are the goal, so unless the agent is familiar with
the geography of Romania, it will not know which road to follow.!

If the agent has no additional information—that is, if the environment is unknown—then
the agent can do no better than to execute one of the actions at random. This sad situation
is discussed in Chapter 4. In this chapter, we will assume our agents always have access to
information about the world, such as the map in Figure 3.1. With that information, the agent
can follow this four-phase problem-solving process:

* Goal formulation: The agent adopts the goal of reaching Bucharest. Goals organize
behavior by limiting the objectives and hence the actions to be considered.

1 We are assuming that most readers are in the same position and can easily imagine themselves to be as clueless
as our agent. We apologize to Romanian readers who are unable to take advantage of this pedagogical device.

Problem-solving
agent

Search

Goal formulation
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Arad

Sibiu 99 Fagaras

18 Vaslui

Rimnicu Vilcea

Timisoara
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Hirsova

Mehadia Urziceni

75 86

Drobeta

Bucharest

90

Craiova Giurgiu Eforie
Figure 3.1 A simplified road map of part of Romania, with road distances in miles.
Problem formulation * Problem formulation: The agent devises a description of the states and actions nec-

essary to reach the goal—an abstract model of the relevant part of the world. For our
agent, one good model is to consider the actions of traveling from one city to an adja-
cent city, and therefore the only fact about the state of the world that will change due to
an action is the current city.

Search * Search: Before taking any action in the real world, the agent simulates sequences of
actions in its model, searching until it finds a sequence of actions that reaches the goal.
Solution Such a sequence is called a solution. The agent might have to simulate multiple se-

quences that do not reach the goal, but eventually it will find a solution (such as going
from Arad to Sibiu to Fagaras to Bucharest), or it will find that no solution is possible.

Execution » Execution: The agent can now execute the actions in the solution, one at a time.

> It is an important property that in a fully observable, deterministic, known environment, the
solution to any problem is a fixed sequence of actions: drive to Sibiu, then Fagaras, then
Bucharest. If the model is correct, then once the agent has found a solution, it can ignore its
percepts while it is executing the actions—closing its eyes, so to speak—because the solution
Open-loop is guaranteed to lead to the goal. Control theorists call this an open-loop system: ignoring the
percepts breaks the loop between agent and environment. If there is a chance that the model
is incorrect, or the environment is nondeterministic, then the agent would be safer using a
Closed-loop closed-loop approach that monitors the percepts (see Section 4.4).

In partially observable or nondeterministic environments, a solution would be a branching
strategy that recommends different future actions depending on what percepts arrive. For
example, the agent might plan to drive from Arad to Sibiu but might need a contingency plan
in case it arrives in Zerind by accident or finds a sign saying “Drum Inchis” (Road Closed).
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3.1.1 Search problems and solutions
A search problem can be defined formally as follows:

* A set of possible states that the environment can be in. We call this the state space.
* The initial state that the agent starts in. For example: Arad.

* A set of one or more goal states. Sometimes there is one goal state (e.g., Bucharest),
sometimes there is a small set of alternative goal states, and sometimes the goal is
defined by a property that applies to many states (potentially an infinite number). For
example, in a vacuum-cleaner world, the goal might be to have no dirt in any location,
regardless of any other facts about the state. We can account for all three of these
possibilities by specifying an IS-GOAL method for a problem. In this chapter we will
sometimes say “the goal” for simplicity, but what we say also applies to “any one of the
possible goal states.”

» The actions available to the agent. Given a state s, ACTIONS(s) returns a finite? set of
actions that can be executed in s. We say that each of these actions is applicable in s.
An example:

ACTIONS(Arad) = {ToSibiu, ToTimisoara, ToZerind } .

¢ A transition model, which describes what each action does. RESULT(s, a) returns the
state that results from doing action a in state s. For example,

RESULT(Arad, ToZerind) = Zerind .

* An action cost function, denoted by ACTION-COST(s,a,s’) when we are programming
or ¢(s,a,s’) when we are doing math, that gives the numeric cost of applying action a
in state s to reach state s’. A problem-solving agent should use a cost function that
reflects its own performance measure; for example, for route-finding agents, the cost of
an action might be the length in miles (as seen in Figure 3.1), or it might be the time it
takes to complete the action.

A sequence of actions forms a path, and a solution is a path from the initial state to a goal
state. We assume that action costs are additive; that is, the total cost of a path is the sum of the
individual action costs. An optimal solution has the lowest path cost among all solutions. In
this chapter, we assume that all action costs will be positive, to avoid certain complications.’

The state space can be represented as a graph in which the vertices are states and the
directed edges between them are actions. The map of Romania shown in Figure 3.1 is such a
graph, where each road indicates two actions, one in each direction.

2 For problems with an infinite number of actions we would need techniques that go beyond this chapter.

3 In any problem with a cycle of net negative cost, the cost-optimal solution is to go around that cycle an infinite
number of times. The Bellman—Ford and Floyd—Warshall algorithms (not covered here) handle negative-cost
actions, as long as there are no negative cycles. It is easy to accommodate zero-cost actions, as long as the
number of consecutive zero-cost actions is bounded. For example, we might have a robot where there is a cost
to move, but zero cost to rotate 90°; the algorithms in this chapter can handle this as long as no more than three
consecutive 90° turns are allowed. There is also a complication with problems that have an infinite number of
arbitrarily small action costs. Consider a version of Zeno’s paradox where there is an action to move half way to
the goal, at a cost of half of the previous move. This problem has no solution with a finite number of actions, but
to prevent a search from taking an unbounded number of actions without quite reaching the goal, we can require
that all action costs be at least €, for some small positive value e.
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3.1.2 Formulating problems

Our formulation of the problem of getting to Bucharest is a model—an abstract mathematical
description—and not the real thing. Compare the simple atomic state description Arad to an
actual cross-country trip, where the state of the world includes so many things: the traveling
companions, the current radio program, the scenery out of the window, the proximity of law
enforcement officers, the distance to the next rest stop, the condition of the road, the weather,
the traffic, and so on. All these considerations are left out of our model because they are
irrelevant to the problem of finding a route to Bucharest.

The process of removing detail from a representation is called abstraction. A good
problem formulation has the right level of detail. If the actions were at the level of “move the
right foot forward a centimeter” or “turn the steering wheel one degree left,” the agent would
probably never find its way out of the parking lot, let alone to Bucharest.

Can we be more precise about the appropriate level of abstraction? Think of the abstract
states and actions we have chosen as corresponding to large sets of detailed world states and
detailed action sequences. Now consider a solution to the abstract problem: for example,
the path from Arad to Sibiu to Rimnicu Vilcea to Pitesti to Bucharest. This abstract solution
corresponds to a large number of more detailed paths. For example, we could drive with the
radio on between Sibiu and Rimnicu Vilcea, and then switch it off for the rest of the trip.

The abstraction is valid if we can elaborate any abstract solution into a solution in the
more detailed world; a sufficient condition is that for every detailed state that is “in Arad,”
there is a detailed path to some state that is “in Sibiu,” and so on.* The abstraction is useful if
carrying out each of the actions in the solution is easier than the original problem; in our case,
the action “drive from Arad to Sibiu” can be carried out without further search or planning by
a driver with average skill. The choice of a good abstraction thus involves removing as much
detail as possible while retaining validity and ensuring that the abstract actions are easy to
carry out. Were it not for the ability to construct useful abstractions, intelligent agents would
be completely swamped by the real world.

3.2 Example Problems

The problem-solving approach has been applied to a vast array of task environments. We list
some of the best known here, distinguishing between standardized and real-world problems.
A standardized problem is intended to illustrate or exercise various problem-solving meth-
ods. It can be given a concise, exact description and hence is suitable as a benchmark for
researchers to compare the performance of algorithms. A real-world problem, such as robot
navigation, is one whose solutions people actually use, and whose formulation is idiosyn-
cratic, not standardized, because, for example, each robot has different sensors that produce
different data.

3.2.1 Standardized problems

A grid world problem is a two-dimensional rectangular array of square cells in which agents
can move from cell to cell. Typically the agent can move to any obstacle-free adjacent cell—
horizontally or vertically and in some problems diagonally. Cells can contain objects, which

4 See Section 11.4.
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Figure 3.2 The state-space graph for the two-cell vacuum world. There are 8 states and three
actions for each state: L = Left, R = Right, S = Suck.

the agent can pick up, push, or otherwise act upon; a wall or other impassible obstacle in a
cell prevents an agent from moving into that cell. The vacuum world from Section 2.1 can
be formulated as a grid world problem as follows:

e States: A state of the world says which objects are in which cells. For the vacuum
world, the objects are the agent and any dirt. In the simple two-cell version, the agent
can be in either of the two cells, and each cell can either contain dirt or not, so there are
2-2-2 = 8 states (see Figure 3.2). In general, a vacuum environment with n cells has
n-2" states.

o Initial state: Any state can be designated as the initial state.

e Actions: In the two-cell world we defined three actions: Suck, move Left, and move
Right. In a two-dimensional multi-cell world we need more movement actions. We
could add Upward and Downward, giving us four absolute movement actions, or we
could switch to egocentric actions, defined relative to the viewpoint of the agent—for
example, Forward, Backward, TurnRight, and TurnLeft.

e Transition model: Suck removes any dirt from the agent’s cell; Forward moves the
agent ahead one cell in the direction it is facing, unless it hits a wall, in which case
the action has no effect. Backward moves the agent in the opposite direction, while
TurnRight and TurnLeft change the direction it is facing by 90°.

Goal states: The states in which every cell is clean.
e Action cost: Each action costs 1.

Another type of grid world is the sokoban puzzle, in which the agent’s goal is to push a Sokoban puzzle
number of boxes, scattered about the grid, to designated storage locations. There can be at
most one box per cell. When an agent moves forward into a cell containing a box and there
is an empty cell on the other side of the box, then both the box and the agent move forward.
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Start State Goal State

Figure 3.3 A typical instance of the 8-puzzle.

The agent can’t push a box into another box or a wall. For a world with n non-obstacle cells
and b boxes, there are n x n!/(b!(n —b)!) states; for example on an 8 x 8 grid with a dozen
boxes, there are over 200 trillion states.

In a sliding-tile puzzle, a number of tiles (sometimes called blocks or pieces) are ar-
ranged in a grid with one or more blank spaces so that some of the tiles can slide into the
blank space. One variant is the Rush Hour puzzle, in which cars and trucks slide around a
6 x 6 grid in an attempt to free a car from the traffic jam. Perhaps the best-known variant is
the 8-puzzle (see Figure 3.3), which consists of a 3 x 3 grid with eight numbered tiles and
one blank space, and the 15-puzzle on a 4 x 4 grid. The object is to reach a specified goal
state, such as the one shown on the right of the figure. The standard formulation of the 8
puzzle is as follows:

e States: A state description specifies the location of each of the tiles.

o Initial state: Any state can be designated as the initial state. Note that a parity prop-
erty partitions the state space—any given goal can be reached from exactly half of the
possible initial states (see Exercise 3.PART).

e Actions: While in the physical world it is a tile that slides, the simplest way of describ-
ing an action is to think of the blank space moving Left, Right, Up, or Down. If the
blank is at an edge or corner then not all actions will be applicable.

e Transition model: Maps a state and action to a resulting state; for example, if we apply
Left to the start state in Figure 3.3, the resulting state has the 5 and the blank switched.

o Goal state: Although any state could be the goal, we typically specify a state with the
numbers in order, as in Figure 3.3.

e Action cost: Each action costs 1.

Note that every problem formulation involves abstractions. The 8-puzzle actions are ab-
stracted to their beginning and final states, ignoring the intermediate locations where the tile
is sliding. We have abstracted away actions such as shaking the board when tiles get stuck
and ruled out extracting the tiles with a knife and putting them back again. We are left with a
description of the rules, avoiding all the details of physical manipulations.

Our final standardized problem was devised by Donald Knuth (1964) and illustrates how
infinite state spaces can arise. Knuth conjectured that starting with the number 4, a sequence
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of square root, floor, and factorial operations can reach any desired positive integer. For
example, we can reach 5 from 4 as follows:

L @) !J —5.
The problem definition is simple:

e States: Positive real numbers.
o Initial state: 4.

Actions: Apply square root, floor, or factorial operation (factorial for integers only).

Transition model: As given by the mathematical definitions of the operations.

Goal state: The desired positive integer.

e Action cost: Each action costs 1.

The state space for this problem is infinite: for any integer greater than 2 the factorial oper-
ator will always yield a larger integer. The problem is interesting because it explores very
large numbers: the shortest path to 5 goes through (4!)! = 620,448,401,733,239,439,360,000.
Infinite state spaces arise frequently in tasks involving the generation of mathematical expres-
sions, circuits, proofs, programs, and other recursively defined objects.

3.2.2 Real-world problems

We have already seen how the route-finding problem is defined in terms of specified lo-
cations and transitions along edges between them. Route-finding algorithms are used in a
variety of applications. Some, such as Web sites and in-car systems that provide driving
directions, are relatively straightforward extensions of the Romania example. (The main
complications are varying costs due to traffic-dependent delays, and rerouting due to road
closures.) Others, such as routing video streams in computer networks, military operations
planning, and airline travel-planning systems, involve much more complex specifications.
Consider the airline travel problems that must be solved by a travel-planning Web site:

e States: Each state obviously includes a location (e.g., an airport) and the current time.
Furthermore, because the cost of an action (a flight segment) may depend on previous
segments, their fare bases, and their status as domestic or international, the state must
record extra information about these “historical” aspects.

o Initial state: The user’s home airport.

e Actions: Take any flight from the current location, in any seat class, leaving after the
current time, leaving enough time for within-airport transfer if needed.

e Transition model: The state resulting from taking a flight will have the flight’s desti-
nation as the new location and the flight’s arrival time as the new time.

e Goal state: A destination city. Sometimes the goal can be more complex, such as
“arrive at the destination on a nonstop flight.”

e Action cost: A combination of monetary cost, waiting time, flight time, customs and
immigration procedures, seat quality, time of day, type of airplane, frequent-flyer re-
ward points, and so on.
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Commercial travel advice systems use a problem formulation of this kind, with many addi-
tional complications to handle the airlines’ byzantine fare structures. Any seasoned traveler
knows, however, that not all air travel goes according to plan. A really good system should in-
clude contingency plans—what happens if this flight is delayed and the connection is missed?

Touring problems describe a set of locations that must be visited, rather than a single
goal destination. The traveling salesperson problem (TSP) is a touring problem in which
every city on a map must be visited. The aim is to find a tour with cost < C (or in the
optimization version, to find a tour with the lowest cost possible). An enormous amount
of effort has been expended to improve the capabilities of TSP algorithms. The algorithms
can also be extended to handle fleets of vehicles. For example, a search and optimization
algorithm for routing school buses in Boston saved $5 million, cut traffic and air pollution,
and saved time for drivers and students (Bertsimas et al., 2019). In addition to planning trips,
search algorithms have been used for tasks such as planning the movements of automatic
circuit-board drills and of stocking machines on shop floors.

A VLSI layout problem requires positioning millions of components and connections on
a chip to minimize area, minimize circuit delays, minimize stray capacitances, and maximize
manufacturing yield. The layout problem comes after the logical design phase and is usually
split into two parts: cell layout and channel routing. In cell layout, the primitive components
of the circuit are grouped into cells, each of which performs some recognized function. Each
cell has a fixed footprint (size and shape) and requires a certain number of connections to
each of the other cells. The aim is to place the cells on the chip so that they do not overlap
and so that there is room for the connecting wires to be placed between the cells. Channel
routing finds a specific route for each wire through the gaps between the cells. These search
problems are extremely complex, but definitely worth solving.

Robot navigation is a generalization of the route-finding problem described earlier.
Rather than following distinct paths (such as the roads in Romania), a robot can roam around,
in effect making its own paths. For a circular robot moving on a flat surface, the space is
essentially two-dimensional. When the robot has arms and legs that must also be controlled,
the search space becomes many-dimensional—one dimension for each joint angle. Advanced
techniques are required just to make the essentially continuous search space finite (see Chap-
ter 26). In addition to the complexity of the problem, real robots must also deal with errors
in their sensor readings and motor controls, with partial observability, and with other agents
that might alter the environment.

Automatic assembly sequencing of complex objects (such as electric motors) by a robot
has been standard industry practice since the 1970s. Algorithms first find a feasible assembly
sequence and then work to optimize the process. Minimizing the amount of manual human
labor on the assembly line can produce significant savings in time and cost. In assembly
problems, the aim is to find an order in which to assemble the parts of some object. If the
wrong order is chosen, there will be no way to add some part later in the sequence without
undoing some of the work already done. Checking an action in the sequence for feasibility is a
difficult geometrical search problem closely related to robot navigation. Thus, the generation
of legal actions is the expensive part of assembly sequencing. Any practical algorithm must
avoid exploring all but a tiny fraction of the state space. One important assembly problem is
protein design, in which the goal is to find a sequence of amino acids that will fold into a
three-dimensional protein with the right properties to cure some disease.
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3.3 Search Algorithms

A search algorithm takes a search problem as input and returns a solution, or an indication of
failure. In this chapter we consider algorithms that superimpose a search tree over the state-
space graph, forming various paths from the initial state, trying to find a path that reaches a
goal state. Each node in the search tree corresponds to a state in the state space and the edges
in the search tree correspond to actions. The root of the tree corresponds to the initial state of
the problem.

It is important to understand the distinction between the state space and the search tree.
The state space describes the (possibly infinite) set of states in the world, and the actions
that allow transitions from one state to another. The search tree describes paths between
these states, reaching towards the goal. The search tree may have multiple paths to (and thus
multiple nodes for) any given state, but each node in the tree has a unique path back to the
root (as in all trees).

Figure 3.4 shows the first few steps in finding a path from Arad to Bucharest. The root
node of the search tree is at the initial state, Arad. We can expand the node, by considering

Figure 3.4 Three partial search trees for finding a route from Arad to Bucharest. Nodes
that have been expanded are lavender with bold letters; nodes on the frontier that have been
generated but not yet expanded are in green; the set of states corresponding to these two
types of nodes are said to have been reached. Nodes that could be generated next are shown
in faint dashed lines. Notice in the bottom tree there is a cycle from Arad to Sibiu to Arad;
that can’t be an optimal path, so search should not continue from there.
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Figure 3.5 A sequence of search trees generated by a graph search on the Romania problem
of Figure 3.1. At each stage, we have expanded every node on the frontier, extending every
path with all applicable actions that don’t result in a state that has already been reached.
Notice that at the third stage, the topmost city (Oradea) has two successors, both of which
have already been reached by other paths, so no paths are extended from Oradea.
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Figure 3.6 The separation property of graph search, illustrated on a rectangular-grid prob-
lem. The frontier (green) separates the interior (lavender) from the exterior (faint dashed).
The frontier is the set of nodes (and corresponding states) that have been reached but not yet
expanded; the interior is the set of nodes (and corresponding states) that have been expanded;
and the exterior is the set of states that have not been reached. In (a), just the root has been
expanded. In (b), the top frontier node is expanded. In (c), the remaining successors of the
root are expanded in clockwise order.

the available ACTIONS for that state, using the RESULT function to see where those actions
lead to, and generating a new node (called a child node or successor node) for each of the
resulting states. Each child node has Arad as its parent node.

Now we must choose which of these three child nodes to consider next. This is the
essence of search—following up one option now and putting the others aside for later. Sup-
pose we choose to expand Sibiu first. Figure 3.4 (bottom) shows the result: a set of 6 unex-
panded nodes (outlined in bold). We call this the frontier of the search tree. We say that any
state that has had a node generated for it has been reached (whether or not that node has been
expanded).’ Figure 3.5 shows the search tree superimposed on the state-space graph.

Note that the frontier separates two regions of the state-space graph: an interior region
where every state has been expanded, and an exterior region of states that have not yet been
reached. This property is illustrated in Figure 3.6.

5 Some authors call the frontier the open list, which is both geographically less evocative and computationally
less appropriate, because a queue is more efficient than a list here. Those authors use the term closed list to refer
to the set of previously expanded nodes, which in our terminology would be the reached nodes minus the frontier.
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function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure
node < NODE(STATE=problem.INITIAL)
frontier <—a priority queue ordered by f, with node as an element
reached < a lookup table, with one entry with key problem.INITIAL and value node
while not [S-EMPTY(frontier) do
node <— POP(frontier)
if problem.1S-GOAL(node.STATE) then return node
for each child in EXPAND(problem, node) do
54— child STATE
if 5 is not in reached or child PATH-COST < reached|s]. PATH-COST then
reached|s] + child
add child to frontier
return failure

function EXPAND(problem, node) yields nodes
§<¢—node.STATE
for each action in problem.ACTIONS(s) do
s' < problem.RESULT(s, action)
cost < node PATH-COST + problem.ACTION-COST(s, action, s')
yield NODE(STATE=s', PARENT=node, ACTION=action, PATH-COST=cost)

Figure 3.7 The best-first search algorithm, and the function for expanding a node. The data
structures used here are described in Section 3.3.2. See Appendix B for yield.

3.3.1 Best-first search

How do we decide which node from the frontier to expand next? A very general approach

is called best-first search, in which we choose a node, n, with minimum value of some Best-first search
evaluation function, f(n). Figure 3.7 shows the algorithm. On each iteration we choose Evaluation function
a node on the frontier with minimum f(n) value, return it if its state is a goal state, and

otherwise apply EXPAND to generate child nodes. Each child node is added to the frontier

if it has not been reached before, or is re-added if it is now being reached with a path that

has a lower path cost than any previous path. The algorithm returns either an indication of

failure, or a node that represents a path to a goal. By employing different f(n) functions, we

get different specific algorithms, which this chapter will cover.

3.3.2 Search data structures
Search algorithms require a data structure to keep track of the search tree. A node in the tree
is represented by a data structure with four components:

* node.STATE: the state to which the node corresponds;

* node.PARENT: the node in the tree that generated this node;

* node.ACTION: the action that was applied to the parent’s state to generate this node;

* node.PATH-COST: the total cost of the path from the initial state to this node. In math-

ematical formulas, we use g(node) as a synonym for PATH-COST.

Following the PARENT pointers back from a node allows us to recover the states and actions
along the path to that node. Doing this from a goal node gives us the solution.
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We need a data structure to store the frontier. The appropriate choice is a queue of some
kind, because the operations on a frontier are:

* IS-EMPTY(frontier) returns true only if there are no nodes in the frontier.
» POP(frontier) removes the top node from the frontier and returns it.
* ToP(frontier) returns (but does not remove) the top node of the frontier.

* ADD(node, frontier) inserts node into its proper place in the queue.
Three kinds of queues are used in search algorithms:

* A priority queue first pops the node with the minimum cost according to some evalu-
ation function, f. It is used in best-first search.

* A FIFO queue or first-in-first-out queue first pops the node that was added to the queue
first; we shall see it is used in breadth-first search.

* A LIFO queue or last-in-first-out queue (also known as a stack) pops first the most
recently added node; we shall see it is used in depth-first search.

The reached states can be stored as a lookup table (e.g. a hash table) where each key is a state
and each value is the node for that state.

3.3.3 Redundant paths

The search tree shown in Figure 3.4 (bottom) includes a path from Arad to Sibiu and back to
Arad again. We say that Arad is a repeated state in the search tree, generated in this case by
a cycle (also known as a loopy path). So even though the state space has only 20 states, the
complete search tree is infinite because there is no limit to how often one can traverse a loop.

A cycle is a special case of a redundant path. For example, we can get to Sibiu via the
path Arad—Sibiu (140 miles long) or the path Arad—Zerind—Oradea—Sibiu (297 miles long).
This second path is redundant—it’s just a worse way to get to the same state—and need not
be considered in our quest for optimal paths.

Consider an agent in a 10 x 10 grid world, with the ability to move to any of 8 adjacent
squares. If there are no obstacles, the agent can reach any of the 100 squares in 9 moves or
fewer. But the number of paths of length 9 is almost 8° (a bit less because of the edges of
the grid), or more than 100 million. In other words, the average cell can be reached by over a
million redundant paths of length 9, and if we eliminate redundant paths, we can complete a
search roughly a million times faster. As the saying goes, algorithms that cannot remember
the past are doomed to repeat it. There are three approaches to this issue.

First, we can remember all previously reached states (as best-first search does), allowing
us to detect all redundant paths, and keep only the best path to each state. This is appropriate
for state spaces where there are many redundant paths, and is the preferred choice when the
table of reached states will fit in memory.

Second, we can not worry about repeating the past. There are some problem formulations
where it is rare or impossible for two paths to reach the same state. An example would be an
assembly problem where each action adds a part to an evolving assemblage, and there is an
ordering of parts so that it is possible to add A and then B, but not B and then A. For those
problems, we could save memory space if we don’t track reached states and we don’t check
for redundant paths. We call a search algorithm a graph search if it checks for redundant
paths and a tree-like search® if it does not check. The BEST-FIRST-SEARCH algorithm in
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Figure 3.7 is a graph search algorithm; if we remove all references to reached we get a tree-
like search that uses less memory but will examine redundant paths to the same state, and
thus will run slower.

Third, we can compromise and check for cycles, but not for redundant paths in general.
Since each node has a chain of parent pointers, we can check for cycles with no need for
additional memory by following up the chain of parents to see if the state at the end of the
path has appeared earlier in the path. Some implementations follow this chain all the way
up, and thus eliminate all cycles; other implementations follow only a few links (e.g., to the
parent, grandparent, and great-grandparent), and thus take only a constant amount of time,
while eliminating all short cycles (and relying on other mechanisms to deal with long cycles).

3.3.4 Measuring problem-solving performance

Before we get into the design of various search algorithms, we will consider the criteria used
to choose among them. We can evaluate an algorithm’s performance in four ways:

o Completeness: Is the algorithm guaranteed to find a solution when there is one, and to
correctly report failure when there is not?

e Cost optimality: Does it find a solution with the lowest path cost of all solutions?’

e Time complexity: How long does it take to find a solution? This can be measured in
seconds, or more abstractly by the number of states and actions considered.

e Space complexity: How much memory is needed to perform the search?

To understand completeness, consider a search problem with a single goal. That goal could be
anywhere in the state space; therefore a complete algorithm must be capable of systematically
exploring every state that is reachable from the initial state. In finite state spaces that is
straightforward to achieve: as long as we keep track of paths and cut off ones that are cycles
(e.g. Arad to Sibiu to Arad), eventually we will reach every reachable state.

In infinite state spaces, more care is necessary. For example, an algorithm that repeatedly
applied the “factorial” operator in Knuth’s “4” problem would follow an infinite path from 4
to 4! to (4!)!, and so on. Similarly, on an infinite grid with no obstacles, repeatedly moving
forward in a straight line also follows an infinite path of new states. In both cases the algo-
rithm never returns to a state it has reached before, but is incomplete because wide expanses
of the state space are never reached.

To be complete, a search algorithm must be systematic in the way it explores an infinite
state space, making sure it can eventually reach any state that is connected to the initial state.
For example, on the infinite grid, one kind of systematic search is a spiral path that covers all
the cells that are s steps from the origin before moving out to cells that are s+ 1 steps away.
Unfortunately, in an infinite state space with no solution, a sound algorithm needs to keep
searching forever; it can’t terminate because it can’t know if the next state will be a goal.

Time and space complexity are considered with respect to some measure of the problem
difficulty. In theoretical computer science, the typical measure is the size of the state-space
graph, |V|+ |E|, where |V| is the number of vertices (state nodes) of the graph and |E| is

6 We say “tree-like search” because the state space is still the same graph no matter how we search it; we are
just choosing to treat it as if it were a tree, with only one path from each node back to the root.

7 Some authors use the term “admissibility” for the property of finding the lowest-cost solution, and some use
just “optimality,” but that can be confused with other types of optimality.
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the number of edges (distinct state/action pairs). This is appropriate when the graph is an
explicit data structure, such as the map of Romania. But in many Al problems, the graph is
represented only implicitly by the initial state, actions, and transition model. For an implicit
state space, complexity can be measured in terms of d, the depth or number of actions in
an optimal solution; m, the maximum number of actions in any path; and b, the branching
factor or number of successors of a node that need to be considered.

3.4 Uninformed Search Strategies

An uninformed search algorithm is given no clue about how close a state is to the goal(s).
For example, consider our agent in Arad with the goal of reaching Bucharest. An uninformed
agent with no knowledge of Romanian geography has no clue whether going to Zerind or
Sibiu is a better first step. In contrast, an informed agent (Section 3.5) who knows the location
of each city knows that Sibiu is much closer to Bucharest and thus more likely to be on the
shortest path.

3.4.1 Breadth-first search

When all actions have the same cost, an appropriate strategy is breadth-first search, in which
the root node is expanded first, then all the successors of the root node are expanded next,
then their successors, and so on. This is a systematic search strategy that is therefore com-
plete even on infinite state spaces. We could implement breadth-first search as a call to
BEST-FIRST-SEARCH where the evaluation function f(n) is the depth of the node—that is,
the number of actions it takes to reach the node.

However, we can get additional efficiency with a couple of tricks. A first-in-first-out
queue will be faster than a priority queue, and will give us the correct order of nodes: new
nodes (which are always deeper than their parents) go to the back of the queue, and old nodes,
which are shallower than the new nodes, get expanded first. In addition, reached can be a set
of states rather than a mapping from states to nodes, because once we’ve reached a state,
we can never find a better path to the state. That also means we can do an early goal test,
checking whether a node is a solution as soon as it is generated, rather than the late goal test
that best-first search uses, waiting until a node is popped off the queue. Figure 3.8 shows the
progress of a breadth-first search on a binary tree, and Figure 3.9 shows the algorithm with
the early-goal efficiency enhancements.

Breadth-first search always finds a solution with a minimal number of actions, because
when it is generating nodes at depth d, it has already generated all the nodes at depth d — 1,
so if one of them were a solution, it would have been found. That means it is cost-optimal

>® Q

Figure 3.8 Breadth-first search on a simple binary tree. At each stage, the node to be ex-
panded next is indicated by the triangular marker.
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function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure
node <— NODE(problem.INITIAL)
if problem.1s-GOAL(node.STATE) then return node
frontier < a FIFO queue, with node as an element
reached < {problem.INITIAL}
while not IS-EMPTY(frontier) do
node <— POP(frontier)
for each child in EXPAND(problem, node) do
54— child.STATE
if problem.Is-GOAL(s) then return child
if s is not in reached then
add s to reached
add child to frontier
return failure

function UNTFORM-COST-SEARCH(problem) returns a solution node, or failure
return BEST-FIRST-SEARCH(problem, PATH-COST)

Figure 3.9 Breadth-first search and uniform-cost search algorithms.

for problems where all actions have the same cost, but not for problems that don’t have that
property. It is complete in either case. In terms of time and space, imagine searching a
uniform tree where every state has b successors. The root of the search tree generates b
nodes, each of which generates » more nodes, for a total of b? at the second level. Each of
these generates b more nodes, yielding b* nodes at the third level, and so on. Now suppose
that the solution is at depth d. Then the total number of nodes generated is

1+b+b*+b* +- + b = 0(b?)

All the nodes remain in memory, so both time and space complexity are O(b?). Exponential
bounds like that are scary. As a typical real-world example, consider a problem with branch-
ing factor b = 10, processing speed 1 million nodes/second, and memory requirements of 1
Kbyte/node. A search to depth d = 10 would take less than 3 hours, but would require 10
terabytes of memory. The memory requirements are a bigger problem for breadth-first search
than the execution time. But time is still an important factor. At depth d = 14, even with
infinite memory, the search would take 3.5 years. In general, exponential-complexity search
problems cannot be solved by uninformed search for any but the smallest instances.

3.4.2 Dijkstra’s algorithm or uniform-cost search

When actions have different costs, an obvious choice is to use best-first search where the
evaluation function is the cost of the path from the root to the current node. This is called Di-
jkstra’s algorithm by the theoretical computer science community, and uniform-cost search
by the Al community. The idea is that while breadth-first search spreads out in waves of uni-
form depth—first depth 1, then depth 2, and so on—uniform-cost search spreads out in waves
of uniform path-cost. The algorithm can be implemented as a call to BEST-FIRST-SEARCH
with PATH-COST as the evaluation function, as shown in Figure 3.9.

95

A A

Uniform-cost search



96

Depth-first search

Chapter 3 Solving Problems by Searching

Sibiu Fagaras

Rimnicu Vilcea

Pitesti

Bucharest

Figure 3.10 Part of the Romania state space, selected to illustrate uniform-cost search.

Consider Figure 3.10, where the problem is to get from Sibiu to Bucharest. The succes-
sors of Sibiu are Rimnicu Vilcea and Fagaras, with costs 80 and 99, respectively. The least-
cost node, Rimnicu Vilcea, is expanded next, adding Pitesti with cost 80 +97=177. The
least-cost node is now Fagaras, so it is expanded, adding Bucharest with cost 99 4+-211=310.
Bucharest is the goal, but the algorithm tests for goals only when it expands a node, not when
it generates a node, so it has not yet detected that this is a path to the goal.

The algorithm continues on, choosing Pitesti for expansion next and adding a second path
to Bucharest with cost 80 +97 + 101 =278. It has a lower cost, so it replaces the previous
path in reached and is added to the frontier. It turns out this node now has the lowest cost,
so it is considered next, found to be a goal, and returned. Note that if we had checked for a
goal upon generating a node rather than when expanding the lowest-cost node, then we would
have returned a higher-cost path (the one through Fagaras).

The complexity of uniform-cost search is characterized in terms of C*, the cost of the
optimal solution,® and ¢, a lower bound on the cost of each action, with € > 0. Then the
algorithm’s worst-case time and space complexity is O(b'* " /€] ), which can be much greater
than b“. This is because uniform-cost search can explore large trees of actions with low costs
before exploring paths involving a high-cost and perhaps useful action. When all action costs
are equal, b T1€"/¢) is just bt and uniform-cost search is similar to breadth-first search.

Uniform-cost search is complete and is cost-optimal, because the first solution it finds
will have a cost that is at least as low as the cost of any other node in the frontier. Uniform-
cost search considers all paths systematically in order of increasing cost, never getting caught
going down a single infinite path (assuming that all action costs are > € > 0).

3.4.3 Depth-first search and the problem of memory

Depth-first search always expands the deepest node in the frontier first. It could be imple-
mented as a call to BEST-FIRST-SEARCH where the evaluation function f is the negative
of the depth. However, it is usually implemented not as a graph search but as a tree-like
search that does not keep a table of reached states. The progress of the search is illustrated
in Figure 3.11; search proceeds immediately to the deepest level of the search tree, where the
nodes have no successors. The search then “backs up” to the next deepest node that still has

8 Here, and throughout the book, the “star” in C* means an optimal value for C.



Section 3.4 Uninformed Search Strategies

® © ® ©

L' M N O O M N © ™M N O

Figure 3.11 A dozen steps (left to right, top to bottom) in the progress of a depth-first search
on a binary tree from start state A to goal M. The frontier is in green, with a triangle marking
the node to be expanded next. Previously expanded nodes are lavender, and potential future
nodes have faint dashed lines. Expanded nodes with no descendants in the frontier (very faint
lines) can be discarded.

unexpanded successors. Depth-first search is not cost-optimal; it returns the first solution it
finds, even if it is not cheapest.

For finite state spaces that are trees it is efficient and complete; for acyclic state spaces
it may end up expanding the same state many times via different paths, but will (eventually)
systematically explore the entire space.

In cyclic state spaces it can get stuck in an infinite loop; therefore some implementations
of depth-first search check each new node for cycles. Finally, in infinite state spaces, depth-
first search is not systematic: it can get stuck going down an infinite path, even if there are no
cycles. Thus, depth-first search is incomplete.

With all this bad news, why would anyone consider using depth-first search rather than
breadth-first or best-first? The answer is that for problems where a tree-like search is feasible,
depth-first search has much smaller needs for memory. We don’t keep a reached table at all,
and the frontier is very small: think of the frontier in breadth-first search as the surface of an
ever-expanding sphere, while the frontier in depth-first search is just a radius of the sphere.
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For a finite tree-shaped state-space like the one in Figure 3.11, a depth-first tree-like
search takes time proportional to the number of states, and has memory complexity of only
O(bm), where b is the branching factor and m is the maximum depth of the tree. Some
problems that would require exabytes of memory with breadth-first search can be handled
with only kilobytes using depth-first search. Because of its parsimonious use of memory,
depth-first tree-like search has been adopted as the basic workhorse of many areas of Al,
including constraint satisfaction (Chapter 5), propositional satisfiability (Chapter 7), and logic
programming (Chapter 9).

A variant of depth-first search called backtracking search uses even less memory. (See
Chapter 5 for more details.) In backtracking, only one successor is generated at a time rather
than all successors; each partially expanded node remembers which successor to generate
next. In addition, successors are generated by modifying the current state description directly
rather than allocating memory for a brand-new state. This reduces the memory requirements
to just one state description and a path of O(m) actions; a significant savings over O(bm)
states for depth-first search. With backtracking we also have the option of maintaining an
efficient set data structure for the states on the current path, allowing us to check for a cyclic
path in O(1) time rather than O(m). For backtracking to work, we must be able to undo each
action when we backtrack. Backtracking is critical to the success of many problems with
large state descriptions, such as robotic assembly.

3.4.4 Depth-limited and iterative deepening search

To keep depth-first search from wandering down an infinite path, we can use depth-limited
search, a version of depth-first search in which we supply a depth limit, ¢, and treat all nodes
at depth £ as if they had no successors (see Figure 3.12). The time complexity is O(b’) and
the space complexity is O(b¢). Unfortunately, if we make a poor choice for ¢ the algorithm
will fail to reach the solution, making it incomplete again.

Since depth-first search is a tree-like search, we can’t keep it from wasting time on re-
dundant paths in general, but we can eliminate cycles at the cost of some computation time.
If we look only a few links up in the parent chain we can catch most cycles; longer cycles are
handled by the depth limit.

Sometimes a good depth limit can be chosen based on knowledge of the problem. For
example, on the map of Romania there are 20 cities. Therefore, /=19 is a valid limit. But if
we studied the map carefully, we would discover that any city can be reached from any other
city in at most 9 actions. This number, known as the diameter of the state-space graph, gives
us a better depth limit, which leads to a more efficient depth-limited search. However, for
most problems we will not know a good depth limit until we have solved the problem.

Iterative deepening search solves the problem of picking a good value for ¢ by trying
all values: first O, then 1, then 2, and so on—until either a solution is found, or the depth-
limited search returns the failure value rather than the cutoff value. The algorithm is shown in
Figure 3.12. Iterative deepening combines many of the benefits of depth-first and breadth-first
search. Like depth-first search, its memory requirements are modest: O(bd) when there is a
solution, or O(bm) on finite state spaces with no solution. Like breadth-first search, iterative
deepening is optimal for problems where all actions have the same cost, and is complete on
finite acyclic state spaces, or on any finite state space when we check nodes for cycles all the
way up the path.
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function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution node or failure
for depth = 0 to o do
result < DEPTH-LIMITED-SEARCH(problem, depth)
if result = cutoff then return result

function DEPTH-LIMITED-SEARCH(problem, ¢) returns a node or failure or cutoff
frontier <—a LIFO queue (stack) with NODE(problem.INITIAL) as an element
result < failure
while not IS-EMPTY((frontier) do
node <— POP(frontier)
if problem.1s-GOAL(node.STATE) then return node
if DEPTH(node) > { then
result < cutoff
else if not Is-CYCLE(node) do
for each child in EXPAND(problem, node) do
add child to frontier
return result

Figure 3.12 TIterative deepening and depth-limited tree-like search. Iterative deepening re-
peatedly applies depth-limited search with increasing limits. It returns one of three different
types of values: either a solution node; or failure, when it has exhausted all nodes and proved
there is no solution at any depth; or cutoff, to mean there might be a solution at a deeper depth
than ¢. This is a tree-like search algorithm that does not keep track of reached states, and thus
uses much less memory than best-first search, but runs the risk of visiting the same state mul-
tiple times on different paths. Also, if the IS-CYCLE check does not check all cycles, then
the algorithm may get caught in a loop.

The time complexity is O(b¢) when there is a solution, or O(b™) when there is none. Each
iteration of iterative deepening search generates a new level, in the same way that breadth-
first search does, but breadth-first does this by storing all nodes in memory, while iterative-
deepening does it by repeating the previous levels, thereby saving memory at the cost of more
time. Figure 3.13 shows four iterations of iterative-deepening search on a binary search tree,
where the solution is found on the fourth iteration.

Iterative deepening search may seem wasteful because states near the top of the search
tree are re-generated multiple times. But for many state spaces, most of the nodes are in the
bottom level, so it does not matter much that the upper levels are repeated. In an iterative
deepening search, the nodes on the bottom level (depth d) are generated once, those on the
next-to-bottom level are generated twice, and so on, up to the children of the root, which are
generated d times. So the total number of nodes generated in the worst case is

N(IDS) = (d)b"' + (d — 1)b* + (d —2)b> - - -+ b ,
which gives a time complexity of O(b?)—asymptotically the same as breadth-first search.
For example, if » = 10 and d = 5, the numbers are

N(IDS) = 504400+ 3,000+ 20,000+ 100,000 = 123,450

N(BFS) = 10+100+ 1,000+ 10,000+ 100,000 = 111,110.

If you are really concerned about the repetition, you can use a hybrid approach that runs
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Figure 3.13 Four iterations of iterative deepening search for goal M on a binary tree, with
the depth limit varying from O to 3. Note the interior nodes form a single path. The triangle
marks the node to expand next; green nodes with dark outlines are on the frontier; the very
faint nodes provably can’t be part of a solution with this depth limit.

breadth-first search until almost all the available memory is consumed, and then runs iterative
deepening from all the nodes in the frontier. In general, iterative deepening is the preferred
uninformed search method when the search state space is larger than can fit in memory and
the depth of the solution is not known.

3.4.5 Bidirectional search

The algorithms we have covered so far start at an initial state and can reach any one of multiple
possible goal states. An alternative approach called bidirectional search simultaneously
searches forward from the initial state and backwards from the goal state(s), hoping that the
two searches will meet. The motivation is that b%/2 4 p%/2 is much less than b? (e.g., 50,000
times less when b=d =10).
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function BIBF-SEARCH(problemp, fr, problemg, fg) returns a solution node, or failure

noder < NODE(problemp .INITIAL) // Node for a start state
nodep < NODE(problemp.INITIAL) // Node for a goal state
frontierp < a priority queue ordered by fr, with noder as an element
frontierp < a priority queue ordered by fp, with nodep as an element
reachedr <— a lookup table, with one key noder.STATE and value noder
reachedp < a lookup table, with one key nodep.STATE and value nodep
solution < failure
while not TERMINATED(solution, frontierr, frontierg) do

if fr(ToP(frontierr)) < fp(TOP(frontierp)) then

solution <— PROCEED(F, problemp, frontierr, reachedr, reachedp, solution)

else solution <— PROCEED(B, problemp, frontierp, reachedp, reachedr, solution)

return solution

function PROCEED(dir, problem, frontier, reached, reached,, solution) returns a solution
// Expand node on frontier; check against the other frontier in reached,.
// The variable “dir” is the direction: either F for forward or B for backward.
node <— POP(frontier)
for each child in EXPAND(problem, node) do
§ ¢ child STATE
if s not in reached or PATH-COST(child) < PATH-COST(reached|s]) then
reached|s] <+ child
add child to frontier
if s is in reached, then
solutiony < JOIN-NODES(dir, child, reached;[s]))
if PATH-COST(solution;) < PATH-COST(solution) then
solution < solution,
return solution

Figure 3.14 Bidirectional best-first search keeps two frontiers and two tables of reached
states. When a path in one frontier reaches a state that was also reached in the other half of
the search, the two paths are joined (by the function JOIN-NODES) to form a solution. The
first solution we get is not guaranteed to be the best; the function TERMINATED determines
when to stop looking for new solutions.

For this to work, we need to keep track of two frontiers and two tables of reached states,
and we need to be able to reason backwards: if state s’ is a successor of s in the forward
direction, then we need to know that s is a successor of s’ in the backward direction. We have
a solution when the two frontiers collide.’

There are many different versions of bidirectional search, just as there are many different
unidirectional search algorithms. In this section, we describe bidirectional best-first search.
Although there are two separate frontiers, the node to be expanded next is always one with
a minimum value of the evaluation function, across either frontier. When the evaluation

9 In our implementation, the reached data structure supports a query asking whether a given state is a member,
and the frontier data structure (a priority queue) does not, so we check for a collision using reached; but concep-
tually we are asking if the two frontiers have met up. The implementation can be extended to handle multiple
goal states by loading the node for each goal state into the backwards frontier and backwards reached table.
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function is the path cost, we get bidirectional uniform-cost search, and if the cost of the
optimal path is C*, then no node with cost > % will be expanded. This can result in a
considerable speedup.

The general best-first bidirectional search algorithm is shown in Figure 3.14. We pass
in two versions of the problem and the evaluation function, one in the forward direction
(subscript F) and one in the backward direction (subscript B). When the evaluation function
is the path cost, we know that the first solution found will be an optimal solution, but with
different evaluation functions that is not necessarily true. Therefore, we keep track of the best
solution found so far, and might have to update that several times before the TERMINATED
test proves that there is no possible better solution remaining.

3.4.6 Comparing uninformed search algorithms

Figure 3.15 compares uninformed search algorithms in terms of the four evaluation criteria set
forth in Section 3.3.4. This comparison is for tree-like search versions which don’t check for
repeated states. For graph searches which do check, the main differences are that depth-first
search is complete for finite state spaces, and the space and time complexities are bounded
by the size of the state space (the number of vertices and edges, |V|+ |E|).

Criterion Bregdth— Uniform- Depth— Depth— IteratiYe ].B.idirec.tional
First Cost First Limited Deepening  (if applicable)
Complete? Yes! Yes!? No No Yes! Yes!#
Optimal cost? Yes® Yes No No Yes? Yes>#
Time ot o'ty omm) o) o(b%) o(b?/?)
Space ot o'ty omm)  o(be) O(bd) o(b%/?)

Figure 3.15 Evaluation of search algorithms. b is the branching factor; m is the maximum
depth of the search tree; d is the depth of the shallowest solution, or is m when there is
no solution; ¢ is the depth limit. Superscript caveats are as follows: ! complete if b is
finite, and the state space either has a solution or is finite. > complete if all action costs are
>e>0;3 cost-optimal if action costs are all identical; 4 if both directions are breadth-first
or uniform-cost.

3.5 Informed (Heuristic) Search Strategies

This section shows how an informed search strategy—one that uses domain-specific hints
about the location of goals—can find solutions more efficiently than an uninformed strategy.
The hints come in the form of a heuristic function, denoted A(n):!°

h(n) = estimated cost of the cheapest path from the state at node n to a goal state.

For example, in route-finding problems, we can estimate the distance from the current state to
a goal by computing the straight-line distance on the map between the two points. We study
heuristics and where they come from in more detail in Section 3.6.

10 It may seem odd that the heuristic function operates on a node, when all it really needs is the node’s state. It is
traditional to use A (n) rather than A(s) to be consistent with the evaluation function f () and the path cost g(n).
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Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199
Lugoj 244 Zerind 374

Figure 3.16 Values of hs; p—straight-line distances to Bucharest.

3.5.1 Greedy best-first search

Greedy best-first search is a form of best-first search that expands first the node with the Sefreciy best-first
lowest h(n) value—the node that appears to be closest to the goal—on the grounds that this
is likely to lead to a solution quickly. So the evaluation function f(n) = h(n).

Let us see how this works for route-finding problems in Romania; we use the straight-
line distance heuristic, which we will call hg;p. If the goal is Bucharest, we need to know csﬁtgf;ﬁg;‘“”e
the straight-line distances to Bucharest, which are shown in Figure 3.16. For example,
hsip(Arad)=366. Notice that the values of hgyp cannot be computed from the problem
description itself (that is, the ACTIONS and RESULT functions). Moreover, it takes a certain
amount of world knowledge to know that hszp is correlated with actual road distances and is,
therefore, a useful heuristic.

Figure 3.17 shows the progress of a greedy best-first search using hg;p to find a path
from Arad to Bucharest. The first node to be expanded from Arad will be Sibiu because the
heuristic says it is closer to Bucharest than is either Zerind or Timisoara. The next node to be
expanded will be Fagaras because it is now closest according to the heuristic. Fagaras in turn
generates Bucharest, which is the goal. For this particular problem, greedy best-first search
using hgzp finds a solution without ever expanding a node that is not on the solution path.
The solution it found does not have optimal cost, however: the path via Sibiu and Fagaras to
Bucharest is 32 miles longer than the path through Rimnicu Vilcea and Pitesti. This is why
the algorithm is called “greedy”’—on each iteration it tries to get as close to a goal as it can,
but greediness can lead to worse results than being careful.

Greedy best-first graph search is complete in finite state spaces, but not in infinite ones.
The worst-case time and space complexity is O(|V|). With a good heuristic function, however,
the complexity can be reduced substantially, on certain problems reaching O(bm).

3.5.2 A" search

The most common informed search algorithm is A* search (pronounced “A-star search”), a A search
best-first search that uses the evaluation function

f(n) =g(n)+h(n)
where g(n) is the path cost from the initial state to node n, and h(n) is the estimated cost of
the shortest path from » to a goal state, so we have

f(n) = estimated cost of the best path that continues from n to a goal.
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() The initial state »>Carad_ D

(b) After expanding Arad Arad D>

Csibiu > imisoar> — CZerind

253 329 374

(c) After expanding Sibiu

366 176 380 193

(d) After expanding Fagaras

0

253

Figure 3.17 Stages in a greedy best-first tree-like search for Bucharest with the straight-line
distance heuristic gy p. Nodes are labeled with their s-values.

In Figure 3.18, we show the progress of an A" search with the goal of reaching Bucharest.
The values of g are computed from the action costs in Figure 3.1, and the values of hgrp are
given in Figure 3.16. Notice that Bucharest first appears on the frontier at step (e), but it is
not selected for expansion (and thus not detected as a solution) because at f =450 it is not the
lowest-cost node on the frontier—that would be Pitesti, at f =417. Another way to say this
is that there might be a solution through Pitesti whose cost is as low as 417, so the algorithm
will not settle for a solution that costs 450. At step (f), a different path to Bucharest is now
the lowest-cost node, at f =418, so it is selected and detected as the optimal solution.

A* search is complete.!! Whether A* is cost-optimal depends on certain properties of
the heuristic. A key property is admissibility: an admissible heuristic is one that never
overestimates the cost to reach a goal. (An admissible heuristic is therefore optimistic.) With

IT" Again, assuming all action costs are > € > 0, and the state space either has a solution or is finite.
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(a) The initial state

366=0+366

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

449=75+374

526=366+160 417=317+100 553=300+253

(e) After expanding Fagaras

449=75+374

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti

449=75+374

418=418+0 615=455+160 607=414+193

Figure 3.18 Stages in an A* search for Bucharest. Nodes are labeled with f = g+ h. The h
values are the straight-line distances to Bucharest taken from Figure 3.16.
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Figure 3.19 Triangle inequality: If the heuristic / is consistent, then the single number A(n)
will be less than the sum of the cost ¢(n,a,a’) of the action from n to n’ plus the heuristic
estimate h(n').

an admissible heuristic, A* is cost-optimal, which we can show with a proof by contradiction.
Suppose the optimal path has cost C*, but the algorithm returns a path with cost C > C*. Then
there must be some node n which is on the optimal path and is unexpanded (because if all
the nodes on the optimal path had been expanded, then we would have returned that optimal
solution). So then, using the notation g*(n) to mean the cost of the optimal path from the start
to n, and 4*(n) to mean the cost of the optimal path from 7 to the nearest goal, we have:

f(n) > C* (otherwise n would have been expanded)
f(n) = g(n)+h(n) (by definition)

f(n) = g*(n)+h(n) (because n is on an optimal path)
f(n) < g*(n)+h*(n) (because of admissibility, h(n) < h*(n))
f(n) < C* (by definition, C* = g*(n) + h*(n))

The first and last lines form a contradiction, so the supposition that the algorithm could return
a suboptimal path must be wrong—it must be that A* returns only cost-optimal paths.

A slightly stronger property is called consistency. A heuristic i(n) is consistent if, for
every node n and every successor n’ of n generated by an action a, we have:

h(n) < c(n,a,n')+h(n').

This is a form of the triangle inequality, which stipulates that a side of a triangle cannot
be longer than the sum of the other two sides (see Figure 3.19). An example of a consistent
heuristic is the straight-line distance hg;p that we used in getting to Bucharest.

Every consistent heuristic is admissible (but not vice versa), so with a consistent heuristic,
A* is cost-optimal. In addition, with a consistent heuristic, the first time we reach a state it
will be on an optimal path, so we never have to re-add a state to the frontier, and never have to
change an entry in reached. But with an inconsistent heuristic, we may end up with multiple
paths reaching the same state, and if each new path has a lower path cost than the previous
one, then we will end up with multiple nodes for that state in the frontier, costing us both
time and space. Because of that, some implementations of A* take care to only enter a state
into the frontier once, and if a better path to the state is found, all the successors of the state
are updated (which requires that nodes have child pointers as well as parent pointers). These
complications have led many implementers to avoid inconsistent heuristics, but Felner et al.
(2011) argues that the worst effects rarely happen in practice, and one shouldn’t be afraid of
inconsistent heuristics.
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Figure 3.20 Map of Romania showing contours at f = 380, f = 400, and f = 420, with
Arad as the start state. Nodes inside a given contour have f = g+ & costs less than or equal
to the contour value.

With an inadmissible heuristic, A* may or may not be cost-optimal. Here are two cases
where it is: First, if there is even one cost-optimal path on which /(n) is admissible for all
nodes n on the path, then that path will be found, no matter what the heuristic says for states
off the path. Second, if the optimal solution has cost C*, and the second-best has cost C,, and
if h(n) overestimates some costs, but never by more than C; — C*, then A* is guaranteed to
return cost-optimal solutions.

3.5.3 Search contours

A useful way to visualize a search is to draw contours in the state space, just like the contours Contour
in a topographic map. Figure 3.20 shows an example. Inside the contour labeled 400, all
nodes have f(n) = g(n) +h(n) <400, and so on. Then, because A* expands the frontier node
of lowest f-cost, we can see that an A* search fans out from the start node, adding nodes in
concentric bands of increasing f-cost.

With uniform-cost search, we also have contours, but of g-cost, not g + 4. The contours
with uniform-cost search will be “circular” around the start state, spreading out equally in all
directions with no preference towards the goal. With A* search using a good heuristic, the
g + h bands will stretch toward a goal state (as in Figure 3.20) and become more narrowly
focused around an optimal path.

It should be clear that as you extend a path, the g costs are monotonic: the path cost Monotonic
always increases as you go along a path, because action costs are always positive.'? Therefore
you get concentric contour lines that don’t cross each other, and if you choose to draw the
lines fine enough, you can put a line between any two nodes on any path.

12 Technically, we say “strictly monotonic” for costs that always increase, and “monotonic” for costs that never
decrease, but might remain the same.
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But it is not obvious whether the f = g 4 & cost will monotonically increase. As you ex-
tend a path from n to /, the cost goes from g(n) + h(n) to g(n) +c(n,a,n’) +h(n'). Canceling
out the g(n) term, we see that the path’s cost will be monotonically increasing if and only if
h(n) < c(n,a,n’) +h(n'); in other words if and only if the heuristic is consistent.!> But note
that a path might contribute several nodes in a row with the same g(n) + h(n) score; this will
happen whenever the decrease in 4 is exactly equal to the action cost just taken (for example,
in a grid problem, when # is in the same row as the goal and you take a step towards the goal,
g is increased by 1 and / is decreased by 1). If C* is the cost of the optimal solution path,
then we can say the following:

* A* expands all nodes that can be reached from the initial state on a path where every

Eg('felsy expanded node on the path has f(n) < C*. We say these are surely expanded nodes.

* A" might then expand some of the nodes right on the “goal contour” (where f(n) = C*)
before selecting a goal node.

* A* expands no nodes with f(n) > C*.

Optimally efficient  We say that A* with a consistent heuristic is optimally efficient in the sense that any algorithm
that extends search paths from the initial state, and uses the same heuristic information, must
expand all nodes that are surely expanded by A* (because any one of them could have been
part of an optimal solution). Among the nodes with f(n)=C"*, one algorithm could get lucky
and choose the optimal one first while another algorithm is unlucky; we don’t consider this
difference in defining optimal efficiency.

Pruning A* is efficient because it prunes away search tree nodes that are not necessary for finding
an optimal solution. In Figure 3.18(b) we see that Timisoara has f =447 and Zerind has f =
449. Even though they are children of the root and would be among the first nodes expanded
by uniform-cost or breadth-first search, they are never expanded by A* search because the
solution with f =418 is found first. The concept of pruning—eliminating possibilities from
consideration without having to examine them—is important for many areas of Al.

That A* search is complete, cost-optimal, and optimally efficient among all such algo-
rithms is rather satisfying. Unfortunately, it does not mean that A* is the answer to all our
searching needs. The catch is that for many problems, the number of nodes expanded can
be exponential in the length of the solution. For example, consider a version of the vacuum
world with a super-powerful vacuum that can clean up any one square at a cost of 1 unit,
without even having to visit the square; in that scenario, squares can be cleaned in any order.
With N initially dirty squares, there are 2"V states where some subset has been cleaned; all
of those states are on an optimal solution path, and hence satisfy f(n) < C*, so all of them
would be visited by A*.

3.5.4 Satisficing search: Inadmissible heuristics and weighted A*

A" search has many good qualities, but it expands a lot of nodes. We can explore fewer
nodes (taking less time and space) if we are willing to accept solutions that are suboptimal,
but are “good enough”—what we call satisficing solutions. If we allow A* search to use
Inadmissible an inadmissible heuristic—one that may overestimate—then we risk missing the optimal
solution, but the heuristic can potentially be more accurate, thereby reducing the number of

13 In fact, the term “monotonic heuristic” is a synonym for “consistent heuristic.” The two ideas were developed
independently, and then it was proved that they are equivalent (Pearl, 1984).
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RL =P
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Figure 3.21 Two searches on the same grid: (a) an A* search and (b) a weighted A* search
with weight W = 2. The gray bars are obstacles, the purple line is the path from the green
start to red goal, and the small dots are states that were reached by each search. On this
particular problem, weighted A* explores 7 times fewer states and finds a path that is 5%
more costly.

nodes expanded. For example, road engineers know the concept of a detour index, which is
a multiplier applied to the straight-line distance to account for the typical curvature of roads.
A detour index of 1.3 means that if two cities are 10 miles apart in straight-line distance, a
good estimate of the best path between them is 13 miles. For most localities, the detour index
ranges between 1.2 and 1.6.

We can apply this idea to any problem, not just ones involving roads, with an approach
called weighted A* search where we weight the heuristic value more heavily, giving us the
evaluation function f(n) = g(n) +W X h(n), for some W > 1.

Figure 3.21 shows a search problem on a grid world. In (a), an A* search finds the optimal
solution, but has to explore a large portion of the state space to find it. In (b), a weighted A*
search finds a solution that is slightly costlier, but the search time is much faster. We see that
the weighted search focuses the contour of reached states towards a goal. That means that
fewer states are explored, but if the optimal path ever strays outside of the weighted search’s
contour (as it does in this case), then the optimal path will not be found. In general, if
the optimal solution costs C*, a weighted A* search will find a solution that costs somewhere
between C* and W x C*; but in practice we usually get results much closer to C* than W x C*.

We have considered searches that evaluate states by combining g and 4 in various ways;
weighted A* can be seen as a generalization of the others:

Afsearch:  g(n)+h(n) (W=1)
Uniform-cost search: g(n) (W=0)
Greedy best-first search: h(n) (W = o0)

Weighted A" search: g(n)+W xh(n) (1 <W <o)

You could call weighted A* “somewhat-greedy search”: like greedy best-first search, it fo-
cuses the search towards a goal; on the other hand, it won’t ignore the path cost completely,
and will suspend a path that is making little progress at great cost.
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There are a variety of suboptimal search algorithms, which can be characterized by the
criteria for what counts as “good enough.” In bounded suboptimal search, we look for a
solution that is guaranteed to be within a constant factor W of the optimal cost. Weighted A*
provides this guarantee. In bounded-cost search, we look for a solution whose cost is less
than some constant C. And in unbounded-cost search, we accept a solution of any cost, as
long as we can find it quickly.

An example of an unbounded-cost search algorithm is speedy search, which is a version
of greedy best-first search that uses as a heuristic the estimated number of actions required
to reach a goal, regardless of the cost of those actions. Thus, for problems where all actions
have the same cost it is the same as greedy best-first search, but when actions have different
costs, it tends to lead the search to find a solution quickly, even if it might have a high cost.

3.5.5 Memory-bounded search

The main issue with A* is its use of memory. In this section we’ll cover some implementation
tricks that save space, and then some entirely new algorithms that take better advantage of the
available space.

Memory is split between the frontier and the reached states. In our implementation of
best-first search, a state that is on the frontier is stored in two places: as a node in the frontier
(so we can decide what to expand next) and as an entry in the table of reached states (so we
know if we have visited the state before). For many problems (such as exploring a grid), this
duplication is not a concern, because the size of frontier is much smaller than reached, so
duplicating the states in the frontier requires a comparatively trivial amount of memory. But
some implementations keep a state in only one of the two places, saving a bit of space at the
cost of complicating (and perhaps slowing down) the algorithm.

Another possibility is to remove states from reached when we can prove that they are
no longer needed. For some problems, we can use the separation property (Figure 3.6 on
page 90), along with the prohibition of U-turn actions, to ensure that all actions either move
outwards from the frontier or onto another frontier state. In that case, we need only check the
frontier for redundant paths, and we can eliminate the reached table.

For other problems, we can keep reference counts of the number of times a state has
been reached, and remove it from the reached table when there are no more ways to reach
the state. For example, on a grid world where each state can be reached only from its four
neighbors, once we have reached a state four times, we can remove it from the table.

Now let’s consider new algorithms that are designed to conserve memory usage.

Beam search limits the size of the frontier. The easiest approach is to keep only the k&
nodes with the best f-scores, discarding any other expanded nodes. This of course makes
the search incomplete and suboptimal, but we can choose k to make good use of available
memory, and the algorithm executes fast because it expands fewer nodes. For many prob-
lems it can find good near-optimal solutions. You can think of uniform-cost or A* search as
spreading out everywhere in concentric contours, and think of beam search as exploring only
a focused portion of those contours, the portion that contains the k best candidates.

An alternative version of beam search doesn’t keep a strict limit on the size of the frontier
but instead keeps every node whose f-score is within § of the best f-score. That way, when
there are a few strong-scoring nodes only a few will be kept, but if there are no strong nodes
then more will be kept until a strong one emerges.
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Iterative-deepening A* search (IDA*) is to A* what iterative-deepening search is to
depth-first: IDA* gives us the benefits of A* without the requirement to keep all reached
states in memory, at a cost of visiting some states multiple times. It is a very important and
commonly used algorithm for problems that do not fit in memory.

In standard iterative deepening the cutoff is the depth, which is increased by one each
iteration. In IDA* the cutoff is the f-cost (g + h); at each iteration, the cutoff value is the
smallest f-cost of any node that exceeded the cutoff on the previous iteration. In other words,
each iteration exhaustively searches an f-contour, finds a node just beyond that contour, and
uses that node’s f-cost as the next contour. For problems like the 8-puzzle where each path’s
f-cost is an integer, this works very well, resulting in steady progress towards the goal each
iteration. If the optimal solution has cost C*, then there can be no more than C* iterations (for
example, no more than 31 iterations on the hardest 8-puzzle problems). But for a problem
where every node has a different f-cost, each new contour might contain only one new node,
and the number of iterations could be equal to the number of states.

Recursive best-first search (RBFS) (Figure 3.22) attempts to mimic the operation of
standard best-first search, but using only linear space. RBFS resembles a recursive depth-
first search, but rather than continuing indefinitely down the current path, it uses the f_limit
variable to keep track of the f-value of the best alternative path available from any ancestor
of the current node. If the current node exceeds this limit, the recursion unwinds back to the
alternative path. As the recursion unwinds, RBFS replaces the f-value of each node along the
path with a backed-up value—the best f-value of its children. In this way, RBFS remembers
the f-value of the best leaf in the forgotten subtree and can therefore decide whether it’s worth
reexpanding the subtree at some later time. Figure 3.23 shows how RBFS reaches Bucharest.

RBFS is somewhat more efficient than IDA", but still suffers from excessive node re-
generation. In the example in Figure 3.23, RBFS follows the path via Rimnicu Vilcea, then

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution or failure
solution, fvalue < RBFS(problem, NODE(problem.INITIAL), c0)
return solution

function RBFS(problem, node, f_limit) returns a solution or failure, and a new f-cost limit
if problem.1s-GOAL(node.STATE) then return node
successors < LIST(EXPAND(node))
if successors is empty then return failure, o
for each s in successors do // update f with value from previous search
s.f +max(s.PATH-COST + h(s), node.f))
while rrue do
best < the node in successors with lowest f-value
if best.f > f_limit then return failure, best.f
alternative < the second-lowest f-value among successors
result, best. f < RBFS(problem, best, min( f_limit,alternative))
if result = failure then return result, best.f

Figure 3.22 The algorithm for recursive best-first search.
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(a) After expanding Arad, Sibiu,
and Rimnicu Vilcea

(b) After unwinding back to Sibiu
and expanding Fagaras

(c) After switching back to Rimnicu Vilcea
and expanding Pitesti

449

Rimnicu Vileea

418 615 607

Figure 3.23 Stages in an RBFS search for the shortest route to Bucharest. The f-limit value
for each recursive call is shown on top of each current node, and every node is labeled with
its f-cost. (a) The path via Rimnicu Vilcea is followed until the current best leaf (Pitesti)
has a value that is worse than the best alternative path (Fagaras). (b) The recursion unwinds
and the best leaf value of the forgotten subtree (417) is backed up to Rimnicu Vilcea; then
Fagaras is expanded, revealing a best leaf value of 450. (c) The recursion unwinds and the
best leaf value of the forgotten subtree (450) is backed up to Fagaras; then Rimnicu Vilcea is
expanded. This time, because the best alternative path (through Timisoara) costs at least 447,
the expansion continues to Bucharest.

“changes its mind” and tries Fagaras, and then changes its mind back again. These mind
changes occur because every time the current best path is extended, its f-value is likely to
increase—+# is usually less optimistic for nodes closer to a goal. When this happens, the
second-best path might become the best path, so the search has to backtrack to follow it.
Each mind change corresponds to an iteration of IDA* and could require many reexpansions
of forgotten nodes to recreate the best path and extend it one more node.
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RBFS is optimal if the heuristic function A(n) is admissible. Its space complexity is
linear in the depth of the deepest optimal solution, but its time complexity is rather difficult
to characterize: it depends both on the accuracy of the heuristic function and on how often
the best path changes as nodes are expanded. It expands nodes in order of increasing f-score,
even if f is nonmonotonic.

IDA* and RBFS suffer from using too little memory. Between iterations, IDA* retains
only a single number: the current f-cost limit. RBFS retains more information in memory,
but it uses only linear space: even if more memory were available, RBFS has no way to make
use of it. Because they forget most of what they have done, both algorithms may end up
reexploring the same states many times over.

It seems sensible, therefore, to determine how much memory we have available, and
allow an algorithm to use all of it. Two algorithms that do this are MA* (memory-bounded
A*) and SMA* (simplified MA*). SMA* is—well—simpler, so we will describe it. SMA*
proceeds just like A*, expanding the best leaf until memory is full. At this point, it cannot add
a new node to the search tree without dropping an old one. SMA* always drops the worst leaf
node—the one with the highest f-value. Like RBFS, SMA* then backs up the value of the
forgotten node to its parent. In this way, the ancestor of a forgotten subtree knows the quality
of the best path in that subtree. With this information, SMA* regenerates the subtree only
when all other paths have been shown to look worse than the path it has forgotten. Another
way of saying this is that if all the descendants of a node n are forgotten, then we will not
know which way to go from n, but we will still have an idea of how worthwhile it is to go
anywhere from n.

The complete algorithm is described in the online code repository accompanying this
book. There is one subtlety worth mentioning. We said that SMA* expands the best leaf and
deletes the worst leaf. What if all the leaf nodes have the same f-value? To avoid selecting
the same node for deletion and expansion, SMA* expands the newest best leaf and deletes the
oldest worst leaf. These coincide when there is only one leaf, but in that case, the current
search tree must be a single path from root to leaf that fills all of memory. If the leaf is not a
goal node, then even if it is on an optimal solution path, that solution is not reachable with the
available memory. Therefore, the node can be discarded exactly as if it had no successors.

SMA* is complete if there is any reachable solution—that is, if d, the depth of the shal-
lowest goal node, is less than the memory size (expressed in nodes). It is optimal if any
optimal solution is reachable; otherwise, it returns the best reachable solution. In practical
terms, SMA* is a fairly robust choice for finding optimal solutions, particularly when the state
space is a graph, action costs are not uniform, and node generation is expensive compared to
the overhead of maintaining the frontier and the reached set.

On very hard problems, however, it will often be the case that SMA* is forced to switch
back and forth continually among many candidate solution paths, only a small subset of which
can fit in memory. (This resembles the problem of thrashing in disk paging systems.) Then
the extra time required for repeated regeneration of the same nodes means that problems
that would be practically solvable by A*, given unlimited memory, become intractable for
SMA*. That is to say, memory limitations can make a problem intractable from the point
of view of computation time. Although no current theory explains the tradeoff between time
and memory, it seems that this is an inescapable problem. The only way out is to drop the
optimality requirement.

MA*
SMA*

Thrashing

<
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3.5.6 Bidirectional heuristic search

With unidirectional best-first search, we saw that using f(n) = g(n) + h(n) as the evaluation
function gives us an A" search that is guaranteed to find optimal-cost solutions (assuming an
admissible /) while being optimally efficient in the number of nodes expanded.

With bidirectional best-first search we could also try using f(n) = g(n) + h(n), but un-
fortunately there is no guarantee that this would lead to an optimal-cost solution, nor that it
would be optimally efficient, even with an admissible heuristic. With bidirectional search, it
turns out that it is not individual nodes but rather pairs of nodes (one from each frontier) that
can be proved to be surely expanded, so any proof of efficiency will have to consider pairs of
nodes (Eckerle et al., 2017).

We’ll start with some new notation. We use fr(n) = gr(n) 4+ hp(n) for nodes going in the
forward direction (with the initial state as root) and fg(n) = gg(n) + hg(n) for nodes in the
backward direction (with a goal state as root). Although both forward and backward searches
are solving the same problem, they have different evaluation functions because, for example,
the heuristics are different depending on whether you are striving for the goal or for the initial
state. We’ll assume admissible heuristics.

Consider a forward path from the initial state to a node m and a backward path from the
goal to a node n. We can define a lower bound on the cost of a solution that follows the path
from the initial state to m, then somehow gets to n, then follows the path to the goal as

lb(m,n) = max(gF (m) + gB(”)?fF(m)va(n))

In other words, the cost of such a path must be at least as large as the sum of the path costs of
the two parts (because the remaining connection between them must have nonnegative cost),
and the cost must also be at least as much as the estimated f cost of either part (because the
heuristic estimates are optimistic). Given that, the theorem is that for any pair of nodes m,n
with [b(m,n) less than the optimal cost C*, we must expand either m or n, because the path
that goes through both of them is a potential optimal solution. The difficulty is that we don’t
know for sure which node is best to expand, and therefore no bidirectional search algorithm
can be guaranteed to be optimally efficient—any algorithm might expand up to twice the
minimum number of nodes if it always chooses the wrong member of a pair to expand first.
Some bidirectional heuristic search algorithms explicitly manage a queue of (m,n) pairs, but
we will stick with bidirectional best-first search (Figure 3.14), which has two frontier priority
queues, and give it an evaluation function that mimics the /b criteria:

f2(n) = max(2g(n),g(n) + h(n))

The node to expand next will be the one that minimizes this f, value; the node can come
from either frontier. This f, function guarantees that we will never expand a node (from
either frontier) with g(n) > % We say the two halves of the search “meet in the middle” in
the sense that when the two frontiers touch, no node inside of either frontier has a path cost
greater than the bound %* Figure 3.24 works through an example bidirectional search.

We have described an approach where the /iy heuristic estimates the distance to the goal
(or, when the problem has multiple goal states, the distance to the closest goal) and hp esti-
mates the distance to the start. This is called a front-to-end search. An alternative, called
front-to-front search, attempts to estimate the distance to the other frontier. Clearly, if a
frontier has millions of nodes, it would be inefficient to apply the heuristic function to every
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Figure 3.24 Bidirectional search maintains two frontiers: on the left, nodes A and B are
successors of Start; on the right, node F is an inverse successor of Goal. Each node is labeled
with f=g+ h values and the f, = max(2g,g + h) value. (The g values are the sum of the
action costs as shown on each arrow; the i values are arbitrary and cannot be derived from
anything in the figure.) The optimal solution, Start-A-F-Goal, has cost C*=4+2+44=10,
so that means that a meet-in-the-middle bidirectional algorithm should not expand any node
with g > %* =35; and indeed the next node to be expanded would be A or F (each with g=4),
leading us to an optimal solution. If we expanded the node with lowest f cost ﬁrst then B
and C would come next, and D and E would be tied with A, but they all have g > & and thus
are never expanded when f; is the evaluation function.

one of them and take the minimum. But it can work to sample a few nodes from the frontier.
In certain specific problem domains it is possible to summarize the frontier—for example, in
a grid search problem, we can incrementally compute a bounding box of the frontier, and use
as a heuristic the distance to the bounding box.

Bidirectional search is sometimes more efficient than unidirectional search, sometimes
not. In general, if we have a very good heuristic, then A* search produces search contours
that are focused on the goal, and adding bidirectional search does not help much. With an
average heuristic, bidirectional search that meets in the middle tends to expand fewer nodes
and is preferred. In the worst case of a poor heuristic, the search is no longer focused on the
goal, and bidirectional search has the same asymptotic complexity as A*. Bidirectional search
with the f, evaluation function and an admissible heuristic / is complete and optimal.

3.6 Heuristic Functions

In this section, we look at how the accuracy of a heuristic affects search performance, and also
consider how heuristics can be invented. As our main example we’ll return to the 8-puzzle. As
mentioned in Section 3.2, the object of the puzzle is to slide the tiles horizontally or vertically
into the empty space until the configuration matches the goal configuration (Figure 3.25).
There are 9!/2=181,400 reachable states in an 8-puzzle, so a search could easily keep
them all in memory. But for the 15-puzzle, there are 16!/2 states—over 10 trillion—so to
search that space we will need the help of a good admissible heuristic function. There is a
long history of such heuristics for the 15-puzzle; here are two commonly used candidates:

* h; = the number of misplaced tiles (blank not included). For Figure 3.25, all eight tiles
are out of position, so the start state has #; = 8. h; is an admissible heuristic because
any tile that is out of place will require at least one move to get it to the right place.
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Start State Goal State

Figure 3.25 A typical instance of the 8-puzzle. The shortest solution is 26 actions long.

* hp = the sum of the distances of the tiles from their goal positions. Because tiles cannot
move along diagonals, the distance is the sum of the horizontal and vertical distances—
sometimes called the city-block distance or Manhattan distance. /; is also admissible
because all any move can do is move one tile one step closer to the goal. Tiles 1 to 8 in
the start state of Figure 3.25 give a Manhattan distance of

hy=3+1+2+24+2+3+342=18.

As expected, neither of these overestimates the true solution cost, which is 26.

3.6.1 The effect of heuristic accuracy on performance

One way to characterize the quality of a heuristic is the effective branching factor »*. If the
total number of nodes generated by A* for a particular problem is N and the solution depth is
d, then b* is the branching factor that a uniform tree of depth d would have to have in order
to contain N + 1 nodes. Thus,

N+1=1+b"+ ")+ + (b*)".

For example, if A* finds a solution at depth 5 using 52 nodes, then the effective branching
factor is 1.92. The effective branching factor can vary across problem instances, but usually
for a specific domain (such as 8-puzzles) it is fairly constant across all nontrivial problem in-
stances. Therefore, experimental measurements of »* on a small set of problems can provide a
good guide to the heuristic’s overall usefulness. A well-designed heuristic would have a value
of b* close to 1, allowing fairly large problems to be solved at reasonable computational cost.

Korf and Reid (1998) argue that a better way to characterize the effect of A* pruning
with a given heuristic / is that it reduces the effective depth by a constant k;, compared to
the true depth. This means that the total search cost is O(b? %) compared to O(b?) for an
uninformed search. Their experiments on Rubik’s Cube and n-puzzle problems show that this
formula gives accurate predictions for total search cost for sampled problem instances across
a wide range of solution lengths—at least for solution lengths larger than k;,.

For Figure 3.26 we generated random 8-puzzle problems and solved them with an unin-
formed breadth-first search and with A* search using both /; and hy, reporting the average
number of nodes generated and the corresponding effective branching factor for each search
strategy and for each solution length. The results suggest that &, is better than /;, and both
are better than no heuristic at all.



