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Mathematical Institute, Serbian Academy of Sciences

and Arts, Belgrade

PETER ROWLINSON
Department of Computing Science and Mathematics,

University of Stirling, Scotland

SLOBODAN SIMIĆ
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Preface

This book has been written primarily as an introductory text for graduate
students interested in algebraic graph theory and related areas. It is also
intended to be of use to mathematicians working in graph theory and com-
binatorics, to chemists who are interested in quantum chemistry, and in part
to physicists, computer scientists and electrical engineers using the theory of
graph spectra in their work. The book is almost entirely self-contained; only a
little familiarity with graph theory and linear algebra is assumed.

In addition to more recent developments, the book includes an up-to-date
treatment of most of the topics covered in Spectra of Graphs by D. Cvetković,
M. Doob and H. Sachs [CvDSa], where spectral graph theory was character-
ized as follows:

The theory of graph spectra can, in a way, be considered as an attempt to utilize
linear algebra including, in particular, the well-developed theory of matrices, for
the purposes of graph theory and its applications. However, that does not mean
that the theory of graph spectra can be reduced to the theory of matrices; on the
contrary, it has its own characteristic features and specific ways of reasoning fully
justifying it to be treated as a theory in its own right.

Spectra of Graphs has been out of print for some years; it first appeared
in 1980, with a second edition in 1982 and a Russian edition in 1984. The
third English edition appeared in 1995, with new material presented in two
Appendices and an additional Bibliography of over 300 items. The original
edition summarized almost all results related to the theory of graph spectra
published before 1978, with a bibliography of 564 items. A review of results
in spectral graph theory which appeared mostly between 1978 and 1984 can
be found in Recent Results in the Theory of Graph Spectra by D. Cvetković,
M. Doob, I. Gutman and A. Torgašev [CvDGT]. This second monograph,
published in 1988, contains over 700 further references, reflecting the rapid

ix
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growth of interest in graph spectra. Today we are witnessing an explosion of
the literature on the topic: there exist several thousand papers in mathematics,
chemistry, physics, computer science and other scientific areas that develop
or use some parts of the theory of graph spectra. Consequently a truly com-
prehensive text with a complete bibliography is no longer practicable, and we
have concentrated on what we see as the central concepts and the most useful
techniques.

The monograph [CvDSa] has been used for many years both as an intro-
ductory text book and as a reference book. Since it is no longer available, we
decided to write a new book which would nowadays be more suitable for both
purposes. In this sense, the book is a replacement for [CvDSa]; but it is not a
substitute because Spectra of Graphs will continue to serve as a reference for
more advanced topics not covered here. The content has been influenced by
our previous books from the same publisher, namely Eigenspaces of Graphs
[CvRS2] and Spectral Generalizations of Line Graphs: on Graphs with Least
Eigenvalue −2 [CvRS7]. Nevertheless, very few sections of the present text
are taken from these more specialized sources. For further reading we recom-
mend not only the books mentioned above but also [BroCN], [Big2], [Chu2]
and [GoRo].

The spectra considered here are those of the adjacency matrix, the Lapla-
cian, the normalized Laplacian, the signless Laplacian and the Seidel matrix
of a finite simple graph. In Chapters 2–6, the emphasis is on the adjacency
matrix. In Chapter 1, we introduce the various matrices associated with a
graph, together with the notation and terminology used throughout the book.
We include proofs of the necessary results in matrix theory usually omitted
from a first course on linear algebra, but we assume familiarity with the funda-
mental concepts of graph theory, and with basic results such as the orthogonal
diagonalizability of symmetric matrices with real entries. Chapter 2 is con-
cerned with the effects of constructing new graphs from old, and graph angles
are used in place of walk generating functions to provide streamlined proofs
of some classical results. Chapter 3 deals with the relations between the spec-
trum and structure of a graph, while Chapter 4 discusses the extent to which
the spectrum can characterize a graph. Chapter 5 explores the relation between
structure and just one eigenvalue, a relation made precise by the relatively
recent notion of a star complement. Chapter 6 is concerned with spectral
techniques used to prove graph-theoretical results which themselves make no
reference to eigenvalues. Chapter 7 is devoted to the Laplacian, the normalized
Laplacian and the signless Laplacian; here the emphasis is on the Laplacian
because the normalized Laplacian is the subject of the monograph Spectral
Graph Theory by F. R. K. Chung [Chu2], while the theory of the signless
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Laplacian is still in its infancy. In Chapter 8 we discuss sundry topics that did
not fit readily into earlier sections of the book, and in Chapter 9 we provide a
small selection of applications, mostly outwith mathematics.

The tables in the Appendix provide lists of the various spectra, character-
istic polynomials and angles of all connected graphs with up to 5 vertices,
together with relevant data for connected graphs with 6 vertices, trees with
up to 9 vertices, and cubic graphs with up to 12 vertices. We are indebted to
M. Lepović for creating the graph catalogues for Tables A1, A3, A4 and A5,
and for computing the data. We are grateful to D. Stevanović for the graph dia-
grams that appear with these tables: they were produced using Graphviz (open
source graph visualization software developed by AT&T, www.graphviz.org/),
in particular, the programs ‘circo’ (Tables A1,A3,A5) and ‘neato’ (Table A4).
Table A2 is taken from Eigenspaces of Graphs.

Chapters 2, 4 and 9 were drafted by D. Cvetković, Chapters 1, 5 and 6
by P. Rowlinson, and Chapters 3, 7 and 8 by S. Simić. However, each of the
authors added contributions to all of the chapters, which were then re-written
in an effort to refine the text and unify the material. Hence all three authors
are collectively responsible for the book. We have endeavoured to find a style
that is concise enough to enable the extensive material to be treated in a book
of limited size, yet intuitive enough to make the book readily accessible to the
intended readership. The choice of consistent notation was a challenge because
of conflicts in the ‘standard’ notation for several of the topics covered; accord-
ingly we hope that readers will understand if their preferred notation has not
been used. The proofs of some straightforward results in the text are relegated
to the exercises. These appear at the end of the relevant chapter, along with
notes which serve as a guide to a bibliography of over 500 selected items.

D. CVETKOVIĆ

P. ROWLINSON

S. SIMIĆ





1

Introduction

In Section 1.1 we define various types of graph spectra, and in Section 1.2
we introduce graph-theoretic notation and terminology which will be used
throughout the book. In Section 1.3 we establish the results from matrix theory
that will be required.

1.1 Graph spectra

Let G be a finite undirected graph without loops or multiple edges, and suppose
that its vertices are labelled 1, 2, . . . , n. If vertices i and j are joined by an
edge, we say that i and j are adjacent and write i ∼ j . We consider first
the spectrum of the (0, 1)-adjacency matrix A of G defined as follows: A =
A(G) = (ai j ) where

ai j =
{

1 if i ∼ j
0 otherwise.

Thus A is a symmetric matrix with zero diagonal; its entries may be taken as
0 and 1 in any field, but throughout this book the entries are treated as real
numbers. An example of a graph and its adjacency matrix is given in Fig. 1.1.

The eigenvalues of A are the n roots of the characteristic polynomial
det(x I − A), and so they are algebraic integers. They are independent of the
labelling of the vertices of G because similar matrices have the same char-
acteristic polynomial: if the labels are permuted we obtain a (0, 1)-adjacency
matrix A′ = P−1 AP where P is a permutation matrix. Accordingly we speak
of the characteristic polynomial of G, denoted by PG(x), and the spectrum
of G, which consists of the n eigenvalues of G. Since A is a symmetric
matrix with real entries, these eigenvalues are real. We usually denote them
by λ1, λ2, . . . , λn , and unless we indicate otherwise, we shall assume that

1
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A =

⎛
⎜⎜⎜⎜⎝

0 1 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 1 0 1
1 1 1 1 0

⎞
⎟⎟⎟⎟⎠ G :

� �
� �
�

�
�

�
���

�
�

��
4 3

21

5

Figure 1.1 A labelled graph G and its adjacency matrix A.

λ1 ≥ λ2 ≥ · · · ≥ λn . Where necessary, we use the notation λi = λi (G)
(i = 1, 2, . . . , n). The largest eigenvalue λ1(G) is called the index of G. For
an integer k ≥ 0, the k-th spectral moment of G is

∑n
i=1 λ

k
i , denoted by sk .

Note that sk is the trace of Ak , and that the first n spectral moments determine
the spectrum of G.

The eigenvalues of A are the real numbers λ satisfying Ax = λx for
some non-zero vector x ∈ IRn . Each such vector x is called an eigenvector
of the matrix A (or of the labelled graph G) corresponding to the eigen-
value λ. The relation Ax = λx can be interpreted in the following way: if
x = (x1, x2, . . . , xn)

� then

λxu =
∑
v∼u

xv (u = 1, 2, . . . , n), (1.1)

where the summation is over all neighbours v of the vertex u. We note
two straightforward consequences of these equations, which are called the
eigenvalue equations for G.

Proposition 1.1.1. If the graph G has maximum degree �(G) then |λ| ≤
�(G) for every eigenvalue λ of G.

Proof. With the notation above, let u be a vertex for which |xu | is maximal.
Using Equation (1.1), we have:

|λ||xu | ≤
∑
v∼u

|xv| ≤ |�(G)||xu |.

Since xu 
= 0, the result follows. �

The second observation is left as an exercise for the reader.

Proposition 1.1.2. The graph G is regular (of degree r) if and only if the all-1
vector is an eigenvector of G (with corresponding eigenvalue r).

If λ is an eigenvalue of A then the set {x ∈ IRn : Ax = λx} is a sub-
space of IRn , called the eigenspace of λ and denoted by E(λ) or EA(λ). Such
eigenspaces are called eigenspaces of G. Of course, relabelling the vertices of
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G will result in a permutation of coordinates in eigenvectors (and eigenspaces).
Since A is symmetric with real entries, it can be diagonalized by an orthogo-
nal matrix. Hence the eigenspaces are pairwise orthogonal; and by stringing
together orthonormal bases of the eigenspaces we obtain an orthonormal basis
of IRn consisting of eigenvectors (cf. Section 1.3). Moreover, the dimension
of EA(λ) is equal to the multiplicity of λ as a root of PG(x). In other words,
the geometric multiplicity of λ is the same as the algebraic multiplicity of λ;
accordingly we refer only to the multiplicity of λ. A simple eigenvalue is an
eigenvalue of multiplicity 1. If G has distinct eigenvalues μ1, μ2, . . . , μm with
multiplicities k1, k2, . . . , km respectively, we shall write μk1

1 , μ
k2
2 , . . . , μ

km
m for

the spectrum of G. (We often omit those Ki equal to 1.)

Example 1.1.3. For the graph G in Fig. 1.1 we have

PG(x) =

∣∣∣∣∣∣∣∣∣∣

x −1 0 −1 −1
−1 x −1 0 −1

0 −1 x −1 −1
−1 0 −1 x −1
−1 −1 −1 −1 x

∣∣∣∣∣∣∣∣∣∣
= x5 − 8x3 − 8x2 = x2(x + 2)(x2 − 2x − 4).

The eigenvalues in non-increasing order are λ1 = 1 + √5, λ2 = 0, λ3 = 0,
λ4 = 1−√5, λ5 = −2, with linearly independent eigenvectors x1, x2, x3, x4

and x5, where x1 = (1, 1, 1, 1,−1 + √5)�, x2 = (0, 1, 0,−1, 0)�, x3 =
(1, 0,−1, 0, 0)�, x4 = (1, 1, 1, 1,−1−√5)� and x5 = (1,−1, 1,−1, 0)�.

We have E(1 + √5) = 〈x1〉, E(0) = 〈x2, x3〉, E(1 −
√

5) = 〈x4〉 and
E(−2) = 〈x5〉, where angle brackets denote the subspace spanned by the
enclosed vectors. �

Example 1.1.4. The eigenvalues of an n-cycle are 2cos 2π j
n ( j = 0, 1, . . . ,

n− 1). One way to see this is to observe that an adjacency matrix has the form
A = P + P−1 where P is the permutation matrix determined by a cyclic per-
mutation of length n. If ω is an n-th root of unity then (1, ω, ω2, . . . , ωn−1)� is
an eigenvector of P with corresponding eigenvalue ω. Hence the eigenvalues
of A are the numbers ω + ω−1, where ωn = 1. Thus the largest eigenvalue is
2 (with multiplicity 1) and the second largest is 2cos 2π

n (with multiplicity 2).

The least eigenvalue is −2 (with multiplicity 1) if n is even, and 2cos (n−1)π
n

(with multiplicity 2) if n is odd. �

Example 1.1.5. The well-known Petersen graph (Fig. 1.2) has spectrum
31, 15, (−2)4. �
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Figure 1.2 The Petersen graph.
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Figure 1.3 Two pairs of non-isomorphic cospectral graphs.

We say that two graphs are cospectral if they have the same spectrum;
clearly, isomorphic graphs are cospectral (in other words, the spectrum is
a graph invariant). However, cospectral graphs are not necessarily isomor-
phic: the non-isomorphic graphs shown in Fig. 1.3(a) share the spectrum
21, 03, (−2)1. This is an example with fewest vertices. Fig. 1.3(b) shows non-
isomorphic cospectral connected graphs with fewest vertices: their common
characteristic polynomial is (x−1)(x+1)2(x3− x2−5x+1). Various graphs
which are characterized by their spectrum, or by their spectrum together with
related algebraic invariants, are discussed in Chapter 4.

Symmetric matrices other than the (0, 1)-adjacency matrix A can be used to
specify a graph, and we mention next the spectra of those that feature in this
book. For a graph G with vertex set {1, . . . , n}, let D be the diagonal matrix
diag(d1, . . . , dn), where di denotes the degree of vertex i (i = 1, . . . , n). The
Laplacian matrix of a graph G is the matrix D− A, and the signless Laplacian
is the matrix D+ A; their spectra are discussed in Chapter 7. The Seidel matrix
of G is the matrix S = J− I−2A, where J denotes the all-1 matrix (of size n×
n); thus the (i, j)-entry of S is 0 if i = j , −1 if i ∼ j , and 1 otherwise. As far
as regular graphs are concerned, there is little to choose between these matrices
from the spectral point of view, for suppose that G is regular of degree r , and
that A has eigenvalues λ1, λ2, . . . , λn in non-increasing order. By Propositions
1.1.1 and 1.1.2, λ1 = r and the all-1 vector may be extended to an orthogonal
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basis of IRn consisting of eigenvectors common to the matrices A, r I ± A and
J − I − 2A. Then we find that D ± A has eigenvalues

r ± r, r ± λ2, . . . , r ± λn ,

while S has eigenvalues

n − 1− 2r, −1− 2λ2, . . . , −1− 2λn .

Similar remarks apply to the generalized adjacency matrix y J − A discussed
in [DamHK]. For non-regular graphs, there is no simple relation between the
various spectra; Theorem 1.3.15 will provide some inequalities, but meanwhile
we give an explicit example.

Example 1.1.6. For the graph in Fig. 1.1, the eigenvalues of the Lapla-
cian are 5, 5, 3, 3, 0; the eigenvalues of the signless Laplacian are 1

2 (9 +√
17), 3, 3, 1

2 (9 −
√

17), 1; and the Seidel eigenvalues are 3, 1
2 (−1 +√

17),−1,−1, 1
2 (−1−√17). �

The Seidel matrix is of particular relevance to graph switching (often called
Seidel switching): given a subset U of vertices of the graph G, the graph
GU obtained from G by switching with respect to U differs from G as
follows. For u ∈ U, v 
∈ U the vertices u, v are adjacent in GU if and
only if they are non-adjacent in G. Suppose that G has adjacency matrix

A(G) =
(

AU B�
B C

)
, where AU is the adjacency matrix of the subgraph

induced by U , and B� denotes the transpose of B. Then GU has adjacency

matrix A(GU ) =
(

AU B
�

B C

)
, where B is obtained from B by interchanging

0 and 1. When G is regular, this formulation makes it straightforward (Exer-
cise 1.3) to find a necessary and sufficient condition on U for GU to be regular
of the same degree:

Proposition 1.1.7. Suppose that G is regular with n vertices and degree r .
Then GU is regular of degree r if and only if U induces a regular subgraph of
degree k, where |U | = n − 2(r − k).

Note that switching with respect to the subset U of the vertex-set is the same
as switching with respect to its complement. Switching is described easily in
terms of the Seidel matrix S of G: the Seidel matrix of GU is T−1ST where T
is the (involutory) diagonal matrix whose i-th diagonal entry is 1 if i ∈ U , −1
if i 
∈ U . Now it is easy to see that switching with respect to U and then with
respect to V is the same as switching with respect to (U \ V ) ∪̇ (V \ U ); it
follows that switching determines an equivalence relation on graphs. Note that
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switching-equivalent graphs have similar Seidel matrices and hence the same
Seidel spectrum. In view of the relation between spectrum and Seidel spectrum
for regular graphs, we have the following consequence:

Proposition 1.1.8. If G and GU are regular of the same degree, then G and
GU are cospectral.

1.2 Some more graph-theoretic notions

As usual, Kn,Cn and Pn denote respectively the complete graph, the cycle
and the path on n vertices. A connected graph with n vertices is said to be
unicyclic if it has n edges, for then it contains a unique cycle. If this cycle
has odd length, then the graph is said to be odd-unicyclic. A connected graph
with n vertices and n + 1 edges is called a bicyclic graph. The girth of a graph
G is the length of a shortest cycle in G. A complete subgraph of G is called
a clique of G, while a coclique is an induced subgraph without edges. The
complete bipartite graph with parts of size m and n is denoted by Km,n . A
graph of the form K1,n is called an n-claw or a star. (The term ‘star’ is used in
different contexts in Sections 3.4 and 5.1.) More generally, Kn1,n2,...,nk denotes
the complete k-partite graph with parts (colour classes) of size n1, n2, . . . , nk .

The m-dimensional hypercube is denoted by Qm ; its vertices are the 2m m-
tuples of 0s and 1s, and two such m-tuples are adjacent if and only if they
differ in just one place.

Vertices, or edges, are said to be independent if they are pairwise non-
adjacent. In the literature, a set of independent vertices is often referred to
as a stable set. Any set of independent edges in a graph G is called a matching
of G. A matching of G is perfect if each vertex of G is the endvertex of an
edge from the matching; perfect matchings are also called 1-factors. The cock-
tail party graph C P(n) is the unique regular graph with 2n vertices of degree
2n − 2; it is obtained from K2n by deleting a perfect matching. The degree
of a vertex v is denoted by deg(v) or dv . The least degree in G is denoted by
δ(G), the largest by �(G). An edge that contains a vertex of degree 1 is called
a pendant edge.

A regular graph of degree r is said to be r-regular, and a 3-regular graph is
called a cubic graph. A strongly regular graph, with parameters (n, r, e, f ), is
an r -regular graph with n vertices (0 < r < n − 1) such that any two adjacent
vertices have e common neighbours and any two non-adjacent vertices have
f common neighbours. For example, the Petersen graph (Fig. 1.2) is strongly
regular with parameters (10, 3, 0, 1). The restriction 0 < r < n − 1 simply
excludes the complete graphs and their complements.
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A graph is called semi-regular bipartite, with parameters (n1, n2, r1, r2),
if it is bipartite (i.e. 2-colourable) and vertices in the same colour class have
the same degree (n1 vertices of degree r1 and n2 vertices of degree r2, where
n1r1 = n2r2).

If B is a collection of subsets of the set S then the incidence graph deter-
mined by B and S is the bipartite graph GB with vertex set B ∪̇ S, and
with an edge between x ∈ S and B ∈ B whenever x ∈ B. Thus if B is a
design with v points and b blocks, in which each block has k points and each
point lies in r blocks, then GB is a semi-regular bipartite graph with param-
eters (v, b, r, k). In this case, we call GB the graph of the design. Recall that
in a t-design with parameters (v, k, λ), any t points lie in exactly λ blocks;
and a symmetric design is a 2-design for which b = v > k (equivalently,
r = k < v).

The complement of a graph G is denoted by G, while mG denotes the graph
consisting of m disjoint copies of G. The subdivision graph S(G) is obtained
from G by inserting a vertex of degree 2 in each edge of G.

We write V (G) for the vertex set of G, and E(G) for the edge set of G. We
say that G is empty if V (G) = ∅, trivial if |V (G)| = 1, and null if E(G) = ∅.
A subgraph H with V (H) = V (G) is called a spanning subgraph of G. A
spanning cycle is called a Hamiltonian cycle, and a graph with such a cycle is
said to be Hamiltonian.

An automorphism of G is a permutation π of V (G) such that u ∼ v if and
only if π(u) ∼ π(v). Clearly, the automorphisms of G form a group (with
respect to composition of functions). We say that G is vertex-transitive if, for
any u, v ∈ V (G), there exists an automorphism π of G such that π(u) = v.

The union of disjoint copies of the graphs G and H is denoted by G ∪̇ H .
The join G�H of (disjoint) graphs G and H is the graph obtained from G ∪̇ H
by joining each vertex of G to each vertex of H . The graph K1 � H is called
the cone over H , while K2� H (= K1� (K1� H)) is called the double cone
over H . The graph K1 � Cn (n ≥ 3) is the wheel Wn+1 with n + 1 vertices;
thus the graph of Example 1.1.3 is the wheel W5.

If uv is an edge of G we write G − uv for the graph obtained from G
by deleting uv. More generally, if E is a set of edges of G we write G − E
for the graph obtained from G by deleting the edges in E . For v ∈ V (G),
G − v denotes the graph obtained from G by deleting the vertex v and all
edges incident with v. For U ⊆ V (G), G − U denotes the subgraph of G
induced by V (G)\U . If each vertex of G−U is adjacent to a vertex of U then
U is called a dominating set in G.

If u, v are vertices of a connected graph G then the distance between u and
v, denoted by d(u, v), is the length of a shortest u-v path in G.
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Definition 1.2.1. The line graph L(H) of a graph H is the graph whose ver-
tices are the edges of H , with two vertices in L(H) adjacent whenever the
corresponding edges in H have exactly one vertex in common.

If G = L(H) for some graph H , then H is called a root graph of G. If
E(H) = ∅ then G is the empty graph. Accordingly, we take a line graph to
mean a graph of the form L(H), where E(H) is non-empty; note that we may
assume if necessary that H has no isolated vertices. If H is connected, then the
same is true of L(H). If H is disconnected, then each non-trivial component
of H gives rise to a connected component of L(H).

We mention a simple, but useful, observation (Exercise 1.10):

Proposition 1.2.2. If H is a connected graph and L(H) is regular, then H is
either regular or semi-regular bipartite.

The incidence matrix of the graph H is a matrix B whose rows and columns
are indexed by the vertices and edges of H , respectively. The (v, e)-entry
of B is

bve =
{

0 if v is not incident with e,
1 if v is incident with e.

Thus the columns of B are the characteristic vectors of the edges of H as
subsets of V (H). Now we find easily that

B�B = A(L(H))+ 2I. (1.2)

If A(L(H))x = λx then (λ + 2)x�x = x�B�Bx ≥ 0. Thus every eigenvalue
of L(H) is greater than or equal to −2; this is a notable spectral property of
line graphs.

The class of graphs with spectrum in the interval [−2,∞) also contains
the generalized line graphs, defined as follows. First we say that a petal is
added to a graph when we add a pendant edge and then duplicate this edge to
form a pendant 2-cycle. A blossom Bk consists of k petals (k ≥ 0) attached
at a single vertex; thus B0 is just the trivial graph. A graph with blossoms
(possibly empty) at each vertex is called a B-graph. Now we extend Definition
1.2.1 to the line graph of a B-graph Ĥ : vertices in L(Ĥ) are adjacent if and
only if the corresponding edges in Ĥ have exactly one vertex in common.
In particular, duplicate edges between two vertices of Ĥ are non-adjacent in
L(Ĥ); thus L(Bk) = C P(k). If G = L(Ĥ) then we call the multigraph Ĥ a
root graph of G.

Definition 1.2.3. Let H be a graph with vertex set {v1, . . . , vn}, and let
a1, . . . , an be non-negative integers. The generalized line graph G =
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Figure 1.4 Construction of a generalized line graph.

L(H ; a1, . . . , an) is the graph L(Ĥ), where Ĥ is the B-graph H(a1, . . . , an)

obtained from H by adding ai petals at vertex vi (i = 1, . . . , n). If not all ai

are zero, G is called a proper generalized line graph.

This construction of a generalized line graph is illustrated in Fig. 1.4.
An incidence matrix C = (cve) of Ĥ = H(a1, . . . , an) is defined as for H

with the following exception: if e and f are the edges between v and w in a
petal at v then {cwe, cw f } = {−1, 1}. (Note that all other entries in row w are
zero.) For example, an incidence matrix of the multigraph Ĥ from Fig. 1.4 is:⎛

⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 −1 1
−1 1 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Here the rows are indexed by 1, 2, . . . , 7 and the columns are indexed by
a, b, . . . , j .

With the incidence matrix C defined above, we have A(L(Ĥ)) = C�C−2I
and so λ(L(Ĥ)) ≥ −2. Note that the least eigenvalue is strictly greater than
−2 if and only if the rank of the matrix C is |V (Ĥ)|. Not all connected graphs
G with λ(G) ≥ −2 are generalized line graphs; however there are only finitely
many exceptions, and they are discussed in Section 3.4.
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We conclude this section with several examples to illustrate how various
strongly regular graphs can be constructed from line graphs by switching. The
relation between the eigenvalues and the parameters of a strongly regular graph
will be discussed in Section 3.6. In particular, we shall see that the property of
strong regularity can be identified from the spectrum.

Examples 1.2.4. If we switch the graph L(K4,4) with respect to four inde-
pendent vertices, then we obtain another 6-regular graph on 16 vertices, called
the Shrikhande graph; it is strongly regular with parameters (16, 6, 2, 2). By
Proposition 1.1.8, this graph is cospectral with L(K4,4). If we switch L(K4,4)

with respect to the vertices of an induced subgraph L(K4,2) then we obtain
a 10-regular graph with 16 vertices, called the Clebsch graph; it is strongly
regular with parameters (16, 10, 6, 6).

These graphs are represented in Fig. 1.5. In Fig. 1.5(a), the vertices of
L(K4,4) are shown as the points of intersection of four horizontal and four
vertical lines, two vertices being adjacent in L(K4,4) if and only if the cor-
responding points are collinear. In Figs. 1.5(b) and 1.5(c), the white vertices
are those in switching sets which yield the Shrikhande and Clebsch graphs,
respectively. �

Example 1.2.5. If we switch a graph G with respect to the set of neighbours of
a vertex v, we obtain a graph H in which v is an isolated vertex. If G = L(K8)

then H − v is a 16-regular graph on 27 vertices which is called the Schläfli
graph Sch16; it is strongly regular with parameters (27, 16, 10, 8). �

Example 1.2.6. Let S1, S2, S3 be sets of vertices of L(K8) which induce
subgraphs isomorphic to 4K1, C5 ∪̇ C3 and C8, respectively. The graphs
Ch1,Ch2,Ch3 obtained from L(K8) by switching with respect to S1, S2, S3

respectively are called the Chang graphs. The graphs L(K8),Ch1,Ch2,Ch3

are regular of degree 12, and hence cospectral by Proposition 1.1.8.
They are pairwise non-isomorphic, and strongly regular with parameters
(28, 12, 6, 4). �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
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Figure 1.5 Construction of the graphs in Example 1.2.4.
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1.3 Some results from linear algebra

First we note that a graph is determined by eigenvalues and correspond-
ing eigenvectors in the following way. Let A be the adjacency matrix of
a graph G with vertices 1, 2, . . . , n and eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λn . If x1, x2, . . . , xn are linearly independent eigenvectors of A correspond-
ing to λ1, λ2, . . . , λn respectively, if X = (x1|x2| · · · |xn) and if E =
diag(λ1, λ2, . . . , λn), then AX = X E and so

A = X E X−1.

Since G is determined by A, we have the following elementary result:

Theorem 1.3.1. Any graph is determined by its eigenvalues and a basis of
corresponding eigenvectors.

Since A is a symmetric matrix with real entries there exists an orthogonal
matrix U such that U�AU = E . Here the columns of U are eigenvectors
which form an orthonormal basis of IRn . If this basis is constructed by stringing
together orthonormal bases of the eigenspaces of A then E = μ1 E1 + · · · +
μm Em , where μ1, . . . , μm are the distinct eigenvalues of A and each Ei has
block diagonal form diag(O, . . . , O, I, O, . . . O) (i = 1, . . . ,m). Then A has
the spectral decomposition

A = μ1 P1 + · · · + μm Pm (1.3)

where Pi = U EiU� (i = 1, . . . ,m). For fixed i , if E(μi ) has {x1, . . . , xd} as
an orthonormal basis then

Pi = x1x�1 + · · · + xdx�d (1.4)

and Pi represents the orthogonal projection of IRn onto E(μi ) with respect to
the standard orthonormal basis {e1, . . . , en} of IRn . Moreover,

∑m
i=1 Pi = I ,

P2
i = Pi = P�i (i = 1, . . . ,m) and Pi Pj = O (i 
= j). We shall also need

the observation that for any polynomial f , we have

f (A) = f (μ1)P1 + · · · + f (μm)Pm .

In particular, Pi is a polynomial in A for each i ; explicitly, Pi = fi (A) where

fi (x) =
∏

s 
=i (x − μs)∏
s 
=i (μi − μs)

. (1.5)

Next we mention an eigenvector technique which is often employed to
find the graphs with maximal or minimal index in a given class of graphs.
A Rayleigh quotient for A is a scalar of the form y�Ay/y�y where y is a



12 Introduction

non-zero vector in IRn . The supremum of the set of such scalars is the largest
eigenvalue λ1 of A, equivalently

λ1 = sup{x�Ax : x ∈ IRn, ‖x‖ = 1}. (1.6)

This well-known fact follows immediately from the observation that
if {x1, . . . , xn} is an orthonormal basis of eigenvectors of A and if x =
α1x1 + · · · + αnxn then α2

1 + · · · + α2
n = 1, while

x�Ax = λ1α
2
1 + · · · + λnα

2
n, (1.7)

where Axi = λi xi (i = 1, . . . , n).
Note that for y 
= 0, we have y�Ay/y�y ≤ λ1, with equality if and only if

Ay = λ1y. More generally, Rayleigh’s Principle may be stated as follows:

if 0 
= y ∈ 〈xi , . . . , xn〉 then λi ≥ y�Ay/y�y,

with equality if and only if Ay = λi y; and

if 0 
= y ∈ 〈x1, . . . , xi 〉 then λi ≤ y�Ay/y�y,

with equality if and only if Ay = λi y.
Moreover, each eigenvalue λi (i = 1, . . . , n) can be characterized in

terms of subspaces of IRn as follows. Let U be an (n − i + 1)-dimensional
subspace of IRn , so that 〈x1, . . . , xi 〉 ∩ U 
= {0}. If x is a unit vector in this
intersection of subspaces then αi+1 = · · · = αn = 0 and so x�Ax ≥ λi by
(1.7). It follows that sup{x�Ax : x ∈ U, ||x|| = 1} ≥ λi . On the other hand,
by (1.7) again, this lower bound is attained when U = 〈xi , . . . , xn〉 because
in this case α1 = · · · = αi−1 = 0 for every vector in U . Hence for each
i ∈ {1, . . . , n} we have

λi = inf{sup{x�Ax : x ∈ U, ‖x‖ = 1} : U ∈ Un−i+1}, (1.8)

where Un−i+1 denotes the set of all (n − i + 1)-dimensional subspaces of IRn .

An n× n symmetric matrix M (with real entries) is said to be positive semi-
definite if all its eigenvalues are non-negative, equivalently x�Mx ≥ 0 for all
x ∈ IRn .

Theorem 1.3.2. Let M be a positive semi-definite matrix with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn. Then

λ1+λ2+· · ·+λr = sup{u�1 Mu1+u�2 Mu2+· · ·+u�r Mur } (r = 1, 2, . . . , n),



1.3 Some results from linear algebra 13

where the supremum is taken over all orthonormal vectors u1,u2, . . . ,ur . In
particular, λ1 + λ2 + · · · + λr is bounded below by the sum of the r largest
diagonal entries of M.

Proof. Let Mxi = λi xi (i = 1, 2, . . . , n), where x1, x2, . . . , xn are orthonor-
mal. Let U = (u1|u2| · · · |ur ), X = (x1|x2| · · · |xn) and u j =∑n

i=1 ci j xi ( j =
1, 2, . . . , r). Then U = XC , where C = (ci j ); moreover, I = U�U = C�C .
Using Equation (1.7), we have

r∑
j=1

u�j Mu j =
r∑

j=1

n∑
i=1

c2
i jλi =

n∑
1=1

⎛
⎝ r∑

j=1

c2
i j

⎞
⎠ λi .

Note that
∑r

j=1 c2
i j = bi , where bi is the i-th diagonal entry of CC�. Now

CC� and C�C have the same non-zero eigenvalues and so the spectrum of
CC� is 1r , 0n−r . By (1.7) again, bi = e�i CC�ei ≤ 1 (i = 1, 2, . . . , n). Now
we have:

r∑
j=1

u�j Mu j =
n∑

i=1

biλi , 0 ≤ bi ≤ 1,
n∑

i=1

bi = tr(CC�) = r,

and it follows that
∑r

j=1 u�j Mu j ≤ ∑r
j=1 λ j . Equality holds when ui =

xi (i = 1, 2, . . . , r), and so the first statement of the theorem is proved. For the
second statement, we may suppose without loss of generality that the r largest
diagonal entries of M are the first r diagonal entries; the assertion follows by
taking ui = ei (i = 1, 2, . . . , r). �

If M is a positive semi-definite matrix of rank r then there exists an
orthogonal matrix U such that

U�MU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

θ1
. . .

θr
0

. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where θ1 ≥ · · · ≥ θr > 0. Now this matrix can be written as X�X , where

X =
⎛
⎜⎝
√
θ1 . . . 0 0 . . . 0

0
. . . 0 0 . . . 0

0 . . .
√
θr 0 . . . 0

⎞
⎟⎠ ,
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of size r × n. Thus M = Q�Q, where Q = XU�. If Q = (q1| · · · |qn)

then each column qi lies in IRr , and the (i, j)-entry of M is the scalar product
q�i q j . The matrix Q�Q is called the Gram matrix of the vectors q1, . . . ,qn .
We shall often make use of Gram matrices in the case that M = A − λI
and λ is the least eigenvalue of G; in this situation, the multiplicity of
λ is n − r .

Since in general a graph is not determined by its eigenvalues, it is nat-
ural to seek further algebraic invariants which might serve to distinguish
non-isomorphic cospectral graphs. For our first such definition, recall that
{e1, . . . , en} is the standard orthonormal basis of IRn . The mn numbers αi j =
||Pi e j || are called the angles of G; they are the cosines of the (acute) angles
between axes and eigenspaces. We shall assume that μ1 > · · · > μm . If also
we order the columns of the matrix (αi j ) lexicographically then this matrix is
a graph invariant, called the angle matrix of G. We shall see in the next chap-
ter that the spectrum of the vertex-deleted subgraph G − j is determined by
the spectrum of G and the angles α1 j , . . . , αmj . The basic relations between
angles are the following:

Proposition 1.3.3. The angles αi j of a graph satisfy the equalities

n∑
j=1

α2
i j = dim E(μi ),

m∑
i=1

α2
i j = 1. (1.9)

Proof. We have α2
i j =‖Pi e j‖2= e�j Pi e j , and so the numbers α2

i1,

α2
i2, . . . , α

2
in appear on the diagonal of Pi . Now

∑n
j=1 α

2
i j = tr(Pi )=

tr(Ei ) = dim E(μi ), and
∑m

i=1 α
2
i j = 1 because

∑m
i=1 Pi = I . �

Next we discuss the relation between eigenvalues, angles and walks in a
graph. By a walk of length k in a graph we mean any sequence of (not neces-
sarily different) vertices v0, v1, . . . , vk such that for each i = 1, 2, . . . , k there
is an edge from vi−1 to vi . The walk is closed if vk = v0. The following result
has a straightforward proof by induction on k.

Proposition 1.3.4. If A is the adjacency matrix of a graph, then the (i, j)-
entry a(k)i j of the matrix Ak is equal to the number of walks of length k that
start at vertex i and end at vertex j .

It follows from Proposition 1.3.4 that the number of closed walks of length
k is equal to the k-th spectral moment, since

∑n
j=1 a(k)j j = tr(Ak) =∑n

j=1 λ
k
j .

From the spectral decomposition of A we have

Ak = μk
1 P1 + μk

2 P2 + · · · + μk
m Pm (1.10)
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and so a(k)j j =
∑m

i=1 μ
k
i α

2
i j , where the αi j are the angles of G. In particular, the

vertex degrees a(2)j j are determined by the spectrum and angles.

We write j (or jn) for the all-1 vector in IRn , and j⊥ for the subspace of
vectors orthogonal to j. It follows from (1.10) that the number Nk of all walks
of length k in G is given by

Nk =
∑
u,v

a(k)uv = j�Akj =
n∑

i=1

μk
i ||Pi j||2, (1.11)

The numbers βi = ||Pi j||/√n (i = 1, . . . ,m) are called the main angles of G;
they are the cosines of the (acute) angles between eigenspaces and j. Note that∑m

i=1 β
2
i = 1 because j = ∑m

i=1 Pi j. The eigenvalue μi is said to be a main
eigenvalue if E(μi ) 
⊆ j⊥, equivalently Pi j 
= 0. In view of (1.11) we have the
following result.

Theorem 1.3.5. The total number Nk of walks of length k in a graph G is
given by

Nk = n
′μk
i β

2
i , (1.12)

where the sum 
′ is taken over all main eigenvalues μi .

We shall see in Chapter 2 that the spectrum of the complement G, the spec-
trum of the cone K1∇G and the Seidel spectrum of G are all determined by
the spectrum and main angles of G. A means of calculating main angles is
described in Section 6.7.

Now we turn to some more general results from matrix theory that have
implications for the spectra of graphs.

A symmetric matrix M is reducible if there exists a permutation matrix P

such that P−1 M P is of the form

(
X O
O Y

)
, where X and Y are square matri-

ces. Otherwise, M is called irreducible. If M = (mi j ), of size n × n, then we
define the graph G M as follows. The vertices of G M are 1, . . . , n, and distinct
vertices i, j are adjacent if and only if mi j 
= 0. Thus G M is connected if and
only if M is irreducible.

Theorem 1.3.6. Let M be an irreducible symmetric matrix with non-negative
entries. Then the largest eigenvalue λ1 of M is simple, with a correspond-
ing eigenvector whose entries are all positive. Moreover, |λ| ≤ λ1 for all
eigenvalues λ of M.

Proof. Let x = (x1, . . . , xn)
� be a unit eigenvector corresponding to λ1. Let

y = (y1, . . . , yn)
�, where yi = |xi | (i = 1, . . . , n). Then y�y = 1 and

y�My ≥ x�Mx = λ1. Hence y is also an eigenvector corresponding to λ1.
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We show that no yi (and hence no xi ) is zero by considering adjacencies in
G M . The eigenvalue equations may be written:

λ1 yi = mii yi +
∑
j∼i

mi j y j (i = 1, . . . , n). (1.13)

If yi = 0 then by (1.10), y j = 0 for all j ∼ i . Since G M is connected, y j = 0
for all j , a contradiction. Now λ1 is a simple eigenvalue, for if dim E(λ1) > 1
then there exists an eigenvector with a zero entry in any chosen position. In
particular, E(λ1) is spanned by y (and x = ±y). Finally, if Mz = λz where
z�z = 1 and z = (z1, . . . , zn)

� then

|λ| = |z�Mz| = |
∑
i, j

zi mi j z j | ≤
∑
i, j

|zi | mi j |z j | ≤ λ1.

�

We say that a vector x = (x1, . . . , xn)
� is non-negative (positive) if each xi

is non-negative (positive); we write x ≥ 0, x > 0 respectively. In the situation
of Theorem 1.3.6, M has a unique positive unit eigenvector corresponding to
λ1, and this is called the principal eigenvector of M . In the case that M is the
adjacency matrix of a (labelled) connected graph G, we refer to this vector as
the principal eigenvector of G.

Corollary 1.3.7. Let M be an irreducible symmetric n × n matrix with non-
negative entries mi j , and let λ1 be the largest eigenvalue of M. For any positive
vector y = (y1, y2, . . . , yn)

�, we have

min
1≤i≤n

n∑
j=1

mi j y j

yi
≤ λ1 ≤ max

1≤i≤n

n∑
j=1

mi j y j

yi
. (1.14)

Either equality holds if and only if y is an eigenvector of M corresponding
to λ1.

Proof. Let x = (x1, x2, . . . , xn)
� be the principal eigenvector of M . Then

λ1

n∑
i=1

xi yi = yT Mx = xT My =
n∑

i=1

xi yi

(∑n
j=1 mi j y j

yi

)
. (1.15)

The inequalities follow, since
∑n

i=1 xi yi > 0. Let zi = λ1 yi −∑n
i=1 mi j y j (i = 1, . . . , n). If an equality holds in (1.14) then either all zi are

non-negative or all zi are non-positive. From (1.15), we have
∑n

i=1 xi zi = 0,
and so all zi are zero. In this situation, y is an eigenvector of M corresponding
to λ1, as required. �

If we apply Theorem 1.3.6 to the adjacency matrix of a graph, we obtain:
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Corollary 1.3.8. A graph is connected if and only if its index is a simple
eigenvalue with a positive eigenvector.

We can also use Theorem 1.3.6 to prove:

Proposition 1.3.9. For any vertex u of a connected graph G, we have λ1(G −
u) < λ1(G).

Proof. Let A =
(

A′ r
r� 0

)
, where A′ = A(G − u), and let x be a unit eigen-

vector of A′ corresponding to λ1(G − u). If y =
(

x
0

)
then y�y = 1 and

λ1(G − u) = y�Ay ≤ λ1(G). If equality holds then y is an eigenvector of A
corresponding to λ1(G); but this is a contradiction because y has a zero entry.

�

If we apply Corollary 1.3.8 to each component of an arbitrary graph G
which has index λ1(G), we can see that there is a non-negative eigenvector
corresponding to λ1(G). This vector may also be used in Rayleigh quotients
to obtain bounds for the index of modified graphs, as for example in the
following:

Proposition 1.3.10. If G − uv is the graph obtained from a connected graph
G by deleting the edge uv, then λ1(G − uv) < λ1(G).

Proof. Let x = (x1, . . . , xn)
� be a non-negative unit eigenvector of G − uv

corresponding to λ1(G − uv). Then

λ1(G − uv) = x�A(G − uv)x ≤ x�A(G)x ≤ λ1(G).

If λ1(G − uv) = λ1(G) then x is the principal eigenvector of G and hence has
no zero entries. Now x�A(G − uv)x = x�A(G)x − 2xu xv < λ1(G − uv), a
contradiction. �

Next we consider interlacing of eigenvalues.

Theorem 1.3.11. Let Q be a real n × m matrix such that Q�Q = I , and let
A be an n × n real symmetric matrix with eigenvalues λ1 ≥ · · · ≥ λn. If the
eigenvalues of Q�AQ are μ1 ≥ · · · ≥ μm then

λn−m+i ≤ μi ≤ λi (i = 1, . . . ,m). (1.16)

Proof. Let x1, . . . .xn be orthonormal eigenvectors of A, and let y1, . . . , ym be
orthonormal eigenvectors of Q�AQ, taken in order. For each i ∈ {1, . . . ,m},
let zi be a non-zero vector in the subspace

〈y1, . . . , yi 〉 ∩ 〈Q�x1, . . . , Q�xi−1〉⊥.
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Then Qzi ∈ 〈x1, . . . , xi−1〉⊥, and so (by Rayleigh’s Principle)

λi ≥ (Qzi )
�A(Qzi )

(Qzi )�(Qzi )
= z�i Q�AQzi

z�i zi
≥ μi .

The second inequality in (1.16) is obtained by applying the above argument to
−A and −Q�AQ. �

When the inequalities (1.16) are satisfied, we say that the eigenvalues μi

interlace the eigenvalues λ j .

Corollary 1.3.12. Let G be a graph with n vertices and eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn, and let H be an induced subgraph of G with m vertices. If
the eigenvalues of H are μ1 ≥ μ2 ≥ · · · ≥ μm then λn−m+i ≤ μi ≤ λi

(i = 1, . . . ,m).

Proof. Let V (G) = {1, . . . , n} and V (H) = {1, . . . ,m}. Then A(H) =
Q�A(G)Q, where Q� has the form (I | O), and so the result follows from
Theorem 1.3.11. �

The inequalities in Corollary 1.3.12 are known as Cauchy’s inequalities
and this result is generally known as the Interlacing Theorem. It is used fre-
quently as a spectral technique in graph theory. In particular, when H is a
vertex-deleted subgraph we have m = n − 1 and:

λn ≤ μn−1 ≤ λn−1 ≤ · · · ≤ λ2 ≤ μ1 ≤ λ1.

The next result is a further consequence of Theorem 1.3.11.

Corollary 1.3.13. Let A be a real symmetric matrix with eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn. Given a partition {1, 2, . . . , n} = �1 ∪̇ �2 ∪̇ · · · ∪̇ �m with
|�i | = ni > 0, consider the corrresponding blocking A = (Ai j ), where Ai j is
an ni × n j block. Let ei j be the sum of the entries in Ai j and set B = (ei j/ni )

(Note that ei j/ni is the average row sum in Ai j .) Then the eigenvalues of B
interlace those of A.

Proof. Suppose that the vertex-block incidence matrix has columns
c1, . . . , cm , and let Q be the matrix with columns 1√

n1
c1, . . . ,

1√
nm

cm . Then

Q�Q = I , Q�AQ = B and the result follows from Theorem 1.3.11. �

If we assume that in each block Ai j from Corollary 1.3.13 all row sums are
equal then we can say more:

Theorem 1.3.14. Let A be any matrix partitioned into blocks as in Corol-
lary 1.3.13. Suppose that the block Ai j has constant row sums bi j , and
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let B = (bi j ). Then the spectrum of B is contained in the spectrum of A (taking
into account the multiplicities of the eigenvalues).

Proof. It is straightforward to check that if (x1, . . . , xm)
� is an eigenvec-

tor of B then

⎛
⎝ x1jn1

...
xmjnm

⎞
⎠ is an eigenvector of A corresponding to the same

eigenvalue. �

Theorem 1.3.12 will be used in Section 3.9 to provide a link between spec-
tral and structural properties of a graph. Next we establish the Courant–Weyl
inequalities, embodied in the following result; as usual, the eigenvalues here
are in non-increasing order.

Theorem 1.3.15. Let A and B be n × n Hermitian matrices. Then

λi (A + B) ≤ λ j (A)+ λi− j+1(B) (n ≥ i ≥ j ≥ 1),

λi (A + B) ≥ λ j (A)+ λi− j+n(B) (1 ≤ i ≤ j ≤ n).

Proof. Let {x1, . . . , xn}, {y1, . . . , yn}, {z1, . . . , zn} be orthonormal bases of
eigenvectors for A, B, A + B respectively. Suppose first that i ≥ j , and
consider the subspaces

V1 = 〈x j , . . . , xn〉, V2 = 〈yi− j+1, . . . , yn〉, V3 = 〈z1, . . . , zi 〉.
Since dim (V1 ∩ V2) ≥ dim V1 + dim V2 − n, we have

dim ((V1 ∩ V2) ∩ V3) ≥ dim V1 + dim V2 + dim V3 − 2n = 1,

and so V1 ∩ V2 ∩ V3 contains a unit vector x. Applying Rayleigh’s Principle,
we have:

λ j (A)+ λi− j+1(B) ≥ x�Ax+ x�Bx = x�(A + B)x ≥ λi (A + B).

When i ≤ j , we obtain the second inequality of the theorem by applying the
first inequality to −A and −B. �

Theorem 1.3.15 applies to a graph on n vertices specified as the edge-disjoint
union of two spanning subgraphs. For example, if A and B are the adjacency
matrices of G and G then A + B = J − I and so (for n ≥ 2) λ2(G) +
λn−1(G) ≥ λn(Kn) = −1, λ2(G)+ λn(G) ≤ λ2(Kn) = −1. We can also use
Theorem 1.3.15 to obtain inequalities that relate the spectrum of an adjacency
matrix A to the spectra of the Laplacian D − A, the signless Laplacian D + A
and the Seidel matrix J − I − 2A: we apply the theorem to A and D − A,
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to −A and D + A, and to 2A and J − I − 2A respectively. For example,
λk(D ± A) ≥ λn(A)± λn−k+1(A) and λk(J − I − 2A) ≥ −2λn−k+1(A)− 1.

Proposition 1.3.16. Let M be a symmetric n × n matrix with real entries. If

M =
[

P Q
Q� R

]
,

then

λ1(M)+ λn(M) ≤ λ1(P)+ λ1(R).

Proof. Let λ = λn(M). Then we have M − λI = S + T , where

S =
(

P − λI O
Q� O

)
, T =

(
O Q
O R − λI

)
.

Any non-zero eigenvalue of S is an eigenvalue of P − λI , and so the eigen-
values of S are real. Similarly, the eigenvalues of T are real. Using Theorem
1.3.15, we have

λ1(M)− λ = λ1(S + T ) ≤ λ1(S)+ λ1(T ) =
λ1(P − λI )+ λ1(R − λI ) = λ1(P)− λ+ λ1(R)− λ,

and the result follows. �

Using an induction argument, we obtain the following:

Corollary 1.3.17. Let M be a symmetric n × n matrix with real entries. If M
is partitioned into k2 blocks Mi j (of size ni × n j ) then

λ1(M)+ (k − 1)λn(M) ≤
k∑

i=1

λ1(Mii ).

Finally we prove a result on determinants required in Chapter 7. For an
n × m matrix R (n ≤ m), we write Rk1,...,kn for the matrix consisting of rows
k1, . . . , kn of R; and for an m × n matrix S (n ≤ m) we write Sk1,...,kn for the
matrix consisting of columns k1, . . . , kn of S. (Here, k1, . . . , kn are not neces-
sarily distinct.) If F is an n-element subset of {1, . . . ,m}, say F = {k1, . . . , kn}
where k1 < k2 < · · · < kn , then we write RF = Rk1,...,kn and SF = Sk1,...,kn .

Theorem 1.3.18 (The Binet–Cauchy Theorem). If R is an n × m matrix and
S is an m × n matrix (n ≤ m), then

det(RS) =
∑
|F |=n

det(RF ) det(SF ).
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Proof. Let R = (ri j ) and S = (si j ). We have

det(RS) =
∑
σ

sgn(σ )
n∏

i=1

⎛
⎝ n∑

k=1

rikskσ(i)

⎞
⎠

=
∑
σ

sgn(σ )

⎛
⎝ m∑

k1=1

r1k1 sk1σ(1)

⎞
⎠
⎛
⎝ m∑

k2=1

r2k2 sk2σ(2)

⎞
⎠ · · ·

⎛
⎝ m∑

kn=1

rnkn sknσ(n)

⎞
⎠

=
m∑

k1=1

m∑
k2=1

· · ·
m∑

kn=1

r1k1r2k2 · · · rnkn

∑
σ

sgn(σ )sk1σ(1)sk2σ(2) · · · sknσ(n)

=
m∑

k1=1

m∑
k2=1

· · ·
m∑

kn=1

r1k1r2k2 · · · rnkn det(S{k1,...,kn}).

Now det(S{k1,...,kn}) = 0 when k1, . . . , kn are not distinct, and so we
may take the sum over n-element subsets {k1, . . . , kn} of {1, . . . ,m}. Then
det(S{τ(k1),...,τ (kn)}) = sgn(τ ) det(S{k1,...,kn}) for any permutation τ of
k1, . . . , kn , and so

m∑
k1=1

m∑
k2=1

· · ·
m∑

kn=1

r1k1r2k2 · · · rnkn det(S{k1,...,kn})

=
∑
τ

∑
k1<k2<···<kn

sgn(τ )r1τ(1)r2τ(2) · · · rnτ(n) det(S{k1,...,kn})

=
∑
|F |=n

det(RF ) det(SF ).

�

Exercises

1.1 Prove Proposition 1.1.2.
1.2 By considering the nullspace of an all-1 matrix, or otherwise, show that

Kn (n > 1) has spectrum (n − 1)1, (−1)n−1.
1.3 Prove Proposition 1.1.7.
1.4 Show that L(K4,4) has spectrum 61, 26, (−2)9.
1.5 Let G be a graph with n vertices. Show that λ1(G) ≤ n−1, with equality

if and only if G = Kn .
1.6 Let G be a bipartite graph, with each edge joining a vertex in {1, . . . , k}

to a vertex in {k + 1, . . . , n}. Show that if (x1, . . . , xn)
� is an eigenvec-

tor of G corresponding to λ, then (x1, . . . , xk,−xk+1, . . . ,−xn)
� is an
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eigenvector of G corresponding to −λ. Deduce that the spectrum of a
bipartite graph is symmetric about 0.

1.7 Let G be a graph with p vertices of odd degree and q vertices of even
degree, where p and q have the same parity. Show that if G ′ is switching
equivalent to G then either G ′ has p vertices of odd degree and q vertices
of even degree, or G ′ has q vertices of odd degree and p vertices of even
degree [Sei2].

1.8 Show that for any graph G and any vertex v of G there exists a unique
switching-equivalent graph G ′ which has v as an isolated vertex [Sei3].

1.9 Let I (G) be the collection of graphs obtained by isolating in turn the
vertices of the graph G. Show that the graphs G1 and G2 are switching
equivalent if and only if I (G1) = I (G2) [BuCS1].

1.10 Prove Proposition 1.2.2.
1.11 Show that a regular connected generalized line graph is either a line graph

or a cocktail party graph.
1.12 Prove Proposition 1.3.4.
1.13 Suppose that G, G have adjacency matrices A, A. Show that if μ is

a non-main eigenvalue of G then EA(μ) ⊆ EA(−μ − 1). Provide an
example of proper inclusion.

1.14 Let G be a graph with adjacency matrix A and vertex degrees d1, . . . , dn .
Let d = (d1, . . . .dn). Then G is said to be harmonic if d is an eigenvector
of A. Show that both G and G are harmonic if and only if G is regular.

1.15 With the notation of Section 1.1, show that the vector (d1, . . . , dn)
� is

orthogonal to (i) E(0), and (ii) E(λ) for every non-main eigenvalue λ.
1.16 Show that no line graph has −2 as a main eigenvalue.
1.17 Show that if G is a strongly regular graph then each vertex-deleted

subgraph G − v (v ∈ V (G)) has exactly two main eigenvalues.
1.18 Show that in a connected graph G, the minimum degree of a vertex is

bounded above by the index of G.
1.19 Show that if (αi j ) is the angle matrix of the connected graph G then

(α11, . . . , α1n)
� is the principal eigenvector of G.

1.20 Show that if the graphs G,G ′ differ in only one edge then |λ1(G) −
λ1(G ′)| ≤ 1.

1.21 Use Theorem 1.3.15 to show that if the adjacency matrix of G has
eigenvalues λ1 ≥ · · · ≥ λn and the Laplacian of G has eigenvalues
ν1 ≥ · · · ≥ νn then

δ(G)− λi ≤ νn−i+1 ≤ �(G)− λi (i = 1, . . . , n).

State and prove an analogous result relating the eigenvalues of the
signless Laplacian to λ1, . . . , λn .
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1.22 Show that if A is a symmetric matrix with eigenvalues λ1 ≥ · · · ≥ λn

then
λ1 − λn = sup{u�Au− v�Av},

where the supremum is taken over all pairs of orthonormal vectors
u, v [Mir].

Notes

For a background in graph theory and linear algebra, the reader is referred
to the monographs [Mer5] and [Str] respectively; earlier texts are [Har2] and
[Hal]. Most undergraduate texts on linear algebra discuss the orthogonal diag-
onalization of a matrix with real entries; a more advanced text is [Pra]. For
results on matrices (not necessarily symmetric) with non-negative entries,
[Gan, Vol. 2] is a standard reference. The interlacing property of the eigenval-
ues arising in Theorem 1.3.11 is taken from [Hae2]; Corollary 1.3.13 appears
in the earlier paper [Hae1]. Theorem 1.3.14 appears in [Hay] and [PeSa1]. The
proofs of Theorems 1.3.15 and 1.3.18 are taken from [Pra].

Line graphs are characterized by a collection of 9 forbidden induced sub-
graphs; see [Har2, Chapter 8] or the original proof by L. W. Beineke [Bei].
The concept of a strongly regular graph was introduced in 1963 by R. C. Bose
[Bos], and there is now an extensive literature on graphs of this type; see,
for example, [BroLi]. Generalized line graphs were introduced by A. J. Hoff-
man [Hof5] in 1970, and studied extensively by D. Cvetković, M. Doob and
S. Simić [CvDS1, CvDS2] in 1980. They were characterized by a collection
of 31 forbidden induced subgraphs in [CvDS1, CvDS2], and independently by
S. B. Rao, N. M. Singhi and K. S. Vijayan in [RaoSV]; a recent proof appears
in [CvRS8] and the monograph [CvRS7]. A survey of results concerning main
eigenvalues, together with an explanation of their relation to harmonic graphs
(Exercise 1.14), can be found in [Row16].

The modifications G − u, G − uv may be regarded as perturbations of G;
other perturbations are considered in Section 8.1.
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Graph operations and modifications

In this chapter we describe some procedures for determining characteristic
polynomials of graphs derived from simpler graphs by certain opera-
tions or modifications. Typically, we define an n-ary operation on graphs
G1,G2, . . . ,Gn (n = 1, 2, . . . ) to obtain a graph G, and then describe
relations between the spectra of G1,G2, . . . ,Gn and the spectrum of G.
In some important cases, the spectrum of G is determined by the spectra
of G1,G2, . . . ,Gn ; in other cases, additional invariants of G1,G2, . . . ,Gn

are required in the form of graph angles or walk generating functions. The
modifications considered include the deletion and addition of a vertex.

Naturally, several proofs rely simply on determinantal expansions, but oth-
ers require an interpretation of the coefficients in a characteristic polynomial,
and this is presented in Section 2.4. At the end of the chapter, in Section 2.6,
we use the theory we have developed to derive the spectra, or characteristic
polynomials, of several special classes of graphs.

2.1 Complement, union and join of graphs

The operations of complement, union and join are connected by the relation

G � H = G ∪̇ H .

First we consider the (disjoint) union of graphs. If G has adjacency matrix
A and H has adjacency matrix B, then the adjacency matrix of G ∪̇ H is the
direct sum

A +̇ B =
(

A O
O B

)
.

Consideration of determinants leads immediately to the following result.
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