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Preface

This book is designed as a comprehensive lecture on entropy in three major
types of dynamics: measure-theoretic, topological and operator. In each case
the study is restricted to the most classical case of the action of iterates of a
single transformation (or operator) on either a standard probability space or on
a compact metric space. We do not venture into studying actions of more gen-
eral groups, dynamical systems on noncompact spaces or equipped with infi-
nite measures. On the other hand, we do not restrict the generality by adding
more structure to our spaces. The most structured systems addressed here in
detail are smooth transformations of the compact interval. The primary inten-
tion is to create a self-contained course, from the basics through more advanced
material to the newest developments. Very few theorems are quoted without a
proof, mainly in the chapters or sections marked with an asterisk. These are
treated as “nonmandatory” for the understanding of the rest of the book, and
can be skipped if the reader chooses. Our facts are stated as generally as pos-
sible within the assumed scope, and wherever possible our proofs of classical
theorems are different from those found in the most popular textbooks. Several
chapters contain very recent results for which this is a textbook debut.

We assume familiarity of the reader with basics of ergodic theory, measure
theory, topology and functional analysis. Nevertheless, the most useful facts
are recalled either in the main text or in the appendix.

Some elementary statements and minor passages are left without a proof,
as an exercise for the reader. Such statements are collected at the end of each
chapter, together with other exercises of independent interest. It is planned
that solutions to selected exercises will be made available shortly after the
book has occurred in print, at the publisher’s website www.cambridge.org/
9780521888851.

www.cambridge.org/
9780521888851
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Introduction

0.1 The leitmotiv

Nowadays, nearly every kind of information is turned into digital form. Digital
cameras turn every image into a computer file. The same happens to musi-
cal recordings or movies. Even our mathematical work is registered mainly as
computer files. Analog information is nearly extinct.

While studying dynamical systems (in any understanding of this term)
sooner or later one is forced to face the following question: How can the infor-
mation about the evolution of a given dynamical system be most precisely
turned into a digital form? Researchers specializing in dynamical systems are
responsible for providing the theoretical background for such a transition.

So suppose that we do observe a dynamical system, and that we indeed
turn our observation into digital form. That means, from time to time, we pro-
duce a digital “report,” a computer file, containing all our observations since
the last report. Assume for simplicity that such reports are produced at equal
time distances, say, at integer times. Of course, due to bounded capacity of
our recording devices and limited time between the reports, our files have
bounded size (in bits). Because the variety of digital files of bounded size
is finite, we can say that at every integer moment of time we produce just
one symbol, where the collection of all possible symbols, i.e. the alphabet,
is finite.

An illustrative example is filming a scene using a digital camera. Every unit
of time, the camera registers an image, which is in fact a bitmap of some fixed
size (camera resolution). The camera turns the live scene into a sequence of
bitmaps. We can treat every such bitmap as a single symbol in the alphabet of
the “language” of the camera.

The sequence of symbols is produced as long as the observation is being
conducted. We have no reason to restrict the global observation time, and we
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can agree that it goes on forever. Sometimes (but not always), we can imagine
that the observation has been conducted since forever in the past as well. In
this manner, the history of our recording takes on the form of a unilateral or
bilateral sequence of symbols from some finite alphabet. Advancing in time by
a unit corresponds, on one hand, to the unit-time evolution of the dynamical
system, on the other, to shifting the enumeration of our sequence of symbols.
This way we have come to the conclusion that the digital form of the observa-
tion is nothing else but an element of the space of all sequences of symbols,
and the action on this space is the familiar shift transformation advancing the
enumeration.

Now, in most situations, such a “digitalization” of the dynamical system will
be lossy, i.e., it will capture only some aspects of the observed dynamical sys-
tem, and much of the information will be lost. For example, the digital camera
will not be able to register objects hidden behind other objects, moreover, it
will not see objects smaller than one pixel or their movements until they pass
from one pixel to another. However, it may happen that, after a while, each
object will eventually become detectable, and we will be able to reconstruct its
trajectory from the recorded information.

Of course, lossy digitalization is always possible and hence presents a
lesser kind of challenge. We will be much more interested in lossless
digitalization. When and how is it possible to digitalize a dynamical system
so that no information is lost, i.e., in such a way that after viewing the entire
sequence of symbols we can completely reconstruct the evolution of the
system?

In this book the task of encoding a system with possibly smallest alpha-
bet is refereed to as “data compression.” The reader will find answers to the
above question at two major levels: measure-theoretic, and topological. In the
first case the digitalization is governed by the Kolmogorov–Sinai entropy of
the dynamical system, the first major subject of this book. In the topologi-
cal setup the situation is more complicated. Topological entropy, our second
most important notion, turns out to be insufficient to decide about digitaliza-
tion that respects the topological structure. Thus another parameter, called
symbolic extension entropy, emerges as the third main object discussed in
the book.

We also study entropy (both measure-theoretic and topological) for
operators on function spaces, which generalize classical dynamical systems.
The reference to data compression is not as clear here and we concentrate
more on technical properties that carry over from dynamical systems,
leaving the precise connection with information theory open for further
investigation.
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0.2 A few words about the history of entropy

Below we review very briefly the development of the notion of entropy focus-
ing on the achievements crucial for the genesis of the basic concepts of entropy
discussed in this book. For a more complete survey we refer to the expository
article [Katok, 2007].

The term “entropy” was coined by a German physicist Rudolf Clausius from
Greek “en-” = in + “trope” = a turning [Clausius, 1850]. The word reveals anal-
ogy to “energy” and was designed to mean the form of energy that any energy
eventually and inevitably “turns into” – a useless heat. The idea was inspired by
an earlier formulation by French physicist and mathematician Nicolas Léonard
Sadi Carnot [Carnot, 1824] of what is now known as the Second Law of Ther-
modynamics: entropy represents the energy no longer capable to perform work,
and in any isolated system it can only grow.

Austrian physicist Ludwig Boltzmann put entropy into the probabilistic
setup of statistical mechanics [Boltzmann, 1877]. Entropy has also been gen-
eralized around 1932 to quantum mechanics by John von Neumann [see von
Neumann, 1968].

Later this led to the invention of entropy as a term in probability and infor-
mation theory by an American electronic engineer and mathematician Claude
Elwood Shannon, now recognized as the father of information theory. Many
of the notions have not changed much since they first occurred in Shannon’s
seminal paper A Mathematical Theory of Communication [Shannon, 1948].
Dynamical entropy in dynamical systems was created by one of the most
influential mathematicians of modern times, Andrei Nikolaevich Kolmogorov,
[Kolmogorov, 1958, 1959] and improved by his student Yakov Grigorevich
Sinai who practically brought it to the contemporary form [Sinai, 1959].

The most important theorem about the dynamical entropy, so-called
Shannon–McMillan–Breiman Theorem gives this notion a very deep mean-
ing. The theorem was conceived by Shannon [Shannon, 1948], and proved
in increasing strength by Brockway McMillan [McMillan, 1953] (L1-
convergence), Leo Breiman [Breiman, 1957] (almost everywhere convergence),
and Kai Lai Chung [Chung, 1961] (for countable partitions). In 1970 Wolfgang
Krieger obtained one of the most important results, from the point of view of
data compression, about the existence (and cardinality) of finite generators for
automorphisms with finite entropy [Krieger, 1970].

In 1970 Donald Ornstein proved that Kolmogorov–Sinai entropy was a a
complete invariant in the class of Bernoulli systems, a fact considered one
of the most important features of entropy (alternatively of Bernoulli systems)
[Ornstein, 1970a].
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In 1965, Roy L. Adler, Alan G. Konheim and M. Harry McAndrew car-
ried the concept of dynamical entropy over to topological dynamics [Adler
et al., 1965] and in 1970 Efim I. Dinaburg and (independently) in 1971 Rufus
Bowen redefined it in the language of metric spaces [Dinaburg, 1970; Bowen,
1971]. With regard to entropy in topological systems, probably the most impor-
tant theorem is the Variational Principle proved by L. Wayne Goodwyn (the
“easy” direction) and Timothy Goodman (the “hard” direction), which con-
nects the notions of topological and Kolmogorov–Sinai entropy [Goodwyn,
1971; Goodman, 1971] (earlier Dinaburg proved both directions for finite-
dimensional spaces [Dinaburg, 1970]).

The theory of symbolic extensions of topological systems was initiated by
Mike Boyle around 1990 [Boyle, 1991]. The outcome of this early work is
published in [Boyle et al., 2002]. The author of this book contributed to estab-
lishing that invariant measures and their entropies play a crucial role in com-
puting the so-called symbolic extension entropy [Downarowicz, 2001; Boyle
and Downarowicz, 2004; Downarowicz, 2005a].

Dynamical entropy generalizing the Kolmogorov–Sinai dynamical entropy
to noncommutative dynamics occurred as an adaptation of von Neumann’s
quantum entropy in a work of Robert Alicki, Johan Andries, Mark Fannes and
Pim Tuyls [Alicki et al., 1996] and then was applied to doubly stochastic oper-
ators by Igor I. Makarov [Makarov, 2000]. The axiomatic approach to entropy
of doubly stochastic operators, as well as topological entropy of Markov oper-
ators have been developed in [Downarowicz and Frej, 2005].

The term “entropy” is used in many other branches of science, sometimes
distant from physics or mathematics (such as sociology), where it no longer
maintains its rigorous quantitative character. Usually, it roughly means “disor-
der,” “chaos,” “decay of diversity” or “tendency toward uniform distribution of
kinds.”

0.3 Multiple meanings of entropy

In the following paragraphs we review some of the various meanings of the
word “entropy” and try to explain how they are connected. We devote a few
pages to explain how dynamical entropy corresponds to data compression rate;
this interpretation plays a central role in the approach to entropy in dynamical
systems presented in the book. The notation used in this section is temporary.

0.3.1 Entropy in physics

In classical physics, a physical system is a collection of objects (bodies) whose
state is parametrized by several characteristics such as the distribution of
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density, pressure, temperature, velocity, chemical potential, etc. The change
of entropy of a physical system, as it passes from one state to another, is

ΔS =
∫

dQ

T
,

where dQ denotes an element of heat being absorbed (or emitted; then it has
the negative sign) by a body, T is the absolute temperature of that body at that
moment, and the integration is over all elements of heat active in the passage.
The above formula allows us to compare entropies of different states of a sys-
tem, or to compute entropy of each state up to an additive constant (this is
satisfactory in most cases). Notice that when an element dQ of heat is trans-
mitted from a warmer body of temperature T1 to a cooler one of temperature
T2 then the entropy of the first body changes by −dQ/T1, while that of the
other rises by dQ/T2. Since T2 < T1, the absolute value of the latter fraction
is larger and jointly the entropy of the two-body system increases (while the
global energy remains the same).

A system is isolated if it does not exchange energy or matter (or even infor-
mation) with its surroundings. By virtue of the First Law of Thermodynamics,
the conservation of energy principle, an isolated system can pass only between
states of the same global energy. The Second Law of Thermodynamics intro-
duces irreversibility of the evolution: an isolated system cannot pass from a
state of higher entropy to a state of lower entropy. Equivalently, it says that
it is impossible to perform a process whose only final effect is the transmis-
sion of heat from a cooler medium to a warmer one. Any such transmission
must involve an outside work, the elements participating in the work will also
change their states and the overall entropy will rise.

The first and second laws of thermodynamics together imply that an isolated
system will tend to the state of maximal entropy among all states of the same
energy. The energy distributed in this state is incapable of any further activity.
The state of maximal entropy is often called the “thermodynamical death” of
the system.

Ludwig Boltzmann gave another, probabilistic meaning to entropy. For each
state A the (negative) difference between the entropy of A and the entropy of
the “maximal state” B is nearly proportional to the logarithm of the probability
that the system spontaneously assumes state A,

S(A) − Smax ≈ k log2(Prob(A)).

The proportionality factor k is known as the Boltzmann constant. In this
approach the probability of the maximal state is almost equal to 1, while the
probabilities of states of lower entropy are exponentially small. This provides
another interpretation of the Second Law of Thermodynamics: the system
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spontaneously assumes the state of maximal entropy simply because all other
states are extremely unlikely.

Example Consider a physical system consisting of an ideal gas enclosed in a
cylindrical container of volume 1. The state B of maximal entropy is clearly the

one where both pressure and temperature are constant (P0 and T0, respectively)
throughout the container. Any other state can be achieved only with help from out-
side. Suppose one places a piston at a position p < 1

2
in the cylinder (the left figure;

thermodynamically, this is still the state B) and then slowly moves the piston to the
center of the cylinder (position 1

2
), allowing the heat to flow between the cylinder

and its environment, where the temperature is T0, which stabilizes the temperature
at T0 all the time. Let A be the final state (the right figure). Note that both states A
and B have the same energy level inside the system.

To compute the jump of entropy one needs to examine what exactly happens
during the passage. The force acting on the piston at position x is proportional to
the difference between the pressures:

F = c

(
P0

1 − p

1 − x
− P0

p

x

)
.

Thus, the work done while moving the piston equals:

W =

1
2∫

p

F dx = cP0

(
(1 − p) ln(1 − p) + p ln p + ln 2

)
.

The function

p �→ (1 − p) ln(1 − p) + p ln p

is negative and assumes its minimal value − ln 2 at p = 1
2

.
Thus the above work W is positive and represents the amount of energy deliv-

ered to the system from outside. During the process the compressed gas on the
right emits heat, while the depressed gas on the left absorbs heat. By conserva-
tion of energy (applied to the enhanced system including the outside world), the
gas altogether will emit heat to the environment equivalent to the delivered work
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ΔQ = −W . Since the temperature is constant all the time, the change in entropy
between states B and A of the gas is simply 1/T0 times ΔQ, i.e.,

ΔS =
1

T0
· cP0

(
−(1 − p) ln(1 − p) − p ln p − ln 2

)
.

Clearly ΔS is negative. This confirms, what was already expected, that the out-
side intervention has lowered the entropy of the gas.

This example illustrates very clearly Boltzmann’s interpretation of entropy.
Assume that there are N particles of the gas independently wandering inside the
container. For each particle the probability of falling in the left or right half of the
container is 1/2. The state A of the gas occurs spontaneously if pN and (1 − p)N
particles fall in the left and right halves of the container, respectively. By elementary
combinatorics formulae, the probability of such an event equals

Prob(A) =
N !

(pN)!((1 − p)N)!
2−N .

By Stirling’s formula (ln n! ≈ n ln n − n for large n), the logarithm of Prob(A)
equals approximately

N
(
−(1 − p) ln(1 − p) − p ln p − ln 2

)
,

which is indeed proportional to the drop ΔS of entropy between the states B and
A (see above).

0.3.2 Shannon entropy

In probability theory, a probability vector p is a sequence of finitely many non-
negative numbers {p1, p2, . . . , pn} whose sum equals 1. The Shannon entropy
of a probability vector p is defined as

H(p) = −
n∑

i=1

pi log2 pi

(where 0 log2 0 = 0). Probability vectors occur naturally in connection with
finite partitions of a probability space. Consider an abstract space Ω equipped
with a probability measure μ assigning probabilities to measurable subsets of
Ω. A finite partition P of Ω is a collection of pairwise disjoint measurable
sets {A1, A2, . . . , An} whose union is Ω. Then the probabilities pi = μ(Ai)
form a probability vector pP. One associates the entropy of this vector with
the (ordered) partition P:

Hμ(P) = H(pP).

In this setup entropy can be linked with information. Given a measurable set
A, the information I(A) associated with A is defined as − log2(μ(A)). The
information function IP associated with a partition P = {A1, A2, . . . , An} is
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defined on the space Ω and it assumes the constant value I(Ai) at all points ω

belonging to the set Ai. Formally,

IP(ω) =
n∑

i=1

− log2(μ(Ai))1IAi
(ω),

where 1IAi
is the characteristic function of Ai. One easily verifies that the

expected value of this function with respect to μ coincides with the entropy
Hμ(P).

We shall now give an interpretation of the information function and entropy,
the key notions in entropy theory. The partition P of the space Ω associates with
each element ω ∈ Ω the “information” that gives an answer to the question
“in which Ai are you?”. That is the best knowledge we can acquire about the
points, based solely on the partition. One bit of information is equivalent to
acquiring an answer to a binary question, i.e., a question of a choice between
two possibilities. Unless the partition has two elements, the question “in which
Ai are you?” is not binary. But it can be replaced by a series of binary questions
and one is free to use any arrangement (tree) of such questions. In such an
arrangement, the number of questions N(ω) (i.e., the amount of information in
bits) needed to determine the location of the point ω within the partition may
vary from point to point (see the example below). The smaller the expected
value of N(ω) the better the arrangement. It turns out that the best arrangement
satisfies IP(ω) ≤ N(ω) ≤ IP(ω) + 1 for μ-almost every ω. The difference
between IP(ω) and N(ω) follows from the crudeness of the measurement of
information by counting binary questions; the outcome is always a positive
integer. The real number IP(ω) can be interpreted as the precise value. Entropy
is the expected amount of information needed to locate a point in the partition.

Example Consider the unit square representing the space Ω, where the prob-
ability is the Lebesgue measure (i.e., the surface area), and the partition P of Ω
into four sets Ai of probabilities 1

8
, 1

4
, 1

8
, 1

2
, respectively, as shown in the figure.



0.3 Multiple meanings of entropy 9

The information function equals − log2(
1
8
) = 3 on A1 and A3, − log2(

1
4
) = 2 on

A2 and − log2(
1
2
) = 1 on A4. The entropy of P equals

H(P) =
1

8
· 3 +

1

4
· 2 +

1

8
· 3 +

1

2
· 1 =

7

4
.

The arrangement of questions that optimizes the expected value of the number of
questions asked is the following:

1. Are you in the left half?
The answer “no”, locates ω in A4 using one bit. Otherwise the next question is:

2. Are you in the central square of the left half?
The “yes” answer locates ω in A2 using two bits. If not, the last question is:

3. Are you in the top half of the whole square?
Now “yes” or “no” locate ω in A1 or A3, respectively. This takes three bits.

Question 1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yes → Question 2

⎧⎪⎨
⎪⎩

yes → A2 (2 bits)

no → Question 3

{
yes → A1 (3 bits)
no → A3 (3 bits)

no → A4 (1 bit)

In this example the number of questions equals exactly the information function at
every point and the expected number of question equals the entropy 7

4
. There does

not exist a better arrangement of questions. Of course, such an accuracy is possible
only when the probabilities of the sets Ai are integer powers of 2; in general the
information is not integer valued.

Another interpretation of Shannon entropy deals with the notion of uncer-
tainty. Let X be a random variable defined on the probability space Ω and
assuming values in a finite set {x1, x2, . . . , xn}. The variable X generates a
partition P of Ω into the sets Ai = {ω ∈ Ω : X(ω) = xi} (called the preimage
partition). The probabilities pi = μ(Ai) = Prob{X = xi} form a probability
vector called the distribution of X. Suppose an experimenter knows the distri-
bution of X and tries to guess the outcome of X before performing the exper-
iment, i.e., before picking some ω ∈ Ω and reading the value X(ω). His/her
uncertainty about the outcome is the expected value of the information he/she
is missing to be certain. As explained above that is exactly the entropy Hμ(P).

0.3.3 Connection between Shannon and Boltzmann entropy

Both notions in the title of this subsection refer to probability and there is
an evident similarity in the formulae. But the analogy fails to be obvious. In
the literature many different attempts toward understanding the relation can be
found. In simple words, the interpretation relies on the distinction between the
macroscopic state considered in classical thermodynamics and the microscopic
states of statistical mechanics. A thermodynamical state A (a distribution of
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pressure, temperature, etc.) can be realized in many different ways ω at the
microscopic level, where one distinguishes all individual particles, their posi-
tions and velocity vectors. As explained above, the difference of Boltzmann
entropies S(A)−Smax is proportional to log2(Prob(A)), the logarithm of the
probability of the macroscopic state A in the probability space Ω of all micro-
scopic states ω. This leads to the equation

Smax − S(A) = k · I(A), (0.3.1)

where I(A) is the probabilistic information associated with the set A ⊂ Ω.
So, Boltzmann entropy seems to be closer to Shannon information rather than
Shannon entropy. This interpretation causes additional confusion, because
S(A) appears in this equation with negative sign, which reverses the direction
of monotonicity; the more information is “associated” with a macrostate A the
smaller its Boltzmann entropy. This is usually explained by interpreting what
it means to “associate” information with a state. Namely, the information about
the state of the system is an information available to an outside observer. Thus
it is reasonable to assume that this information acually “escapes” from the sys-
tem, and hence it should receive the negative sign. Indeed, it is the knowledge
about the system possessed by an outside observer that increases the usefulness
of the energy contained in that system to do physical work, i.e., it decreases the
system’s entropy.

The interpretation goes further: each microstate in a system appearing to
the observer as being in macrostate A still “hides” the information about its
“identity.” Let Ih(A) denote the joint information still hiding in the system
if its state is identified as A. This entropy is clearly maximal at the maximal
state, and then it equals Smax/k. In a state A it is diminished by I(A), the
information already “stolen” by the observer. So, one has

Ih(A) =
Smax

k
− I(A).

This, together with (0.3.1), yields

S(A) = k · Ih(A),

which provides a new interpretation to the Boltzmann entropy: it is propor-
tional to the information still “hiding” in the system provided the macrostate
A has been detected.

So far the entropy was determined up to an additive constant. We can com-
pute the change of entropy when the system passes from one state to another.
It is very hard to determine the proper additive constant of the Boltzmann
entropy, because the entropy of the maximal state depends on the level of pre-
cision of identifying the microstates. Without a quantum approach, the space
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Ω is infinite and so is the maximal entropy. However, if the space of states is
assumed finite, the absolute entropy obtains a new interpretation, already in
terms of the Shannon entropy (not just of the information function). Namely,
in such case, the highest possible Shannon entropy Hμ(P) is achieved when
P = ξ is the partition of the space Ω into single states ω and μ is the uni-
form measure on Ω, i.e., such that each state has probability (#Ω)−1. It is thus
natural to set

Smax = k · Hμ(ξ) = k log2 #Ω.

The detection that the system is in state A is equivalent to acquiring the infor-
mation I(A) = − log2(μ(A)) = − log2

(
#A
#Ω

)
. By Equation (0.3.1) we get

S(A) = k(− log2 #Ω + log2

(
#A
#Ω

)
) = k log2 #A.

The latter equals (k times) the Shannon entropy of μA, the normalized
uniform measure restricted to A. In this manner we have compared the
Boltzmann entropy directly with the Shannon entropy and we have gotten rid
of the unknown additive constant.

The whole interpretation above is a subject of much discussion, as it makes
entropy of a system depend on the seemingly nonphysical notion of “knowl-
edge” of a mysterious observer. The classical Maxwell’s paradox [Maxwell,
1871] is based on the assumption that it is possible to acquire information about
the parameters of individual particles without any expense of heat or work. To
avoid such paradoxes, one must agree that every bit of acquired information
has its physical entropy equivalent (equal to the Boltzmann constant k), by
which the entropy of the memory of the observer increases. In consequence,
erasing one bit of information from a memory (say, of a computer) at tempera-
ture T , results in the emission of heat in amount kT to the environment. Such
calculations set limits on the theoretical maximal speed of computers, because
the heat can be driven away with a limited speed only.

0.3.4 Dynamical entropy

This is the key entropy notion in ergodic theory; a version of the Kolmogorov–
Sinai entropy for one partition. It refers to Shannon entropy, but it differs
significantly as it makes sense only in the context of a measure-preserving
transformation. Let T be a measurable transformation of the space Ω, which
preserves the probability measure μ, i.e., such that μ(T−1(A)) = μ(A) for
every measurable set A ⊂ Ω. Let P be a finite measurable partition of Ω and
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let Pn denote the partition P ∨ T−1(P) ∨ · · · ∨ T−n+1(P) (the least common
refinement of n preimages of P). By a subadditivity argument, the sequence of
Shannon entropies 1

nHμ(Pn) converges to its infimum. The limit

hμ(T,P) = lim
n

1
n

Hμ(Pn) (0.3.2)

is called the dynamical entropy of the process generated by P under the action
of T . This notion has a very important physical interpretation, which we now
try to capture.

First of all, one should understand that in the passage from a physical system
to its mathematical model (a dynamical system) (Ω, μ, T ), the points ω ∈ Ω
should not be interpreted as particles nor the transformation T as the way the
particles move around the system. Such an interpretation is sometimes possi-
ble, but has a rather restricted range of applications. Usually a point ω (later
we will use the letter x) represents the physical state of the entire physical
system. The space Ω is hence called the phase space. The transformation T is
interpreted as the set of physical rules causing the system that is currently at
some state ω to assume in the following instant of time (for simplicity we con-
sider models with discrete time) the state Tω. Such a model is deterministic in
the sense that the initial state has “imprinted” the entire future evolution. Usu-
ally, however, the observer cannot fully determine the “identity” of the initial
state. The observer knows only the values of a few measurements, which give
only a rough information, and the future of the system is, from his/her stand-
point, random. In particular, the values of future measurements are random
variables. As time passes, the observer learns more and more about the evo-
lution (by repeating his measurements) through which, in fact, he/she learns
about the initial state ω. A finite-valued random variable X imposes a finite
partition P of the phase space Ω. After time n, the observer has learned the
values X(ω),X(Tω), . . . ,X(Tnω) i.e., he/she has learned which element of
the partition Pn contains ω. His/her acquired information about the “identity”
of ω equals IPn(ω), the expected value of which is Hμ(Pn). It is now seen
directly from the definition that:

• The dynamical entropy equals the average (over time and the phase space)
gain in one step of information about the initial state.

Notice that it does not matter whether in the end (at time infinity) the observer
determines the initial state completely, or not. What matters is the “gain of
information in one step.”

If the transformation T is invertible, we can also assume that the evolution
of the system runs from time −∞, i.e., it has an infinite past. In such case ω
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should be called the current state rather than initial state (in a process that runs
from time −∞, there is no initial state). Then the entropy hμ(T,P) can be
computed alternatively using conditional entropy:

hμ(T,P) = lim
n

H(P|T (P) ∨ T 2(P) · · · ∨ Tn−1(P)) = H(P|P−),

where P− is the sigma-algebra generated by all partitions Tn(P) (n ≥ 0) and
is called the past. This formula provides another interpretation:

• The dynamical entropy equals the expected amount of information about the
current state ω acquired, in addition to was already known from the infinite
past, by learning the element of the partition P to which ω belongs.

Notice that in this last formulation the averaging over time is absent.

0.3.5 Dynamical entropy as data compression rate

The interpretation of entropy given in this subsection is going to be fundamen-
tal for our understanding of dynamical entropy, in fact, we will also refer to a
similar interpretation when discussing topological dynamics.

We will distinguish two kinds of data compression: “horizontal” and “ver-
tical.” In horizontal data compression we are interested in replacing computer
files by other files, as short as possible. We want to “shrink them horizon-
tally.” Vertical data compression concerns infinite sequences of symbols inter-
preted as signals. Such signals occur for instance in any “everlasting” data
transmission, such as television or radio broadcasting. Vertical data compres-
sion attempts to losslessly translate the signal maintaining the same speed of
transmission (average lengths of incoming files) but using a smaller alphabet.
We call it “vertical” simply by contrast to “horizontal.” One can imagine that
the symbols of a large alphabet, say of cardinality 2k, are binary columns of
k zeros or ones, and then the vertical data compression will reduce not the
length but the “height” of the signal. This kind of compression is useful for
data transmission “in real time”; a compression device translates the incoming
signal into the optimized alphabet and sends it out at the same speed as the
signal arrives (perhaps with some delay).

First we discuss the connection between entropy and the horizontal data
compression. Consider a collection of computer files, each in form of a long
string B (we will call it a block) of symbols belonging to some finite alphabet
Λ. For simplicity let us assume that all files are binary, i.e., that Λ = {0, 1}.

Suppose we want to compress them to save the disk space. To do it, we
must establish a coding algorithm φ which replaces our files B by some other
(preferably shorter) files φ(B) so that no information is lost, i.e., we must
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also have a decoding algorithm φ−1 allowing us to reconstruct the original
files when needed. Of course, we assume that our algorithm is efficient, that
is, it compresses the files as much as possible. Such an algorithm allows us
to measure the effective information content of every file: a file carries s bits
of information (regardless of its original size) if it can be compressed to a
binary file of length s(B) = s. This complies with our previous interpretation
of information: each symbol in the compressed file is an answer to a binary
question, and s(B) is the optimized number of answers needed to identify the
original file B.

Somewhat surprisingly, the amount of information s(B) depends not only
on the initial size m = m(B) of the original file B but also on subtle properties
of its structure. Evidently s(B) is not the simple-minded Shannon information
function. There are 2m binary blocks of a given length m, all of them are
“equally likely” so that each has “probability” 2−m, and hence each should
carry the same “amount of information” equal to m log2 2 = m. But s(B)
does not behave that simply!

Example Consider the two bitmaps shown in this figure. They have the same

dimensions and the same “density,” i.e., the same amount of black pixels. As
uncompressed computer files, they occupy exactly the same amount of disk space.
However, if we compress them, using nearly any available “zipping” program, the
sizes of the zipped files will differ significantly. The left-hand side picture will
shrink nearly 40 times, while the right-hand side one only 8 times. Why? To quickly
get an intuitive understanding of this phenomenon imagine that you try to pass these
pictures over the phone to another person, so that he/she can literally copy it based
on your verbal description. The left picture can be precisely described in a few sen-
tences containing the precise coordinates of only two points, while the second pic-
ture, if we want it precisely copied, requires tediously dictating the coordinates of
nearly all black pixels. Evidently, the right-hand side picture carries more informa-
tion. A file can be strongly compressed if it reveals some regularity or predictability,
which can be used to shorten its description. The more random it looks, the more
information must be passed over to the recipient, and the less it can be compressed
no matter how intelligent a zipping algorithm is used.
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How can we a priori, i.e., without experimenting with compression algo-
rithms, just by looking at the file’s internal structure, predict the compression
rate s(B)/m(B) of a given block B? Here is an idea: The compression rate
should be interpreted as the average information content per symbol. Recall
that the dynamical entropy was interpreted similarly, as the expected gain of
information per step. If we treat our long block as a portion of the orbit of
some point ω representing a shift-invariant measure μ on the symbolic space
ΛN∪{0} of all sequences over Λ, then the global information carried by this
block should be approximately equal to its length (number of steps in the shift
map) times the dynamical entropy of μ. It will be only an approximation, but
it should work. The alphabet Λ plays the role of the finite partition P of the
symbolic space, and the partition Pn used in the definition of the dynamical
entropy can be identified with Λn – the collection of all blocks over Λ of length
n. Any shift-invariant measure on ΛN∪{0} assigns values to all blocks A ∈ Λn

(n ∈ N) following some rules of consistency; we skip discussing them now. It
is enough to say that a long block B (of a very large length m) nearly deter-
mines a shift-invariant measure: for subblocks A of lengths n much smaller
than m (but still very large) it determines their frequencies:

μ(B)(A) =
#{1 ≤ i ≤ m − n + 1 : B[i, i + n − 1] = A}

m − n + 1
,

i.e., it associates with A the probability of seeing A in B at a randomly cho-
sen “window” of length n. Of course, this measure is not completely defined
(values on longer blocks are not determined), so we cannot perform the full
computation of the dynamical entropy. But instead, we can use the approxi-
mate value 1

nHμ(B)(Λ
n) (see (0.3.2)), which is defined and practically com-

putable for some reasonable length n. We call it the combinatorial entropy of
the block B. In other words, we decide that the compression rate should be
approximately

s(B)
m(B)

≈ 1
n

Hμ(B)(Λ
n). (0.3.3)

As we will prove later, this idea works perfectly well; in most cases the com-
binatorial entropy estimates the compression rate very accurately. For now we
replace a rigorous proof with a simple example.

Example We will construct a lossless compression algorithm and apply it to a file
B of a finite length m. The compressed file will consist of a decoding instruction
followed by the coded image φ(B) of B. To save on the output length, the decod-
ing instruction must be relatively short compared to m. This is easily achieved
in codes which refer to relatively short components of the block B. For exam-
ple, the instruction of the code may consist of the complete list of subblocks A
(appearing in B) of some carefully chosen length n followed by the list of their
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images Φ(A). The images may have different lengths (as short as possible). The
assignment A �→ Φ(A) will depend on B, therefore it must be included in the
output file. The coded image φ(B) is obtained by cutting B into subblocks B =
A1A2 . . . Ak of length n and concatenating the images of these subblocks: φ(B) =
Φ(A1)Φ(A2) · · ·Φ(Ak). There are additional issues here: in order for such a code
to be invertible, the images Φ(A) must form a prefix free family (i.e., no block in
this family is a prefix of another). Then there is always a unique way of cutting
φ(B) back into the images Φ(Ai). But this does not affect essentially the computa-
tions. For best compression results, it is reasonable to assign shortest images to the
subblocks appearing in B with highest frequencies. For instance, consider a long
binary block

B = 010001111001111...110 = 010, 001, 111, 001, 111, ..., 110

On the right, B is shown divided into subblocks of length n = 3. Suppose that the
frequencies of the subblocks in this division are:

000 − 0% 001 − 40% 010 − 10% 011 − 10%
100 − 0% 101 − 0% 110 − 10% 111 − 30%

The theoretical value of the compression rate (obtained using the formula (0.3.3)
for n = 3) is(

−0.4 log2(0.4) − 0.3 log2(0.3) − 3 · 0.1 log2(0.1)
)
/3 ≈ 68.2%.

A binary prefix free code giving shortest images to most frequent subblocks is

001 �→ 0,

111 �→ 10,

010 �→ 110,

011 �→ 1110,

110 �→ 1111.

The compression rate achieved on B using this code equals

(0.4 × 1 + 0.3 × 2 + 0.1 × 3 + 0.1 × 4 + 0.1 × 4)/3 = 70%

(ignoring the finite length of the decoding instruction, which is simply a recording
of the above code). This code is nearly optimal (at least for this file).

We now focus on the vertical data compression. Its connection with the
dynamical entropy is easier to describe but requires a more advanced appara-
tus. Since we are dealing with an infinite sequence (the signal), we can assume
it represents some genuine (not only approximate as it was for a long but finite
block) shift-invariant probability measure μ on the symbolic space ΛZ. Recall
that the dynamical entropy h = hμ(σ, Λ) (where σ denotes the shift map) is
the expected amount of new information per step (i.e., per incoming symbol
of the signal). We intend to replace the alphabet by a possibly small one. It is
obvious that if we manage to losslessly replace the alphabet by another, say
Λ0, then the entropy h cannot exceed log2 #Λ0. Conversely, it turns out that
any alphabet of cardinality #Λ0 > 2h is sufficient to encode the signal. This
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is a consequence of the famous Krieger Generator Theorem (in this book it is
Theorem 4.2.3). Thus we have the following connection:

log2(#Λ0 − 1) ≤ h ≤ log2 #Λ0,

where Λ0 is the smallest alphabet allowing to encode the signal. In this manner
the cardinality of the optimal alphabet is completely determined by the entropy.
If 2h happens to be an integer we seem to have two choices, but there is an easy
way to decide which one to choose (see Theorem 4.2.3).

0.3.6 Entropy as disorder

The interplay between Shannon and Boltzmann entropy has led to associat-
ing with the word “entropy” some colloquial understanding. In all its strict
meanings (described above), entropy can be viewed as a measure of disorder
and chaos, as long as by “order” one understands that “things are segregated
by their kind” (e.g. by similar properties or parameter values). Chaos is the
state of a system (physical or dynamical) in which elements of all “kinds” are
mixed evenly throughout the space. For example, a container with gas is in its
state of maximal entropy when the temperature and pressure are constant. That
means there is approximately the same amount of particles in every unit of the
volume, and the proportion between slow and fast particles is everywhere the
same. States of lower entropy occur when particles are “organized”: slower
ones in one area, faster ones in another. A signal (an infinite sequence of sym-
bols) has large entropy (i.e., compression rate) when all subblocks of a given
length n appear with equal frequencies in all sufficiently long blocks. Any trace
of “organization” and “logic” in the structure of the file allows for its compres-
sion and hence lowers its entropy. These observations generated a colloquial
meaning of entropy. To have order in the house, means to have food separated
from utensils and plates, clothing arranged in the closet by type, trash segre-
gated and deposited in appropriate recycling containers, etc. When these things
get mixed together “entropy” increases causing disorder and chaos. Entropy is
a term in social sciences, too. In a social system, order is associated with clas-
sification of the individuals by some criteria (stratification, education, skills,
etc.) and assigning to them appropriate positions and roles in the system. Law
and other mechanisms are enforced to keep such order. When this classifica-
tion and assignment fails, the system falls into chaos called “entropy.” Entropy
equals lack of diversity.
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0.4 Conventions

In the main body of the book (Parts I – III) we are using a consistent notational
system. Every symbol has an assigned fixed meaning throughout the book. If
a letter is multiply used, the meanings are distinguished by font types. The
complete list of symbols is provided at the end.

The main conventions include:

• The capital letters X,Y,Z (sometimes with primes or subscripts) are
reserved to denote phase spaces of dynamical systems, lowercase x, y, z are
their elements. The lowercase Greek letters μ, ν, ξ denote probability mea-
sures, while Gothic capitals A,B, etc. stand for sigma-algebras. The let-
ters T, S,R are used for transformations of the phase space that govern the
dynamical system. Boldface T represents an operator on a function space.
Factor maps and other auxiliary maps between spaces are π, φ, ψ. Dual maps
on relevant spaces of measures are denoted by the same letter as the map on
points (exception: T ∗ denotes the dual to a Markov operator). The images
by major maps of elements of their domains are written (whenever possible)
without parentheses, for example Tx, Tμ, πμ, T f .

• The script capitals P,Q,R stand for measurable partitions with elements
(cells) denoted A,B,C, etc. The letters B and C are also used to denote
finite blocks and their associated cylinders (which in fact are cells of cer-
tain partitions of appropriate symbolic spaces). The alphabet in a symbolic
system is Λ (rarely Δ). If we need to distinguish between the alphabet and
the associated zero-coordinate partition of the symbolic space, we use PΛ

for the latter. A special meaning is reserved to the Gothic capital P (with
subscripts); it is used for various spaces whose elements are partitions.

• The letters U,V represent open covers and their cells are U, V , while F,G,H

represent finite families of functions (measurable or continuous) on X .

• The symbols Z, N, N0 and R denote the sets of all integers, positive integers
(natural numbers), nonnegative integers and real numbers, respectively. The
letter S is used as either Z or N0. We try to consistently reserve n for integers
representing the time; whereas k indexes refining sequences of partitions or
covers, while i, j, l,m (sometimes also p, q, r, s, t) are integer indices of all
kinds.

• The letters H and H are reserved to denote various notions of static entropy,
with the boldface version used for topological notions. Similarly, h and
h will be used for dynamical entropy, respectively, measure-theoretic and
topological. Calligraphic H is used for a net or sequence of functions such
as an entropy structure.
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Some other conventions:

• From now on we choose to use only logarithms to base 2. We write just log.
• A sequence will be written as (ai)i≥1 or (ai), or just “the sequence ai,”

when this is not ambiguous.
• Throughout this book, in order to avoid confusingly sounding words we

use “decreasing” and “increasing” in the meaning of “nonincreasing” and
“nondecreasing,” with the adverb “strictly” when the monotonicity is sharp.





Part I

Entropy in ergodic theory





1

Shannon information and entropy

1.1 Information and entropy of probability vectors

We agree (applying the continuous extension) that the real function

η(t) = −t log t (1.1.1)

assumes the value 0 at t = 0. It is strictly concave, i.e., η(pt + qs) > pη(t) +
qη(s) for every t, s ∈ [0, 1], where p ∈ (0, 1), q = 1 − p. Like every concave
nonnegative function on [0, 1], η satisfies the subadditivity condition

η(t + s) ≤ η(t) + η(s),

whenever t, s, t + s ∈ [0, 1] (Exercise 1.1). By iterating and by continuity, we
also obtain countable subadditivity

η
( ∞∑

i=1

ti

)
≤

∞∑
i=1

η(ti),

whenever all above arguments of η belong to [0, 1].

Let P and S denote the set of all countable probability vectors (i.e., nonneg-
ative, with sum equal to 1) and subprobability vectors (likewise, but with sum
in [0, 1]), respectively. Both sets are contained in the space �1 of all absolutely
summable sequences, and we will regard them with the �1 topology. It is an
elementary exercise to check that relatively on P this topology coincides with
the topology of the pointwise convergence (Exercise 1.2), but on S this is no
longer true. For instance P is closed in �1, while it is dense in S in the topology
of the pointwise convergence. Of course, we are mainly interested in probabil-
ity vectors. Subprobabilistic vectors will be technically useful in one place in
the proof of Fact 1.1.11, so until then we are forced to check all statements for
them as well.

Below, we define the key notions of entropy theory.
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Definition 1.1.2 If p = (pi)i∈N is a probability vector, its associated infor-
mation function Ip : N → [0,∞] is defined by

Ip(i) = − log pi.

The entropy of p is defined as

H(p) =
∞∑

i=1

piIp(i) = −
∞∑

i=1

pi log(pi) =
∞∑

i=1

η(pi).

This nonnegative value can be infinite but it is certainly finite for vectors
with at most finitely many nonzero terms and vectors tending to zero suf-
ficiently fast (see Fact 1.1.4 below). The function H can be applied to any
countable sequence with values in [0, 1] (in particular to subprobabilistic vec-
tors) and here it satisfies the following:

Fact 1.1.3 The function H is concave and on the set where H is finite the
concavity is strict.

Proof Let p = (p1, p2, . . . ), q = (q1, q2, . . . ) and r = (r1, r2, . . . ) belong
to [0, 1]N, and suppose that r = pp + qq where p ∈ (0, 1), q = 1 − p. Then
by concavity of the function η

H(r) =
∞∑

i=1

η(ppi + qqi) ≥
∞∑

i=1

(
pη(pi) + qη(qi)

)
= pH(p) + qH(q),

and since η is strictly concave and all terms of the above sums are nonnegative,
equality holds when either pi = qi for all i, or both sides are infinite.

We note the following criterion for finiteness of the function H on probabil-
ity vectors:

Fact 1.1.4 If a probability vector p = (pi) satisfies
∑∞

i=1 ipi < ∞, then
H(p) < ∞.

Proof Because the function − log t is decreasing, while −t log t is increasing
(certainly for values below 1/4), we have
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H(p) = −
∑

i

pi log(pi) =

p1 log p1 +
∑

i≥2:pi>2−i

pi(− log(pi)) +
∑

i≥2:pi≤2−i

(−pi log(pi)) ≤

p1 log p1 +
∑

i≥2:pi>2−i

pi(− log(2−i)) +
∑

i≥2:pi≤2−i

(−2−i log(2−i)) ≤

p1 log p1 +
∑

i

ipi +
∑

i

i2−i < ∞.

Moreover, for vectors as above the following holds: If we let p = 1/
∑

i ipi

(clearly, p ∈ (0, 1]), then H(p) ≤ 1
pH(p, 1−p), and equality is attained if and

only if p is the geometric distribution pi = p(1 − p)i−1. Although this fact
can be proved using analysis (constrained maximum), we will prove it using
dynamical methods much later, in Section 4.3 (Fact 4.3.7).

Let Pm (respectively, Sm) denote the subset of P (respectively, of S) con-
sisting of all m-dimensional probability (respectively, subprobability) vectors,
i.e., satisfying pi = 0 for all i > m. Obviously, Pm (and Sm) are com-
pact, and the function H is continuous (hence uniformly continuous) on these
sets, and assumes the maximal value equal to log m at the probability vector
p = ( 1

m , 1
m , . . . , 1

m , 0, 0, 0, . . . ).
Below we provide a tool very useful for handling countable vectors (and

later countable partitions):

Definition 1.1.5 For p ∈ P we let p(m) ∈ Pm denote the vector obtained
from p by taking its m − 1 largest terms and, as the mth term, the sum of
the rest, and ordering the resulting m terms decreasingly. For p ∈ S, p(m) is
defined identically, and it belongs to Sm.

It is not hard to see that the map p �→ p(m) is uniformly continuous in �1.
Moreover, we have

Fact 1.1.6

H(p) = lim
m

↑ H(p(m)).

Proof By the finite and countable subadditivity of η we have

H(p(m)) ≤ H(p(m+1)) and H(p(m)) ≤ H(p).
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On the other hand, ordering the terms pi of p decreasingly, we can write

H(p) = lim
m

m−1∑
i=1

η(pi) ≤ lim
m

H(p(m)). (1.1.7)

Combining the above fact with the uniform continuity of the map p �→ p(m)

and that of H on Pm (and on Sm), we conclude the following

Fact 1.1.8 The functions p �→ H(p(m)) are �1-uniformly continuous and
p �→ H(p) is �1-lower semicontinuous on P (and on S) (see Appendix A.1.4
for the definition of lower semicontinuity).

We shall be needing another observation:

Fact 1.1.9 For each 0 ≤ M < ∞ the set of all decreasingly ordered count-
able probability vectors p with H(p) ≤ M is compact in �1. The same holds
for subprobability vectors.

Before the proof we note that the statement does not hold without the order-
ing. Indeed, if pn is the probability vector whose all terms are 0 except the nth
term which is 1, then H(pn) = 0, and the set {pn : n ≥ 1} is 2-separated
in �1.

Proof of Fact 1.1.9 Let p be a decreasingly ordered probability vector. If
H(p) ≤ M , then for every ε > 0 the joint mass of the terms pi smaller
than 2−

M
ε is at most ε, for otherwise already the sum of −pi log pi over these

terms would exceed ε · M
ε = M . The cardinality of the terms larger than or

equal to 2−
M
ε is clearly bounded by K(ε) = 2

M
ε . Thus, p has the following

property:

• For every ε > 0 the sum of the terms above index K(ε) is at most ε.

The set of all probability vectors with this property is totally bounded in �1.
Indeed, every such vector can be, up to ε, approximated by its restriction to
the initial K(ε) terms, while the set of all subprobability vectors of dimension
K(ε) obviously has a finite ε-net. This net becomes a 2ε-net in the set in ques-
tion. On the other hand, by lower semicontinuity of H , the set of probability
vectors with H(p) ≤ M is closed in �1, and its subset of decreasing vectors
is also closed. We have shown that the set of decrasingly ordered probability
vectors p with H(p) ≤ M is closed in �1 and contained in a totally bounded
set. By completeness of the space �1, such a set is compact. The proof for
subprobability vectors is identical.



1.1 Information and entropy of probability vectors 27

Before we continue we need some more notation. Let ξ be a probability dis-
tribution on [0, 1]N. The barycenter of ξ is the sequence xξ = (xξ

1, x
ξ
2, . . . )

such that for each natural i, xξ
i =

∫
xi dξ(x) (here x = (x1, x2, . . . )). This

notion generalizes convex combinations of vectors, which correspond to
barycenters of finitely supported probability distributions ξ. Let pξ = (pξ

1,

pξ
2, . . . ) be the barycenter of a probability distribution ξ supported on P. We

claim that then pξ ∈ P. Indeed,

∞∑
i=1

pξ
i =

∞∑
i=1

∫
pi dξ =

∫ ∞∑
i=1

pi dξ = 1,

where the central equality follows from monotone convergence of the finite
sums to the infinite sum and linearity of the integral. By the same argument,
the barycenter of a distribution supported by S belongs to S.

A real function f on P (respectively on S) is supharmonic if for every prob-
ability distribution ξ on P (respectively on S), we have f(pξ) ≥

∫
f(p) dξ.

(The notions of barycenter and of supharmonic function are discussed in a
more general context in Appendix A.2.3.) The following holds.

Fact 1.1.10 As a concave lower semicontinuous function, the entropy H is
supharmonic on P and on S (see Fact A.2.10).

The next fact will become important in Section 3.1. It says that on the set of
probability vectors p such that H(p) ≤ M , the supharmonic property of H is
�1-uniformly strict, in the following sense:

Fact 1.1.11 Fix some positive number M . For every ε > 0 there exists δ > 0
such that whenever ξ is a probability distribution on P with barycenter pξ

such that H(pξ) ≤ M and
∫

H(p) dξ > H(pξ) − δ, then∫
‖pξ − p‖1 dξ < ε,

where ‖ · ‖1 denotes the norm in �1.

Proof The �1-uniform strictness of the concavity of H is obvious on the inter-
val [0, 1] because this set is compact, as is the set of all probability measures
supported by this set, and H (which is equal to η) is uniformly continuous and
strictly concave. This property easily passes to any finite-dimensional cube
[0, 1]m (m ∈ N) and thus to Sm.

Let us proceed to countable probability vectors, as in the assertion. We
can change the order of coordinates so that pξ becomes decreasingly ordered.


