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DIRECT NUMERICAL SIMULATIONS
OF GAS–LIQUID MULTIPHASE FLOWS

Accurately predicting the behavior of multiphase flows is a problem of immense
industrial and scientific interest. Using modern computers, researchers can now
study the dynamics in great detail, and computer simulations are yielding unprece-
dented insight. This book provides a comprehensive introduction to direct numer-
ical simulations of multiphase flows for researchers and graduate students.

After a brief overview of the context and history, the authors review the gov-
erning equations. A particular emphasis is placed on the “one-fluid” formulation,
where a single set of equations is used to describe the entire flow field and in-
terface terms are included as singularity distributions. Several applications are
discussed, such as atomization, droplet impact, breakup and collision, and bubbly
flows, showing how direct numerical simulations have helped researchers advance
both our understanding and our ability to make predictions. The final chapter
gives an overview of recent studies of flows with relatively complex physics, such
as mass transfer and chemical reactions, solidification, and boiling, and includes
extensive references to current work.
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S T ÉP H A N E Z A L E S K I is a Professor of Mechanics at the Université Pierre et
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Preface

Progress is usually a sequence of events where advances in one field open up new
opportunities in another, which in turn makes it possible to push yet another field
forward, and so on. Thus, the development of fast and powerful computers has
led to the development of new numerical methods for direct numerical simula-
tions (DNS) of multiphase flows that have produced detailed studies and improved
knowledge of multiphase flows. While the origin of DNS of multiphase flows goes
back to the beginning of computational fluid dynamics in the early sixties, it is
only in the last decade and a half that the field has taken off. We, the authors of
this book, have had the privilege of being among the pioneers in the development
of these methods and among the first researchers to apply DNS to study relatively
complex multiphase flows. We have also had the opportunity to follow the progress
of others closely, as participants in numerous meetings, as visitors to many labo-
ratories, and as editors of scientific journals such as the Journal of Computational
Physics and the International Journal of Multiphase Flows. To us, the state of the
art can be summarized by two observations:

• Even though there are superficial differences between the various approaches
being pursued for DNS of multiphase flows, the similarities and commonalities
of the approaches are considerably greater than the differences.

• As methods become more sophisticated and the problems of interest become
more complex, the barrier that must be overcome by a new investigator wishing
to do DNS of multiphase flows keeps increasing.

This book is an attempt to address both issues.
The development of numerical methods for flows containing a sharp interface,

as fluids consisting of two or more immiscible components inherently do, is cur-
rently a “hot” topic and significant progress has been made by a number of groups.
Indeed, for a while there was hardly an issue of the Journal of Computational
Physics that did not contain one or more papers describing such methods. In the
present book we have elected to focus mostly on two specific classes of methods:
volume of fluid (VOF) and front-tracking methods. This choice reflects our own
background, as well as the fact that both types of method have been very successful
and are responsible for some of the most significant new insights into multiphase
flow dynamics that DNS has revealed. Furthermore, as emphasized by the first
bullet point, the similarities in the different approaches are sufficiently great that

ix



x Preface

a reader of the present book would most likely find it relatively easy to switch to
other methods capable of capturing the interface, such as level set and phase field.

The goal of DNS of multiphase flows is the understanding of the behavior and
properties of such flows. We believe that while the development of numerical
methods is important, it is in their applications where the most significant rewards
are to be found. Thus, we include in the book several chapters where we describe
the use of DNS to understand specific systems and what has been learned up to now.
This is inherently a somewhat biased sample (since we elected to talk about studies
that we know well – our own!), but we feel that the importance of these chapters
goes beyond the specific topics treated. We furthermore firmly believe that the
methods that we describe here have now reached sufficient maturity so that they
can be used to probe the mysteries of a large number of complex flows. Therefore,
the application of existing methods to problems that they are suited for and the
development of new numerical methods for more complex flows, such as those
described in the final chapter, are among the most exciting immediate directions
for DNS of multiphase flows.

Our work has benefitted from the efforts of many colleagues and friends. First
and foremost we thank our students, postdoctoral researchers and visitors for the
many and significant contributions they have made to the work presented here. GT
would like to thank his students, Drs. D. Yu, M. Song, S.O. Unverdi, E. Ervin,
M.R. Nobari, C.H.H. Chang, Y.-J. Jan, S. Nas, M. Saeed, A. Esmaeeli, F. Tounsi,
D. Juric, N.C. Suresh, J. Han, J. Che, B. Bunner, N. Al-Rawahi, W. Tauber, M.
Stock, S. Biswas, and S. Thomas, as well as the following visitors and postdoctoral
researchers: S. Homma, J. Wells, A. Fernandez, and J. Lu. RS would like to thank
his students, Drs. E. Aulisa, L. Campioni, A. Cervone, and V. Marra, as well as
his collaborators S. Manservisi, P. Yecko, and G. Zanetti. SZ would like to thank
his students, Drs. B. Lafaurie, F.-X. Keller, J. Li, D. Gueyffier, S. Popinet, A.
Leboissetier, L. Duchemin, O. Devauchelle, A. Bagué, and G. Agbaglah, as well
as his collaborators, visitors, and postdoctoral researchers, G. Zanetti, A. Nadim,
J.-M. Fullana, C. Josserand, P. Yecko, M. and Y. Renardy, E. Lopez-Pages, T.
Boeck, P. Ray, D. Fuster, G. Tomar, and J. Hoepffner. SZ would also like to thank
his trusted friends and mentors, Y. Pomeau, D.H. Rothman, and E.A. Spiegel, for
their invaluable advice. We also thank Ms. Victoria Tsengué Ingoba for reading the
complete book twice and pointing out numerous typos and mistakes. Any errors,
omissions, and ambiguities are, of course, the fault of the authors alone.

And last, but certainly not least, we would like to thank our families for unerring
support, acceptance of long working hours, and tolerance of (what sometimes must
have seemed) obscure priorities.

Grétar Tryggvason
Ruben Scardovelli

Stéphane Zaleski
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Introduction

Gas–liquid multiphase flows play an essential role in the workings of Nature and
the enterprises of mankind. Our everyday encounter with liquids is nearly always
at a free surface, such as when drinking, washing, rinsing, and cooking. Similarly,
such flows are in abundance in industrial applications: heat transfer by boiling is
the preferred mode in both conventional and nuclear power plants, and bubble-
driven circulation systems are used in metal processing operations such as steel
making, ladle metallurgy, and the secondary refining of aluminum and copper. A
significant fraction of the energy needs of mankind is met by burning liquid fuel,
and a liquid must evaporate before it burns. In almost all cases the liquid is there-
fore atomized to generate a large number of small droplets and, hence, a large
surface area. Indeed, except for drag (including pressure drops in pipes) and mix-
ing of gaseous fuels, we would not be far off to assert that nearly all industrial
applications of fluids involve a multiphase flow of one sort or another. Sometimes,
one of the phases is a solid, such as in slurries and fluidized beds, but in a large
number of applications one phase is a liquid and the other is a gas. Of natural gas–
liquid multiphase flows, rain is perhaps the experience that first comes to mind, but
bubbles and droplets play a major role in the exchange of heat and mass between
the oceans and the atmosphere and in volcanic explosions. Living organisms are
essentially large and complex multiphase systems.

Understanding the dynamics of gas–liquid multiphase flows is of critical engi-
neering and scientific importance and the literature is extensive. From a mathe-
matical point of view, multiphase flow problems are notoriously difficult and much
of what we know has been obtained by experimentation and scaling analysis. Not
only are the equations, governing the fluid flow in both phases, highly nonlinear,
but the position of the phase boundary must generally be found as a part of the so-
lution. Exact analytical solutions, therefore, exist only for the simplest problems,
such as the steady-state motion of bubbles and droplets in Stokes flow, linear invis-
cid waves, and small oscillations of bubbles and droplets. Experimental studies of
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2 Introduction

Fig. 1.1. A picture of many buoyant bubbles rising in an otherwise quiescent liquid pool.
The average bubble diameter is about 2.2 mm and the void fraction is approximately 0.75%.
From Bröder and Sommerfeld (2007). Reproduced with permission.

multiphase flows are not easy either. For many flows of practical interest the length
scales are small, the time scales are short, and optical access to much of the flow is
limited. The need for numerical solutions of the governing equations has, therefore,
been felt by the multiphase research community since the origin of computational
fluid dynamics, in the late fifties and early sixties. Although much has been accom-
plished, simulations of multiphase flows have remained far behind homogeneous
flows where direct numerical simulations (DNS) have become a standard tool in
turbulence research.

In this book we use DNS to mean simulations of unsteady flow containing a
non-trivial range of scales, where the governing equations are solved using suffi-
ciently fine grids so that all continuum time- and length-scales are fully resolved.
We believe that this conforms reasonably well with commonly accepted usage,
although we recognize that there are exceptions. Some authors feel that DNS
refers exclusively to fully resolved simulations of turbulent flows, while others
seem to use DNS for any computation of fluid flow that does not include a turbu-
lence model. Our definition falls somewhere in the middle. We also note that some
authors, especially in the field of atomization – which is of some importance in this
book – refer to unresolved simulations without a turbulence model as LES. We also
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Fig. 1.2. A photograph of an atomization experiment performed with coaxial water and
air jets reproduced from Villermaux et al. (2004). Reproduced with permission. Copyright
American Physical Society.

prefer to call such computations DNS, especially as a continuous effort is made in
such simulations to check the results as the grid is refined. While it is not surpris-
ing that DNS of multiphase flows lags behind homogeneous flows, considering the
added difficulty, the situation is certainly not due to lack of effort. However, in the
last decade and a half or so, these efforts have started to pay off and rather signifi-
cant progress has been accomplished on many fronts. It is now possible to do DNS
for a large number of fairly complex systems and DNS are starting to yield infor-
mation that are likely to be unobtainable in any other way. This book is an effort
to assess the state of the art, to review how we came to where we are, and to pro-
vide the foundation for further progress, involving even more complex multiphase
flows.

1.1 Examples of multiphase flows

Since this is a book about numerical simulations, it seems appropriate to start by
showing a few “real” systems. The following examples are picked somewhat ran-
domly, but give some insight into the kind of systems that can be examined by
direct numerical simulations.

Bubbles are found in a large number of industrial applications. For example,
they carry vapor away from hot surfaces in boiling heat transfer, disperse gases
and provide stirring in various chemical processing systems, and also affect the
propagation of sound in the ocean. To design systems that involve bubbly flows it
is necessary to understand how the collective rise velocity of many bubbles depends
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Fig. 1.3. The splash generated when a droplet hits a free surface. From A. Davidhazy.
Rochester Institute of Technology. Reproduced with permission.

on the void fraction and the bubble size distribution, how bubbles disperse and how
they stir up the fluid. Figure 1.1 is a picture of air bubbles rising through water in
a small bubble column. The average bubble diameter is about 2.2 mm and the
void fraction is approximately 0.75%. At these parameters the bubbles rise with an
average velocity of roughly 0.27 m/s, but since the bubbles are not all of the same
size they will generally rise with different velocities.

To generate sprays for combustion, coating and painting, irrigation, humidifi-
cation, and a large number of other applications, a liquid jet must be atomized.
Predicting the rate of atomization and the resulting droplet size distribution, as
well as droplet velocity, is critical to the successful design of such processes. In
Fig. 1.2, a liquid jet is ejected from a nozzle of diameter 8 mm with a velocity of
0.6 m/s. To accelerate its breakup, the jet is injected into a co-flowing air stream,
with a velocity of 35 m/s. Initially, the shear between the air and the liquid leads
to large axisymmetric waves, but as the waves move downstream the air pulls long
filaments from the crest of the wave. The filaments then break into droplets by a
capillary instability. See Marmottant and Villermaux (2001) and Villermaux et al.
(2004) for details.

Droplets impacting solid or liquid surfaces generally splash, often disrupting the
surface significantly. Rain droplets falling on the ground often result in soil erosion,
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Fig. 1.4. Massive cavitation near the maximum thickness of an airfoil. The flow is from
the left to right. In addition to volume change due to phase change, the compressibility of
the bubbles is often important (see Section 11.1.5). From Kermeen (1956). Reproduced
with permission.

for example. But droplet impact can also help to increase the heat transfer, such as
in quenching and spray cooling, and rain often greatly enhances the mixing at the
ocean surface. Figure 1.3 shows the splash created when a droplet of a diameter of
about 3 mm, released from nearly 0.5 m above the surface, impacts a liquid layer a
little over a droplet-diameter deep. The impact of the droplet creates a liquid crater
and a rim that often breaks into droplets. As the crater collapses, air bubbles are
sometimes trapped in the liquid.

While bubbles are often generated by air injection into a pool of liquid or are
formed by entrainment at a free surface, such as when waves break, they also fre-
quently form when a liquid changes phase into vapor. Such a phase change is
often nucleated at a solid surface and can take place either by heating the liquid
above the saturation temperature, as in boiling, or by lowering the pressure below
the vapor pressure, as in cavitation. Figure 1.4 shows massive cavitation near the
maximum thickness of an airfoil submerged in water. The chord of the airfoil is
7.6 cm, the flow speed is 13.7 m/s from left to right, and the increase in the liquid
velocity as it passes over the leading edge of the airfoil leads to a drop in pressure
that is sufficiently large so that the liquid “boils.” As the vapor bubbles move into
regions of higher pressure at the back of the airfoil, they collapse. However, resid-
ual gases, dissolved in the liquid, diffuse into the bubbles during their existence,
leaving traces that are visible after the vapor has condensed.
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Fig. 1.5. Microstructure of an aluminum–silicon alloy. From D. Apelian, Worcester Poly-
technic Institute. Reproduced with permission.

In many multiphase systems one phase is a solid. Suspensions of solid particles
in liquids or gases are common and the definition of multiphase flows is sometimes
extended to cover flows through or over complex stationary solids, such as packed
beds, porous media, forests, and cities. The main difference between gas–liquid
multiphase flows and solid–gas or solid–liquid multiphase flows is usually that the
interface maintains its shape in the latter cases, even though the location of the
solid may change. In some instances, however, that is not the case. Flexible solids
can change their shape in response to fluid flow, and during solidification or ero-
sion the boundary can evolve, sometimes into shapes that are just as convoluted
as encountered for gas–liquid systems. When a metal alloy solidifies, the solute is
initially rejected by the solid phase. This leads to constitutional undercooling and
an instability of the solidification front. The solute-rich phase eventually solidifies,
but with a very different composition than the material that first became solid. The
size, shape, and composition of the resulting microstructures determine the prop-
erties of the material, and those are usually sensitively dependent on the various
process parameters. A representative micrograph of an Al–Si alloy prepared by
metallographic techniques and etching to reveal phase boundaries and interfaces is
shown in Fig. 1.5. The light gray phase is almost pure aluminum and solidifies
first, but constitutional undercooling leads to dendritic structures of a size on the
order of a few tens of micrometers.

Living systems provide an abundance of multiphase flow examples. Suspended
blood cells and aerosol in pulmonary flow are obvious examples at the “body”
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Fig. 1.6. A school of yellow-tailed goatfish (Mulloidichthys flavolineatus) near the North-
west Hawaiian Islands. Since self-propelled bodies develop a thrust-producing wake, their
collective dynamics is likely to differ significantly from rising or falling bodies. From the
NOAA Photo Library.

scale, as are the motion of organs and even complete individuals. But even more
complex systems, such as the motion of a flock of birds through air and a school
of fish through water, are also multiphase flows. Figure 1.6 show a large number
of yellow-tailed goatfish swimming together and coordinating their movement. An
understanding of the motion of both a single fish and the collective motion of a
large school may have implication for population control and harvesting, as well
as the construction of mechanical swimming and flying devices.

1.2 Computational modeling

Computations of multifluid (two different fluids) and multiphase (same fluid, dif-
ferent phases) flows are nearly as old as computations of constant-density flows.
As for such flows, a number of different approaches have been tried and a number
of simplifications used. In this section we will attempt to give a brief but compre-
hensive overview of the major efforts to simulate multi-fluid flows. We make no
attempt to cite every paper, but hope to mention all major developments.

1.2.1 Simple flows (Re = 0 and Re = ∞)

In the limit of either very large or very small viscosity (as measured by the Reynolds
number, see Section 2.2.6), it is sometimes possible to simplify considerably the
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flow description by either ignoring inertia completely (Stokes flow) or by ignoring
viscous effects completely (inviscid flow). For inviscid flows it is usually further
necessary to assume that the flow is irrotational, except at fluid interfaces. Most
success has been achieved for disperse flows of undeformable spheres where, in
both these limits, it is possible to reduce the governing equations to a system of cou-
pled ordinary differential equations (ODEs) for the particle positions. For Stokes
flow the main developer was Brady and his collaborators (see Brady and Bossis
(1988) for a review of early work) who have investigated extensively the proper-
ties of suspensions of particles in shear flows, among other problems. For inviscid
flows, Sangani and Didwania (1993) and Smereka (1993) simulated the motion
of spherical bubbles in a periodic box and observed that the bubbles tended to
form horizontal clusters, particularly when the variance of the bubble velocity was
small.

For both Stokes flows and inviscid potential flows, problems with deformable
boundaries can be simulated with boundary integral techniques. One of the earli-
est attempts was due to Birkhoff (1954), where the evolution of the interface be-
tween a heavy fluid initially on top of a lighter one (the Rayleigh–Taylor instability)
was followed by a method tracking the interface between two inviscid and irrota-
tional fluids. Both the method and the problem later became a staple of multiphase
flow simulations. A boundary integral method for water waves was presented by
Longuet-Higgins and Cokelet (1976) and used to examine breaking waves. This
paper had enormous influence and was followed by a large number of very suc-
cessful extensions and applications, particularly for water waves (e.g. Vinje and
Brevig, 1981; Baker et al., 1982; Schultz et al., 1994). Other applications include
the evolution of the Rayleigh–Taylor instability (Baker et al., 1980), the growth and
collapse of cavitation bubbles (Blake and Gibson, 1981; Robinson et al., 2001), the
generation of bubbles and droplets due to the coalescence of bubbles with a free
surface (Oguz and Prosperetti, 1990; Boulton-Stone and Blake, 1993), the forma-
tion of bubbles and droplets from an orifice (Oguz and Prosperetti, 1993), and the
interactions of vortical flows with a free surface (Yu and Tryggvason, 1990), just
to name a few. All boundary integral (or boundary element, when the integration is
element based) methods for inviscid flows are based on following the evolution of
the strength of surface singularities in time by integrating a Bernoulli-type equa-
tion. The surface singularities give one velocity component and Green’s second
theorem yields the other, thus allowing the position of the surface to be advanced
in time. Different surface singularities allow for a large number of different meth-
ods (some that can only deal with a free surface and others that are suited for
two-fluid problems), and different implementations multiply the possibilities even
further. For an extensive discussion and recent progress, see Hou et al. (2001).
Although continuous improvements are being made and new applications continue
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Fig. 1.7. A Stokes flow simulation of the breakup of a droplet in a linear shear flow. The
barely visible line behind the numerical results is the outline of a drop traced from an
experimental photograph. Reprinted with permission from Cristini et al. (1998). Copyright
2005, American Institute of Physics.

to appear, two-dimensional boundary integral techniques for inviscid flows are by
now – more than 30 years after the publication of the paper by Longuet-Higgins
and Cokelet – a fairly mature technology. Fully three-dimensional computations
are, however, still rare. Chahine and Duraiswami (1992) computed the interac-
tions of a few inviscid cavitation bubbles and Xue et al. (2001) have simulated a
three-dimensional breaking wave. While the potential flow assumption has led to
many spectacular successes, particularly for short-time transient flows, its inherent
limitations are many. The lack of a small-scale dissipative mechanism makes those
models susceptible to singularity formation and the absence of dissipation usu-
ally makes them unsuitable for the predictions of the long-time evolution of any
system.

The key to the reformulation of inviscid interface problems with irrotational
flow in terms of a boundary integral is the linearity of the potential equation.
In the opposite limit, where inertia effects can be ignored and the flow is domi-
nated by viscous dissipation, the Navier–Stokes equations become linear (the so-
called Stokes flow limit) and it is also possible to recast the governing equations
as an integral equation on a moving surface. Boundary integral simulations of un-
steady two-fluid Stokes problems originated with Youngren and Acrivos (1976)
and Rallison and Acrivos (1978), who simulated the deformation of a bubble and
a droplet, respectively, in an extensional flow. Subsequently, several authors have
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investigated a number of problems. Pozrikidis and collaborators have examined
several aspects of suspensions of droplets, starting with a study by
Zhou and Pozrikidis (1993) of the suspension of a few two-dimensional droplets in
a channel. Simulations of fully three-dimensional suspensions have been done by
Loewenberg and Hinch (1996) and Zinchenko and Davis (2000). The method has
been described in detail in the book by Pozrikidis (1992), and Pozrikidis (2001)
gives a very complete summary of the various applications. An example of a com-
putation of the breakup of a very viscous droplet in a linear shear flow, using a
method that adaptively refines the surface grid as the droplet deforms, is shown in
Fig. 1.7.

In addition to inviscid flows and Stokes flows, boundary integral methods have
been used by a number of authors to examine two-dimensional, two-fluid flows in
Hele–Shaw cells. Although the flow is completely viscous, away from the interface
it is a potential flow. The interface can be represented by the singularities used for
inviscid flows (de Josselin de Jong, 1960), but the evolution equation for the singu-
larity strength is different. This was used by Tryggvason and Aref (1983, 1985) to
examine the Saffman–Taylor instability, where an interface separating two fluids of
different viscosity deforms if the less viscous fluid is displacing the more viscous
one. They used a fixed grid to solve for the normal velocity component (instead of
Green’s theorem), but Green’s theorem was subsequently used by several authors
to develop boundary integral methods for interfaces in Hele–Shaw cells. See, for
example, DeGregoria and Schwartz (1985), Meiburg and Homsy (1988), and the
review by Hou et al. (2001).

Under the heading of simple flows we should also mention simulations of the
motion of solid particles, in the limit where the fluid motion can be neglected and
the dynamics is governed only by the inertia of the particles. Several authors have
followed the motion of a large number of particles that interact only when they
collide with each other. Here, it is also sufficient to solve a system of ODEs for
the particle motion. Simulations of this kind are usually called “granular dynam-
ics.” For an early discussion, see Louge (1994); a more recent one can be found
in Pöschel and Schwage (2005), for example. While these methods have been
enormously successful in simulating certain types of solid–gas multiphase flows,
they are limited to a very small class of problems. One could, however, argue
that simulations of the motion of particles interacting through a potential, such as
simulations of the gravitational interactions of planets or galaxies and molecular
dynamics, also fall into this class. Discussing such methods and their applications
would enlarge the scope of the present work enormously, and so we will confine
our coverage by simply suggesting that the interested reader consults the appropri-
ate references, such as Schlick (2002) for molecular simulations and Hockney and
Eastwood (1981) for astrophysical and other systems.
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Fig. 1.8. The beginning of computational studies of multiphase flows. The evolution of
the nonlinear Rayleigh–Taylor instability, computed using the two-fluid MAC method.
Reprinted with permission from Daly (1969b). Copyright 2005, American Institute of
Physics.

1.2.2 Finite Reynolds number flows

For intermediate Reynolds numbers it is necessary to solve the full Navier–Stokes
equations. Nearly 10 years after Birkhoff’s effort to simulate the inviscid Rayleigh–
Taylor problem by a boundary integral technique, the marker-and-cell (MAC)
method was developed at Los Alamos by Harlow and collaborators. In the MAC
method the fluid is identified by marker particles distributed throughout the fluid
region and the governing equations solved on a regular grid that covers both the
fluid-filled and the empty part of the domain. The method was introduced in Har-
low and Welch (1965) and two sample computations of the so-called dam breaking
problem were shown in that first paper. Several papers quickly followed: Harlow
and Welch (1966) examined the Rayleigh–Taylor problem (Fig. 1.8) and Harlow
and Shannon (1967) studied the splash when a droplet hits a liquid surface. As
originally implemented, the MAC method assumed a free surface, so there was
only one fluid involved. This required boundary conditions to be applied at the
surface and the fluid in the rest of the domain to be completely passive. The Los
Alamos group realized, however, that the same methodology could be applied to
two-fluid problems. Daly (1969b) computed the evolution of the Rayleigh–Taylor
instability for finite density ratios and Daly and Pracht (1968) examined the ini-
tial motion of density currents. Surface tension was then added by Daly (1969a)
and the method again used to examine the Rayleigh–Taylor instability. The MAC
method quickly attracted a small group of followers that used it to study several
problems: Chan and Street (1970) applied it to free-surface waves, Foote (1973)
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and Foote (1975) simulated the oscillations of an axisymmetric droplet and the col-
lision of a droplet with a rigid wall, respectively, and Chapman and Plesset (1972)
and Mitchell and Hammitt (1973) followed the collapse of a cavitation bubble.
While the Los Alamos group did a number of computations of various problems
in the sixties and early seventies and Harlow described the basic idea in a Scien-
tific American article (Harlow and Fromm, 1965), the enormous potential of this
newfound tool did not, for the most part, capture the fancy of the fluid mechan-
ics research community. Although the MAC method was designed specifically for
multifluid problems (hence the M for markers!), it was also the first method to
successfully solve the Navier–Stokes equation using the primitive variables (ve-
locity and pressure). The staggered grid used was a novelty, and today it is a com-
mon practice to refer to any method using a projection-based time integration on a
staggered grid as a MAC method (see Chapter 3).

The next generation of methods for multifluid flows evolved gradually from the
MAC method. It was already clear in the Harlow and Welch (1965) paper that the
marker particles could cause inaccuracies, and of the many algorithmic ideas ex-
plored by the Los Alamos group, the replacement of the particles by a marker func-
tion soon became the most popular alternative. Thus, the volume-of-fluid (VOF)
method was born. VOF was first discussed in a refereed journal article by Hirt and
Nichols (1981), but the method originated earlier (DeBar, 1974; Noh and Wood-
ward, 1976). The basic problem with advecting a marker function is the numerical
diffusion resulting from working with a cell-averaged marker function (see Chap-
ter 4). To prevent the marker function from continuing to diffuse, the interface is
“reconstructed” in the VOF method in such a way that the marker does not start to
flow into a new cell until the current cell is full. The one-dimensional implemen-
tation of this idea is essentially trivial, and in the early implementation of VOF the
interface in each cell was simply assumed to be a vertical plane for advection in
the horizontal direction and a horizontal plane for advection in the vertical direc-
tion. This relatively crude reconstruction often led to large amount of “floatsam
and jetsam” (small unphysical droplets that break away from the interface) that
degraded the accuracy of the computation. To improve the representation, Youngs
(1982), Ashgriz and Poo (1991), and others introduced more complex reconstruc-
tions of the interface, representing it with a line (two dimensions) or a plane (three
dimensions) that could be oriented arbitrarily in such a way as to best fit the in-
terface. This increased the complexity of the method considerably, but resulted in
greatly improved advection of the marker function. Even with higher order rep-
resentation of the fluid interface in each cell, the accurate computation of surface
tension remained a major problem. In his simulations of surface tension effects
on the Rayleigh–Taylor instability, using the MAC method, Daly (1969b) intro-
duced explicit surface markers for this purpose. However, the premise behind the
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Fig. 1.9. Computation of a splashing drop using an advanced VOF method. Reprinted
from Rieber and Frohn (1999) with permission from Elsevier.

development of the VOF method was to get away from using any kind of surface
marker so that the surface tension had to be obtained from the marker function in-
stead. This was achieved by Brackbill et al. (1992), who showed that the curvature
(and hence surface tension) could be computed by taking the discrete divergence
of the marker function. A “conservative” version of this “continuum surface force”
method was developed by Lafaurie et al. (1994). The VOF method has been ex-
tended in various ways by a number of authors. In addition to better ways to
reconstruct the interface (Rider and Kothe, 1998; Scardovelli and Zaleski, 2000;
Aulisa et al., 2007) and compute the surface tension (Renardy and Renardy, 2002;
Popinet, 2009), more advanced advection schemes for the momentum equation and
better solvers for the pressure equation have been introduced (see Rudman (1997),
for example). Other refinements include the use of sub-cells to keep the interface
as sharp as possible (Chen et al., 1997a). VOF methods are in widespread use to-
day, and many commercial codes include VOF to track interfaces and free surfaces.
Figure 1.9 shows one example of a computation of the splash made when a liquid
droplet hits a free surface, done by a modern VOF method. We will discuss the use
of VOF extensively in later chapters.

The basic ideas behind the MAC and the VOF methods gave rise to several
new approaches in the early nineties. Unverdi and Tryggvason (1992) introduced
a front-tracking method for multifluid flows where the interface was marked by
connected marker points. The markers are used to advect the material properties
(such as density and viscosity) and to compute surface tension, but the rest of the
computations are done on a fixed grid as in the VOF method. Although using
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connected markers to update the material function was new, marker particles had
already been used by Daly (1969a), who used them to evaluate surface tension in
simulations with the MAC method, in the immersed-boundary method of Peskin
(1977) for one-dimensional elastic fibers in homogeneous viscous fluids and in the
vortex-in-cell method of Tryggvason and Aref (1983) for two-fluid interfaces in
a Hele–Shaw cell, for example. The front-tracking method of Unverdi and Tryg-
gvason (1992) has been very successful for simulations of finite Reynolds number
flows of immiscible fluids and Tryggvason and collaborators have used it to explore
a large number of problems.

The early nineties also saw the introduction of the level-set, the CIP, and the
phase-field methods to track fluid interfaces on stationary grids. The level-set
method was introduced by Osher and Sethian (1988), but its first use to track fluid
interfaces appears to be in the work of Sussman et al. (1994) and Chang et al.
(1996), who used it to simulate the rise of bubbles and the fall of droplets in two
dimensions. An axisymmetric version was used subsequently by Sussman and
Smereka (1997) to examine the behavior of bubbles and droplets. Unlike the VOF
method, where a discontinuous marker function is advected with the flow, in the
level-set method a continuous level-set function is used. The interface is then iden-
tified with the zero contour of the level-set function. To reconstruct the material
properties of the flow (density and viscosity, for example) a marker function is con-
structed from the level-set function. The marker function is given a smooth transi-
tion zone from one fluid to the next, thus increasing the regularity of the interface
over the VOF method where the interface is confined to only one grid space. How-
ever, this mapping from the level-set function to the marker function requires the
level-set function to maintain the same shape near the interface and to deal with this
problem, Sussman et al. (1994) introduced a reinitialization procedure where the
level-set function is adjusted in such a way that its value is equal to the shortest dis-
tance to the interface at all times. This step was critical in making level-sets work
for fluid-dynamics simulations. Surface tension is found in the same way as in the
continuous surface force technique introduced for VOF methods by Brackbill et al.
(1992). The early implementation of the level-set method did not conserve mass
very well, and a number of improvements and extensions followed its original in-
troduction. Sussman et al. (1998) and Sussman and Fatemi (1999) introduced ways
to improved mass conservation, Sussman et al. (1999) coupled level-set tracking
with adaptive grid refinement and a hybrid VOF/level-set method was developed
by Sussman and Puckett (2000), for example.

The constrained interpolated propagation (CIP) method introduced by Takewaki
et al. (1985) has been particularly popular with Japanese authors, who have applied
it to a wide variety of multiphase problems. In the CIP method, the transition from
one fluid to another is described by a cubic polynomial. Both the marker function
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and its derivative are then updated to advect the interface. In addition to simulat-
ing two-fluid problems, the method has been used for a number of more complex
applications, such as those involving floating solids; see Yabe et al. (2001).

In the phase-field method the governing equations are modified in such a way
that the dynamics of the smoothed region between the different fluids is described
in a thermodynamically consistent way. In actual implementations the thickness
of the transition is, however, much larger than it is in real systems and the net
effect of the modification is to provide an “antidiffusive” term that keeps the inter-
face reasonably sharp. While superficially there are considerable similarities be-
tween phase-field and level-set methods, the fundamental ideas behind the methods
are very different. In the level-set method the smoothness of the phase boundary
is completely artificial and introduced for numerical reasons only. In phase-field
methods, on the other hand, the transition zone is real, although it is made much
thicker than it should be for numerical reasons. It is not clear, at the time of this
writing, whether keeping the correct thermodynamic conditions in an artificially
thick interface has any advantages over methods that start with a completely sharp
interface. The key drawback seems to be that since the propagation and proper-
ties of the interface depend sensitively on the dynamics in the transition zone, it
must be well resolved. For the motion of two immiscible fluids, that are well de-
scribed by assuming a sharp interface, this adds a resolution requirement that is
more stringent than for other “one-fluid” methods. The phase-field approach was
originally introduced to model solidification (see Kobayashi (1992, 1993)) and has
found widespread use in such simulations. With the exception of the modeling of
solidification in the presence of flows (Beckermann et al., 1999; Tonhardt and Am-
berg, 1998), its use for fluid dynamic simulations is relatively limited (Jacqmin,
1999; Jamet et al., 2001). The main appeal of the phase-field methods appears to
be for problems where small-scale physics must be accounted for and it is difficult
to do so in the sharp interface limit.

In the “one-fluid” methods described above, where a single set of governing
equations is used to describe the fluid motion in both fluids, the fluid motion is
mostly computed on regular structured grids and the main difference between the
various methods is how a marker function is advected (and how surface tension is
found). The thickness of the interface varies from one cell in VOF methods to a few
cells in level-set and front-tracking methods, but once the marker function has been
found, the specific scheme for the interface advection is essentially irrelevant for
the rest of the computations. While these methods have been enormously success-
ful, their accuracy is generally somewhat limited. There have, therefore, recently
been several attempts to generate methods that retain most of the advantages of
these methods but treat the interface as “fully sharp.” The origin of these attempts
can be traced to the work of Glimm and collaborators (Glimm et al., 1981; Glimm
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and McBryan, 1985; Chern et al., 1986), who used grids that were modified locally
near an interface in such a way that the interface coincided with a cell boundary,
and more recent “cut-cell” methods for the inclusion of complex bodies in simu-
lations of inviscid flows (Quirk, 1994; Powell, 1998). In their modern incarnation,
sharp interface methods include the ghost fluid method, the immersed-interface
method and the method of Udaykumar et al. (2001). In the “ghost fluid” method
introduced by Fedkiw et al. (1999) the interface is marked by advecting a level-
set function, but to find numerical approximations to derivatives near the interface,
where the finite difference stencil involves values from the other side of the inter-
face, fictitious values are assigned to those grid points. The values are obtained by
extrapolation, and a few different possibilities for doing so are discussed by Glimm
et al. (2001), for example. The “immersed-interface” method of Lee and LeVeque
(2003), on the other hand, is based on modifying the numerical approximations
near the interface by explicitly incorporating the jump across the interface into the
finite difference equations. While this is easily done for relatively simple jump con-
ditions, it becomes more involved for complex situations. Lee and LeVeque (2003)
thus found it necessary to limit their development to fluids with the same viscosity.
In the method of Udaykumar et al. (2001), complex solid boundaries are repre-
sented on a regular grid by merging cells near the interface and using polynomial
fitting to find field values at the interface. This method, which is related to the “cut-
cell” methods used for inviscid compressible flows (Powell, 1998), has so far only
been implemented for solids and fluids, including solidification (Yang and Udayku-
mar, 2005), but there seems to be no reason why the method cannot be used for mul-
tifluid problems. For an extension to three dimensions, see Marella et al. (2005).

While the original “one-fluid” methods require essentially no modification of
the flow solver near the interface (except allowing for variable density and viscos-
ity), the sharp interface methods all require localized modifications of the basic
scheme. This results in considerably more complex numerical schemes, but is also
likely to improve the accuracy. That may be important for extreme values of the
governing parameters, such as large differences between the material properties of
the different fluids and low viscosities. The sharp interface approach may also be
required for flows with very complex interface physics. However, methods based
on a straightforward implementation of the “one-fluid” formulation of the govern-
ing equations, coupled with advanced schemes to advect the interface (or marker
function), have already demonstrated their usefulness for a large range of prob-
lems, and it is likely that their simplicity will ensure that they will continue to be
widely used.

In addition to the development of more accurate implementations of the “one-
fluid” approach, many investigators have pursued extension of the basic schemes
to problems that are more complex than the flow of two immiscible liquids. More
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Fig. 1.10. The interaction of two falling spheres. The spheres are shown at four different
times, going from left to right. Reprinted from Hu et al. (2001), with permission from
Elsevier.

complex physics has been incorporated to simulate contaminated interfaces, mass
transfer and chemical reactions, electrorheological effects, boiling, solidification,
and the interaction of solid bodies with a free surface or a fluid interface. We
will briefly review such advanced applications at the very end of the book, in
Chapter 11.

While methods based on the “one-fluid” approach were being developed, other
techniques were also explored. Hirt et al. (1970) describe one of the earliest use of
structured, boundary-fitted Lagrangian grids. In this approach a logically rectangu-
lar structured grid is used, but the grid points move with the fluid velocity, thus de-
forming the grid. This approach is particularly well suited when the interface topol-
ogy is relatively simple and no unexpected interface configurations develop. In a
related approach, a grid line is aligned with the fluid interface, but the grid away
from the interface is generated using standard grid-generation techniques, such as
conformal mapping, or other more advanced elliptic grid-generation schemes. The
method was used by Ryskin and Leal (1984) to compute the steady rise of buoyant,
deformable, axisymmetric bubbles. They assumed that the fluid inside the bubble
could be neglected, but Dandy and Leal (1989) and Kang and Leal (1987) ex-
tended the method to two-fluid problems and unsteady flows. Several authors have
used this approach to examine relatively simple problems, such as the steady-state
motion of single particles or moderate deformation of free surfaces. Fully three-
dimensional simulations are relatively rare (see, though, Takagi et al. (1997)), and
it is probably fair to say that it is unlikely that this approach will be the method of
choice for very complex problems such as the three-dimensional unsteady motion
of several particles.
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A much more general approach to continuously represent a fluid interface by a
grid line is to use fully unstructured grids. This allows grid points to be inserted
and deleted as needed and distorted grid cells to be reshaped. While the grid was
moved with the fluid velocity in some of the early applications of this method, the
more modern approach is either to move only the interface points or to move the
interior nodes with a velocity different from the fluid velocity, in such a way that
the grid distortion is reduced but adequate resolution is still maintained. A large
number of methods have been developed that fall into this general category, but we
will only reference a few examples. Oran and Boris (1987) simulated the breakup
of a two-dimensional drop; Shopov et al. (1990) examined the initial deformation
of a buoyant bubble; Feng et al. (1994, 1995) and Hu (1996) computed the unsteady
two-dimensional motion of several particles and Fukai et al. (1995) followed the
collision of a single axisymmetric droplet with a wall. Although this appears to
be a fairly complex approach, Johnson and Tezduyar (1997) and Hu et al. (2001)
have produced very impressive results for the three-dimensional unsteady motion
of many spherical particles. Figure 1.10 shows an example of a simulation done
using the arbitrary-Lagrangian–Eulerian method of Hu et al. (2001). Here, two
solid spheres are initially falling in-line (left frame). Since the trailing sphere is
sheltered from the flow by the leading one, it catches up and “kisses” the leading
one. The in-line configuration is unstable and the spheres “tumble” (two middle
frames). After tumbling, the spheres drift apart (right frame).

The most recent addition to the collection of methods to simulate finite Reynolds
number multiphase flows is the lattice–Boltzmann method (LBM). It is now clear
that LBM can be used to obtain results of accuracy comparable to more conven-
tional methods. It is still not clear, however, whether the LBM is significantly
faster or simpler than other methods (as sometimes claimed), but most likely these
methods are here to stay. For a discussion see, for example, Shan and Chen (1993)
and Sankaranarayanan et al. (2002). A comparison of results obtained by the LBM
method and the front-tracking method of Unverdi and Tryggvason (1992) can be
found in Sankaranarayanan et al. (2003). We will not discuss LBM in this book,
but refer the reader to Rothman and Zaleski (1997) and Chapter 6 in Prosperetti
and Tryggvason (2007).

1.3 Looking ahead

Direct numerical simulations of multiphase flows have come a long way in the last
decade and a half or so. It is now possible to simulate accurately the evolution of
disperse flows of several hundred bubbles, droplets, and particles for sufficiently
long times so that reliable values can be obtained for various statistical quanti-
ties. Similarly, major progress has been achieved in the development of methods
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for more complex flows, including those where a liquid solidifies or evaporates.
Simulations of large systems undergoing boiling and solidification are therefore
within reach.

Much remains to be done, however, and it is probably fair to say that the use
of direct numerical simulations of multiphase flows for research and design is still
in the embryonic state. The possibility of computing the evolution of complex
multiphase flows – such as churn-turbulent bubbly flow undergoing boiling, or the
breakup of a jet into evaporating droplets – will transform our understanding of
flows of enormous economic significance. Currently, control of most multiphase
flow processes is fairly rudimentary and almost exclusively based on intuition and
empirical observations. Industries that deal primarily with multiphase flows are,
however, multibillion dollar operations, and the savings realized if atomizers for
spray generation, bubble injectors in bubble columns, and inserts into pipes to
break up droplets, just to name a few examples, could be improved by just a little
bit would add up to a substantial amount of money. Reliable predictions would
also reduce the design cost significantly for situations such as space vehicles and
habitats where experimental investigations are expensive. And, as the possibilities
of manipulating flows at the very smallest scales by either stationary or free flow-
ing microelectromechanical devices become more realistic, the need to predict the
effect of such manipulations becomes critical.

While speculating about the long-term impact of any new technology is a dan-
gerous thing – and we will simply state that the impact of direct numerical simula-
tions of multiphase flows will without doubt be significant – it is easier to predict
the near future. Apart from the obvious prediction that computers will continue
to become faster and more available, we expect that the development of numer-
ical methods will focus mainly on flows with complex physics. Although some
progress has already been achieved for flows with variable surface tension, flows
coupled to temperature and electric fields, and flows with phase change, simula-
tions of such systems are still far from being commonplace. In addition to the need
to solve a large number of equations, coupled systems generally possess much
larger ranges of length and time scales than simple two-fluid systems. Thus, the in-
corporation of implicit time-integrators for stiff systems and adaptive gridding will
become even more important. It is also likely, as more and more complex problems
are dealt with, that the differences between direct numerical simulations – where
everything is resolved fully – and simulations where the smallest scales are mod-
eled will become blurred. Simulations of atomization where the evolution of thin
films are computed by “subgrid” models and very small droplets are included as
point particles are relatively obvious examples of such simulations (for a discussion
of the point-particle approximation, see Chapter 9 in Prosperetti and Tryggvason
(2007), for example). Other examples include possible couplings of continuum
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approaches such as those described in this book with microscopic simulations of
moving contact lines, kinetics effects at a solidifying interface, and reactions in
thin flames. Simulations of non-Newtonian fluids, where the microstructure has
to be modeled in such a way that the molecular structure is accounted for in some
way, also fall under this category.

In addition to the development of more powerful numerical methods, it is in-
creasingly critical to deal with the “human” aspect of large-scale numerical sim-
ulations. The physical problems that we must deal with and the computational
tools that are available are rapidly becoming very complex. The difficulty of de-
veloping fully parallelized software to solve the continuum equations (fluid flow,
mass and heat transfer, etc.), where three-dimensional interfaces must be handled
and the grids must be dynamically adapted, is putting such simulations beyond the
reach of a single graduate student. In the future these simulations may even be
beyond the capacity of small research groups. It is becoming very difficult for a
graduate student to learn everything that they need to know and make significant
new progress in 4 to 5 years. Lowering the “knowledge barrier” and ensuring that
new investigators can enter the field of direct numerical simulations of multiphase
flow may well become as important as improving the efficiency and accuracy of
the numerical methods. The present book is an attempt to ease the entry of new
researchers into this field.
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Fluid mechanics with interfaces

The equations governing multiphase flows, where a sharp interface separates im-
miscible fluids or phases, are presented in this chapter. We first derive the equations
for flows without interfaces, in a relatively standard manner. Then we discuss the
mathematical representation of a moving interface and the appropriate jump con-
ditions needed to couple the equations across the interfaces. Finally, we introduce
the so-called “one-fluid” approach, where the interface is introduced as a singular
distribution in equations written for the whole flow field. The “one-fluid” form of
the equations plays a fundamental rôle for the numerical methods discussed in the
rest of the book.

2.1 General principles

The derivation of the governing equations is based on three general principles:
the continuum hypothesis, the hypothesis of sharp interfaces, and the neglect of
intermolecular forces. The assumption that fluids can be treated as a continuum
is usually an excellent approximation. Real fluids are, of course, made of atoms
or molecules. To understand the continuum hypothesis, consider the density or
amount of mass per unit volume. If this amount were measured in a box of suffi-
ciently small dimensions �, it would be a wildly fluctuating quantity (see Batchelor
(1970), for a detailed discussion). However, as the box side � increases, the density
becomes ever smoother, until it is well approximated by a smooth function ρ . For
liquids in ambient conditions this happens for � above a few tens of nanometers
(1 nm = 10−9 m). In some cases, such as in dilute gases, the discrete nature of
matter may be felt over much larger length scales. For dilute gases, the average
distance between molecular collisions, or the mean free path �mfp, is the impor-
tant length scale. The gas obeys the Navier–Stokes equations for scales � � �mfp.
Molecular simulations, where the motion of many individual molecules is followed
for sufficiently long times so that meaningful averages can be computed, show that
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the fluid behaves as a continuum for a surprisingly small number of molecules. Ko-
plik et al. (1988) found, for example, that under realistic pressure and temperature
a few hundred molecules in a channel resulted in a Poiseuille flow that agreed with
the predictions of continuum theory.

Beyond the continuum hypothesis, for multiphase flows we shall make the as-
sumption of sharp interfaces. Interfaces separate different fluids, such as air and
water, oil and vinegar, or any other pair of immiscible fluids and different thermo-
dynamic phases, such as solid and liquid or vapor and liquid. The properties of the
fluids, including their equation of state, density, viscosity and heat conductivity,
generally change across the interface. The transition from one phase to another oc-
curs on very small scales, as described above. For continuum scales we may safely
assume that interfaces have vanishing thickness.

We also impose certain restrictions on the type of forces that are taken into ac-
count. Long-range forces between fluid particles, such as electromagnetic forces
in charged fluids, shall not be considered. Intermolecular forces, such as van der
Waals forces that play an important rôle in interface physics, are modelled by re-
taining their most important effect: capillarity. This effect, also called surface
tension, amounts to a stress concentrated at the sharp interfaces.

The three assumptions above also reflect the fact that it would be nearly im-
possible, with the current state of the art, to describe complex droplet and bubble
interactions while keeping the microscopic physics. For instance, simulating phys-
ical phenomena from the nanometer to the centimeter scale would require 107 grid
points in every direction, an extravagant requirement for any type of computa-
tion, even with the use of cleverly employed adaptive mesh refinement, at least at
present.

Beyond the three assumptions above, we mostly deal with incompressible flows
in this book, although in the present chapter we derive the equations initially for
general flow situations.

2.2 Basic equations

Expressing the basic principles of conservation of mass, momentum, and energy
mathematically leads to the governing equations for fluid flow. In addition to the
general conservation principles, we also need constitutive assumptions about the
specific nature of each fluid. Here we will work only with Newtonian fluids.

2.2.1 Mass conservation

The principle of conservation of mass states that mass cannot be created or de-
stroyed. Therefore, if we consider a volume V , fixed in space, then the mass inside
this volume can only change if mass flows in or out through its boundary S. The


