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dell’Informazione, Università di Bologna, Mura Anteo Zamboni, 7 40126
Bologna, Italy.
email: Davide.Sangiorgi@cs.unibo.it
web: www.cs.unibo.it/�sangio/

Jiri Srba
Department of Computer Science, University of Aalborg, Selma Lagerlöfs Vej
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Preface

This book is about bisimulation and coinduction. It is the companion book
of the volume An Introduction to Bisimulation and Coinduction, by Davide
Sangiorgi (Cambridge University Press, 2011), which deals with the basics of
bisimulation and coinduction, with an emphasis on labelled transition systems,
processes, and other notions from the theory of concurrency.

In the present volume, we have collected a number of chapters, by dif-
ferent authors, on several advanced topics in bisimulation and coinduction.
These chapters either treat specific aspects of bisimulation and coinduction in
great detail, including their history, algorithmics, enhanced proof methods and
logic. Or they generalise the basic notions of bisimulation and coinduction to
different or more general settings, such as coalgebra, higher-order languages
and probabilistic systems. Below we briefly summarise the chapters in this
volume.

� The origins of bisimulation and coinduction, by Davide Sangiorgi
In this chapter, the origins of the notions of bisimulation and coinduction

are traced back to different fields, notably computer science, modal logic,
and set theory.

� An introduction to (co)algebra and (co)induction, by Bart Jacobs and Jan
Rutten

Here the notions of bisimulation and coinduction are explained in terms
of coalgebras. These mathematical structures generalise all kinds of infinite-
data structures and automata, including streams (infinite lists), deterministic
and probabilistic automata, and labelled transition systems. Coalgebras are
formally dual to algebras and it is this duality that is used to put both induction
and coinduction into a common perspective. This generalises the treatment in
the companion introductory volume, where induction and coinduction were
explained in terms of least and greatest fixed points.

xi



xii Preface

� The algorithmics of bisimilarity, by Luca Aceto, Anna Ingolfsdottir and Jiřı́
Srba

This chapter gives an overview of the solutions of various algorithmic prob-
lems relating bisimilarity and other equivalences and preorders on labelled
transition systems. Typical questions that are addressed are: How can one
compute bisimilarity? What is the complexity of the algorithms? When is
bisimilarity decidable?

� Bisimulation and logic, by Colin Stirling
This chapter discloses the strong and beautiful ties that relate bisimula-

tion and modal logics. Various logical characterisations of bisimilarity are
discussed. The main results are the characterisations of bisimilarity via a
simple modal logic, the Hennessy–Milner logic, and the characterisation of
this modal logic as the fragment of first-order logic that is bisimulation invari-
ant. The results are then extended to modal logic with fixed points and to
second-order logic.

� Howe’s Method for higher-order languages, by Andrew Pitts
In programming languages, an important property of bisimulation-based

equivalences is whether they are a congruence, that is, compatible with
the language constructs. This property may be difficult to prove if such
languages involve higher-order constructs, that is, ones permitting functions
and processes to be data that can be manipulated by functions and processes.
This chapter presents a method for establishing compatibility of coinductively
defined program equalities, originally due to Howe.

� Enhancements of the bisimulation proof method, by Damien Pous and Davide
Sangiorgi

This chapter discusses enhancements of the bisimulation proof method,
with the goal of facilitating the proof of bisimilarity results. The bisimulation
proof method is one of the main reasons for the success of bisimilarity.
According to the method, to establish the bisimilarity between two given
objects one has to find a bisimulation relation containing these objects as
a pair. This means proving a certain closure property for each pair in the
relation. The amount of work needed in proofs therefore depends on the
size of the relation. The enhancements of the method in the chapter allow
one to reduce such work by using relations that need only be contained in
bisimulation relations. The chapter shows that it is possible to define a whole
theory of enhancements, which can be very effective in applications.

� Probabilistic bisimulation, by Prakash Panangaden
Here notions of bisimulation are introduced for probabilistic systems.

These differ from non-deterministic ones in that they take quantitative data
into account on the basis of which they make quantitative predictions about a
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system’s behaviour. The chapter first discusses the basic example of discrete
systems, called labelled Markov chains. After a rapid introductory section
on measure theory, the more general continuous case, of so-called labelled
Markov processes, is treated. For both the discrete and the continuous case,
logical characterisations of bisimilarity are given.

The chapters on probabilities and higher-order linguistic constructs deal with
two important refinements of bisimulation. While these are certainly not the
only interesting refinements of bisimulation (one could mention, for instance,
the addition of time or of space constraints), probabilities and higher-order
constructs have strong practical relevance (e.g. in distributed systems and other
complex systems such as biological systems, and in programming languages)
and offer technical challenges that make them one of the most active research
topics in the area of coinduction and bisimulation.

Each chapter is a separate entity, therefore notations among chapters may
occasionally differ. We are very grateful to the colleagues who contributed the
chapters for the time, effort, and enthusiasm that they put into this book project.

We recall the Web page with general information and auxiliary material
about the two volumes, including solutions to exercises in some of the chapters.
At the time of writing, the page is

www.cs.unibo.it/�sangio/Book Bis Coind.html

Davide Sangiorgi and Jan Rutten





1

Origins of bisimulation and coinduction

davide sangiorgi

1.1 Introduction

In this chapter, we look at the origins of bisimulation. We show that bisimulation
has been discovered not only in computer science, but also – and roughly at the
same time – in other fields: philosophical logic (more precisely, modal logic),
and set theory. In each field, we discuss the main steps that led to the discovery,
and introduce the people who made these steps possible.

In computer science, philosophical logic, and set theory, bisimulation has
been derived through refinements of notions of morphism between algebraic
structures. Roughly, morphisms are maps (i.e. functions) that are ‘structure-
preserving’. The notion is therefore fundamental in all mathematical theories
in which the objects of study have some kind of structure, or algebra. The most
basic forms of morphism are the homomorphisms. These essentially give us a
way of embedding a structure (the source) into another one (the target), so that
all the relations in the source are present in the target. The converse, however,
need not be true; for this, stronger notions of morphism are needed. One
such notion is isomorphism, which is, however, extremely strong – isomorphic
structures must be essentially the same, i.e. ‘algebraically identical’. It is a
quest for notions in between homomorphism and isomorphism that led to the
discovery of bisimulation.

The kind of structures studied in computer science, philosophical logic, and
set theory were forms of rooted directed graphs. On such graphs bisimulation is
coarser than graph isomorphism because, intuitively, bisimulation allows us to
observe a graph only through the movements that are possible along its edges.
By contrast, with isomorphisms the identity of the nodes is observable too. For
instance, isomorphic graphs have the same number of nodes, which need not
be the case for bisimilar graphs (bisimilarity on two graphs indicates that their
roots are related in a bisimulation).

1



2 Davide Sangiorgi

The independent discovery of bisimulation in three different fields suggests
that only limited exchanges and contacts among researchers existed at the time.
The common concept of bisimulation has somehow helped to improve this
situation. An example of this are the advances in set theory and computer
science derived from Aczel’s work.

Bisimilarity and the bisimulation proof method represent examples of a
coinductive definition and the coinduction proof method, and as such are inti-
mately related to fixed points, in particular greatest fixed points. We therefore
also discuss the introduction of fixed points, and of coinduction. In this case,
however, with a more limited breadth: we only consider computer science –
fixed points have a much longer history in mathematics – and we simply dis-
cuss the main papers in the introduction of coinduction and fixed-point theory
in the field. We conclude with some historical remarks on the main fixed-point
theorems that underpin the theory of induction and coinduction presented in
[San12].

In each section of the chapter, we focus on the origins of the concept dealt
with in that section, and do not attempt to follow the subsequent developments.
The style of presentation is generally fairly informal, but – we hope – technical
enough to make the various contributions clear, so that the reader can appreciate
them.

I believe that examining the developments through which certain concepts
have come to light and have been discovered is not a matter of purely intellectual
curiosity, but it also useful to understand the concepts themselves (e.g. problems
and motivations behind them, relationship with other concepts, alternatives,
etc.). Further, the chapter offers the opportunity of discussing bisimulation in
set theory, where nowadays the role of bisimulation is well recognised. Set
theory is not considered in other chapters of the book.

Structure of the chapter In Sections 1.2–1.4 we examine the origins of bisim-
ulation and bisimilarity in modal logic, computer science, and set theory. We
report on the introduction of coinduction and fixed points in computer science
in Section 1.5, and, in Section 1.6, we discuss the fixed-point theorems.

This chapter is extracted from [San09]; I refer to this for further details on
the topic. Solutions to most of the exercises can be found in [San09] and in the
Web pages for the book.

Acknowledgements I am very grateful to the following people who helped
me to find relevant papers and materials or helped me in tracing back bits of
history: L. Aceto, P. Aczel, G. Boudol, J. van Benthem, E. Clarke, Y. Deng,
R. Hinnion, F. Honsell, J.-P. Katoen, A. Mazurkiewicz, Y. N. Moschovakis, L.
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Moss, R. Milner, U. Montanari, P. Panangaden, W.P. de Roever, W. Thomas,
M. Tofte.

1.2 Bisimulation in modal logic

1.2.1 Modal logics

Philosophical logic studies and applies logical techniques to problems of inter-
est to philosophers, somewhat similarly to what mathematical logic does for
problems that interest mathematicians. Of course, the problems do not only
concern philosophers or mathematicians; for instance, nowadays both philo-
sophical and mathematical logics have deep and important connections with
computer science.

Strictly speaking, in philosophical logic a modal logic is any logic that uses
modalities. A modality is an operator used to qualify the truth of a statement,
that is, it creates a new statement that makes an assertion about the truth of the
original statement.

For the discussion below we use the ‘full propositional logic’ introduced
in [Sti12], to which we refer for explanations and the interpretation of the
formulas:

φ
def
D p j :φ j φ1 ^ φ2 j hμiφ j ?

where p is a proposition letter. We recall that Labelled Transition Systems
(LTSs) with a valuation, also called Kripke models, are the models for the logic.
In the examples we will give, when we do not mention proposition letters it is
intended that no proposition letters hold at the states under consideration.

1.2.2 From homomorphism to p-morphism

Today, some of the most interesting results in the expressiveness of modal logics
rely on the notion of bisimulation. Bisimulation is indeed discovered in modal
logic when researchers begin to investigate seriously issues of expressiveness
for the logics, in the 1970s. For this, important questions tackled are: When is
the truth of a formula preserved when the model changes? Or, even better, under
which model constructions are modal formulas invariant? Which properties of
models can modal logics express? (When moving from a model M to another
model N , preserving a property means that if the property holds in M then
it holds also when one moves to N ; the property being invariant means that
also the converse is true, that is, the property holds in M iff it holds when one
moves to N .)
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To investigate such questions, it is natural to start from the most basic
structure-preserving construction, that of homomorphism. A homomorphism
from a model M to a model N is a function F from the points of M to the
points of N such that

� whenever a proposition letter holds at a point P of M then the same letter
also holds at F (P ) in N ;

� whenever there is a μ-transition between two points P,P 0 in M then there
is also a μ-transition between F (P ) and F (P 0) in N .

Thus, contrasting homomorphism with bisimulation, we note that

(i) homomorphism is a functional, rather than relational, concept;
(ii) in the definition of homomorphism there is no back condition; i.e. the

reverse implication, from transitions in N to those in M, is missing.

It is easy to see that homomorphisms are too weak to respect the truth of
modal formulas:

Exercise 1.2.1 Show, by means of a counterexample, that modal formulas are
not preserved by homomorphisms. �

That is, a homomorphism H from a model M to a model N does not guarantee
that if a formula holds at a point Q of M then the same formula also holds at
H (Q) in N .

The culprit for the failure of homomorphisms is the lack of a back condition.
We can therefore hope to repair the invariance by adding some form of reverse
implication. There are two natural ways of achieving this:

(1) turning the ‘implies’ of the definition of homomorphism into an ‘iff’ (that
is, a propositional letter holds at P in M iff it holds at F (P ) in N ; and

P
μ
�! P 0 in M iff F (P )

μ
�! F (P 0) in N , for any P and P 0);

(2) explicitly adding back conditions (that is, if a propositional letter holds at
F (P ) in N then it also holds at P in M; and if in N there is a transition

F (P )
μ
�! Q, for some point Q, then in M there exists a point P 0 such that

P
μ
�! P 0 and Q D F (P 0).

Solution (1) is the requirement of strong homomorphisms. Solution (2) is first
formalised by Krister Segerberg in his famous dissertation [Seg71], as the
requirement of p-morphisms.

Segerberg starts the study of morphisms between models of modal log-
ics that preserve the truth of formulas in [Seg68]. Initially, p-morphisms are
called pseudo-epimorphims [Seg68], and are indeed surjective mappings. Later
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[Seg70, Seg71], the term is shortened to p-morphisms, and thereafter used to
denote also non-surjective mappings. A notion similar to p-morphisms had also
occurred earlier, in a work of Jongh and Troelstra [JT66], for certain surjec-
tive mappings on partial orders that were called strongly isotone. Sometimes,
today, p-morphisms are called bounded morphisms, after Goldbatt [Gol89]. The
p-morphisms can be regarded as the natural notion of homomorphism in LTSs
or Kripke models; indeed other reasons make p-morphisms interesting for
modal logics, for instance they are useful in the algebraic semantics of modal
logics (e.g. when relating modal algebras).

With either of the additions in (1) or (2), the invariance property holds:
modal formulas are invariant both under surjective strong homomorphisms and
under p-morphisms. (The surjective condition is necessary for strong homo-
morphisms, but not for p-morphisms.)

Exercise 1.2.2

(1) Exhibit a surjective p-morphism that is not a surjective strong homomor-
phism.

(2) Show that the invariance property does not hold for non-surjective strong
homomorphisms. �

As far as invariance is concerned, the surjective strong homomorphism con-
dition is certainly a very strong requirement – we are not far from isomorphism,
in fact (the only difference is injectivity of the function, but even when func-
tions are not injective only states with essentially the ‘same’ transitions can be
collapsed, that is, mapped onto the same point). In contrast, p-morphisms are
more interesting. Still, they do not capture all situations of invariance. That is,
there can be states s of a model M and t of a model N that satisfy exactly the
same modal formulas and yet there is no p-morphisms that take s into t or vice
versa (Exercise 1.2.3).

1.2.3 Johan van Benthem

The next step is made by Johan van Benthem in his PhD thesis [Ben76] (the book
[Ben83] is based on the thesis), who generalises the directional relationship
between models in a p-morphism (the fact that a p-morphism is a function) to
a symmetric one. This leads to the notion of bisimulation, which van Benthem
calls p-relation. (Later [Ben84] he renames p-relations as zigzag relations.) On
Kripke models, a p-relation between models M and N is a total relation S on
the states of the models (the domain of S are the states of M and the codomain
the states of N ) such that whenever P S Q then: a propositional letter holds at
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P iff it holds at Q; for all P 0 with P
μ
�! P 0 in M there is Q0 such that Q

μ
�! Q0

in N and P 0 S Q0; the converse of the previous condition, on the transitions
from Q.

Exercise 1.2.3 Find an example of points in two models that are in a p-relation
but no p-morphism can be established between them. �

Van Benthem defines p-relations while working on correspondence theory,
precisely the relationship between modal and classical logics. Van Benthem’s
objective is to characterise the fragment of first-order logic that ‘corresponds’ to
modal logic – an important way of measuring expressiveness. He gives a sharp
answer to the problem, via a theorem that is today called the ‘van Benthem
characterisation theorem’. In nowadays’s terminology, van Benthem’s theorem
says that a first-order formula A containing one free variable is equivalent to
a modal formula iff A is invariant for bisimulations. That is, modal logic is
the fragment of first-order logic whose formulas have one free variable and are
invariant for bisimulation. We refer to [Sti12] for discussions on this theorem.

The original proof of the theorem is also interesting. The difficult impli-
cation is the one from right to left. A key part of the proof is to show that a
point P in a model M and a point Q in a model N satisfy the same modal
formulas if there are extensions M0 and N 0 of the models M and N in which
P and Q are bisimilar. The extensions are obtained as the limits of appropriate
elementary chains of models, starting from the original models. Further, the
embedding of the original models into the limits of the chains preserves modal
formulas. The reason why it is necessary to move from the original models
M and N to the extended models M0 and N 0 is that on arbitrary models
two points may satisfy the same set of formulas without being bisimilar. This
may occur if the models are not finitely branching. By contrast, the extended
models M0 and N 0 are ‘saturated’, in the sense that they have ‘enough points’.
On such models, two points satisfy the same modal formulas iff they are bisim-
ilar. As all finitely branching models are saturated, van Benthem’s construction
also yields the familiar Hennessy–Milner theorem for modal logics [HM85]
(an earlier version is [HM80]): on finitely branching models, two points are
bisimilar iff they satisfy the same modal formulas. Saturated models need not
be finitely branching, however, thus van Benthem’s construction is somewhat
more general. Note that the need for saturation also would disappear if the
logic allowed some infinitary constructions, for instance infinite conjunction.
In modern textbooks, such as [BRV01], the proof is sometimes presented in a
different way, by directly appealing to the existence of saturated models; how-
ever, elementary chains are employed to show the existence of such saturated
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models. Again, for details on the above proof and on the characterisation of
bisimulation via modal logic, we refer to [Sti12].

After van Benthem’s theorem, bisimulation has been used extensively in
modal logic, for instance, to analyse the expressive power of various dialects
of modal logics, to understand which properties of models can be expressed in
modal logics, and to define operations on models that preserve the validity of
modal formulas.

1.2.4 Discussion

In philosophical logic we see, historically, the first appearance of the notion
of bisimulation. We do not find here, however, coinduction, at least not in an
explicit way. Thus total relations between models that represent bisimulations
are defined – the p-relations – but there is no explicit definition and use of
bisimilarity. Similarly no links are made to fixed-point theory.

In retrospect, today we could say that bisimulation, as a means of character-
ising equivalence of modal properties, ‘was already there’ in the Ehrenfeucht–
Fraı̈ssé games. In the 1950s, Roland Fraı̈ssé [Fra53] gave an algebraic for-
mulation, as a weak form of isomorphism, of indistinguishability by formulas
of first-order logic. Andrzej Ehrenfeucht [Ehr61] then extended the result and
gave it a more intuitive game-theoretic formulation, in what is now called the
Ehrenfeucht–Fraı̈ssé games. Such games are today widely used in computer
science, notably in logic, finite model theory, but also in other areas such as
complexity theory, following Immerman [Imm82]. It is clear that the restriction
of the Ehrenfeucht–Fraı̈ssé games to modal logic leads to game formulations
of bisimulation. However, such a connection has been made explicit only after
the discovery of bisimulation. See, for instance, Thomas [Tho93].

1.3 Bisimulation in computer science

1.3.1 Algebraic theory of automata

In computer science, the search for the origins of bisimulation takes us back to
the algebraic theory of automata, well-established in the 1960s. A good refer-
ence is Ginzburg’s book [Gin68]. Homomorphisms can be presented on differ-
ent forms of automata. We follow here Mealy automata. In these automata, there
are no initial and final states; however, an output is produced whenever an input
letter is consumed. Thus Mealy automata can be compared on the set of output
strings produced. Formally, a Mealy automaton is a 5-tuple (W,�,�, T ,O)
where
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� W is the finite set of states;
� � is the finite set of inputs;
� � is a finite set of outputs;
� T is the transition function, that is a set of partial functions fTa j a 2 �g

from W to W ;
� O is the output function, that is, a set of partial functions fOa j a 2 �g from
W to �.

The output string produced by a Mealy automaton is the translation of the input
string with which the automaton was fed; of course the translation depends on
the state on which the automaton is started. Since transition and output functions
of a Mealy automaton are partial, not all input strings are consumed entirely.

Homomorphism is defined on Mealy automata following the standard notion
in algebra, e.g. in group theory: a mapping that commutes with the operations
defined on the objects of study. Below, if A is an automaton, then WA is the
set of states of A, and similarly for other symbols. As we deal with partial
functions, it is convenient to view these as relations, and thereby use for them
relational notations. Thus fg is the composition of the two function f and g

where f is used first (that is, (fg)(a) D g(f (a))); for this, one requires that the
codomain of f be included in the domain of g. Similarly, f � g means that
whenever f is defined then so is g, and they give the same result.

A homomorphism from the automaton A to the automaton B is a surjective
function F from WA to WB such that for all a 2 �:

(1) T A
a F � FT B

a (condition on the states); and
(2) OA

a � FOB
a (condition on the outputs).

(We assume here for simplicity that the input and output alphabets are the same,
otherwise appropriate coercion functions would be needed.)

At the time (the 1960s), homomorphism and similar notions are all expressed
in purely algebraic terms. Today we can make an operational reading of them,

which for us is more enlightening. Writing P
a
!
b

Q if the automaton, on state P

and input a, produces the output b and evolves into the state Q, and assuming
for simplicity that OA

a and T A
a are undefined exactly on the same points, the

two conditions above become:

� for all P,P 0 2 WA, if P
a
!
b

P 0 then also F (P )
a
!
b

F (P 0).

Homomorphisms are used in that period to study a number of properties of
automata. For instance, minimality of an automaton becomes the condition
that the automaton has no proper homomorphic image. Homomorphisms are
also used to compare automata. Mealy automata are compared using the notion
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of covering (written�): A � B (read ‘automaton B covers automaton A’) if B

can do, statewise, at least all the translations that A does. That is, there is a total
function ψ from the states of A to the states of B such that, for all states P of
A, all translations performed by A when started in P can also be performed by
B when started in ψ(P ). Note that B can however have states with a behaviour
completely unrelated to that of any state of A; such states of B will not be the
image of states of A. If both A � B and B � A hold, then the two automata
are deemed equivalent.

Homomorphism implies covering, i.e. if there is a homomorphism from A

to B then A � B. The converse result is (very much) false. The implication
becomes stronger if one uses weak homomorphisms. These are obtained by
relaxing the functional requirement of homomorphism into a relational one.
Thus a weak homomorphism is a total relation R on WA �WB such that for
all a 2 �:

(1) R�1T A
a � T B

a R�1 (condition on the states); and
(2) R�1OA

a � OB
a (condition on the outputs)

where relational composition, inverse, and inclusion are defined in the usual
way for relations [San12, section 0.5], and again functions are taken as special
forms of relations. In an operational interpretation as above, the conditions
give:

� whenever P R Q and P
a
!
b

P 0 hold in A, then there is Q0 such that Q
a
!
b

Q0

holds in B and P 0 R Q0.

(On the correspondence between the algebraic and operational definitions, see
also Remark 1.3.1 below.) Weak homomorphism reminds us of the notion of
simulation (see [San12]). The former is however stronger, because the relation
R is required to be total. (Also, in automata theory, the set of states and the
sets of input and output symbols are required to be finite, but this difference is
less relevant.)

Remark 1.3.1 To understand the relationship between weak homomorphisms
and simulations, we can give an algebraic definition of simulation on LTSs,
taking these to be triples (W,�, fTa j a 2 �g) whose components have the
same interpretation as for automata. A simulation between two LTSs A and B

becomes a relation R on WA �WB such that, for all a 2 �, condition (1) of
weak homomorphism holds, i.e.

� R�1T A
a � T B

a R�1.
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This is precisely the notion of simulation (as defined operationally in [San12]).
Indeed, given a state Q 2 WB and a state P 0 2 WA, we have Q R�1 T A

a P 0

whenever there is P 2 WA such that P
a
�! P 0. Then, requiring that the pair

(Q,P 0) is also in T B
a R�1 is the demand that there is Q0 such that Q

a
�! Q0

and P 0 R Q0. �

Exercise 1.3.2 Suppose we modified the condition on states of weak homo-
morphism as follows:

� T A
a R � RT B

a ,

and similarly for the condition on outputs. Operationally, what would this
mean? What is the relationship to simulations? �

Exercise 1.3.3 Suppose we strengthen the condition in Remark 1.3.1 by
turning the inclusion � into an equality. What would it mean, operationally?
Do we obtain bisimulations? Do we obtain relations included in bisimilarity?
How can bisimulation (on LTSs) be formulated algebraically? �

As homomorphisms, so weak homomorphisms imply covering. The result
for weak homomorphism is stronger as the homomorphisms are strictly
included in the weak homomorphisms.

Exercise 1.3.4 Find an example of a weak homomorphism that is not a
homomorphism. �

Exercise 1.3.5 Show that there can be automata B and A with A � B and yet
there is no weak homomorphism between A and B. (Hint: use the fact that the
relation of weak homomorphism is total.) �

In conclusion: in the algebraic presentation of automata in the 1960s we find
concepts that remind us of bisimulation, or better, simulation. However, there
are noticeable differences, as we have outlined above. But the most important
difference is due to the fact that the objects are deterministic. To see how
significant this is, consider the operational reading of weak homomorphism,
namely ‘whenever P R Q ... then there is Q0 such that ....’. As automata
are deterministic, the existential in front of Q0 does not play a role. Thus
the alternation of universal and existential quantifiers – a central aspect of
the definitions of bisimulation and simulation – does not really show up on
deterministic automata.
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1.3.2 Robin Milner

Decisive progress towards bisimulation is made by Robin Milner in the
1970s. Milner transplants the idea of weak homomorphism into the study
of the behaviour of programs in a series of papers in the early 1970s
([Mil70, Mil71a, Mil71b], with [Mil71b] being a synthesis of the previous
two). He studies programs that are sequential, imperative, and that may not
terminate. He works on the comparisons among such programs. The aim is to
develop techniques for proving the correctness of programs, and for abstracting
from irrelevant details so that it is clear when two programs are realisations of
the same algorithm. In short, the objective is to understand when and why two
programs can be considered ‘intensionally’ equivalent.

To this end, Milner proposes – appropriately adapting it to his setting –
the algebraic notion of weak homomorphism that we have described in Sec-
tion 1.3.1. He renames weak homomorphism as simulation, a term that better
conveys the idea of the application in mind. Although the definition of simula-
tion is still algebraic, Milner now clearly spells out its operational meaning. But
perhaps the most important contribution in his papers is the proof technique
associated to simulation that he strongly advocates. This techniques amounts
to exhibiting the set of pairs of related states, and then checking the simulation
clauses on each pair. The strength of the technique is precisely the locality of
the checks that have to be made, in the sense that we only look at the immediate
transitions that emanate from the states (as opposed to, say, trace equivalence
where one considers sequences of transitions, which may require examining
states other than the initial one of a sequence). The technique is proposed to
prove not only results of simulation, but also results of input/output correctness
for programs, as a simulation between programs implies appropriate relation-
ships on their inputs and outputs. Besides the algebraic theory of automata,
other earlier works that have been influential for Milner are those on program
correctness, notably Floyd [Flo67], Manna [Man69], and Landin [Lan69], who
pioneers the algebraic approach to programs.

Formally, however, Milner’s simulation remains the same as weak homo-
morphism and as such it is not today’s simulation. Programs for Milner are
deterministic, with a total transition function, and these hypotheses are essen-
tial. Non-deterministic and concurrent programs or, more generally, programs
whose computations are trees rather than sequences, are mentioned in the con-
clusions for future work. It is quite possible that if this challenge had been
quickly taken up, then today’s notion of simulation (or even bisimulation)
would have been discovered much earlier.

Milner himself, later in the 1970s, does study concurrency very inten-
sively, but under a very different perspective: he abandons the view of parallel
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programs as objects with an input/output behaviour akin to functions, in favour
of the view of parallel programs as interactive objects. This leads Milner to
develop a new theory of processes and a calculus – CCS – in which the notion
of behavioural equivalence between processes is fundamental. Milner however
keeps, from his earlier works, the idea of ‘locality’ – an equivalence should be
based outcomes that are local to states.

The behavioural equivalence that Milner puts forward, and that is prominent
in the first book on CCS [Mil80], is inductively defined. It is the stratification

of bisimilarity�ω
def
D
⋂

n �n presented in [San12, section 2.10]. Technically, in
contrast with weak homomorphisms, �ω has also the reverse implication (on
the transitions of the second components of the pairs in the relation), and can be
used on non-deterministic structures. The addition of a reverse implication was
not obvious. For instance, a natural alternative would have been to maintain
an asymmetric basic definition, possibly refine it, and then take the induced
equivalence closure to obtain a symmetric relation (if needed). Indeed, among
the main behavioural equivalences in concurrency – there are several of them,
see [Gla93, Gla90] – bisimulation is the only one that is not naturally obtained
as the equivalence-closure of a preorder.

With Milner’s advances, the notion of bisimulation is almost there: it
remained to turn an inductive definition into a coinductive one. This will be
David Park’s contribution.

It is worth pointing out that, towards the end of the 1970s, homomorphisms-
like notions appear in other attempts at establishing ‘simulations’, or even
‘equivalences’, between concurrent models – usually variants of Petri nets.
Good examples are John S. Gourlay, William C. Rounds, and Richard Statman
[GRS79] and Kurt Jensen [Jen80], which develop previous work by Daniel
Brand [Bra78] and Y.S. Kwong [Kwo77]. Gourlay, Rounds, and Statman’s
homomorphisms (called contraction) relate an abstract system with a more con-
crete realisation of it – in other words, a specification with an implementation.
Jensen’s proposal (called simulation), which is essentially the same as Kwong’s
strict reduction [Kwo77], is used to compare the expressiveness of different
classes of Petri nets. The homomorphisms in both papers are stronger than
today’s simulation or bisimulation; for instance they are functions rather than
relations. Interestingly, in both cases there are forms of ‘reverse implications’
on the correspondences between the transitions of related states. Thus these
homomorphisms, but especially those in [GRS79], remind us of bisimulation,
at least in the intuition behind it. In [GRS79] and [Jen80], as well as other
similar works of that period, the homomorphisms are put forward because they
represent conditions sufficient to preserve certain important properties (such as
Church–Rosser and deadlock freedom). In contrast with Milner, little emphasis
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is given to the proof technique based on local checks that they bear upon.
For instance the definitions of the homomorphisms impose correspondence on
sequences of actions from related states.

1.3.3 David Park

In 1980, Milner returns to Edinburgh after a six-month appointment at Aarhus
University, and completes his first book on CCS. Towards the end of that year,
David Park begins a sabbatical in Edinburgh, and stays at the top floor of
Milner’s house.

Park is one of the top experts in fixed-point theory at the time. He makes
the final step in the discovery of bisimulation precisely guided by fixed-point
theory. Park notices that the inductive notion of equivalence that Milner is using
for his CCS processes is based on a monotone functional over a complete lat-
tice. And by adapting an example by Milner, he sees that Milner’s equivalence
(�ω) is not a fixed point for the functional, and that therefore the functional is
not cocontinuous. He then defines bisimilarity as the greatest fixed point of the
functional, and derives the bisimulation proof method from the theory of great-
est fixed points. Further, Park knows that, to obtain the greatest fixed point of
the functional in an inductive way, the ordinals and transfinite induction, rather
then the naturals and standard induction, are needed [San12, theorem 2.8.8].
Milner immediately and enthusiastically adopts Park’s proposal. Milner knew
that �ω is not invariant under transitions. Indeed he is not so much struck by
the difference between�ω and bisimilarity as behavioural equivalences, as the
processes exhibiting such differences can be considered rather artificial. What
excites him is the coinductive proof technique for bisimilarity. Both bisimi-
larity and �ω are rooted in the idea of locality, but the coinductive method
of bisimilarity further facilitates proofs. In the years to come Milner makes
bisimulation popular and the cornerstone of the theory of CCS [Mil89].

In computer science, the standard reference for bisimulation and the bisim-
ulation proof method is Park’s paper ‘Concurrency on automata and infinite
sequences’ [Par81a] (one of the most quoted papers in concurrency). However,
Park’s discovery is only partially reported in [Par81a], whose main topic is
a different one, namely omega-regular languages (extensions of regular lan-
guages containing also infinite sequences) and operators for fair concurrency.
Bisimulation appears at the end, as a secondary contribution, as a proof tech-
nique for trace equivalence on automata. Bisimulation is first given on finite
automata, but only as a way of introducing the concept on the Büchi-like
automata investigated in the paper. Here, bisimulation has additional clauses
that make it non-transitive and different from the definition of bisimulation



14 Davide Sangiorgi

we know today. Further, bisimilarity and the coinduction proof method are not
mentioned in the paper.

Indeed, Park never writes a paper to report on his findings about bisimulation.
It is possible that this does not appear to him a contribution important enough
to warrant a paper: he considers bisimulation a variant of the earlier notion of
simulation by Milner [Mil70, Mil71b]; and it is not in Park’s style to write many
papers. A good account of Park’s discovery of bisimulation and bisimilarity are
the summary and the slides of his talk at the 1981 Workshop on the Semantics
of Programming Languages [Par81b].

1.3.4 Discussion

In computer science, the move from homomorphism to bisimulation follows a
somewhat opposite path with respect to modal logic: first homomorphisms are
made relational, then they are made symmetric, by adding a reverse implication.

It remains puzzling why bisimulation has been discovered so late in computer
science. For instance, in the 1960s weak homomorphism is well-known in
automata theory and, as discussed in Section 1.3.1, this notion is not that far
from simulation. Another emblematic example, again from automata theory,
is given by the algorithm for minimisation of deterministic automata, already
known in the 1950s [Huf54, Moo56] (also related to this is the Myhill–Nerode
theorem [Ner58]). The aim of the algorithm is to find an automaton equivalent
to a given one but minimal in the number of states. The algorithm proceeds by
progressively constructing a relation S with all pairs of non-equivalent states. It
roughly goes as follows. First step (a) below is applied, to initialise S; then step
(b), where new pairs are added to S, is iterated until a fixed point is reached,
i.e. no further pairs can be added:

(a) For all states P,Q, if P final and Q is not, or vice versa, then P S Q.
(b) For all states P,Q such that :(P S Q): if there is a such that Ta(P ) S

Ta(Q) then P S Q.

The final relation gives all pairs of non-equivalent states. Then its complement,
say S, gives the equivalent states. In the minimal automaton, the states in the
same equivalence class for S are collapsed into a single state.

The algorithm strongly reminds us of the partition refinement algorithms for
computing bisimilarity and for minimisation modulo bisimilarity, discussed in
[AIS12]. Indeed, the complement relation S that one wants to find has a natural
coinductive definition, as a form of bisimilarity, namely the largest relation R
such that
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(1) if P R Q then either both P and Q are final or neither is;
(2) for each a, if P R Q then Ta(P ) R Ta(Q).

Further, any relation R that satisfies the conditions (1) and (2) – that is, any
bisimulation – only relates pairs of equivalent states and can therefore be used
to determine equivalence of specific states.

The above definitions and algorithm are for deterministic automata. Bisim-
ulation would have been interesting also on non-deterministic automata.
Although on such automata bisimilarity does not coincide with trace equiv-
alence – the standard equality on automata – at least bisimilarity implies trace
equivalence and the algorithms for bisimilarity have a better complexity (P-
complete, rather than PSPACE-complete; see [AIS12]).

Lumpability in probability theory An old concept in probability theory that
today may be viewed as somehow reminiscent of bisimulation is Kemeny and
Snell’s lumpability [KS60]. A lumping equivalence is a partition of the states of
a continuous-time Markov chain. The partition must satisfy certain conditions
on probabilities guaranteeing that related states of the partition can be collapsed
(i.e. ‘lumped’) into a single state. These conditions, having to do with sums
of probabilities, are rather different from the standard one of bisimulation.
(Kemeny and Snell’s lumpability roughly corresponds to what today is called
bisimulation for continuous-time Markov chains in the special case where there
is only one label for transitions.)

The first coinductive definition of behavioural equivalence, as a form of
bisimilarity, that takes probabilities into account appears much later, put for-
ward by Larsen and Skou [LS91]. This paper is the initiator of a vast body of
work on coinductive methods for probabilistic systems in computer science.
Larsen and Skou were not influenced by lumpability. The link with lumpability
was in fact noticed much later [Buc94].

In conclusion: in retrospect we can see that Kemeny and Snell’s lumpability
corresponds to a very special form of bisimulation (continuous-time Markov
chains, only one label). However, Kemeny and Snell’s lumpability has not
contributed to the discovery of coinductive concepts such as bisimulation and
bisimilarity.

1.4 Set theory

In mathematics, bisimulation and concepts similar to bisimulation are formu-
lated in the study of properties of extensionality of models. Extensionality
guarantees that equal objects cannot be distinguished within the given model.
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When the structure of the objects, or the way in which the objects are supposed
to be used, are non-trivial, the ‘correct’ notion of equality may be non-obvious.
This is certainly the case for non-well-founded sets, as they are objects with
an infinite depth, and indeed most of the developments in set theory towards
bisimulation are made in a line of work on the foundations of theories of non-
well-founded sets. Bisimulation is derived from the notion of isomorphism (and
homomorphism), intuitively with the objective of obtaining relations coarser
than isomorphism but still with the guarantee that related sets have ‘the same’
internal structure.

Bisimulation is first introduced by Forti and Honsell and, independently, by
Hinnion, around the same time (the beginning of the 1980s). It is recognised
and becomes important with the work of Aczel and Barwise. Some earlier
constructions, however, have a clear bisimulation flavour, notably Mirimanoff’s
isomorphism at the beginning of the twentieth century.

1.4.1 Non-well-founded sets

Non-well-founded sets are, intuitively, sets that are allowed to contain them-
selves. As such they violate the axiom of foundation, according to which the
membership relation on sets does not give rise to infinite descending sequences

. . . An 2 An�1 2 . . . 2 A1 2 A0 .

For instance, a set � which satisfies the equation � D f�g is circular and
as such non-well-founded. A set can also be non-well-founded without being
circular; this can happen if there is an infinite membership chain through a
sequence of sets all different from each other.

If the axiom of foundation is used, the sets are well-founded. On well-
founded sets the notion of equality is expressed by Zermelo’s extensionality
axiom: two sets are equal if they have exactly the same elements. In other
words, a set is precisely determined by its elements. This is very intuitive and
naturally allows us to reason on equality proceeding by (transfinite) induction
on the membership relation. For instance, we can thus establish that the relation
of equality is unique. Non-well-founded sets, by contrast, may be infinite in
depth, and therefore inductive arguments may not be applicable. For instance,
consider the sets A and B defined via the equations A D fBg and B D fAg.
If we try to establish that they are equal via the extensionality axiom we end
up with a tautology (‘A and B are equal iff A and B are equal’) that takes us
nowhere.

Different formulations of equality on non-well-founded sets appear during
the twentieth century, together with proposals for axioms of anti-foundation.
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1.4.2 The stratified approach to set theory

The first axiomatisation of set theory by Ernst Zermelo in 1908 [Zer08] has
seven axioms, among which is the axiom of extensionality. However, it has no
axioms of foundation, and the possibility of having circular sets is in fact left
open (page 263, op. cit.).

In the same years, Bertrand Russell strongly rejects all definitions that
can involve forms of circularity (‘whatever involves all of a collection must
not be one of the collection’, in one of Russell’s formulations [Rus08]). He
favours a theory of types that only allows stratified constructions, where objects
are hereditarily constructed, starting from atoms or primitive objects at the
bottom and then iteratively moving upward through the composite objects. A
preliminary version of the theory is announced by Russell already in 1903
[Rus03, Appendix B]; more complete and mature treatments appear in 1908
[Rus08] and later, in 1910, 1912, 1913, in the monumental work with Alfred
North Whitehead [RW13].

Russell’s approach is followed by the main logicians of the first half of
the twentieth century, including Zermelo himself, Abraham Fraenkel, Thoralf
Skolem, Johann von Neumann, Kurt Gödel, Paul Bernays. Their major achieve-
ments include the formulation of the axiom of foundation, and the proofs of its
consistency and independence. An axiom of foundation is deemed necessary
so as to have a ‘canonical’ universe of sets. Without foundation, different inter-
pretations are possible, some including circular sets. This possibility is clearly
pointed out as a weakness by Skolem [Sko23], and by Fraenkel [Fra22], where
circular sets (precisely, Mirimanoff’s ‘ensembles extraordinaires’, see below)
are labelled as ‘superfluous’. It will be formally proved by Bernays only in
1954 [Ber54] that the existence of circular sets does not lead to contradictions
in the Zermelo–Fraenkel system without the axiom of foundation.

Remark 1.4.1 The axiom of foundation forces the universe of sets in which the
other axioms (the basic axioms) should be interpreted to be the smallest possible
one; i.e. to be an ‘inductive universe’. By contrast, axioms of anti-foundation
lead to the largest possible universe, i.e. a ‘coinductive universe’. Indeed,
referring to the algebraic/coalgebraic interpretation of induction/coinduction,
the foundation axiom can be expressed as a requirement that the universe of
sets should be an initial algebra for a certain powerset functor, whereas anti-
foundation (as in Forti and Honsell, Aczel, and Barwise) can be expressed as a
requirement that the universe should be a final coalgebra for the same functor.
The former is an inductive definition of the universe, whereas the latter is a
coinductive one. �
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The motivations for formalising and studying the stratified approach advo-
cated by Russell were strong at the beginning of the twentieth century. The
discovery of paradoxes such as Burali-Forti’s and Russell’s had made the set
theory studied by Cantor and Frege shaky, and circularity – with no distinc-
tion of cases – was generally perceived as the culprit for these as well as for
paradoxes known in other fields. Further, the stratified approach was in line
with common sense and perception (very important in Russell’s conception of
science), which denies the existence of circular objects.

The stratified approach remains indeed the only approach considered (in
logics and set theory), up to roughly the 1960s, with the exception of Mirimanoff
and Finsler that we discuss below. The stratified approach has also inspired –
both in the name and in the method – type theory in computer science, notably
in the works of Church, Scott, and Martin-Löf. It will be first disputed by
Jean-Yves Girard and John Reynolds, in the 1970s, with the introduction of
impredicative polymorphism.

1.4.3 Non-well-founded sets and extensionality

Dimitry Mirimanoff first introduces in 1917 the distinction between well-
founded and non-well-founded sets, the ‘ensembles ordinaires et extraordi-
naires’ in Mirimanoff’s words [Mir17a] (on the same topic are also the two
successive papers [Mir17b] and [Mir20]). Mirimanoff realises that Zermelo’s
set theory admitted sophisticated patterns of non-well-foundedness, beyond
the ‘simple’ circularities given by self-membership as in the purely reflex-
ive set � D f�g. In [Mir17b], Mirimanoff also tries to give an intuition for
the non-well-founded sets; he recalls the cover of a children’s book he had
seen, with the image of two children looking at the cover of a book, which in
turn had the image of two children, in a supposedly infinite chain of nested
images.

Mirimanoff defines an interesting notion of isomorphism between sets, that
we report in Section 1.4.8. Mirimanoff does not however go as far as propos-
ing an axiom of extensionality more powerful than Zermelo’s. This is first
attempted by Paul Finsler, in 1926 [Fin26]. Finsler presents three axioms for
a universe of sets equipped with the membership relation. The second one is
an extensionality axiom, stipulating that isomorphic sets are equal. Finsler’s
notion of isomorphism between two sets X and Y – which is different from
Mirimanoff’s – is, approximately, a bijection between the transitive closures of
X and Y (more precisely, the transitive closures of the unit sets fXg and fY g;
the precise meaning of isomorphism for Finsler can actually be debated, for it
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appears in different forms in his works).1 Finsler uses graph theory to explain
the properties and structure of sets, something that later Aczel will make more
rigorous and at the heart of his theory of non-well-founded sets.

Mirimanoff’s and Finsler’s works are remarkable: they go against the stan-
dard approach to set theory at the time; and against common sense according to
which objects are stratified and circular sets are ‘paradoxical’. For Mirimanoff
and Finsler, not all circular definitions are dangerous, and the challenge is to
isolate the ‘good’ ones.

The attempts by Mirimanoff and Finsler remain little known. We have to
wait till around the 1960s with, e.g. Specker [Spe57] and Scott [Sco60], to see
a timid revival of interest in non-well-founded structures, and the late 1960s,
and then the 1970s and 1980s, for a wider revival, with Boffa (with a number
of papers, including [Bof68, Bof69, Bof72]) and many others. New proposals
for anti-foundation axioms are thus made, and with them, new interpretations
of extensionality on non-well-founded sets, notably from Scott [Sco60], and
Forti and Honsell [FH83]. Forti and Honsell obtain bisimulation; their work is
then developed by Aczel and Barwise. We discuss the contributions of Forti
and Honsell, Aczel, and Barwise’s. On the history of non-well-founded sets,
the reader may also consult Aczel [Acz88, appendix A].

1.4.4 Marco Forti and Furio Honsell

Marco Forti’s and Furio Honsell’s work on non-well-founded sets [Hon81,
FH83] (and various papers thereafter) is spurred by Ennio De Giorgi, a well-
known analyst who, in the 1970s and 1980s, organises regular weekly meetings
at the Scuola Normale Superiore di Pisa, on logics and foundations of Mathe-
matics. In some of these meetings, De Giorgi proposes constructions that could
yield infinite descending chains of membership on sets, that Forti and Honsell
then go on to elaborate and develop.

The most important paper is [FH83]. Here Forti and Honsell study a number
of anti-foundation axioms, derived from a ‘Free Construction Principle’ pro-
posed by De Giorgi. They include axioms that already appeared in the literature
(such as Scott’s [Sco60]), and a new one, called X1, that gives the strongest
extensionality properties, in the sense that it equates more sets. (We recall X1 in
the next section, together with Aczel’s version of it.) The main objective of the

1 A set A is transitive if each set B that is an element of A has the property that all the elements
of B also belong to A; that is, all composite elements of A are also subsets of A. The transitive
closure of a set C is the smallest transitive set that contains C. Given C, its transitive closure is
intuitively obtained by copying at the top level all sets that are elements of C, and then
recursively continuing so with the new top-level sets.


