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370 Theory of p-adic distributions, S. ALBEVERIO, A.YU. KHRENNIKOV & V.M. SHELKOVICH
371 Conformal fractals, F. PRZYTYCKI & M. URBAŃSKI
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Preface

This book is based upon lectures delivered during the Summer School on Sym-
metries and Integrability of Difference Equations at the Université de Montréal,
Canada, June 8, 2008–June 21, 2008. The lectures are devoted to methods that
have been developed over the last 15–20 years for discrete equations. They are
based on either the inverse spectral approach or on the application of geomet-
ric and group theoretical techniques. The topics covered in this volume can be
summarized in the following categories:

• Integrability of difference equations
• Discrete differential geometry
• Special functions and their relation to continuous and discrete Painlevé

functions
• Discretization of complex analysis
• General aspects of Lie group theory relevant for the study of difference

equations. Specifically, two such subjects are treated: 1. Cartan’s method of
moving frames 2. Lattices in Euclidean space, symmetrical under the action
of semisimple Lie groups

• Lie point symmetries and generalized symmetries of discrete equations

Twelve distinct lecture series were presented at the Summer School of which
eleven are included in this volume. Close to 50 registered graduate students
and researchers from twelve different countries participated.

The Summer School, Séminaire de mathématiques supérieures, is a yearly
event at the Département de Mathématiques, Université de Montréal. The or-
ganizing committee for the year 2008 consisted of Pavel Winternitz (Université
de Montréal, Canada), Vladimir Dorodnitsyn (Keldysh Institute of Applied
Mathematics, Russian Academy of Sciences), Decio Levi (Universitá degli
Studi Roma Tre, Italy) and Peter Olver (University of Minnesota, USA). The
two scientific directors were Pavel Winternitz and Vladimir Dorodnitsyn. The



xviii Preface

financial support for the Summer School was provided by Université de Mont-
réal, the National Foundation Grant No. 0737765, the Centre de Recherches
Mathématiques, and the Institut de Sciences Mathématiques.
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Introduction

The concept of integrability of Hamiltonian systems goes back at least to the
19th century. The idea of integrability in classical mechanics was formalised
by J. Liouville. A finite-dimensional Hamiltonian system with n degrees of
freedom is called “Liouville integrable” or “completely integrable” if it allows
n functionally independent integrals of motion that are well defined functions
on phase space and are in involution. In classical mechanics the equations of
motion for a Liouville integrable system can be, at least in principle, reduced
to quadratures. A completely integrable system in quantum mechanics is de-
fined similarly. It should allow n commuting integrals of motion (including
the Hamiltonian) that are well defined operators in the enveloping algebra of
the Heisenberg algebra, or some generalization of this enveloping algebra. In
quantum mechanics complete integrability does not guarantee that the spectral
problem for the Schrödinger operator can be solved explicitly, or even that the
energy levels can be calculated algebraically.

An n-dimensional integrable Hamiltonian system that admits more than n
integrals of motion is called “superintegrable”. Systems with 2n − 1 integrals,
with at least one subset of n of them in involution, are “maximally superinte-
grable”. Such systems, namely the Kepler-Coulomb system and the harmonic
oscillator, played a pivotal role in the development of physics and mathematics.
Trajectories in classical maximally superintegrable systems can at least in prin-
ciple be calculated algebraically (without using any calculus). Ironically, cal-
culus was invented in order to calculate orbits in the Kepler system. In quantum
mechanics these systems are exactly solvable: their energy spectra can be cal-
culated algebraically, their wave functions expressed in terms of polynomials
(in appropriate variables) multiplied by a known function. The 2n−1 integrals
of motion generate (under Lie or Poisson commutation) a finite-dimensional
nonabelian algebra that is usually an associative algebra rather than a Lie alge-
bra. Superintegrability has also been called “nonabelian integrability”.
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The theory of nonlinear infinite dimensional integrable systems went
through a rapid development since the creation of “soliton theory” in the
famous 1967 paper by C.S. Gardner, J.M. Green, M.D. Kruskal, and R.M.
Miura. This paper introduced the inverse scattering transform as a method
of solving certain nonlinear partial differential equations by essentially linear
techniques. It rapidly became clear that there exists an infinite number of non-
linear partial differential equations that can be solved in this manner. These
equations are usually called “integrable” nonlinear partial differential equa-
tions. They can actually be considered to be infinite-dimensional analogues
of superintegrable finite dimensional systems. Indeed, they not only allow in-
finitely many integrals of motion but these integrals form nonabelian algebras.
The usual infinite families of commuting flows actually form infinite dimen-
sional abelian subalgebras of these larger non-abelian ones. Moreover, the
corresponding soliton equations are exactly solvable in the sense that the in-
verse scattering transform provides exact solutions for large classes of initial
data.

The use of group theory to solve ordinary and partial differential equations
also has a long history going back to S. Lie. Lie group methods are applica-
ble to a much wider class of equations than methods based on integrability.
Whether a partial differential equation is integrable or not, Lie theory allows
one to reduce the number of independent variables and to obtain special exact
analytical solutions. For an ordinary differential equation admitting a symme-
try group, Lie group methods enable one to decrease the order of the equa-
tion and, under appropriate solvability conditions, obtain the general solution.
When both integrability and symmetry methods are applicable, they interact
and complement each other fruitfully. In particular, group theory provides cri-
teria of integrability.

A vigorous application of the ideas of integrability and of symmetry to dis-
crete equations started much later, around 1990. Pioneering work on the inte-
grability of difference and differential-difference equations was done 20 years
earlier by M.J. Ablowitz and J.F. Ladik, R. Hirota, and others. The first appli-
cations of Lie group theory to difference equations are due to S. Maeda already
in 1980.

This volume is devoted to recent developments in the theory of integrability
and symmetries of discrete equations of all types: difference equations, q-
difference equations, differential-difference equations, ultradiscrete equations
and others. The contributions are ordered alphabetically by authors although
by content they could be subdivided into several overlapping themes.

The first chapter, by V. Dorodnitsyn and R. Kozlov, is devoted to a spe-
cific aspect of the application of continuous Lie point symmetries to difference
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systems involving one discrete independent variable. An ordinary differ-
ence scheme consists of two difference equations, determining both the lattice
and the actual difference equation. The authors develop discrete Lagrangian
and Hamiltonian formalisms. They then use them to investigate the relation
between continuous symmetries and conservation laws and first integrals for
discrete Hamiltonian and Euler-Lagrange equations.

Chapter 2, by B. Grammaticos and A. Ramani, shifts the focus to the field
of integrability and constitutes a comprehensive review of the Painlevé equa-
tions and the properties of their solutions. The authors give parallel derivations
of continuous and discrete Painlevé equations and emphasize their shared in-
tegrability properties. The discrete equations considered are difference equa-
tions, q-difference equations and ultra-discrete ones. Two descriptions are pre-
sented. A “top-down” approach, starting from a Hamiltonian formulation and
an isomonodromy deformation problem. The complementary “bottom-up” ap-
proach consists of applying certain integrability criteria to chosen classes of
equations. For discrete systems the criteria selected in this chapter are singu-
larity confinement and algebraic entropy.

By alphabetic coincidence, Chapter 3, written by J. Hietarinta, is closely
related to Chapter 2 and presents different definitions of integrability and in-
tegrability criteria for difference equations. The author considers both ordi-
nary and partial difference equations (with two discrete independent variables)
and provides algorithmic tools for deciding whether a discrete equation is in-
tegrable, partially integrable, or chaotic. A section is devoted to conserved
quantities, i.e. constants of motion. Singularity confinement and algebraic en-
tropy are presented as algorithmic tools. When applying the algebraic entropy
criterion, linear, polynomial, and exponential growth of complexity are associ-
ated with linearizable, integrable and chaotic equations, respectively. Finally,
the author shows how the “consistency-around-a cube” criterion discussed by
Yu.B. Suris in Chapter 10 can be applied to equations on square lattices to
obtain Lax pairs and multisoliton solutions.

Chapters 4 and 5 of this book are related in that they both deal with or-
thogonal polynomials and their relation to discrete and continuous Painlevé
functions. In both cases the orthogonal polynomials satisfy three term lin-
ear recurrence relations, i.e. second order linear difference equations. The
coefficients in the recursion relations satisfy discrete or continuous Painlevé
equations.

Chapter 4, written by M.E.H. Ismail, considers in particular the case when
the polynomials are orthogonal with respect to an exponential measure and the
recursion coefficients satisfy the discrete Painlevé I equation. The emphasis is
on the spectral theory of orthogonal polynomials and on applications.
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In Chapter 5, written by A. Its, the emphasis is on the connection between or-
thogonal polynomials, integrable systems and random matrices. The Riemann-
Hilbert formalism for orthogonal polynomials is explained and used to in-
troduce discrete Painlevé equations systematically. This setting is also used
to perform a global asymptotic analysis of the solutions of discrete Painlevé
equations.

Chapter 6, by D. Levi and R. Yamilov, is one of the three chapters in the
book specifically devoted to Lie symmetries of difference equations. More
specifically it deals with generalized symmetries. The authors consider gen-
eralized symmetries of partial difference equations with two independent vari-
ables on fixed non-transforming lattices. They make use of the formalism of
evolutionary vector fields, acting on the dependent variables only. A method
of constructing generalized symmetries for integrable multivariable difference
equations or differential-difference equations is presented. It makes use of
integrability properties of the equations, in particular recursion operators. A
subclass of generalized symmetries is identified that in the continuous limit
“contracts” to point symmetries. A section in Chapter 6 is devoted to how
formal symmetries provide an integrability criterion for equations on lattices.

In Chapter 7, S.P. Novikov reviews an ambitious program that amounts to
a discretization of complex analysis. After emphasizing the role of linear op-
erators and their factorization properties for continuous nonlinear integrable
systems, the author proceeds to their discretization. This is done on square lat-
tices for hyperbolic equations and on equilateral triangular lattices for elliptic
ones. The concept of triangle equations is introduced as well as that of GLn

connections. The discretization of complex analysis on square lattices was in-
troduced by Ferrand in 1944 and has been used for discrete integrable systems
by many authors. The approach of S.P. Novikov and his collaborators is instead
based on the properties of an equilateral triangle lattice. The discretization is
carried out both on flat and hyperbolic planes.

Chapters 8 and 9 are devoted to some rather general aspects of Lie group
theory that are relevant, in particular, to the study of difference equations.

In Chapter 8, P.J. Olver gives an exposition of the method of moving frames.
The modern development of this method goes back to Élie Cartan. The chap-
ter starts with a definition of a moving frame as an equivariant map from a
manifold M to a transformation group G. This definition turns the method
into an algorithm applicable to very general group actions. The treatment
is restricted to finite dimensional Lie groups (though the author refers to his
work on moving frames for pseudogroups as well). Many aspects and ap-
plications of the method, and obtained differential invariants, joint invariants
and joint differential invariants are discussed. The most relevant application
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from the point of view of this volume is Section 8.6 on invariant numerical
approximations, more specifically on symmetry preserving approximations.
An example is given in which Runge-Kutta schemes are compared. This use of
moving frames provides an example of geometric numerical integration tech-
niques for ordinary and partial differential equations.

Chapter 9, by J. Patera, provides an algorithm for constructing n-
dimensional lattices in real Euclidean space En that are symmetrical with re-
spect to the action of a compact semi-simple Lie group of rank n. A symmetric
lattice is first constructed in a finite region of the space. The symmetry of the
lattice is given by the symmetry of the weight lattice of the chosen Lie group
and the density of points can be chosen a priori. The action of the affine Weyl
group then extends the lattice to an infinite one on the entire space En. The
motivation provided is the construction of functions that are orthogonal on the
lattices. These in turn are needed in the treatment of digital data on lattices.
The construction of symmetric lattices can also be related to the construction of
the discrete integrable systems on other lattices than simple rectangular ones.

Chapter 10, by Yu.B. Suris, is on discrete differential geometry, a new sub-
ject emerging on the border between differential and discrete geometry. Dis-
crete differential geometry is not only related to the topic of integrability of
difference equations, but it actually provides new insights into the concept
of integrability, both for discrete and continuous equations. It also leads to
new integrability criteria. The author introduces basic notions like that of dis-
crete nets, Q-nets and circular nets. The concept of integrability for discrete
systems is introduced in terms of a multidimensional consistency principle.
Namely, the discretization of surfaces, coordinate systems and all related con-
cepts should be extendable to multidimensional consistent nets. The usual
fundamental attributes of integrable systems like the existence of Lax pairs,
Bäcklund transformations, permutability theorems, infinite families of com-
muting flows here appear as consequences of multidimensional consistency
requirements.

The last chapter, Chapter 11, by P. Winternitz, concentrates on point sym-
metries of difference and differential-difference equations. It is thus related
to Chapter 1 by V. Dorodnitsyn and R. Kozlov, Chapter 6 by D. Levi and
R. Yamilov and partially to Chapter 8 by P.J. Olver. Sections 11.1-4 are on
the symmetry preserving discretization of ordinary differential equations on
symmetry adapted lattices. In particular, Section 11.3 discusses examples of
geometric integration methods. It is shown that symmetry adapted numeri-
cal methods (so far for ordinary differential equations) provide qualitatively
superior solutions, specially in the neighbourhood of singularities. Sections
11.5 and 11.6 are devoted to Lie point symmetries of differential-difference
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equations. The discrete independent variables in these sections are defined on
uniform non-transforming lattices.

In summary, the papers in this volume provide a comprehensive overview of
the current state of the art in integrability and symmetry for discrete equations.
Our hope is that it will inspire the reader to further develop these fascinating
and important theories and their applications.

The Editors
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Lagrangian and Hamiltonian Formalism
for Discrete Equations:

Symmetries and First Integrals
Vladimir Dorodnitsyn and Roman Kozlov

Abstract

In this chapter the relation between symmetries and first integrals of dis-
crete Euler–Lagrange and discrete Hamiltonian equations is considered. These
results are built on those for continuous Euler–Lagrange and canonical
Hamiltonian equations. First, the well-known Noether theorem which pro-
vides conservation laws for continuous Euler–Lagrange equations is reviewed.
Then, its discrete analog is presented. Further, it is mentioned that continuous
and discrete Hamiltonian equations can be obtained by the variational princi-
ple from action functionals. This is used to develop Noether-type theorems
for canonical Hamiltonian equations and their discrete counterparts (discrete
Hamiltonian equations). The approach based on symmetries of the discrete
action functionals provides a simple and clear way to construct first integrals
of discrete Euler–Lagrange and discrete Hamiltonian equations by means of
differentiation of discrete Lagrangian (or Hamiltonian) and algebraic manipu-
lations. It can be used to conserve structural properties of underlying differ-
ential equations under a discretization procedure that is useful for numerical
implementation. The results are illustrated by a number of examples.

1.1 Introduction

It has been known since E. Noether’s fundamental work that conservation
laws of differential equations are connected with their symmetry properties
[28]. For convenience we present here some well-known results (see also, for
example, [1, 3, 18]) for the Lagrangian approach to conservation laws (first
integrals). We restrict ourselves to the case with one independent variable.
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Let us consider the functional

L(u) =
∫ t2

t1

L(t,u, u̇) dt, (1.1)

where t is the independent variable, u = (u1, u2, . . . , un) are dependent vari-
ables, u̇ = (u̇1, u̇2, . . . , u̇n) are first-order derivatives and L(t,u, u̇) is a  r st-
order Lagrangian. The functional (1.1) achieves its extremal values when u(t)
satisfies the Euler–Lagrange equations

δL
δui
=
∂L
∂ui
− D

(
∂L
∂u̇i

)
= 0, i = 1, . . . , n, (1.2)

where

D =
∂

∂y
+ u̇k ∂

∂uk
+ ük ∂

∂u̇k
+ · · ·

is the total differentiation operator. Here and below we assume summation
over repeated indexes. Note that (1.2) are second-order ODEs.

We consider a Lie point transformation group G generated by the infinitesi-
mal operator

X = ξ(t,u)
∂

∂t
+ ηi(t,u)

∂

∂ui
+ · · · , (1.3)

where dots mean an appropriate prolongation of the operator to derivatives
[5, 21, 29, 30]. The group G is called a variational symmetry of the functional
L(u) if and only if the Lagrangian satisfies [28]

X(L) + LD(ξ) = 0, (1.4)

where X is the first prolongation, i.e., the prolongation of the vector field X to
the first derivatives u̇. We will actually need a weaker invariance condition than
given by (1.4). The vector field X is a divergence symmetry of the functional
L(u) if there exists a function V(t,u, u̇) such that [4] (see also [5, 21, 29])

X(L) + LD(ξ) = D(V). (1.5)

Generally, (1.5) should hold on the solutions of the Euler–Lagrange equations
(1.2).

Noether’s theorem [28] can be based on the following Noether-type identity
[21], which holds for any vector field and any smooth function L(t,u, u̇):

X(L) + LD(ξ) ≡ (ηi − ξu̇i)
δL
δui
+ D

(
ξL + (ηi − ξu̇i)

∂L
∂u̇i

)
. (1.6)
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The theorem states that for a Lagrangian satisfying the condition (1.4) there
exists a first integral of the Euler–Lagrange equations (1.2):

I = ξL + (ηi − ξu̇i)
∂L
∂u̇i

. (1.7)

This result can be generalized [4]: If X is a divergence symmetry of the
functional L(u), i.e., (1.5) is satisfied, then there exists a conservation law

I = ξL + (ηi − ξu̇i)
∂L
∂u̇i
− V (1.8)

of the corresponding Euler–Lagrange equations.
The strong version of Noether’s theorem [21] states that there exists a con-

servation law of the Euler–Lagrange equations (1.2) in the form (1.7) if and
only if the condition (1.4) is satisfied on the solutions of (1.2).

The goal of this chapter is to extend the results presented above to discrete
equations in the Lagrangian and Hamiltonian frameworks. We will need to
consider canonical Hamiltonian equations before we start to treat their discrete
counterparts. It is known that the preservation of first integrals (conservation
laws) in numerics is of great importance (see, for example, [19, 31]). There-
fore, there is a strong motivation to establish discrete analogs of the conserva-
tion properties of the continuous Euler–Lagrange and Hamiltonian equations.

In the next section we will comment on invariance of the Euler–Lagrange
equations. In Section 1.3 we will present the Lagrangian formalism for
second-order difference equations, which are a discrete analog of the second-
order ordinary differential equations. Canonical Hamiltonian equations are
considered in Section 1.4. We will develop an analog of Noether’s theorem
which is based on invariance properties of the action functional, generating
canonical Hamiltonian equations. The discrete Hamiltonian equations and
their conservation properties are treated in Section 1.5. Section 1.6 presents
applications of the theoretical results to a number of examples. Finally
Section 1.7 contains concluding remarks.

1.2 Invariance of Euler–Lagrange equations

There exists a relation between the invariance of the Lagrangian function and
invariance of the corresponding Euler–Lagrange equations:

Theorem 1.1 ([21, 29]) If the Lagrangian L is invariant with respect to oper-
ator (1.3), i.e., condition (1.4) is satis ed, then the Euler–Lagrange equations
(1.2) are also invariant.
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Remark 1.2 If the Lagrangian L is divergence invariant, i.e., satisfies the con-
dition (1.5), then the Euler–Lagrange equations (1.2) are also invariant. This
follows from the fact that full divergences belong to the kernel of variational
operators.

Thus, if X is a variational or divergence symmetry of the functional L(u),
it is also a symmetry of the corresponding Euler–Lagrange equations (1.2).
The symmetry group of the Euler–Lagrange equations can of course be larger
than the group generated by variational and divergence symmetries of the
Lagrangian.

It is interesting to establish the necessary and sufficient condition for in-
variance of the Euler–Lagrange equations. We will need the following
lemma:

Lemma 1.3 For any smooth function L(t,u, u̇) the following identity holds

δ

δu j

(
X(L)+ LD(ξ)

) ≡ X
(
δL
δu j

)
+

(
∂ηi

∂u j
+ δi jD(ξ)− ∂ξ

∂u j
u̇i

)
δL
δui

, j = 1, . . . , n,

(1.9)
where the notation δi j stands for the Kronecker symbol.

Proof The result can be established by a direct computation.

Theorem 1.1 and Remark 1.2 follow from this lemma. The lemma also
provides the necessary and sufficient condition for the invariance of the Euler–
Lagrange equations:

Theorem 1.4 The Euler–Lagrange equations (1.2) are invariant with respect
to a symmetry (1.3) if and only if the following conditions are true (on the
solutions of the equations):

δ

δu j

(
X(L) + LD(ξ)

)∣∣∣∣∣
δL/δu1=···=δL/δun=0

= 0, j = 1, . . . , n. (1.10)

Proof The statement follows from the identities of Lemma 1.3.

Example 1.5 Equation

ü =
1
u2

(1.11)

is the Euler–Lagrange equation for the Lagrangian function

L(t, u, u̇) =
u̇2

2
− 1

u
.

The equation admits symmetries

X1 =
∂

∂t
, X2 = 3t

∂

∂t
+ 2u

∂

∂u
.
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The operator X1 is a symmetry of Lagrangian L and, consequently, a symmetry
of (1.11). The symmetry X2 is not a symmetry of the Lagrangian:

X2(L) + LD(ξ2) = L.

However, it is a symmetry of the equation as follows from Theorem 1.4:

δ

δu
(
X2(L) + LD(ξ2)

)∣∣∣∣∣
δL/δu=0

=
δL
δu

∣∣∣∣∣
δL/δu=0

= 0.

In the next section we will develop discrete analogs of these results.

1.3 Lagrangian formalism for second-order difference
equations

Let us present the results concerning the variational formulation of discrete
Euler–Lagrange equations [9–11, 13, 14]. The notations are clear from the
following picture:

�

�u

t

(t−, u−)
(t, u)

(t+, u+)

h− h+

We consider a finite-difference functional

Lh =
∑
Ω

L(t, t+,u,u+)h+, (1.12)

defined on some one-dimensional lattice Ω with steplength h+ = t+ − t. Gen-
erally, the lattice can depend on the solution, for example, as

Ω(t, t−, t+,u,u−,u+) = 0. (1.13)

Functional (1.12) must be considered together with lattice (1.13). On different
lattices it can have different continuous limits.

Let us take a variation of the difference functional (1.12) along some curve
ui = φi(t), i = 1, . . . , n at some point (t,u). The variation will affect only two
terms in the sum (1.12):

Lh = · · · +L(t−, t,u−,u)h− +L(t, t+,u,u+)h+ + · · · . (1.14)
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Thus, we get the following expression for the variation of the difference func-
tional

δLh =
δL
δui

δui +
δL
δt
δt, (1.15)

where δui = φ′iδt, i = 1, . . . , n and

δL
δui
= h+

∂L
∂ui
+ h−

∂L
∂ui

−
, i = 1, . . . , n,

δL
δt
= h+

∂L
∂t
+ h−

∂L
∂t

−
+L− − L,

(1.16)

with L = L(t, t+,u,u+) and L− = S
−h

(L) = L(t−, t,u−,u). For convenience we

will use the following total left and right shift operators

S
−h

f (t,u) = f (t−,u−), S
+h

f (t,u) = f (t+,u+)

and left and right total difference operators

D
+h
=

S
+h
− 1

h+
, D

−h
=

1 − S
−h

h−
.

Thus, for an arbitrary curve the stationary value of the difference functional
is given by a solution of the n + 1 equations

δL
δui
= 0, i = 1, . . . , n,

δL
δt
= 0, (1.17)

called global extremal equations. These equations represent the entire differ-
ence scheme and could be called “the discrete Euler–Lagrange system.” They
can be interpreted as a three-point difference scheme of the form

Fi(t, t−, t+,u,u−,u+) = 0, i = 1, . . . , n,

Ω(t, t−, t+,u,u−,u+) = 0.

Here the first n equations are approximations of differential equations (1.2)
and the last equation provides a lattice, on which these approximations are
considered. In the continuous limit the lattice equation vanishes (turns into an
identity like 0 = 0). Given two points, for instance (t,u) and (t−,u−), we can
calculate (t+,u+).

Note that the variational equations (1.17) can be obtained by the action of
discrete variational operators

δ

δui
=

∂

∂ui
+ S
−h

∂

∂ui
+

, i = 1, . . . , n, (1.18)

δ

δt
=
∂

∂t
+ S
−h

∂

∂t+
(1.19)

on the discrete elementary action L(t, t+,u,u+)h+.
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Now let us consider a variation of the functional (1.12) along the orbit of a
group generated by the operator (1.3). Then, we have δt = ξδa, δui = ηiδa,
i = 1, . . . , n, where δa is the variation of the group parameter. A stationary
value of the difference functional (1.12) along the flow generated by this vector
field is given by the equation

ηi δL
δui
+ ξ

δL
δt
= 0, (1.20)

which depends explicitly on the coefficients of the generator. This equation
is called a quasiextremal equation. If we have a Lie algebra of vector fields
of dimension n + 1 or more, then the stationary value of difference functional
(1.12) along the entire flow will be achieved on the intersection of the solutions
of all quasiextremal equations of the type (1.20), i.e., the system of equations
(1.17).

Remark 1.6 Sometimes it is convenient to consider the variational equations
(1.17) in a modified form

∂L
∂ui
+

h−
h+

∂L
∂ui

−
= 0, i = 1, . . . , n,

∂L
∂t
+

h−
h+

∂L
∂t

−
− D
+h

(L−) = 0,

(1.21)

obtained on dividing by h+.

Let us consider a Lie group of point transformations, generated by a vector
field (1.3). When acting on discrete equations and functionals, a vector field
must be prolonged to variables at other points of the lattice. The prolongation
is obtained by shifting the coefficients to the corresponding points. For three-
point schemes we have

X = ξ
∂

∂t
+ ξ−

∂

∂t−
+ ξ+

∂

∂t+
+ ηi ∂

∂ui
+ ηi

−
∂

∂ui
−
+ ηi
+

∂

∂ui
+

+ (ξ+ − ξ)
∂

∂h+
+ (ξ − ξ−)

∂

∂h−
, (1.22)

where coefficients are given as follows

ξ− = ξ(t−,u−), ηi
− = η

i(t−,u−), ξ+ = ξ(t+,u+), ηi
+ = η

i(t+,u+).

The infinitesimal invariance condition for the functional (1.12) on the lattice
(1.13) is given by two equations [9–11, 14]:

X(L) +LD
+h

(ξ)
∣∣∣∣∣
Ω=0
= 0, X(Ω)

∣∣∣
Ω=0
= 0, (1.23)

which are valid on the lattice (1.13). Generally, the lattice is provided by the
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global extremal equations (1.17). Therefore, we need to require their invari-
ance to consider the invariance of the functional.

A useful operator identity, valid for any Lagrangian L(t, t+,u,u+) and any
vector field X is [9, 11]

X(L) +LD
+h

(ξ) ≡ ξ
(
∂L
∂t
+

h−
h+

∂L
∂t

−
− D
+h

(L−)
)

+ ηi
(
∂L
∂ui
+

h−
h+

∂L
∂ui

−)
+ D
+h

(
h−η

i ∂L
∂ui

−
+ h−ξ

∂L
∂t

−
+ ξL−

)
. (1.24)

The identity is a discrete analog of Noether identity (1.6) and can be called
the discrete Noether identity. From this relation we obtain the following dis-
crete analog of Noether’s theorem.

Theorem 1.7 ([9, 11, 14]) The global extremal equations (1.17), invariant
under the Lie group G of local point transformations generated by vector  elds
X of the form (1.3), possess a  r st integral

I = h−η
i ∂L
∂ui

−
+ h−ξ

∂L
∂t

−
+ ξL− (1.25)

if and only if the Lagrangian density L is invariant with respect to the same
group on the solutions of (1.17).

Remark 1.8 If the Lagrangian density L is divergence invariant under Lie
group G of local point transformations, i.e.,

X(L) +LD
+h

(ξ) = D
+h

(V) (1.26)

for some function V(t,u), then each element X of the Lie algebra correspond-
ing to group G provides us with a first integral of the global extremal equations
(1.17), namely

I = h−η
i ∂L
∂ui

−
+ h−ξ

∂L
∂t

−
+ ξL− − V. (1.27)

Remark 1.9 In a particular case when the discrete Lagrangian is invariant
with respect to time translations, i.e., L = L(h+,q,q+), where h+ = t+ − t is
the step size, there is a conservation of energy

E = −L− − h−
∂L−
∂h−

= −L − h+
∂L
∂h+

.

In this case we get symplectic-momentum-energy preserving variational inte-
grators [22].

It has been shown elsewhere [9–11], that if the functional (1.12) is invariant
or divergence invariant under some group G, then the global extremal equa-
tions (1.17) are also invariant with respect to G:
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Theorem 1.10 If the Lagrangian L is invariant with respect to the operator
(1.3), then the global extremal equations (1.17) are also invariant.

Remark 1.11 If the Lagrangian L is divergence invariant, then the global
extremal equations (1.17) are also invariant. This follows from the fact that
total finite differences belong to the kernel of discrete variational operators.

As in the continuous case, the global extremal equations can be invariant
with respect to a larger group than the corresponding Lagrangian.

Now we are in a position to establish the necessary and sufficient condition
for the invariance of global extremal equations. We will obtain new identities
and a new theorem.

Lemma 1.12 The following identities hold for any smooth functionL(t, t+,u,
u+):

δ

δu j

((
X(L) +LD

+h
(ξ)

)
h+

)
≡ X

(
δL
δu j

)
+
∂ηi

∂u j

δL
δui
+
∂ξ

∂u j

δL
δt
, j = 1, . . . , n,

(1.28)

δ

δt

((
X(L) +LD

+h
(ξ)

)
h+

)
≡ X

(
δL
δt

)
+
∂ηi

∂t
δL
δui
+
∂ξ

∂t
δL
δt
. (1.29)

Proof The identities can be verified directly.

The lemma allows us to obtain not only the sufficient (Theorem 1.10) but
also the necessary and sufficient condition for the invariance of the global ex-
tremal equations.

Theorem 1.13 The global extremal equations (1.17) are invariant with re-
spect to a symmetry (1.3) if and only if the following conditions are true (on
the solutions of the equations):

δ

δu j

((
X(L) +LD

+h
(ξ)

)
h+

)∣∣∣∣∣
(1.17)

= 0, j = 1, . . . , n, (1.30)

δ

δt

((
X(L) +LD

+h
(ξ)

)
h+

)∣∣∣∣∣
(1.17)

= 0. (1.31)

Proof The statement follows from identities of Lemma 1.12.

Many examples of applications of the discrete version of Noether’s theorem
in Lagrangian framework can be found in [14]. It should be noted that the
discrete Lagrangian formalism and the corresponding Noether’s theorem are
not restricted to ordinary equations. They can also be used for discretizations
of partial differential equations [6].

We note that there exists an alternative approach to conservation laws of
discrete equations on fixed meshes based on direct methods [20].
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1.4 Hamiltonian formalism for differential equations

In this chapter we will also present the Hamiltonian formalism for discrete
Hamiltonian equations. Before that we consider the canonical Hamiltonian
equations

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi

, i = 1, . . . , n (1.32)

and rewrite results concerning their invariance and conservation properties in
a nonstandard way, that provides us with a simple “translation” of the La-
grangian formalism into the Hamiltonian one. We also present a new criterion
(Theorem 1.23) for the invariance of the Hamiltonian equations.

1.4.1 Canonical Hamiltonian equations

It is well known that canonical Hamiltonian equations (1.32) can be obtained
by the variational principle from the action functional

δ

∫ t2

t1

(
piq̇

i − H(t,q,p)
)

dt = 0 (1.33)

in the phase space (q,p), where q = (q1, q2, . . . , qn) and p = (p1, p2, . . . , pn)
[17, 27]. Let us note that the canonical Hamiltonian equations (1.32) can be
derived by action of the variational operators

δ

δpi
=

∂

∂pi
− D

∂

∂ṗi
, i = 1, . . . , n, (1.34)

δ

δqi
=

∂

∂qi
− D

∂

∂q̇i
, i = 1, . . . , n, (1.35)

where D is the operator of total differentiation with respect to time

D =
∂

∂t
+ q̇k ∂

∂qk
+ ṗk

∂

∂pk
+ · · · ,

on the function

piq̇
i − H(t,q,p).

As an analog of Lagrangian elementary action L dt [21, 29] we consider
Hamiltonian elementary action [12], namely

pi dqi − H(t,q,p) dt, (1.36)

and investigate its invariance with respect to a point transformation group gen-
erated by an operator

X = ξ(t,q,p)
∂

∂t
+ ηi(t,q,p)

∂

∂qi
+ ζi(t,q,p)

∂

∂pi
. (1.37)
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It should be noted that such point symmetry operators might correspond to
nonpoint symmetries in the Lagrangian framework.

Definition 1.14 A Hamiltonian function is called invariant with respect to a
symmetry operator (1.37) if the elementary action (1.36) is an invariant of the
group generated by this operator.

This definition makes it possible to develop the following proposition.

Theorem 1.15 ([12]) A Hamiltonian is invariant with respect to a group
generated by the operator (1.37) if and only if the following condition holds

ζiq̇
i + piD(ηi) − X(H) − HD(ξ) = 0. (1.38)

The basic identity, stated in [12], relates conservation properties of the ca-
nonical Hamiltonian equations to the invariance of the Hamiltonian function:

ζiq̇
i + piD(ηi) − X(H) − HD(ξ) ≡ ξ

(
D(H) − ∂H

∂t

)
− ηi

(
ṗi +

∂H
∂qi

)
+ ζi

(
q̇i − ∂H

∂pi

)
+ D[piη

i − ξH]. (1.39)

This identity, called the Hamiltonian identity, is the well-known Noether iden-
tity rewritten for the Hamiltonian function. It allows us to state the following
result.

Theorem 1.16 ([12]) The canonical Hamiltonian equations (1.32) possess a
 r st integral of the form

J = piη
i − ξH (1.40)

if and only if the Hamiltonian function is invariant with respect to operator
(1.37) on the solutions of the equations.

Theorem 1.16 corresponds to the strong version of the Noether theorem
(i.e., necessary and sufficient condition) for invariant Lagrangians and Euler–
Lagrange equations [21].

Remark 1.17 Theorem 1.16 can be generalized to the case of divergence
invariance of the Hamiltonian action

ζiq̇
i + piD(ηi) − X(H) − HD(ξ) = D(V), (1.41)

where V = V(t,q,p) is some function. If this condition holds on the solutions
of the canonical Hamiltonian equations (1.32), then there is a first integral

J = piη
i − ξH − V. (1.42)


