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ATOMS IN INTENSE LASER FIELDS

The development of lasers capable of producing high-intensity pulses has opened
a new area in the study of light–matter interactions. The corresponding laser fields
are strong enough to compete with the Coulomb forces in controlling the dynamics
of atomic systems, and give rise to multiphoton processes. This book presents a
unified account of this rapidly developing field of physics.

The first part describes the fundamental phenomena occurring in intense laser–
atom interactions and gives the basic theoretical framework to analyze them.
The second part contains a detailed discussion of Floquet theory, the numerical
integration of the wave equations and approximation methods for the low- and
high-frequency regimes. In the third part, the main multiphoton processes are dis-
cussed: multiphoton ionization, high harmonic and attosecond pulse generation
and laser-assisted electron–atom collisions. Aimed at graduate students in atomic,
molecular and optical physics, the book will also interest researchers working on
laser interactions with matter.
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Preface

The availability of intense laser fields over a wide frequency range, in the form
of short pulses of coherent radiation, has opened a new domain in the study of
light–matter interactions. The peak intensities of these laser pulses are so high that
the corresponding laser fields can compete with the Coulomb forces in controlling
the dynamics of atomic systems. Atoms interacting with such intense laser fields
are therefore exposed to extreme conditions, and new phenomena occur which are
known as multiphoton processes. These phenomena generate in turn new behaviors
of bulk matter in strong laser fields, with wide-ranging applications.

The purpose of this book is to give a self-contained and unified presentation of
high- intensity laser–atom physics. It is primarily aimed at physicists studying the
interaction of laser light with matter at the microscopic level, although it is hoped
that any scientist interested in laser–matter interactions will find it useful.

The book is divided into three parts. The first one contains two chapters, in which
the basic concepts are presented. In Chapter 1, we give a general overview of the
new phenomena discovered by studying atomic multiphoton processes in intense
laser fields. In Chapter 2, the theory of laser–atom interactions is expounded, using
a semi-classical approach in which the laser field is treated classically, while the
atom is described quantum mechanically. The wave equations required to study
the dynamics of atoms interacting with laser fields are discussed, starting with the
non-relativistic time-dependent Schrödinger equation in the dipole approximation,
then moving to the description of non-dipole effects and finally to relativistic wave
equations.

The second part, containing five chapters, is devoted to a detailed discus-
sion of the most important theoretical methods used to solve the wave equations
given in Chapter 2. We begin, in Chapter 3, by considering perturbation theory,
which can only be employed for laser fields having moderate intensities and for
non-resonant multiphoton processes. In the next four chapters we discuss non-
perturbative methods, which must be used when atoms interact with strong laser

xi
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fields. In Chapter 4, we review the Floquet theory, in particular the Sturmian-Floquet
and R-matrix–Floquet methods. Chapter 5 is devoted to the numerical solution of
the wave equations. Approximation methods appropriate to investigate the interac-
tion of atoms with low-frequency and high-frequency laser fields are considered in
Chapters 6 and 7, respectively. It is remarkable that in these two distinct frequency
regimes, simple theoretical considerations provide considerable insight into the
physics of intense laser–atom interactions.

In the third part of the book, which contains the final three chapters, the methods
discussed in the second part are applied to the analysis of the three most important
atomic multiphoton processes in intense laser fields: multiphoton ionization, har-
monic generation and laser-assisted electron–atom collisions. Thus, in Chapter 8 we
discuss successively multiphoton single and double ionization of atoms. In Chapter
9, after analyzing the emission of harmonics by atoms, we review the generation
and characterization of attosecond pulses, and their use in the new field of atto-
physics. Finally, in Chapter 10, we begin our theoretical analysis of laser-assisted
electron–atom collisions by considering the simple case for which the target atom
is modeled by a potential. We then turn our attention to collisions with real atoms
having an internal structure.

We wish to thank our colleagues and students for numerous helpful discussions
and suggestions. One of us (C.J.J.) would like to acknowledge the hospitality of
the Max-Planck Institut für Quantenoptik in Garching, where he was the guest of
Professor H. Walther and more recently of Professor F. Krausz. We would also like
to thank Professor H. Joachain-Bukowinski and Professor N. Vaeck for their help
in preparing the diagrams.
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Basic concepts
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High-intensity laser–atom physics

In recent years, intense laser fields have become available, over a wide frequency
range, in the form of short pulses. Such laser fields are strong enough to compete
with the Coulomb forces in controlling the dynamics of atomic systems. As a result,
atoms in intense laser fields exhibit new properties that have been discovered via
the study of multiphoton processes. After some introductory remarks in Section
1.1, we discuss in Section 1.2 how intense laser fields can be obtained by using
the “chirped pulse amplification” method. In the remaining sections of this chapter,
we give a survey of the new phenomena discovered by studying three important
multiphoton processes in atoms: multiphoton ionization, harmonic generation and
laser-assisted electron–atom collisions.

1.1 Introduction

If radiation fields of sufficient intensity interact with atoms, processes of higher
order than the single-photon absorption or emission play a significant role. These
higher-order processes, called multiphoton processes, correspond to the net absorp-
tion or emission of more than one photon in an atomic transition. It is interesting to
note that, in the first paper he published in Annalen der Physik in the year 1905, his
“Annus mirabilis,” Einstein [1] not only introduced the concept of “energy quantum
of light” – named “photon” by Lewis [2] in 1926 – but also mentioned the possibil-
ity of multiphoton processes occurring when the intensity of the radiation is high
enough, namely “if the number of energy quanta per unit volume simultaneously
being transformed is so large that an energy quantum of emitted light can obtain
its energy from several incident energy quanta.” Multiphoton processes were also
considered in the pioneering work of Göppert-Mayer [3].

There are several types of multiphoton processes. For instance, an atom can
undergo a transition from a bound state to another bound state of higher energy via
the absorption of n photons (n ≥ 2), a process known as multiphoton excitation.

3
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Also, an atom in an excited state can emit n photons in a transition to a state of lower
energy, a process called multiphoton de-excitation, either by spontaneous emission
(which does not require the presence of an external radiation field) or by stimu-
lated emission. Another example is the multiphoton ionization (MPI) of an atom,
a process in which the atom absorbs n photons, and one or several of its electrons
are ejected. An atom interacting with a strong laser field can also emit radiation at
higher-order multiples, or harmonics, of the frequency of the laser; this process is
known as harmonic generation. Finally, radiative collisions involving the exchange
(absorption or emission) of n photons can occur in laser-assisted atomic collisions
such as electron–atom or atom–atom collisions in the presence of a laser field.

Except for spontaneous emission, which will not be considered here, the observa-
tion of multiphoton transitions requires relatively large laser intensities. Typically,
intensities of the order of 108 W cm−2 are required to observe multiphoton transi-
tions in laser-assisted electron–atom collisions, while intensities of 1010 W cm−2

are the minimum necessary for the observation of multiphoton ionization in atoms.
In fact, such intensities are now considered to be rather modest. Indeed, as we shall
see in the following section, laser fields have become available in the form of short
pulses having intensities of the order of, or exceeding, the atomic unit of intensity

Ia = 1

2
ε0cE2

a � 3.5 × 1016 W cm−2 , (1.1)

where c is the velocity of light in vacuo, ε0 is the permittivity of free space and Ea

is the atomic unit of electric field strength, namely

Ea = e

(4πε0)a2
0

� 5.1 × 109 V cm−1 , (1.2)

where e is the absolute value of the electron charge and a0 is the first Bohr radius of
atomic hydrogen. Atomic units (a.u.) are discussed in the Appendix. We note that
Ea is the strength of the Coulomb field experienced by an electron in the first Bohr
orbit of the hydrogen atom. Laser fields having intensities of the order of, or larger
than, Ia are strong enough to compete with the Coulomb forces in governing the
dynamics of atoms. Thus, while multiphoton processes involving laser fields with
intensities I � Ia can be studied by using perturbation theory, the effects of laser
fields with intensities of the order of, or exceeding, Ia must be analyzed by using
non-perturbative approaches.

In Chapter 2, we shall discuss the theory of laser–atom interactions based on a
semi-classical approach which provides the framework for studying atomic multi-
photon processes in intense laser fields. In particular, we shall introduce the dipole
approximation, in which the laser field is described by a spatially homogeneous
electric-field component, while its magnetic-field component vanishes. The dipole
approximation is fully adequate to investigate atomic multiphoton processes over a
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wide range of laser frequencies and intensities. However, as the intensity increases
beyond critical values that depend on the frequency, non-dipole effects due to the
magnetic-field component of the laser field, and eventually relativistic effects, must
be taken into account [4–7].

The theoretical methods required to solve the quantum-mechanical wave
equations introduced in Chapter 2 will be developed in the second part of this book
(Chapters 3–7). We shall discuss powerful ab initio methods such as the Sturmian-
Floquet method [8, 9], the R-matrix–Floquet method [10, 11] and the numerical
solution of the time-dependent Schrödinger equation [12, 13]. In this second part,
we shall also examine methods of approximation which can be used to analyze
multiphoton processes at low or at high laser frequencies, respectively. All of
these methods will be applied in the third part (Chapters 8–10) to analyze atomic
multiphoton processes.

The subject of atoms in intense laser fields has been covered in the volumes edited
by Gavrila [14] and by Brabec [15], in the review articles by Burnett, Reed and
Knight [16], Joachain [17], Kulander and Lewenstein [18], Protopapas, Keitel
and Knight [19], Joachain, Dörr and Kylstra [20], Milosevic and Ehloztky [21],
and also in the books by Faisal [22], Mittleman [23], Delone and Krainov [24] and
Grossmann [25].

1.2 High-intensity lasers

To obtain high-intensity laser fields, one must concentrate large amounts of energy
into short periods of time, and then focus the laser light onto small areas. In an
intense laser system, the oscillator produces a train of pulses of short duration. The
amplifier then increases the energy of the pulses, which are subsequently focused.
A very successful method of amplification, called “chirped pulse amplification”
(CPA), was devised in 1985 by Strickland and Mourou [26]. This method, which
is illustrated in Fig. 1.1, consists in the following three steps. Firstly, the short
laser pulse to be amplified (produced by the oscillator) is stretched in time into its
frequency components by a dispersive system such as a pair of diffraction gratings,
so that a chirped pulse is generated. This stretching in time of the pulse greatly
reduces its peak intensity, so that in the second step the frequency components of the
chirped pulse can be sent in succession through a laser amplifier without distortions
and damage. In the third step, the amplified chirped pulse is compressed in time
by another pair of diffraction gratings, which recombine the dispersed frequencies,
thus producing a short pulse with a very large peak intensity. Finally, the resulting
amplified short pulse is tightly focused onto a small area. After focusing, intensities
of the order of the atomic unit of intensity Ia can be readily obtained. An important
advantage of the CPA method is that it can yield very intense, short pulses by using
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Figure 1.1. Chirped pulse amplification (CPA) method. (a) An oscillator produces
a short pulse, which is then chirped (stretched in time into its frequency compo-
nents). In this way, the peak intensity of the pulse is lowered, so that amplification
can take place without damage or distortions. The amplified chirped pulse is then
compressed in time, resulting in a short pulse with a very high intensity. (b) The
matched stretcher and compressor of the CPA method. The stretcher (top) consists
of a telescope of magnification unity placed between two antiparallel gratings.
In this configuration, the low-frequency components of the pulse have a shorter
optical path than the high-frequency ones. Conversely, the compressor (bottom)
consists of a pair of parallel gratings, so that the optical path for the high-frequency
components of the pulse is shorter than for the low-frequency ones. (From G. A.
Mourou, C. P. J. Barty and M. D. Perry, Phys. Today, Jan., 22 (1998).)
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a “table-top” laser system. A review of the CPA method has been given by Mourou,
Tajima and Bulanov [27].

The first CPA high-intensity lasers to be constructed used Nd:glass as the ampli-
fying medium. In the system developed during the 1990s at Imperial College,
London, a pulse from a Nd oscillator, of wavelength λ = 1064 nm, duration 1 ps
(10−12 s) and energy 1 nJ was stretched by diffraction gratings to about 25 ps. It
was then amplified by using Nd:glass as the amplifying medium to an energy of
about 1 J. This amplified chirped pulse was subsequently compressed to a duration
close to its initial picosecond value by diffraction gratings, so that output powers of
around 1 TW (1012 W) could be obtained. By focusing over an area having a dia-
meter of 10 µm, intensities of the order of 1018 W cm−2 were reached. Lasers of this
kind have a repetition rate of about one shot per minute. More recently, CPA laser
systems employing Ti:sapphire for the oscillator and the amplifying medium have
been used extensively, because they can generate very short pulses with high rep-
etition rates. If only moderate intensities (∼1014 W cm−2) are required, such laser
systems can produce pulses having a duration of about 30 fs, with a repetition rate of
300 kHz. CPA Ti:sapphire lasers can also yield very intense pulses. For example, at
the ATLAS laser facility in the Max-Planck Institut für Quantenoptik in Garching,
pulses of 100 fs in duration and 1 nJ in energy have been stretched, amplified and
compressed, giving output pulses of wavelength λ= 790 nm, duration 150 fs and
energy 220 mJ at a repetition rate of 10 Hz. After focusing on a spot 6 µm in dia-
meter, the intensity available from this laser reached 4 × 1018 W cm−2. More
recently, intensities up to 1022 W cm−2 have been achieved using the Hercules
Ti:sapphire laser at the University of Michigan [28].

The CPA concept was originally developed for the amplification of short laser
pulses with laser amplifiers based on laser gain media. However, it was subsequently
realized that it can also be used with optical parametric amplifiers (OPA), in which
case it is known as the optical parametric chirped pulse amplification (OPCPA)
method [29, 30]. Optical parametric amplification [31, 32] is a second-order phe-
nomenon of non-linear optics, arising from the fact that crystal materials lacking
inversion symmetry can display a χ(2) non-linearity, where χ(n) denotes the nth-
order susceptibility [33]. Apart from other effects (frequency doubling, generation
of sum and difference frequencies), this gives rise to parametric amplification, in
which a weak signal beam of angular frequency ω1 and an intense pump beam of
angular frequencyω3>ω1 generate two intense beams with angular frequenciesω1

andω2 =ω3−ω1. Indeed, as the signal beam and the pump beam propagate together
through the crystal, photons of the pump beam, having energy �ω3, are converted
into lower-energy signal photons of energy �ω1 and an equal number of “idler” pho-
tons of energy �ω2 = �(ω3 −ω1), where � = h/(2π) and h is Planck’s constant. A
schematic diagram of an optical parametric amplifier is shown in Fig. 1.2.



8 Basic concepts

weak signal
ω1

ω1

ω2
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amplified signal
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Figure 1.2. Optical parametric amplifier.

Recent technological advances in ultra-fast optics have allowed the generation
of intense laser pulses comprising only a few optical cycles (that is, laser periods,
where the laser period is defined as T = 2π/ω) of the laser field [34, 35]. In par-
ticular, the development of Ti:sapphire laser systems using the CPA method has
made possible the generation of such high-intensity “few-cycle pulses” in the near
infra-red region of the electromagnetic spectrum, with a central wavelength around
800 nm, corresponding to a photon energy of 1.55 eV and an optical cycle of 2.7 fs.

A successful way of obtaining intense few-cycle laser pulses relies on external
bandwidth broadening of amplified pulses in gas-filled capillaries [36, 37], using
the hollow-fiber technique [38] and chirped-mirror technology [39]. For example,
using a Ti:sapphire laser system and a hollow-fiber chirped-mirror compressor,
Sartania et al. [37] demonstrated the generation of 0.1 TW, 5 fs laser pulses at a
repetition rate of 1 kHz. However, the method of gas-filled capillaries involves
important energy losses and is difficult to scale to very high energies and peak
powers. Several OPCPA systems delivering very intense, few-cycle 800 nm laser
pulses have also been reported [40–43].

In addition to very high peak intensities and high repetition rates, the laser
systems delivering few-cycle pulses must also provide reliable control over the
carrier-envelope phase (CEP) ϕ, namely the phase of the carrier wave with respect
to the maximum of the laser pulse envelope, since the CEP sensitively determines
the variation of the electric field [44].

As an example, we show in Fig. 1.3 the wave form of the electric field of a
linearly polarized laser pulse whose carrier wavelength is λ= 800 nm and whose
intensity profile is proportional to F(t)cos(ωt+ϕ), where F(t) is a sech envelope
function. In Fig. 1.3(a), the CEP is ϕ = 0, corresponding to a “cosine-like” pulse,
while in Fig. 1.3(b) the CEP is ϕ = −π/2, corresponding to a “sine-like” pulse.

Intense few-cycle laser pulses with stabilized CEP have been obtained by using
CPA Ti:sapphire laser systems [45–56]. A few-cycle OPCPA system producing
infra-red laser pulses at a wavelength of 2.1 µm with a stable CEP has also been
demonstrated [57]. One of the major goals is to perform a single-shot determination
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Figure 1.3. Wave form of the electric field (solid curves) of a linearly polarized
laser pulse, taken to be proportional to F(t)cos(ωt + ϕ), where F(t) is a sech
envelope function such that F 2(t) is a sech2 function of 5 fs full width at half
maximum (dashed curves). The carrier wavelength is λ= 800 nm and the carrier-
envelope phase is (a) ϕ = 0 for the “cosine-like” pulse and (b) ϕ = −π/2 for the
“sine-like” pulse.

of the CEP of the laser system, while using only a relatively small fraction of the
available laser pulse energy.

Intense few-cycle laser pulses with a stable CEP play an important role in high-
intensity laser–matter interactions. Indeed, with such pulses, complete control of
the electric field wave form of the laser pulse is obtained, since the pulse shape,
the carrier wavelength and the carrier-envelope phase can all be determined. As a
result, these pulses provide a new way to study the electron dynamics in intense
laser–atom processes. They can exert a controlled force on electrons that may vary
on atomic scales, not only in strength, but also in time.

Most of the work in the area of high-intensity laser–matter interactions has been
restricted to infra-red, visible and ultra-violet radiation [58,59]. With the advent of
free electron lasers, another source has become available to perform experiments
over a wide range of wavelengths extending from the millimeter to the X-ray
domains [60].

In a free-electron laser (FEL), an electron beam moving at a relativistic velocity
passes through a periodic, transverse magnetic field produced by arranging mag-
nets with alternating poles along the beam path. This array of magnets is called an
undulator or wiggler because it forces the electrons to acquire a wiggle motion in
the plane orthogonal to the magnetic field. This transverse acceleration produces
spontaneous longitudinal emission of electromagnetic radiation of the synchrotron
radiation type. Laser action is due to the fact that the electron motion is in phase
with the electromagnetic field of the radiation already emitted, so that the fields
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add coherently and further emission is stimulated. Free-electron lasers have many
attractive properties such as wide tunability and high laser power. However, they
are large and expensive, since they involve using electron beam accelerators. The
first FEL was demonstrated at a wavelength of 3.4 µm using the Stanford Lin-
ear Accelerator [61]. Since then, several FELs have been operated at wavelengths
ranging from the millimeter to the soft X-ray region.

In the short-wavelength (VUV and X-ray) region, the lack of appropriate mirrors
prevents the operation of an FEL oscillator. As a result, there must be suitable
amplification during a single pass of the electron beam through the undulator. It is
worth noting that even if the initial electromagnetic field is zero, laser action can
still occur in the FEL through the process of “self-amplified spontaneous emission”
(SASE), whereby shot noise in the electron beam causes a noisy signal to be initially
radiated. This noise then acts as a seed for the FEL, so that the amplification process
develops and intense coherent radiation is produced in a narrow band around the
resonance wavelength. The first observation of the SASE process was reported at the
Free Electron Laser in Hamburg (FLASH) at a wavelength of 109 nm [62]. Also at
the FLASH facility, short VUV laser pulses of wavelengths in the range 95–105 nm,
durations of 30–100 fs and peak powers at the gigawatt level have been generated
[63]. More recently, lasing was observed by the FLASH team at a wavelength of
6.5 nm, in the soft X-ray domain. The European X-ray Free Electron Laser (XFEL)
in Hamburg and the Linac Coherent Light Source (LCLS) at Stanford, both under
development, will operate at wavelengths down to around 0.1 nm, well into the
X-ray region.

1.3 Multiphoton ionization and above-threshold ionization

In this section, we give a survey of the basic features of the multiphoton ionization
(MPI) process, starting with the multiphoton single ionization reaction

n�ω+Aq →Aq+1 + e− , (1.3)

where q is the charge of the target atomic system A, expressed in atomic units, �ω

is the photon energy and n is a positive integer.
This process was first observed in 1963 by Damon and Tomlinson [64], who

used a ruby laser to ionize helium, argon and a neutral air mixture. In subsequent
investigations, Voronov and Delone [65] used a ruby laser to induce seven-photon
ionization of xenon, and Hall, Robinson and Branscomb [66] recorded two-photon
electron detachment from the negative ion I−. In later years, important results
were obtained by several experimental groups, in particular at Saclay, where the
dependence of the ionization rates on the laser intensity were studied. For the
intensities I � Ia available at that time, it was observed that the total n-photon
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ionization rate was proportional to In. As we shall see in Chapter 3, this result is in
agreement with the prediction of the lowest (non-vanishing) order of perturbation
theory (LOPT). At that time, the phenomenon of resonantly enhanced multiphoton
ionization (REMPI) was also studied.

A crucial breakthrough was made when experiments detecting the energy-
resolved photoelectrons were performed. In this way,Agostini et al. [67] discovered
in 1979 that at sufficiently high intensities (I > 1011 W cm−2), the ejected electron
can absorb photons in excess of the minimum number required for ionization to
occur. This phenomenon is called “above-threshold ionization” (ATI). The pho-
toelectron spectra were seen to consist of several peaks, separated by the photon
energy �ω, and appearing at energiesEs satisfying the generalized Einstein equation

Es = (n0 + s)�ω− IP , (1.4)

where n0 is the minimum number of photons needed to exceed the field-free ion-
ization potential IP of the atom and s = 0,1, . . . is the number of excess photons
(or “above-threshold” photons) absorbed by the atom.

A typical example of ATI photoelectron energy spectra, measured in 1988 by
Petite, Agostini and Muller [68], is shown in Fig. 1.4. Pulses of 130 ps duration
obtained from a Nd:YAG laser of wavelength λ = 1064 nm were focused into
a xenon vapor, and the electron energy spectrum was recorded using a time of
flight spectrometer, with a 25 meV resolution. At relatively weak intensities, the

Electron count (arb. units)

(a)

0 2 4 6 8

Electron energy (eV) Electron energy (eV)

10 12 14 0 2 4 6 8 10 12 14

(b)

Figure 1.4. Electron energy spectra showing “above-threshold ionization” (ATI)
of xenon at a laser wavelength λ = 1064 nm. (a) I = 2.2 × 1012 W cm−2, (b)
I = 1.1 × 1013 W cm−2. (From G. Petite, P. Agostini and H. G. Muller, J. Phys. B
21, 4097 (1988).)



12 Basic concepts

intensity dependence of the peaks follows the LOPT prediction according to which
the ionization rate for an (n0 + s)-photon process is proportional to In0+s (see Fig.
1.4(a)). As the intensity increases, peaks at higher energies appear (see Fig. 1.4(b)),
whose intensity dependence does not follow the In0+s prediction of LOPT.

Another remarkable feature of the ATI spectrum in Fig. 1.4(b) is that as the
intensity increases, the low-energy peaks are reduced in magnitude. The reason for
this peak suppression is that the energies of the atomic states are Stark-shifted in
the presence of a laser field. For low laser frequencies (for example, a Nd:YAG
laser with photon energy �ω = 1.17 eV), the AC Stark shifts of the lowest bound
states are small in magnitude. On the other hand, the induced Stark shifts of the
Rydberg and continuum states are essentially given by the electron ponderomotive
energy Up, which is the cycle-averaged kinetic energy of a quivering electron in a
laser field. For a monochromatic laser field, it is given by

Up = e2E2
0

4mω2
, (1.5)

where m is the mass of the electron and E0 is the electric field strength. It is worth
noting that the ponderomotive energy Up is proportional to I/ω2, and may become
quite large. For example, in the case of a Nd:YAG laser of wavelength λ= 1064 nm,
the ponderomotive energy Up given by Equation (1.5) becomes equal to the laser
photon energy �ω= 1.17 eV at an intensity I � 1013 W cm−2. Since the energies of
the Rydberg and continuum states are shifted upwards relative to the lower bound
states by about Up, there is a corresponding increase in the intensity-dependent
ionization potential IP(I ) of the atom, so that IP(I )� IP +Up. If this increase is
such that n�ω < IP +Up, then ionization by n photons is energetically forbidden
(see Fig. 1.5). However, atoms interacting with smoothly varying pulses experience
a range of intensities, so that the corresponding peak in the photoelectron spectrum
will not completely disappear, as seen in Fig. 1.4(b).

For relatively long pulses (in the picosecond range), the photoelectron escapes
from the focal volume while the laser field is still present, so that it experiences
a force due to the spatial inhomogeneity of the laser field intensity. The electron
quiver motion is then converted into radial motion out of the laser focal region,
increasing its kinetic energy by Up, and hence exactly canceling the decrease in
energy caused by the (Stark-shifted) increase in the ionization potential. As a result,
the photoelectron energies are given by Equation (1.4). However, as noted above, the
first ATI peak will nearly disappear if Up exceeds the photon energy �ω. Similarly,
the first two peaks will be weakened if Up exceeds 2�ω, etc. It should be noted that
in this long-pulse limit, the photoelectrons have a kinetic energy at least equal to
Up once they have left the laser beam.
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Figure 1.5. Mechanism responsible for the suppression of low-energy peaks in
ATI spectra. For low laser frequencies, the intensity-dependent ionization potential
of the atom, IP(I ), is such that IP(I )� IP +Up, and hence increases linearly with
the intensity I . Ionization by four photons, which is possible at the intensity I1,
for which 4�ω ≥ IP +Up, is prohibited at the higher intensities I2 and I3, where
five photons are needed to ionize the atom. Also illustrated is the mechanism
responsible for the resonantly induced structures appearing in ATI spectra for
short laser pulses. At the intensity I2, a Rydberg state has shifted into four-photon
resonance with the ground state.

For short (sub-picosecond) laser pulses, the laser field turns off before the pho-
toelectron can escape from the focal volume. In this case, the quiver energy is
returned to the laser field and the ATI spectrum becomes more complicated. The
observed photoelectron energies are given by the values

Ẽs = (n0 + s)�ω− (IP +Up) (1.6)

relative to the shifted ionization potential IP +Up. Photoelectrons originating from
different regions of the focal volume are thus emitted with different ponderomotive
shifts. As a result, the ATI peaks exhibit a substructure which, as seen from Fig. 1.5,
arises from the fact that the intensity-dependent Stark shifts bring different states
of the atom into multiphoton resonance during the laser pulse. An example of such
substructure due to the REMPI phenomenon, observed by Freeman et al. [69], is
shown in Fig. 1.6. This substructure is not seen in long-pulse experiments because
in that case, as explained above, the photoelectrons regain their ponderomotive
energy deficit from the laser field as they escape from the focal volume.
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Figure 1.6. Kinetic energy of photoelectrons emitted from xenon as a function
of the laser pulse width. The pulse energy is held roughly constant for all runs,
so that the intensity increases from about 1.2 ×1013 W cm−2 for 13 ps to about
3.9 × 1014 W cm−2 for 0.4 ps. For the shortest-pulse widths, the individual ATI
peaks break up into a narrow fine structure. (From R. R. Freeman et al., Phys. Rev.
Lett. 59, 1092 (1987).)

If the frequency is low enough and the laser field is sufficiently strong, ioniza-
tion can be interpreted by using a quasi-static model in which the bound electrons
experience an effective potential formed by adding to the atomic potential the
contribution due to the instantaneous laser electric field (see Fig. 1.7(a)). The
“instantaneous” ionization rate may then be approximated by the static-limit tunnel-
ing rate which can be calculated for hydrogenic systems using the formula given by
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Figure 1.7. One-dimensional model showing (a) tunneling ionization and (b)
over-the-barrier ionization. The dashed lines correspond to the contribution to
the potential energy due to the instantaneous laser electric field. The solid lines
correspond to the full effective potential energy. The position of a bound energy
level (in the absence of the laser field) is indicated.

Ammosov, Delone and Krainov [70]. In the case of a hydrogenic system in its ground
state, the tunneling rate is given in atomic units by [71]

Wion = 4(2IP)5/2

E exp

(
−2(2IP)3/2

3E

)
, (1.7)

where E is the static electric field strength. Because of the exponential factor,
tunneling occurs predominantly at the peaks of the electric field during the half-
cycle when it lowers the potential barrier. As a result, the photoelectron wave
packets are emitted in periodic bursts in time. In the energy domain, for sufficiently
long pulses, this periodicity gives rise to the ATI spectrum.

A more general quasi-static theory was developed by Keldysh [72] to describe
multiphoton ionization in the low-frequency limit, and was pursued by Faisal [73]
and Reiss [74]. In the approach of Keldysh, the strong field approximation (SFA) is
made, whereby it is assumed that an electron, after having being ionized, interacts
only with the laser field and not with its parent core. As will be discussed in Chapter
6, an important quantity in this theory is the Keldysh parameter γK, defined as the
ratio of the laser and tunneling frequencies, which is given by

γK =
(
IP

2Up

)1/2

. (1.8)

For γK � 1, tunneling dynamics dominates, while γK � 1 is referred to as the multi-
photon ionization regime. It is interesting to note that early evidence of quasi-static
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tunneling was found in 1974 by Bayfield and Koch [75] in the microwave ionization
of highly excited Rydberg atoms [76].

At low frequencies, as the laser intensity is increased, the barrier in the effective
potential becomes narrower and lower, and the sharpATI peaks of the photoelectron
spectra gradually blur into a continuous distribution. Eventually, above a critical
intensity Ic (also called “appearance” intensity), the electron can classically “flow
over the top” of the barrier (see Fig. 1.7(b)). This is known as “over-the-barrier”
ionization (OBI). The approximations based on the tunneling formulae then break
down and the atom ionizes quickly. The critical intensity, Ic, at which the maximum
of the effective potential is lowered to a value equal to the ionization potential of
the bound electron, is 1.4 ×1014 W cm−2 for atomic hydrogen in the ground state
and 1.5 ×1015 W cm−2 for helium, also in the ground state. Augst et al. [77] and
Mevel et al. [78] have studied the ionization of noble gases in this intensity regime.
As an illustration, the energy spectrum of photoelectrons ejected from helium at
the critical intensity Ic and the wavelength λ= 617 nm, as obtained by Mevel et al.
[78] is shown in Fig. 1.8.

In order to develop a successful model of strong field phenomena at low fre-
quencies, it is necessary to go beyond tunneling or over-the-barrier ionization, and
take into account the possibility that the ionized electron will return to the vicinity
of its parent ion or atom core. The semi-classical “recollision model” developed by
Corkum [79] and by Kulander, Schafer and Krause [80] is based on the idea that
ionization by strong laser fields at low frequencies proceeds via several steps. In
the first (“bound–free”) step, the active electron is detached from its parent core
by tunneling or over-the-barrier ionization. In the second (“free–free”) step, the
unbound electron interacts mainly with the laser field, so that its dynamics are
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Figure 1.8. Electron energy spectrum from helium at a laser wavelength λ =
617 nm and the critical intensity Ic = 1.5×1015 W cm−2. The duration of the laser
pulse is 100 fs. There is no structure above 30 eV. (From E. Mevel et al., Phys.
Rev. Lett. 70, 406 (1993).)
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essentially those of a free electron in the field, and can be treated to a good approx-
imation by using classical mechanics. An earlier version of this approach has been
used by Kuchiev [81] and van Linden van den Heuvell and Muller [82], and is
known as the “simple man’s” model of strong field phenomena. As the electric field
component of the laser field changes sign, the electron can be accelerated back
toward its parent core. If the electron does not return to the core, single ionization
will occur. If it does return to the core, then a third step takes place in which a
collision of the electron with the core leads to single or multiple ionization while
radiative recombination leads to the process of harmonic generation, which will
be described in Section 1.4. As we shall see in Chapter 8, the semi-classical “rec-
ollision model” has been very useful for explaining a number of novel features
observed in multiphoton ionization experiments performed with low-frequency
lasers. For example, experiments using kilohertz-repetition rate, high-intensity
lasers have allowed precise measurements of photoelectron total yields and energy
and angle-differential spectra over many orders of magnitude in yield to be car-
ried out. In particular, the experiments of Paulus et al. [83] have revealed the
existence of a “plateau” in the ATI photoelectron energy spectra (see Fig. 1.9)
which, as we shall see in Chapter 8, is due to recollisions of electrons with their
parent cores.
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Figure 1.9. Photoelectron counts as a function of photoelectron energy, for var-
ious noble gases, at a laser wavelength λ = 630 nm and an intensity I � 2 ×
1014 W cm−2 (3 × 1014 W cm−2 for He). (From G. G. Paulus et al., Phys. Rev.
Lett. 72, 2851 (1994).)
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More recently, the investigation of ATI has benefited from the rapid progress
made in generating few-cycle laser pulses with peak intensities exceeding the
atomic unit Ia. Already at intensities one or more orders of magnitude lower than
Ia, atoms can ionize on the time scale of a few optical periods. Hence, the only way
to expose atoms to high-intensity laser fields is to irradiate them with the shortest
possible laser pulses. Grasbon et al. [84] have measured ATI photoelectron spectra
for noble gas atoms ionized with intense few-cycle laser pulses. They also found
an extended plateau-like structure in the photoelectron energy spectra that can be
explained by using the semi-classical recollision model. With respect to the atomic
response, the use of sub 10 fs laser pulses makes a significant difference in com-
parison with 30 fs pulses because all Rydberg states have much longer orbit times
than the pulse duration. As a result the REMPI phenomenon, which plays a major
role for longer pulses, is much less important for few-cycle pulses.

Using laser pulses having a duration of approximately 6 fs, Paulus et al. [85]
were able to demonstrate the influence of the carrier-envelope phase (CEP) of an
ultra-short pulse on the emission ofATI photoelectrons. They ionized krypton atoms
and recorded the photoelectrons with two opposite detectors perpendicular to the
laser beam, as illustrated in Fig. 1.10(a). They detected an anticorrelation in the
number of electrons emitted to the left or to the right (see Fig. 1.10(b)), which is
the signature of the carrier-envelope phase. Indeed, if this phase has a value such
that the maximum of the electric field points to the left, more photoelectrons will
be counted at the right detector than the left detector. Longer pulses do not exhibit
this anticorrelation since the influence of the CEP averages out.

In subsequent work, Paulus et al. [47] and Verhoef et al. [53] made use of intense
few-cycle laser pulses with a stabilized CEP to demonstrate that the direction of
emission of ATI photoelectrons can be controlled by varying the CEP of the laser
field, thus providing a tool for an accurate determination of the CEP. More recently,
Kling et al. [56] reported sub-femtosecond control of the electron emission in
ATI of the noble gases Ar, Kr and Xe in intense, few-cycle laser fields. Using a
velocity-map imaging (VMI) technique, where electrons are projected onto a two-
dimensional position-sensitive detector, they were able to measure full-momentum
distributions of ATI, and also to determine the CEP from the angular distribution
of the emitted electrons.

Let us now consider the multiphoton double ionization process

n�ω+Aq →Aq+2 + 2e−. (1.9)

The double ionization of helium from its ground state,

n�ω+ He(11S)→ He2+ + 2e−, (1.10)
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Figure 1.10. (a) Laser pulses of about 6 fs duration are focused onto a gas jet of
krypton atoms. The number of electrons emitted to the left and right directions
depends on the carrier-envelope phase (CEP) of the laser pulse. They are recorded
by two opposite multichannel plate (MCP) detectors perpendicular to the laser
beam. The start signal is generated by a fast photodiode (PD) and the electron’s
time of flight is recorded by a computer (PC). (b) The signature of the carrier-
envelope phase is an anticorrelation in the number of electrons emitted to the left
or to the right. A graphical representation of the anticorrelation can be obtained
by characterizing each laser pulse according to the number of electrons registered
in the left and the right detectors. The anticorrelation is manifested in the compar-
atively high number of laser pulses that produce a strongly asymmetric number
of photoelectrons. This leads to contours perpendicular to the diagonal. Longer
pulses do not exhibit this anticorrelation, as seen in the upper right corner for a
laser pulse of 8 fs duration. (From G. G. Paulus et al., Nature 414, 182 (2001).)
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is the most basic of these processes. In 1967, Byron and Joachain [86] proved that
in the case of one-photon ionization (n= 1), the double ionization process (1.10) is
very sensitive to electron correlation effects. Indeed, this process could not occur in
the absence of the electron–electron interaction. The multiphoton case is more com-
plex to analyze. A striking feature of the experimental results obtained by Walker
et al. [87] is the existence of two distinct intensity regimes (see Fig. 1.11). The first
one is at high intensities, where sequential double ionization (SDI) dominates in
accordance with a “single active electron” (SAE) approximation. The other regime
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Figure 1.11. Measured He+ and He2+ yields as a function of intensity for linearly
polarized laser pulses of wavelength λ = 780 nm and 160 fs duration. The solid
lines show SAE calculations and the dashed line depicts the tunneling theories.
The solid curve on the right corresponds to the calculated He2+ sequential dou-
ble ionization (SDI) yield. The symbol NSDI refers to the non-sequential double
ionization yield. (From B. Walker et al., Phys. Rev. Lett. 73, 1227 (1994).)
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is at lower intensities, where mainly simultaneous double ionization, or in other
words non-sequential double ionization (NSDI), takes place and the SAE approxi-
mation predicts double ionization yields that are several orders of magnitude lower
than the experimental data. An important test for theories of multiphoton processes
going beyond the SAE approximation (that is, including electron correlation effects)
is to calculate accurately double (and, more generally, multiple) ionization yields
for multielectron systems in intense laser fields. Advances in experimental tech-
niques based on cold target recoil ion momentum spectroscopy (COLTRIMS) [88]
and intense few-cycle laser pulses have allowed multiphoton double ionization
to be investigated in more detail [89, 90]. These experimental developments, as
well as the theoretical approaches incorporating electron correlation effects, will
be discussed in Chapter 8.

1.4 Harmonic generation and attosecond pulses

Matter interacting with a sufficiently intense laser field can emit radiation at higher-
order multiples, or harmonics, of the angular frequency ω of the “pump” laser.
Optical harmonic generation was first observed in a quartz crystal in 1961 by
Franken et al. [91], who used a ruby laser producing approximately 3 J of 694.3 nm
light in a 1 ms pulse, corresponding to an intensity of about 106 W cm−2, to gener-
ate the second harmonic. They pointed out that “the possibility of exploiting this
extraordinary intensity for the production of optical harmonics from suitable non-
linear materials is most appealing.” Since then, harmonic generation has become
a phenomenon used in a variety of applications to extend the range of laser light
sources to shorter wavelengths. In the case of atoms interacting with laser pulses
comprising many optical cycles and having intensities such that non-dipole and
relativistic effects can be neglected, the harmonic angular frequencies � are only
emitted at odd multiples of the laser angular frequency because of the inversion
symmetry of the atom in the field. Hence,

�= qω, q = 3,5, ... (1.11)

When the driving laser pulse comprises only a few optical cycles, the photons
are emitted with a continuous distribution of frequencies, not at discrete harmonic
frequencies. An effective “harmonic order” is then defined to be the ratio �/ω of
the angular frequency of the emitted photon to that of the pump laser. High-order
harmonic generation (HHG) has attracted considerable interest, since it provides a
source of very bright, short-pulse, high-frequency coherent radiation. It has been
the subject of several review articles [92–94].
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The observation of the third harmonic in noble gases was made in 1967 by New
and Ward [95]. Harmonic generation experiments were then performed with long-
pulse infra-red lasers [96–98] or ultra-violet pump fields [99-101], but were limited
by various effects such as the ionization of the medium or the absorption of the
generated radiation in optically thick media.

It was only in the late 1980s that the availability of intense, short-pulse laser
fields made it possible to observe high-order harmonics. Experiments performed
at the University of Illinois by McPherson et al. [102] and Rosman et al. [103]
showed the generation of up to the 17th harmonic of a 248 nm KrF laser in a neon
vapor. At Saclay, Ferray et al. [104] observed the harmonic q = 33 in argon, and Li
et al. [105] observed the harmonics q = 29 in krypton and q = 21 in xenon using a
1064 nm Nd:YAG laser delivering pulses of about 30 ps duration and intensity 3×
1013 W cm−2. These results were extended in a number of experiments performed
with shorter pulses, and at higher intensities [106–112]. For example, Sarukura et
al. [106] observed the 25th harmonic in He and Ne using a 500 fs, 248 nm KrF
laser, a result interpreted as harmonic emission by the ions. Miyazaki and Sakai
[107] reported the observation of the 41st harmonic in He with a 800 fs, 616 nm
dye laser. In 1993, Macklin, Kmetec and Gordon [108] observed the generation of
up to the 109th harmonic in Ne, using a 125 fs, 806 nm Ti:sapphire laser. Also in
1993, L’Huillier and Balcou [109] detected HHG in noble gases, using 1 ps pulses
from a Nd:glass laser at intensities around 1015 W cm−2. The number of photons
recorded per laser pulse in xenon, argon, neon and helium at an intensity I � 1.5×
1015 W cm−2 is shown in Fig. 1.12 as a function of the harmonic order. Of special
interest is the existence of a plateau of nearly constant conversion efficiency, which
is particularly long for helium and neon. We shall see below that non-perturbative
theories are required to explain the occurrence of such plateaus. L’Huillier and
Balcou detected up to the 135th harmonic in neon at an energy of 160 eV, being
then limited by the resolution of their monochromator. The harmonic emission was
observed to be directional and of short pulse duration (shorter than the pump pulse).
The instantaneous power generated at, for example, 20 eV (the 17th harmonic in
Xe) reached about 30 kW, with a conversion efficiency of 10−6. The instantaneous
brightness was 1022 photons/(Å s), a number which is several orders of magnitude
higher than that obtained with conventional light sources in this domain of the
electromagnetic spectrum (but of course over a restricted time period).

The use of intense ultra-short laser pulses with peak intensities higher than
1015 W cm−2 [34] offers new perspectives for the generation of coherent, tunable,
high-frequency (UV or X-ray) pulses by HHG in gases. Atoms or ions exposed to
such pulses experience only a few optical cycles, and hence can withstand much
stronger laser fields before ionizing than would be possible with longer pulses.



High-intensity laser–atom physics 23

1010

109

108

107

106

105

104

25 50

N
um

be
r 

of
 p

ho
to

ns

75

Harmonic order

100 125

Xe 10  Torr z =3.5 mm
Ar  15 Torr z =2 mm
Ne  40 Torr z =0
He  70 Torr z =0

Figure 1.12. Harmonic emission spectra of various noble gases for a “pump”
laser of wavelength λ = 1053 nm and intensity I � 1.5 × 1015 W cm−2. (From A.
L’Huillier and P. Balcou, Phys. Rev. Lett. 70, 774 (1993).)

This in turn permits the generation of photons of much higher energies. The result-
ing high-frequency laser pulses have durations in the sub-femtosecond range. The
highest harmonic frequencies and harmonic orders have been observed under these
conditions [113–119]. For example, Chang et al. [116] used a Ti:sapphire laser of
wavelength λ= 800 nm delivering pulses of 26 fs duration and peak intensities of
about 6 × 1015 W cm−2 to generate coherent soft X-ray harmonics reaching into
the water window spectral region around a wavelength of 2.7 nm (corresponding
to an energy of 460 eV) in helium, and 5.2 nm (239 eV) in neon. In helium, they
observed harmonic peaks up to order q = 221 and unresolved harmonic emission
up to order q = 297. Schnürer et al. [117] reported the generation of coherent X-
rays with wavelengths down to 2.5 nm (corresponding to an energy of 500 eV) in a
helium gas irradiated by sub 10 fs pulses of peak intensity 4 ×1015 W cm−2 gener-
ated by a Ti:sapphire laser of wavelength λ= 770 nm at a 1 kHz repetition rate. In
later experiments, Seres et al. [118] observed the production of harmonic photons
with energies extending to 1.3 keV for helium atoms irradiated by 5 fs pulses, and
Chen et al. [119] have generated phase-matched high harmonics spanning the water
window spectral region.

The theoretical treatment of harmonic generation by an intense laser pulse
focused onto a gaseous medium has two main aspects which will be discussed
in more detail in Chapter 9. First, the microscopic single-atom response to the
laser field must be analyzed. Because different atoms in the laser focus experience
different peak intensities and phases, the single-atom response must be calculated
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over a range of laser field intensity profiles. In order to obtain the macroscopic har-
monic spectrum generated by the coherent photon emission by all of the atoms in
the laser focus, the single-atom responses must be combined by solving Maxwell’s
equations. In this way propagation and interference effects are accounted for. Unless
phase matching occurs, these effects can lead to the suppression of the harmonic
emission signal.

Let us now consider briefly the theoretical aspects of the problem. The emission
of harmonics by the atom is due to the electron oscillations caused by the intense
laser field. Let us introduce the laser-induced atomic dipole moment

d(t)= 〈	(t)|− eR|	(t)〉, (1.12)

which is the expectation value of the electric dipole operator

D = −eR, (1.13)

where

R =
N∑
i=1

ri (1.14)

is the sum of the coordinates ri of the N atomic electrons. In Equation (1.12),
|	(t)〉 denotes the state vector of the atom in the presence of the laser field. The
propagation equations that must be solved to obtain the spectrum of harmonics
generated by the medium have source terms which are proportional to the Fourier
components, d(�), of d(t), namely

d(�)= (2π)−1/2
∫ ∞

−∞
exp(−i�t)d(t)dt. (1.15)

Due to phase matching effects, the strength of the harmonics emitted by the medium
may vary with� in a different way than |d(�)|2. For the case of a single atom, the
emitted power spectrum is proportional to the quantity |a(�)|2, where

a(�)= (2π)−1/2
∫ ∞

−∞
exp(−i�t)a(t)dt (1.16)

is the Fourier transform of the acceleration of the laser-induced atomic dipole
moment,

a(t)= d2

dt2
d(t)≡ d̈(t). (1.17)

For weak laser fields, the harmonic emission rates can be calculated by the
perturbation theory which will be developed in Chapter 3. It is then found that in
general the harmonic intensity decreases from one order to the next. In contrast, we
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note from Fig. 1.12 that at high laser intensities, and for linearly polarized pump
fields, the harmonic intensity distribution exhibits a rapid decrease over the first few
harmonics, followed by a plateau of approximately constant intensity, and then a cut-
off corresponding to an abrupt decrease of harmonic intensity. The existence of the
plateau can only be explained by using non-perturbative approaches. In particular,
by solving numerically the time-dependent Schrödinger equation (TDSE), Krause,
Schafer and Kulander [120] found that the cut-off angular frequency ωc of the
harmonic spectrum is given approximately by

ωc � (IP + 3Up)/�. (1.18)

Using the semi-classical recollision model [79, 80], it will be shown in Chapter 6
that the maximum kinetic energy of a classical electron recolliding with the atomic
core is 3.17Up, so that the highest energy that can be radiated is IP +3.17Up, in good
agreement with the TDSE calculations and with experiment.Aquantum-mechanical
theory of HHG, based on a low-frequency strong-field approximation (SFA), has
been developed by Lewenstein et al. [121, 122] and will be discussed in Chapter
6. It embodies the semi-classical recollision model, and also accounts for quantum
effects such as tunneling ionization, wave-packet spreading and interferences.

It also follows from the SFA that the Fourier component of the induced atomic
dipole moment corresponding to the qth harmonic has a phase, denoted by φq ,
that in first approximation is proportional to the product Upτ , where τ is the time
spent by the ionized electron in the continuum before it returns and recombines
radiatively with its parent ion. Using Equation (1.5), we see that the phase φq is
a linear function of the intensity, with a slope depending on the time τ . The main
contributions to the emission of each harmonic in the plateau region come from
two electron trajectories. Electrons following these two trajectories have the same
kinetic energy when they return to the atomic core. The two trajectories are referred
to, respectively, as the “short” trajectory and “long” trajectory. The corresponding
times spent by the electron in the continuum, τ1 and τ2, are shorter than one laser
field period T = 2π/ω, so that

0< τ1 < τ2 < T. (1.19)

The variation of the dipole phase φq with intensity, in the strong-field regime, plays
an important role in the macroscopic aspect of harmonic emission [93].

An important new development is the possibility of using high-order harmonics
to generate laser pulses having durations in the attosecond (10−18 s) range. This
subject has been reviewed by Agostini and DiMauro [123], Scrinzi et al. [124],
Niikura and Corkum [125] and Krausz and Ivanov [126]. Fourier synthesis was
proposed by Hänsch [127], by Farkas and Toth [128] and by Harris, Macklin and
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Hänsch [129] as a method to produce pulses having durations of a few attoseconds.
The basic idea is to generate a “comb” of equidistant frequencies with controlled
relative phases. The principle is analogous to that of the mode-locked laser [130]:
if N spectral modes within the gain bandwidth are phase-locked, then the tempo-
ral profile is a sequence of pulses separated by the cavity round-trip time, each
with a duration proportional to N−1. Several methods using non-linear processes
to obtain a wide sequence of equidistant frequencies have been proposed. Hänsch
[127] suggested using sum and frequency mixing to generate six frequencies, while
Farkas and Toth [128] recognized that high harmonic generation in atoms could
readily produce a comb of odd-order harmonics of nearly equal amplitudes over
a large frequency range within the plateau region. A similar idea was proposed
by Harris, Macklin and Hänsch [129]. If these harmonics were emitted in phase,
the corresponding temporal profile (which is the Fourier transform of the periodic
spectrum of the harmonics) would consist of a train of ultra-short pulses separated
by half the laser period, the duration of each pulse being proportional to the inverse
of the number of harmonics. However, calculations of the single-atom response,
performed byAntoine, L’Huillier and Lewenstein [131], showed that the harmonics
in the plateau region were in general not in phase, due to the interference of vari-
ous energetically allowed electronic trajectories leading to the harmonic emission.
In fact, in the plateau region there are at least two trajectories per half laser field
period (in particular the short one and the long one) that lead to the emission of
a given harmonic. As a result, the temporal profile exhibits two dominant peaks
per half-period of the laser field that can be attributed to these trajectories. This is
illustrated in Fig. 1.13, where the single-atom response for the temporal superpo-
sition of harmonics 41 to 61 generated in neon calculated by Antoine, L’Huillier
and Lewenstein [131] is shown. However, Antoine, L’Huillier and Lewenstein also
showed that the propagation in the atomic medium could select one of these tra-
jectories. Indeed, under certain conditions, phase matching strongly depends on
the phase φq , which exhibits a different intensity dependence for the different tra-
jectories, as mentioned above. For example, as illustrated in Fig. 1.13, Antoine,
L’Huillier and Lewenstein found that the macroscopic temporal profile for laser
focusing before the gas jet – which selects the short electron trajectories – yields a
single peak, of 300 as duration, per half-period of the laser field. This prediction has
been confirmed qualitatively by a measurement of the relative phases of a group of
harmonics generated in argon [132]. The phases are consistent with the emission
of a train of 250 as pulses.

The generation of a train of attosecond pulses by Fourier synthesis of harmonics
does not require particularly short pump laser pulses. However, for many applica-
tions, it is desirable to obtain isolated attosecond pulses. A first method, proposed
by Corkum, Burnett and Ivanov [133], Ivanov et al. [134] and Platonenko and



High-intensity laser–atom physics 27

1.0 τ2

τ1

τ2

τ1

0.8

0.6

0.4

0.2

0
0 0.2

T
im

e 
pr

of
ile

 (
ar

b.
 u

ni
ts

)

0.4
Time (optical period)

0.6 0.8 1.0

Figure 1.13. Theoretical harmonic intensity time profile obtained by summing
the ten harmonics between the 41st to the 61st (solid line) emitted by a gas
jet located before the laser focus. The peak intensity of the driving laser pulse
is 6.6 × 1014 W cm−2. The dashed line denotes the corresponding single-atom
response. The labels τ1 and τ2 refer to the short and the long electron trajecto-
ries, respectively. The figure shows that the intensity peaks corresponding to the
long electron trajectories are suppressed during propagation through the atomic
medium. (From P. Antoine, A. L’Huillier and M. Lewenstein, Phys. Rev. Lett. 77,
1234 (1996).)

Strelkov [135], uses the high sensitivity of the harmonic efficiency to the laser
field polarization [136], and is therefore called polarization gating. It follows from
the three-step recollision model that harmonics are essentially produced when the
polarization of the laser field is linear. Indeed, the probability of an ionized elec-
tron returning to its parent ion is significantly reduced when the laser field is no
longer linearly polarized. By creating a laser pulse whose polarization is linear only
during a short time (close to a laser period) the harmonic emission may be limited
to this interval, so that single attosecond pulses are produced. There are different
techniques for implementing a polarization gate. For example, using two chirped
laser pulses delayed in time, Altucci et al. [137] have reduced photon emission to
a few femtoseconds. Using two delayed counter-circularly polarized laser pulses,
a temporal gating has also been demonstrated [138–140].

A second method to obtain isolated attosecond pulses from HHG is to use an
ultra-short few-cycle pump pulse. Theoretical calculations have predicted the pos-
sibility of generating a single XUV burst [34, 141]. Using few-cycle (<7 fs) linearly
polarized laser pump pulses with stabilized carrier-envelope phase, isolated attosec-
ond pulses have been produced by selecting the high-energy (cut-off) harmonics
(∼90 eV) generated in neon [48, 142, 143].
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Figure 1.14. Reconstruction of the temporal intensity profile (solid curve) and
phase (dotted curve) of the attosecond pulses generated using 5 fs laser pulses
(λ = 750 nm) with stabilized carrier-envelope phase interacting with Ar atoms.
(From G. Sansone et al., Science 314, 443 (2006).)

Another approach for generating isolated attosecond pulses uses a combination
of the two aforementioned methods. It is based on the use of phase-stabilized few-
cycle driving pulses in combination with the polarization gating technique. Sansone
et al. [144] have generated in this way single-cycle isolated 130 as pulses around
36 eV by using 5 fs driving pulses, as shown in Fig. 1.14.

Let us now consider photon emission by positive ions interacting with very
intense, ultra-short (few-cycle) pulses. Positive ions can survive higher laser inten-
sities because of their higher binding energies, and can therefore emit more
energetic photons [112, 145–147]. However, the HHG conversion efficiency begins
to decrease as the laser intensity increases. This is a consequence of non-dipole
effects, due essentially to the magnetic field component of the laser field [148–
152]. As an illustration, we show in Fig. 1.15 the magnitude squared of the Fourier
transform of the dipole acceleration of a Be3+ ion as a function of the emitted photon
energy (in units of �ω) for an 800 nm four-cycle laser pulse with a peak intensity of
3.6×1017 W cm−2. The influence of the magnetic field on photon emission polar-
ized along the polarization direction of the laser field (taken to be the x-axis) can
be seen by comparing the dipole and non-dipole results. This reduction is easy
to understand within the semi-classical three-step recollision model: the magnetic
field component of the laser pulse induces a displacement of the electron along
the laser field propagation direction which causes returning electrons to “miss” the
core. Another non-dipole effect is the emission of photons polarized along the laser
field propagation direction (taken to be the z-axis), which is forbidden in the dipole
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Figure 1.15. Magnitude squared of the Fourier transform of the SFA dipole accel-
eration (in arbitrary units) of Be3+ as a function of the harmonic order (the emitted
photon energy in units of laser photon energy). Dipole results (Dx) are shown, as
well as non-dipole results for photons polarized along the laser field polariza-
tion direction x̂ (NDx) and polarized along the laser field propagation direction ẑ
(NDz). The incident laser pulse has a total duration of four optical cycles, a carrier
wavelength of 800 nm and a peak intensity of 3.6 × 1017 W cm−2. (From C. J.
Joachain, N. J. Kylstra and R. M. Potvliege, J. Mod. Opt. 50, 313 (2003).)

approximation. As seen from Fig. 1.15, this emission is typically two orders of
magnitude lower than emission along the laser field polarization direction.

1.5 Laser-assisted electron–atom collisions

An electron scattered by an atom in the presence of a laser field can absorb or emit
radiation. Since these radiative collisions involve continuum states of the electron–
atom system, they are often called “free–free transitions” (FFT). In weak laser fields,
only one-photon processes have a large enough probability to be observed. How-
ever, as the field strength is increased, multiphoton processes become important.
Examples of laser-assisted electron–atom collisions are “elastic” collisions:

e− + A(i)+n�ω→ e− + A(i); (1.20)

inelastic collisions:

e− + A(i)+n�ω→ e− + A(f ); (1.21)
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and single ionization (e, 2e) collisions:

e− + A(i)+n�ω→ A+(f )+ 2e−, (1.22)

where A(i) and A(f ) denote an atom or ion A in the initial state i and the final state
f , respectively, and A+(f )means the A+ ion in the final statef . Positive values ofn
correspond to photon absorption (inverse bremsstrahlung), negative ones to photon
emission (stimulated bremsstrahlung) and n= 0 to a collision process in the laser
field without net absorption or emission of photons. In contrast to laser-induced
processes, such as multiphoton ionization and harmonic generation, laser-assisted
processes can take place in the absence of the laser field, but are modified by
its presence. Reviews of laser-assisted electron–atom collisions have been given
by Gavrila [153], Francken and Joachain [154], Mason [155], Joachain [17] and
Ehlotzky, Jaron and Kaminski [156].

Information on laser-assisted electron–atom collision processes is obtained by
performing three-beam experiments, in which an atomic beam is crossed in coinci-
dence by a laser beam and an electron beam, and the scattered electrons are detected.
It is worth pointing out that the laser intensity should not be too high (I < Ia), since
otherwise the atom would be ionized. Several experiments of this kind have been
carried out, in which the exchange of photons between the electron–atom system
and the laser field has been observed in laser-assisted elastic [157–159], inelastic
[160, 161] and ionization processes [162]. As an illustration, we show in Fig. 1.16
the results of Weingartshofer et al. [158] for laser-assisted elastic electron–argon
scattering. Even at the modest intensity of 108 W cm−2, as many as 11 photon
emission and absorption transitions were observed. As seen from Fig. 1.16, the
relative intensities of two successive peaks are of the same order of magnitude,
which indicates that perturbation theory cannot be used to analyze these results.

A detailed treatment of laser-assisted electron–atom collisions will be given in
Chapter 10. We remark that this problem is in general very complex, not only
from the experimental point of view, but also on the theoretical side. Indeed, in
addition to the difficulties associated with the treatment of field-free electron–atom
collisions, the presence of the laser field introduces new parameters (laser frequency,
intensity, polarization,...) which influence the collision. It is therefore of interest
to consider a much simpler problem in which the target atom is modeled by a
center of force, namely a static potential, and hence does not exhibit any internal
structure. Within the framework of this model, general expressions for the required
collision cross sections can be obtained [163,164], and the first Born approximation
result of Bunkin and Fedorov [165] as well as the low-frequency (or soft-photon)
approximation of Kroll and Watson [166] derived.

As in the field-free case [167,168], the theoretical treatment of electron collisions
with real atoms in the presence of a laser field depends on the energy of the projectile
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Figure 1.16. Energy spectrum of electrons scattered by argon atoms in the presence
of a laser field of photon energy �ω = 0.117 eV and intensity I = 108 W cm−2 from
a CO2 laser. The circles correspond to the experimental data; the full line is drawn
to guide the eye. The abscissa gives the final electron energy in units of the photon
energy, with the origin fixed at the initial electron energy of 15.8 eV. The scattering
angle θ = 155◦. (From A. Weingartshofer et al., J. Phys. B 16, 1805 (1983).)

electron. For fast incident electrons, having an energy of at least 100 eV, the semi-
perturbative theory of Byron and Joachain [169] can be applied. In this approach, the
interaction of the laser field with the unbound electron(s) is treated “exactly.” On the
other hand, the projectile electron–target atom interaction is treated perturbatively
by using the Born series [167]. Finally, the interaction of the laser field with the
target atom, responsible for target-dressing effects, can be treated perturbatively
for laser intensities I < Ia and for non-resonant processes.

For slow incident electrons, a fully non-perturbative treatment is required. The
R-matrix–Floquet theory [10, 11] provides such a treatment. We point out that
the semi-perturbative theory mentioned above and the R-matrix–Floquet theory
are complementary. The former breaks down for slow incident electrons, where
the Born series cannot be used to treat the electron–atom interaction. The latter is
difficult to apply for fast incident electrons, where many partial waves are required
to calculate the cross sections.
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2

Theory of laser–atom interactions

In this chapter, we shall discuss the theory of laser–atom interactions, using a
semi-classical method in which the laser field is treated classically, while the atom
is studied by using quantum mechanics. This semi-classical approach constitutes
an excellent approximation for intense laser fields, since in that case the number of
photons per laser mode is very large [1, 2]. In addition, spontaneous emission can
be neglected. We begin therefore by giving in Section 2.1 a classical description of
the laser field in terms of electric- and magnetic-field vectors satisfying Maxwell’s
equations. We start by considering plane wave solutions of these equations. Then
general solutions describing laser pulses are introduced. The dynamics of a classical
electron in the laser field, and in particular the ponderomotive energy and force,
are discussed in Section 2.2. Neglecting first relativistic effects, we write down in
Section 2.3 the time-dependent Schrödinger equation (TDSE), which is the starting
point of the theoretical study of atoms in intense laser fields, and introduce the dipole
approximation. In the subsequent two sections, we study the behavior of the TDSE
under gauge transformations and the Kramers frame transformation. In view of the
central role that the time evolution operator plays in the development of the theory
of laser–atom interactions, some general properties of this operator are reviewed
in Section 2.6. In Section 2.7, the TDSE is solved explicitly for the simple case
of a “free” electron in a laser field to obtain the non-relativistic Gordon–Volkov
wave functions. In Section 2.8, we discuss the non-relativistic, non-dipole regime
of laser–atom interactions. Finally, in Section 2.9, relativistic effects in laser–atom
interactions are taken into account, and the appropriate relativistic wave equations
are discussed.

2.1 Classical description of a laser field

The classical electromagnetic field generated by a laser is described in vacuo by
electric and magnetic fields, E(r, t) and B(r, t), which satisfy Maxwell’s equations

37
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without sources:

∇ ·E = 0 ,

∇ ·B = 0 ,

∇ ×E = −∂B
∂t
, (2.1)

∇ ×B = 1

c2

∂E
∂t
,

where c is the velocity of light in vacuo. The electric and magnetic fields can be
generated from scalar and vector potentials, φ(r, t) and A(r, t), respectively, by the
following relations:

E = −∇φ− ∂A
∂t

(2.2)

and

B = ∇ × A. (2.3)

In addition, from Equations (2.1)–(2.3) it follows that the vector potential A
satisfies the homogeneous wave equation (as do φ, E and B)

∇2A − 1

c2

∂2A
∂t2

= 0. (2.4)

The potentials φ and A are not uniquely defined by these equations, since the fields
E and B are invariant under the (classical) gauge transformation

A → A′ = A +∇f,
φ→ φ′ = φ− ∂f/∂t, (2.5)

where f is an arbitrary real, differentiable function of r and t . The freedom implied
by the gauge invariance (2.5) means that one can choose a set of potentials (φ,A)
which satisfy the Lorentz condition

∇ · A + 1

c2

∂φ

∂t
= 0 . (2.6)

The potentials satisfying this condition are said to belong to the Lorentz gauge.
Another useful gauge for the potentials is the Coulomb (or radiation) gauge,

which is defined by the condition

∇ · A = 0 . (2.7)

The Coulomb gauge is often used when no sources are present. Then φ = 0, and
the fields are given by

E = −∂A
∂t

(2.8)
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and

B = ∇ × A. (2.9)

2.1.1 Plane wave solutions of Maxwell’s equations

Amonochromatic plane wave solution of Equation (2.4) corresponding to the angu-
lar frequency ω, i.e. to the frequency ν =ω/(2π) and wavelength λ= c/ν, is given
by

A(r, t)= ε̂A0 sin(kL · r −ωt −ϕ), (2.10)

where kL is the propagation vector of the laser field, ϕ is a real constant phase and

ω= kLc. (2.11)

The Coulomb gauge condition (2.7) is satisfied if

kL · ε̂ = 0 (2.12)

so that ε̂ is perpendicular to kL and the wave is said to be transverse.
The corresponding electric field is given by

E(r, t)= ε̂E0 cos(kL · r −ωt −ϕ), (2.13)

with the electric-field strength given by E0 =ωA0. The quantityA0, which we take
to be positive, is the amplitude of the vector potential. Both the vector potential A
and the electric field E are in the direction of the real unit vector ε̂, which is called
the polarization vector. Using Equations (2.9) and (2.11), the magnetic field arising
from the vector potential (2.10) is given by

B(r, t)= E0

c
(k̂L × ε̂)cos(kL · r −ωt −ϕ). (2.14)

From Equations (2.12)–(2.14) it follows that the vectors E , B and kL are mutually
orthogonal. Moreover, we see that

|B|
|E| = 1

c
. (2.15)

An electromagnetic plane wave described by Equations (2.13) and (2.14), for
which the electric-field vector points in a fixed (time-independent) direction ε̂, is
said to be linearly polarized. A general state of polarization for a plane wave prop-
agating in the direction k̂L can be described by combining two independent linearly
polarized plane waves with real unit polarization vectors ε̂a and ε̂b perpendicular
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to kL, where the phases of the two component waves are, in general, different. The
corresponding vector potential and electric field are given by

A(r, t)= ε̂aA0,a sin(kL · r −ωt −ϕa)+ ε̂bA0,b sin(kL · r −ωt −ϕb) (2.16)

and

E(r, t)= ε̂aE0,a cos(kL · r −ωt −ϕa)+ ε̂bE0,b cos(kL · r −ωt −ϕb), (2.17)

where A0,a and A0,b are positive quantities, E0,a = ωA0,a and E0,b = ωA0,a . It
is always possible to find a phase ϕ, a real number ξ such that −1 ≤ ξ ≤ 1, and
two unit vectors ε̂1 and ε̂2 forming with k̂L a right-handed orthogonal coordinate
system, so that the vector potential (2.16) can also be written in the form

A(r, t)= A0

(1 + ξ2)1/2

[
ε̂1 sin(kL · r −ωt −ϕ)− ξ ε̂2 cos(kL · r −ωt −ϕ)] .

(2.18)

The electric field corresponding to the vector potential (2.18) can be expressed as

E(r, t)= E0

(1 + ξ2)1/2

[
ε̂1 cos(kL · r −ωt −ϕ)+ ξ ε̂2 sin(kL · r −ωt −ϕ)] ,

(2.19)

with E0 = ωA0.
The constant ξ is the ellipticity parameter of the radiation field, which, upon

varying in the range −1 ≤ ξ ≤ 1, describes all possible cases of polarization. The
value ξ = 0 corresponds to linear polarization. For ξ = ±1, the monochromatic
plane wave is said to be circularly polarized. At a fixed point in space, the electric-
field vector E is constant in magnitude and, as a function of time, traces out a
circle at an angular frequency ω in the plane of the vectors ε̂1 and ε̂2 perpendicular
to the propagation vector kL. As a function of r, for a fixed time, the vector E
traces a helix. If ξ = −1, the rotation of E as a function of time at a fixed point is
counter-clockwise for an observer facing into the oncoming wave (looking into the
direction −k̂L), while at a fixed time the helix is left-handed. This wave is said to
be left-circularly polarized.

Such a wave is also said to have positive helicity because it has a positive projec-
tion of angular momentum on the propagation direction k̂L. If ξ = 1, the rotation
of the vector E as a function of time at a fixed point in space is clockwise for an
observer facing into the incoming wave and the helix is right-handed. This wave is
said to be right-circularly polarized; it is said to have negative helicity, because it
has a negative projection of angular momentum on the propagation direction k̂L.
When 0< |ξ |< 1, the vector E , at a fixed point of space, traces out an ellipse as
a function of time in the plane of the vectors ε̂1 and ε̂2. Such a wave is said to be
elliptically polarized.
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In order to explore in more detail the concept of polarization, we write the
electric-field vector (2.19) corresponding to a monochromatic plane wave of
arbitrary polarization in the following form:

E(r, t)= E0Re
{
ε̂c exp[i(kL · r −ωt −ϕ)]}. (2.20)

In the above equation, ε̂c is a complex unit polarization vector such that

ε̂∗
c · ε̂c = 1. (2.21)

This vector can be written as a linear combination of the two basis vectors ε̂1 and
ε̂2, namely

ε̂c = c1ε̂1 + c2ε̂2, (2.22)

where the complex coefficients c1 and c2 satisfy the equation

|c1|2 +|c2|2 = 1. (2.23)

We note that Equation (2.20) reduces to Equation (2.19) if we take

c1 = 1

(1 + ξ2)1/2
, c2 = −iξ

(1 + ξ2)1/2
. (2.24)

Let us write the two complex coefficients c1 and c2 in the form

c1 = |c1|exp(iα), c2 = |c2|exp(iβ). (2.25)

If the phases α and β are equal (modulo π ), so that α = β + mπ (with m =
0,±1,±2, . . . ), the electric-field vector (2.20) can be written in the form

E(r, t)= E0Re
{
(|c1|ε̂1 ±|c2|ε̂2)exp[i(kL · r −ωt −ϕ+α)]}

= E0(|c1|ε̂1 ±|c2|ε̂2)cos(kL · r −ωt −ϕ+α), (2.26)

and we see that the direction of the vector E is independent of time, so that the
monochromatic plane wave (2.26) is linearly polarized. If the amplitudes of the
coefficients ci are equal, so that |c1| = |c2| = 1/

√
2, but the phases α and β differ

by π/2 (modulo 2π ), i.e. β = α±π/2 + 2mπ (with m= 0,±1,±2, . . . ), then the
electric field can be written as

E(r, t)= E0√
2

Re
{
(ε̂1 ± iε̂2)exp[i(kL · r −ωt −ϕ+α)]}

= E0√
2

{
ε̂1 cos(kL · r −ωt −ϕ+α)∓ ε̂2 sin (kL · r −ωt −ϕ+α)} ,

(2.27)
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and the monochromatic plane wave (2.27) is left-circularly polarized if the upper
sign is selected and right-circularly polarized if the lower sign is selected. If the
complex coefficients c1 and c2 in Equation (2.22) do not correspond to either linear
or circular polarization, the wave is elliptically polarized.

In the above discussion, we have described a general state of polarization for
a monochromatic plane wave by using two linearly polarized waves to form a set
of basis fields, with real, orthogonal unit polarization vectors ε̂1 and ε̂2 in a plane
perpendicular to k̂L. The complex polarization vector ε̂c was then expanded in
terms of these basis vectors. The two circularly polarized waves (2.27) constitute
an equally acceptable set of basic fields for the description of an arbitrary state of
polarization. We introduce the two complex orthogonal unit basis vectors

ε̂l = 1√
2

(
ε̂1 + iε̂2

)
, ε̂r = 1√

2

(
ε̂1 − iε̂2

)
, (2.28)

which correspond to left- and right-circular polarization, respectively. These vectors
are such that

ε̂∗
l · ε̂l = ε̂∗

r · ε̂r = 1 (2.29)

and

ε̂∗
l · ε̂r = ε̂∗

r · ε̂l = ε̂∗
l · k̂L = ε̂∗

r · k̂L = 0. (2.30)

A general state of polarization can then be specified by a complex unit polarization
vector ε̂c such that

ε̂c = cl ε̂l + cr ε̂r, (2.31)

where cl and cr are complex coefficients satisfying the equation

|cl|2 +|cr|2 = 1. (2.32)

Throughout this book, we will assume that the polarization of the laser field is
known, so that partially polarized fields will not be considered.

The energy density of the monochromatic electromagnetic field is given by

1

2
(ε0|E|2 +µ−1

0 |B|2)= ε0E2
0

1 + ξ2

[
cos2(kL · r −ωt −ϕ)+ ξ2 sin2(kL · r −ωt −ϕ)

]
,

(2.33)

where ε0 and µ0 are the permittivity and permeability of free space, respectively,
and ε0µ0 = c−2. Averaging the energy density over a period T = 2π/ω, and using
the fact that

1

T

∫ T

0
sin2(kL · r −ωt −ϕ)dt = 1

T

∫ T

0
cos2(kL · r −ωt −ϕ)dt = 1

2
, (2.34)
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the cycle-averaged energy density at the given angular frequency ω is found to be

ρ(ω)= 1

2
ε0E2

0 = 1

2
ε0ω

2A2
0 . (2.35)

It is interesting to relate this result to the photon density, keeping in mind that each
photon at a frequency ν carries a quantum of energy hν = �ω. If N (ω) denotes the
number of photons of angular frequency ω within a volume V , the energy density
is given by

ρ(ω)= �ωN (ω)
V

. (2.36)

From Equations (2.35) and (2.36), we find that

E2
0 = 2ρ(ω)

ε0
= 2�ωN (ω)

ε0V
. (2.37)

The Poynting vector

S = 1

µ0
(E ×B) (2.38)

is in the direction of the propagation vector kL. Its magnitude is the rate of energy
flow through a unit area normal to the direction of propagation. Averaged over a
period, T , this quantity gives the intensity I (ω) associated with the monochromatic
plane wave (2.19) of angular frequency ω. That is,

I (ω)= 1

2
ε0cE2

0 = 1

2
ε0cω

2A2
0 . (2.39)

It should be noted that the definition of the electric-field strength introduced in
Equation (2.19) implies that the intensity (2.39) does not depend on the ellipticity
parameter ξ . From Equations (2.36), (2.37) and (2.39) we also have

I (ω)= ρ(ω)c= �ωN (ω)c
V

. (2.40)

Finally, the photon flux of the field is given by

�(ω)= I (ω)
�ω

. (2.41)

As an example, let us consider a linearly polarized laser field generated by a
Nd:YAG laser with photon energy �ω= 1.17 eV. Even for a modest intensity I =
1012 W cm−2, the number of photons in a coherence volume V = λ3 (with λ =
2πc/ω= 1064 nm), as obtained from Equation (2.40), is

N = IV

�ωc
� 2 × 108 , (2.42)



44 Basic concepts

which is very large. A classical description of the laser field is therefore justified.
We point out that a more rigorous justification of this statement can be given by
using the fact that, to a good approximation, the radiation generated by a laser is
in a coherent state, which is the quantum electrodynamic state approximating most
closely the classical state of the field [3–5]. For large values of the average number
of photons in the coherent state, quantum corrections only cause small fluctuations
about the classical field.

2.1.2 Laser pulses

Thus far, we have considered only monochromatic plane wave solutions of Equation
(2.4). As we will see later, the electromagnetic field can often be taken to be
monochromatic when describing the interaction of an atom with a “long” laser
pulse, lasting tens of optical cycles or more. However, this is not the case for
shorter laser pulses, in particular for ultra-short pulses lasting a few optical cycles
or even less. In what follows, we shall give a brief theoretical description of laser
pulses.

A general laser pulse can be formed by superimposing monochromatic plane
waves with appropriate amplitudes, frequencies and phases. It is useful to distin-
guish between pulses that are spatially homogeneous in the plane perpendicular to
the laser propagation vector kL and focused laser pulses. We begin by discussing
the former. We shall consider the simple case where each plane wave component
has the same direction of propagation k̂L and is linearly polarized in the direction
ε̂. The vector potential in the Coulomb gauge can then be written as

A(r, t)= ε̂

∫ ∞

0
A0(ω

′)sin[k′
L · r −ω′t −ϕ(ω′)]dω′, (2.43)

where ϕ(ω′) is the phase associated with the angular frequency ω′ and k′
L =

(ω′/c)k̂L. Since the laser pulse is localized in space and time, the amplitude
A0(ω

′) is peaked about the pulse carrier angular frequency ω, while its “width”
is inversely proportional to the pulse duration. If the laser field is monochromatic,
then A0(ω

′) reduces to A0δ(ω
′ −ω), where δ(x) denotes the Dirac delta function.

Both ϕ(ω′) and A0(ω
′) are in general smooth functions. However, for ultra-short

pulses A0(ω
′) may vary in a complicated way and extend over a wide range of

frequencies.
Using the plane wave expansion (2.43) for the vector potential, the electric-field

component of the laser pulse is found to be

E(r, t)= ε̂

∫ ∞

0
E0(ω

′)cos[k′
L · r −ω′t −ϕ(ω′)]dω′, (2.44)
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where the quantity E0(ω
′) = ω′A(ω′) has the dimensions of an electric-field

amplitude per unit angular frequency.
The total energy flux passing through a plane of unit area perpendicular to

the propagation vector kL must be finite. Using Equation (2.38), together with
Equations (2.44) and (2.15), we have∫ ∞

−∞
k̂L ·S(t)dt = πε0c

∫ ∞

0
E2

0 (ω
′)dω′ < ∞ (2.45)

so that E2
0 (ω

′) must decrease faster than (ω′)−1 as ω′ goes to infinity. In addi-
tion, due to the finite size of the laser oscillator, the laser pulse cannot contain
angular frequencies that are smaller than some minimum cut-off angular frequency
ωmin > 0. Therefore

E0(ω
′)= 0, ω′ < ωmin. (2.46)

The existence of this cut-off allows one to deduce two properties of a laser pulse
that is described by the vector potential (2.43). Let us consider the following integral
over the electric-field component of the laser pulse:

lim
t→∞

∫ t

−t
E(r, t ′)dt ′ = lim

t→∞ [A(r,−t)− A(r, t)]

= lim
t→∞2ε̂

∫ ∞

0

E0(ω
′)

ω′ sin(ω′t)cos[k′
L · r −ϕ(ω′)]dω′.

(2.47)

Treating t as a parameter, we first calculate this limit by making use of the following
representation of the Dirac delta function:

δ(x)= lim
ε→0+

sin(x/ε)

πx
. (2.48)

Then, using Equation (2.46), it follows that

lim
t→∞

∫ t

−t
E(r, t ′)dt ′ = 0. (2.49)

A similar calculation shows that

lim
t→∞

∫ t

−t
A(r, t ′)dt ′ = 0. (2.50)

We will see in Section 2.2 that the two results in Equations (2.49) and (2.50) have
important implications for the dynamics of free electrons in laser fields.

In studying the interaction of laser pulses with atoms, the spatial profile of the
laser pulse can be assumed to remain constant over atomic dimensions. In this


