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Preface

This book is an outgrowth of a graduate level course taught for several years at Rensse-
laer Polytechnic Institute (RPI). When the course started in the early 1990s, there were
only two textbooks available that taught signal compression, Jayant and Noll1 and Ger-
sho and Gray.2 Certainly these are excellent textbooks and valuable references, but they
did not teach some material considered to be necessary at that time, so the textbooks
were supplemented with handwritten notes where needed. Eventually, these notes grew
to many pages, as the reliance on published textbooks diminished. The lecture notes
remained the primary source even after the publication of the excellent book by Say-
ood,3 which served as a supplement and a source of some problems. While the Sayood
book was up to date, well written, and authoritative, it was written to be accessible to
undergraduate students, so lacked the depth suitable for graduate students wanting to
do research or practice in the field. The book at hand teaches the fundamental ideas of
signal compression at a level that both graduate students and advanced undergraduate
students can approach with confidence and understanding. The book is also intended to
be a useful resource to the practicing engineer or computer scientist in the field. For that
purpose and also to aid understanding, the 40 algorithms listed under Algorithms in the
Index are not only fully explained in the text, but also are set out step-by-step in special
algorithm format environments.

This book contains far more material than can be taught in a course of one semester.
As it was being written, certain subjects came to light that begged for embellishment and
others arose that were needed to keep pace with developments in the field. One example
of this additional material, which does not appear in any other textbook, is Chapter 14 on
“Distributed source coding,” a subject which has received considerable attention lately.
The intent was to present the fundamental ideas there, so that the student can understand
and put into practice the various methods being proposed that use this technique.

The two longest chapters in the book are Chapters 10 and 11, entitled “Set parti-
tion coding” and “Subband/wavelet coding systems,” respectively. They were actually
the first chapters written and were published previously as a monograph in two parts.4

The versions appearing here are updated with some minor errors corrected. Being the
inventors of SPIHT and proponents and pioneers of set partition coding, we felt that
its fundamental principles were not expounded in the technical literature. Considering
the great interest in SPIHT, as evidenced by the thousands of inquiries received by
us over the years since its origin in 1995 (at this writing 94,200 hits on Google), we
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were eager to publish a true tutorial on the fundamental concepts of this algorithm. We
believe that Chapter 10 fulfills this intent. Other books usually present only the SPIHT
algorithm, almost always by working an example without revealing the underlying prin-
ciples. Chapter 11 describes more image wavelet coding systems than any other book,
including the JPEG2000 standard, fully scalable SPIHT, SBHP, and EZBC. The last
three are set partition coders, while JPEG2000 contains auxiliary algorithms that use
set partitioning. Furthermore, this chapter explains how to embed features of scalability
and random access in coded bitstreams.

Besides distributed source coding, some preliminary material are also firsts in this
book. They are: analysis of null-zone quantization, rate allocation algorithms, and the
link between filters and wavelets. The aforementioned link is explained in Chapter 7
on “Mathematical transformations,” in a way that requires only some knowledge of
discrete-time Fourier transforms and linear system analysis. The treatment avoids the
concepts of functional analysis and the use of polyphase transforms with little compro-
mise of rigor. The intent was to make the book accessible to advanced undergraduates,
who would likely not have exposure to these subjects. Also to serve this purpose, prior
exposure to information theory is not a prerequisite, as the book teaches the relevant
aspects needed to grasp the essential ideas.

One criticism that might be levied at this book is its emphasis on compression of
images. Certainly, that reflects the main field of research and practice of the authors.
However, image compression is possible only by understanding and applying the prin-
ciples of compression that pertain to all source data. In fact, the material of the first
eight chapters is generic and dimension independent. The notation is one-dimensional
for the most part, and the generalization to higher dimensions is mostly obvious and
hence unnecessary. Although the applications are mostly to images in the remainder of
the book, except for the generic Chapter 14, the corresponding one-dimensional sig-
nal methods are mentioned when applicable and even included in some problems. The
standards and state-of-the-art systems of image compression are treated in some detail,
as they represent the most straightforward application of basic principles. The stan-
dard speech and audio coding systems require additional complications of perceptual
and excitation models, and echo cancellation. Their inclusion would make the book
too long and cumbersome and not add much to its primary objective. Nevertheless, the
material on image compression systems in Chapters 9, 11, and 12 is comprehensive
enough to meet the secondary objective of serving as a good tutorial and reference for
image compression researchers and practitioners.

Chapter 12 treats the subject of lossless image compression. Lossless image com-
pression is used only for archiving of image data. There seems to be no call for lossless
compression of any sources for the purpose of multimedia communication, as the data
transfer would be too slow or require too much bandwidth or both. For example, there is
no compression of audio or speech in the WAV storage format for compact discs. MP3 is
a compressed format for audio and speech transmission and recording; the compressed
format of JPEG is standard in every digital camera for consumer use; all digital video
is compressed by MPEG or ITU standard formats. Images seem to be the only sources
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that are subject to lossless compression. The standard methods described in Chapter 12
serve as good examples of how basic principles are put into practice.

The book did not seem complete without a chapter on how compression is applied to
three-dimensional sources, such as color images, volume medical images, and video. At
the time of writing, there are no other textbooks that teach three-dimensional wavelet
coding methods. Therefore, we wrote Chapter 13 with the intent to show the reader how
the methods of the earlier chapters are extended to these higher dimensional sources.
We purposely omitted detailed descriptions of video standards. We just explained the
general framework in these systems upon which compression is applied and a little
about the compression methods, which are mostly covered in detail in earlier chapters.

We urge potential buyers or browsers to read Chapters 1 and 2, which discuss the
motivation to learn signal compression and take a brief tour through the book. This book
turned out to be different in many respects from what was taught in the RPI course.
Roughly, the coverage of that course was all of Chapters 3, 4, 5, and 6, which was
deemed essential material. One can be selective in Chapter 7, for example, skipping
the lapped orthogonal transform and some parts of Section 7.7, “Subband transforms,”
especially the detailed development of the connection between wavelet theory and FIR
filters. Likewise, in Chaper 8, some of the rate allocation algorithms may be skipped,
as well as the detailed derivations of optimal rate allocation and coding gain. One can
skim through Section 9.3 in the next chapter, and skip Section 9.4 on H.264/AVC intra
coding, which did not exist when the course was last taught. Time may not allow
anything in Chapter 10, other than set partitioning for SPIHT and the accompanying
coding example, and in Chapter 11 only a sketch of the JPEG2000 coding system. Loss-
less image compression in Chapter 12 could be covered earlier in the course, perhaps
after Chapter 4, “Entropy coding techniques.” Certainly, there is enough material to
accommodate different choices of emphasis and objective.

For students with a background in information theory and signal processing or those
more interested in computer science or actual implementation, an instructor may skip
some of the preliminary material in the early chapters and teach all of the rate allocation
algorithms in Chapter 8 and cover Chapters 10 and 11 in their entirety. Chapter 11
contains much practical material on implementation of coding systems. In fact, we think
that approach would be appropriate for a short course.

The book contains many figures and problems. The problems in many cases have to
be worked using a calculation and plotting program, such as MATLAB, and some-
times by making a computer program. Some datasets and basic software in C or
C++ and MATLAB m-files, will be made freely available on the course website:
http://www.cambridge.org/pearlman. Also freely available on the website are Power-
point animations of the SPIHT and SPECK algorithms. Figures and problem solutions
will be made available to instructors.

http://www.cambridge.org/pearlman
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1 Motivation

1.1 The importance of compression

It is easy to recognize the importance of data compression technology by observing the
way it already pervades our daily lives. For instance, we currently have more than a
billion users [1] of digital cameras that employ JPEG image compression, and a compa-
rable number of users of portable audio players that use compression formats such as
MP3, AAC, and WMA. Users of video cameras, DVD players, digital cable or satellite TV,

hear about MPEG-2, MPEG-4, and H.264/AVC. In each case, the acronym is used to iden-
tify the type of compression. While many people do not know what exactly compression
means or how it works, they have to learn some basic facts about it in order to properly
use their devices, or to make purchase decisions.

Compression’s usefulness is not limited to multimedia. An increasingly important
fraction of the world’s economy is in the transmission, storage, and processing of
all types of digital information. As Negroponte [2] succinctly put it, economic value
is indeed moving “from atoms to bits.” While it is true that many constraints from
the physical world do not affect this “digital economy,” we cannot forget that, due
to the huge volumes of data, there has to be a large physical infrastructure for data
transmission, processing, and storage. Thus, just as in the traditional economy it is
very important to consider the efficiency of transportation, space, and material usage,
the efficiency in the representation of digital information also has great economic
importance.

This efficiency is the subject of this book. Data compression encompasses the theory
and practical techniques that are used for representing digital information in its most
efficient format, as measured (mostly) by the number of bits used for storage or telecom-
munication (bandwidth). Our objective is to present, in an introductory text, all the
important ideas required to understand how current compression methods work, and
how to design new ones.

A common misconception regarding compression is that, if the costs of storage and
bandwidth fall exponentially, compression should eventually cease to be useful. To see
why this is not true, one should first note that some assumptions about costs are not
universal. For example, while costs of digital storage can indeed fall exponentially,
wireless telecommunications costs are constrained by the fact that shared radio spectrum
is a resource that is definitely limited, land line communications may need large new
investments, etc. Second, it misses the fact that the value of compression is unevenly
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distributed according to applications, type of user, and in time. For instance, compres-
sion is commonly essential to enable the early adoption of new technologies – like it
was for digital photography – which would initially be too expensive without it. After
a while, it becomes less important, but since the infrastructure to use it is already in
place, there is little incentive to stop using it. Furthermore, there is the aspect of relative
cost. While even cheap digital cameras may already have more memory than will ever
be needed by their owners, photo storage is still a very important part of the operational
costs for companies that store the photos and videos of millions of users. Finally, it
also ignores the fact that the costs for generating new data, in large amounts, can also
decrease exponentially, and we are just beginning to observe an explosion not only in
the volume of data, but also in the number and capabilities of the devices that create
new data (cf. Section 1.4 and reference [1]).

In conclusion, we expect the importance of compression to keep increasing, espe-
cially as its use moves from current types of data to new applications involving much
larger amounts of information.

1.2 Data types

Before presenting the basics of the compression process, it is interesting to consider
that the data to be compressed can be divided into two main classes, with different
properties.

1.2.1 Symbolic information

We can use the word text broadly to describe data that is typically arranged in a
sequence of arbitrary symbols (or characters), from a predefined alphabet or script
(writing system) of a given size. For example, the most common system for English
text is the set of 8-bit ASCII characters, which include all letters from the Latin
script, plus some extra symbols. It is being replaced by 16-bit UNICODE characters,
which include all the important scripts currently used, and a larger set of special
symbols.

Normally we cannot exploit the numerical value of the digital representation of sym-
bolic information, since the identification of the symbols, and ultimately their meaning,
depend on the convention being used, and the character’s context. This means that the
compression of symbolic data normally has to be lossless, i.e., the information that is
recovered after decompression has to be identical to the original. This is usually what is
referred to as text compression or data compression.

Even when all information must be preserved, savings can be obtained by removing
a form of redundancy from the representation. Normally, we do not refer to compres-
sion as the simplest choices of more economical representations, such as converting
text that is known to be English from 16-bit UNICODE to 8-bit ASCII. Instead, we refer
to compression as the techniques that exploit the fact that some symbols, or sequences
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of symbols, are much more commonly used than others. As we explain later, it is more
efficient to use a smaller number of bits to represent the most common characters (which
necessarily requires using a larger number for the less common). So, in its simplest defi-
nition, lossless compression is equivalent simply to reducing “wasted space.” Of course,
for creating effective compression systems, we need a rigorous mathematical framework
to define what exactly “wasted” means. This is the subject of information theory that is
covered from Chapter 2.

1.2.2 Numerical information

The second important type of data corresponds to information obtained by measur-
ing some physical quantity. For instance, audio data is created by measuring sound
intensity in time; images are formed by measuring light intensity in a rectangular area;
etc. For convenience, physical quantities are commonly considered to be real num-
bers, i.e., with infinite precision. However, since any actual measurement has limited
precision and accuracy, it is natural to consider how much of the measurement data
needs to be preserved. In this case, compression savings are obtained not only by
eliminating redundancy, but also by removing data that we know are irrelevant to
our application. For instance, if we want to record a person’s body temperature, it is
clear that we only need to save data in a quite limited range, and up to a certain pre-
cision. This type of compression is called lossy because some information—the part
deemed irrelevant—is discarded, and afterwards the redundancy of the remaining data
is reduced.

Even though just the process of discarding information is not by itself compression,
it is such a fundamental component that we traditionally call this combination lossy
compression. Methods that integrate the two steps are much more efficient in keeping
the essential information than those that do not. For instance, the reader may already
have observed that popular lossy media compression methods such as the JPEG image
compression, or MP3 audio compression, can achieve one or two orders of magnitude
in size reduction, with very little loss in perceptual quality.

It is also interesting to note that measurement data commonly produce relatively
much larger amounts of data than text. For instance, hundreds of text words can be rep-
resented with the number of bits required to record speech with the single word “hello.”
This happens because text is a very economical representation of spoken words, but it
excludes many other types of information. From recorded speech, on the other hand,
we can identify not only the spoken words, but possibly a great deal more, such as the
person’s sex, age, mood, accents, and even very reliably identify the person speaking
(e.g., someone can say “this is definitely my husband’s voice!”).

Similarly, a single X-ray image can use more data than that required to store the name,
address, medical history, and other textual information of hundreds of patients. Thus,
even though lossless compression of text is also important, in this book the emphasis is
on compression of numerical information, since it commonly needs to be represented
with a much larger number of bits.
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1.3 Basic compression process

In practical applications we frequently have a mixture of data types that have to be com-
pressed together. For example, in video compression we have to process a sequence of
images together with their corresponding (synchronized) multichannel audio compo-
nents. However, when starting the study of compression, it is much better to consider
separately each component, in order to properly understand and exploit its particular
properties. This approach is also used in practice (video standards do compress image
and audio independently), and it is commonly easy to extend the basic approach and
models to more complex situations.

A convenient model for beginning the study of compression is shown in Figure 1.1:
we have a data source that generates a sequence of data elements {x1, x2, . . .}, where
all xi are of the same type and each belongs to a set A. For example, for compress-
ing ASCII text, we can have A = {a, b, c, . . . , A, B,C, . . . , 0, 1, 2, . . .}. However, this
representation is not always convenient, and even though this is a symbolic data type
(instead of numerical), it is frequently better to use for xi the numerical value of the byte
representing the character, and have A = {0, 1, 2, . . . , 255}. For numerical data we can
use as A intervals in the set of integer or real numbers.

The compression or encoding process corresponds to mapping the sequence of source
symbols into the sequence {c1, c2, . . .}, where each ci belongs to a set C of compressed
data symbols. The most common data symbols are bits (C = {0, 1}) or, less frequently,
bytes (C = {0, 1, . . . , 255}). The decompression or decoding process maps the com-
pressed data sequence back to a sequence {x̃1, x̃2, . . .} with elements from A. With
lossless compression we always have xi = x̃i for all i , but not necessarily with lossy
compression.

There are many ways data can be organized before being encoded. Figure 1.2 shows
some examples. In the case of Figure 1.2(a), groups with a fixed number of source
symbols are mapped to groups with a fixed number of compressed data symbols. This
approach is employed in some mathematical proofs, but is not very common. Better
compression is achieved by allowing groups of different sizes. For instance, we can
create a simple text compression method by using 16 bits as indexes to all text characters
plus about 64,000 frequently used words (a predefined set). This corresponds to the
variable-to-fixed scheme of Figure 1.2(b), where a variable number of source symbols
are parsed into characters or words, and each is coded with the same number of bits.
Methods for coding numerical data commonly use the method of Figure 1.2(c) where
groups with a fixed number of data symbols are coded with a variable number of bits.
While these fixed schemes are useful for introducing coding concepts, in practical appli-
cations it is interesting to have the maximum degree of freedom in organizing both the

Data
source Encoder Decoder

x1, x2, x3, ... c1, c2, c3, ... x̃1, x̃2, x̃3, ...

Figure 1.1 Basic data encoding and decoding model.
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Figure 1.2 Examples of some forms in which the source and compressed data symbols can be organized for
compression.

source and the compressed data symbols, so a variable-to-variable approach is more
common.

1.4 Compression applications

The first popular compression applications appeared with the transition from analog to
digital media formats. A great deal of research activity, and the development of the first
compression standards, happened because there was a lot of analog content, such as
movies, that could be converted. This is still happening, as we observe that only now is
television broadcast in the USA transitioning to digital.

Another wave of applications is being created by the improvement, cost reduction,
and proliferation of data-generating devices. For instance, much more digital voice
traffic, photos, and even video, are being created by cell phones than with previous
devices, simply because many more people carry them everywhere they go, and thus
have many more opportunities to use them. Other ubiquitous personal communica-
tions and collaboration systems, such as videoconference, also have compression as
a fundamental component.

The development of new sensor technologies, with the increase in resolution, preci-
sion, diversity, etc., also enables the creation of vast amounts of new digital information.



6 Motivation

For example, in medical imaging, three-dimensional scans, which produce much more
data than two-dimensional images, are becoming much more common. Similarly, better
performance can be obtained by using large numbers of sensors, such as microphone or
antenna arrays.

Another important trend is the explosive growth in information exchanged between
devices only, instead of between devices and people. For instance, much of surveillance
data is commonly stored without ever being observed by a person. In the future an even
larger volume of data will be gathered to be automatically analyzed, mostly without
human intervention. In fact, the deployment of sensor networks can produce previously
unseen amounts of data, which may use communications resources for local processing,
without necessarily being stored.

1.5 Design of compression methods

When first learning about compression, one may ask questions like:

• Why are there so many different types of compression?
• What makes a method superior in terms of performance and features?
• What compromises (if any) should be taken into account when designing a new

compression method?

From the practical point of view, the subject of data compression is similar to many
engineering areas, i.e., most of the basic theory had been established for many years, but
research in the field is quite active because the practice is a combination of both art and
science. This happens because while information theory results clearly specify optimal
coding, and what are the coding performance limits, it commonly assumes the avail-
ability of reasonably accurate statistical models for the data, including model parameter
values. Unfortunately, the most interesting data sources, such as text, audio, video, etc.,
are quite difficult to model precisely.1

In addition, some information theory results are asymptotic, i.e., they are obtained
only when some parameter, which may be related to computational complexity or size
of the data to be compressed, goes to infinity. In conclusion, while information theory
is essential in providing the guidance for creating better compression algorithms, it
frequently needs to be complemented with practical schemes to control computational
complexity, and to create good statistical models.

It has been found that there can be great practical advantages in devising schemes
that implicitly exploit our knowledge about the data being compressed. Thus, we have a
large number of compression methods that were created specifically for text, executable
code, speech, music, photos, tomography scans, video, etc. In all cases, assumptions
were made about some typical properties of the data, i.e., the way to compress the data
is in itself an implicit form of modeling the data.

Data statistical modeling is a very important stage in the design of new compres-
sion methods, since it defines what is obviously a prime design objective: reducing
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the number of bits required to represent the data. However, it is certainly not the only
objective. Typical additional design objectives include

• low computational complexity;
• fast search or random access to compressed data;
• reproductions scalable by quality, resolution, or bandwidth;
• error resiliency.

The need to control computational complexity is a main factor in making practical
compression differ from more abstract and general methods derived from information
theory. It pervades essential aspects of all the compression standards widely used, even
though it is not explicitly mentioned. This also occurs throughout this book: several
techniques will be presented that were motivated by the need to optimize the use of
computational resources.

Depending on the type of data and compression method, it can be quite difficult to
identify in compressed data some types of information that are very easily obtained in
the uncompressed format. For instance, there are very efficient algorithms for searching
for a given word in an uncompressed text file. These algorithms can be easily adapted if
the compression method always uses the same sequence of bits to represent the letters
of that word. However, advanced compression methods are not based on the simple
replacement of each symbol by a fixed set of bits. We have many other techniques,
such as

• data is completely rearranged for better compression;
• numerical data goes through some mathematical transformation before encoding;
• the bits assigned for each character may change depending on context and on how the

encoder automatically learns about the data characteristics;
• data symbols can be represented by a fractional number of bits;
• data may be represented by pointers to other occurrences of the same (or similar) data

in the data sequence itself, or in some dynamic data structures (lists, trees, stacks, etc.)
created from it.

The consequence is that, in general, fast access to compressed information cannot
be done in an ad hoc manner, so these capabilities can only be supported if they are
planned when designing the compression method. Depending on the case, the inclusion
of these data access features may degrade the compression performance or complexity,
and this presents another reason for increasing the number of compression methods (or
modes in a given standard).

Resiliency to errors in the compressed data can be quite important because they
can have dramatic consequences, producing what is called catastrophic error propa-
gation. For example, modifying a single bit in a compressed data file may cause all the
subsequent bits to be decoded incorrectly. Compression methods can be designed to
include techniques that facilitate error detection, and that constrains error propagation
to well-defined boundaries.
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1.6 Multi-disciplinary aspect

As explained above, developing and implementing compression methods involves
taking many practical factors, some belonging to different disciplines, into account. In
fact, one interesting aspect of practical compression is that it tends to be truly multidis-
ciplinary. It includes concepts from coding and information theory, signal processing,
computer science, and, depending on the material, specific knowledge about the data
being compressed. For example, for coding image and video it is advantageous to have
at least some basic knowledge about some features of the human vision, color percep-
tion, etc. The best audio coding methods exploit psychophysical properties of human
hearing.

Learning about compression also covers a variety of topics, but as we show in this
book, it is possible to start from basic material that is easy to understand, and progres-
sively advance to more advanced topics, until reaching the state-of-the-art. As we show,
while some topics can lead to a quite complex and advanced theory, commonly only
some basic facts are needed to be used in compression.

In the next chapter we present a quick overview of the topics included in this book.

Note

1. Note that we are referring to statistical properties only, and excluding the much more
complex semantic analysis.
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2 Book overview

2.1 Entropy and lossless coding

Compression of a digital signal source is just its representation with fewer information
bits than its original representation. We are excluding from compression cases when the
source is trivially over-represented, such as an image with gray levels 0 to 255 written
with 16 bits each when 8 bits are sufficient. The mathematical foundation of the dis-
cipline of signal compression, or what is more formally called source coding, began
with the seminal paper of Claude Shannon [1, 2], entitled “A mathematical theory of
communication,” that established what is now called Information Theory. This theory
sets the ultimate limits on achievable compression performance. Compression is theo-
retically and practically realizable even when the reconstruction of the source from the
compressed representation is identical to the original. We call this kind of compression
lossless coding. When the reconstruction is not identical to the source, we call it lossy
coding. Shannon also introduced the discipline of Rate-distortion Theory [1–3], where
he derived the fundamental limits in performance of lossy coding and proved that they
were achievable. Lossy coding results in loss of information and hence distortion, but
this distortion can be made tolerable for the given application and the loss is often neces-
sary and unavoidable in order to satisfy transmission bandwidth and storage constraints.
The payoff is that the degree of compression is often far greater than that achievable by
lossless coding.

In this book, we attempt to present the principles of compression, the methods moti-
vated by these principles, and various compression (source coding) systems that utilize
these methods. We start with the theoretical foundations as laid out by Information
Theory. This theory sets the framework and the language, motivates the methods of cod-
ing, provides the means to analyze these methods, and establishes ultimate bounds in
their performance. Many of the theorems are presented without proof, since this book is
not a primer on Information Theory, but in all cases, the consequences for compression
are explained thoroughly. As befits any useful theory, the source models are simplifica-
tions of practical ones, but they point the way toward the treatment of compression of
more realistic sources.

The main focus of the theoretical presentation is the definition of information entropy
and its role as the smallest size in bits achievable in lossless coding of a source. The data
source emits a sequence of random variables, X1, X2, . . ., with respective probability
mass functions, qX1(x1), qX2(x2), . . . These variables are called letters or symbols and
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their range of values is called the alphabet. This range is assumed to be discrete and
finite. Such a source is said to be discrete. We start with the simplest kind of discrete
data source, one that emits its letters independently, each with the same probability dis-
tribution, a so-called i.i.d. (independently and identically distributed) source. Therefore,
we consider just a single random variable or letter X that takes values a1, a2, . . . , aK

with probabilities P(a1), P(a2), . . . , P(aK ), respectively. The entropy of X is defined
to be

H(X) =
K∑

k=1

P(ak) log
1

P(ak)
, (2.1)

where the base of the logarithm is 2 unless otherwise specified. Note that H(X) depends
on the probability distribution, not on the letters themselves. An important property of
H(X) is that

0 ≤ H(X) ≤ log K . (2.2)

The entropy is non-negative and is upper bounded by the base-2 logarithm of the alpha-
bet size K . This upper bound is achieved if and only if the letters are equally probable
and is the least number of bits required in a natural binary representation of the indices
1, 2, . . . , K . Especially important is that the entropy H(X) is the fewest bits per source
letter or lowest rate to which an i.i.d. source can be encoded without loss of information
and can be decoded perfectly.

We then present several methods of lossless coding, most of which are provably
capable of reaching the entropy limit in their compression. Therefore, such methods
are referred to as entropy coding methods. Examples of these methods are Huffman
coding and arithmetic coding. However, these methods can only achieve the lower rate
limit of entropy as the length N of the data sequence tends to infinity. Their average
codeword length per source symbol can reach within a tolerance band of 1/N or 2/N
bits anchored at H(X), so sometimes a small source length N is good enough for the
application. Lossless or entropy coding is extremely important in all coding systems, as
it is a component of almost every lossy coding system, as we shall see.

2.2 Quantization

Almost all physical sources are adequately modeled with a range of continuous values
having a continuous probability distribution or density function. Such sources are said
to be continuous. Discrete sources are often quantized samples of a continuous source.
Quantization is the approximation of values of a source with a given smaller set of
values, known at the source and destination. The values in this smaller set are indexed,
so that only the indices have to be encoded. For example, rounding values to the nearest
integer is quantization. Analog to digital (A/D) conversion is quantization followed by
binary representation or encoding of the quantized value, as depicted in Figure 2.1.
Quantization is absolutely necessary, because the number of bits needed to represent
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Quantizer Encoder
X

continuous

X̃

discrete

C

binary

Figure 2.1 Source letter quantization followed by binary coding.

a continuous variable is infinite. That is, infinite precision requires an infinite number
of bits. Clearly, infinite precision is beyond the capability of any physical device, but
we wish to capture this finite precision, whatever it is, using fewer bits than its normal
representation. We can think of the source as emitting either scalar (single) or vector
(blocks of) random variables at each time. Whether scalar or vector, we seek to minimize
the number of bits needed to encode the quantized values for a given distortion measure
between the original and quantized values. The number of bits is determined either by
its raw representation or its entropy when entropy coding is used. The idea is to choose
the set of quantization values and the ranges of the random variables that are mapped to
these values, so that the required minimum is attained. Quantizing vectors rather than
scalars leads to smaller numbers of bits per source letter for a given distortion, but at the
cost of larger memory to hold the quantization values and more computation to find the
quantization value closest to the source value.

2.3 Source transformations

2.3.1 Prediction

As mentioned above, encoding blocks of source letters is more efficient than encoding
the letters individually. This is true whether or not the letters are statistically indepen-
dent. However, when the source letters are dependent, i.e., they have memory, one tries
to remove the memory or transform the sequence mathematically to produce an inde-
pendent sequence for encoding. Clearly such memory removal or transformation must
be completely reversible. The motivation is that one can prove that memory removal
achieves a reduction in distortion for a given bit rate for lossy coding and a reduction in
bit rate in lossless coding. The ratio of distortions in lossy coding and ratio of rates in
lossless coding between similar coding with and without memory removal is called cod-
ing gain. If the mathematical operation of memory removal or transformation is linear,
then the output sequence is statistically independent only if the source is Gaussian and
stationary. If non-Gaussian, the sequence is uncorrelated, which is a weaker property
than independence. Nonetheless, these same linear operations are used, because coding
gains are obtained even when the outputs of the memory removal are uncorrelated or
approximately uncorrelated.

Various kinds of memory removal operation are used. The simplest is prediction
of the current source value from past values to produce the error value, called the
residual. A linear minimum mean squared error (MMSE) prediction of each member
of the source sequence produces an uncorrelated residual sequence. Each member of
the residual sequence is then encoded independently. Such coding is called predictive
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Figure 2.2 Lossless predictive coding system: top is encoder; bottom is decoder.

coding. When the encoding of the residuals is lossless, the source sequence can be
reconstructed perfectly. A block diagram of a lossless predictive coding system appears
in Figure 2.2. The decoder receives the current residual and is able to predict the current
source value from perfect reconstructions of past source values. The current residual
added to the prediction gives the exact current source value. Lossy predictive coding
systems are slightly more complicated, having a quantizer directly following the resid-
ual in the encoder, and will be treated in detail in a later chapter. There, we shall study
various means of prediction, and quantization and encoding of the residual sequence.

2.3.2 Transforms

2.3.2.1 Principal components and approximations
Mathematical transformations decorrelate the source sequence directly, whereas the
prediction operation in predictive coding systems produces an uncorrelated residual
sequence. The output of the transformation is a sequence of coefficients that represents
the source sequence in a new basis. One such transformation is the Karhunen–Loève
or principal components transformation. This transform depends on the statistical char-
acteristics of the source, which is often unknown beforehand, so most often is used as
an approximately decorrelating transform, such as the discrete cosine transform (DCT),
that is not source dependent. A block diagram of such a transform coding system is
shown in Figure 2.3. After transformation of the source sequence, the transform coeffi-
cients are individually quantized and encoded. In the decoder side, the coefficient codes
are decoded to produce the quantized coefficients, which are then inverted by the inverse
transform to yield a lossy reconstruction of the source sequence. Another property of
these transforms besides uncorrelatedness is that the transform coefficients with the
largest variances (energy) always appear at the smallest indices. Therefore, retaining
only a few of these low index coefficients normally yields a fairly accurate reconstruc-
tion upon inverse transformation. When encoding such a transform with a target bit
budget, bits are allocated unevenly, so that the highest energy coefficients get the most
bits and the lowest very few or zero bits. Various bit allocation procedures have been
formulated to allocate the bits optimally, so that the distortion is smallest for the given
bit budget. When the bit allocation is done properly, it leads to coding gains, as shall be
proved by analysis and practice.
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Figure 2.3 Transform coding system: encoder on top; decoder at bottom.
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Figure 2.4 Example of how lowpass (LPF) and highpass (HPF) filters can be used for computing the
subband transform.

2.3.2.2 Subband transforms
Certain mathematical transformations, called subband transforms, can be implemented
by a series of lowpass and highpass filtering plus decimation. For example, for time
sequences we can implement the subband transform with temporal filtering using a
dynamic system as shown in Figure 2.4. The different outputs correspond to differ-
ent responses for different frequency intervals or subbands, as shown in the example
of Figure 2.5 (which corresponds to the filters of Figure 2.4). In images the subband
transforms are done in a similar manner, but with two-dimensional spatial filtering.
Commonly the filters are defined so that filtering can be done for each dimension sep-
arately, and they produce two-dimensional subbands, which are logically classified as
shown in the top-left diagram of Figure 2.6, but that are actually obtained from two-
dimensional filter responses as shown in the other graphs of Figure 2.6. Note that in all
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Figure 2.6 Example logical division of subbands (top left) and types of frequency response produced by
some of the filters used in the two-dimensional subband transform.

cases the filter responses do not correspond to ideal filters, but nevertheless it is pos-
sible to use special sets of easy-to-implement filters that make the subband transform
perfectly reversible.

When the filters are derived from a wavelet kernel, they are called wavelet filters
and their subbands are called wavelet subbands. There are various kinds of wavelet
filter and ways to implement them very efficiently, among them being a method called
lifting, which will be explained in this book. There are filters that are reversible only
if we assume floating-point computation, but there are forms of computation that are
also completely reversible while maintaining a fixed, finite precision for all operations,
so that there are no roundoff errors of any kind. Most of the high-magnitude or
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high-energy coefficients appear in the lowest frequency subbands and the coefficients
in all subbands, except the lowest one, tend to be nearly uncorrelated. The subbands
are often encoded independently, since they are independent for a linearly filtered,
stationary Gaussian source. In all cases, the subbands have different variances and are
treated as having the same probability distribution function, except perhaps the lowest
frequency subband. Therefore, as with the non-subband transforms above,1 the target
bit budget has to be unevenly allocated among the subbands to minimize the distortion
in lossy coding. This kind of bit allocation results in coding gain. Lossless coding of
the subbands requires no bit allocation and gives perfect reconstruction of the source
when reversible, fixed-precision filters are used for the subband transform. There is
even a theoretical justification for coding gains in lossless coding, as it has been proved
that a subband transform reduces the entropy of the source and therefore the rate for
lossless coding [4].

2.4 Set partition coding

One of the unique aspects of this book is a coherent exposition of the principles and
methods of set partition coding in Chapter 10. This kind of coding is fundamentally
lossless, but is not entropy coding in the same category as other general purpose coding
methods that can be used for any type of data. It generally works best upon transforms
of a source because it can more efficiently exploit some properties that are difficult to
model. As explained in Section 1.3, coding methods divide the data to be coded in var-
ious ways to obtain better compression. For example, the fixed-to-variable scheme of
Figure 1.2(c) is commonly used for coding quantized transform coefficients. Grouping
source symbols for coding can lead to better results, but it tends to produce exponen-
tial growth in complexity with the number of symbols. Set partition coding employs
a variable-to-variable approach, but one in which it adaptively subdivides the source
symbols, in order to obtain simultaneously better compression and maintain low compu-
tational complexity. More specifically, set partition coding refers to methods that divide
the source (or transform) sequence into sets of different amplitude ranges.

Figure 2.7 illustrates sequential partitioning of a two-dimensional block of data sam-
ples into sets of decreasing maximum value. The “dark” samples exceed in magnitude

Figure 2.7 Example of how a set of image pixels is sequentially subdivided for more efficient compression
using set partition coding.
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a given threshold while samples in the “white” areas do not. When the threshold is low-
ered, every white area containing one or more above-threshold samples is recursively
quadri-sected until all these above-threshold samples are located and hence darkened.
The threshold is again lowered and the process repeats. Once a source or transform
sample is located within a set, the most bits needed to represent it are the base-2 loga-
rithm of the associated range. In transforms, the sets with a small range tend to be large,
so their coefficients can be encoded with very few bits. All-zero sets require zero bits
once they are located. The combination of the set location bits and the range bits often
provides excellent compression.

Methods of set partitioning are fundamentally both simple and powerful. They require
only simple mathematical and computer operations, and produce efficient compression,
even without subsequent entropy coding of the range and location bits. Furthermore,
these methods are natural companions for progressive coding. One usually defines the
sets as non-overlapping with given upper and lower limits. When one searches them in
order of decreasing upper limit, then the elements in ranges of larger magnitudes are
encoded before those in any range of smaller magnitude. Therefore, in the decoder, the
fidelity of the reconstruction increases progressively and as quickly as possible as more
bits are decoded.

2.5 Coding systems

2.5.1 Performance criteria

At first glance, the performance criterion for a coding system seems obvious. One
would like the system to produce the fewest bits possible to reconstruct the source
either perfectly or within a given distortion. If perfect reproduction is unnecessary
or unattainable, then one needs to define the measure of distortion. The most com-
mon measure is mean squared error (MSE) between the reproduction and the source.
The reason is that it is easy to measure and is analytically tractable in that it allows
derivation of formulas for compression performance, optimal bit allocation, and other
aspects of a coding system. There are various arguments against this distortion crite-
rion, but the chief one is that it is inappropriate for particular kinds of exploitation of
the data. For example, if the source is audio, MSE is only indirectly related to the aural
perception. Similarly for images, in that visual reproduction artifacts may not be ade-
quately measured by MSE, especially if the artifacts are only locally contained. Also,
one may only be interested in detection of objects or classification of vegetation in
images, so the accuracy of these tasks cannot be related directly to MSE. Nonethe-
less, when a source is compressed for general use, MSE seems to be the best criterion.
Practically all coding systems are created and proven for their performance in MSE or
the related peak signal-to-noise ratio (PSNR), which is a translation of the logarithm
of MSE.

Beyond ultimate performance, there are other attributes sought for a coding system.
We have already mentioned progressive coding. There, decoding can stop when the
user is satisfied with the fidelity of the reconstruction. A related attribute is embedded
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coding, when the system’s compressed file of any lower rate resides within its larger
compressed file of larger rate. Therefore, one compressed bitstream can serve the needs
of various users with different terminal capabilities. Another attribute is resolution scal-
ability, when source reconstructions of reduced resolution can be decoded directly from
the compressed bitstream of the full resolution source.

An attribute often more important even than minimum possible rate (bits per source
letter) is low complexity. Low complexity manifests itself in low numbers of mathe-
matical or computational operations, high speed in encoding and decoding, and small,
compact hardware with low power requirements. One most often must sacrifice com-
pression performance to meet the demands of lower complexity or high speed. For
example, according to industry professionals, physicians will not wait more than one
or two seconds to view a decompressed X-ray image. So as long as the compression
is adequate, the method with the fastest decoding speed is the winner for physicians.
Anyway, in creating a coding system for a particular application, the various attributes
and requirements of the compression must be carefully considered.

2.5.2 Transform coding systems

2.5.2.1 JPEG image compression
The most ubiquitous coding system, the JPEG image compression standard, is a trans-
form coding system. The source image is divided into contiguous 8 × 8 blocks, which
are then independently transformed with the DCT. The DC or (0,0) indexed coeffi-
cients are encoded by a lossless predictive scheme and the non-DC (AC) are quantized
with uniform range intervals depending on their coordinates within their block. A lin-
ear sequence of indices of the quantization intervals is formed through a zigzag scan
of the block. This sequence is then encoded losslessly by a combination of run-length
symbols and Huffman coding. The details may be found in Chapter 11. The JPEG base-
line mode, which seems to be the only one in use, has no attributes of progressiveness,
embeddedness, or scalability in resolution, but the complexity is quite low.

2.5.2.2 H.264/AVC intraframe standard
The standard video compression systems all have an intraframe or single image frame
mode for the beginning frame of a group. The H.264/AVC Video Standard’s intraframe
mode is a transform coding method. The frame is divided into either 4 × 4, 4 × 8, or
8 × 8 blocks, depending on a measure of activity. For example, 8 × 8 blocks have the
lowest activity and 4 × 4 the highest. The blocks are individually transformed by a
simple integer approximation to the DCT. The resulting DCT blocks are encoded dif-
ferently than JPEG, as intra-block prediction and context-based, adaptive arithmetic
bitplane coding are employed. More details will be revealed in Chapter 9. The method
has no resolution scalability, but it does have an optional limited fidelity progressive
mode attained by encoding two residual layers.
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2.5.3 Subband coding systems

Subband coding of images has received much attention since 1986, when Woods and
O’Neil [5] published the first journal paper on the subject. However, the seminal paper
in subband coding of speech by Crochiere et al. [6] appeared 10 years earlier. Really
surprising was that the image coding results were far better than what standard anal-
ysis predicted. Specifically, standard analysis revealed that optimal predictive coding
in subbands was no better than optimal predictive coding within the original image. In
other words, there was supposedly no coding gain when predictive coding was used in
subbands versus the same being used on the original source. A later article resolved
the contradiction between theory and practice [7, 8]. It proved that coding in subbands
using non-optimal finite order prediction, as what must be done in practice, does indeed
show gains over coding using the same order prediction within the source. This fact is
true regardless of the dimensionality of the source.

Systems employing coding of subbands seem to fall into two categories: block-based
and tree-based. We shall be exploring several of them in both categories. Block-based
systems include the classical systems that encode the subbands independently. The bit
rates for the subbands are assigned with a bit allocation procedure based on variances.
Currently popular systems assign bit rates based on the actual amplitude of coefficients
in the subbands. Such block-based systems are the JPEG2000 still image standard
with its embedded block coding with optimized truncation (EBCOT) coding engine,
set partitioning embedded block (SPECK) and its variants subband block hierarchical
partitioning (SBHP) and embedded zero block coder (EZBC), and amplitude and group
partitioning (AGP). Tree-based systems encode spatial orientation trees (SOTs), or what
are called erroneously zerotrees, in the wavelet transform.2 These trees are rooted in the
lowest frequency subband and branch successively to coefficients having the same spa-
tial orientation in the higher subbands. A SOT of an image (two-dimensional) wavelet
transform is shown in Figure 2.8. Embedded zerotree wavelet (EZW) and set parti-
tioning in hierarchical trees (SPIHT) are the two best-known tree-based coders. Of the
coders mentioned, all except JPEG2000 (and EBCOT) and EZW are set partitioning
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Figure 2.8 Transform coefficients in spatial frequency wavelet subbands (left) are organized to form spatial
orientation trees (SOTs, right).
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coders. Other set partitioning coders are group testing of wavelets (GTW), which will be
be described later, and significance linked connected component analysis (SLCCA) [9].
The interested reader may consult the given reference for information about the latter
method.

The coding methods just mentioned were originally developed for compressing
images. Many of these methods can be extended in an obvious way to higher dimen-
sional data sources, such as hyperspectral and tomographic data, video, and three-
dimensional motion images, such as fMRI. They also can be utilized for compression
of one-dimensional signals, such as audio, speech, and biological signals. Audio and
speech require integration and synthesis of a perceptual model to obtain efficient
compression without annoying artifacts.

2.6 Distributed source coding

Distributed source coding is a subject that has come into prominence recently. At the
time of writing, there are no textbooks that treat this subject. A system employing
distributed source coding encodes correlated sources independently and decodes them
jointly and attains performance nearly or exactly as good as if they were encoded jointly
at the source. Such a system is illustrated in Figure 2.9 for two sources.

Handheld devices, such as mobile phones, that capture and transmit video, require
coding that does not consume much energy and does not cost too much to purchase.
Most of the cost and complexity of video encoding are linked to motion estimation, so
through distributed coding, the decoding in the base station absorbs the major brunt of
the complexity, with little compromise in performance. A network of sensors, each of
which transmits images or video of the same scene, cannot cooperate easily in source
coding, so a processing node or base station can reconstruct the transmitted data with
nearly the same accuracy as if the sensors cooperated in encoding.

For the example of a two-source system, the sum of the rate for the two sources need
only be the joint entropy H(X, Y ) to achieve lossless recovery, as long as certain lower
limits on the bit rates of the two sources are obeyed. The way the system might work
is roughly as follows. One of the sources X is encoded losslessly with rate H(X). The
other source is encoded with rate H(Y/X) (H(X)+ H(Y/X) = H(X, Y )). The input
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Figure 2.9 Distributed source coding: independent encoding and joint decoding of correlated sources.
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space is partitioned into H(Y/X) subsets (called cosets of a channel code) of dispersed
elements. Instead of encoding Y itself, the source conveys the coset into which Y falls
using H(Y/X) bits. Since X is correlated with Y , it occurs with high probability close
to Y . So the decoder declares Y to be the member of that coset that is closest to X . The
details and justification are explained in Chapter 14.

The intention of the treatment of distributed source coding in this textbook is to
explain the principles both for lossless and lossy source coding. In a practical sys-
tem, one cannot avoid a small probability of recovery failure, so these probabilities are
derived for some source correlation models. There is no attempt to describe the numer-
ous application scenarios, as they lie outside the purview and objective of this book,
which is to concentrate on the teaching of fundamental principles.

Notes

1. One can show that these mathematical transforms are special cases of subband trans-
forms, but we make this distinction here, because they are usually not treated like
subband transforms for encoding purposes.

2. The term zerotree means that all nodes in the SOT are tagged with zero to signify that
they are insignificant. The term SOT just designates the structure of the tree without
assigning values to the nodes.
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3 Principles of lossless compression

3.1 Introduction

Source coding began with the initial development of information theory by Shannon in
1948 [1] and continues to this day to be influenced and stimulated by advances in this
theory. Information theory sets the framework and the language, motivates the meth-
ods of coding, provides the means to analyze the methods, and establishes the ultimate
bounds in performance for all methods. No study of image coding is complete without
a basic knowledge and understanding of the underlying concepts in information theory.

In this chapter, we shall present several methods of lossless coding of data sources,
beginning with the motivating principles and bounds on performance based on informa-
tion theory. This chapter is not meant to be a primer on information theory, so theorems
and propositions will be presented without proof. The reader is referred to one of the
many excellent textbooks on information theory, such as Gallager [2] and Cover and
Thomas [3], for a deeper treatment with proofs. The purpose here is to set the foun-
dation and present lossless coding methods and assess their performance with respect
to the theoretical optimum when possible. Hopefully, the reader will derive from this
chapter both a knowledge of coding methods and an appreciation and understanding of
the underlying information heory.

The notation in this chapter will indicate a scalar source on a one-dimensional field,
i.e., the source values are scalars and their locations are on a one-dimensional grid,
such as a regular time or space sequence. Extensions to multi-dimensional fields, such
as images or video, and even to vector values, such as measurements of weather data
(temperature, pressure, wind speed) at points in the atmosphere, are often obvious once
the scalar, one-dimensional field case is mastered.

3.2 Lossless source coding and entropy

Values of data are not perfectly predictable and are only known once they are emitted
by a source. However, we have to know something about the source statistics to char-
acterize the compressibility of the source. Therefore, the values are modeled as random
variables with a given probability distribution. In that vein, consider that an information
source emits a sequence of N random variables (X1, X2, . . . , X N ). We group these ran-
dom variables to form the random vector X = (X1, X2, . . . , X N ). Each random variable


